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ABSTRACT 
 

Human immunodeficiency virus (HIV) infects 30 million people worldwide.  In 

sub-Saharan Africa, the region most affected by HIV, women comprise 60% of the 

infected population.  Heterosexual transmission is a major mode of viral acquisition, 

mandating further research of the process and prevention of HIV acquisition via the 

female reproductive tract (FRT).  The FRT is a dynamic environment, protected by host 

immune mechanisms and commensal microbes.  The disruption of either of these 

elements can increase susceptibility to HIV.  Accordingly, one common risk factor for 

HIV acquisition is the microbial shift condition known as bacterial vaginosis (BV), which 

is characterized by the displacement of healthy lactobacilli by an overgrowth of 

pathogenic bacteria.  As the bacteria responsible for BV pathogenicity and their 

interactions with host immunity are not understood, we sought to evaluate the effects of 

BV-associated bacteria on reproductive epithelia.   

Here we have characterized the interaction between BV-associated bacteria and 

the female reproductive tract by measuring cytokine and defensin induction in FRT 

epithelial cells following bacterial inoculation.  Four BV-associated bacteria were 

evaluated alongside six lactobacilli for a comparative assessment.  Our model showed 

good agreement with clinical BV trends; we observed a distinct cytokine and human β-

defensin-2 response to BV-associated bacteria, especially Atopobium vaginae, 

compared to most lactobacilli.  One lactobacillus species, Lactobacillus vaginalis, 

induced an immune response similar to that elicited by BV-associated bacteria.  These 
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data provide an important prioritization of BV-associated bacteria and support further 

characterization of reproductive bacteria and their interactions with host epithelia.  

We next evaluated the effect of this interaction on HIV infection by investigating 

the soluble effectors secreted when FRT epithelial cells were cocultured with A. 

vaginae.  We observed increased proviral activity mediated by secreted low molecular 

weight effectors, and determined that this activity was not likely mediated by cytokine 

responses.  Instead, we identified a complex mixture containing several upregulated 

host proteins.  Selected individual proteins from the mixture exhibited HIV-enhancing 

activity only when applied with the complex mixture of proviral factors, suggesting that 

HIV enhancement might be mediated by synergistic effects. 

In addition to characterizing the immune interactions that mediate the enhanced 

HIV acquisition associated with BV, we also evaluated the safety and efficacy of RC-

101, a candidate vaginal microbicide being developed for the prevention of HIV 

transmission.  RC-101 has been effective and well tolerated in preliminary cell culture 

and macaque models.  However, the effect of RC-101 on primary vaginal tissues and 

resident vaginal microflora requires further evaluation.  Here, we treated primary vaginal 

tissues and vaginal bacteria, both pathogenic and commensal, with RC-101 to 

investigate compatibility of this microbicide with FRT tissue and microflora.  RC-101 was 

well tolerated by host tissues and commensal vaginal bacteria, while BV-associated 

bacteria were inhibited by RC-101.  By establishing vaginal microflora, the specific 

antibacterial activity of RC-101 may provide a dual mechanism of HIV protection.   
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1. GENERAL INTRODUCTION 
 

1.1 HIV Infection via the Female Reproductive Tract 
 

More than 30 million people worldwide are infected with HIV, and every year 

another two million individuals will become newly infected [1].  Sub-Saharan Africa 

bears the majority of this epidemiological burden, harboring an estimated 68% of 

infected individuals.  In this region, women make up nearly 60% of the infected 

population, with sexual transmission being a main mode of transmission [1].   

The female reproductive tract (FRT) is a primary site of heterosexual HIV 

acquisition [2].  For male-to-female HIV transmission to occur during heterosexual 

coitus, infectious virus must be introduced to the FRT via male ejaculate, either as cell-

free virions, or as intracellular virus contained within infected seminal leukocytes [3].  

The virus must then infect susceptible target cells utilizing specific cell surface 

receptors; the majority of founder HIV strains (those that cause initial infection) utilize 

the cell surface receptor CD4 and the coreceptor CCR5 in order to bind and fuse to host 

cells [4, 5].  These receptors can be found coexpressed on CD4+ T-cells and dendritic 

cells, which are present in the FRT mucosa, either as intraepithelial immune surveyors, 

or as infiltrating responders, recruited upon chemotactic stimulation [2].   

It is critical to prevent initial infection of these target cells at the mucosa, and 

toward this aim, the FRT possesses multiple mechanisms of innate defense, including 

molecular effectors and physical barriers to halt HIV transmission.  The foremost of 

these barriers is the protective epithelial cell layer that lines the FRT, and represents the 

first point of contact for invading pathogens. 
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1.2 Epithelial Cells and Innate Immunity in the Female Reproductive Tract 
 

As the outermost cell layer, FRT epithelia represent the primary barrier between 

potential pathogens and susceptible underlying host cells [5].  In addition to acting as a 

physical barrier, the epithelia of the FRT also perform a critical role in immune 

surveillance.  Pathogens introduced to the FRT will first encounter the epithelia, and 

these cells are equipped with immune sensory mechanisms to detect invaders and 

respond accordingly [6].  The epithelial response, largely mediated by the release of 

soluble cytokines and antimicrobial effectors, initiates an appropriate host immune 

response. 

The dynamic environment of the FRT is also maintained by regular turnover of 

epithelial layers [7].  The removal of sloughed epithelia assists in pathogen clearance, 

and is facilitated by the presence of cervicovaginal fluid, a complex fluid comprised of 

epithelial secretions, cervical mucus and plasma transudate [8].  This protein-rich fluid 

contains high concentrations of innate immune effectors, such as host defense peptides 

exhibiting broad-spectrum antimicrobial activity, including potent anti-HIV activity [9].  

Importantly, the anti-HIV activity of cervicovaginal fluid is not mediated by individual 

effectors; instead, the antimicrobial factors exhibit synergistic activity to achieve a potent 

antiviral effect [10].   

Together, innate immune barriers and antimicrobial effectors protect the host 

from invading pathogens.  Yet not all microbes pose a threat; the healthy FRT is host to 
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a dense population of commensal bacteria that actually contributes to its inherent 

resilience. 

 

1.3 Protective Lactobacilli Are Displaced by Bacterial Vaginosis 
 

The healthy human vagina is guarded by a complex population of commensal 

bacteria.  Comprised almost entirely of lactobacilli, these microbial inhabitants colonize 

the vaginal lumen at densities reaching 109 bacteria per milliliter [11].  Commensal 

lactobacilli are thought to protect the FRT mucosa from invading pathogens by secreting 

antimicrobial compounds, including bacteriocins, hydrogen peroxide and lactic acid [12].  

The lactic acid produced by vaginal bacteria maintains the healthy vagina at a pH less 

than 4.5 [13], with higher pH indicating displacement or disruption of lactobacilli, a 

common occurrence known as bacterial vaginosis (BV) [14]. 

BV is a microbial shift condition, characterized by the displacement of 

commensal vaginal lactobacilli and the overgrowth of mixed pathogenic bacterial 

populations [15, 16].  Neither the presence nor absence of any single bacterial species 

is sufficient for diagnosis, but instead multifactorial clinical and microbiological criteria 

are used to diagnose BV [17, 18].  BV affects between 20-60% of women worldwide, 

and can pose serious immediate and long-term sequelae [19, 20, 21].  Women who 

have BV are at a higher risk of developing pelvic inflammatory disease, and pregnant 

women experiencing BV are significantly more likely to encounter complications, 

including preterm birth [22].  Furthermore, BV increases a woman’s chance of acquiring 

sexually transmitted infections, including HIV [20].   
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The mechanism by which BV increases acquisition of HIV remains enigmatic. 

The displacement of lactobacilli, which otherwise prevent infections by secreting lactic 

acid and hydrogen peroxide, weakens inherent mucosal defenses to reproductive 

pathogens.  At the same time, intruding pathogenic bacteria induce an inflammatory 

host response that is thought to initiate pathogenic sequelae [23].  Combined, these 

effects of BV result in a 60% increased susceptibility to HIV acquisition [20]. The serious 

clinical consequences of BV, combined with its high prevalence, make this condition of 

immediate priority.  In consideration of these factors, drug development for FRT 

application must demonstrate safety not only for host tissue, but also for the commensal 

FRT bacteria.  

 

1.4 RC-101 Is a Promising Candidate Microbicide 
 

Together, host and microbial immune barriers ward off infection at the FRT 

mucosa.  Still, HIV infection continues to spread at a rate of two million individuals per 

year [1], mandating a more effective prophylactic to halt heterosexual viral transmission.  

Vaginal microbicides have become an attractive option for antiviral protection, primarily 

because they allow susceptible women the opportunity to control their protective 

regimen.  Especially in Sub-Saharan Africa, where sex is often non-negotiable for 

women, it is critical that antiviral prophylaxis be in place prior to viral exposure [24].  

Microbicides offer this opportunity, as many formulations can be applied according to a 

routine regimen, and confer stable prophylaxis in the case of HIV exposure [25].  
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Despite the promising attributes of microbicide formulations, the search for a 

suitable antiviral agent has been complicated by unforeseen inconsistencies between 

the bench and the clinic.  Early microbicide formulations consisted of sulfated polymers 

or polyanionic surfactants [26].  For these compounds, promising results obtained in 

early testing were not recapitulated in clinical trials.  Such inconsistencies result from 

poor modeling of in vivo environments during initial characterization of the candidate 

microbicide, as the disruption of either host tissues or bacterial inhabitants can actually 

increase susceptibility to HIV.   The former was exemplified by the well-publicized 

nonoxonyl-9 clinical trials, wherein antiviral effects observed in cell culture were 

reversed in clinical trials due to the uncharacterized damaging effects of the surfactant 

microbicide on FRT tissues [27]. Similarly, disruption of healthy FRT microflora can also 

render women more susceptible to HIV acquisition, as is demonstrated in BV [28].  

Therefore, in order to prevent side effects that counter antiviral activity, anti-HIV vaginal 

microbicide candidates must demonstrate compatibility with FRT tissues and microflora 

prior to clinical trials. 

In consideration of these requirements, host defense peptides have arisen as 

promising microbicide candidates.  Host defense peptides are expressed across diverse 

phylogenetic lineages, including plants, animals, fungi and bacteria, and comprise an 

ancient form of innate immunity [26].  Research has revealed a promising microbicide 

candidate, the cyclic peptide RC-101, which has thus far demonstrated a desirable 

safety and therapeutic profile [27].  RC-101 is an analogue of the retrocyclin RC-100, a 

cyclic theta-defensin whose expression was lost over the course of primate evolution; 

retrocyclins are encoded in the human genome, but not expressed due to a premature 
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stop codon in the peptide proregion [28].  Retrocyclins have been synthetically 

recreated by solid-phase synthesis, and the resulting peptides exhibit broad-spectrum 

antimicrobial activity, including anti-HIV and antibacterial activity [29, 30].  RC-100, the 

peptide encoded by the human retrocyclin pseudogene, inhibits HIV at IC50 as low as 

1.0 μg/mL. 

RC-101 is nearly identical to the retrocyclin RC-100, excepting a single arginine 

to lysine mutation, and exhibits better activity, with reported IC50 as low as 0.19 μg/mL 

[26, 31, 32].  Ongoing research seeks to restore translation of endogenous RC-100 to 

the FRT using premature termination codon readthrough agents [33], while RC-101 has 

become the primary focus of microbicide development.  As such, it is essential to 

characterize the interactions between RC-101 and the FRT, including both host and 

microbial inhabitants, to ensure that mucosal immunity remains intact in the presence of 

this candidate antiviral. 

In these studies, we investigated the complex environment of the FRT in order to 

characterize innate immunity and HIV susceptibility at the female reproductive mucosa.  

We describe the interactions between host epithelia and resident microbes, prioritizing 

BV-associated pathogens and revealing unexpected immune interactions.  We 

additionally describe the innate immune response initiated by FRT epithelia in response 

to pathogenic bacteria, and elucidate novel immune response mechanisms that likely 

contribute to HIV susceptibility.  Finally, we characterize the promising antiviral 

microbicide candidate, RC-101, demonstrating its compatibility with FRT tissues and 

healthy microflora.  It is hoped that the studies performed herein will contribute to a 
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better understanding of the dynamic FRT environment, and lead to new approaches for 

preventing HIV acquisition via the FRT. 
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2. IDENTIFICATION AND CHARACTERIZATION OF BACTERIAL 
VAGINOSIS-ASSOCIATED PATHOGENS USING A COMPREHENSIVE 

CERVICAL-VAGINAL EPITHELIAL COCULTURE ASSAY 
 

2.1 Introduction 
 

Bacterial vaginosis (BV) is the most common disorder of the female reproductive 

tract (FRT) for which clinical intervention is sought [15].  In BV, commensal vaginal 

lactobacilli are displaced by mixed populations of pathogenic bacteria, including 

Gardnerella vaginalis, Atopobium vaginae, Mobiluncus curtisii and Prevotella bivia [34, 

35].  This microbial shift condition predisposes women to pathogenic sequelae, 

including increased HIV acquisition.  

Research has just begun to elucidate the mechanisms of BV pathogenicity.  It is 

apparent that bacterial pathogens elicit an immune response in the FRT, characterized 

by an upregulation of proinflammatory cytokines, such as IL-8, IL-1α, and IL-1β, yet the 

host cells responsible for pathogen recognition and immune response remain 

uncharacterized [36, 37, 38, 39].  It has been postulated that increased inflammation 

could increase HIV susceptibility by two mechanisms: first, increased chemotactic 

recruitment of CD4+/CCR5+ immune cells could provide additional susceptible target 

cells for HIV to establish an initial infection [40], or second, increased concentrations of 

inflammatory cytokines could activate NF-κB, a major transcription factor driving viral 

RNA transcription and resulting HIV genomic replication [41]. 

 Other aspects of the host innate immune response to BV are less clear; there is 

conflicting evidence regarding regulation of antimicrobial effector proteins, such as the 

human β-defensins (hBDs).  This family includes antibacterial peptides that are reported 
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to be induced by bacterial stimuli [42], yet studies of hBD regulation in the context of BV 

have had conflicting results, with some studies showing a significant increase in hBD 

levels in the FRT coincident with BV, and others reporting a significant decrease [43, 

44].  Furthermore, with dozens of bacterial species associated with the microbial shift 

that defines BV, researchers have yet to characterize the pool of candidate pathogens 

and elucidate their immunostimulatory properties [45, 46, 47, 48]. 

With insufficient characterization of pathogens, little can be done to streamline 

BV treatment.  Prior studies have been insufficient in comparing FRT bacteria on 

account of the limited number of species evaluated within a consistent model [44, 49].  

Furthermore, variations between these studies make it impossible to compare host-

bacterial interactions between reports.  Here, we developed a coculture model to 

characterize the response of various FRT epithelial cells (the frontline in FRT mucosal 

defense) to a comprehensive collection of vaginal bacteria, including both commensal 

lactobacilli and BV-associated bacteria (BVAB).  We evaluated a total of ten bacteria on 

three separate epithelial cell types, monitoring host response under consistent coculture 

conditions.  In doing so, we observed distinct differences in immune responses between 

the three types of reproductive epithelia, as measured by cytokine and defensin 

induction. These responses demonstrated good agreement of our model with clinical BV 

samples.  We also found that only a select few of the tested bacterial species elicited an 

immune response from host cells.  Surprisingly, not all BVAB elicited potent immune 

responses, whereas one Lactobacillus spp. did stimulate significant cytokine and 

defensin induction in FRT epithelia.  Thus, in addition to developing a model for immune 

interactions in the FRT, we also report unexpected trends in bacterial-host interactions, 
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emphasizing the utility of this approach for understanding host-pathogen interactions in 

the FRT. 

 

2.2 Materials and Methods 
 

2.2.1 Reagents and Materials 
 

Trizol and keratinocyte serum free media (KSFM) with supplements were from 

Invitrogen, while RNA Storage Solution and DNAse I kit were purchased from Ambion 

(both of Life Technologies, Carlsbad, CA, USA).  Bio-Rad (Hercules, CA, USA) iScript 

and Sybr Green Supermix were used for RTqPCR experiments.  RPMI1640, DPBS, and 

DMEM/F12 were from MediaTech, Inc., while collagen-coated Transwells were from 

Corning Life Sciences (both of Corning Inc, Corning, NY, USA). Fetal bovine serum 

(FBS) was from Gemini Bio-Products (West Sacramento, CA, USA). 

 

2.2.2 Epithelial and Bacterial Cultures 
 

The following human epithelia were purchased from American Type Culture 

Collection (ATCC, Manassas, VA, USA): End1 (CRL-2615) from endocervix; Ect1 (CRL-

2614) from ectocervix; VK2 (CRL-2616) from vagina.  These were maintained according 

to ATCC instructions.  Briefly, cells were grown in KSFM supplemented with additional 

calcium chloride, recombinant epidermal growth factor, and bovine pituitary extract.  For 

maintenance, cultures were grown to 50-70% confluence before splitting.  For Transwell 

experiments, cells were seeded at confluence (1.6×106 End1 cells, 1.1×106 Ect1 cells or 
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1.0×106 VK2 cells, seeding varies according to cell kinetics).  For all other experiments, 

cultures were grown to confluence on tissue culture-treated plates (Techno Plastic 

Products, Trasadingen, Switzerland). The following bacteria were purchased from 

ATCC as common representatives of commensal flora [12, 50, 51, 52, 53, 54, 55, 56, 

57]: Lactobacillus crispatus (33197); Lactobacillus acidophilus (4356); Lactobacillus 

johnsonii (11506); Lactobacillus jensenii (25258); Lactobacillus gasseri (9857); 

Lactobacillus vaginalis (49540). The following bacteria were purchased from ATCC as 

representatives of BVAB [58, 59]: Gardnerella vaginalis (49145); Atopobium vaginae 

(BAA-55); Mobiluncus curtisii (35241); Prevotella bivia (29303).  Lactobacilli were grown 

in MRS broth or plates at 37°C/5% CO2. G. vaginalis, A. vaginae, M. curtisii, and P. 

bivia were grown in tryptic soy broth (TSB) with 5% defibrinated rabbit blood (all media 

from Becton, Dickinson and Company, Franklin Lakes, NJ, USA), or on equivalent agar 

plates.  G. vaginalis was grown at 37°C/5% CO2, while the other 3 BVAB were grown in 

anaerobic GasPaks (Becton, Dickinson and Company) at 37°C.  To achieve 

consistency in bacterial preparations, maintenance cultures of each species were 

aliquoted and snap frozen by submerging in liquid nitrogen for 2 hr, then transferred to -

80°C until use.   

To prepare inocula for experiments, snap-frozen aliquots of aerobic bacteria 

were thawed and inoculated into prewarmed, pregassed MRS (for lactobacilli) or TSB 

(for G. vaginalis) for 2 hr to allow for recovery prior to coculturing.  Desired volumes of 

cultures were then centrifuged at 4000xg for 10 min, supernatants were aspirated, and 

bacteria were resuspended in KSFM.  Snap-frozen aliquots of anaerobic bacteria were 

thawed, and desired volumes were centrifuged.  Supernatants were aspirated, and 
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bacteria were resuspended in distilled water for one minute (to lyse erythrocytes carried 

over from maintenance media), and then diluted with four volumes KSFM (to restore 

osmolarity).  This distilled water wash did not affect bacterial viability.  The bacteria 

were centrifuged again, the supernatent was removed, and the bacteria were 

resuspended in KSFM.  

In all experiments, the multiplicity of infection (MOI) was calculated as the 

number of bacterial colony forming units (CFUs) divided by the number of epithelial cells 

in a given coculture condition.  The number of bacterial CFUs was determined by 

serially diluting the inocula and plating on appropriate media for back-calculation of 

inocula density.  The final MOIs used were in agreement with reports of clinical bacterial 

load in the FRT, and with other published coculture models [49, 60, 61].  In bacterial-

epithelial cocultures where bacterial stimulation of epithelia was compared, BVAB or L. 

vaginalis were applied at a lower MOI than nonstimulatory lactobacilli, to preclude 

concerns about small MOI differences effecting significant immune response 

differences.  Coculture kinetics were monitored at the assay endpoint, and Appendix B: 

Figure B.1 and Figure B.2 demonstrate bacterial and epithelial viability after coculture.  

Additionally, heat-killed inocula were evaluated for stimulatory BVAB to determine 

whether bacterial viability was required for epithelial stimulation.  These data are 

presented in Appendix B: Figure B.3. 

  



 13 

2.2.3 Bio-plex Analysis of Transwell Underlay 
 

For Transwell cocultures, epithelial cells were seeded on 24 mm collagen-coated 

0.4 μm Transwells.  The next day, excess apical media and unattached cells were 

removed, basal media was changed, and cells were maintained at the air-liquid 

interface.  Twenty-four hr after transitioning to air-liquid interface, underlay media was 

changed and cell monolayers were inoculated apically with 100 μL bacterial inoculum.  

Epithelia were coincubated with bacteria for 24 hr, then media underlay was collected 

and frozen at -20°C until analysis.  For analysis, media underlay were clarified and 

analyzed by Bio-Rad Bio-plex multiplex cytokine array.  Experimental analysis was 

performed according to manufacturer’s instructions. 

 

2.2.4 Bio-plex Analysis of Cervicovaginal Lavage Samples 
 

CVLs were provided by HIV-negative participants in the Bronx/Manhattan 

consortium of the Women’s Interagency HIV Study (WIHS), a longitudinal observational 

cohort study of HIV-positive and HIV-negative women, at their routine semi-annual 

WIHS visits. Written informed consent was obtained from all participants, and samples 

were collected in accordance with protocols approved by the Institutional Review Board 

(IRB) of Montefiore Medical Center for this study.  CVLs were obtained by irrigating the 

cervix and vaginal wall with 10mL sterile saline as previously described [62] and 

cryopreserved at -80ºC.  BV was assessed by Amsel criteria [63] with the presence of at 

least three (of four) criteria indicating the presence of BV.  For this study, the BV-

negative group was comprised of samples that demonstrated the absence of all four 
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criteria.  Cervicovaginal lavage fluid was clarified before Bio-plex analysis.  

Experimental analysis was performed according to manufacturer’s instructions. 

 

2.2.5 Primary Lymphocyte Isolation 
 

Venous blood was drawn from adult volunteers who provided written consent, 

and samples were obtained in accordance with a UCF IRB approved protocol for this 

study. Blood was drawn into acid citrate dextrose vacutainers (Becton, Dickinson and 

Company), and peripheral blood mononuclear cells (PBMCs) were separated within an 

hour of the donation.  To separate PBMCs, whole blood was diluted in an equal volume 

of DPBS, manually overlaid on lymphocyte separation media (LSM, MP Biomedicals, 

Santa Ana, CA, USA), then centrifuged at 400xg for 30 min.  PBMCs were isolated from 

LSM density gradients, and were washed twice with DPBS, then resuspended in RPMI 

containing 10% FBS and plated on tissue culture-treated plates (Techno Plastic 

Products).  Plates were incubated at 37°C/5% CO2 for 2 hr before isolating non-

adherent lymphocytes from adherent monocytes.  Lymphocytes were maintained in 

RPMI with 10% FBS, and used within 24 hr of isolation. 
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2.2.6 Chemotaxis of Primary Lymphocytes 
 

Peripheral blood lymphocytes were resuspended in RPMI supplemented with 1% 

FBS at a density of two million cells per mL.  Serial dilutions of recombinant human β-

defensin 2 (hBD2, Peprotech, Rocky Hill, NJ, USA) or equivalent vehicle control were 

prepared in the same media.  hBD2 and vehicle dilutions were plated in a ChemoTX 

plate (Neuroprobe, Gaithersburg, MD, USA), alongside media alone controls.  The 

ChemoTX filter was attached to the plate, and 50 μL lymphocyte suspension was 

applied to the surface of each well.  The ChemoTX plate was incubated at 37°C/5% 

CO2 for 3 hr.  To compare migrated cells, media above the filter was removed, and 

apical surface of filter was washed once in DPBS with 5 mM EDTA, then incubated with 

the same wash for 30 min at 4°C.  This second wash was removed, the ChemoTX plate 

was centrifuged at 400xg for 5 min, and the filter was removed.  Cells in the lower 

chamber were resuspended in a volume of 100 μL, and the CytoTox Glo assay 

(Promega, Fitchburg, WI, USA) was used to compare total cell number according to 

manufacturer’s instructions.  A standard curve of known cell numbers was used to 

calculate the number of migrated cells from relative light units.  

 

2.2.7 hBD2 Acid-Urea (AU) Western 
 

Epithelial cells were harvested and lysed by scraping into 10% acetic acid.  

These cell lysates were vortexed 30 min at room temperature to extract protein.  

Soluble extracts were clarified and concentrated, then resolved on an acid-urea 

polyacrylamide gel electrophoresis (AU-PAGE).  A standard of recombinant hBD2 was 
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run alongside cell extracts on each gel.  Gels were transferred to PVDF membranes 

and blotted with a goat polyclonal antibody against hBD2 (Peprotech). 

 

2.2.8 ELISA 
 

Cell culture supernatants from treated epithelial cells were clarified and subjected 

to ELISA quantification using the Peprotech hBD2 ELISA Development Kit and Becton, 

Dickinson and Company OptEIA IL-6 and IL-8 Kits.  Assays were performed according 

to suppliers’ instructions. 

 

2.2.9 Real-Time Quantitative Polymerase Chain Reaction (RTqPCR) 
 

To isolate RNA, epithelial cells were rinsed in cold DPBS, harvested in Trizol 

reagent, and stored at -80°C until extraction.  RNA was then precipitated, treated with 

DNAse I, and reverse transcribed.  cDNAs were analyzed by RTqPCR using the 

following primer pairs: hBD2_F atctcctcttctcgttcctcttc; hBD2_R ccacaggtgccaatttgtttatac; 

hBD3_F cttctgtttgctttgctcttcc; hBD3_R cacttgccgatctgttcctc; GAPDH_F 

tggtatcgtggaaggactc; GAPDH_R agtagaggcagggatgatg.  All cycle thresholds were 

averaged from duplicate reactions.  Cycle thresholds for hBD amplicons were 

normalized to the GAPDH standard, and fold expression was calculated using the delta-

deltaCt method.  All fold expressions were reported as increases compared to a 0 hr 

control. 
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2.2.10 Statistical Analyses 
 

All statistical analyses were carried out in Microsoft Excel or GraphPad Prism.  

For Bio-plex cytokine data, raw values were log-transformed and two-way ANOVA with 

Bonferroni post test was used to compare bacterial and mock conditions from three 

independent experiments.  For RTqPCR data, fold expression values for each condition 

were calculated relative to 0 hr.  Fold expression of mock versus treated conditions was 

compared using one-way ANOVA for endpoint analysis, or two-way ANOVA for 

timecourse analysis, with Bonferroni post test.  For chemotaxis experiments, cell 

numbers were normalized to media-only (control treatment) wells, and increase in hBD2 

over matched vehicle wells was compared by two-way ANOVA with Bonferroni post 

tests.  For IL-6, IL-8 and hBD2 ELISAs, fold expression was calculated compared to 

mock-treated cells, and one-way ANOVA with Tukey-Kramer post test was performed to 

compare L. vaginalis to other lactobacilli, or to BVAB.  For figures in which only two 

conditions are directly compared, Student’s t-test was used. 

 

2.3 Results 
 

2.3.1 BV-Associated Bacteria Induce a Cytokine Response From Reproductive 
Epithelial Cells 

 

The pathogenic sequelae resulting from BV may be attributed to the host 

inflammatory response to pathogenic BV-associated bacteria (BVAB). We hypothesized 

that this inflammatory response is mediated by the epithelial cells that line FRT and 

represent the initial point of contact for bacteria invading the FRT.  In order to measure 
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the contribution of FRT epithelial cells to BV-associated inflammation, we developed a 

coculture model to measure host epithelial response to BVAB.  Epithelial cells derived 

from the vagina (VK2), ectocervix (Ect1), or endocervix (End1) have been previously 

used as a model to evaluate FRT microbicide tolerance and immune response [44, 49].  

In our initial characterization, we sought to identify the cytokine repertoire that these 

epithelia are capable of producing in response to bacterial stimulation.  Epithelia were 

seeded on transwells and inoculated at the air-liquid interface with a high MOI of either 

commensal bacteria (Lactobacillus johnsonii) or BVAB (Gardnerella vaginalis or 

Atopobium vaginae).  After a 24 hr coculture, media underlay were analyzed in order to 

obtain a cytokine response profile for each epithelial type.  Many of the analytes 

quantified were below the limit of detection (IL-2, IL2-Rα, IL-3, IL-4, IL-5, IL-9, IL-12p40, 

IL-15, IL-16, IL-17, IL-18, eotaxin, IFN-α2, FGF-β, GM-CSF, MCP-1, MCP-3, MIG, Mip-

1α, SCF, SCGF-β, TNF-α, TNF-β, TRAIL, and HGF) and were not analyzed further.  

Others cytokines were below 50 pg/mL in all conditions (IL-1β, IL-7, IL-10, and IL-13), 

suggesting that the epithelia analyzed do not produce considerable concentrations of 

these cytokines under basal conditions or as part of their immune response to BVAB 

(Figure 2.1). 
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Figure 2.1. BVAB Induce an Innate Cytokine Response in Female Reproductive 

Epithelia.   

Transwell monolayers of each epithelial line were inoculated with indicated bacteria 

(Lact = L. johnsonii, average MOI = 33, Gard = G. vaginalis, average MOI = 15, Ato = A. 

vaginae, average MOI = 13) and 24 hr post-inoculation conditioned media were 

analyzed by multiplex cytokine bead array.  Cytokine values are averaged from three 

independent experiments. Relative induction, represented here as fold expression and 

shaded accordingly, was calculated as the average increase in cytokine concentration 

compared to mock-inoculated control cells from three independent experiments. 

Significant differences in cytokine concentrations between bacteria-inoculated and mock 

condition are indicated by one (p<0.05), two (p<0.01) or three (p<0.001) asterisks. 

 



 20 

On the other hand, the analytes IL-1RA, IL-6, IL-8, IP-10, RANTES, VEGF, Gro-α 

and MIF were recovered in nanogram/mL concentrations from some conditions, 

indicating that these cytokines are primary components of baseline or stimulated 

epithelial cytokine production.  We compared the concentrations of these analytes in L. 

johnsonii condition versus BVAB conditions, and found that overall the BVAB induced 

greater cytokine responses from FRT epithelium than the commensal lactobacillus 

strain.  The analytes IL-6, IL-8, G-CSF, IP-10, Mip-1β, RANTES, and Gro-α were 

upregulated in all three epithelial lines by BVAB more than by commensal lactobacilli, 

as indicated by the fold expression shading.  Furthermore, the BVAB A. vaginae elicited 

more robust cytokine responses from each epithelial cell type compared to the other 

bacteria tested, with some chemokines achieving nanogram/mL concentrations in A. 

vaginae-stimulated conditions.  Of note, we also observed greater cytokine production 

from End1 epithelial cells compared to the other two reproductive cell types. 

To demonstrate the relevance of our epithelial-bacteria coculture model, we 

compared the cytokine responses we observed in our epithelial model of BV with the 

cytokine trends of cervicovaginal lavage (CVL) samples obtained from a representative 

cohort of women with or without BV.  Previous studies have reported increased 

concentrations of IL-1β, IL-6 and IL-8 in BV-positive CVL compared to BV-negative 

samples [36,37,38,39].  Here, we use a small cohort exhibiting trends consistent with 

the literature for comparison to our model.  The cytokine concentrations in CVL were 

quantified, and fold increases in each cytokine between BV-positive and BV-negative 

women were compared to the cytokine regulation between A. vaginae- and L. johnsonii-

inoculated conditions in our FRT model (Figure 2.2).  
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Figure 2.2. Epithelial Coculture Mirrors In Vivo Cytokine Response. 

A) Cervicovaginal lavage samples from BV-negative (n=5) or BV-positive (n=13) women 

were analyzed by multiplex cytokine bead array. Fold expression for each cytokine was 

calculated relative to the average value of the BV-negative samples.  One (p<0.05) or 

two (p<0.01) asterisks indicate a significant increase in cytokine concentration for the 

BV-positive samples over the BV-negative samples. B-D) Cytokine induction in each 

epithelial line B) End1, C) Ect1, and D) VK2 in response to L. johnsonii (average MOI = 

33) and A. vaginae (average MOI = 13) normalized to their paired mock-inoculated 

conditions. One (p<0.05), two (p<0.01), or three (p<0.001) asterisks indicate a 
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significant increase in cytokine concentration for the A. vaginae-inoculated conditions 

over the L. johnsonii-inoculated conditions. 

 

Shown are six cytokines, IL-6, IL-8, G-CSF, Mip-1 β, RANTES and Gro-α, that 

are elevated in clinical BV samples and similarly increased in our coculture model after 

inoculation with A. vaginae, but not with the commensal lactobacillus species L. 

johnsonii.  Remaining cytokine data are included in Appendix B: Figure B.4.  Thus, our 

epithelial model aptly recapitulates the cytokine changes that occur in the reproductive 

tract as a result of BV.  This comparison illustrates the contribution of FRT epithelia to 

the proinflammatory cytokine milieu that characterizes BV, and provides a convenient 

model for evaluating host-bacterial interactions in the reproductive tract. In addition to 

evaluating cytokines, we also investigated the induction of other innate immune effector 

proteins in response to BVAB. 

 

2.3.2 Reproductive Epithelia Upregulate hBD2, a Lymphocyte Chemoattractant, in 
Response to BVAB 

 

Human defensins are important mediators of innate immunity, as they exhibit 

both antibacterial activity and chemotactic recruitment of immune cells, yet their role in 

BV has been studied with conflicting results [43, 44, 64].  To elucidate the host defensin 

response to BVAB, we measured hBD2 and hBD3 responses of reproductive epithelia 

at the transcript and protein levels following exposure to lactobacilli or BVAB.  Epithelial 

cells were inoculated with commensal L. johnsonii, or pathogenic bacteria G. vaginalis 

or A. vaginae, and gene expression was measured by RTqPCR.  In agreement with 
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cytokine trends, hBD2 gene upregulation for each epithelial line was greatest in 

response to the pathogen A. vaginae (Figure 2.3).   

 

 

Figure 2.3. Human β-Defensin Gene Expression Is Upregulated in Reproductive 

Epithelia in Response to BVAB. 

Confluent monolayers of epithelial cells were inoculated with bacteria and coincubated 

for 48 hr, then analyzed by RTqPCR for hBD2 and hBD3 expression.  Transcript 

expression is reported relative to 0 hr cells, and is shown as the average of three 

independent experiments.  Average MOI are: 10 for L. johnsonii, 5.8 for G. vaginalis, 

and 5.6 for A. vaginae.  Asterisks indicate a significant (p<0.05) increase over the L. 

johnsonii-treated condition. 

 

This upregulation was significant for End1 and VK2 cells, with End1 epithelia 

showed the greatest hBD2 response to bacterial stimulation compared to the other two 

epithelia.  This is emphasized by a >1500-fold increase in hBD2 gene expression by 

End1 cells after inoculation with the BVAB A. vaginae.  End1 and VK2 cells exhibited 
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trends of hBD3 upregulation in response to A. vaginae, whereas the Ect1 cell type did 

not respond, indicating a difference in immune response to BVAB between cell types of 

the FRT. 

To confirm the functional production of hBD2, we performed an ELISA to 

measure soluble hBD2 protein secreted by epithelia in response to bacterial exposure. 

hBD2 was quantified in conditioned media from epithelial cells cocultured with either 

commensal or pathogenic bacteria.  In correspondence with transcript regulation, 

inoculation with BVAB resulted in a more robust upregulation of hBD2 protein by End1 

cells compared to inoculation with commensal bacteria (Figure 2.4 panel A).  However, 

neither Ect1 nor VK2 cells secreted significantly more hBD2 in response to BVAB than 

mock-inoculation.  

In addition to measuring soluble hBD2, we considered that ELISA might not 

account for additional protein that remained cell-associated.  To address this possibility, 

we performed AU-PAGE western blot to probe for cell-associated hBD2 in epithelia 

stimulated with A. vaginae.  hBD2 protein was detected in End1 cell extracts after 

stimulation with BVAB A. vaginae, while neither Ect1 nor VK2 showed similar cell-

associated protein (Figure 2.4 panel B).  The cell-associated hBD2 protein recovered 

from A. vaginae-inoculated End1 cells appeared consistent over the three-day 

timecourse, and based on the internal protein standard, was calculated to contribute an 

additional 1.6 ng per 100 mm dish, compared to the 2.0 ng soluble protein per dish as 

measured by ELISA. 

Previous reports have demonstrated that hBD2 protein stimulates chemotaxis of 

memory T cells and dendritic cells through the chemokine receptor CCR6.  Having seen 
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that hBD2 was significantly upregulated by reproductive epithelia in response to 

pathogenic bacteria, we sought to verify the ability of this chemoattractant to recruit 

primary lymphocytes.  In agreement with previous reports [64], we observed dose-

dependent increases in cell migration of unstimulated primary lymphocytes toward a 

recombinant hBD2 protein gradient (Figure 2.4 panel C).  Importantly, our observation 

of hBD2-mediated chemotaxis of peripheral lymphocytes suggests that these cells can 

be recruited to tissues expressing increased levels of hBD2.   
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Figure 2.4. A. vaginae Induces Epithelial Expression of Soluble and Cell-Associated 

hBD2, a Protein That Attracts Primary Lymphocytes. 

A) Confluent monolayers of epithelial cells were inoculated with bacteria.  Twenty-four 

hr post-inoculation, conditioned media were collected, clarified, and analyzed by ELISA 

to quantify concentrations of soluble hBD2 protein. Average MOI are: 5.8 for L. 

johnsonii, 2.5 for G. vaginalis, and 1.4 for A. vaginae.  Results are averaged from 3 

independent experiments, and asterisks indicate significant (p<0.001) increase over 

mock-treated condition.  B) Confluent monolayers were inoculated with A. vaginae, or 

mock-inoculated.  24, 48, and 72 hr post-inoculation, cell monolayers were acid-

extracted and analyzed by AU-PAGE western to quantify cell-associated hBD2 
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protein.  A recombinant hBD2 protein standard (shown in ng per lane) was run 

alongside cell extracts for semi-quantitative comparison. Average MOI is 21. Shown is 

one example of three independent experiments.  C) Unstimulated primary lymphocytes 

were isolated and evaluated for chemotaxis toward recombinant hBD2 protein. 

Chemotactic index is the ratio of migrated cells in hBD2-containing wells over vehicle-

control wells, and significant increases over the matched vehicle condition are shown by 

three (p<0.001) asterisks.  

 

Having determined that reproductive epithelia provide a relevant model for 

characterizing host-pathogen interactions in the reproductive tract, we next sought to 

employ our model to explore the host response to a variety of reproductive bacteria, 

both commensal and pathogenic in nature. 

 

2.3.3 Lactobacillus vaginalis Induces an Innate Immune Response 
 

Since epithelial hBD2 response mirrored cytokine induction, we first used hBD 

gene expression as a predictive gauge of BVAB stimulatory capacity.  We extended our 

analysis to a total of six lactobacillus strains (Lactobacillus acidophilus, Lactobacillus 

crispatus, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus johnsonii, and 

Lactobacillus vaginalis) and four BVAB (Atopobium vaginae, Garderella vaginalis, 

Mobiluncus curtisii and Prevotella bivia).  In agreement with our previous analyses, we 

observed that A. vaginae induced the most robust hBD2 gene upregulation (>100-fold 

increase in all three cell types), with M. curtisii and P. bivia eliciting considerable 
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responses as well (Figure 2.5).  Surprisingly, the lactobacillus species L. vaginalis also 

induced significant hBD2 gene upregulation from End1 (>400-fold) and VK2 cells (>60-

fold), in contrast to its perceived commensal classification. 

 

 

Figure 2.5. L. vaginalis Elicits hBD2 Gene Induction from Reproductive Epithelia. 

Confluent monolayers of epithelial cells were inoculated with bacteria and coincubated 

for up to 24 hr, then analyzed by RTqPCR for hBD2 and hBD3 expression.  Transcript 

expression was normalized to mock-inoculated cells, and is shown as the average of 

three or four independent experiments.  Average MOI are: 6.9 for L. acidophilus, 7.3  for 

L. crispatus, 9.7 for L. gasseri, 7.3 for L. jensenii, 7.3 for L. johnsonii, 3.4 for L. vaginalis, 

3.7 for A. vaginae, 3.1 for G. vaginalis, 3.6 for M. curtisii, and 3.9 for P. bivia.  Asterisks 

indicate a significant (p<0.05) increase in expression over mock-treated cells for at least 

one timepoint. 
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To confirm the ability of L. vaginalis to induce an innate immune response similar 

to BVAB, we utilized ELISA to measure soluble IL-6, IL-8, and hBD2 proteins secreted 

by epithelia after bacterial inoculation.  In comparison to the other five lactobacillus 

strains, L. vaginalis consistently induced a heightened response (Figure 2.6).   

 

 

Figure 2.6. L. vaginalis Induces a Greater Immune Response than Other Vaginal 

Lactobacilli. 

Confluent monolayers of reproductive epithelia were inoculated with commensal 

lactobacilli or BVAB, and after 24 hr conditioned media was analyzed for IL-6, IL-8 and 

hBD2 protein.  BVAB are filled black bars, L. vaginalis is hatched, and all other 

lactobacilli are white bars.  MOI are the same as in Figure 5.  Protein is shown as fold 

expression compared to a mock-treated condition, and one, two, or three asterisks 

indicate values that are significantly (p<0.05, p<0.01, or p<0.001, respectively) different 

from the L. vaginalis-treated condition. 
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In End1 cells, L. vaginalis stimulated >10-fold increase in both IL-6 and IL-8, 

which was significantly higher than all other lactobacilli tested.  In agreement with our 

previous results, End1 cells were the only epithelia to produce considerable amounts of 

soluble hBD2 protein (picograms/mL) after coculture with bacteria, with L. vaginalis 

inducing significantly higher hBD2 levels than the other Lactobacillus spp. 

Finally, we performed Bio-Plex analysis to determine whether L. vaginalis 

promoted a cytokine environment similar to that observed clinically and in our coculture 

model of known BVAB (Figure 2.7).   

 

 

Figure 2.7. L. vaginalis Initiates an Innate Immune Response from FRT Epithelia. 

Confluent monolayers of epithelial cells were inoculated with bacteria and coincubated 

for 24 hr. Conditioned media were collected, clarified and ELISA was used to quantify 

hBD2, IL-6 and IL-8 concentrations.  MOI is the same as in Figure Five.  Analyte 

concentrations are shown as fold induction compared to mock condition, and are the 

average of three independent experiments where one (p<0.05), two (p<0.01), or three 

(p<0.001) asterisks indicate a significant increase over the mock-treated condition. 
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We observed that L. vaginalis stimulated significant upregulation of cytokines 

compared to mock-treated conditions.  Analytes IL-6 and IL-8 were recovered at 

picogram/mL concentrations, corresponding to the magnitude recovered from BVAB 

cocultures.  In agreement with other indicators, the cytokine trends elicited by L. 

vaginalis mirrored cytokine responses to BVAB and clinical BV trends, suggesting that 

this lactobacillus strain induces an innate immune response in reproductive epithelia.  

  

2.4 Discussion 
 

In this study, we evaluated the immune response initiated by female reproductive 

epithelial cells in response to a comprehensive panel of ten bacteria, both commensal 

and pathogenic in nature, and showed that the overall cytokine response to bacterial 

pathogens aptly reflected the heightened cytokine environment that characterizes BV. 

Our side-by-side comparison of cytokine upregulation between our model and clinical 

BV samples demonstrated the appropriate recapitulation of physiological trends by our 

coculture method.   

Like clinical CVLs, our epithelial coculture demonstrated upregulation of 

proinflammatory cytokines in response to pathogenic bacteria.  While our model did 

reflect the heightened inflammatory environment created by IL-8, Gro-α and hBD2, 

other cytokines that are known to be upregulated in BV, including IL-1α and IL-1β [39], 

were upregulated in epithelia by stimulatory bacteria, but were not produced at 

appreciable levels.  This is in agreement with the literature, which reports monocytic cell 
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lineages as the major producers of IL-1 [65], thereby suggesting that other cell types in 

the reproductive tract likely contribute these factors to the BV milieu. 

By using three different epithelial cell types, we demonstrated distinct differences 

in the immune responsiveness of epithelia along the reproductive tract.  We consistently 

observed a heightened immune response from endocervical epithelia compared to 

ectocervical or vaginal cells.  Our results suggest that the naturally colonized epithelia of 

the vagina and ectocervix display an attenuated immune response, perhaps in order to 

minimize excessive inflammatory recruitment triggered by transient changes in the 

dynamic microflora of the vagina.  In line with this hypothesis, Ect1 and VK2 cells 

exhibited a markedly less robust hBD2 response to stimulatory bacteria (Figure 2.3 and 

Figure 2.4).  On the other hand, the endocervix acts as a transition zone to the sterile 

upper reproductive tract, and is not densely colonized by bacteria.  Accordingly, 

bacterial contact results in a considerable increase in cytokine and defensin protein 

production; an appropriate response considering that pathogenic bacterial contact could 

threaten the sterility of the upper female reproductive tract [66,67].  These findings 

demonstrate the utility of this model in characterizing epithelial function and behavior in 

the FRT. 

In addition to evaluating three types of host epithelia, we also characterized 

relative stimulatory activity of ten FRT bacterial species, the most thorough comparison 

reported.  We designed our cocultures so that BVAB were applied at a lower MOI than 

lactobacilli, and additionally found that they were recovered at lower density than 

lactobacilli at the end of the coculture.  Still, BVAB induced an immune response greater 

than that induced by lactobacilli.  It is likely that in vivo this difference in stimulatory 
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activity is greater yet, considering that in BV pathogenic bacteria actively outgrow 

commensal lactobacilli.  This implied difference in metabolic and proliferative capacity 

suggest that our report, though demonstrating considerable stimulation by BVAB, could 

be a conservative representation compared to in vivo stimulatory magnitude. 

We observed that the BVAB, A. vaginae, induced the most robust response from 

all three epithelia as determined by cytokine and defensin upregulation.  This is in 

concordance with recent research that shows A. vaginae as a more specific marker of 

clinical BV symptoms, and a stronger inducer of immune response than G. vaginalis 

[44, 68, 69].  In fact, while G. vaginalis was the first pathogen associated with BV [22], 

more thorough microbiome studies report the frequent isolation of G. vaginalis from BV-

negative women [70], and in our analyses this bacterium induced responses similar in 

magnitude to the majority of commensal lactobacilli.  This finding emphasizes the value 

of basic coculture studies to assist in identifying BVAB of clinical significance, and 

provides a framework in which additional strains may be evaluated for relative 

stimulatory activity. 

When we expanded our analysis to characterize the β-defensin response of 

End1 cells, we observed significant upregulation of the inducible effector hBD2 that was 

both freely soluble and cell-associated.  This is the first report to quantify cell-associated 

reservoirs of hBD2 in FRT epithelia, and these findings shed light on conflicting clinical 

data, which have reported both significant increases and significant decreases in hBD2 

protein concentrations in the context of BV.  Our data suggest that while hBD2 

transcription is significantly upregulated in response to stimulatory bacteria, recovered 

soluble protein may not accurately depict this induction.  In vivo, this may be partially 
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due to dilution of total vaginal protein as a result of increased vaginal fluid discharge (a 

hallmark symptom of BV), but might also be attributed to retention of hBD2 protein as 

cell-associated protein.  Furthermore, we demonstrated a considerable difference in the 

hBD2 protein production by different types of reproductive epithelia.  In considering 

these factors, differences in sample method and sample site might contribute to the 

variation observed in hBD protein recovery from the FRT.  

In total, we recovered on average 3.6 ng hBD2 per 100 mm dish, with 1.6 ng 

remaining cell-associated and 2 ng being freely secreted.  The soluble portion of hBD2 

alone is unlikely to reach antimicrobial concentrations (μg/mL levels) when secreted 

lumenally into the vaginal canal and diluted in vaginal fluid.  However, it is likely that 

hBD2, secreted toward the basal submucosa, would reach chemotactic concentrations 

(30 ng/mL when the total protein is divided by cell monolayer volume).  hBD2 is even 

more likely to achieve these levels at the basal cell surface if maintained in 

concentrated extracellular domains [71].  Extracellular stores of hBD2 may thus provide 

haptotactic stimuli for migrating lymphocytes, suggesting that hBD2 is not antibacterial, 

but rather chemotactic, in the setting of BV [72].  In line with our findings, an increased 

percent of CD4-positive lymphocytes has been reported in BV-positive vaginal fluid [73].  

This may contribute to the increased HIV susceptibility that is associated with BV, as 

increased CD4-positive target cells concentrated in reproductive tissues may facilitate 

initial HIV infection.  The chemotactic potential of defensin induction may represent an 

unfortunate host mediator of pathogenic processes. 

Finally we used regulation of hBD2, IL-6 and IL-8 to evaluate the relative immune 

stimulation elicited by ten different vaginal bacteria.  By all readouts, epithelial response 
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to L. vaginalis was generally higher than the response to other lactobacilli.  This was 

especially clear when analyzing the response from End1 epithelium, the most sensitive 

of the three cell types.  The immune response elicited by L. vaginalis extended to the 

characteristic cytokine profile we observed for BVAB and for clinical CVL patterns, 

suggesting that this bacteria, unlike the other lactobacilli evaluated, induces an immune 

response from host cells that mimics a pathogen-triggered reaction. Clinical evaluation 

of L. vaginalis in reproductive afflictions is sparse, as few studies discern between 

different species of lactobacilli to obtain species-specific microbiome data [45, 46, 58].  

However a recent study demonstrated that within a small sample group, L. vaginalis 

was cultured from 30% of ‘normal’ FRT individuals, and 50% of ‘disturbed’ FRT 

individuals (i.e. women with frequent BV-like vaginal microflora) [54], suggesting that 

this species may indeed play a role in FRT pathogenesis.   

While the complexity of the FRT microbiome is just recently being appreciated, 

associations between individual bacteria and pathogenic sequelae remain 

uncharacterized.  A recent report demonstrated associations between individual 

bacterial inhabitants and specific Amsel’s criteria [50].  Likewise, it stands to reason that 

the cytokine and defensin responses observed in BV are associated with certain 

specific bacterial subsets.  Our results support this hypothesis, by demonstrating 

significant differences between the stimulatory capacities of individual BVAB.  

Combined with the growing appreciation of FRT microbiome diversity, our observations 

support reevaluation of FRT bacteria by coculture techniques in order to distinguish 

stimulatory bacterial strains from inert inhabitants. 
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3. HIV-ENHANCING EFFECTORS ARE SECRETED UPON 
REPRODUCTIVE EPITHELIA INOCULATION WITH BACTERIAL 

VAGINOSIS-ASSOCIATED BACTERIA 

 

3.1 Introduction 
 

FRT innate immunity is highly dependent on the physical and immunological 

barrier functions of the FRT epithelia.  Any perturbation of the epithelium can lead to 

increased susceptibility to infection, including HIV acquisition.  While physical damage 

(such as microabrasion or lesion), or altered immune function (such as coinfection) are 

in some instances contributing risk factors, in the case of BV, it is likely the increased 

immune response to pathogenic bacteria that contributes to heightened HIV 

susceptibility [74]. 

Immunologically, the FRT epithelia contribute a steady input of antimicrobial 

effectors, including host defense peptides, to the cervicovaginal fluid.  Among these 

host defense peptides are the alpha- and beta- defensins (e.g. HNP5 and hBD2) [75, 

76], and peptides belonging to the whey acid protein family (e.g. SLPI and trappin-

2/elafin) [77, 78].  As a result, cervicovaginal fluid exhibits potent antibacterial and 

antiviral activity, which is accomplished by the synergistic contribution of each individual 

effector [10].  In addition to basal immune functions, FRT epithelial cells are equipped 

with Toll-Like Receptors (TLRs) that recognize pathogen-associated molecular patterns, 

including the conserved molecular motifs present in bacteria and other pathogens [79].  

Upon pathogen stimulation, TLRs initiate a signaling cascade that upregulates effector 

production, including host defense peptides and cytokines [80].  These small proteins 

can exhibit inherent antimicrobial activity to combat pathogens, or might serve to recruit 
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additional immune cells to the threatened FRT tissue [40].   

The immune response initiated in FRT epithelia upon stimulation with BVAB is 

characterized by increased secretion of host defense peptides and cytokines [40], and 

this response is implicated in increasing downstream HIV infection by multiple 

mechanisms.  First, hBD2 upregulation in FRT epithelium is implicated in recruitment of 

lymphocytes, target cells for HIV infection [40].  Second, intruding BV-associated 

bacteria induce an inflammatory host response that could increase HIV susceptibility by 

activating NF-κB, a major transcription factor driving HIV genomic replication [80, 81].  

Each of these host immune responses represents a possible mechanism by which BV 

enhances HIV susceptibility, making it of high priority to characterize the interactions 

between BV-associated pathogens and host immunity. 

We previously evaluated the immune interactions between three types of FRT 

epithelia and 10 FRT bacteria.  We observed that one FRT epithelial cell type, End1, is 

highly responsive to BVAB, and can be used as a sensitive indicator of pathogenic 

interactions.  At the same time, we demonstrated that of the 10 tested bacterial species, 

one in particular was a potent pathogen: Atopobium vaginae.  In this report, we extend 

these observations to describe how these host-pathogen immune interactions affect 

downstream HIV infection.   

As BVAB induce an immune response in FRT epithelia, we hypothesized the 

soluble effectors secreted by epithelia in response to pathogenic bacteria might 

increase downstream HIV infection of target cells.  To test this hypothesis, we 

cocultured End1 epithelia with the pathogenic BVAB A. vaginae.  We then recovered 

secreted low molecular weight effectors, and found that they increased HIV infection.  
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These effectors were identified by a multi-faceted proteomic approach, and select 

components were assayed individually for proviral activity, but were unable to restore 

the activity of the complete mixture.  However, when select proteins were assayed in 

the presence of the active CM fraction, each exhibited HIV-enhancing activity.  This 

report suggests that just as antiviral host peptides synergize to inhibit HIV, proviral 

effectors may work in concert to increase HIV susceptibility as part of the immune 

response to BV-associated bacteria. 

 

3.2 Materials and Methods 
 

3.2.1 Reagents and Materials 
 

Keratinocyte serum free media (KSFM) with supplements were from Invitrogen 

Life Technologies.  EDTA/Trypsin (0.25% and 0.05%), DMEM, DMEM/F12, Ham’s F12 

and DPBS were from MediaTech, Inc.  Fetal bovine serum (FBS) was from Gemini Bio-

Products.  Amicon Filters were purchased from Millipore. 

 

3.2.2 Epithelial Cultures 
 

The following human epithelia were purchased from American Type Culture 

Collection (ATCC): End1 (CRL-2615) from endocervix; Ect1 (CRL-2614) from 

ectocervix; VK2 (CRL-2616) from vagina.  These were maintained according to ATCC 

instructions. TZM-bl cells (Dr. John C. Kappes, Dr. Xiaoyun Wu and Tranzyme Inc.) 

were acquired from the National Institutes of Health AIDS Research and Reference 
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Reagent Program, and were maintained in DMEM 10%FBS.  

 

3.2.3 Bacterial Cultures 
 

The bacterial culture Atopobium vaginae (BAA-55) was purchased from ATCC.  

A. vaginae was grown in tryptic soy broth (TSB) with 5% defibrinated rabbit blood 

(Becton, Dickinson and Company), or on equivalent agar plates in anaerobic GasPaks 

(Becton, Dickinson and Company) at 37°C. To achieve consistency in bacterial 

preparations, maintenance cultures of each species were aliquoted and snap frozen by 

submerging in liquid nitrogen for 2 hr, then transferred to -80°C until use. 

 

3.2.4 Inoculation of Epithelia with A. vaginae 
 

Epithelia were grown to confluency on 100 mm tissue culture-treated plates 

(Techno Plastic Products) in KSFM with bovine pituitary extract, recombinant epidermal 

growth factor, and calcium chloride supplements as instructed by ATCC.  To prepare 

inocula for experiments, snap-frozen aliquots of A. vaginae were thawed, and desired 

volumes were centrifuged.  Supernatants were aspirated, and bacteria were 

resuspended in Ham’s F12 media.  The maintenance KSFM was aspirated from each 

100 mm plate of epithelia, and 8 mL of the resuspended inoculum was applied to each 

plate.  Plates were returned to 37°C/5% CO2 for the duration of the experiment.  In all 

experiments, epithelia were inoculated at a multiplicity of infection (MOI) of 3.3, which 

was calculated as the number of bacterial colony forming units (CFUs) divided by the 

number of epithelial cells in a given coculture condition.  The number of bacterial CFUs 
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was determined by serially diluting the inocula and plating on appropriate media for 

back-calculation density. 

 

3.2.5 Conditioned Media Preparation 
 

At the experimental endpoint, 24 mL conditioned media (CM) from three 100 mm 

dishes were pooled and centrifuged at 4,000X g for 10 min at 4°C to clarify.  Clarified 

CM were stored at -20°C until fractionation.  To fractionate CM, the pooled CM was 

subjected to filtration through an Amicon 30 KDa molecular weight cut off (MWCO) filter.  

The filter retentate was subjected to repeated concentration by filtration then dilution 

with water in order to desalt.  This procedure was repeated until the final salt 

concentration was negligible (0.01% of the original Ham’s F12 composition).  The 

retentate, which contained proteins >30 KDa, was equilibrated to 1 mL with water and 

stored at -20°C for subsequent experiments.  The flowthrough from this filtration was 

also subjected to similar desalting on an Amicon 3 KDa MWCO filter.  Desalting was 

repeated until salt concentrations were 0.01% of the original composition, and this 3-30 

KDa fraction was equilibrated to 1 mL in water and stored at -20°C for subsequent 

experiments.  For downstream cell culture experiments, equal volumes of these 24X 

desalted CM were combined with 2X DMEM to achieve 1X DMEM equivalent in cell 

culture.  For Bio-plex analysis, 24X CM fractions were diluted 1:10 in sterile DPBS and 

assayed according to manufacturer’s instructions. 
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3.2.6 HIV Enhancement Assay 
 

TZM-bl cells were seeded at 5,000 cells per well in a 96-well black wall, clear 

bottom plate.  Cells were grown for 48 hr in DMEM 10% FBS prior to experiment.  For 

treatment, media were aspirated from each well, and replaced with 20 μL of 5X FBS 

diluted in DMEM, 70 μL of CM fraction or recombinant protein prepared in DMEM (all 

CM treatments equilibrated to 1X DMEM prior to addition) and 10 μL of 10X viral 

inoculum.  Final conditioned were 1%, 5% or 10% FBS, with 2X, 4X or 8X CM (relative 

to original media volume) and HIV-1 inocula equivalent to 4 ng/mL of p24 antigen.  

Treatments were gently pipetted to mix, and incubated at 37°C/5%CO2 for 4 hrs.  After 

4 hr, wells were aspirated, and treatment media were replaced with identical FBS and 

CM or recombinant protein conditions, but without HIV.  These cultures were incubated 

for an additional 20 hr at 37°C/5%CO2.  At 24 hr post-infection, media were aspirated 

from all wells, and 100 μL Glo Lysis Buffer was applied to each well.  Plates were 

sealed and stored at -80°C.  Plates were later thawed at room temperature, then 100 μL 

BrightGlo Reagent was added to each well.  Luciferase activity was immediately 

quantified on a Luminex 96 well plate reader with a 5 s integration time per well.  An 

uninfected control well was also measured, and the background relative light units 

(RLUs) subtracted from all experimental wells. 

 

3.2.7 Trypan Blue Viability Assay 
 

TZM-bl cells were seeded at 5,000 cells per well in a clear 96-well plate and 

grown for 48 hr in DMEM 10% FBS prior to experiment.  For treatment, media were 
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aspirated from each well, and replaced with treatments identical to those in the HIV 

Enhancement Assay, except that 1X DMEM was added in place of viral inoculum.  After 

4 hr, media were aspirated, and treatment media were replaced with identical FBS and 

CM conditions.  These cultures were incubated for an additional 20 hr at 37°C/5%CO2.  

At 24 hr post-treatment, media were aspirated from all wells.  Wells were washed with 

70 μL warmed PBS, then 30 μL warm 0.05% trypsin with EDTA was applied to each 

well.  The plate was incubated for 5 min at 37°C/5%CO2, then 120 μL warm DMEM 

10%FBS was added to each well.  Wells were resuspended by pipetting, and cells were 

transferred to a round-bottom plate, which was spun at 300X g for 5 min to pellet the 

cells.  130 μL of the culture supernatent was aspirated, and the cells were resuspended 

in the remaining 20 μL.  An equal volume of 50% trypan blue in PBS was added to each 

well, and samples were thoroughly resuspended.  10 μL of this resuspension was 

loaded onto a hemacytometer, and live cells were identified by their exclusion of trypan 

blue. 

 

3.2.8 Tricine-SDS PAGE for MS Analysis 
 

420 μL of 24X desalted CM (3-30 KDa fraction) was concentrated and resolved 

by Tricine-SDS PAGE.  Proteins were visualized by silver stain method.  Bands were 

excised and stored at -20°C until analysis by mass spectrometry. 
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3.2.9 Tricine-SDS PAGE for Immunoblotting 
 

Desired volume of 24X desalted CM (3-30 KDa fraction) was concentrated and 

resolved by Tricine-SDS PAGE.  The following recombinant proteins were used as 

blotting standards: Lipocalin-2 with histidine tag (ab95007) from Abcam; Cyclophilin-A 

with histidine tag (ab86219) from Abcam; Trappin-2 with histidine tag (CA39) from 

Novoprotein; HE4 with histidine tag (C550) from Novoprotein.  Gels were transferred to 

PVDF membranes and immunoblotted with the following rabbit polyclonal antibodies: 

anti-Lipocalin-2 (ab41105) from Abcam; anti-Cyclophilin-A (07-313) from Millipore; anti-

Trappin-2 (sc-20637) from Santa Cruz Biotechnology; anti-HE4 (ab85179) from Abcam. 

 

3.2.10 Mass Spectrometry 
 

For analysis of desalted CM (3-30 KDa fraction), 1 mL of 24X CM was 

concentrated and brought to final volume 50 μL in 50 mM NH4CO3.  Subsequent 

reduction, alkylation, quenching and enzyme reagents were also prepared in 50 mM 

NH4CO3; DTT was added to final concentration of 10 mM, and sample was heated to 

95°C, then allowed to cool slowly to reduce.  Iodoacetamide was added to final 

concentration 75 mM, and sample was incubated 45 min at ambient temperature 

protected from light to alkylate.  Alkylation was quenched by the addition of excess DTT 

to final concentration 50 mM, and sample was incubated an additional 45 min room 

ambient temperature.  1 μg trypsin, prepared in 50 mM NH4CO3, was added to the 

sample, and allowed to digest for 14 hr at 37°C.  Sample clean-up was performed on 

MacroSpin Silica C18 Column (The Nest Group, Southborough, MA, USA) according to 
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manufacturer’s instructions.  Eluted proteins were analyzed on a QSTAR-ELITE 

quadrupole TOF, and resulting MS/MS spectra were searched against Mascot 

IPI_human database. 

 

3.2.11 Statistical Analyses 
 

For viral enhancement assays of CM at different concentrations, two-way 

ANOVA with Bonferroni posttests were used to compare fold infection in each epithelial 

condition to the no epithelial condition, or to compare RLUs in the mock condition to the 

Atopobium condition.  For cytokine analysis, paired t-tests were used to directly 

compare mock and A. vaginae-inoculated conditions for each cytokine.  For TZM-bl 

trypan assays, unpaired t-tests were used to compare viability in treated conditions to 

media controls.  For recombinant protein viral enhancement assays, one-tailed upaired 

t-tests were used to compare treated conditions to untreated controls. 

 

3.3 Results 
 

3.3.1 A. vaginae Stimulation Enhances Proviral Activity of FRT Epithelial Conditioned 
Media 

 

Women experiencing BV are known to have a 60% increased risk of acquiring 

HIV via heterosexual exposure [20].  Since FRT epithelia are the primary cells 

contacting invading pathogens in the FRT, we hypothesized that BVAB would induce a 

response in reproductive epithelia that would enhance HIV infection.  Further, we 

hypothesized that the proviral effect would be mediated by soluble, low molecular 



 45 

weight effectors, since many small cytokines and antimicrobial peptides regulated by 

the epithelial innate immune response also alter HIV susceptibility [81, 82].  Therefore, 

we sought to characterize the effect of these factors on HIV infection. 

To isolate the secreted, low molecular weight factors produced by reproductive 

epithelial cells in response to the BVAB, we inoculated End1, Ect1, or VK2 cells, or a no 

epithelial control condition with the BVAB Atopobium vaginae.  Matched mock-

inoculated conditions received a media change.  After a 24 hr coincubation, the 

conditioned media (CM) was collected and clarified.  The CM was then subjected to 

sequential filtration to obtain 3-30 KDa and >30 KDa fractions, which were assayed for 

proviral activity using the HIV reporter line TZM-bl cells.  Figure 3.1 demonstrates the 

proviral effect of CM fractions collected from A. vaginae-inoculated epithelia compared 

to mock-inoculated epithelia.   



 46 

 

Figure 3.1. A. vaginae Stimulation Significantly Enhances the Proviral Activity of 

Endocervical Epithelial Conditioned Media Fractions. 

TZM-bl cells were infected with HIV-1 BaL in the presence of 1-10% FBS and CM 

fractions from mock- or A. vaginae-inoculated epithelial cells.  CM fractions of 3-30 KDa 

or >30 KDa were applied at final concentrations of 2-8X original concentration.  Fold 

increase in infection was obtained by dividing the Atopobium-treated CM condition by 

the mock-treated CM condition.  n=2 for all conditions except for End1 conditions, which 

are n = 3-8, and No Epithelia 1% FBS conditions, which are n = 3.  One, two or three 

asterisks indicate a significant (p<0.05, p<0.01 or p<0.001, respectively) increase in 

infection of the End1 condition compared to No Epithelia condition. 

 

 Importantly, we found that decreasing the FBS concentration from 10% to 1% 

during the reporter assay incubation improved sensitivity, and revealed significant 

proviral effects of both the 3-30 KDa and >30 KDa CM fractions generated from End1 

cells inoculated with A. vaginae CM condition compared to the mock CM condition.  
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While the >30 KDa fraction demonstrated a more significant increase in infection 

(compared to the no epithelial control), the 3-30 KDa exhibited a greater fold increase in 

infection.  Importantly, in neither fraction did we observe considerable increased 

infection for the A. vaginae-inoculated no epithelia control condition, indicating that CM 

fractions obtained from A. vaginae incubation alone did not increase HIV infection. 

To further evaluate this trend, we examined the raw data obtained by assaying 

each End1 CM fraction separately, or by combining and assaying them together.  Figure 

3.2 panel A compares the fold increase in infection mediated by A. vaginae-inoculated 

End1 CM over mock-inoculated End1 CM for the 3-30 KDa fraction, the >30 KDa 

fraction, and the two fractions combined.  The combined fractions exhibited a fold 

increase trend similar to that observed for the >30 KDa fraction alone.   
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Figure 3.2. 3-30 KDa CM Fraction from End1 Epithelia Exhibits Specific Proviral Activity. 

TZM-bl cells were treated and infected in the presence of indicated 3-30 KDa fraction, 

>30KDa fraction, or the two fractions combined at 2-8X concentrations in the presence 

of 1% FBS.  A) Viral enhancement by Atopobium, obtained by dividing the Atopobium-

treated CM condition by the mock-treated CM condition.  B) Background-corrected RLU 

readings.  One, two or three asterisks indicate a significant (p<0.05, p<0.01, and 

p<0.001, respectively) difference between mock and Atopobium conditions.  n=8 for 

individual fraction conditions and n=3 for combined condition.  C) Matched wells treated 

with CM fractions from End1 cells or No Epithelia condition were treated in parallel, but 

not infected with virus, and viability at experiment endpoint was quantified by trypan 

blue.  Viability was normalized to a media-only control condition.  Two asterisks indicate 
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a significant (p<0.01) increase compared to media-only control condition.  n=3-4 for 

each condition. 

 

This phenomenon is better interpreted by analyzing the corrected RLU values 

shown in Figure 3.2 panel B.  For both the >30 KDa fraction and the combined fractions, 

even the mock-inoculated CM condition exhibited proviral activity; at 2X concentration, 

these treatments resulted in >10 RLU, a >2-fold increase when compared to the 

average of the media-only control well (5.10 RLU).  Though the matched A. vaginae-

inoculated CM treatments increased RLU readouts to approximately 30, the heightened 

baseline of the mock-inoculated CM treatments resulted in fold increased infection 

values of less than three.  Further, the RLU measurements of these mock-inoculated 

CM treatments increased steadily with increased treatment concentration, whereas the 

A. vaginae-inoculated condition exhibited a plateau in RLU readouts, resulting in the 

decreasing fold increase in infection observed for these fractions.  These observations 

are clarified by Figure 3.2 panel C, which reveals significant changes in TZM-bl cell 

viability upon treatment with the A. vaginae-inoculated >30 KDa CM fraction.  At 2X 

concentration, this fraction induced significant growth of the TZM-bl cell population, 

likely contributing to the calculated increased fold infection.  As treatment concentration 

increased, viability steadily decreased, which coincided with the plateau in measured 

RLU. 

Oppositely, the 3-30 KDa fraction induced lower background RLU when the 

mock-inoculated CM condition was applied at 2X concentration (RLU <10).  Though 

increasing concentrations of this mock condition treatment did result in increased RLU 
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readouts, the A. vaginae-inoculated treatment induced higher infection at all 

concentrations, and steadily increased in a dose-dependent fashion.  This resulted in a 

greater fold increase in infection at all concentrations tested.  Further, this 3-30 KDa 

fraction did not induce changes in TZM-bl viability, suggesting that the observed trends 

were likely on account of differences in infection, rather than merely assay viability 

conditions.  Therefore, we chose to pursue the A. vaginae-induced proviral factors in 

this 3-30 KDa fraction. 

 

3.3.2 Cytokines Do Not Partition to the Proviral 3-30 KDa CM Fraction  
 

Since inflammatory cytokines are known to be upregulated in epithelia in 

response to BVAB (including A. vaginae), and furthermore are proposed to enhance 

HIV infection, we hypothesized that cytokines might be upregulated in the A. vaginae-

inoculated 3-30 KDa CM fraction, and contribute to the observed viral enhancement.  To 

evaluate this possibility, we utilized Bio-Plex cytokine array to quantify 37 cytokines and 

growth factors in both the 3-30 KDa fraction and the higher molecular weight >30 KDa 

fraction.  To our surprise, nearly the entirety of the secreted cytokines partitioned to the 

>30 KDa fraction, as shown in Figure 3.3.   
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Figure 3.3. Proviral Conditioned Media Fraction Does Not Contain Proviral Cytokines. 

24X CM fractions from mock or A. vaginae-inoculated End1 cells were analyzed by Bio-

plex cytokine array.  Each bar demonstrates cytokine recovery for 3-30 KDa fraction 
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stacked above matched >30 KDa fraction for either mock or A. vaginae conditions.  One 

or two asterisks indicate significant (p<0.05 or p<0.01, respectively) differences in 

cytokine concentration between mock- and Atopobium-inoculated 3-30 KDa fraction, 

while one or two pound signs indicate significant (p<0.05 or p<0.01, respectively) 

differences in >30 KDa fraction.  n = 3 for all panels. 

 

Though a few cytokines showed significant upregulation in the A. vaginae-

inoculated 3-30 KDa CM fraction, the majority were measured at low pg/mL 

concentrations (for IL-1β, IL-1ra, RANTES and VEGF, all values were <25 pg/mL).  One 

cytokine, IL-8, was increased from 0.06 pg/mL to 200 pg/mL in the 3-30 KDa fraction 

derived from A. vaginae-inoculated cells, but this concentration appeared to be a minor 

flowthrough compared to the 3140 pg/mL concentration that partitioned to the matched 

>30 KDa fraction.  These observations suggested that most cytokines did not partition to 

the 3-30 KDa CM fraction, and therefore were not likely to mediate the observed HIV 

enhancement observed upon A. vaginae inoculation. 

 

3.3.3 Mass Spectrometry Reveals Over 60 Protein Components in the Proviral Fraction 
 

We next pursued a proteomic approach to identify the proviral factors in the 

stimulated 3-30 KDa CM fraction.  The A. vaginae-inoculated End1 3-30 KDa CM 

fraction was concentrated and subjected to ESI-QUAD-TOF analysis, and referenced 

against the Mascot IPI_human database.  Over 60 protein identities were returned 

(Appendix C: Table C.1).  In accordance with our previous results, none of the cytokines 
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assayed by Bio-Plex cytokine array were identified in the active fraction by mass 

spectrometry.  Additionally, many of the returned identities could be assigned as 

residual carry over from maintenance media (including insulin and bovine pituitary 

proteins).  To narrow the remaining entries, we utilized a second proteomic approach, in 

which the 3-30 KDa CM fraction was resolved by PAGE and visualized by silver stain.  

Figure 3.4 panel A demonstrates proteins recovered in the 3-30 KDa CM fraction from 

media alone, A. vaginae alone, End1 cells alone, or End1 cells inoculated with A. 

vaginae.   
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Figure 3.4. Several Proteins are Enriched in Proviral CM Fraction. 

A) Desalted 3-30 KDa CM fractions were concentrated and resolved by Tricine SDS-

PAGE, then visualized by silver stain.  Indicated bands were excised for MS analysis.  

Gel image is one representative of three independent experiments.  B) Four proteins 
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that were identified in both the soluble 3-30 KDa fraction and in excised SDS-PAGE 

bands are shown.  Entire sequence (including signal) for each protein is annotated with 

ions identified in the initial soluble MS approach highlighted red, while ions identified in 

SDS-PAGE bands are underlined. 

 

No proteins could be visualized in the media control, or A. vaginae alone 

conditions.  The End1 condition did contain low molecular weight proteins that were just 

discernible by silver stain.  In contrast, the End1 cells inoculated with A. vaginae 

produced pronounced protein bands.  The pattern observed in this sample mirrored that 

of the End1 alone condition, but staining intensity suggested upregulation of these 

proteins in response to bacterial inoculation. 

The seven major bands were excised and again subjected to mass spectrometric 

analysis.  Again, over 50 human proteins identities were returned (Appendix C: Table 

C.2).  To narrow these results, we selected proteins of interest based on the following 

criteria: identity was returned in both mass spectrometry analyses; protein molecular 

weight is <30 KDa; ions identified are specific for human sequence (not bovine); protein 

has been previously isolated from human cervicovaginal fluid, and protein has been 

previously implicated in innate immunity or HIV infection.  These requirements allowed 

us to select four proteins to investigate further [10, 78, 83, 84].  Figure 3.4 panel B 

shows the sequence of the four proteins of interest: lipocalin 2 (NGAL), cyclophilin A 

(PPIA), trappin-2 (PI3), and HE4 (WFDC2).   
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3.3.4 Immunoblot Confirms Upregulation of Selected Proteins in the 3-30 KDa CM 
Fraction 

 

To confirm the upregulation of these proteins, we performed immunoblots of the 

3-30 KDa CM fraction from either mock-inoculated or A. vaginae-inoculated End1 cells.  

Recombinant protein standards were analyzed alongside the fractions in order to 

quantitate the protein content.  Figure 3.5 demonstrates the upregulation of each of 

these 4 proteins in the A. vaginae-inoculated condition compared to a matched mock-

inoculated fraction.  Based on semi quantitative immunblot estimates, we approximated 

the following average concentrations of each protein in A. vaginae-inoculated End1 3-30 

CM fraction at 1X: 2.36 ng/mL for lipocalin 2, 4.89 ng/mL for cyclophilin A, 1.29 ng/mL 

for trappin-2, and 3.90 ng/mL for HE4. 
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Figure 3.5. Western Blotting Confirms Upregulation of Proteins Identified by MS. 

The following volumes of 3-30 KDa CM fraction from either mock-inoculated or 

Atopobium-inoculated End1 cells were concentrated, resolved by Tricine SDS-PAGE, 

and immunoblotted for protein detection: 300 μL for Lipocalin 2; 400 μL for Cyclophilin 

A; 450 μL for Trappin-2 and 2000 μL for HE4.  Recombinant standards (labeled as 

ng/lane) were resolved alongside CM fractions for quantitative comparison.  One 

representative of three independent experiments for each analyte is shown. 
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3.3.5 HIV Enhancement is Mediated by the Combined Activity of Upregulated Effectors 
 

Having seen that each of the selected proteins was upregulated by A. vaginae-

inoculation of End1 cells in the proviral 3-30 KDa CM fraction, we sought to determine 

whether any one of these proteins might be responsible for the corresponding proviral 

activity.  Recombinant preparations of each of the proteins were added to a TZM-bl 

infection in the presence of 1X DMEM media background to gauge viral enhancement 

activity.  Surprisingly, none of the four proteins altered HIV infection when applied at 

concentrations up to 100 ng/mL (data not shown).  

We next considered that the proviral activity of the 3-30 KDa CM fraction is likely 

a combined effect of host proteins, and that the addition of any single element might not 

recapitulate the viral enhancement observed in the complex CM fraction.  To evaluate 

this possibility, we again performed the TZM-bl assay, this time adding each 

recombinant protein in addition to the mock-inoculated End1 3-30 KDa CM fraction.  

Figure 3.6 panel A demonstrates a similar lack of proviral activity observed for any of 

the four recombinant proteins in the End1 Mock CM condition.  As the addition of only 

four of many upregulated proteins might neglect important proviral determinants, we 

continued to explore possible synergistic proviral effects of the upregulated epithelial 

proteins.  We next added each of the four recombinant proteins along with the 3-30 KDa 

CM fraction from A. vaginae- inoculated End1 cells, in which many host response 

proteins are present at increased concentration, to provide a background composition in 

which proviral activity might be observed.  Figure 3.6 panel B demonstrates a significant 

increase in proviral activity exerted by each of the four proteins of interest when applied 
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at 100 ng/mL in the A. vaginae-inoculated CM composition.  Furthermore, a cocktail of 

the four proteins of interest exhibited significant increases in infection only in the 

presence of the A. vaginae-stimulated CM condition, as shown in Figure 3.6 panel C. 

 

 

Figure 3.6 Recombinant Proteins Enhance HIV Infection in the Presence of A. vaginae-

Inoculated End1 CM. 

Recombinant proteins lipocalin 2, cyclophilin A, trappin-2 or HE4 were added to the 

TZM-bl reporter assay at concentrations of 0.1-100 ng/mL, in the presence of A) mock-

inoculated End1 3-30 KDa CM fraction, or B) A. vaginae-inoculated End1 3-30 KDa CM 

fraction.  CM fractions were added at 4X concentration in all conditions.  One or two 

asterisks indicate a significant (p<0.05 and p<0.01, respectively) increase in RLUs 
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compared to control condition containing CM fraction without recombinant protein.  n = 

3-5.  C) All four recombinant proteins were added to the TZM-bl assay as a cocktail, 

with each protein added at 0, 10 or 100 ng/mL in either mock- or A. vaginae-End1 CM 

at 4X.  Asterisk indicates a significant (p<0.05) increase in RLUs compared to control 

condition containing CM fraction without recombinant protein.  n = 3-5.  D) Individual 

proteins were assayed at 100 ng/mL in the presence of 10 μg/mL BSA.  No recombinant 

treatments resulted in significant differences from BSA alone.  n = 3.  E) BSA or A. 

vaginae-inoculated End1 CM were added to a TZM-bl assay at 10 μg/mL in the 

presence of 1% or 2% FBS.  Asterisks indicate a significant (p<0.01) difference from 

control condition without BSA or CM treatment.  n = 3-5. 

 

As we had previously observed an increased in total protein content in the A. 

vaginae-inoculated End1 CM fraction, we considered that the proviral activity of this 

fraction, with or without added recombinant proteins, could be a nonspecific artifact of 

increased protein concentration in the TZM-bl reporter assay.  To confirm that the viral 

enhancement was not nonspecific, we also assayed each recombinant protein in the 

presence of an irrelevant protein.  Bicinchoninic acid (BCA) protein quantification 

revealed that when applied at 4X final concentration, the A. vaginae-inoculated End1 3-

30 KDa fraction contributed 3 μg/mL total protein to the TZM-bl assay.  Therefore, we 

added bovine serum albumin (BSA) at an excess concentration of10 μg/mL to examine 

potential proviral enhancement by nonspecific effects of the increased protein content.   

Figure 3.6 panel D shows that the BSA composition failed to facilitate proviral activity of 

any recombinant protein, confirming that the observed HIV enhancing activity was 
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specific to the A. vaginae-inoculated End1 CM composition.  To further evaluate the 

specificity of the viral enhancement, we also tested the proviral capacity of both BSA 

and the active CM fraction in increased FBS conditions.  Figure 3.6 panel E 

demonstrates sustained viral enhancement by the A. vaginae-inoculated End1 CM 

fraction in both 1% and 2% FBS, whereas BSA failed to increase infection in either FBS 

concentration.  These data suggested that the proviral activity of the A. vaginae-

inoculated End1 3-30 KDa CM fraction is specific, and that the complex mixture of 

upregulated proteins likely functions by synergistic mechanisms to enhance HIV 

infection.  

 

3.4 Discussion 
 

In this study, we evaluated the immune response initiated by FRT epithelia in 

response to BV-associated bacteria, and showed that the interaction between host and 

bacterial cells resulted in the secretion of proviral effectors that enhanced downstream 

HIV infection.  In order to observe this proviral activity, we found it necessary to reduce 

the FBS concentration of our HIV reporter assay.  This served to lower baseline 

infection considerably, revealing differences in infection that were not readily observable 

in the presence of additional FBS.  This method has been used before to reveal 

antibacterial effects of antimicrobial peptides [30].  Further, only the End1 cell type 

exhibited increased proviral activity in CM fractions after inoculation with A. vaginae.  

This observation is in line with our previous characterization, which revealed End1 cells 

as the most responsive of the three cell types upon inoculation with BV-associated 
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bacteria, secreting increased concentrations of cytokines and host defense peptides in 

response to BVAB [40].  Combined with the data reported herein, these results support 

the notion that heightened epithelial immune response coincides with increased 

downstream HIV infection. 

We initially hypothesized that the lower molecular weight fraction of epithelial CM 

would contain proviral effectors upon stimulation with A. vaginae, based on previous 

reports of <30 KDa proviral cytokines and innate immune effectors (IL-1 [85] and HD5 

[75]).  In fact, both the >30 KDa and the 3-30 KDa fractions of A. vaginae-inoculated 

End1 CM exhibited significant proviral activity, however the undesirable proliferative 

effects of the higher molecular weight fraction made this effect difficult to interpret, and 

we therefore pursued the 3-30 KDa CM fraction.  Yet the absence of cytokines in this 

fraction was both unexpected, and revealing; though we had expected to find IL-1, IL-8, 

and other cytokines <30 KDa in this fraction [85, 86], they were surprisingly retained in 

the >30 KDa fraction.  At the same time, the retention of nearly the entire cytokine 

content in the >30 KDa fraction provides a likely explanation for the infection trends we 

observed for the >30 KDa CM fraction or combined fractions (Figure 3.2 panel B); for 

the mock-inoculated condition, the presence of baseline cytokines could be responsible 

for the dose-dependent increase in RLUs as CM fractions were applied at increasing 

concentrations.  In contrast, the A. vaginae condition, which contained significantly 

increased cytokine concentrations (Figure 3.3), exerted an overall proliferative effect 

when applied at 2X, perhaps on account of upregulated cytokine content [87] (Figure 

3.2 panels B and C).  These considerations solidified our focus on the 3-30 KDa CM 

fraction, whose proviral activity was specific. 
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Our proteomic analysis of the 3-30 KDa CM fraction from A. vaginae-inoculated 

End1 cells revealed a complex mixture, and from these potential effectors, we chose 

four peptides to research further.  Interestingly, while the secreted epithelial effectors 

studied here increased viral infection, other groups have previously demonstrated anti-

HIV activity of one of the four peptides evaluated: trappin-2/elafin [88].  Trappin-2 and 

elafin are post-translational processing variants of the PI3 gene product, with elafin (5.9 

KDa) representing the cleavage product of its precursor, trappin-2 (9.9KDa) [89].  The 

anti-HIV activity of the PI3 gene product was demonstrated in a similar TZM-bl system 

using similar peptide concentrations (0.01 – 10 ng/mL).  However, the assay conditions 

were considerably different, including, amongst other variations, a preincubation of virus 

with peptide prior to addition to TZM-bl reporter cells.  This preincubation was 

subsequently shown to be essential for observing anti-HIV activity [89].  Further, it was 

demonstrated that the anti-HIV activity of elafin is more potent than that of its precursor, 

trappin-2, which we utilized in our study [89].  Our utilization of trappin-2 coincided with 

the apparent size of the major immunoreactive band detected in our 3-30 KDa CM 

fraction by immunoblot.  While these treatment and cleavage distinctions could account 

for the observed differences in activity, it would be of interest to determine which of 

these protein variations represents the major product in cervicovaginal fluid. 

In addition to trappin-2, each of the other three proteins was confirmed by 

immunoblot to be upregulated in the 3-30 KDa A. vaginae-End1 CM fraction in 

comparison to the mock-inoculated condition.  Each recombinant protein was then 

tested in the context of the 3-30 KDa CM fraction from either mock- or A. vaginae-

inoculated End1 cells.  Interestingly, while none of the four individual exhibited proviral 
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activity in the presence of mock-inoculated End1 CM, all four enhanced infection in the 

presence of the A. vaginae-inoculated End1 CM fraction.  Further evaluation revealed 

that an increase in nonspecific proteins did not provide the same stimulatory 

background as the A. vaginae-inoculated End1 CM, indicating that the proviral 

enhancement of this active fraction was specific.  These results suggest that just as 

antiviral effectors work in concert to inhibit HIV infection [10], so might proviral factors 

synergize to enhance viral infection.  This possible scenario supports further evaluation 

of additional proteins identified in the 3-30 KDa CM fraction from stimulated FRT 

epithelia.  These proteins are likely mediators of increased viral susceptibility in vivo, 

and could represent molecular targets for combatting heterosexual HIV acquisition in 

women. 
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4. THE ANTI-HIV MICROBICIDE CANDIDATE RC-101 INHIBITS 
PATHOGENIC VAGINAL BACTERIA WITHOUT HARMING 

ENDOGENOUS FLORA OR MUCOSA 
 

4.1 Introduction 
 

Sexual transmission remains a major mode of female HIV acquisition, and 

therefore, prophylactic approaches designed to halt the transmission of HIV in the 

female reproductive tract (FRT) are being actively pursued. [1].  These methods include 

the development of vaginal microbicides, antimicrobial agents that prevent the 

transmission of HIV and reduce the user’s susceptibility to viral acquisition [1,26].  

Retrocyclins are a promising anti-HIV microbicide candidate; as restored innate immune 

effectors, they exhibit potent antiviral activity, with little adverse toxicity to host mucosa 

or microflora [90]. 

It stands to reason that since retrocyclins are derivatives of endogenously 

encoded primate peptides, their reintroduction to the human FRT would be well-

tolerated by both human tissue and healthy bacterial inhabitants that evolved in the 

presence of host theta-defensins.  In agreement with this hypothesis, safety studies in 

an ex vivo human cervical organ model [27] and in vivo pigtailed macaque studies 

showed that application of RC-101 was well-tolerated by vaginal and cervical tissue, 

inducing no inflammation or adverse side effects upon gynecological examination [90].  

At the same time, recovered RC-101 peptide remained bioactive [90] and is stable in 

the macaque vaginal environment for up to 14 days after application (our unpublished 

data).  Furthermore, RC-101 application did not disrupt endogenous populations of 

commensal lactobacilli [90].  This is an important consideration, since the tissues and 
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microbes of the macaque vaginal canal are highly similar to those of the human FRT 

[91].  These studies suggest that RC-101 will remain safe, stable and active among the 

complex environment of the human FRT. 

To expand the promising profile of RC-101 as a vaginal anti-HIV microbicide, we 

sought to confirm its compatibility with epithelia, primary tissues, and commensal 

bacteria of the human FRT.  Furthermore, we examined the stability and activity of RC-

101 amongst pathogenic BV-associated bacteria, to ensure that this common affliction 

would not disrupt treatment regimens of RC-101.  These studies demonstrate the 

compatibility of RC-101 with host tissues and microflora, and additionally demonstrate 

that RC-101 can inhibit BV-associated bacteria, thereby promoting healthy vaginal flora 

and providing a dual mechanism of HIV prevention. 

 

4.2 Methods 
 

4.2.1 Epithelial and Tissue Cultures 
 

HeLa cells (CCL-2) were purchased from ATCC and maintained in Dulbecco’s 

Modified Eagle Medium with 10% fetal bovine serum.  Primary vaginal epithelial cells 

(VEC-CRY-OV) and full-thickness EpiVaginal tissues (VLC-100-FT) are engineered 

specimens that were purchased from MatTek Corporation and maintained in provided 

media according to supplier’s instructions.  For epithelial experiments, treatments were 

prepared in maintenance media and applied to confluent monolayers.  For tissues, 

treatments were prepared in 100 μL PBS and applied apically.  After incubation, 

epithelial treatment media or tissue underlay media were collected, clarified, and stored 
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at -80°C until analysis.  Cells were rinsed with PBS before lysing for phosphoprotein 

analysis. 

 

4.2.2 Bacterial Cultures 
 

The following bacterial cultures were purchased from ATCC: Lactobacillus 

crispatus (33197); Lactobacillus acidophilus (4356); Lactobacillus johnsonii (11506); 

Lactobacillus jensenii (25258); Lactobacillus gasseri (9857); Lactobacillus vaginalis 

(49540); Gardnerella vaginalis (49145); Atopobium vaginae (BAA-55); Mobiluncus 

curtisii (35241); Prevotella bivia (29303).  All lactobacilli were grown in de Man, Rogosa 

and Sharpe (MRS) broth or on MRS agar plates at 37°C, 5% CO2 atmosphere.  G. 

vaginalis, A. vaginae, M. curtisii, and P. bivia maintenance cultures were all grown in 

tryptic soy broth (TSB) supplemented with 5% defibrinated rabbit blood (Becton, 

Dickinson and Company), or on agar plates of the same composition.  G. vaginalis was 

grown at 37°C, 5% CO2, while the other three bacteria were grown in anaerobic GasPak 

chambers (Becton, Dickinson and Company) at 37°C.   

 

4.2.3 Bacterial Inhibition Assays 
 

For experiments, anaerobic BV-associated bacteria (A. vaginae, P. bivia and M. 

curtisii) were taken directly from snap-frozen vials, and were washed and resuspended 

in prereduced brain heart infusion (BHI) media.  Bacterial suspensions were mixed with 

preparations of RC-100, RC-101, clindamycin, or vehicle diluted in the same media.  5 

μL of the final culture were placed under 3 μL liquid wax on a Terasaki microtiter plate 
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as previously described [30] and incubated anaerobically for up to 24 h.  Extended 

incubation times such as this are typical for these anaerobic species [92, 93, 94].  

Cultures were periodically diluted in prereduced BHI and plated on prereduced 5% 

blood TSA plates.  Plates were incubated anaerobically, and colony forming units 

(CFUs) were subsequently quantified for each condition. 

For lactobacilli, snap-frozen vials of each species were first grown for 2 h in MRS 

broth at 37°C, 5%CO2 to allow cultures to recover.  Actively growing bacteria were then 

mixed with RC-101 or vehicle diluted in the same media, and plated in Terasaki wells as 

done for anaerobes.  These cultures were incubated at 37°C, 5%CO2 for up to 6 h.  This 

duration was chosen based on previous studies demonstrating that RC-101 inhibits 

susceptible aerobic species in less than three hours [30], and because with longer 

incubations the density of some cultures began to decline. Culture growth was 

monitored by diluting and plating on MRS, then incubating at 37°C, 5% CO2 for CFU 

determination. 

 

4.2.4 RC-101 Recovery from Pathogenic Bacterial Cultures 
 

For coincubation with RC-101, snap-frozen vials of G. vaginalis were grown for 2 

h in TSB to achieve log-phase growth, while anaerobic bacteria were taken directly from 

snap-frozen vials.  All bacteria were diluted in maintenance media, and combined with 

RC-101 diluted in the same preparation for a final culture volume of 100 μL.  These 

cultures were incubated at the appropriate atmosphere for 24 h at 37°C, after which 

each culture was acid extracted as previously described [90].  Soluble extracts were 
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neutralized by sequential drying and dilution with water, and neutralized extracts were 

resolved by Tricine-SDS PAGE, followed by western blotting with an anti-RC-101 

antibody.  Recovered peptide was run alongside a peptide standard for semi-

quantitative comparison. 

 

4.2.5 Bio-plex Analysis of Lysates and Conditioned Media 
 

For phosphoprotein quantification, cells were harvested with Bio-Rad Cell Lysis 

kit, and equal amounts of total protein were assayed by multiplex phosphoprotein array.  

For cytokine analysis, conditioned media were clarified and equal volumes were 

assayed by multiplex cytokine array.  Experimental analysis was performed according to 

manufacturer’s instructions.  In addition to cytokines appearing in our results, the 

following cytokines were assayed, but were not produced by our cells or tissues at 

measurable levels: PDGF-BB, IL-2, IL-4, IL-5, IL-7, IL-10, IL-12p70, IL-13, IL-15, IL-16, 

IL-17, IL-2Rα, IL-18, Eotaxin, FGF-β, G-CSF, IFN-γ, MCP-1, MIP-1α, MIP-1β, RANTES, 

TNF-α, LIF, MCP-3, β-NGF, SCF, SCGF-β, SDF-1α, TFN-β, TRAIL, HGF, IFN-α2.   

 

4.2.6 Statistical Analyses 
 

For bacterial inhibition assays, culture densities were log-transformed and 

treatments were compared to vehicle at each time point by a two-tailed paired Student’s 

t-test [30].  For RC-101 recovery analysis, densitometric quantification between bacteria 

condition or media alone was compared by a two-tailed paired Student’s t-test.  For Bio-
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Plex analysis of conditioned media, cytokine concentrations of RC-101 treated cultures 

were compared to appropriate vehicle by a two-tailed paired Student’s t-test. 

 

4.3 Results 
 

4.3.1 Retrocyclin Theta-Defensins are Active Against BV-Associated Bacteria 
 

Retrocyclins RC-100 and RC-101 have been previously shown to inhibit a variety 

of microbes, including viruses, fungi, and Gram-positive and Gram-negative bacteria 

[29,30,95].  As potential vaginal microbicides, the ability of retrocyclins to provide 

simultaneous protection against both HIV and pathogenic bacteria of the FRT is of 

immediate interest.  To determine whether the restoration of retrocyclins to the FRT can 

inhibit bacterial pathogens, we first incubated RC-100, the endogenously encoded 

theta-defensin, with BV-associated bacteria Atopobium vaginae, Mobiluncus curtisii and 

Prevotella bivia.  Treated cultures were incubated anaerobically for up to 24 h to 

determine the effects of the peptide on bacterial growth.  Figure 4.1 shows that the 

peptide RC-100 significantly inhibited two of the three pathogenic anaerobes tested.  M. 

curtisii was inhibited 95% by RC-100 after 24 h, while P. bivia inhibition was 85%. The 

third species, A. vaginae, was inhibited by RC-100 at 8 h, but the effects of RC-100 

decreased by the completion of the 24 h experiment. 
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Figure 4.1. RC-100 Inhibits BV-Associated Bacteria. 

RC-100 was incubated with BV-associated bacteria Atopobium vaginae, Mobiluncus 

curtisii, or Prevotella bivia (5106 CFU/mL) anaerobically and cultures were plated at 

indicated timepoints to determine culture density.  Percent inhibition was calculated 

relative to vehicle-treated bacteria.  All inhibition values less than zero were plotted as 

zero. Asterisks indicated treatments for which one or more timepoints were significantly 

(p<0.05) different from vehicle.  n = 3-4 for each condition. 

 

Having determined that RC-100 inhibited BV-associated bacteria, we next 

investigated whether the retrocyclin analogue RC-101, which is being actively 

developed as a topical microbicide, exhibits similar antibacterial activity.  The same 

panel of pathogenic bacteria was incubated with RC-101 at concentrations ranging from 

0.5 - 10 μg/mL, or with clindamycin, a standard antibiotic used to treat BV [96], for 

comparison.  Similar to trends observed for RC-100, RC-101 exhibited significant, dose-

dependent inhibition of both M. curtisii and P. bivia, while inhibition of A. vaginae was 

not significant (Figure 4.2).  Interestingly, clindamycin was unable to inhibit the 

pathogen M. curtisii, in contrast to RC-101, which exerted >95% inhibition of M. curtisii 

by 24 h.  P. bivia, on the other hand, was significantly inhibited by RC-101, and also by 

clindamycin. 
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Figure 4.2. BV-Associated Bacteria are Inhibited by RC-101. 

RC-101 at 10 μg/mL, 5 μg/mL or 0.5 μg/mL, or clindamycin at 0.5 μg/mL was incubated 

with BV-associated bacteria anaerobically and cultures were plated at indicated 

timepoints to determine culture density.  Percent inhibition was calculated relative to 

vehicle-treated bacteria.  All inhibition values less than zero were plotted as zero. 

Asterisks indicate treatments for which one or more timepoints were significantly 

(p<0.05) different from vehicle.  n = 3-5 for each condition. 

 

4.3.2 Commensal Vaginal Lactobacilli are not Inhibited by RC-101 
 

The ability of RC-101 to inhibit BV-associated bacteria is a favorable secondary 

effect that complements the peptide’s anti-HIV activity. However, vaginal microbicides 

must not exert antibacterial effects on the commensal bacteria that inhabit the FRT and 

promote reproductive health.  Thus, we next examined the effect of RC-101 on the 

beneficial lactobacilli that comprise healthy vaginal flora.  Six strains of lactobacilli that 

are common to the FRT [97, 98], were subjected to microassay analysis to determine 

whether they were equally affected by RC-101.  Figure 4.3 shows the effect of different 

concentrations of RC-101 on Lactobacillus acidophilus, crispatus, gasseri, jensenii, 

johnsonii and vaginalis over a 6 h time course of treatment.   
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Figure 4.3. RC-101 Does Not Inhibit Commensal Vaginal Lactobacilli. 

RC-101 at 10 μg/mL, 5 μg/mL or 0.5 μg/mL was incubated with six different species of 

vaginal lactobacilli, and cultures were plated at indicated timepoints. Percent inhibition 

was calculated relative to vehicle-treated bacteria and all inhibition values less than zero 

were plotted as zero. No treatments resulted in significant (p<0.05) inhibition of 

lactobacilli.  n = 3 for each condition. 

 

Unlike the pathogenic bacteria, none of the commensal lactobacilli were 

significantly inhibited by RC-101 at treatments as high as 10 μg/mL.  Overall, the lack of 

significant antibacterial effects on lactobacilli suggests that RC-101 administered at anti-

HIV concentrations would not disrupt the endogenous healthy bacterial flora of the FRT. 

  



 74 

4.3.3 RC-101 is Recovered from BV-Associated Bacterial Cultures 
 

While the recovery and bioactivity of RC-101 has been characterized in the 

presence of commensal microflora, we sought to ensure that BV-associated bacteria 

would not affect the stability of this peptide microbicide.  To do so, we incubated RC-

101 in cultures of BV-associated pathogens, and analyzed peptide recovery and 

electrophoresis after 24 h.  Figure 4.4 panel A shows that RC-101 was recovered from 

all cultures, and that the peptide migrated at the appropriate size.  Based on 

densitometric quantification, there were no significant differences in percent recovery 

between bacterial cultures and media alone, however there was a trend toward lower 

recovery from P. bivia cultures compared to the other three cultures (Figure 4.4 panel 

B).  We occasionally observed a slower migrating band in this sample extract, which 

was not included in densitometric quantification.  Ongoing studies are investigating 

whether RC-101 is actively degraded by P. bivia, or whether the complexity of this 

bacterial culture alters peptide recovery or migration. 
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Figure 4.4. RC-101 is Recovered from BV-Associated Bacterial Cultures. 

RC-101 (at 5 μg/mL) was incubated with BV-associated bacteria (5106 CFU/mL) 

anaerobically for 24 h, then culture extracts were immunoblotted for RC-101 recovery 

determination. A) A representative immunoblot demonstrates the recovery of RC-101 

from bacterial cultures or media alone, run alongside a standard of known RC-101 

concentrations. B) Densitometry from three independent experiments.  RC-101 recovery 

from bacterial cultures was not significantly different from media alone. 

 

4.3.4 RC-101 is Well-Tolerated by Reproductive Cells and Tissues 
 

In addition to testing the compatibility of RC-101 with commensal vaginal 

bacteria, we also examined the effects of RC-101 on the epithelial cells that line the 

FRT to ensure that the peptide would be well-tolerated by host tissues.  Recent studies 

have monitored select cytokine responses to RC-101 in a cervical organ model, but do 

not provide a comprehensive cytokine and signaling evaluation [27].  To more broadly 

survey host response to RC-101, HeLa cells were treated with RC-101, and cellular 

response was gauged by monitoring intracellular signaling pathways.  Figure 4.5 shows 
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the phosphoprotein signaling response of reproductive epithelia to 30 min of RC-101 

treatment.  

 

 

Figure 4.5. Reproductive Epithelial Cells Exhibit Minimal Phosphoprotein Response to 

RC-101. 

HeLa cells were treated with vehicle, 20 μg/mL RC-101, or positive stimuli 10 ng/mL 

TNF-α or 1000 U/mL IFN-α for 30 min, then lysed for phosphoprotein quantification.  

Phosphoprotein ratios relative to vehicle-treated cells are shown for seven intracellular 

signaling proteins.  Ratios are averaged from three or more independent experiments, 

except for quantification of p-MEK1 and p-STAT3 after RC-101 treatment, which are 

averaged from two independent experiments. 
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Importantly, none of seven monitored signal-transducing proteins was 

phosphorylated >2.1 fold in response to RC-101 compared to vehicle alone.  This 

includes mediators of proinflammatory responses and regulators of cellular proliferation 

and turnover.  The attenuated phosphorylation response to RC-101 is in contrast to 

control stimuli TNF-α and IFN-α, which elicit robust phosphorylation responses.  

The lack of an intracellular phosphoprotein response was corroborated by an 

equivalent absence of cytokine response.  Figure 4.6 shows the cytokine response of 

primary cultures of vaginal epithelial cells to 24 h of RC-101 exposure.   

 

 

 

Figure 4.6. RC-101 Does Not Induce Proinflammatory Cytokines In Primary Vaginal 

Epithelia. 

Primary vaginal epithelia were treated with either 20 or 200 μg/mL RC-101, or paired 

vehicles.  After 24 h, conditioned media were collected and analyzed by multiplex 

cytokine array.  The ten cytokines shown are expressed as raw cytokine concentrations 

and are grouped for graphing purposes.  Asterisks indicated significant differences 

between RC-101 treatment and matched vehicle (p<0.05).  n = 4-6. 
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In comparison to matched vehicle control, neither 20 μg/mL nor the excessive 

200 μg/mL treatment stimulated significant increases in immune mediators such as IL-6, 

IL-8, Gro-α, M-CSF or GM-CSF.  Of the ten analytes shown, only two (IP-10 and MIF) 

displayed significant differences from vehicle treatments, and for these two cytokines 

the significant difference observed at 20 μg/mL did not repeat at the higher dose of 200 

μg/mL. These phosphoprotein and cytokine data suggest that RC-101 elicits a very 

minimal response from reproductive epithelial cells.  

To expand this evaluation, we next utilized MatTek ex vivo vaginal tissues to 

examine the effects of RC-101 on intact tissues of the FRT.  These full thickness tissues 

containing stratified epithelia, a basal lamina and submucosal dendritic cells were 

treated by apical application of RC-101 at the air-liquid interface.  After 24 h, the basal 

media was analyzed for cytokine expression.  Figure 4.7 shows the matched ten 

analytes from our epithelial analysis, with an additional eight characterized cytokines. 
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Figure 4.7. RC-101 is Well Tolerated by Organotypic Vaginal Tissue Model. 

Full-thickness organotypic tissues were treated with apical application of RC-101 at 

either 20 or 200 μg/mL RC-101 or vehicle.  After 24 h, underlay media were collected 

and analyzed by multiplex cytokine array.  In addition to the ten cytokines shown in 

Figure 6 for epithelia, another eight cytokines are shown here, all expressed as raw 

cytokine concentrations and grouped for graphing purposes.  No RC-101 treatments 

resulted in significant differences from vehicle. ## = GM-CSF was detected in the 

maintenance media.  n = 3-7. 

 

One cytokine, GM-CSF, could not be accurately quantified, as it was found in 

tissue maintenance media alone.  For the 17 cytokines that were measured, neither the 

20 μg nor the 200 μg application per tissue resulted in significant differences from 

vehicle.  This includes the two analytes IP-10 and MIF that showed inconsistent trends 
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in our epithelial model (Figure 4.6).  The absence of any significant cytokine changes in 

these primary organotypic tissues is in agreement with epithelial trends and suggests 

that RC-101 is well-tolerated by host tissues of the FRT. 

 

4.4 Discussion 
 

Recent failures of anti-HIV microbicides [27, 99] have prompted more extensive 

preclinical characterization of candidate prophylactics.  In this study, the microbicide 

candidate RC-101 was evaluated in order to determine its safety for host tissues and 

microflora prior to clinical trial.  In agreement with other recent studies [27,90], we 

observed a desirable safety profile when RC-101 was applied to human FRT epithelia 

and tissues.  Even at concentrations >40 times its antiviral IC50 range, RC-101 did not 

induce significant changes in cytokine release from primary FRT tissues.  This 

evaluation included chemokines that mediate inflammation and chemotaxis of immune 

cells, such as IL-8, Gro-α, MCP-1 and MCP-3 [100, 101, 102, 103], and other important 

immune effectors such as IL-6 [104]. 

RC-101 did not elicit substantial increases in phosphorylation of the signaling 

transducers STATs 2 and 3 [105], nor of the proinflammatory mediator, the p65 subunit 

of NF-κB [106].  The lack of p65 phosphorylation is especially notable, as NF-κB 

activation is implicated in HIV proviral replication [41], and its unintended activation 

could counter the anti-HIV activity of applied microbicides.  At the same time, the 

phosphorylation of mitogenic signaling intermediates such as MEK-1, ERK1/2, p38, and 

c-Jun was essentially unaffected by RC-101 application, indicating that this microbicide 
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candidate is unlikely to induce unexpected effects on cellular proliferation, turnover or 

stress response [107]. 

In addition to exhibiting compatibility with FRT epithelia and tissues, we also 

observed that RC-101 was well-tolerated by vaginal lactobacilli.  Of our panel of six 

Lactobacillus spp., none was significantly inhibited by RC-101.  This validates previous 

in vivo observations of macaque vaginal flora, in which lactobacilli remained unaffected 

by vaginal film formulations of RC-101 [74].  While lactobacillus growth is not inhibited 

by RC-101, we observed that BV-associated bacteria were significantly inhibited by 

retrocyclins.  For the two strains that were susceptible, bacterial inhibition occurred at 

10 μg/mL, well within expected therapeutic concentrations, and for one species, M. 

curtisii, RC-101 treatment at all concentrations (0.26 - 5.3 μM) exerted significantly 

greater inhibition compared to clindamycin given at 0.5 μg/mL (1.2 μM), above its 

reported MIC90 of 0.125 μg/mL [92].   

Furthermore, RC-101 was recovered from coincubation with these bacterial 

pathogens, though recovery was decreased when the peptide was coincubated with P. 

bivia.  Of note, we occasionally observed a slower migrating immunoreactive band in 

this sample.  As many positively charged antimicrobial peptides exert their antibacterial 

effect by binding and oligomerizing on bacterial surfaces to permeabilize cells [108], we 

expect that this band might be either bound or oligomerized RC-101.  Interestingly, P. 

bivia is distinct in the panel of bacteria we evaluated, in that it is gram negative.  The 

presence of negatively charged outer cell membrane components in this culture in 

particular could bind positively charged RC-101, slowing its electrophoretic mobility 

[109].  While this hypothesis might explain our slightly lower RC-101 recovered from P. 



 82 

bivia culture, overall our results demonstrated good recovery of the peptide from the 

panel of bacteria, suggesting that RC-101 stability in the FRT would withstand transient 

fluctuations in microflora. 

Though the molecular determinants of susceptibility remain unknown, the 

specificity of RC-101’s antibacterial activity against pathogenic bacteria but not against 

commensal lactobacilli supports the notion that the dynamic and complex primate 

vaginal microflora evolved in the presence of similar theta-defensins.  Consequently, 

endogenous lactobacilli are uninhibited by the reintroduction of a theta-defensin 

analogue, while pathogenic species remain susceptible to this class of antimicrobial 

host defense peptides.  

These data suggest that RC-101 would be an ideal anti-HIV microbicide.  In 

addition to being well-tolerated by human vaginal epithelia and tissues, by restoring a 

lost host defense mechanism, RC-101 provides not only potent antiviral activity, but also 

specific antibacterial activity that stabilizes the mucosal microflora.  These desirable 

attributes make RC-101 a promising candidate for vaginal anti-HIV microbicide 

development. 
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5. GENERAL DISCUSSION, CONCLUSIONS, AND FUTURE 
CONSIDERATIONS 

 

Globally, the HIV pandemic is fuelled by sexual transmission, with overall sexual 

acquisition rates estimated to be 1-2 for every 1000 coital acts [110].  This combined 

estimate can be stratified by geographic location, with low-income countries exhibiting a 

15-fold higher transmission rate per coital act than high-income countries [111].  In sub-

Saharan Africa, where 68% percent of HIV-infected individuals reside, this increased 

transmission rate, compounded by cultural gender inequity, has given rise to a 

disproportionate burden of infection on the female population [24]. 

There are 1.4 times as many HIV-positive women in sub-Saharan Africa than 

HIV-positive men [1].  This skewed demographic likely perpetuates the viral pandemic, 

with the potential for mother-to-child transmission estimated at 12-40% in the absence 

of antiviral intervention [112].  Thus, the mechanisms and risk factors for male-to-female 

heterosexual transmission of HIV are critical targets for curbing viral dissemination.  

Toward this aim, a better understanding of mucosal integrity and immunity in the FRT is 

essential for halting heterosexual HIV transmission.  In this dissertation, we explored the 

complex environment of the human FRT, taking into account host immunity, bacterial 

interactions, and topical anti-HIV prophylactic approaches, in an effort to combat HIV 

infection in women. 

In Chapter 2, we described interactions between FRT epithelia and bacteria in 

order to elucidate immune interactions that affect HIV infection.  We demonstrated 

distinct immune response profiles from different types of FRT epithelia, and further, 

revealed that specific FRT bacteria stimulate a more robust immune response than 



 84 

others.  We were surprised to find that L. vaginalis induced a heightened immune 

response, reminiscent of a BVAB-induced response, in contrast to the general 

consensus that lactobacilli are well-tolerated by host cells.  Interestingly, this species is 

distinct from the other 5 lactobacillus species evaluated herein; based on taxonomic and 

phylogenetic analyses, L. vaginalis has been assigned to the L. reuteri group of 

lactobacilli, whereas the other species evaluated in coculture (L. acidophilus, L. 

crispatus, L. gasseri, L. jensenii, and L. johnsonii) are assigned to the L. delbrueckii 

group [113].  Of interest is whether the metabolic and genetic determinants that 

separate this species from other FRT lactobacilli might contribute to the enhanced 

stimulatory activity it exerts on host epithelia. 

Future investigations may benefit from exploring the stimulatory activity of FRT 

lactobacilli from diverse phylogenetic groups on host epithelia, an effort that relies on 

detailed characterization of the complexity of FRT microbiota.  While prior descriptions 

of FRT bacterial inhabitants lacked species-level identification of microbial inhabitants 

[45, 46, 58], advanced sequencing approaches have provided a better characterization 

of vaginal microflora [50].  This approach will facilitate a better understanding of the 

diverse species, both commensal and pathogenic, that comprise the vaginal 

microbiome, and permit further characterization of host-bacterial interactions in the FRT. 

In Chapter 3, we expanded our analysis of bacterial-epithelial interactions to 

investigate the mechanism by which the BVAB A. vaginae enhances downstream HIV 

infection.  We demonstrated a significant increase in HIV infection in the presence of 

secreted effectors from epithelial-bacterial coculture, and identified several host proteins 

that were upregulated in the stimulatory CM treatment.  Though we were unable to 
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recapitulate proviral activity by the addition of select individual proteins, we hypothesize 

that the synergistic activity of many upregulated effectors may contribute to the 

enhanced infection induced by the complex mixture of increased proteins.  In future 

analyses, it would be of interest to characterize the in vivo composition of cervicovaginal 

fluid from women with or without BV, to determine if the epithelial upregulation 

described herein extends to the physiological setting of BV.  While this analysis has 

been conducted for a small set of proteins [43], proteomic methodology including 2D-

PAGE and isobaric tags for relative and absolute quantitation (iTRAQ) could provide 

useful insight into the complete cervicovaginal proteome [114].  These approaches 

could delineate important proteins of interest, and define biomarkers and critical 

mediators of BV-associated sequelae. 

Such biomarkers of FRT pathogenesis could also be useful for the development 

of prophylactic topical microbicides engineered for FRT application.  As discussed in 

Chapter 4, it is essential to define the effects of a microbicide candidate on both host 

and bacterial components of the FRT.  In line with this requirement, retrocyclins 

represent promising candidate microbicides; in addition to being well-tolerated by host 

tissues, their selective antimicrobial activity inhibits pathogen BVAB, while leaving 

commensal lactobacilli unaffected.  As peptide microbicides, retrocyclins such as RC-

101 also have the potential to benefit from new a technique being explored by the 

vaginal microbicide field: the recombinant expression of antimicrobial proteins by 

transgenic lactobacilli. 

As the benefits of commensal flora have been elucidated, the expression of anti-

HIV peptides by probiotic lactobacilli has been eagerly explored. The transformation of 
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lactobacilli has been improved, and it has been shown that these bacteria can achieve 

superior folding of recombinant antiviral proteins compared to mammalian expression 

systems [115].  Initial in vivo studies have demonstrated successful colonization of the 

human vaginal canal when lactobacilli were administered in repeated doses [116], and 

most recently, recombinant lactobacilli expressing the antiviral protein cyanovirin-N 

were administered vaginally to macaques, which successfully prevented vaginal 

infection by SHIV up to 63% [117]. This rate of inhibition is likely a combined effect of 

the endogenous protective factors contributed by the lactobacilli in addition to the 

antiviral protein they were engineered to recombinantly express.  Thus, in addition to 

accomplishing sustained delivery of antiviral compounds, the intravaginal application of 

transgenic lactobacilli has the dual advantage of also bolstering the endogenous 

protective barrier of the female reproductive tract.  Peptide microbicides like RC-101 

represent ideal candidates for pioneering this novel FRT microbicide delivery system. 

Such multifaceted prophylactic and therapeutic approaches to FRT health are 

only now possible, with an expanded understanding of the dynamic interactions that 

determine mucosal integrity.  The interplay between host tissues and the complex 

microbiome of the FRT is a critical determinant of the inherent innate immunity of the 

FRT.  It is hoped that the studies conducted herein will provide a better understanding 

of the innate immune interactions in the FRT, and lead to new strategies for maintaining 

reproductive health and preventing heterosexual HIV acquisition via the FRT. 
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APPENDIX A: IRB APPROVAL LETTER FOR HUMAN SUBJECT 
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APPENDIX B: CHAPTER 1 SUPPLEMENT 
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Figure B.1. Bacterial Growth in Coculture is Minimal.   

Confluent monolayers of epithelia or no epithelia control wells were inoculated with 

indicated bacteria as previously described.  In addition to calculating starting inocula, we 

also monitored bacterial density at the experiment endpoint (24 hr) by resuspending the 

coculture and plating serial dilutions on appropriate bacterial growth media.  Bacterial 

density is represented as back-calculated CFU, and is averaged from three independent 

experiments. 
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Figure B.2. Stimulatory BVAB do not Affect Epithelial Viability in Coculture. 

Confluent monolayers of epithelia or no epithelia control wells were inoculated with 

indicated bacteria as described in Methods.  At the coculture endpoint (24 hr) epithelial 

viability was assessed by CytoTox Glo system.  Control wells without epithelia were 

subtracted from matched coculture conditions to account for background bacterial 

fluorescence.  Percent viability is shown relative to mock-inoculated controls, and is 

averaged from three independent experiments.  One or two asterisks indicate significant 

(p<0.05 and p<0.01, respectively) differences in viability compared to mock-inoculated 

controls. 
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Figure B.3. Heat-Killing of Bacterial Inocula Attenuates Epithelial Response. 

Confluent monolayers of epithelia were inoculated with the BVAB A. vaginae, M. curtisii 

and P. bivia alongside heat-killed controls for each species.  Heat-killing was achieved 

by incubating bacterial inocula at 65C for 30 min, then cooling to 37C prior to 

inoculation of epithelia, and was verified by plating.  After 24 hr, epithelial response was 

measured by (A) IL-6 protein secretion (by ELISA), (B) IL-8 protein secretion (by 

ELISA), and (C) hBD2 transcript expression (by RTqPCR).  All data are normalized to 

mock-inoculated controls and are averaged from three independent experiments.  One 
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or two asterisks indicate significant (p<0.05 and p<0.01, respectively) decrease in heat-

killed condition compared to live bacterial inoculum. 
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Figure B.4. Supporting Bio-plex Cytokine Panel. 

A) Analytes evaluated but not included in Figure 2 are provided for cervicovaginal 

lavage samples from BV-negative or BV-positive women, where fold expression for 

each cytokine was calculated relative to the average value of the BV-negative samples, 

and one (p<0.05), two (p<0.01), or three (p<0.001) asterisks indicate a significant 

increase for the BV-positive samples over the BV-negative samples.  Of note, average 

values of IL-7 were 3.7 pg/mL for BV-negative group, and 8.5 pg/mL for BV-positive 

group.  Averages for IL-1α were 616.6 pg/mL for BV-negative group, and 2455.1 pg/mL 

for BV-positive group.  Averages for IL-1β were 165.5 pg/mL for BV-negative group, and 
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4924.4 pg/mL for BV-positive group.  Also shown are cytokines for B) End1, C) Ect1, 

and D) VK2 in response to L. johnsonii and A. vaginae where one (p<0.05) or two 

(p<0.01) asterisks indicate a significant increase in cytokine concentration for the A. 

vaginae-inoculated conditions over the L. johnsonii-inoculated conditions.  Refer to 

Figure 1 for average concentrations of each analyte in these conditions. 
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APPENDIX C: CHAPTER 2 SUPPLEMENT 
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Table C.1. Proteins Identified by MS Analysis of Soluble 3-30 KDa CM Fraction 

 

Shown are protein identities obtained by analyzing the 3-30 KDa CM fraction by mass 

spectrometry, and referencing against a human database.  For each entry, the gene 

symbol(s), description, and molecular weight are given, followed by the ion score, which 

was used to order the protein identities. 
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Table C.2. Proteins Identified by MS Analysis of Excised Tricine SDS-PAGE Bands 

 

Shown are protein identities obtained by analyzing the seven bands excised from a 

PAGE separation of 3-30 KDa CM fraction.  Each band was analyzed by mass 

spectrometry, and referenced against a human database.  For each band, the identified 

proteins are listed with their the gene symbol(s), description, and molecular weight, 

followed by the ion score, which was used to order the protein identities.  Gene symbols 

in italics were manually curated.  
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