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ABSTRACT 

 

A polyelectrolyte complex is formed by mixing two oppositely charged polyelectrolytes in a 

solution. The electrostatic interactions between partially charged polymeric chains lead to the 

formation of a stable complex while avoiding the use of covalent cross linkers.  Since complex 

formation can improve the stability of polyelectrolyte and metal ions in polyelectrolyte can 

provide various functionalities, PECs incorporated with metal ions are promising candidates for 

manufacturing stable and multifunctional structures. While the coordination of metal ions and 

polyelectrolytes has been extensively investigated in solutions and multilayer films, to our 

knowledge, no research has been performed to study the effect of metal ion/polyelectrolyte 

interactions on PECs structures and properties. The following research demonstrates the impact 

of different metal ions in controlling PEC structure morphology and applications. These 

discoveries indicate great potential of metal ions in PECs to fabricate functional PEC 

nanostructures. 

 

The research investigates the effect of the interactions between different metal ions and 

polyelectrolytes on the morphology and properties of PECs, explore the fabrication of different 

structures using embedded metal ions and understand the impact of metal ion/polyelectrolyte 

interactions on the nanoparticle structures. The research concludes: 1) incorporating metal ions 

of different valence into PECs introduces metal ion/polyelectrolyte interactions that can tune the 

morphology of PECs; 2) metal ion/polyelectrolyte interactions can be used to control the PECs 

swelling properties and stability in aqueous solutions; 3) the release of embedded metal ions 
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from PECs to aqueous solutions is affected by metal ion/polyelectrolyte interactions; and 4) the 

embedded metal ions function as a reagent reservoir for various applications to produce 

functional structures.   
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CHAPTER 1: INTRODUCTION 

1.1 Polyelectrolytes: 

Polyelectrolytes are charged polymers with repetitive charge bearing units. The basic 

architecture of a polyelectrolyte contains a polymeric backbone that carries repetitive units of 

charge bearing functional group(s). It is these functional groups that dissociate in polar solvents 

like water to give either positive or negative charge. Polyelectrolytes can be classified as natural 

(e.g. DNA, proteins or enzymes), natural derived (e.g. cellulose, alginin, heparin, pectin, chitosan 

(CS), etc.) and synthetic (e.g. poly allylamine hydrochloride (PAH), poly styrene sulfonate 

(PSS), poly acrylic acid (PAA), poly diallyldimethyl ammonium chloride (PDDAC), etc.). 

 

Molecular structures of some common polyelectrolytes are given in Figure 1.Polyelectrolytes 

have a non-zero charge at near neutral pH and can be divided into polyanions, polycations and 

polyampholytes, depending on the nature of the charge. The PAH, CS and PDDAC are examples 

of cationic polyelectrolytes due to the positively charged amine terminals and PAA and PSS 

anionic due to their negative charged carboxyl and sulfate terminals. Polyelectrolytes that 

contain both positive and negative charges are not uncommon and are termed as polyampholytes. 

A special type of polyampholytes that contain both positive and negative terminals in the each 

repetitive unit has been termed as polybetaines, which are rather rare and are usually synthetic in 

nature. 
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(a)                       (b)                             (c)                      (d)                (e) 

Figure 1: Molecular structures of common polyelectrolytes: (a) PAH, (b) PDDAC, (c) CS, (d) 
PAA and (e) PSS.  PAA and CS were used in this study. 
 
 
The dissociation of the functional groups plays a more critical role in the properties and 

applications of the polyelectrolytes. Polyelectrolytes are classified as week or strong 

polyelectrolytes on the basis of their dissociation constants. The polyelectrolytes bearing the 

functional groups that dissociate extensively and are not dependent on the pH of the solution is 

known as strong polyelectrolytes, similar to a strong acid or base.  These polyelectrolytes remain 

highly charged in most conditions and their surface charge is not easily altered. The PDDAC is 

good example for strong polyelectrolyte as its quaternary amine bearing functional group 

retained its positive charge over a wide range of pH. Similarly, PSS is a strong anionic 

polyelectrolyte. The weak polyelectrolytes on the other hand, have functional groups whose 

dissociation is pH dependent. Their surface charges can easily be controlled by altering the 

solution pH and are more amiable to electrostatic tailoring. PAH and CS are weak 

polyelectrolytes due to the primary amine which is positively charged only at acidic pH (by 

accepting a proton). The PAA is also weak polyelectrolyte that is ionized only at basic pH when 

the carboxyl group loses a photon. Likewise to the acids and bases, the pKa plays a critical role 

in the ionization of weak polyelectrolytes and hence their properties and applications. Presence 
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of these ionizable groups makes weak polyelectrolytes sensitive to change in environment like 

pH, ionic strength, electric field and temperature. 

 

Their molecular architecture and nature & extent of charge play an important role in the overall 

molecular structure and properties of polyelectrolyte. Interestingly, it is the interplay between the 

electrostatic forces arising from the charged terminal functional groups and the steric effects 

from the hydrophobic nature of the polymeric backbone that eventually determines the final 

conformation of these molecules. The conformation of these molecules is inherently linked to 

their functions. Therefore, in nature this simple principle of polyelectrolyte dissociation and 

molecular architectures is used to create a vast array of biomolecules. Yet each of them is 

distinct and different from the other, as it has evolved to function only at a particular 

environmental condition such as pH or ionic concentrations. The DNA is great example of 

biological polyelectrolyte that also has complex molecular architecture. Essentially, it has a 

backbone of phosphate-pentose sugar bearing repetitive units of bases as the functional moiety. 

Instead of one kind of repetitive functional groups in simple polyelectrolytes, there are four bases 

in this case, to increase the randomness. The relatively strong nature of dissociations of these 

bases, along with their specificity of bonding allows the two strands to form a intermolecular 

complex through hydrogen bonding that eventually results the double helix structure of the 

DNA. It is the polyelectrolyte nature of each strand that allows them to unzip into two (or zip 

back) as and when required. This reversible nature is critical for all functions of DNA in any 

living organism. Like DNA, proteins also function in a similar fashion. In this case too, the 

balance between the electrostatic forces from the dissociated functional groups of the polyamino 

acids and the steric forces leads to their final conformations and dictates their functionality. This 
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protects the active parts or motifs of the molecules and them functional only at a particular 

condition. At this point it is also noteworthy that the final or quaternary conformation of these 

biomolecules is a hierarchical structure. This is gradually built upon through simpler primary, 

secondary and tertiary structures that are formed due to inter- and intra- molecular complexes. 

The charged functional groups of the polyelectrolytes behave like sticky ends that tend to bind to 

oppositely charged groups either from the same molecule (intra-molecular) or from neighboring 

molecules (inter-molecular) forming polyelectrolyte complexes (PECs). This is especially 

evident for polyelectrolytes with complex molecular structures and/or in highly ionic medium 

such as buffers.  

 

1.2 Polyelectrolyte complexes: 

The importance of polyelectrolytes is often attributed to their ability to form complexes. Several 

forms and types of polyelectrolyte complexes (PECs) have now been identified in the natural 

world and we are only beginning to understand their molecular mechanisms. The 

electrostatic/columbic forces from the charged terminal groups are fundamentally responsible for 

the complex formation [1-4]. Strong polyelectrolytes having a high charge density generally 

form insoluble complexes. Similarly, high molecular weights and stoichiometry lead to insoluble 

and highly aggregated complexes[5]. However, water soluble polyelectrolyte complexes also 

known as “quasi-soluble” can be formed from weak polyelectrolytes and/or with huge difference 

in size by mixing in non-stoichiometric ratios.  
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The dynamic nature of the equilibrium makes PECs versatile in both structure and properties. 

Simple and small changes in the systems can lead to great thermodynamic alterations in the 

system, resulting significant variation in its properties. Weak polyelectrolytes are generally more 

sensitive to the environmental changes and hence are more suitable for applications. Most 

naturally occurring and naturally derived polyelectrolytes are also weak polyelectrolytes such as 

amino acids, chitosan, hyaluronic acid, alginin, polysaccharides etc., except for DNA and RNA 

which are strong polyelectrolytes. By choosing appropriate polyelectrolyte, polyelectrolyte 

complexes are stable, well tolerated, biocompatible and are more sensitive to changes in 

environmental conditions. The electrostatic interactions between partially charged polymeric 

chains lead to the formation of a stable polymer hydrogel network while avoiding the use of 

covalent crosslinkers [6, 7]. Such tunable variations in properties make them suitable for a wide 

range of applications.  

Complex formation can be studied based on the variations in the physicochemical properties   

(viscosity, pH, and conductivity) of the complex, thus evaluating the complexation reaction. The 

complexation can be studied in terms of charge neutralization and can be monitored by 

viscometry, with change in viscosity corresponding to the complexation of one polyelectrolyte 

with the other. Other methods for monitoring complexation include potentiometry[8] or 

conductometry[9] with the variations in  potential or conductivity corresponding to the presence  

and the nature of the free ions in solution. 
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The molecular interactions in PECs may occur at several levels. At the most fundamental level 

lays the electrostatic interactions between the functional groups and ions present in the 

environment. This leads to a molecular arrangement to accommodate the change in electrostatic 

forces due the intra- and inter- molecular conjugation. The steric forces re-configure their 

secondary structure that often distorts the polymer backbones. In the next level, the secondary 

structures interact with each other due to hydrophobic and residual electrostatic forces leading to 

aggregates of PECs that has spatial conformations and orientations. The structural hierarchy of 

the complexes may continue to escalate to higher levels till it achieves conformational symmetry. 

It is often a slow and gradual process that eventually seizes when a dynamic equilibrium is 

achieved. The exact molecular architecture of the poly complexes remains specific to the system, 

but can be controlled to obtain various shapes and sizes.  Different structures can be obtained at 

different stages of complex by either self-assembly due to primary or secondary interactions or 

by fabrication[10]. 

 

1.3 Polyelectrolyte complex structures: 

Hydrogels: A hydrogel is a network of hydrophilic polymers that can swell and hold a lot of 

water while maintaining their structures. Because of their significant water content, hydrogels 

possess a degree of flexibility very similar to natural tissue.[11-13] With such unique property, 

hydrogels have been extensively investigated, and significant progress has been made in 

designing, synthesizing and employing them in applications such as tissue engineering 

scaffolds,[11-20] controlled release,[21-23] biomolecular encapsulation, [21, 24, 25] sensing[26-

32], nanoparticle synthesis,[29, 33, 34] and molecular imprinting,[35, 36] where facilitating the 

transport of active materials such as nutrients, ions and drugs are crucial. The kinetics of 
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swelling and de-swelling of the polymeric components which limits the ion diffusion coefficient 

ranges from 0.8×10-7 to 8×10-7 cm2/s.[37] Therefore, the most significant challenge to make 

efficient hydrogel devices is the slow response related to low diffusion coefficient. Because 

hydrogel swelling kinetics are inversely proportional to the square of the dimension,[37] 

hydrogel fibers with reduced size and larger surface area offer more efficient material transport 

and faster response than hydrogels. 

 Nanofibers: Nanofibers are defined as fibers with diameters less than 100 nanometers. 

Nanofibers have large surface area and are better candidates as a supporting matrix for 

nanoparticle synthesis. Additionally, these fibers offer the advantages of tunable properties as 

compared to films. These fibers combine the properties of hydrogel with high surface area [38] 

[39-45]and smaller size and have been used for a lot of applications like drug delivery, tissue 

engineering etc. But their use as supporting matrix for nanoparticle synthesis has not been 

exploited much. There are evidences that polyanion/polycations have similar properties as of 

extracellular matrix (ECM) of cells and nanofibers resemble the components of ECM and affect 

the cellular activity because of their nanometer size and geometrical reasons [45]. Cells are able 

to organize around, attach and proliferate on these fibers as the scaffolds formed of such 

nanofibers are smaller than the size of the cell [46-49]. Moreover, the bio and cytocompatibility 

of these fibers can also be modulated through post synthesis modification. 

Nanofibers have applications in medicine[50], including artificial organ components[19, 41], 

tissue engineering[51, 52], implant material, drug delivery[39, 41], wound dressing[53], and  

bioseparation [54]. Filtration system applications include air, oil, fuel filters for automotive and 

filters for beverage, pharmacy, medical applications. Energy applications include capacitors[55], 

Li-ion batteries, electrodes[56], photovoltaic cells, membrane fuel cells[57], and dye-sensitized 
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solar cells[58]. Other applications include piezoelectric fibers, catalysis [59, 60], air/water 

purification [61-63]. 

Among the three common ways of synthesizing fibers: self-assembly, electrospinning and phase 

separation, electrospinning is the most versatile, simple and cost effective technique. A vast 

number of polymers can be electrospun into fibers through this technique[38, 39, 43, 44, 48, 51, 

53, 57, 58, 64-84]. Briefly, the fibers are fabricated by applying high voltage to polymer 

solution. As the field strength passes the critical value to overcome surface tension of the 

polymer solution, a cone-like meniscus is formed (Figure 2). From this meniscus, a jet of 

solution is emitted whose diameter decreases as it approaches the collector electrode, with the 

evaporation of solvent, leading to the formation of fibers at the collector electrode. The spinning 

of fibers from polymer solution is controlled by lot of variables: solution properties, instrument 

parameters and ambient parameters. Solution properties like viscosity[85], conductivity, 

solubility, molecular weight of the polymer, surface tension, and dipole strength all affect the 

spinning process. The controllable instrumental parameters are: flow rate of the solution, the 

distance between the tip of the needle and the collector electrode, field strength, tip design and 

collector. Environmental (ambient) parameters are temperature and humidity. While spinning 

fibers, all these parameters need to be optimized for particular polymer to achieve the desired 

size and morphology of the fibers and their applications[68]. 
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.  

Figure 2: A schematic illustrating the electrospinning phenomenon. 

 

 Electrospun polymer fibers though are promising templates to host nanoparticles, functional 

groups and cross-linking is required for nanoparticle attachment and to obtain stable fibers. 

These post synthesis modifications can also be of great use for improving the bio and 

cytocompatibility of these fibers[19]. Post synthesis cross-linking is required to modulate 

mechanical properties of fibers and make them insoluble in different pH media[86, 87].  Since, 

electrospinning process requires the fibers to be in liquid phase, cross-linking is done post 

synthesis. With appropriate functional chemistry, the fibers can be chemically cross-linked by 
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water based covalent linking. Amine and /or carboxyl groups of the fibers can be utilized for this 

using carboiimide crosslinkers such as 1-ethyl -3-[3-dimethylaminopropyl] carbodiimide 

hydrochloride (EDC), leading to amide bond formation.  It is difficult to control the cross link 

density of the fibers using chemical cross-linking. Also, the unreacted cross linkers or chemical 

initiators or activators can leach and could be toxic for biomedical applications. Thermal[88] and 

radiation [89] are two other methods for nanofiber cross-linking.  

 

1.4 Applications of polyelectrolyte complexes: 

The prospect of tunable properties of the PECs makes them suitable for a wide range of 

applications the following are some of the most significant and widely used. 

1.4.1  Wound healing: Wound healing is a sequential biological process which the government 

to showcase excepts the whole process of wound healing is usually divided into the four 

following sequential biological events to which the dominant issue here is itself the whole 

process of wound healing is usually decided is usually divided into four following sequential 

biological events: Hemostasis, inflammation, proliferation, maturation and remodeling[90]. As 

explained above it is primarily in the first two stages that external help is needed to contain and 

manage the wound healing process the exact nature and needs of this assistance depends on the 

nature and type of forms. 

Although, inflammation is a part of healing process, several reactive oxygen species (ROS) are 

generated in the process. High concentrations of free radicals from ROS is damaging to cells, 

causing oxidative modification of biomolecules including nucleic acids, proteins, carbohydrates 
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and lipids. Oxidative stress has been implicated in various conditions including 

neurodegenerative diseases, autoimmune diseases and cancer. 

Hydrogen peroxide (H2O2) is one of the known reactive oxygen species (ROS) together with 

other reactive molecules such as superoxide radical, hydroxyl radical and nitric oxide. Hydrogen 

peroxide, reactive oxygen specie, is most commonly associated with oxidative stress causing 

cytotoxic effects on living cells. It is produced both intracellularly and extracellularly in 

association with oxidative stress when the normal redox state of a cell is disturbed. It is 

generated response to various stimuli including cytokines and growth factors. In addition H2O2 is 

produced as a defense mechanism against pathogens, as being released by activated phagocytes. 

Hydrogen peroxide is also continuously generated under normal physiological conditions, being 

an inevitable by-product of the aerobic respiration process in cells there are different 

mechanisms by which H2O2is generated, facilitating signal transduction in cells; through NOX-

system in mitochondria, via singlet oxygen, receptor/ligand interaction or by redox active metal 

ions. 

Both inflammation and infections impair wound healings. In certain situations, like diabetes, 

they can further cause complications. Therefore, wound dressings with intrinsic antioxidant and 

antibacterial properties would result in faster recovery of the wound. This is of extreme 

importance for patients with compromised immune system. 

1.4.2 Tissue Engineering: It is a broad area of biomedical research that aims at artificial 

reconstruction of tissue either completely or partially in a controlled environment. The whole 

process usually consists of re-creating a matrix similar to the ECM, seeding the cells into it and 

integrating the whole system together to reconstruct the tissue system. 
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Polyelectrolytes are often used for these applications for their biocompatibility and functional the 

chemical, morphological, mechanical and functional properties can easily be controlled by 

altering the processing nanometers and therefore can be tailored suitably to match the physical, 

and chemical properties of the ECM. The CS based PECs have found extensive applications in 

this area primarily due to their biocompatibility. Moreover the NH2 group allows additional 

functionalities to be attached to the complex the attachment could be through simple electrostatic 

interactions or through hydrogen bonding or even through covalent linkage. This gives 

tremendous control over not just the morphology but also the chemical functionality of the 

structure which eventually helps to reconstruct the ECM as desired for a particular tissue 

engineering application. 

1.4.3 Antimicrobial applications: Microbial pathogens are one of the biggest menaces to public 

health and safety the other causes of simple infections to an outbreak of epidemic. In order to 

maintain the public hygiene, several antibiotic reagents are used every day. Reagents such as 

alcohols are inexpensive but to the evaporate easily and can be toxic to human helped specially 

designed antibiotics are more potent for applications but are expensive and can often be placed in 

harsh conditions moreover these variations are not useful for recording surfaces to keep them 

sterile. 

PECs based on chitosan on the other hand are known for their antimicrobial properties. These 

PECs have a high density of positive charge amine groups that are known to bind aggressively 

with the bacterial cell wall and degrade them eventually. CS based PECs being the light from 

crustaceans that evolved unmatchable microbial resistance retains this chemical property that 

makes them both antimicrobial and biocompatible at the same time. This advantage has been 

explored by many researchers in order to construct PECs for antimicrobial applications. Adding 
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antimicrobial agents such as antibiotic drug molecules can easily be incorporated into the 

polyelectrolytes tube radius chemical linkages the antimicrobial and thus formed can be applied 

in various forms such as nanoparticles or nanorods, fibers, emulsions, thin films and hydrogels 

for a wide range of applications. 

1.4.4 Desalination and purification of water: Other than biomedical applications the PEC can 

also be used for other technological forms such as desalination and water purification. The 

applications of water purification's use diverse strategies which has different goals. The natural 

inability of binding bacterial cell walls to electrostatic interactions is exploited to remove 

pathogens from water. The amine-based functional groups in many polyelectrolytes are often 

used to correlate and precipitate out heavy metal lines. Similar principles are also used for 

dissemination of water. The amphiphilic nature of polyelectrolyte makes them excellent 

emulsifiers.  This strategy is simple and effective and efficient because the polyelectrolytes can 

easily be recovered by changing the conditions such as pH or temperature that dismantles the 

PEC's. This program technique provides for the bondage of the CDs of polyelectrolytes and their 

complexes can be synthetic and designed are specifically constructed to remove each of the 

impurities. Then there they provide a whole spectrum of species that can be used in a simple and 

effective and convenient manner for water purification and similar technologies. 

1.4.5 Actuators and electro-active hydrogels: The applications mentioned so far mostly 

emphasize and exploit the electrostatic charges produced into the dissociation of the functional 

groups in the polyelectrolytes. When combined with their stearic properties, the PEC can be used 

for their viscoelastic properties as well. Such PECs are often known as smart gels that change 

their shape, structure in response to the external stimuli hence also known as stimuli-, 

viscoelastic properties values as artificial muscles, which contracted and expanded in response to 
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the pH and electrical field, giving rise to the concept of stimuli responsive soft matters.  

The PECs that response to the externally applied electrical field are referred as electroactive 

actuators. The charged functional groups produce dipole moments in a polar solvent. These 

dipoles reorganize themselves under the electric field which eventually leads to the 

rearrangement of the molecular structure. This manifests itself in a simple 3D structure as a 

swelling or shrinking behavior. The exact swelling or shrinking behavior depends on the 

structure, morphology and architecture of the complex; nature of electrical field; functional 

groups and other parameters like electrolytes.  

Most of the early works are on PAA-Na based PECs which formed 3D hydrogels. Later studies 

were conducted using thin films and fibers which behaved in different manners. In more recent 

studies highly ionic media, high dielectric functional groups were incorporated into the PEC 

structures to enhance the viscoelastic properties. In more complicated systems PMACo and/or 

piezoelectric nanoparticles are incorporated into the PEC resulting into a hydrogel of 

heterogeneous viscoelastic domains. Such responsiveness would also be achieved for stimuli 

such as UV and heat radiation.  The azo based functional groups (-N=N-) and their modifications 

are used for the UV responsiveness. The PANI based PECs are used for the heat stimulated 

applications. 

They are now finding increasing applications in many forms of engineering. Electrically 

activated PAA based gels that used for artificial membranes more biocompatible biopolymers-

anchoring sulfate proteoglycans that used for controlled drug delivery systems. The PAA based 

hydrogels have been made to contract and expand in response to pH and electrical field. The 

tensile forces generated during this time is similar in magnitude to that of biological muscles, 
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hence they were termed as artificial muscles. Well cross-linked PVA-PAA based PECs are also 

used to make actuators that makes the mechanical movement like a fingers in the hand or to able 

to propel themselves like a movement of a fish. They have been used in soft robotic applications 

or in artificial heart valves where mechanical actuation is necessary.  

 

1.5 Metal-polyelectrolyte interaction and role of metal ions in PEC formation 

Metal ions play essential roles in human body as cofactors, minerals and in enzymes & 

polypeptides providing structural (zinc fingers) and functional (hemoglobin). Role of metals in 

biological world for structure stability, catalysis, biomineralization etc. in self-assembly, 

adhesion and strength has been evident in studies [91-97]. The function of metal ions is in the 

binding and orienting the molecules and they can take part in redox reactions if the metal is 

multivalent. The metal ions also take part in complex formation in nature, for example, calcium 

ions mediates the  bridging listerial protein internalin (InlA)  of Listeria monocytogenes, a food-

borne bacterial pathogen and host cell receptor E-cadherin (hEC1). 

 

Metal ions are electrophiles and bind to ligands by coordinate bond or electrostatic interaction. 

Multivalent metal ions can accommodate many ligands around them at the same time. Binding to 

the ligand is through the functional groups present on ligands. Some of the common functional 

groups binding with metal ions are carboxylates, amines, sulphonates, etc. Carboxylates are the 

most common and well-studied of all the functional groups. Carboxylate ions are far more stable 

than their free acid counterparts due to the resonance stabilized carboxylate anion.  The 

carboxylate groups of aspartate and glutamate side chains in proteins are a common site for the 
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binding of a metal ion. Metal ions can form four different types of complexes with carboxylates: 

ionic, monodentate, bidentate, bidentate bridging. 

 

Metal ions can be incorporated in polyelectrolyte complexes by the functional groups present on 

the polyelectrolytes. While the coordination of metal ions (monovalent and some divalent) and 

polyelectrolytes has been investigated in solutions [9, 98-102] and multilayer films, [103-105] to 

our knowledge, no research has been performed to study the effect of metal ion-polyelectrolyte 

interactions in PECs on PCF structures and properties. However, not much understanding has 

been obtained on the formation of complex between two oppositely charged polyelectrolytes and 

the effect of different salts on the formation of these complexes. 

Thus, the goal of this research is to design bioinspired biomimetic metal ion coordinated 

polyelectrolyte complex nanostructures for various applications. 

 

1.6 Theme of the research: 

This dissertation research is focused on the fabrication of different nanostructures from MPECS 

of nanomaterials towards their diverse applications. Different structures like gels, films and 

fibers are fabricated from these complexes. Later, their structure and properties are tuned by 

various surface treatments (covalent and non-covalent functionalization of the surface) to 

accomplish desired applications. Surface is functionalized by interfacial reactions exploiting the 

diffusion properties of the structures. The main theme of this research work is to understand 

interactions between two polyelectrolytes resulting in complex formation and the effect of metal 

ions on them.  
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The research includes 1) studying the effect of different metal ions-polyelectrolyte interactions 

on the complex formation by properties of complex solutions such as viscosity and conductivity, 

and structure/morphology of PECs, 2) investigating the stability and swelling properties of PEC 

structures with different metal ions and the diffusion of different metal ions from PECs, 3) 

functionalization of PCFs using embedded metal ions. 

 

Chapter 3 focuses on the complex formation between PAA and chitosan in the presence of 

different metal ions. Complex formation was followed by viscosity studies and IR. Based on the 

observations, a model for complex formation is proposed. 

 

In Chapter 4 gels are obtained from polyelectrolyte complexes by room temperature 

crosslinking, thermal treatment and pH change. The swelling and stability of gels in different 

mediums were also monitored. The morphology of the gels and functionalized gels was studied 

by SEM. 

 

Chapter 5 focuses on electrospinning of polyelectrolyte complexes. The effect of metal ion on 

the morphology of electrospun nanostructures was studied. Additionally the effect of other 

parameters like polymer concentration, voltage etc., was also studied. Nanofabrication of fiber 

surface through interfacial reactions using the fibers as controlled reservoir of metal ions was 

also performed. 
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The focus of Chapter 6 is the diffusion of molecules across the complex structures. The role of 

metal ions, crosslinking and dimension was examined. 

 

The potential of structures obtained in previous chapters in different applications was 

investigated in Chapter 7. The gels and fibers show immense potential in biomedical 

applications. 

 

 

 

 

 

Figure 3: Different dimensional morphologies using metal ion cross linked polyelectrolyte 

complexes. 
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CHAPTER 2: EXPERIMENTAL 

 

2.1 PEC formation and characterization: 

Preparation of polyelectrolyte complexes: Homogeneous solutions of PAA-CS of varying 

compositions were prepared. The compositions were varied on the basis of total polymer 

concentration and PAA: CS ratio. PAA-CS solutions with metal salts were prepared by adding 

respective metal salt in appropriate concentration. The interaction between the polyelectrolyte 

complex and metal ions were studied by infrared spectroscopy. 

2.2 Gel formation and characterization: 

PAA-Cs complexes were allowed to gel at room temperature. The effect of complex composition 

was (PAA:CS ratio, metal ion,  and metal ion concentration) was studied. For temperature 

dependent gelation, complex solutions were heated to desired temperatures and metal ions were 

added to it while allowing the solution to stir. Gel formation was followed by viscosity studies. 

2.3 Electrospinning of solutions and characterization of nanostructures: 

Homogeneous solutions of PAA-CS of varying compositions were prepared. The compositions 

were varied on the basis of total polymer concentration and PAA: CS ratio. PAA-CS solutions 

with metal salts were prepared by adding respective metal salt in appropriate concentration. For 

electrospinning, briefly, 10 mL of respective complex solution was loaded into the syringe with a 

metal needle, and the needle was connected to a high-voltage power supply. The solution was 

pumped continuously supplied using a syringe pump. The grounded aluminum foil placed at 27 

cm distance was used as collector. All electrospinning was conducted at room temperature. For 
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characterization purposes, nanostructures were analyzed for structure and morphology with IR, 

TEM and SEM. TEM  and SEM samples were prepared by placing carbon coated copper grids 

(400 mesh size) and silicon wafers,  respectively, directly on the aluminum foil. SEM and TEM 

images were taken on Zeiss Ultra 55 and JEOL 1011 instrument, respectively. 

2.4 Swelling and degradation studies: 

In order to examine the swelling ratio of PEC structures the samples with different compositions 

were weighed and incubated in PBS buffer and different pH solutions at 37°C. The swelling was 

calculated as the ratio between the weight of the swollen sample and the weight of the dry 

sample.  

   Swelling ratio (%) = (Ws-Wd)/Wd× 100 

where Ws and Wd are weight of swollen and dry fibers, respectively. 

 

2.5 Nanofabrication/ Functionalization: 

2.5.1 Reduction (metal nanoparticles): Ferric ion loaded PAA-CS structures were obtained by 

electrospinning a homogeneous aqueous solution of PAA-CS (10:1) and 3.57wt% (w.r.t. to 

polymer wt.) ferric chloride hexahydrate.  The fibers were heated overnight at 140°C to obtain 

sufficient cross-linking. The production of iron nanoparticles in PAA-CS structures was 

accomplished by subsequently immersing ferric ion loaded PAA-CS fibers in 0.1 M sodium 

borohydride solution to generate iron nanoparticles in the matrix. The fibers were thoroughly 

washed with deionized water after each soaking to remove unbound and unreacted metal salt and 

reducing agent.  
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2.5.2 Hydrolysis (metal oxide nanoparticles): Cerium ion loaded PAA-CS fibers were heated 

overnight at 140°C and subsequently treated with 10% ammonium hydroxide solution to produce 

ceria nanoparticles in the fiber. 

2.5.3 Polymerization: PAA-CS fibers loaded with ferric ions were incubated in a solution of 

7.0mM pyrrole at 4°C for 24 hrs, where ferric ions in fibers diffused toward the fiber surface and 

initiated the polymerization of pyrrole.   

2.5.4 Biomimetic mineralization: Hydroxyapatite mineralized PAA-CS fibers were obtained by 

incubating cross linked PAA-CS fibers loaded with calcium ions in serum body fluid at 37°C. 

 

2.6 Diffusion studies: 

To perform the diffusion studies across the MPECs, MPECs with preloaded ions were immersed 

in 0.01 M Arsenazo III solution to form highly colored complexes with metal ions. The 

formation of the complex was monitored through UV-Vis spectroscopy and the uptake of dye 

and diffusion of ions across the fibers was studied.  

 

2.7 Biodegradation studies of MPEC structures: 

The in vitro degradation of the scaffolds was investigated in phosphate buffered saline (PBS, pH 

7.4) and Lysozyme solution (1 mg/mL, pH7.4). The initial weight of the fibers was recorded, and 

fibers were incubated in PBS and Lysozyme solution at 37°C while continuous shaking, for a 

period of 6-8 weeks. The fibers were removed from the medium at different time intervals (every 
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week), rinsed with DI water and then dried. The dried fibers were weighed and compared with 

the initial weight of the fibers, for the loss of the mass due to degradation.  

 

2.8 Antioxidant studies of ceria nanoparticle loaded scaffolds (with and without cells): 

For antioxidant studies, H2O2 was used as ROS and Amplex red assay was performed to measure 

H2O2 levels. Amplex Red reagent reacts with H2O2 in the presence of horse raddish peroxidase to 

form resorufin, a fluorophore with excitation and emission at 520 and 590 nm, respectively. 

Fresh working solutions of Amplex Red (100μM) and HRP (0.2 units/mL) were prepared for 

each experiment. The antioxidant capacity of the scaffolds (with and without cells) was 

examined by adding different concentrations of hydrogen peroxide and then read with 

InfiniteM1000 plate reader (TECAN). Other scaffolds and Ceria nanoparticles in solution were 

also tested for their cell protecting abilities and to examine difference between the activities of 

ceria nanoparticles in two different environments.   

 

2.9 Cell seeding and culture on PCFs: 

Different cell lines (MG-63, HDF, C2C12, SHSYS5 and PC3)  were routinely cultured in 75cm2 

flasks using Dulbecco’s modified Eagles’ medium (DMEM) supplemented with Ham’s F12, 

10% Foetal Bovine Serum (FBS)and 1% antibiotic/antimycotic, at 37°C in a humidified 

atmosphere with 5% CO2. Cells were detached at 90% confluence, using trypsin‐

ethylenediaminetetraacetic acid (EDTA) and were seeded onto the respective sterilized scaffolds 

and incubated at 37°C, 5% CO2.  
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2.10 Analysis of cell attachment and spreading: 

After 24hrs, samples were washed in PBS and fixed in paraformaldehyde (4% w/v in PBS) for 

30 minutes, then rinsed in PBS and dehydrated through a series of graded ethanol (25%, 50%, 

75%, 90%, 100%) in distilled water at 5 minute intervals. Finally the samples were sputter 

coated with palladium and imaged with ZEISS ultra55 SEM to reveal cell attachment and 

morphology.  

 

2.11 Cell viability 

The standard protocol for a commercially available cell assay was used to quantify cell viability 

(CellTiter 96®, Promega,). Briefly, samples were transferred to 96 well plates, and washed (1x) 

with phosphate buffered saline (PBS). Solution reagent from kit (120 μl) supplemented with 

600μl of DMEM phenol free medium was added to each well. The samples were incubated for 

60 minutes at 37°C, 5% CO2, after which the medium above the samples was removed and 

transferred to microplate reader. 
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CHAPTER 3: PAA- CS-MN+COMPLEXES 

3.1 Introduction: 

Polyelectrolytes are charged polymers with an ionizable group on each repeating unit and 

interesting properties in solutions. Studies have been done on the behavior of polyelectrolytes in 

solutions and complex formation. Depending upon the nature, size, charge and stoichiometry of 

the polyelectrolytes, two oppositely charged polyelectrolytes can complex together resulting in 

variety of structures. By choosing appropriate polyelectrolyte, polyelectrolyte complexes are 

stable, well tolerated, biocompatible and are more sensitive to changes in environmental 

conditions [73, 106-108]. In addition, the polyions in polyelectrolyte complex provide a rich 

chemical environment to host various molecules [109].  

The complexes are formed by thermodynamically favorable and dynamic electrostatic 

interactions between two oppositely charged polyelectrolytes with release of corresponding 

counterions. Other interactions that may be involved in the process are hydrogen bonding, 

hydrophobic and Vander wall interactions depending on the environmental conditions. The 

polyanion/polycations complexes with new and diverse properties and applications are excellent 

models for understanding interactions and environments in many natural and synthetic materials 

with similar mechanisms. Some of the applications of these complexes are as tissue engineering 

scaffolds, encapsulation materials, flocculants, drug or gene delivery, matrices etc. However, not 

much understanding has been obtained on the formation of complex between two oppositely 

charged polyelectrolytes and the effect of different salts on the formation of these complexes. 

 

PAA and CS are biocompatible and biodegradable polyelectrolytes with antimicrobial and metal 

chelating properties and providing functional groups. By combining both PAA and CS, the 
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system overcomes the disadvantages of both the natural (slow degradation, insufficient 

mechanical integrity) and synthetic polymers (biodegradation, biocompatibility, etc.).The 

complex formation between PAA and CS eliminates the need of cross-linking using 

glutaraldehyde or other cross-linking agents. The system exploits the affinity of both PAA [98, 

99, 102, 110] and CS [101, 111-114] for metal ions. The incorporation of metal ions in the 

complex provided functionality [34, 104] to the system for various biomedical and material 

applications. Metal ions are also known to form strong crosslinks in aqueous environment. 

 

We demonstrate here incorporation of a range of metals in polyelectrolyte complex to generate a 

library of functional polyelectrolyte complexes (MPECs). The ability to incorporate diverse 

metals into polyelectrolyte complexes provides new opportunities for engineering 

multifunctional systems for various applications. Complex formation was studied with and 

without metal ions. The complexes formed with metal ions were also compared with metal ion 

complexes with individual polyelectrolytes. Fifteen Different metal ions including sodium (Na), 

potassium (K), Lithium (Li),calcium (Ca), nickel (Ni), copper (Cu), zinc (Zn), manganese 

(Mn)magnesium (Mg), Cerium (Ce), aluminium (Al), vanadium (V), iron (Fe), Titanium (Ti) 

and  zirconium (Zr) were introduced to study their effect on complex formation.  
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Figure 4: FT-IR spectra of the PAA, CS and their complexes in presence of various metal ions 
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3.2 PEC formation: 

In general, mixing two polyelectrolytes with opposite charges at stoichiometric ratio leads to 

phase separation and precipitation. However, homogeneous and water soluble complexes can be 

formed at non-stoichiometric ratio, where concentration of one polyelectrolyte is much excess to 

the other. The complex formation is a thermodynamically favorable process where the driving 

force is the entropy decrease during the release of counter ion. The complex formation can take 

seconds to days to reach equilibrium depending upon the polyelectrolyte concentrations, 

characteristics, molar ratios, pH, salt concentration, etc. Here, the interactions between chitosan 

and PAA and their complex formation in the presence of different metal salts were studied and 

characterized. Functional polyelectrolyte complexes were obtained by incorporating a variety of 

metal ions into the PAA-CS complex. It was observed that complexes with different metal ions 

exhibited sol or gel state. The extent to which a liquid character is displayed depends on the 

charge density, on the nature (presence of hydrophobic groups) of the polyelectrolytes, and on 

the concentration and nature of ions present in the solution, which all influence the solubility of 

the components and the complex. Table 1 presents complexes formed with different ions and 

their characteristics. It was observed that PAA-CS solutions with different metal ions have 

different properties and produce MPECs with different structure and morphology. 

 

The difference the behavior of different salts can be attributed to their affinity towards PAA as 

evident in the IR spectra shown in Figure 4. The IR spectra of PAA-CS- metal ion complexes 

have a clear resemblance with the IR spectra of PAA-Mn+ in literature [98, 99], indicating that 

the metal ions bind with PAA and not with chitosan. However, interaction between chitosan and 

PAA is also evident. Thus, presence of chitosan is necessary for structure stability. The 
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interaction of chitosan with PAA together with complexation of PAA with metal ions is critical 

for the structure and functionality.  The interaction between different metal ions and carboxylic 

acids of PAA is different depending upon its charge to size ratio and presence of d orbitals. By 

assessing the shifts for symmetric and asymmetric stretching of carboxyl (vasCOO- and vsCOO-) the 

nature of complex formation between the metal cations and the carboxylate ions can be 

determined. The difference between the symmetric and asymmetric stretch for the carboxylate 

ion (ΔvCOO-) suggests the bonding mode[115]. A difference of 105 – 140 cm-1 is associated with 

monodentate bonding, 145 – 185 cm-1 could be associated with bidentate chelate bonding and 

180 – 200 cm-1 is an indication of bidentate bridging bonding[116]. The stretching of the 

carboxyl group at 1600 cm-1 (assymmetric) and 1400 cm-1(symmetric) is dependent on the 

strength with which it is bound to the metal ion[110, 117]. The free carboxyl has a strong band in 

the 1735 cm-1. With metal binding there is decrease or disappearance of free carboxyl and 

appearance of peaks at 1400-1450 cm-1(vs) and 1600-1500 cm-1(Vas). The signal around 530 

cm−1 and 3400 cm−1is probably associated with the metal-N vibrations arising from the 

coordination of metal ions with nitrogen atoms of the chitosan macromolecules [118, 119]. 

It is evident from IR data that the metal ion-PAA interactions are more important than metal ion-

CS interactions at low pH (~3) since metal ions have negligible interactions with ammonium 

presented in CS at low pH [111, 114] . While metal ions have negligible interaction with CS at 

low pH, the protonated amine groups will be deprotonated in aqueous solutions of higher pH. 

Thus, the function of CS is improving the complex stability is two-fold, forming electrostatic 

interactions with PAA and generating metal ion-CS interactions at increased pH. IR data suggests 

the binding constant of transition metals is much larger than earth alkaline and alkaline metals due to 

the coordination through d orbitals in transition metals. The non-transitional sodium and calcium 
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interactions with PAA are electrostatic in nature and do not bind strongly. Cerium, copper, zinc, 

manganese, magnesium, nickel forms bidentate binding, whereas ferric, titanium, aluminium and 

vanadium ions form bridging complex.  

The effect of size to charge ratio on the complexation was also observed. Metal cations with 

larger size to charge ratio due to the low degree of strain energy associated with a complexed 

ligand and a large ion were observed to form bidentate complexes. The metal ions with low size 

to charge ratio attained a less strained bridged complex structure to stabilize larger structural 

deformation upon formation of a bidentate complex, straining the O-C-O bond angle of the 

carboxylate group. 

  

Sodium and potassium ions being monovalent shield polyelectrolyte charges, causing shrinking 

of molecule chains and, decrease in hydrodynamic radius and viscosity. In addition to shielding 

effect divalent and multivalent ions can cross-link and interconnect the PAA chains influencing 

the conformation and interaction with chitosan. The cross-linking behavior becomes prominent 

with increase in valency and overshadows the shielding effect. Both intra chain and inter chain 

cross-linking takes place in this scenario. Therefore, titanium, vanadium, aluminium and ferric 

ions exhibit higher viscosities and gel formation than calcium ions.  

 

In conclusion, coordinate of metal with polyelectrolyte complex offers a new intrinsic cross-

linking mechanism providing control over complex properties.  
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Table 1: Complexes of PAA-CS with different metal ions:  properties like sol/gel nature of the 

complex depend on the type of crosslinking of polyelectrolytes with ions. This interaction 

depends on size to charge ratio and presence of d orbitals. 

 

composition Sol/gel Transparency Ionic radii 
(pm) 

Size to 
charge ratio 

binding 

PAA-CS sol transparent    
PAA-CS-Na+ sol transparent 116 116 electrostatic 
PAA-CS-K+ sol transparent 152 152 electrostatic 
PAA-CS-Li+ sol transparent 90 90 electrostatic 
PAA-CS-Cu2+ sol transparent 87 43.5 bidentate 
PAA-CS-Zn2+ sol transparent 88 44 bidentate 
PAA-CS-Ni2+ sol transparent 83 41.5 bidentate 
PAA-CS-Mn2+ sol transparent 81 40.5 bidentate 
PAA-CS-Mg2+ sol transparent 86 43 bidentate 
PAA-CS-Fe2+ gel opaque 75 37.5 bidentate 
PAA-CS-Ca2+ sol transparent 114 57 electrostatic 
PAA-CS-Ti3+ gel opaque 81 27 bridging 
PAA-CS-Al3+ gel opaque 68 22.6 bridging 
PAA-CS-Fe3+ gel opaque 69- 23 bridging 
PAA-CS-Va3+ gel opaque 78 26 bridging 
PAA-CS-Ce3+ sol semi -transparent 115 38.33 bidentate 
PAA-CS-Ce4+ sol opaque 101 25.25 bidentate 
PAA-CS-Zr4+ sol opaque 86 21.5 bidentate 

 

 

To further understand the role of metal ions in the formation of MPEC formation, the PEC 

formation with and without metal ions was studied and monitored.  A few metal ions (sodium, 

calcium, cerium, and ferric) were chosen as representative. Complex formation was studied by 

change in the viscosity of the polyelectrolyte solution upon the addition of metal ions, 

corresponding to the complete complex formation between two oppositely charged species. The 

change in the viscosity depended on the metal ion-polyelectrolyte interactions. All the viscosity 

studies are plotted against time due to the dynamic nature of the process.  
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3.2.1 Polymer concentration and stoichiometry: Formation of PECS can be monitored by 

rheological studies. Viscosity and conductivity are important solution parameters affecting 

electrospinning process too. Both viscosity and conductivity depends on the molar 

concentrations, pH etc. Viscosity of a polymer depends on its concentration and size. Viscosity 

of PAA-CS complex with different total polymer content is presented in Figure 5. It is known 

that addition of small amounts of an oppositely charged polyelectrolyte to a polyelectrolyte 

solution, results in a pronounced increase in viscosity as evident. The increase in total polymer 

also increases conductivity in a linear manner (Figure 5) due to increase in charge density and 

then get saturated at a concentration where addition of any more polymer does not have any 

effect on the conductivity because of complete screening of the complex by counter ions. The 

ratio between the two polyelectrolytes also affects the complex formation and viscosity of the 

system.  The viscosity of the PAA-CS complex solution increased as more chitosan was added. 

The amount of chitosan in the 5:1 ratio, was too high resulting in the formation of a gel after the 

first day. The 10:1 ratio formed a gel on day 15. For complexes that did not form a gel, there is 

an observed spike in viscosity around day 10 and then a gradual decrease in the values. Higher 

viscosities at higher PAA: CS ratios can be attributed to the formation of non-stoichiometric 

complex associates (secondary structures). As the chitosan concentration further increases, 

solutions starts losing its homogeneity and phase separation, eventually precipitating out, does 

not contribute to the viscosity (decrease in viscosity), with an exponential increase subsequently, 

resulting in gel-like state.  PAA:CS ratio solutions showed a decreasing linear relationship As the 

amount of Chitosan was increased the conductivity decreased giving the conclusion that PAA is 

a strong contributor to the values. This is because as more Chitosan is introduced NH2 groups are 

converting to NH3
+ groups limiting the amount of free protons in the complex. As expected the 
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conductivity decreases with increase in chitosan, as more and more counter ions are involved in 

screening the charge. 
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(b) 

Figure 5: Conductivity and Viscosity of PAA-CS complexes with (a) different total polymer 
percentage and (b) different PAA:CS ratios 
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3.2.2 Effect of metal salts:  In general, addition of salts to the polymer solution increases their 

conductivity. However, in case of polyelectrolytes, addition of salts results in changing the 

conformation and chain folding of the polyelectrolyte in the solution, due to the presence of ionic 

groups.  

The polyelectrolyte complexes in which ions were introduced had a similar trend of a spike in 

viscosity then a gradual decrease in the values. However, the time to reach the spike was less (6-

7 days) in as compared to solutions without ions (day 10). The presence of salt promotes 

rearrangements and shifts the reaction more towards thermodynamic equilibrium. The trend 

follows the reported polyelectrolyte complex behavior in the presence of salt, where small 

concentrations of salt decrease the viscosity of the solution due to the screening (Figure 6). The 

concentration for change depends upon the valence and specification of the salt involved.  

 

Change in the conductivity and viscosity of the polyelectrolyte solution upon addition of salt 

depends on the interaction between the salt and the polyelectrolyte in the solution. It was 

observed that size to charge ratio and presence of d orbitals dominate the binding. Figure 7 

shows the viscosity of sodium, calcium and cerium ions at equimolar concentrations. Sodium 

ions, being monovalent, will shield polyelectrolyte charges, and cause the shrink of molecule 

chains and the decrease in hydrodynamic radius and viscosity. Besides shielding effect, divalent 

and multivalent ions can interconnect the PAA chains, influencing the conformation and 

viscosity of PECs. The interconnection of PAA chains becomes prominent when metal ion-PAA 

interactions overwhelm the shielding effect.  
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Figure 6: Time dependent viscosity of PAA-CS-Mn+ complex at different concentrations of: (a) 
Na+, (b) Ca2, (c) Ce3+ 
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Therefore, it is expected that PECs’ viscosity decreases with increased concentration of sodium 

but increases with increased concentration of metal ions with multiple valence. Metal ions with 

multiple valence and d orbitals such as cerium ions exhibit more efficient boosting of viscosities. 

As observed from the results sodium and calcium ion exhibit similar effect with substantial 

decrease in viscosity with only small amounts. Above 3.57 wt% the PAA-CS complex with 

cerium ions form gels. Complexes with ferric ions form gels at all concentrations due to its high 

charge density and strong interactions with PAA resulting in an insoluble complex. The pH of 

the solution is adjusted to 1 to obtain homogeneous solution. All the studies of ferric salt 

containing complexes were performed at this pH. 

 
3.2.3 Effect of aging: The time dependence of viscosity can be clearly observed in the plots and 

can be attributed to slow and dynamic complex formation process. At molecular level, the size 

and shape of liquid molecules determine the properties of liquid instead structure less liquid with 

bulk properties and dynamic forces such as viscosity, adhesion etc. at this short range (few 

nanometers) can be complex and can take really long time to reach equilibrium, appearing to be 

time-dependent, resulting in “aging” effects. The change in the viscosity with time can be 

attributed to the continuous counter ion release and rearrangement of polymer chains during 

complexation due to the weakness of entanglements which change with time and modify internal 

structure of the complex until equilibrium is reached. Depending on characteristic 

polyelectrolytes and conditions can lead to different internal structures. The aging effect has its 

impact on viscosity and in turn electrospinning as explained later. PEC formation is a complex 

process and occurs in different steps.   
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Figure 7: Conductivity and time dependent viscosity of different PAA-CS-Mn+ complexes at 
equimolar concentrations. 
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During the PEC formation P. E. chains collapse due to the columbic screening of P. E. chains by 

counter ions and there is an initial decrease in the viscosity. This decrease can also be attributed 

to a more compact coiled up conformation of chains from a more extended conformation due to 

intramolecular hydrophobic interactions among polymer backbone. In this compact state, 

viscosity is minimum, where more or less all free polyions have complexed. Other than these 

intramolecular interactions, certain intermolecular interactions depending upon the long range 

electrostatic interactions between the P. E. chains also take place.  There is always a competition 

between intramolecular columbic and intramolecular hydrophobic interactions. With more chain 

entanglement and chain rearrangement with time there is a subsequent increase in viscosity due 

to intermolecular aggregation in the form of chain entanglement, network or large fibers.  Based 

on the data obtained from viscosity studies and literature, the time dependent complex formation 

process of PAA-chitosan is proposed. 

 

3.2.4 PAA-CS complex model: The formation of PAA-CS complex starts with the interaction 

between the aggregates of CS rod-like particles and PAA that leads to an initial increase in the 

viscosity (II). This increase can also be attributed to a more compact coiled up conformation of 

chains from a more extended conformation due to intramolecular hydrophobic interactions 

among polymer backbones. As the CS rods start to stretch and relax into coils, the viscosity 

decreases as PAA disperse CS coils (III) and forms primary complex. With further chain 

entanglement of PAA with CS chains, secondary complex formation takes place (networks, 

fibrils and/or gels) leading to an increase of viscosity (IV).  
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Figure 8: A schematic illustration of the relationship between PAA-CS structures and viscosity. 

 

3.3 Conclusion: 

Incorporating metal ions of different valence into PECs introduces metal ion/polyelectrolyte 

interactions that can tune the morphology of MPECs. The metal ion-PAA interactions are more 

important than metal ion-CS interactions at low pH. Transition metal ions have much stronger 

interaction with PAA than main group metal ions due to the availability of d orbitals, which 

enables the manipulation of PEC morphology through the tuning of solution viscosity. The 

function of CS is improving the fiber stability is two-fold, forming electrostatic interactions with 

PAA and generating metal ion-CS interactions at increased pH. 
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CHAPTER 4: GELATION OF PAA-CS-MN+ COMPLEXES 

 

4.1 Introduction: 

Hydrogels are three dimensional porous network structures of polymers or polyelectrolytes with 

high swelling capacity. The formation of these hydrogels can be impacted by a number of 

varying factors such as polymer concentration, presence of cross linkers and physiochemical 

conditions like pH and temperature. 

The formation of a gel from solution results from either higher degree of crosslinking forming or 

reduction in the solubility or a combination of both. In a polymer or polyelectrolyte solution in 

an appropriate solvent, various changes (temperature, pH, addition of a substance) can bring 

increase cross linking or reduce the solubility resulting in a new phase. Most common way of gel 

formation is crosslinking.  A suitable cross linker, a molecule which at least has two functional 

reactive sites, interacts with polymer either covalently or ionically forming a 3D network. A 

critical number of crosslinks per chain is required to allow the formation of a network. The 

properties of cross linked hydrogels (swelling, stability, elasticity, etc.) depend mainly on the 

crosslinking density and the type of cross linker.  

 

Most common examples of covalent cross linkers are dialdehydes in particular glutaraldehyde, 

diacids like tartaric acid and bisamides like methylene bis acrylamide (MBA). Ionic cross linking 

can be achieved by interaction with oppositely charged components, either ions or molecules, 

leading to the formation of a network. A special case of ionic cross linking is complexation 

between two oppositely charged polymers or polyelectrolytes. 
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In these studies gelation of PAA-CS complexes was studied. However, since these are 

complexes at non stoichiometric ratios (different PAA:CS ratios) and take lot of time to gel due 

to secondary complex formation, different metal ions as ionic cross linkers were used to obtain 

hydrogels. It is shown in Chapter-3 that different metal ions have different interaction affinity 

which might or might not form gel.  These metal ions further provide functionality to these 

hydrogels for various applications as explained below. Thus, the interactions between metal ions 

and polyelectrolytes introduce promising opportunities in tuning polyelectrolyte hydrogels, and 

improving their stability and swelling properties. In addition to the effect of polymer 

composition and metal ions, the impact of physiochemical properties like temperature and pH on 

gelation of complexes was examined. The stability of gels at different pH was also assessed. 

4.2 Gelation: 

The process of conversion of liquid sol into solid phase is known as gel formation of PAA-Cs 

and PAA-CS-Mn+ complexes was studied by viscometry and inverted tube test. 

4.2.1 PAA:CS ratio: The impact of stoichiometry (PAA:CS ratio) was first to be investigated. It 

was found that as chitosan concentration increased, gelation time at room temperature decreased 

(Figure 9). For solutions prepared with 2.5:1 ratio, gelation occurred within about 5 days 

whereas for solutions prepared with 20:1 ratio, gelation occurred after a little bit over a month 

(34 days).  This can be due to the increased complexation between chitosan and polyacrylic acid. 

For PAA-CS-Mn+ complexes the gelation time decreased with increased chitosan concentration. 

The physical appearance of the gels also varied based on chitosan concentrations. The gels went 

from soft and sticky at lower chitosan concentrations to hard and brittle at higher concentrations, 

due to the rigid backbone structure of chitosan.  
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(b) 

Figure 9: Dependence of gelation time on PAA:CS ratio and SEM of PAA-CS gel with 10:1 
PAA:CS ratio. 
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4.2.2 Effect of Metal ions: The effect of different ant metal ions, Na+, Ca2+, Fe3+, and Ce3+ on  

gelation of  PAA-CS-Mn+ was clearly evident. For ferric and cerium ions gelling rate was found 

faster rate than just the two polymers alone. Gelation occurs instantaneously upon addition of 

ferric ions. However, the gel formed was not homogeneous and a very small amount of acid was 

added to it and left on stirring to obtain a homogeneous gel.  Cerium ions took around a week for 

gel formation. PAA-CS complexes with sodium and calcium ions, however, did not gel at all at 

room temperature.  This behavior can be explained by different crosslinking of PAA-CS 

complex by different metal ions as explained in Chapter-3. 

4.2.3 Effect of temperature: Several natural (alginin, pectin, etc.) and some synthetic polymers 

N-isopropyl acrylamide (NIPAM) exhibit temperature dependent gelation.  Gelation of 

complexes close to human body temperature (37°C) is of high significance in several biomedical 

applications. Therefore we studied the effect of temperature on PAA-CS-Mn+ complexes. The 

gelation was studied at three different temperatures (37°C, 45°C and 60°C). 

 
Marked changes in viscosity were observed on thermal treatment of PAA-CS-Mn+ solutions.  It 

was observed that addition of PAA-CS solutions with calcium ions at 37°C results in dramatic 

increase in viscosity and gelation. The gelation was observed to occur at as low as 0.25% 

calcium ions (w/w of polymer concentration). Increased in viscosity of the complex solution in 

aqueous medium on heating may be due to increased crosslinking by calcium ions through 

columbic forces leading to distortions in conformations, leading to rearrangement of the complex 

into more stable conformations. Increase in crosslinking by metal ions is can be due to increased 

mobility and relaxing of polymer chains at high temperature. It is expected that the complex is 

further stabilized by a secondary binding force such as hydrophobic interaction in the polymer 

backbones especially chitosan resulting in formation of more highly ordered structures.  
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Figure 10: Concentration dependent thermal gelation of PAA-CS complex with calcium ions: (a) 
change in viscosity vs concentration of calcium ions at different temperatures; digital images (b) 
gelation of complex with 0.5% calcium ions at 37°C and (c) no gel formation of complex with 
3.57% calcium ions at 37°C. 
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However, it was found that increase in calcium concentration resulted in decrease in viscosity 

and gelation was not observed beyond 1% calcium ions (w/w of polymer concentration). This 

can be attributed to increased screening effect overcoming the crosslinking effect. Further 

increase in temperature (45°C) resulted in decrease in viscosity, however, viscosity increased 

again at 60°C.Complexes with cerium ions too exhibited gelation at 37°C. The increase cerium 

ions promoted the thermal gelation, contrary to the case of calcium ions. It is expected as cerium 

ions have dominating cross linking effect than screening effect. Increase in temperature however 

did not result in gelation of complexes with sodium ions or PAA-CS complex. 

 

It can be concluded that thermal gelation ability of MPECs is significant as it can reduce gelation 

time reduced from days or months to a matter of minutes or hours.  And gelation can occur at as 

low as 0.25% of ion concentration (w/w of polymer concentration). 

 

4.2.4 Effect of pH:  PAA and CS are both weak polyelectrolytes and the presence of charged 

functional groups depend on pH.  At low pH (3.5), most of the carboxyl and amine groups are 

protonated, with minimum PAA-CS and polyelectrolyte-meta lion interaction. Hence, at this pH 

the gelation does not take place for most PAA-CS-Mn+. When pH is raised to 7, the amine and 

carboxyl both get deprotonated and are available for interaction with metal ion leading to 

enhanced cross-linking. Additionally, the deprotonation of amine groups lead to collapsing of 

chitosan chains, further contributing to gelation. At further high pH (11), most carboxyl groups 

are deprotonated, leading to chain repulsion and hence decrease in viscosity (Figure 12). The 

change in interaction of metal ions with PAA is also evident from IR data. 
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Figure 11:Concentration dependent thermal gelation of PAA-CS complex with cerium ions: (a) 
change in viscosity vs concentration of cerium ions at different temperatures; digital images 
gelation at 37°C of complex with (b)0.5% cerium ions at and (c) with 3.57% cerium ions . 
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4.3 Swelling and Degradation: 

As shown in the Figure 13, the swelling capacity of hydrogels and free dried gels was measured 

at different pH. Hydrogels swelled less as expected, compared to their freeze dried because of 

their pores already being saturated. Gels with metal ions swelled more comparatively to PAA-CS 

gel. Freeze-dried PAA-CS-Ce3+ gel was found to have the greatest swelling ratio. Freeze drying 

also provided better stability of gels as shown in Figure 13. Hydrogels degraded more rapidly at 

lower and higher pH.  

4.4 Stretching and self-healing: 

Materials with inherent structural ability to repair damage caused by mechanical usage over time 

are known as self- healing materials. It occurs by the spontaneous formation of new bonds when 

old bonds are broken within a material. Self- healing in gels follows the same three steps as in a 

biological response. The first step immediately after the damage is the triggering followed by the 

transport of materials to the affected area to form new bond. The third step is the actual repair or 

healing process in which new bond formation takes place. The third response is the chemical 

repair process. This process differs depending on the type of healing mechanism and can be 

affected by environmental conditions like, pH and temperature.  

 

Stretching and self-healing of gels is an important factor because they resemble human tissue and 

hence can be used in wound dressing, tissue repair and sealants. The 3-D network structure of 

hydrogels and their ability to absorb large amounts of water via hydrogen bonding, gives rise to 

firm and elastic nature of gels with self-healing and stretching properties. 
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Figure 12: Effect of pH on gelation: (a) IR of PAA-CS-Ca2+ complex:, (a) no gel formation at 
pH 3.5, (b) gel formation on pH 7 and (c) highly viscous solution at pH 10.5. 
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Figure 13: pH dependent swelling and degradation of PAA-CS-Mn+ gels. 
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self-healing ability. This is because of the rigid structure of chitosan and increased disruption of 

elastic chains of polyacrylic acid by chitosan resulting in brittle gels. It is known that self-healing 

of hydrogels is known to be mediated through mobility of ions. However, with increase in   

chitosan, the conductivity decreases (decrease number of ions), hence reduced self-healing. 

Lower Chitosan concentrations self-healed with ease whereas higher concentrations either took 

some time or did not heal at all.   
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Figure 14: Effect of PAA:CS ratio on stretching and self-healing: (a) graph showing PAA:CS 
ratio dependent stretching properties of PAA-CS hydrogels; digital images of self-healing of 
PAA-CS hydrogels with PAA: CS ratio (b) 10:1 and (c) 5:1. 
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4.4.2 Effect of metal ions: Gels with metal ions exhibited increased stretching and self-healing 

than gels. Gels cross linked with calcium ions stretched the most followed by gels cross linked 

by cerium and ferric ions. This can be explained by ease of rearrangement in gels cross linked by 

calcium ions due to less cross linking. Metal ion concentration also seemed to impact healing and 

stretching. For ferric ion cross-linked gels, increase in ferric ion concentration increases cross 

linking and decreased stretching and self-healing resulting in brittle gels. With increase in 

calcium ions the stability of gels is compromised. For cerium ions dependency on concentration 

is not that strong, however it follows the ferric ion trend of decrease in stretching on increase in 

cerium ion concentration.  The stretching of metal ion hydrogels can be explained by  the 

breaking and reforming of  bonds between the polyelectrolytes and the metal ions to “re-zip” the 

crack or damage. 

4.4.3 Effect of pH: The impact of pH on stretchability and self-healing ability of gels was also 

tested. The self-healing and stretchability of different metal ion cross linked gels is dependent on 

the stability and swelling of gels at different pH. Figure 16 shows the self-healing ability of 

ferric ion cross linked gels at different pH. The healing ability decreased with pH. It was 

observed that healing occurred much faster at low pH and is maximum at pH 2 due the decreased 

cross linking and stability of gel. However, presence of such low pH compromises gel stability. 

Therefore, for stable self-healing ferric gels, pH 5 is optimum, although pH 7 also exhibit self-

healing capacity. 
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Figure 15: Dependence of stretching ratio on metal ions comparison of  stretching ratio of 
different gels (the blue marking is a foot long ruler); digital images of stretched PAA-CS- Ce3+. 

 

 

Figure 16: pH dependent self-healing of the PAA-CS Fe3+ gels at different time intervals 
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4.5 Morphology and Functionalization of gels: 

Ionically cross linked gels were freeze dried and observed under SEM for morphology and pore 

size. Figure17 shows continuous porous structure of gels with inters connectivity, optimal for 

diffusion of molecules. The ionically cross linked gels can be suitably functionalized for 

different applications. The calcium, cerium and ferric gels were functionalized with, Hap 

mineralization, ceria nanoparticles and polypyrrole coating on the surface. Figure17 shows 

different functionalized gels.  

 

 

 

 

 

 

 

 

 

 

 

Figure 17:Morphology of the PAA-CS fibers: (a)PAA-CS-gel with Ca2+, (b) Fe3+ and (c) Ce3+ 
ions; the bottom row shows their functional application, upon conversion to (d) HaP 
nanoparticles, (e) ceria nanoparticles, and (f) PPy coating. 
 

Hydroxyapatite (HaP) is a mineral found in human bones and teeth and HaP nanocrystals are 

grown for bone and dental tissue regeneration and as dental fillers. Hap nanocrystals can be 

  50 µm 
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50 µm 50 µm 
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grown synthesized by several different methods like wet chemical, electro deposition, sol-gel, 

etc. However, most important method is the biomimetic mineralization of HaP using simulated 

body fluids (SBFs), fluids with inorganic composition similar to physiological conditions. The 

HaP grown under these biomimetic conditions is known to highly resemble the structure found in 

bone. Biomimetic mineralization of Hap is achieved by incubating substrates with saturated 

solutions of calcium chloride or using HaP nanocrystals as seeds in SBF.  Both PAA (carboxyl 

for Hap mineralization[109]) and CS with its ability to control nucleation and growth during the 

mineralization process and prevent the interfacial mismatch have shown immense potential for 

HaP mineralization and bone regeneration. We propose that PAA-CS scaffolds can be used for 

biomimetic mineralization for bone and tissue regeneration. In this study, PAA-CS scaffolds 

loaded with calcium ions were incubated in SBF at room temperature, for Hap nanocrystals 

formation. It is expected that due to hydrogel nature and controlled release of calcium, faster and 

more controlled growth of Hap nanocrystals would occur.   

 

With free radical scavenging activity, neuroprotective, radioprotective and anti-inflammatory 

properties, lots of research has been devoted to study the antioxidant property of ceria 

nanoparticles. Cerium ions exist in two oxidation states +3 and +4. The antioxidant activity is 

due to the interchange of these two states during a redox reaction. However, there is always a 

concern regarding the toxicity of these particles, especially when using for biomedical 

applications. For safer and wider use of ceria nanoparticles, a safe matrix is required. The 

synthesis of ceria nanoparticles in a solid matrix can meet such requirement. Ceria nanoparticles 

would be embedded in the matrix so that there is no direct contact between cells and 

nanoparticles. 
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Polypyrrole (PPy) is a widely known and investigated conducting polymer with applications in 

sensing and tissue engineering, actuators and solar cells. It is highly biocompatible and is 

extensively used in neural regeneration. 

 

4.6 Conclusion 

Chitosan and polyacrylic acid can complex together to form gels at room temperature. The 

gelation time depends upon the polymer concentration and PAA:CS ratio. For non-stoichiometric 

ratios (high PAA:CS ratio) complex can take days to month to gel. Addition of metal ions as 

cross linkers decreases the gelation time and also infers properties like stretching and self-

healing. The ionic cross linking by metal ions is concentration dependent and varies with the 

metal ion type. Physiochemical parameters like temperature and pH can also induce gelation in 

these complexes. The gels thus obtained are stable over a wide range of pH. These gels can be 

further functionalized for different applications in drug delivery, absorbents and tissue 

engineering. 

  

55 
 



CHAPTER 5: ELECTROSPUN PAA-CS-MN+ NANOSTRUCTURES 

5.1 Introduction: 

Role of metals in biological world for structure stability, catalysis, biomineralization etc. in self-

assembly, adhesion and strength has been evident in studies [91-97]. Herein we propose 

biomimetic metal crosslinking for enhanced structure stability and functionality of polymeric 

systems. Polyelectrolyte complexes (PECs) have been used to produce fibers that are stable in 

aqueous solutions [49, 79, 107, 120-122]. Fibers with one polyelectrolyte component are water 

soluble and the crosslinking of these fibers has to be performed in solvent-free [89, 123] or non-

aqueous media[78]. We studied the formation of water soluble polyelectrolyte complexes (PECs) 

of PAA and CS, two biocompatible and biodegradable polyelectrolytes, in the presence of 

different metal salts (Mn+). The homogenous aqueous solutions of these complexes were then 

electrospun to obtain PAA-CS-Mn+ nanofibers. Metal coordinated polyacrylic acid-chitosan 

(PAA-CS) electrospun fibers system act as a reservoir of metal ions for their controlled release. 

 

PAA and CS are biocompatible and biodegradable polyelectrolytes with antimicrobial and metal 

chelating properties and providing functional groups. The complex formation between PAA and 

CS eliminates the use of cross-linking fibers using glutaraldehyde or other cross-linking agents 

modulating the mechanical properties of fibers rendering them stable and insoluble in solutions 

and at different pH. By combining both PAA and CS, the system also overcomes the 

disadvantages of both the natural (slow degradation, insufficient mechanical integrity) and 

synthetic polymers (biodegradation, biocompatibility, etc.). The system exploits the affinity of 

both PAA and CS for metal ions. The incorporation of metal ions in the fibers provided 

functionality to the fibers for various biomedical and material applications. While the 
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coordination of metal ions and polyelectrolytes has been extensively investigated in solutions [9, 

98-102] and multilayer films, [103-105] to our knowledge, no research has been performed to 

study the effect of metal ion/polyelectrolyte interactions in PECs on PCF structures and 

properties. 

 

Previous studies on effect of metal ion on electrospinning of polymers focused majorly on 

obtaining defect and bead free smooth electrospun fibers [124, 125]. Here, we demonstrate that 

metal-ion identity can affect the morphology of electrospun PAA-CS-Mn+ nanostructures 

(particles, rods, ribbons and fibers) from aqueous solutions. The incorporated metal ions interact 

with polyelectrolytes in the solution affecting the conformation of polyelectrolyte molecules and 

thus molecular entanglement, solution viscosity and conductivity, critical for fiber formation. 

The metal coordination thereby offers a novel mechanism of controlling electrospinning process 

of weak polyelectrolytes and the morphology of thus obtained electrospun structures in aqueous 

environments. The presence of metal ions and metal identity also influence the diffusion of 

molecules across the fibers. Further, these metal ions may take part in reaction as reactants or 

precursors and/or as catalyst for the reaction. The confined environment of thus formed fibers 

allows the controlled synthesis of nanoengineered materials with interesting properties. The size 

of different nanoparticles synthesized in fibers is approximately 5nm nanoparticles, indicating 

that the particle size can be controlled by controlling fiber morphology. The application of these 

new materials include catalysis, biomedical applications, coatings, optics, electronics, water 

chemistry, etc. 

 

57 
 



5.2 Electrospinning of PAA-CS nanostructures: 

The viscoelasticity, hence, electrospinnabilty of PAA is very high. On the other hand chitosan is 

a stiff and rigid molecule and difficult to electrospun due to strong intermolecular hydrogen 

bonding, self-adhesion properties and low solubility in aqueous solutions. The complex 

formation between PAA-CS in right stoichiometry and presence of salts would result in 

electrospunable aqueous solution forming nanofibers with properties of both PAA and chitosan.  

Generally, mixing two polyelectrolytes with opposite charges at stoichiometric ratio leads to 

phase separation and precipitation due to the electrostatic interactions between two 

polyelectrolytes. However, the electrostatic interactions can be reduced or eliminated by 

manipulating pH of the solution and the stoichiometry. A homogeneous mixture of the two 

polyelectrolytes is required for the spinning of the fibers. Mixing polyelectrolytes of opposite 

charges and similar molecular weights often results in water insoluble complexes due to 

electrostatic interactions between the two polyelectrolytes, hence appropriate solvent has to be 

chosen. For weak polyelectrolytes, the pH of the system also determines the formation of 

complex. One such example is PAA- PAH pair system. PAA and PAH are weak polyelectrolytes 

with pKa of 5.5 and 8.9, respectively. Such weak polyelectrolyte systems can be manipulated by 

the pH of the medium. PAA has to be completely protonated to avoid interactions between PAA 

and PAH, in order to make homogeneous mixture of PAA and PAH. At pH 2.1, PAA is 

completely protonated, although PAH is fully charged. Therefore, homogeneous mixture would 

be obtained at pH 2.1 by dissolving PAH in PAA at 2:1 molar ratio. 
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In our studies, homogeneous PAA-CS mixtures were obtained by dissolving CS into a 25% 

aqueous solution of PAA with PAA:CS molar ratios 20:1, 10:1, 6.75:1 and 5:1, at pH~ 3. Figure 

18 shows polyelectrolyte complex fibers (PCFs) electrospun from polyelectrolyte complex 

solutions with size around 200 nm. The effect of parameters like concentration (total polymer, 

PAA: CS ratio and ion concentration), voltage and flow rate on electrospinning of PAA-CS was 

studied.  

 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

 
 
Figure 18: Electron micrographs of PAA-CS fibers: (a) TEM and (b) SEM. The fibers are about 
200 nm in width. 
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PMFs were also electrospun from polyelectrolyte complexes loaded with metal ions. Figure 19 

shows the TEM and SEM images of electrospun fiber from cerium and ferric ion loaded PAA-

CS complexes.  The fibers were obtained by electrospinning homogeneous solution of PAA-CS 

with calcium, cerium and ferric salts in water, respectively. The fibers obtained were smooth and 

similar to the ones obtain from complexes without the ions.  

 

 

Figure 19::Electron micrographs of PAA-CS-Mn+ fibers (top row TEM and bottom row SEM 
images) (a) PAA-CS-Ca2+, (b) PAA-CS-Ce3+ and (c) PAA-CS-Fe3+. 
 

5.2.1 Effect of total polymer concentration and viscosity: The concentration of a polymer 

solution should be at least 2-2.5 times above the entanglement concentration (ce) to produce a 

continuous polymer fiber via electrospinning. With increase in total polymer concentration, the 

chain entanglement between polymer chain increases, leading to jet stretching and fiber 

formation and the morphology changes from beads to fibers (Figure 20). Large viscosity at 

higher concentration disrupts the solution flow due to increased cohesion forces or drying of the 

solution and decreases the solution electrospinnabilty and with further increase in concentration, 

500 nm 5 µm 

500 nm 500 nm 500 nm 

5 µm 
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solution turns into gel. At lower concentration within the optimum range, nanofibers along with 

bundles, junctions and some beads are found due to incomplete stretching before reaching the 

collector. Lower polymer concentrations lead to the fragmentation of jet and formation of 

droplets under the effect of surface tension and constant applied voltage.  

At lower concentrations and viscosities viscoelastic forces were not sufficient enough to prevent 

fragmentation of the jet due to the repulsive forces of charge, resulting in droplets. The 

viscoelastic forces become more prominent with increase in viscosity and compete with the 

surface tension, resulting defect free fibers, however, the diameter of the fiber increases due to 

less competent repulsive forces from the charge. At lower concentrations within the optimum 

range, nanofibers along with bundles, junctions and some beads are found due to incomplete 

stretching before reaching the collector. In the upper range, nanoribbon formation along with 

fibers resulted due to incomplete drying of the solvent before reaching the collector. 

 

 

 

 

 

 

 

 

 

 

Figure 20: Effect of increasing polymer concentration on PAA-CS fiber formation 
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5.2.2 Effect of PAA:CS ratio: Increase in chitosan concentration  decreases the 

electrospinnability of solution  since  CS is a rigid molecule. Decreasing PAA:CS ratio also 

decreases the conductivity with because  of consumption of protons in solutions by CS through 

the formation of NH3
+ groups. Hence, higher voltage for electrospinning is required at higher 

concentration of chitosan. Increase in number of electrostatic interactions with increase in 

PAA:CS ratio, increases the viscosity of the solution and hence increases the fiber 

diameter(Figure 21).   Phase separation between PAA and CS can also been seen in the images, 

with chitosan forming clusters in PAA matrix. The size of the cluster increases with increase in 

chitosan concentration. Solutions with very high concentrations of chitosan resulted in 

precipitation or gel formation, hence could not be electrospun.  

 

5.2.3 Effect of applied voltage and flow rate: An appropriate external voltage is required for 

initiating and sustaining jet formation for electrospinning. The optimum range of voltage for 

PAA-CS system was found to be between 8- 11 KV.  It was observed that higher voltages were 

required to electrospun solutions with higher polymer concentrations due to high viscosity of the 

solutions. At higher voltages the jet became unstable and droplets are observed. At very low 

voltages, the jet formation is not there. In the range 6-8 KV, few short fibers along with beads 

and spindle shaped defects were observed. Due to high charge density of the solutions causing 

repulsive forces and lower voltages not enough for jet stretching, the jet breaks into short fibers. 

The length of some fibers was also found to be shorter, due to incomplete stretching of the jet. At 

voltage 8-10 KV, there is little change with jet still ejecting from the bottom of the Taylor cone. 

Fibers are found to be homogeneous with smaller diameter and defect free in this range (Figure 

22). At higher voltage, jet is ejected at the end of the tip of the needle and more beads were 
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observed with the fibers. The fiber morphology also changed from cylindrical to flattened and 

increased diameter size due to increased flow of solution from tip to collector at higher voltages, 

resulting in incomplete drying of the solvent before reaching the collector.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21: TEM images of PAA-CS fibers electrospun at different PAA:CS ratios (a) 10:1 (b) 
6.75:1 and (c) 5:1. 

200 nm 

PAA-CS = 10:1  

200 nm 

PAA-CS = 6.75:1  

200 nm 

PAA-CS = 5:1  

63 
 



 
The voltage required to sustain jet was found to be dependent on the concentration of the 

solutions. It was observed that higher voltages were required to electrospun solutions with higher 

polymer concentrations due to the high viscosity of the solutions. Higher voltage was also 

required to produce smooth fibers from solutions without the metal salts as compared to 

solutions with salts.  

 

The flow rate of the solution through the needle is another important electrospinning parameter 

influencing the nanofiber diameter, porosity, and geometry and defects. It is found that increase 

in applied voltage increases the flow rate from tip to collector, increasing the total flow rate. 

Therefore, external flow rate is inversely proportional to the applied voltage. However, increase 

in voltage also results in decrease in volume of the drop at tip, disrupting the jet. Therefore, a 

minimum flow rate is required to maintain the Taylor cone and sustain the jet by replacing the 

lost solution from the tip as jet is being continuously ejected. Optimum flow rate was also 

observed to be dependent on the conductivity of the solution. The minimum and maximum flow 

rate for PAA-CS solutions without metal ions was found to be 0.3 and 0.5 mL/hr., respectively. 

For solutions with ions the optimum flow rate was found between 0.1-0.3 ml/hr.  For solutions 

containing ferric ions (pH adjusted), due to low viscosity and high conductivities, jet was found 

to be stable at lower flow rates (0.07 ml/hr.). Jet stability of solutions with higher solution 

conductivity at lower flow rates could be due to the increased electric current and decreased the 

surfaces charge density with an increase in flow rate. At higher flow rates, there was an increase 

in bead defects, bead size and fiber size. Nanoribbons were also observed due to the incomplete 

drying and flattening of the surface. 
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5.2.4 Effect of salt: Salts are added to the PECs to improve the complex formation and prevent 

any aggregation as explained above. Another advantage of salt addition is increased 

conductivity, although polyelectrolytes have some intrinsic conductivity of their own as 

compared to the polymer solutions. As compared to other additives like surfactants, added to 

increase conductivity for smooth fiber formation, the viscosity and surface tension of the solution 

does not increase on addition of salts, whereas conductivity and charge density increase 

significantly. It is known that the radius of the nanofiber jet is inversely related to the cube root 

of the conductivity of the solution, hence increase in solution conductivity results in smaller fiber 

diameter. Addition of salts increase the net charge density of the solution resulting in increased 

elasticity and less resistance to fiber formation. 

 

 

 

 

Figure 22: Effect applied voltage during electrospinning on PAA-CS fiber formation 
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The size, valence, specific ion and the concentration of ions was found to have an effect on the 

nanofiber morphology. The valence and the size of the ion determine the net charge density of 

the ion. In general, higher the charge density of the ion, greater is the stretching of jet resulting in 

smooth fibers. However, in case of ferric ions the higher charge density results in stronger 

interactions with PAA and immediate gel like formation. Fibers from solution containing ferric 

ions could be electrospun only after breaking those interactions by adjusting the pH of the 

solution to 1. The solution, thus obtained has much lower viscosity and much higher 

conductivity, as compared to other solutions and required low flow rates for Taylor cone 

formation and defect free fiber formation. PAA-CS solutions containing sodium chloride and 

calcium chloride have very similar viscosity and conductivity. Though, calcium chloride 

containing solutions exhibited little higher conductivity and less viscosity due to higher charge 

density of calcium ions as compared to sodium ions. 

 

The morphology and diameter of the nanofibers also varied for different salts. Fibers electrospun 

from cerium ion containing solutions showed maximum diameter, and were more loosely 

packed, suggesting increased pore size, followed by calcium and ferric ions. Nanoribbons were 

observed along with nanofibers in case of ferric ions and some concentrations of cerium ion 

solutions. Higher concentration of cerium ion containing solutions and ferric ion turned into gel 

and could not be electrospun. 

 

Interestingly, in addition to fibers other morphologies were also obtained from electrospinning at 

different concentration of metal ions and for different type of ion. For calcium solutions 

nanorods were observed. Fibers obtained from solutions with higher concentrations of calcium 
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chloride were observed to have re-crystallized nanocrystals on the surface of the fibers.  

Solutions containing cerium and ferric salts produced nanoparticles, nanorods and nanofibers 

when electrospun at different metal ion concentrations. 

 

 

 

 

 

Figure 23: The effect of Ca2+ ion concentration on the surface morphology of the PAA-CS-Ca2+ 

fibers. 
 

 

Different electrospun morphologies can be explained as a result of coulomb fission because of 

the high conductivity of these PAA-CS-Mn+ complexes. At low concentrations of ions, the 

solutions are conductive causing repulsive forces but the crosslinking is not enough for chain 

entanglements and jet stretching, the jet breaks into nanoparticles (electrospraying) for cerium 

and ferric ions due to high size to charge ratio. Nanoparticles formed from electrospinning or 

electrospraying of PAA-CS- cerium solutions were found to be 15 nm in size and were highly 

monodisperse (Figure 24).  
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Figure 24: The effect of Ce3+ ion concentration on the surface morphology of the PAA-CS-Ce3+ 

fibers. 
 

Due to the exceptionally high conductivity of ferric solution (because of addition of acid), the jet 

splits and secondary jet results in binary distribution of particles with primary particles of 10 nm 

in diameter and secondary jet resulting in 2-3 nm size particles as seen in Figure 25. With 

further increase in ion concentration, crosslinking also increases along with the conductivity, 

resulting in nanorods (25nm in diameter and 500nm in length). For calcium at lower 

concentrations, solution is conductive, but there are no entanglements for electrospraying or 

electrospinning. At little higher concentration, some cross linking is there, but not enough charge 

density for coulomb fission, hence resulting no nanoparticles were observed, only nanorods of 25 

nm in diameter and 400-500nm in length were obtained. At optimal concentration and viscosity 

nanofibers are obtained for all the ions. Fibers are found to be homogeneous with smaller 
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diameter (100-200 nm) and defect free in this range. At further higher concentrations of cerium 

and ferric ions, the fiber morphology changed from cylindrical to flattened (nanoribbons) with 

increased diameter size due to high viscosity and/or increased flow of solution (high 

conductivity) from tip to collector, resulting in incomplete drying of the solvent before reaching 

the collector. 

  

 

 

 

 

 

 

 

 

 

Figure 25: The effect of Fe3+ ion concentration on the surface morphology of the PAA-CS-Fe3+ 

fibers. 
 
 
The morphology dependence of ions seems to be interplay between shielding and crosslinking 

ability of the ion. Sodium ions, being monovalent, shield polyelectrolyte charges, cause 

shrinking of molecule chains and decrease in hydrodynamic radius and viscosity. In addition to 

shielding effect, divalent and multivalent ions can crosslink and interconnect the PAA chains, 

influencing the conformation and interaction with chitosan. The crosslinking behavior becomes 

prominent with increase in valency and overshadows the shielding effect. Both intra chain and 
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inter chain cross-linking takes place in this scenario. Therefore, it is expected that cerium and 

ferric ions exhibit higher viscosities and gel formation than calcium ions. The stronger 

interactions of ferric ions with PAA than cerium ions can be explained due to higher charge 

density of ferric ions due to comparatively smaller ion size of ferric ions. PAA-CS solutions 

containing sodium chloride and calcium chloride exhibited similar properties. The little 

difference in viscosity and conductivity can be attributed to better shielding effect of calcium 

ions than sodium ions due to stronger binding of calcium ions with PAA and ability of calcium 

ions to penetrate into the cylindrical symmetry of the polyelectrolyte chains than sodium ions. 

 

5.3 Swelling and Stability: 

PCF density (chitosan concentration and extent of thermal crosslinking), the interaction between 

ions and polyelectrolytes and the pH of the solutions play important roles in affecting the 

swelling ratio of the fibers. The swelling of these fibers leads to polymer-solvent interaction, 

dilution of the counter ions, electrostatic interactions between the polyion charges, the 

polyelectrolyte elasticity and the diffusion of molecules across the fibers along with the solvent 

(water in most cases).The hydrogen bonding and polar interactions within water molecules and 

water-polyelectrolyte dictates the swelling and subsequent diffusion through these fibers. The 

swelling of PAA-CS PCFs can be attributed to electrostatic forces due to the ionized group and 

since PCFs have free PAA molecules (depending on CS concentration) and their degree of 

ionization depends on the pH of solutions, the PCFs will have pH dependent swelling behavior. 

In other words, at high pH, the repulsion among the negatively charged carboxylate ions on PAA 

molecules increases the free volume, thus expanding its capability in taking water.  
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Figure 26: Swelling ratio of (a) non cross-linked and (b) cross-linked fibers. 
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For PAA-CS-Mn+ fibers the size to charge ratio of Mn+ and cross-linking of PAA-CS complex at 

particular pH by Mn+ determines the swelling of the fibers. It is observed that PAA-CS-Mn+ 

fibers have higher swelling ratios than PAA-CS fibers and fibers with cerium ions have higher 

swelling ratio than ferric and calcium ions. With smaller size to charge ratio, as in case of ferric 

ions, the interaction with carboxylates of PAA is very strong resulting in high metal ion based 

crosslinking and less swelling. Figure demonstrates the swelling behavior of PAA-CS-Mn+ fibers 

at different pH.  

The degree of ionization of PAA and CS is pH dependent in solutions, and the metal ion-

polyelectrolyte interactions vary with the solution pH, leading to a pH dependent stability and 

swelling behavior. We hypothesize that at low pH (i.e. 3), since most carboxyl and amine groups are 

protonated, the metal ion-PAA interactions are mainly through d orbital coordination. Therefore, it is 

expected that the PCFs with sodium and calcium ions are less stable than the PCFs with transition 

metals. When the solution pH increases, the concentration of carboxylate and amine groups 

increases, and promotes the PAA-CS and metal ions-carboxylate electrostatic interactions, and metal 

ion-amine (CS) d orbital coordination.  At high pH, PAAs are fully ionized and most amine groups in 

CS are neutral, the fiber stability depends on the competition between metal ion-OH interactions and 

metal ion-carboxylate interactions plus metal ion-CS d orbital coordination.   

The effect of crosslinking with chitosan and pH on the swelling of fibers is also quite evident 

from the data presented here. The enhanced crosslinking between PAA and chitosan reduces the 

number of PAA carboxylate interaction with metal ions, thus more metal ions are free for water 

uptake. However, according to the swelling ratio data, the non cross-linked fibers have less 
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swelling than cross-linked fibers. This can be attributed to the less stability of non cross-linked 

fibers than cross-linked fiber at low and high pH.  

 

5.4 Interfacial reactions of PCFs: 

The large surface area with interconncectivity, functional groups to anchor molecules and 

permeability to molecules ensures continuous flow of molecules for chemical/biological 

processes. With hydrogel like structure, controlled release of the reactant or molecular precursors 

can be achieved. The rate of reaction can be altered by controlling diffusion through density 

(PAA: CS ratio), cross-linking (electrostatic and/or covalent) and metal ion concentration. The 

reaction can also be controlled by other reactant concentrations, reaction time and conditions.  

Thus,  PCFs  have great potential in nanofabrication, catalysis and as nanoreactors, with their 

large surface area, rich carboxylate and amine groups, stability in different solvents and the 

ability to swell to facilitate the diffusion of reactants in and out the fibers. The metal ions can 

further take part in different reactions as catalysts, reducing agents, oxidants etc. As a proof of 

concept of metal ions loaded PCFs for nanofabrication four different types of reactions are 

presented here: reduction, hydrolysis, polymerization and hydroxyapatite formation. Depending 

on the reaction conditions, the polymerization can be achieved in the solution, on fibers or on 

other substrates, thus providing a control over the reaction. 

5.4.1 Reduction or hydrolysis (metal or metal oxide nanoparticles): The electrostatic 

interaction between the metal cations and anionic groups of one of the polyelectrolytes drives the 

incorporation of metal cations into the fibers. Subsequent reduction/ hydrolysis lead to the 

formation of metal and metal oxide/hydroxide nanoparticles, respectively. Current approaches 

include in situ fabrication where nanoparticles are added to polymer solutions before 
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electrospinning and post fabrication where nanoparticles are introduced onto fibers via reactions 

in solutions.  Post fabrication approaches are not sufficient in obtaining uniform and controlled 

functionalization in large scale while the amount of nanoparticles in fibers is limited by the 

dispersity of nanoparticles in polymer solutions in in situ fabrication approaches.  [50, 51, 54, 59, 

62, 88, 123, 126-130]  

The rich environment of PAA-CS fibers further ensures the particle confinement into the matrix. 

The fabrication of nanoparticles on the polyelectrolyte fiber matrix eliminates the surface 

modification step which is often necessary in solution based synthesis to obtain particles without 

aggregation. The recovery and purification of the nanoparticles after the surface modification is 

also difficult and leads to loss of products. Synthesis of nanoparticles in these fibers also has the 

advantages of easier removal of impurities, byproducts and excessive reactants, protection of 

molecule precursors by the functional group of the matrix. As a proof of concept, we synthesized 

iron (reduction) and ceria nanoparticles (hydrolysis) in PAA-CS fibers. The size of both iron and 

ceria nanoparticles obtained was of 5 nm, however, iron nanoparticles were embedded in matrix 

(Figure 27), whereas ceria nanoparticles were present at the interface (Figure 28).  

 

 

 

 

 

 
Figure 27: TEM images of iron nanoparticle loaded fibers synthesized from reduction of PAA-
CS-Fe3+ fibers. 
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This difference can be explained by diffusion of molecules across the fibers. The diffusion of 

nascent hydrogen produced from sodium borohydride into the fibers from solution is much faster 

than the diffusion of ferric ions outside the fibers because of the small size of hydrogen radical, 

thus the reaction takes place in the matrix and particles synthesized are embedded in the matrix. 

In case of ceria nanoparticles synthesis, the diffusion of hydroxyl ions inside fibers s faster than 

the diffusion of cerium ions outside the fibers, with reaction taking place at interface. 

 

 

 

 

 

Figure 28: Electron micrographs of ceria nanoparticle loaded fibers synthesized from hydrolysis 
of PAA-CS-Ce3+ fibers: (a) SEM, (b) TEM and (c) HRTEM 
 

5.4.2 Polymerization: 

In this study, ion loaded PCFs for polymerization reactions were demonstrated through the pyrrol 

polymerization. Polypyrrole (PPy) is a widely known and investigated conducting polymer with 

applications in sensing and tissue engineering, actuators and solar cells. It is highly 

biocompatible and is extensively used in neural regeneration. In our studies, oxidation 

polymerization of pyrrole on fiber surfaces was obtained by incubating ferric ion loaded fibers in 

a solution of pyrrol. The ferric ions in fibers diffused toward the fiber surface and initiated the 

polymerization of pyrrole. Pyrrole was polymerized, on the fiber surfaces as conducting shells 

and the color of the fibers changed to black as a result of the PPy deposition. As shown in Figure 

7, a layer of polypyrrole was conformly deposited on the PAA-CS fibers.  
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Figure 29: PAA-CS-Fe3+ fibers for in-situ polymerization of pyrrole. Morphology of the 
polypyrrol coated fibers: (a) TEM, (b) SEM images and (c) IR spectra showing the formation of 
PPy. 
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5.4.3 Biommimetic mineralization: 

We propose that PAA-CS fibers can be used as scaffolds for biomimetic mineralization for bone 

and tissue regeneration. Hydroxyapatite (HaP) grown under biomimetic conditions is known to 

highly resemble the structure found in bone. Biomimetically mineralized fibers were obtained by 

incubating PAA-CS PCFs loaded with calcium ions in SBF at 37°C, for Hap nanocrystal 

formation. 

It was observed that the Hap nanocrystals formed all over the surface of fibers. The crystals 

obtained were spherical or close to spherical in shape (and not rods) in shape, with an average 

diameter of 5 nm. The diffusion of calcium ions from the fibers into the solution is expected to 

be faster compared to the phosphate anions, suggesting that the reaction took place at the 

interface and Hap nanocrystals were found at the interface of fibers. Moreover the time of 

reaction leads to more diffusion of calcium ion from the fibers. The difference in shape can be 

attributed to the control of particle growth by polymer matrix. 
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(a)                                                                             (b) 

 

                                               (c) 

Figure 30: Calcium ions within the PAA-CS fibers can be further converted to HAP crystals: (a) 
TEM, (b) SEM and (c)IR spectra showing the formation of HAP. 
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Both PAA (carboxyl for Hap mineralization) and CS with its ability to control nucleation and 

growth during the mineralization process and prevent the interfacial mismatch. Confining and 

ordering the calcium cations onto a matrix prior to mineralization, ensures a more crystalline and 

ordered HaP. Due to the hydrogel nature of the fibers and controlled release of calcium, faster 

and more controlled growth of Hap nanocrystals occurs. The nanoscale structure and 

morphology of fibers (curved and cylinder) promotes the mineral orientation and length during 

the mineralization process similar to that of the bone and thus have immense potential for HaP 

mineralization and bone regeneration through a bottom-up scalable approach without the 

addition of any proteins.  

Different reactions have different reaction conditions like pH or temperature and require the use 

of different solvents (organic, acids, bases). It is crucial for PCFs to withstand these reactions 

without degradation. It was observed that the PCFs were able to withstand all these conditions 

and there was no degradation or any other significant change in their morphology (other than 

swelling), as observed from SEM and TEM images. 

 

5.5 Conclusion: 

Functional nanofibers were electrospun from PAA-CS-Mn+ complex using water as solvent. It 

was found that the metal ion identity and concentration in the salt greatly affects the morphology 

of electrospun nanostructures. The presence of metal ions and metal identity also influences the 

diffusion of molecules across the fibers. The potential of these PCFs as reservoirs for controlled 

release of ions in applications such as nanoreactor (nanoparticle synthesis), nanofabrication  

(mineralization, polymer coating), catalysis ( polymerization), etc. has been demonstrated.   
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CHAPTER 6: DIFFUSION STUDIES 

 

6.1 Introduction: 

The diffusion through these fibers is due to random motions of the non-uniformly distributed 

molecules owing to concentration gradient across the fibers. Diffusion of molecules can be 

explained by Fick’s first law where, the rate of diffusion per cross-section unit (flux) is directly 

proportional to a constant concentration gradient. However, in real, including diffusion through 

fiber, the concentration gradient changes with time. This situation can be explained by Fick’s 

second law that describes diffusion as a function of time[131], corresponding to experimental 

conditions.   

 

Typically, when dry, ion-loaded, polymer matrix is immersed in a releasing medium, the 

polymer starts to swell and relax[132].  Concurrently, ion diffusion will take place. Therefore, 

the difference between polymer relaxation rate and ion diffusion rate leads to ion diffusion 

profile across the fibers. If the rate of  diffusion is much less than that of polymer relaxation, the 

diffusion will be the rate determining and the profile follows the Fickian mechanism: Mt/M∞ = 

kt0.5, where Mt and M∞ are the accumulative and maximal amounts of ion diffused out, 

respectively, t is the releasing time and k is the diffusion coefficient. In contrast, if the rate of ion 

diffusion is much larger than that of polymer relaxation, the rate of interface movement is 

constant. Therefore, the amount is proportional to time: Mt/M∞ = kt. When the rates of polymer 

relaxation and ion diffusion are about the same, the releasing is determined by both factors, 

leading to Ritger-Peppas’ empirical equation: Mt/M∞ = ktn (0.5<n<1)[133, 134].It should be kept 
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in mind that diffusion can both from outside to inside of the fibers and inside to outside of the 

fibers and depends on the size, shape and density of the specimen. Both the processes can take 

place at the same time and sometime at same orders of magnitudes.  

 

Thus, the diffusion kinetics of metal ion loaded MPECS was investigated in two aspects: 

diffusion of ions out of the MPECs and the diffusion of dye from surroundings into the MPECS. 

The studies were performed with Arsenazo III (1, 8-dihydroxynaphthalene-3, 6-disulphonic acid-

2, 7-bis [(azo-2) phenylarsenic acid]) a dye which forms highly colored complexes with metal 

ions (Figure 31). While uncomplexed Arsenazo is wine-red, the metal-Arsenazo complex ranges 

from green, blue or purple in color [135-137], depending on the metal ion and pH. It is 

hypothesized that the affinity and crosslinking of ions with PAA-CS will play a significant and 

contradictory role in diffusion and complexation of ions with dye. 

 

 

 
 
 
 
 
 
Figure 31: The molecular structure of the Arsenazo III dye before and after the complex 
formation with metal ions. The native dye solution has a absorption maxima at 538 nm; upon 
metal binding, either there is  red  shift in the absorption maxima or a new peak towards red 
appear, depending upon the metal ion. 
 

 

M 
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The diffusion was monitored by tracking uncomplexed Arsenazo’s absorbance peak at about 538 

nm and the release of ions was monitored by absorbance of metal-ion Arsenazo complex around 

600-650 nm. The complexation of dye with metal ions would result in decrease in the absorption 

of uncomplexed dye. However, a decrease in peak of uncomplexed dye may not be directly 

proportional to the complexation, as decrease can also be due to the uptake of dye in to the 

MPECs from the solution. Thus, decrease in dye is a combination of two processes (Figure 32). 

 
 

 
 
 
Figure 32: A schematic showing the diffusion of dye and metal ions happening simultaneously 
across the matrix and complex formation at matrix-solution interface. 
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6.2 Effect of PAA:CS ratio: 

As a solvent diffuses into a network, the arrangement of the polymer chains will change as they 

adapt their conformation to the new concentration of penetrant. This rearrangement towards a 

new equilibrium state is unlikely occur instantaneously, especially when the rate of uptake is 

very high as in superabsorbent polymers. Two processes therefore influence the rate of swelling, 

the rate of diffusion of the penetrant molecules, and the response time for the network to relax 

towards its equilibrium conformation. Their relative rates determine the nature of diffusion, 

which may be deduced from observations of absorption with time. 

The dye molecules are present in solution and diffuse inside the molecules, whereas the ions are 

present inside the fibers and diffuse out. This serves as an excellent model to study the role of 

diffusion in interfacial reactions. The rate of the two diffusion process determines the rate of 

reaction and whether the reaction will occur inside the fibers, in the solution or the interface. If 

the diffusion of ions is faster than the diffusion of dye inside the fibers, the reaction will take 

place in the solution. On the other hand, if dye diffuses faster than ions, reaction will occur inside 

the fibers. If the two diffusion rates are comparable then the reaction is more likely to happen at 

the interface. In general, diffusion of metal ions into the solution should be faster than the 

diffusion of dye molecules inside the fibers due to the small size of metal ions as compared to the 

metal ions. 

The diffusion profile consisted of two sequential diffusion stages. The first stage of fast 

release/uptake (t < 50 min) follows the Fickian mechanism. In the second stage (t > 40 min), ion/ 

dye diffuses with a reduced rate probably due to the decreased concentration gradient. 
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                                                       (c) 

 

Figure 33: The effect of PAA:CS ratio on the diffusion of the dye in PAA-CS gel: the spectral 
change for the proportion (a) 1:6.75 and (b) 1:5; and (c) normalized diffusion of dye into the gels 
as a function of PAA: CS ratio. 
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6.3 Effect of metal ions: 

It appears from the data that PAA-CS fibers exhibit the maximum decrease in dye, with pretty 

much no dye left in the solution, thus indicating the uptake of dye by fibers since there are no 

metal ions present, ruling out the possibility of complex formation (Figure 35). In case of PAA-

CS-Mn+ fibers, it was observed that the presence of metal ions and metal identity influence the 

diffusion of molecules across the fibers (Figure 36). There is a decrease in the dye; however, it 

is much lesser than the PAA-CS fibers, suggesting that presence of metal ions inhibit the dye 

uptake. 

 

6.4 Effect of cross-linking: 

As expected, the complex formation (as observed from absorbance at both 538 nm and 650nm) is 

affected by the crosslinking of ions with PAA-CS. The deviation of ferric ions is due to the 

acidification of ferric complexes to break strong interactions as mentioned above. We have also 

introduced diffusion studies with zirconium ions for comparison purposes. 
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                                                      (b) 

Figure 34: The diffusion kinetics of the Arsenazo dye in PAA-CS non cross-linked fibers: (a) 
The spectral change of the dye, (b) The change in 538 nm peak with time as a function of 
PAA:CS ratio. 
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                                                           (a) 

 

 

 

 

 

 

                 

                                                       (b) 

Figure 35: The effect of Metal ion on the diffusion for the PAA-CS Gels. (a)  change in 538 nm 
absorption peak of dye and (b) complex formation peak at 650 nm with time as a function of 
different metal ions. 
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                                                            (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                               (b) 
 
Figure 34: The effect of Metal ion on the diffusion of the dye: (a) spectra change in PAA-CS-
Ce3+ ion fiber, (b) the change in 538 nm peak and (c) 650 nm with time as a function of different 
metal ions. 
 

0 500 1000 1500
0.2

0.4

0.6

0.8

1.0

Fe3+

Ce3+

Ca2+

PAA-CS

 

 

N
or

m
al

iz
ed

 D
iff

us
io

n 
(A

.U
.)

Time (mins)

Zr4+

0 500 1000 1500
0

10

20

30

PAA-CS

Ca2+

Fe3+

Ce3+
 

 

N
or

m
al

iz
ed

 D
iff

us
io

n 
(A

.U
.)

Time (mins)

Zr4+

88 
 



 

 

 

 

 

 

 

 

 

                                                            (a) 

 

 

 

 

 

 

 

 
 
 
 
                                                                (b) 
Figure 37: The effect of Metal ion on the diffusion for the PAA-CS thin films: (a) change in (b) 
538 nm peak and (b) 650 nm with time as a function of different metal ions. 
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Figure 38: The effect of cross-linking on diffusion: comparison of both cross-linked and non 
cross-linked conditions together (a) at 538 nm and (b) 650 nm. 
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Figure 35: The effect of dimension, i.e. fiber (1D), thin film (2D) and gel (3D) on diffusion. The 
change in (a) 538 nm peak and (b) 650 nm with time. 
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6.5 Effect of dimension: 

The most significant challenge to make efficient hydrogel devices is the slow response related to 

low diffusion coefficient. Because hydrogel swelling kinetics are inversely proportional to the 

square of the dimension, hydrogel fibers with reduced size and larger surface area offer more 

efficient material transport and faster response than hydrogels. 

The polyelectrolyte fibers are expected to facilitate the diffusion of molecules from surrounding 

environment and stimulus with fast response, due to their nanoscale dimensions and high surface 

to volume ratio, high porosity and geometrical reasons. Hence, these fibers can be used for 

interfacial reactions. The reactions take place as a result of diffusion of molecules across the 

fibers.  

 

6.6 Conclusion: 

The diffusion of embedded metal ions from MPECs into aqueous solutions is affected by metal 

ion/polyelectrolyte interactions. It is expected that, transition metal ions will have a smaller 

diffusion rate than main group metal ions of the same valence because of stronger metal 

ion/polyelectrolyte interactions.  The release or diffusion can be controlled by various parameters 

thus providing control over their properties and interfacial reactions on their surface. 

 

 

  

92 
 



CHAPTER 7: APPLICATION OF PAA-CS-Mn+ COMPLEXES 

7.1 Introduction: 

Because of their porous structure, hydrogel nature, ease of chemical modification, 

biodegradability, biocompatibility and large surface area, PAA-CS-Mn+ fibers and gels are 

promising candidates for biomedical applications. The good physicochemical and biological 

properties of PAA-CS, use of these biomaterials in tissue engineering and other applications 

show considerably very good physicochemical and biological properties. 

 

7.2 Biodegradation: 

It is known that in body chitosan is degraded enzymatically by lysozyme. In vitro degradation of 

scaffolds was investigated in physiological conditions in two different mediums PBS and 

Lysozyme solution (1mg/ml) as biomimetic fluids. Degradation was monitored at 37°C using 

weight loss method.  During the degradation tests, the hydrogel samples steadily decreased in 

size. It is clearly observed that scaffolds degraded relatively faster in lysozyme solution than in 

PBS solution. The faster degradation is hypothesized due to the decreases stability of scaffolds 

because of decreased crosslinking due to degradation of chitosan. It was observed that scaffolds 

exhibited a decent degradability at physiochemical conditions, hence can be used for various 

applications. 
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Figure 36:  Biodegradation studied of PAA-CS gels and fibers in PBS and Lysozyme solution 
(1mg/mL). 

 

7.3 Fibrous wound dressings: 

Wound healing is a coordinated process for repairing damages tissues and protecting from 

further damage. The first step of healing is the inflammation of the tissue. This process is 

generally accompanied by increase in ROS for signaling and defense from pathogens. However, 

due to their high reactivity with biomolecules, excess ROS can be detrimental to wound repair 

resulting in cell dysfunction and death. Although free radicals are produced by all cells as part of 

normal metabolism and defense and signaling pathways, the inability to manage elevated levels 

of oxidative stress predictably leads to cell damage and an impaired wound healing. Thus, 

control of inflammation and ROS is important for faster and proper wound healing. Another 

problem in wound healing is infection of the wound leading slower recovery and further 
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complications. These problems are further heightened in patients with compromised immune 

system as in diabetes, where microbial infections and inflammation impairs the wound healing 

and leads to cell necrosis. 

 

With free radical scavenging activity, neuroprotective, radio-protective and anti-inflammatory 

and antibacterial properties, lots of research has been devoted to study the antioxidant property 

of these ceria nanoparticles. Cerium ions exist in two oxidation states +3 and +4. The antioxidant 

activity is due to the interchange of these two states during a redox reaction. However, there is 

always a concern regarding the toxicity of these particles, especially when using for biomedical 

applications. For safer and wider use of ceria nanoparticles, a safe matrix is required. The 

synthesis of ceria nanoparticles in a solid matrix can meet such requirement. Ceria nanoparticles 

would be embedded in the matrix so that there is no direct contact between cells and 

nanoparticles. 

 

Thus, PAA-CS-ceria nanofibers are ideal candidate for wound dressings. These fibers are 

hypothesized to have intrinsic antioxidant and antibacterial activity. Nanofibers assemble at the 

injury site, drawing the body's own growth factors to the injury site for wound healing. The ceria 

nanoparticles in the fibers ensure that the wound healing is faster and without any necrosis (due 

to inflammation and ROS) and infections. 
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The antibacterial properties of ceria nanoparticles embedded in PAA-CS fibers were tested on 

E.coli bacteria. It was observed that the cell suspension incubated with PAA-CS-ceria fibers 

resulted in less number of cell colonies when plated on agar, as compared to cells incubated with 

PAA-CS fibers or directly plated onto the agar. 

 

.                       (a)                                                           (b) 
 

Figure 37: Antibacterial property of electrospun PAA-CS ceria fibers: (a) PAA-CS-ceria wound 
dressing and (b) Comparison of antibacterial of PAA-CS-ceria fibers with PAA-CS fibers. 

 

There have been several studies on kinetics of reactive oxygen species (ROS) by ceria 

nanoparticles. The polyelectrolyte fibers are expected to facilitate the diffusion of molecules 

from surrounding environment and stimulus with fast response, due to their nanoscale 

dimensions and high surface to volume ratio, high porosity and geometrical reasons. Thus, it is 

hypothesized that embedding of ceria nanoparticles will not affect their antioxidant activity, as 

ROS can easily be diffused within fibers and ceria nanoparticles would be available to uptake 

them. The hypothesis is also based on the studies proving that the polymer coating on ceria 
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nanoparticles does not affect their antioxidant property. However, it would still be interesting to 

perform kinetic studies on the fibers to determine the diffusion of radicals from surroundings to 

the inside of the fibers and their uptake by nanoparticles and comparing it with free 

nanoparticles. The combination of electrospun polyelectrolyte fibers and ceria nanoparticles is a 

novel and promising approach for wound dressings with intrinsic anti oxidative and 

antimicrobial property. 

 

To evaluate the efficiency of ceria nanoparticles in the scaffold for scavenging free radicals and 

protecting cell, a ROS uptake assay was performed. The task investigates the availability of ceria 

nanoparticles for radical scavenging since they are embedded inside the fibers. Reactive oxygen 

species are generally highly reactive and have short life time which makes them difficult to 

measure directly in biological systems. Therefore, indirect methods are employed to assess ROS 

levels.  In general a non-fluorescent compound which can be oxidized to a fluorescent compound 

in the presence of ROS is used for ROS measurements. One such method using Amplex red dye 

was used in the present study to measure H2O2.N-acetyl-3,7-dihydroxyphenoxazine (Amplex 

Red) is oxidized by H2O2 in the presence of horse radish peroxidase (HRP), with 1:1 

stoichiometry yielding the highly red fluorescent compound resorufin. This compound has an 

excitation maximum at 520 nm and emission maximum at 590 nm, and helps in detecting 

hydrogen peroxide at very low concentrations. 

 

To test the antioxidant property of PAA-Cs scaffolds with embedded ceria nanoparticles, 

scaffolds were incubated with increasing concentrations of hydrogen peroxide and oxidation was 
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measured using an Amplex Red assay. PAA-CS scaffolds with embedded ceria nanoparticles 

effectively prevented the oxidation   of the dye suggesting the ability of scaffolds with ceria 

nanoparticles to quench peroxide-induced oxidation reactions. In contrast, control scaffolds 

without ceria nanoparticles demonstrated oxidation with hydrogen peroxide exposure suggesting 

a weaker ability to quench free radicals. Together, these studies indicate that ceria nanoparticles 

embedded in scaffolds can act as antioxidant. 

 

Figure 41 depicts the radical uptake by PAA-CS fibers with ceria nanoparticles. Different 

amounts of hydrogen peroxide were used to generate ROS. It was observed that fibers could 

uptake high amounts of hydrogen peroxide (5-200 µM). Cerium ions in ceria nanoparticles can 

convert from +3 to +4 oxidation state with the addition of H2O2, because of the peroxy radicals 

and ions. After all the H2O2 has been consumed, the cerium ions are converted back to +3 state 

and. Thus, the fibers inherit the antioxidant properties of the ceria nanoparticles and embedding 

ceria nanoparticles in fibers does not limit their ROS uptaking capacity.  
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Figure 38: Antioxidant activities of scaffolds. (a) Antioxidant activity of PAA-CS fibers 
embedded with ceria nanoparticles assesses for different concentrations of H2O2 (5-200µM) 
using Amplex Red assay. (b) Comparison of antioxidant capacity of different scaffolds for 100 
µM H2O2 
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7.4 Tissue engineering: 

There are evidences that polyanion/polycations have similar properties as of extracellular matrix 

(ECM) of cells and nanofibers resemble the components of ECM and affect the cellular activity 

because of their nanometer size and geometrical reasons. Cells are able to organize around, 

attach and proliferate on these fibers as the scaffolds formed of such nanofibers are smaller than 

the size of the cell. Moreover, the bio and cytocompatibility of these fibers can also be 

modulated through post synthesis modification.  Polymeric fibers can be used for providing a 3-

D framework for in vitro attachment and growth of cells. These fibers with their mechanical and 

biological properties similar to extra cellular matrix can simulate an environment for tissue 

engineering both functionally and architecturally. These fibers should be biocompatible, 

biodegradable and porous with high surface to volume ratio and good mechanical strength for 

such applications. To investigate their potential as a scaffold and for further applications, in vitro 

cell assays are required. Most of the cells need to adhere to a surface for their growth and 

proliferation. The attachment of cells onto the surface depends on the compatibility of cells with 

the underlying substrate. If the cells are not attached properly to the scaffold, the cells become 

round in shape and start floating. Also, the compatibility can be assessed through the 

morphology of the cells and the number of cells (proliferation) and cell growth.  

 

7.4.1 Fibers and gels with ceria nanoparticles for cell protection against oxidative damage: 

The highly reactive radicals interact with cellular components such as DNA, lipids, proteins and 

damage them, leading to the loss of their function and eventually cell death. Due to their redox 

properties, ceria nanoparticles have the ability to uptake free radicals, behaving as antioxidants 
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and protecting the cell. The whole purpose of using fibers/gels embedded with ceria 

nanoparticles is to have a scaffold with intrinsic antioxidant activity for promoting cell growth 

and healing during tissue engineering applications.  

 

Antioxidant studies were performed to evaluate the resistance of cells grown on scaffold with 

intrinsic anti oxidation property against oxidative damage by H2O2 as ROS species using Amplex 

Red assay. Since, Amplex red cannot permeate cell membrane; it can measure only extracellular 

H2O2.  

 

Three cell lines fibroblasts (HDF), neuroblastoma (SHSYS5) and myoblasts (C2C12) were 

seeded on fibers and gels embedded with ceria nanoparticles. The attachment and morphology of 

the cells was observed by SEM. Figure 43 depicts that all three cell line  spreading on the 

scaffold surface within 24 hours of seeding, suggesting good  of the cells adhesion to the 

scaffolds  and their compatibility with the scaffolds. 
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Figure 39: Cells attaching and spreading on PAA-CS fibers (bottom row) and gels (top row) 
embedded with ceria nanoparticles: (a) Fibroblasts (HDF), (b) Neuroblastoma (SHSYS5) and (c) 
Myoblasts (C2C12). 
 
 
Since both cells and ceria nanoparticles can interact with radicals, it is expected that there would 

be a competition between the two and the one which is more easily available would interact 

more. In porous scaffolds like these fibers the interactions between the molecules is generally 

dependent on the diffusion of the molecules. It would be interesting to observe if radicals reach 

ceria nanoparticles or the cells first and if radicals will be able to reach ceria nanoparticles at all. 

The radicals should be up taken by the ceria nanoparticles preventing their interaction with the 

cells. This study was performed with gels and fibers with ceria nanoparticles. For control assays, 

cells treated with ceria nanoparticles, and cells grown on fibers without ceria nanoparticles and 

cells grown on normal polystyrene substrate was studied. Figure 44 depicts the resistance of 

cells grown on different scaffolds to H2O2. 
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Figure 40: Resistance of cells grown on different scaffolds and polystyrene substrates (with and 

without ceria nanoparticles) to oxidative damage at  (a) normal conditions, (b)  stress generated 

due to pH change,  (c)peroxide radicals generated by 100 µM H2O2and (d)combination of pH 

change and100 µM H2O2.. 
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The scaffolds with ceria nanoparticles showed maximum antioxidant capacity. Interestingly, the 

antioxidant capacity of ceria nanoparticles embedded in scaffolds (fibers/gels) was found to be 

comparable to ceria nanoparticles. However, fibers with ceria nanoparticles showed enhanced 

resistance to H2O2compared to gels with ceria nanoparticles. This can be attributed to increased 

surface area and hence better diffusion of molecules across fibers than gels. These results 

indicate that the antioxidant capacity of scaffolds is embedded ceria nanoparticles. 

For cell viability evaluation MTT assay was performed to see if the scaffold with embedded 

ceria nanoparticles is compatible or cytotoxic. In living cells, 3-(4,5-dimcthylthioazol-2-yl)-2,5-

diphenyl-tetrazolium bromide (MTT) is reduced to purple formazan, with absorbance at 500 nm. 

The reduction of MTT to purple formazan takes place in the presence of active reductase 

enzymes, thus the formation of formazan is a measure of cell viability or cytotoxicity. The 

intensity of formazan absorbance provides the quantitative measure of the cell viability. Figure 

shows the cell viability of cells grown on different scaffolds in response to H2O2. The data 

corresponds to data obtained for cell resistance to H2O2. 
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Figure 41:MTT assay for cell viability on different scaffolds and polystyrene substrates (with 
and without ceria nanoparticles) to oxidative damage at  (a) normal conditions, (b)  stress 
generated due to pH change,  (c) peroxide radicals generated by 100 µM H2O2and 
(d)combination of pH change and100 µM H2O2. 
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Our results substantiate that our scaffolds with ceria nanoparticles have antioxidant activity 

protecting the cells from exogenous ROS generated in response to different stress conditions. 

 

7.4.2 Hap mineralized gels and fibers for bone tissue engineering: 

Hydroxyapatite (HaP) is a mineral found in human bones and teeth and HaP nanocrystals are 

grown for bone and dental tissue regeneration and as dental fillers. We propose that PAA-CS 

scaffolds can be used for biomimetic mineralization for bone and tissue regeneration. In this 

study, PAA-CS scaffolds loaded with calcium ions were incubated in SBF at room temperature, 

for Hap nanocrystals formation. It is expected that due to hydrogel nature and controlled release 

of calcium, faster and more controlled growth of Hap nanocrystals would occur.  The 

crystallization of calcium in the form of HaP, rather than calcium phosphate is dependent on the 

presence and concentration of carboxyl groups.[109, 138] 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 42: Bone sarcoma (MG-63) cells growing on Hap fibers and gels mineralizing matrix and 
forming nodules. 
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The attachment of bone sarcoma cells on Hap mineralized PAA-Cs scaffolds can be seen in 

Figure 46. It is observed that cell spread on the scaffolds, mineralizing the matrix. Formation of 

bone nodules can also been seen on both fibers and gels. 

 

7.5 Calcium ion gels for artificial muscles: 

Lot of research on engineered myoblasts for artificial muscles. Since, calcium ions are involved 

in several signaling pathways and also control muscle cell functioning, we studied the growth 

myoblast on calcium ion gels. Myoblast generally take a week to grow and fuse to form 

functioning units known as myotubes. In our studies, we found, good adhesion and spreading of 

myoblasts on the scaffold. Interestingly, within 24 hours we could see the formation of myotubes 

on the scaffolds. 

 

 

 

 

 

 

 

 

Figure 43: C2C12 cells growing and spreading on PAA-S-Ca2+ gels forming myotubes. 
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7.6 Conclusion:  

In this chapter we demonstrated some applications of MPEC structures. The biocompatibility 

and biodegradability of these scaffolds was tested for their application in biomedical 

applications. The functionalized gels were examined for their potential in tissue engineering. The 

antioxidant activity of scaffolds with ceria nanoparticles were examined for their anti-

inflammatory and antibacterial properties for wound dressings and protection of cells from ROS 

induced oxidation for tissue engineering applications. The HaP mineralized scaffolds also 

exhibited their potential for bone and dental tissue engineering application. The cell studies on 

gels with calcium ions showed interesting results of forming myotubes within 24 hours 

suggesting their application in artificial muscles. 
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CHAPTER 8:  SUMMARY 

 

This dissertation is focused on the synthesis of functional polyelectrolyte complexes and their 

multidirectional potential applications. The polyelectrolyte complexes cross-linked with metal 

ions were synthesized and tuned to develop functional structures with interesting diffusion and 

surface properties. The structure-property relationship of the polyelectrolyte complexes was 

thoroughly investigated and tuned during processing to achieve optimized properties for various 

applications. Electrospinning was to fabricate nanofibers followed by their functionalization to 

achieve desired applications. Diffusion characteristics of different structures and their effect on 

interfacial reactions and functionalization were analyzed. The potential of functionalized 

complexes for different applications was also investigated. The major findings from this research 

can be summarized as follow: 

 

1. Incorporating metal ions of different valence into PECs introduces metal 

ion/polyelectrolyte interactions that can tune the morphology of MPECs. The metal ion-PAA 

interactions are more important than metal ion-CS interactions at low pH. Transition metal ions 

have much stronger interaction with PAA than main group metal ions due to the availability of d 

orbitals, which enables the manipulation of PEC morphology through the tuning of solution 

viscosity. The function of CS is improving the fiber stability is two-fold, forming electrostatic 

interactions with PAA and generating metal ion-CS interactions at increased pH. 

The MPECs thus obtained have enhanced stability, are responsive to different stimuli and can be 

manipulated to obtain different structures like gels, fibers, films, nanoparticles etc. 
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2. MPECs form gels at room temperature. The gelation time depends upon the polymer 

concentration and PAA:CS ratio. For non-stoichiometric ratios (high PAA:CS ratio) complex can 

take days to month to gel. Addition of metal ions as cross linkers decreases the gelation time and 

also infers properties like stretching and self-healing. The ionic cross linking by metal ions is 

concentration dependent and varies with the metal ion type. Physiochemical parameters like 

temperature and pH can also induce gelation in these complexes. The gels thus obtained are 

stable over a wide range of pH. 

3. Metal ion/polyelectrolyte interactions can be used to control the morphology of electrospun 

nanostructures and their swelling and stability in aqueous solutions. While metal ions have 

negligible interaction with CS during electrospinning, the protonated amine groups in fabricated 

PCFs will be deprotonated when the PCFs were immersed in aqueous solutions of higher pH. 

The function of CS is improving the fiber stability is two-fold, forming electrostatic interactions 

with PAA and generating metal ion-CS interactions at increased pH. 

4. The release of embedded metal ions from MPECs into aqueous solutions is affected by 

metal ion/polyelectrolyte interactions. It is expected that, transition metal ions will have a 

smaller diffusion rate than main group metal ions of the same valence because of stronger metal 

ion/polyelectrolyte interactions.  The release or diffusion can be controlled by various parameters 

thus providing control over their properties and interfacial reactions on their surface.  

5. The embedded metal ions function as a reagent reservoir for various reactions to 

functionalize MPECs.  The functionalized MPECs exhibit an immense potential for various 

applications as demonstrated. 
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