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ABSTRACT

Bifurcations in Huang’s chaotic chemical reactor system leading from simple dynamics into

chaotic regimes are considered. Following the linear stability analysis, the periodic orbit

resulting from a Hopf bifurcation of any of the six fixed points is constructed analytically

by the method of multiple scales across successively slower time scales, and its stability is

then determined by the resulting final secularity condition. Furthermore, we run numerical

simulations of our chemical reactor at a particular fixed point of interest, alongside a set

of parameter values that forces our system to undergo Hopf bifurcation. These numerical

simulations then verify our analysis of the normal form.
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CHAPTER 1: INTRODUCTION

The chaotic chemical reactor model proposed by Huang [1] - [2] is an interesting system to

study as it gives rise to a broad range of dynamics. These dynamics stem from the nonlinear

components of two autocatalytic steps in the reaction. The governing equations for this

reaction are:

dx

dt
= x(a− px− y − z)

dy

dt
= y(x− c) (1.1)

dz

dt
= z(b− x− qz)

Since [1] - [2] consider only limited solution classes, we consider the dynamics of this system

systematically in this paper.

The system possesses six fixed points. For positive parameters a, b, c, p and q, the only fixed(

alternatively, equilibrium or critical) point of (1.1) where each x0, y0, z0 are non-zero is:

(x0, y0, z0) =
(
c,
c+ aq − b− cpq

q
,
b− c
q

)
(1.2)

Chapter 2 considers the basic stability of this fixed point, and the five other ones, as well

as their local bifurcations, including those resulting from zero eigenvalues of the Jacobian

matrix (transcritical, saddle-node, or pitchfork) as well as regular Hopf and general Hopf

bifurcations.

As a path into the next more complex attractors, i.e., limit cycles, we next consider Hopf

bifurcations at the fixed points. Following a Hopf bifurcation, one may have one of three
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possible scenarios:

1. A new stable periodic orbit or attractor created by a supercritical bifurcation, further

bifurcations of which may lead into chaotic regimes via the usual period doubling and

other routes, or

2. A post-subcritical-bifurcation scenario with no stable local attractors and the system

blowing up in finite time (an attractor at infinity), or

3. A different post-subcritical-bifurcation scenario where there are no stable local attrac-

tors, but the existence of significant volume reduction can force the system to remain

bounded. Strong dissipation often leads to, or is indicative of, a nonlocal attractor, but

of course is not a guarantee or proof of it. In this case, the only remaining possibility,

other than a global quasiperiodic attractor, is the formation of a nonlocal attractor (via

the usual stretching and folding mechanism) on which the system exhibits long-term

bounded aperiodic dynamics.

We explore these three possible scenarios by deriving a “normal form” for the periodic orbits

appearing after Hopf bifurcation. This “normal form” is derived in Chapter 3, and we use

this result to make predictions for the stability of the period orbits in Chapter 4. Finally in

Chapter 5, these predictions from the normal form are verified using numerical simulations.

Other limit cycles, not resulting from Hopf bifurcations, are also considered there in the

large five parameter space for this system.
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CHAPTER 2: LINEAR STABILITY

There are several fixed points of this system. In this section we perform linear analysis

on the fixed points by examining the system’s Jacobian matrix and resulting characteristic

polynomial at each fixed point. We present each fixed point in its own subsection. Note

that we only consider bifurcations that happen at natural parameter values, i.e. parameter

values that are positive and non-zero.

Our linear analysis is explained by the process detailed below. Consider the following system

of two ODEs:

ẋ = f1(x, y)

ẏ = f2(x, y)

with fixed point x∗, y∗ such that ẋ = ẏ = 0. Then if we perturb the fixed point with

some ∆x,∆y small enough such that the linearization of the system given by the Jacobian

matrix evaluated at x∗, y∗ dominates the nonlinearity at this perturbation, then we can find

solutions:

∆̇x = C1e
λ1t + C2e

λ2t

∆̇y = C3e
λ1t + C4e

λ2t

where Ci is determined by initial conditions of the system, and λ1, λ2 are the eigenvalues

of the Jacobian matrix at this fixed point. The consequence of this representation for the

system at a small perturbation from the fixed point is that the eigenvalues control the growth

of ∆̇x, and ∆̇y. We get the following cases depending on what the eigenvalue are:
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1. λ1 and λ2 are both real and negative. This corresponds to a sink where as t→∞ we

see that ∆x and ∆y decrease towards zero. This sinking behavior corresponds to a

stable node.

2. λ1 and λ2 are complex-valued and their real parts are negative. Since they are complex-

valued we see from the corresponding trigonometric representation that ∆x and ∆y

will still decay back to the fixed point, but will also feature an oscillatory behavior.

3. λ1 and λ2 are positive and real. This results in ∆x,∆y increasing towards ∞ which

corresponds to moving away from the fixed point. Since every point near the fixed

point gets kicked away, we see that this fixed point is an unstable node.

4. λ1 and λ2 are complex-valued and their real parts are positive. Similar to the stable

case for complex-conjugate eigenvalues, but instead the oscillatory behavior will be

unstable and diverge from the fixed point.

5. λ1 and λ2 differ in sign, but are real-valued. In this case as t → ∞ we will have

the positive λ term dominate the representation for ∆x,∆y. This may occur after

significant time depending on the constants Ci and so this behavior is a saddle-node

bifurcation.

6. λ1 = λ2 = 0 or λ1,2 = 0 ± mi. This case is special because we cannot make conclu-

sions about the stability of the fixed point by linearization alone. This is because the

nonlinear terms which we have ignored control the stability.

This kind of linear analysis can be extended to systems of three dimensions such as ours.

The process remains the same, except that we now obtain a third eigenvalue to consider.

Throughout our linear analysis of the chaotic chemical reactor system we will be looking for
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single, double, and triple-zero bifurcations. These occur when there are λ = 0 roots of the

characteristic polynomial with multiplicity ranging from 1 to 3.

We also search for two types of Hopf bifurcations, the regular Hopf bifurcation, where r1 6= 0

and r2,3 are complex conjugates with real part zero, and the general Hopf bifurcation, where

r2,3 are complex conjugates with real part zero and r1 = 0. To search for the regular Hopf

bifurcation we examine the constants of the characteristic equation in the form:

λ3 + b1λ
2 + b2λ+ b3 (2.1)

We desire this equation to be factored into the form:

(λ+ r1)(λ
2 + ω2) (2.2)

where ω = |r2| = |r3|. Now by expanding this factored form we get:

(λ+ r1)(λ
2 + ω2) = λ3 + r1λ

2 + ω2λ+ r1ω
2 (2.3)

Therefore b1 = r1, b2 = ω2, and b3 = r1ω
2, and so for a regular Hopf bifurcation we must

satisfy the necessary condition:

b3 = b1b2 (2.4)

Adapting the structure from above in order to find a necessary condition for the general Hopf

bifurcation can be done by substituting r1 = 0 which results in the necessary condition:

b1 = 0 and b3 = 0 (2.5)

We will use (2.4) and (2.5) at each of the following six fixed points. In addition we find that
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the non-evaluated Jacobian matrix for our system is:

J(x, y, z) =


a− 2px− y − z −x −x

y x− c 0

−z 0 b− x− 2qz

 (2.6)

This concludes our introduction to the linear analysis for the system. We now perform the

linear analysis at each of the six fixed points to obtain information about bifurcations that

occur in our system.

Fixed Point:
(

0, 0, b
q

)

The characteristic polynomial of the Jacobian (2.6) evaluated for this fixed point is:

λ3 +
λ2

q
(b− aq + bq + cq) +

λ

q
(b2 + bc− abq − acq + bcq) +

1

q
(b2c− abcq)

We can obtain a single-zero bifurcation by setting b = aq, since the constant term will be

zero, and we can then factor out the root: λ = 0. Naturally occurring double and triple-

zero bifurcations do not occur, since after substituting in b = aq the characteristic equation

becomes:

λ3 + cλ2 + aqλ2 + acqλ

and for the λ1 term to disappear we would require a, c or q to equal zero.

We also find that this fixed point does not emit any regular or general Hopf bifurcations for

naturally occurring parameter values of the system, and so we explore other fixed points.
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Fixed Point:
(
c, c− ap, 0

)

The characteristic polynomial for this fixed point is:

λ3 − λ2(b− c− cp)− λ(−ac+ bcp)− abc+ ac2 + bc2p− c3p

For the single-zero bifurcation we can obtain two naturally occurring parameter relations

that lead to this type of bifurcation. They are:

a = cp

b = c

Their resulting characteristic polynomials are:

λ3 + λ2(cp− b+ c) + λ(c2p− bcp)

λ3 + λ2cp+ λ(ac− c2p)

If we combine the two parameter relations, that is, our parameters satisfy a = cp and

b = c, then this will lead into a double-zero bifurcation with the characteristic polynomial

λ3 + λ2cp. We see from this that we cannot have a triple-zero bifurcation happening at

naturally occurring parameters because either c or p must be zero.

To conclude the linear analysis at this fixed point we observe that the fixed point does not

undergo any regular or general Hopf bifurcations.
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Fixed Point:
(
a
p
, 0, 0

)

The characteristic polynomial for this fixed point is:

λ3 − λ2(b− a− c)− λ

p2
(a2 − abp− acp+ abp2 − acp2 + bcp2)− 1

p2
(a3 − a2bp− a2cp+ abcp2)

This undergoes a single-zero bifurcation when a = bp, which results in the characteristic

polynomial λ3 + λ2(−b + c + bp) + λ(−b2p + bcp). We can extend this into a double-zero

bifurcation simply by setting b = c, yielding the following polynomial λ3 +λ2cp. This cannot

undergo a triple-zero bifurcation without c or p being zero.

Finally, this fixed point does not undergo any type of Hopf bifurcation for naturally occurring

parameter values, similar to the earlier sections.

Fixed Point:
(
aq−b
pq−1 , 0,

bp−a
pq−1

)

The characteristic polynomial for this fixed point is:

1

(pq − 1)2

(
C1λ

3 + C2λ
2 + C1λ+ C4

)
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where the constants Ci are:

C1 =
(

1− 2pq + p2q2
)

C2 =− b+ c+ bp+ 2aq − apq − 2cpq − bp2q − 2apq2 + ap2q2 + bp2q2 + cp2q2

C3 =− ab+ bcp+ a2q − abq + acq + 2abpq + b2pq − acpq − bcpq − b2p2q−

bcp2q + a2q2 − 2a2pq2 − abpq2 − acpq2 + abp2q2 + acp2q2 + bcp2q2

C4 = ab2 − abc− b3p+ b2cp− 2a2bq + a2cq + 2ab2pq − b2cp2q + a3q2 − a2bpq2 − a2cpq2 + abcp2q2

From this characteristic polynomial we can obtain a single-zero bifurcation for the following

two parameter relations:

a = bp

a =
b− c+ cpq

q

and their resulting characteristic polynomials are:

λ3 − λ2(b− c− bp)− λ(b2p− bcp)

λ3 + λ2
(
b+ c(−1 + p)

)
+
λ

q

(
c2(1− pq)− bc(1− pq)

)

We see that we can extend the first condition a = bp into a double-zero bifurcation by

additionally requiring b = c which yields the polynomial λ3 − cpλ2. This polynomial cannot

naturally have λ = 0 as a third root since b or p would have to be zero. Similarly, for the

second parameter relation a = b−c+cpq
q

we can extend this into a double-zero bifurcation only

by setting b = c since we cannot set pq = 1 (we would be dividing by zero in the fixed point).

This yields the same polynomial after extension as the first parameter relation did.
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We now check to see if the fixed point can naturally undergo any Hopf bifurcations. We

observe that for the following parameter relations we achieve regular Hopf bifurcations when

a =
bp− bpq
q(p− 1)

p =
aq

aq + bq − b

For the first parameter relation if we use the parameter values:

b = 20 c = 25 p =
1

2
q =

3

2
a =

20

3

then we obtain the polynomial:

λ3 − 15λ2 + 133.333λ− 2000

which has roots r1 = 15, r2,3 = ±11.547i.

For the second parameter relation if we use the parameter values:

a = 1 b = 10 c = 5 q = 2 p =
1

6

then we obtain the polynomial:

λ3 − 7λ2 + 8λ− 56

which has roots r1 = 7, r2,3 = ±2
√

2i.

We can also find a general Hopf bifurcations happening at this fixed point by adding an

additional relation, c = − b
p−1 to the first Hopf bifurcation parameter a = bp−bpq

q(p−1) . Since we
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set p = 1
2

for this relation we will have c > 0 to maintain a natural condition, and from b = 20

we get that c = 40 causes a general Hopf bifurcation to occur. The resulting characteristic

polynomial is λ3 + 133.333λ, with roots r1 = 0, r2,3 = ±11.547i as desired.

Origin Fixed Point:
(

0, 0, 0
)

The characteristic polynomial resulting from the Jacobian matrix at this fixed point is:

λ3 + λ2(c− a− b) + λ(ab− ac− bc) + abc

Since we do not allow any of our parameters to be zero we cannot have the constant term

in our polynomial vanish. As a result we cannot achieve any single, double, or triple-zero

bifurcations for this fixed point. Furthermore we cannot achieve a general Hopf bifurcation

either as a necessary condition for this type of bifurcation is that the constant term be zero.

All that remains is whether a regular Hopf bifurcation can occur.

Observing that the necessary condition for this type of bifurcation requires b1b2 = b3, we get

that b1b2 − b3 = −(a+ b)(a− c)(b− c) = 0 This can only happen naturally by letting a = c

or b = c. If we do this our characteristic polynomial becomes either λ3 − bλ2 + c2λ+ bc2 or

λ3 − aλ2 − c2λ+ ac2. In both cases these polynomials will always have real roots, and thus

cannot undergo Hopf bifurcations.
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Non-Zero Fixed Point:
(
c, c+aq−b−cpq

q
, b−c

q

)

The characteristic polynomial of the Jacobian matrix evaluated at this fixed point is:

λ3+λ2
(
b+cp−c

)
+λ

(
acq + bcqp− 2bc− 2c2(pq − 1)

)
q

+
abcq − b2c− ac2q − c3(1− pq)− bc2(pq − 2)

q

We first explore the single, double, and triple-zero bifurcations that can occur at this fixed

point. We obtain a single-zero bifurcation when the constant term in this polynomial van-

ishes. This can occur for the following two parameter relations:

a =
b− c+ cpq

q
(2.7)

b = c (2.8)

Their resulting polynomials are:

λ3 +
λ2

q

(
bq + c(−1 + p)q

)
+
λ

q

(
c2(1− pq) + bc(−1 + pq)

)
(2.9)

λ3 + cλ2p+ λ(ac− c2p) (2.10)

Now we can extend these two single-zero bifurcations into double-zero bifurcations by using

both of the relations together. We see that if b = c then (7) reduces to a = cp. Using this

in (9)− (10) we get that the b2 terms in each disappear, yielding a double-zero bifurcation.

The resulting characteristic polynomial is:

λ3 + cpλ2 (2.11)
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which cannot give a triple-zero bifurcation at natural points. We could have instead forced

a double-zero bifurcation by setting p = 1
q

since this would kill the b2 term in (9). If we do

this then our resulting polynomial is:

λ3 +
λ2

q
(c+ bq − cq) (2.12)

We see that if q = − c
b−c which can be positive given c > b, that the λ2 term disappears.

Therefore given the parameter values a = 1, b = 2, c = 4, p = .5, q = 2, the fixed point

undergoes a triple-zero bifurcation.

Following standard methods of phase-plane analysis, we find that the non-zero fixed point

undergoes a regular Hopf bifurcation when:

q =
(b− c)(b− c+ 2cp)

p(b2 + ac− 2bc+ c2 + bcp− 2c2p)
(2.13)

By setting a = 30, b = 16.5, c = 10, p = .5 taken from [2], we get the bifurcating parameter

q = .660508. The characteristic polynomial at this fixed point is:

λ3+λ2(b+cp−c)+
λ

q

(
c(aq+c(2−2pq)+b(−2+pq)

)
− 1

q

(
b−c)c(b−aq+c(−1+pq)

)
(2.14)

After substituting our parameter values and solving for λ we get that the three roots are

r1 = −11.5, r2,3 = ±9.25645i. Since the real part of λ2,3 is zero this fixed point clearly

undergoes a Hopf bifurcation here.

We also get a second possible Hopf bifurcation when:

a =
(b− c)(b+ c(−1 + 2p))− p((b− c)2 + (b− 2c)cp)q

cpq
(2.15)
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Using the parameter values b = 5, c = 6, p = 3, q = .25 we get the bifurcating parameter

a = 13.0556. The characteristic polynomial becomes:

λ3 + 17λ2 + 0.333333λ+ 5.66667

with roots r1 = −17, r2,3 = ±
√
3
3
i.

We now search for parameter relations that satisfy the general Hopf bifurcation. First we

find that when

a = −(b− c)(q − 1)

q
p = −b− c

c
(2.16)

Then to keep all the parameters positive, we take b = 10, c = 15, q = 2 and the two

bifurcating parameters a = 2.5, p = 1
3
, which gives the characteristic polynomial λ3 + 12.5λ.

Having as its roots r1 = 0, r2,3 = ±3.53553i.

We can obtain another general Hopf bifurcation with the parameter relations:

b = −(a(−1 + p)q)

p(−1 + q)
c =

aq

p(−1 + q)
(2.17)

Keeping all parameters positive we use a = 5, p = .5, q = 1.5 and the bifurcating parameters

become b = 15, c = 30, which yields the characteristic polynomial λ3 +75λ. This polynomial

has roots r1 = 0, r2,3 = ±8.66025i as desired.
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CHAPTER 3: MULTIPLE SCALES ANALYSIS

In this section, we will use the method of multiple scales to construct analytical approx-

imations for the periodic orbits arising through the Hopf bifurcation of the fixed points

of the Chemical Reactor model (1.1) discussed above. The parameter q will be used as

the control parameter. The limit cycle is determined by expanding about the fixed point

(x0, y0, z0) = (10, 15.1591, 9.84091) and for the parameters:

a = 30, b = 16.5, c = 10, p = .5 (3.1)

using progressively slower time scales. The expansions take the form:

x = x0 +
3∑

n=1

εnxn(T0, T1, T2) (3.2)

y = y0 +
3∑

n=1

εnyn(T0, T1, T2) (3.3)

z = z0 +
3∑

n=1

εnzn(T0, T1, T2) (3.4)

where Tn = εnt and ε is a small positive non-dimensional parameter that is introduced as a

bookkeeping device and will be set to unity in the final analysis. Utilizing the chain rule,

the time derivative becomes:

d

dt
= D0 + εD1 + ε2D2 + ε3D3..., (3.5)
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where Dn = ∂/∂Tn. Using the standard expansion for Hopf bifurcations [3] - [4], the bifur-

cating parameter q, as well as the other parameters are expanded as:

κ = κ0 + ε2κ2 (3.6)

where q0 = .660508 as discussed above. This allows the influence from the nonlinear terms

and the control parameter to occur at the same order.

Using (3.2) - (3.6) in (1.1) and equating like powers of ε yields equations at O(εi), i = 1, 2, 3

of the form:

L1(xi, yi, zi) = Si,1 (3.7)

L2(xi, yi, zi) = Si,2 (3.8)

L3(xi, yi, zi) = Si,3 (3.9)

where the Li, i = 1, 2, 3 are the differential operators:

L1(xi, yi, zi) = −10ai + 100pi + 5xi + 10yi + 10zi +D0xi (3.10)

L2(xi, yi, zi) = 15.1591ci − 15.1591xi +D0yi (3.11)

L3(xi, yi, zi) = −9.84091bi + 96.8435qi + 9.84091xi + 6.5zi +D0zi (3.12)
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The source terms Si,j for i = 1, 2, 3 and j = 1, 2, 3 i.e. at O(ε),O(ε2), and O(ε3) are given as

follows:

S1,1 = 0

S1,2 = 0

S1,3 = 0

S2,1 = 10a2 − 100p2 + a1x1 − 20p1x1 − 0.5x21 − x1y1 − x1z1 −D1x1

S2,2 = −15.1591c2 − c1y1 + x1y1 −D1y1 (3.13)

S2,3 = 9.84091b2 − 96.8435q2 + b1z1 − 19.6818q1z1 − x1z1 − 0.660508z21 −D1z1

S3,1 = 10a2 − 100p2 + a1x1 − 20p1x1 − 0.5x21 − x1y1 − x1z1−D2x1 −D1x2

S3,2 = −15.1591c3 − c2y1 + x2y1 − c1y2 + x1y2 −D2y1 −D1y2

S3,3 = 9.84091b3 − 96.8435q3 + b2z1 − 19.6818q2z1 − x2z1 − q1z21 + b1z2−

19.6818q1z2 − x1z2 − 1.32102z1z2 −D2z1 −D1z2

We now find a composite operator that acts on (3.7) - (3.9) at each order. The benefit is

that this composite operator will be a function of one variable, and will be used to build

the remaining two variables at each order. To do this we note that (3.9) may be solved for

xi in terms of zi. Using this and solving (3.7) for yi in terms of (xi, zi) allows us to have

yi in terms of zi only. Finally we can create a composite equation of the three sources by

substituting our expressions for xi and now yi (both in terms of zi) into (3.8):

Lczi = Γi (3.14)

where

Lc = −10.0127 + 1.75289D0 + .726559D2
0 + .0101617D3

0 (3.15)
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and the composite source Γi is:

Γi = 1.54042Si3 − Si2 + .1D0Si1 − .660508D0Si3 − .0101617D2
0Si3 (3.16)

We shall use (3.14) later to identify and suppress secular terms in the solutions of (3.7) -

(3.9).

Let us now turn to finding the solutions of (3.7) - (3.9). We will solve order by order

using the method of undetermined coefficients, and using these solutions to build the next

order. For i = 1 or O(ε) we know that the solutions will recreate the linear analysis and so

S1,1 = S1,2 = S1,3 = 0. Hence we pick up a solution for the first order population using the

known eigenvalues (from the previous section) at Hopf bifurcation, i.e.

z1 = eiωtα(T1, T2) + e−iωtβ(T1, T2) + γeλ3t (3.17)

where λ1 = iω = 9.25645i, and β(T1, T2) is the complex conjugate of α(T1, T2) since λ2

and λ1 are complex conjugates of each other. Finally, since z1 is real, the α and β modes

correspond to the center manifold where λ1,2 are purely imaginary and where the Hopf

bifurcation occurs, while γ corresponds to the attractive direction or the stable manifold.

Since we wish to construct and analyze the stability of the periodic orbits which lie in the

center manifold, we suppress the solution with non-zero real part, i.e., we set:

γ = 0 (3.18)
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Using (3.17) and (3.18) in (3.14) - (3.16) for i = 1 gives y1(T0, T1, T2) and x1(T0, T1, T2):

y1 = Cye
−9.25645iT0α(T1, T2) + Cye

9.25645iT0β(T1, T2) (3.19)

x1 = Cxe
−9.25645iT0α(T1, T2) + Cxe

9.25645iT0β(T1, T2) (3.20)

Where Cx = 2.42263− 6.72536i and Cy = −0.660508 + 0.940609i.

Now that the first order solutions (3.17), (3.19), and (3.20) are known, the second-order

sources S2,1, S2,2, S2,3 may be evaluated, using (3.13).

We note that the first order solutions reappear in the second-order source. Therefore the

method of undetermined coefficients calls for the second-order solutions (z2, x2, y2) to include

the first order multiplied by a factor t. This will cause our approximation to breakdown when

this variable t is comparable to ε, and so we must suppress these first-order terms for our

approximation to be uniformly valid. We call the terms that solve the first-order secular.

Setting the coefficients of the secular eλ1,2t terms in these sources to zero yields:

∂α

∂T1
= 0

∂β

∂T1
= 0 (3.21)

Next, using the second-order sources, and (3.21), the second-order particular solution is

taken in the usual form to balance the zeroth and second harmonic terms at this order, i.e.,

z2 = z20 + z22e
2iωt (3.22)

Using this in (3.14) for i = 2, and balancing the DC, or time-independent, and second-

harmonic terms, the coefficients z20 and z22 in the second-order particular solution (3.22) are
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found to be:

z22 = (0.0217567− 0.019425i)β(T1, T2)
2 (3.23)

z20 = 14.898919162198q2 − 1.5832004304α(T1, T2, T3)β(T1, T2, T3) (3.24)

Using z2 in (3.7) - (3.9) for i = 2, together with the second-order sources, yields the other

second-order fields x2, and y2. Using these, together with the first-order results, we may eval-

uate the coefficients of the secular terms in the third-order composite source Γ3, from (3.13)

and (3.14). Suppressing these secular, first-harmonic, terms to obtain uniform expansions

yields the final equation for the evolution of the coefficients in the linear solutions on the

slow second-order time scales:

∂α

∂T2
= C1α + C2βα

2 (3.25)

where

C1 = −(32.4796− 461.182i)q2 (3.26)

C2 = −(4.23697 + 20.3082i) (3.27)

This equation (3.25) is the normal form, or simplified system in the center-manifold, in the

vicinity of the Hopf bifurcation point(s). We shall now proceed to compare the predictions

for the post-bifurcation dynamics from this normal form with actual numerical simulations.

In addition, complex solutions in the post-bifurcation regime will be characterized via the

use of numerical diagnostics.
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CHAPTER 4: NORMAL FORM PREDICTIONS

To proceed, we represent the normal form (3.25) as:

∂α

∂T2
= (C1r + iC1i)α + (C2r + iC2i)βα

2 (4.1)

Writing α = 1
2
Aeiθ and separating this equation into real and imaginary parts yields:

∂A

∂T2
= C2rA

3/4 + C1rA (4.2)

∂θ

∂T2
= C2iA

2/4 + C1i (4.3)

In the usual way, the fixed points of (4.2) give the amplitude of the solution α = 1
2
Aeiθ.

These fixed points are:

A1 = 0, A2,3 = ±
√
−4C1r/C2r (4.4)

with A2,3 corresponding to the bifurcating periodic orbits in the post-Hopf regime (as seen

by putting α = 1
2
Aeiθ in the first-order fields in Equations (3.17), (3.19), and (3.20)). Since

C1r = −32.4796q2 and C2r = −4.23697, the A2,3 are real fixed points (corresponding to real

bifurcating periodic orbits) for q2 < 0. Hence, by (3.6), the periodic orbits exist below the

Hopf bifurcation value q0. The Jacobian of (4.2) evaluated at A2,3 is −2C1r = 64.9592q2 < 0,

thus indicating that these fixed points (the periodic orbits) are stable, and so we can settle on

the periodic orbits in the post-Hopf regime. Thus, the Hopf bifurcation at q0 is supercritical.

We shall verify this prediction numerically in the next section, and then explore the region

of q values below the Hopf bifurcation systematically.
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CHAPTER 5: NUMERICAL SIMULATIONS

By approximating the flow of the system in a computer model, we can easily analyze the

behavior of the system as parameters are further varied beyond the Hopf bifurcation. Fur-

thermore, by computing the power spectrum of either the x, y, or z values of the flow, we

can better understand the bifurcations that are observed, particularly with regards to the

period doubling bifurcations, as well as the systems approach to chaos. For this exercise, we

have used the initial conditions x(0) = 0.8, y(0) = 0.5, and z(0) = 0.8 which lie close to, but

not on, many of the paths created by the bifurcations.

Figures 5.1 and 5.2 show the limit cycle at q = 0.66, just below the Hopf bifurcation value

q = 0.660508 derived above for the non-zero fixed point (x0, y0, z0) = (10, 15.1591, 9.84091)

corresponding to the other parameters taking the values a = 30, b = 16.5, c = 10, p = .5.
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Figure 5.1: Stable Limit Cycle in x(t) close to q0.
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As predicted at the end of the previous section from the use of the normal form, stable

limit cycles should be seen below the Hopf bifurcation value of q, since the bifurcation is

supercritical, and figure 5.1 indeed shows a periodic solution for x(t) .

Figure 5.2 shows the limit cycle in the (x, y, z) phase space and the approach from the initial

conditions. Right before the next major bifurcation.

Figure 5.2: The attractor in (x, y, z) phase-space for the parameter set (3.1).

Decreasing the q value very slightly to 0.659, the corresponding solutions for z(t) in figure 5.3

and the (x, y, z) plot of figure 5.6 already show intermittent behavior, and ’fattening’ of

the phase-space attractor due to further bifurcation of the periodic orbit created by the

supercritical Hopf bifurcation. It is straightforward to fine-tune carefully, decreasing q in very
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small steps to track these bifurcations, using a combination of phase-space plots and power

spectral density diagnostics, or Floquet multiplier calculations, to classify this bifurcation

of the primary Hopf-created periodic orbit as period doubling, symmetry-breaking, or a

secondary Hopf bifurcation [5].
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Figure 5.3: The limit cycle slowly unwinds since we moved away from q0.

Figure 5.4: The limit cycle that is being warped by desultory behavior of the system.
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With so many parameters in our chemical model, stable limit cycles may of course occur

in many other regions of the large multiparameter space, and not even necessarily near a

point of Hopf bifurcation. Figures 5.5 and 5.6 shows such a stable periodic orbit for the

parameter set a = 40, b = 20, c = 14, p = 0.4, q = 0.4. This particular limit cycle is quite

robust, unlike the Hopf-created one discussed above, and persists over the entire range of p

values (0.2, 1.25) if the other parameters are kept unchanged.

Figure 5.5: Stable limit cycle occurring far away from the Hopf bifurcation.
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Figure 5.6: The stable limit cycle from above displayed in y(t).
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Searching for more complex dynamics beyond periodic solutions in a model like (1.1) with

a large number of parameters is virtually like looking for a needle in a haystack since there

are many routes depending on which parameter or set of parameters is varied. Our analysis

enables this search to be far more refined, and we hope that further research into the dynamics

past the point of Hopf bifurcation will be considered.

26



CHAPTER 6: LIST OF REFERENCES

[1] Y. Huang, Chaoticity of some chemical attractors: a computer assisted proof, J. Math.

Chemistry 38 (2005) 107–117.

[2] S. Vaidyanathan, Adaptive Control of a Chemical Chaotic Reactor, Intl. J. PharmTech

Research 8 (2015) 377–382.

[3] Krise, S and Choudhury, S. Roy, Bifurcations and Chaos in a Predator-Prey Model with

Delay and a Laser-Diode System with Self-Sustained Pulsations, Chaos, Solitons and

Fractals 16 (2003) 59-77.

[4] Nayfeh, A. H, The Method of Normal Forms, (Wiley, New York, 2011).

[5] Nayfeh, A. H and Balachandran, B, Appied Nonlinear Dynamics, (Wiley, New York,

1995).

[6] P. Yu, Bifurcation, Limit Cycles and Chaos of Nonlinear Dynamical Systems, in J.-Q.

Sun and A.C.J. Luo, Eds., Bifurcation and Chaos in Complex Systems (Chapter 1, pp.

92–120), Elsevier Science, Amsterdam (2006).

[7] W. Yu, P. Yu and C. Essex, Estimation of chaotic parameter regimes via generalized

competitive mode approach, Communications in Nonlinear Science and Numerical Sim-

ulation 7 (2002) 197-205.

[8] R. A. Van Gorder and S. Roy Choudhury, Classification of Chaotic Regimes in the T

System by use of Competitive Modes, Int J of Bif and Chaos, in press.

[9] K. Mallory and R. A. Van Gorder, Competitive Modes for the Detection of Chaotic

Parameter Regimes in the General Chaotic Bilinear System of Lorenz Type, Intl. J.

Bifs. and Chaos 25 (2015) 1530012 (32 pages).

27



[10] L. Ruks and R. A. Van Gorder, On the Inverse Problem of Competitive Modes and the

Search for Chaotic Dynamics, Intl. J. Bifs. and Chaos 27 (2017) 1730032 (12 pages).

[11] N. MacDonald, Time Lags in Biological Models, Lecture Notes in Biomathematics 27

(Springer, Berlin, 1978).

[12] W. Zou et al, Amplitude Death in Nonlinear Oscillators with Mixed Time-Delayed

Coupling, Phys. Rev. E 88 (2013) 032916; B. K. Bera et al, Emergence of Amplitude

Death Scenario in a Network of Oscillators under Repulsive Delay Interaction, Phys.

Lett. A 380 (2016) 2366-2373.

28


	Hopf Bifurcation Analysis of Chaotic Chemical Reactor Model
	Recommended Citation

	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: LINEAR STABILITY
	Fixed Point: (to1.5.0,0,bq)to1.5.
	Fixed Point: (to1.5.c,c-ap,0)to1.5.
	Fixed Point: (to1.5.ap,0,0)to1.5.
	Fixed Point: (to1.5.aq-bpq-1, 0, bp-apq-1)to1.5.
	Origin Fixed Point: (to1.5.0,0,0)to1.5.
	Non-Zero Fixed Point: (to1.5.c,c+aq - b - cpqq,b-cq)to1.5.

	CHAPTER 3: MULTIPLE SCALES ANALYSIS
	CHAPTER 4: NORMAL FORM PREDICTIONS
	CHAPTER 5: NUMERICAL SIMULATIONS
	CHAPTER 6: LIST OF REFERENCES

