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ABSTRACT 

Continuing advances in laser and photonic technology has seen the development of lasers with 

increasing power and increasingly short pulsewidths, which have become available over an 

increasing range of wavelengths.  As the availability of laser sources grow, so do their 

applications.  To make better use of this improving technology, understanding and controlling 

laser propagation in free space is critical, as is understanding the interaction between laser light 

and matter. 

The need to better control the light obtained from increasingly advanced laser sources leads to 

the emergence of beam engineering, the systematic understanding and control of light through 

refractive media and free space.  Beam engineering enables control over the beam shape, energy 

and spectral composition during propagation, which can be achieved through a variety of means.  

In this dissertation, several methods of beam engineering are investigated.  These methods 

enable improved control over the shape and propagation of laser light.  Laser-matter interaction 

is also investigated, as it provides both a means to control the propagation of pulsed laser light 

through the atmosphere, and provides a means to generation remote sources of radiation. 
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CHAPTER 1:  INTRODUCTION 

Continual advances in ultrafast laser technology have resulted in a wide range of laser systems 

suitable both for laboratory experiments and practical applications.  Making optimal use of this 

technology requires continually improving the understanding of how ultrafast laser pulses 

behave, both during propagation and during their interaction with matter.    

The propagation of light is dictated and limited by diffraction physics [1].  Diffraction represents 

a fundamental limit in the transport and application of electromagnetic waves.  Diffraction 

dictates the distance a confined beam of light can be transported, the minimum area an 

electromagnetic wave may be confined, and the interaction between electromagnetic waves and 

obstructions. Diffraction limits can be readily overcome using waveguiding structures, such as 

optical fiber [2].  Overcoming diffraction in free space or in homogeneous optical media is 

considerably more difficult, but a wide variety of techniques are available to manage diffraction 

effects under these circumstances. 

Non-diffracting beams are obtained from linear optical techniques which employ Eigen modes of 

the Helmholtz wave equation in the generation of waves for which a limited region is impervious 

to the effects of diffraction [3].  The applications of non-diffracting beams range from enabling 

the propagation of individual features of an electromagnetic wave well beyond the Rayleigh limit 

[4] to the curving [5] and twisting of light during propagation [6].  As a linear phenomenon, non-

diffracting beams can be employed in both vacuum and material media.  However, non-

diffracting beams require optics with apertures that are typically far larger than the transverse 
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diameter of the non-diffracting effect being produce, and must still collectively transport energy 

and momentum in the direction of propagation. 

Laser filamentation exploits the interplay of several nonlinear effects in transparent media to 

guide confined beams of light well beyond the Rayleigh range [7] [8], enabling propagation of 

beams a few hundred micrometers in diameter over distances as large as several kilometers [9].  

Laser filamentation is a result of an induced inhomogeneous refractive index obtained through 

the optical Kerr effect, which acts as a focusing lens, and refractive index modifications arising 

from a breakdown plasma once sufficient beam irradiance is achieved, which acts to counteract 

the Kerr effect and prevent further reduction of the beam diameter [10].  Once a stable beam 

diameter is obtained, the filament propagates until losses in the breakdown plasma reduce beam 

power to the point in which the nonlinear effects can no longer be maintained.  In addition to 

their application as a long distance beam guiding mechanism, the breakdown plasma resulting 

from the filamentation process can be used as a temporary conductive channel for a variety of 

purposes, including the guiding of electric discharges in air [11] [12], and the confinement and 

guiding of microwaves through free space [13].  Because of the large instantaneous power 

required to drive the nonlinearities responsible for filamentation, in practice only ultrafast lasers 

or pulsed ultraviolet lasers are used to generate laser filaments. As a nonlinear effect, 

filamentation cannot be employed in vacuum, but is suitable for propagation in air, water and 

glass among other transparent media.   

Remote generation of radiation enables the bypass of diffraction effects.  By using intense 

radiation to produce ionization, it is possible to produce temporary plasmas which serve as 
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broadband radiation sources [14].  When these remote sources are used, the relevant diffraction 

effects will now apply to the spatial arrangement of the new source.  Such remote plasmas also 

serve as a source of radiation frequencies which may not have been originally available [15] [16] 

[17].  However, generating radiation in this manner is subject to rather large conversion losses. 

In transparent media, nonlinear effects can be employed to generate temporary guiding structures 

that operate as analogs to more conventional waveguides and transmission lines.  These guiding 

structures can then be used to improve the confinement of electromagnetic wave propagation. 

Index guiding structures can be obtained through inhomogeneous modification of the refractive 

index through specially shaped pulsed beams, properly arranged arrays of pulsed beams, or 

arrays of laser filaments [18].  Transmission lines and conductive waveguides can be obtained 

from organized arrays of transient breakdown plasmas, which can be readily obtained using laser 

filaments [12].  In both cases, the physics of the relevant guiding devices will dictate the 

modified wave propagation.  Because of the limited control available over refractive index and 

plasma conductivity available through laser modified nonlinear effects, the transient guiding 

structures will suffer from suboptimal properties resulting in inferior guiding of electromagnetic 

radiation when compared to their physical counterparts. 
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1.1 Summary of Dissertation 

A limited investigation into each of these topic areas was conducted.  Non-diffracting beams are 

discussed in Chapter 3, with an emphasis on Bessel beams and a new class of non-diffracting 

beam structures obtained from a Bessel beam superposition, helical beams.  Chapter 4 discusses 

filamentation and the use of diffraction free beams in general and helical beams in particular for 

enhancing and controlling laser filamentation.  Chapter 5 discusses the application of laser 

filaments for the remote generation of radio frequency radiation.  The use of non-diffracting 

beams and filaments in the synthesis of radio frequency and microwave structures is discussed in 

Chapter 6, completing the investigation.  Chapter 2 summarizes the equipment and facilities used 

in this study. 
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CHAPTER 2:  EQUIPMENT AND FACILITIES 

A large range of experimental equipment and facilities were used over the course of this 

investigation.  Two separate laser systems were employed.  Multiple laser ranges were used to 

study propagation, and several imaging systems were used to evaluate beam shape and profile.  

High voltage electrodes and electronics were used to evaluate the ionization of laser filaments.  

To evaluate remotely generated radio frequency radiation, broadband horn antennas were used in 

conjunction with a specialized analog signal processing system and a single shot oscilloscope.  

Equipment not discussed in this section will be described in the relevant chapters. 

 

2.1 Ultrafast Pulses and Their Associated Physics 

Laser pulses lasting a few picoseconds or less are generally referred to as ultrafast pulses.  

Excluding high-harmonic generation, ultrafast pulses vary in duration from several picoseconds 

for modelocked fiber lasers [19] to a few femtoseconds for few cycle modelocked solid-state 

lasers [20] [21].  Ultrafast pulses provide a number of practical and experimental advantages 

over the use of continuous laser beams and longer duration laser pulses.   The short pulse 

duration enables the use of ultrafast pulses as high time resolution probes, providing detailed 

temporal information on physical events that would be too fast to resolve otherwise [22] [23].  

Ultrafast pulses also provide an efficient means of laser machining, as the entirety of the pulse 

energy can be deposited in a material and induce changes before thermal conduction can draw 

energy from the machining site [24] [25].  The short duration of the pulses also enable efficient 
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energy compression, allowing the extraction of gigawatt to pettawatt instantaneous powers from 

millijoule to joule level pulse energies [26].  The high instantaneous power obtained from these 

pulses can then be used to drive nonlinear processes, dielectric breakdown, laser filamentation or 

other physical processes which are dependent upon instantaneous power, irradiance or electric 

field strength. 

Ultrafast pulses are composed of the simultaneous, synchronized oscillation of a large number of 

cavity modes, which are obtained using modelocked oscillators.  The pulse duration extracted 

from the oscillator is inversely proportional to the bandwidth spanned by the active cavity 

modes.  Collectively, the temporal and spectral pulse width are limited by the time-bandwidth 

product.  For a Gaussian pulse of temporal pulse width 𝜏 

𝐸(𝑡) = 𝐸0 exp �−
𝑡2

𝜏2
� (1) 

the corresponding spectra will be 

𝐸(𝜔) = 𝐸0′ exp �−
𝜔2

(Δ𝜔)2� = 𝐸0�
2
𝜏

exp �−
𝜔2

�2
𝜏�

2� = ℱ �𝐸0 exp�−
𝑡2

𝜏2
�� (2) 

This immediately leads to the time bandwidth product limitation for Gaussian beams 

𝜏Δ𝜈 =
𝜏Δ𝜔
2𝜋

=
1
𝜋

 (3) 

Femtosecond pulses are by definition obtained when  

𝜏 < 1 𝑝𝑠 (4) 
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Substituting this value into Equation 3 gives the minimum bandwidth possessed by a 

femtosecond pulse 

Δ𝜈 > 318 𝐺𝐻𝑧 (5) 

Applying the relation 

Δ𝜈 = 𝑐
Δ𝜆
𝜆2

 (6) 

the bandwidth requirements at 800 nm can alternatively be expressed as  

Δ𝜆 > 678 𝑝𝑚 (7) 

The ultrafast lasers used in this study have pulse durations ranging from 30 fs to 100 fs, thus 

having minimum spectral bandwidths of ~20 𝑛𝑚 and ~7 𝑛𝑚, respectively.  When propagating 

through matter, the large pulse spectral bandwidth can undergo severe dispersion, which often 

requires compensation. 

Because of the large instantaneous power and irradiances readily obtained with ultrafast pulses, 

optical nonlinearities will readily manifest themselves when propagating ultrafast pulses through 

material media.  At low irradiance, there are no differences between propagation in vacuum and 

media save the reduction in wavelength resulting from the change in refractive index and the 

effects associated with them.  Propagation is entirely dictated by the Helmholtz equation and 

diffraction.  Of particular importance is that the spectral composition of the pulse is maintained 

in the linear case; no additional spectral components can be generated under linear conditions. 

Once the pulse irradiance is sufficient to drive nonlinearities, a large number of new optical 

phenomenon are obtained.  The Kerr effect modifies the diffraction of light, while self-phase 
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modulation, three-wave mixing and four-wave mixing generate new spectral components.  For 

particular strong laser fields, dielectric breakdown and plasma generation can occur.  In general, 

these nonlinearities can be treated using the modified Helmholtz equation [27] 

∇2𝐸�⃑ −
𝑛2

𝑐2
𝜕2𝐸�⃑
𝜕𝑡2

=
1

𝜖0𝑐2
𝜕2𝑃�⃑𝑁𝐿
𝜕𝑡2

 (8) 

The left hand side of Equation 8 is the Helmholtz equation, while the nonlinearities are 

incorporated by the nonlinear polarization term on the right hand side. 

The optical Kerr effect is an increase in the refractive index driven by the laser field.  In its 

simplest form, the Kerr effect is expressed as 

𝑛 = 𝑛0 + 𝑛2𝐼 (9) 

where 𝑛 is the nonlinear refractive index, 𝑛0 is the linear refractive index in the absence of the 

laser field, 𝑛2 is the Kerr index, and 𝐼 is the instantaneous irradiance.  In air, the Kerr index takes 

a value of 𝑛2 = 3 ⋅ 10−19 𝑐𝑚2/𝑊 = 30 𝜇𝑚2 ⋅ 𝑓𝑠/𝑚𝐽 [28] [29].  For a 50 fs pulse, a fluence of 

1500 𝑚𝐽/𝜇𝑚2 is required to obtain a value of unity for the Kerr effect, thus millijoule level 

ultrafast pulses are typically required to observe this effect in air. 

Spatially inhomogeneous fields of sufficient irradiance will generate non-uniform spatial 

refractive index distributions, modifying the diffraction behavior of light.  One of the most 

common behaviors obtained as a consequence of the Kerr-effect is self-focusing, where the 

higher irradiances obtained at the center of Gaussian and similarly shaped laser pulses induces a 

refractive index profile analogous to that obtained using a lens, leading to the focusing of 

collimated laser pulses during propagation. 
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Additional frequencies can be generated from an optical field through the second and third order 

polarization nonlinearities, typically expressed as 

𝑃�⃑ (2)(𝑡) = 2𝜖0𝜒(2)𝐸�⃑ 𝐸�⃑ ∗ (10) 

𝑃�⃑ (3)(𝑡) = 𝜖0𝜒(3)𝐸�⃑ 𝐸�⃑ 𝐸�⃑ ∗ (11) 

Expressing the electric field as a pair of spectral tones 

𝐸�⃑ = 𝐸�⃑ 0[cos(𝜔1𝑡) + cos(𝜔2𝑡)] (12) 

A series of new spectral tones will be generated  

𝑃(2)(𝑡) ∝ cos(2𝜔1𝑡) + cos(2𝜔2𝑡) + cos[(𝜔1 + 𝜔2)𝑡] + cos[(𝜔2 − 𝜔1)𝑡] (13) 

𝑃(3)(𝑡) ∝ cos(3𝜔1𝑡) + cos(3𝜔2𝑡) + cos[(𝜔1 + 2𝜔2)𝑡] + cos[(2𝜔2 − 𝜔1)𝑡] + ⋯ (14) 

These new frequencies include the effects of second and third harmonic generation, three wave 

mixing and four wave mixing.  For a continuous spectrum, the resulting of mixing between 

infinitely dense tones will lead to supercontinuum generation. 

 

2.2 Ultrafast Lasers 

To produce and maintain modelocked oscillation necessary for the generation of ultrafast pulses, 

three conditions must be satisfied.  First, both the laser medium and oscillator feedback elements 

must be of sufficient bandwidth to place all of the required cavity modes above the lasing 

threshold.  Cavity dispersion must be eliminated or minimized across the operating bandwidth so 

that mode synchronization is possible.  And finally, a means of synchronizing and maintaining 

synchronization between all cavity modes must be employed. 
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Several materials provide a gain bandwidth suitable for ultrafast modelocked operation, with the 

choice in particular material typically dictated by the required center wavelength.  Early 

modelocked lasers employed aqueous solutions containing an organic dye, which could provide 

up to 40 nm of gain bandwidth [30].  Such organic die lasers have since been replaced with 

solid-state lasers, which have greater stability, endurance and ease of use.  For solid-stae lasers, a 

large number of crystal possess gain spectra sufficiently broad for modelocked operation are 

available, including Alexandrite, Cr:LiSAF and Ti:Sapphire.  For 800 nm operation, Ti:Sapphire 

crystal are the most frequently employed.  These crystals have a 700-820 nm gain bandwidth and 

380-630 nm pump band [30].  The gain media will typically introduce undesired dispersion into 

the laser cavity.  To correct for this dispersion, prisms, gratings, or other dispersive elements 

with opposite dispersion properties are placed with the cavity in an attempt to obtain zero 

dispersion across the oscillator bandwidth. 

Several methods are available to synchronize or modelock the cavity modes.  The most common 

technique employed in ultrafast solid state oscillators is Kerr lens modelocking.  In the presence 

of high instantaneous irradiance, nonlinear phase lag introduced along the optical axis of the 

confined modes within the gain medium will cause the mode to come to focus within the 

oscillator.  Because increased irradiance is obtained for shorter pulses, this effect will be the 

greatest when all the cavity modes are synchronized and the oscillator pulses are the shortest.  By 

placing an aperture stop of appropriate dimensions at the Kerr induced cavity focal point, cavity 

losses are introduced for non-modelocked operation, creating a bias for modelocked operation.  

If the aperture stop is implemented correctly, the cavity will naturally bring itself to and maintain 

modelocked operation. 
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The power and energy that can be extracted from an ultrafast oscillator is limited.  For any 

application requiring significant pulse energy, ultrafast pulses must be subsequently amplified 

after extraction from the oscillator using additional laser amplifier stages.  Like the oscillator 

gain medium, the laser amplifiers must also possess a gain bandwidth sufficient to amplify all of 

the modes which comprise the ultrafast pulse.  Insufficient bandwidth will result in spectral 

narrowing of the ultrafast pulse and a corresponding increase in temporal pulse width.  It is 

common for the same gain media to be employed in both the laser oscillator and amplifier, as it 

automatically ensures the amplifier will have sufficient bandwidth. 

The high instantaneous power and irradiance that are readily obtained from ultrafast pulses 

present an additional problem to the amplifier stages of ultrafast lasers.  As pulse energy 

increases, the high irradiance can both drive undesired nonlinear effects and cause damage to the 

amplifier optics and gain media.  These effects can be avoided by reducing the instantaneous 

pulse power through chirped pulse amplification [31].   

Chirped pulse amplification is a technique which employs dispersive elements to temporally 

chirp ultrafast pulses, extending their temporal duration by several orders of magnitude.  By 

stretching the pulse, a corresponding reduction in instantaneous pulse power and irradiance is 

obtained.  This delays the onset of high peak irradiances obtained from the pulse during 

amplification, which are sufficient to both drive unwanted nonlinearities and damage optical 

equipment, increasing the total gain which may be obtained before these effects set in by several 

orders of magnitude.  Once the stretched pulse has been amplified, additional dispersive 
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elements can be employed to counteract the beam chirp and recover a pulse possessing the initial 

temporal duration but at the newly obtained pulse energy. 

A recently developed alternative to laser amplifiers are optical parametric amplifiers [32].  

Optical parametric amplifiers use nonlinear mixing to transfer energy between the pump and 

signal fields in place of stimulated emission.  The advantage to this approach is the medium 

being employed as an amplifier does not need to be excited, limiting thermal loading.  This 

technique can be combined with chirped pulse amplification to reduce the peak irradiance 

applied to the amplifiers, the combination of techniques being referred to as optical parametric 

chirped pulsed amplification [33]. 

The Laser Plasma Laboratory (LPL) has developed or obtained several ultrafast laser systems 

used for the investigation of ultrafast, high-energy optical and electromagnetic physics.  One of 

the first systems to be developed was the Terawatt (TW) laser.  TW is a flashlamp pumped 

Cr:LiSAF based solid-state ultrafast laser using chirped-pulsed amplification, and is capable of 

generating 200 mJ pulses at 0.1 Hz.  The MTFL is a modern, commercially obtained chirp-

pulsed amplified Ti:Sapphire solid-state laser using diode pumps, and is capable of generating 20 

mJ at 10 Hz.  The laser system is currently being upgraded by LPL, and should be capable of 

generating pulses as high as 200 mJ when completed.  LPL is currently developing a new laser 

system, designated HERACLES, which uses optical parametric amplification in combination 

with a carrier-envelope phase locked cavity to generated ultrafast, few-cycle pulses.  When 

completed, this system should be suitable to carry out experiments in high-harmonic generation 

[34]. 
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2.2 The MTFL Laser 

 

Figure 1:  The MTFL laser. 

The majority experiments conducted using pulsed laser light used the MTFL laser, depicted in 

Figure 1 and Figure 2, as the pulse laser source.  This includes all experiments conducted in both 

Chapters 3 and 4.  MTFL is a Ti:Sapphire modelocked oscillator seeded, Ti:Sapphire amplified 

chirped pulsed amplified laser.  The laser operates at a center wavelength of 790 nm, has a 

spectral bandwidth of 21 nm, and can produce pulses of 50 fs in the absence of spectral chirp.  

MFTL can generate pulses up to 2 mJ of energy at 1 kHz, and pulses up to 20 mJ of energy at 10 

Hz. 
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Figure 2:  Technical layout of the MTFL laser. 

 

2.2.1 Oscillator 

MTFL employs a 800 nm, 50 fs, modelocked Ti:Sapphire oscillator (Tsunami, Spectra Physics).  

The oscillator produces a 75 MHz train of 6 nJ pulses, each approximately 45 nm in bandwidth.  

The Ti:Sapphire crystal was pumped using a 5 W, 532 nm diode-pumped frequency-doubled 

Nd:YVO4 laser (Millennia, Spectra Physics).  An acousto-optic modulator was used to actively 

modelock the cavity. 
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2.2.2 Stretcher/Compressor 

Both MFTL and TW employ chirped pulsed amplification to obtain high pulse energies.  For the 

MTFL system, a Martinez grating stretcher is used to induce sufficient positive dispersion to 

stretch oscillator pulses to a temporal duration of 250 ps.  After amplification, the pulse was 

compressed to 50 fs using negative dispersion obtain from a Tracey grating compressor [35]. 

 

2.2.3 Amplifiers 

Two amplifiers in series were used to amplify the stretched oscillator pulses.  Pulses were 

initially amplified over 13 passes within a Ti:sapphire regenerative amplifier, extracting 3 mJ of 

energy.  The amplifier Ti:sapphire crystal was double end pumped using a pair of 10 W pulses 

obtained from a Q-switched, diode-pumped Nd:YLF laser (Evolution 30, Spectra Physics).  

Pulses extracted from the regenerative amplifier were either sent directly to the compressor, in 

the case of 1 kHz operation, or alternatively sent a second amplifier stage, in the case of 10 Hz 

operation. 

A double pass Ti:sapphire amplifier was used as the second amplifier stage, from which pulse 

energies of 30 to 40 mJ were extracted.  The laser was pumped using 360 mJ pulses obtained 

from a frequency doubled flash lamp pumped Nd:YAG laser (Quanta Ray, Spectra Physics).   

This served as the final amplifier stage in the MTFL system.  
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2.3 The Terawatt Laser 

Experiments carried out in Chapter 4 used the Terawatt laser in addition to the MTFL laser.  

Terawatt is a Ti:Sapphire seeded, Cr:LiSAF amplified, chirped pulse amplified laser.  Terawatt 

was designed and assembled by a group of LPL students including Steve Grantham, Paul Beaud, 

Edward Miesak, Bruce Chai, Kai Gabel, and Gregory Shimkaveg [36] [37].  Since its assembly 

and operation, it has been maintained and modified by Robert Bernath.  Terawatt is capable of 

generating 200 fs, 50 nm bandwidth pulses at a center wavelength of 845 nm.  The laser 

repetition rate varies from 1 kHz to 0.1 Hz depending on pulse energy.  Pulse energies as high as 

150 mJ can be achieved with this laser system. 

 

2.3.1 Oscillator 

Terawatt employs a Kerr-lens modelocked, Ti:Sapphire oscillator operating at 845 nm to 

generate a 2-5 nJ, 92 MHz pulse train.  The oscillator is depicted in Figure 3.  A Ti:Sapphire 

crystal is located within a cavity with a single 12.5% output coupler (OC).  The Ti:Sapphire 

crystal is pumped using a 5 W Argon-Ion laser at 514 nm.  A plano-convex lens with a 150 mm 

focal length is used to focus pump light onto the Ti:Sapphire crystal, at the location of the cavity 

minimum beam waist as dictated by the concave mirrors CM1 and CM2, to maximize mode 

volume.  A prism pair (FS) is used for cavity dispersion compensation. 
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Figure 3:  Layout of the terawatt oscillator. 

Typically Ti:Sapphire oscillators operate at a center wavelength 800 nm.  To shift the center 

wavelength to 845 nm for optimal use with Cr:LiSAF amplifiers, an adjustable slit was placed 

between the prism pair, and aligned to bias the cavity for operation for longer wavelength 

operation.  The slit was also used to set the cavity bandwidth to 14 nm, again for optimal use 

with the Cr:LiSAF oscillators. 

 

2.3.2 Stretcher/Compressor 

To enable chirped-pulse amplifying operation, terawatt employs conventional grating stretchers 

and compressors.  A folded Martinez-stretcher, depicted in Figure 4, is used to stretch the pulse 

obtained from the oscillator by inducing positive dispersion to chirp the pulse.  Here, an 1800 

lines/mm grating was placed 30 cm from a 58 cm focal length spherical lens.  The chirp obtained 

from the stretcher was sufficient to increase the temporal pulse width by a factor of 3,000.   
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Figure 4:  Terawatt pulse stretcher. 

Pulse compression was accomplished using the Treacy compressor depicted in Figure 5.  This 

compressor provides negative dispersion sufficient to retrieve a time-bandwidth limited pulse 

from the chirped pulse extracted from the amplifier stages of Terawatt.  The Treacy compressor 

depicted was implemented using a pair of 1200 lines/mm gratings separated 20 cm apart. 

 

Figure 5:  Terawatt pulse compressor. 

 

2.3.3 Terawatt Amplifiers 

Terawatt employs a series of amplifiers to increase pulse energy from 2-5 nJ to energies as great 

as 150 mJ.  The first amplifier in series, depicted in Figure 6, is a regenerative amplifier, which 

employs a pair of Pockels cells (PC1 and PC 2) along with polarization optics to temporally trap 
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incident light pulses within a second optical cavity.  A flash lamp pumped Cr:LiSAF amplifier is 

located within the cavity, which amplifies pulses in the cavity during every pass, requiring 40 

passes to extract the crystal gain after the flash lamp fires.  Pulses are extracted using a 40% 

output coupler (OC) at the end of the cavity, resulting in an amplified pulse train at the output.  A 

pulse slicer composed of a Pockels cell and two Glan-Taylor polarizers is used to extract a single 

amplified pulse from the pulse train extracted at the output.  Pulse energies of approximately 4 

mJ are extracted from this amplifier. 

 

Figure 6: Terawatt regenerative amplifier layout. 

A double-pass, Cr:LiSAF amplifier is used as the second stage amplifier.  This amplifier 

employs a flash lamp pumped 7 x 105 mm Cr:LiSAF rod to obtain a double-pass gain of 12, 

increasing pulse energy to 50 mJ.  To maintain good spatial beam quality, a spatial filter is 

placed in series with the amplifier.  This setup is followed by a single pass Cr:LiSAF amplifier of 

the same dimensions, possessing a single-pass gain of 3, increasing pulse energy to 150 mJ. 

 

 

 

PC 1 

PC 2 Cr:LiSAF 

HR 

OC λ/4 

Pol 2 Pol 1 

Pol 3 
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2.4 Laser Range 

 

Figure 7:  Layout of the various LPL lasers (including MFTL and TW), the laser range, and end station diagnostics. 

Two laser ranges were available to carry out experiments.  A 10 m range within the MTFL laser 

bay was used for short propagation distance experiments.  When 10 m was insufficient for 

propagation experiments, or when the TW laser was employed, a 50 m range adjacent to the laser 

range was used.  The 50 m range was accessed by both lasers through the use of turning mirrors.  

An end station located at the end of the 50 m range was used to mount optics and diagnostic 

equipment for long distance propagation experiments.  The experiments involving RF and 

microwave measurements, the 50 m range also serves to distance the measurement equipment 

from the MTFL laser, preventing the RF measurements from recording RF radiation generated 

from the laser electronics, such as the Pockels cells. 
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Figure 8:  End station located at the end of the 50 m end range. 

 

2.5 Beam Imaging Systems 

To evaluate beam geometry obtained from beam engineering experiments, the quantitative 

evaluation of laser beam transverse profiles was necessary.  Such measurements can be carried 

out using conventional CCD cameras, provided the camera’s operating characteristics are 

sufficiently well understood to obtain physical dimensions from the images.  The principle 

difficulty in using cameras for beam profile measurements is that the high instantaneous 

irradiance of the ultrafast pulses employed during experiments is not only sufficient to saturate a 

CCD camera, but destroy the CCD sensor array.  Thus a means to attenuate the transverse beam 

profile is required.  Two optical configurations were employed to this end. 
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Figure 9:  Initial transverse imaging setup. 

The first of the two optical layouts is shown in Figure 9.  Here the incident beam is reflected off 

of a pair of wedges (W1 and W2) oriented 45𝑜 relative to the angle of incidence, before being 

transmitted through a filter wheel (FW) to the camera.  The first wedge (W1) is mounted to a 

translation oriented perpendicular to the surface normal.  The translation stage enables 

movement of the wedge surface between shots, preventing damage from a previous shot from 

degrading the imaging performance of the setup in subsequence shots.  A lens (L) and 

microscope objective (MO) in series is used to image the surface of the first wedge to the 

camera, ensuring the transverse image recorded is that of the beam as it intersects the first 

wedge. 



23 
 

 

Figure 10:  Modified transverse imaging setup. 

To avoid the continual adjustments necessary when using the original imaging system to 

evaluate filaments, a second optical setup was devised by Khan  

Lim to image the transverse profiles of pulsed laser light.  The modified optical configuration is 

shown in Figure 10.  This setup employs a series of six wedges and a calibrated set of neutral 

density filters to attenuate incident light, and a single lens to image the surface of the first optical 

wedge onto the camera.  The first two wedges use a grazing incidence of 7𝑜 in place of the 

original 45𝑜 angle.  Because of the grazing incident angle, the peak irradiance of incident laser 

pulses, including those obtained during filamentation, was insufficient to damage the wedge due 

to the increase in projected area, omitting the need for a translation stage. 
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CHAPTER 3: NON-DIFFRACTING BEAMS, BESSEL BEAMS, 

AND HELICAL BEAMS 

Diffraction is a feature that underlies all light propagation in nature [1] [38].  It imposes strict 

limits on optical systems, such as the minimum spot size that can be obtained with a lens, the 

maximum resolution that can be obtained with a microscope, and the minimum far field beam 

divergence that can be obtained with a laser.  Ordinarily, these are fundamental physical 

limitations for which the physicist and the optical engineer must work around.  However, a 

number of techniques are available to overcome such limitations. 

One such technique is the use of diffraction-free or non-diffracting beams [3], which have been a 

topic of active research for more than 20 years [39].  Non-diffracting beams are exact solutions 

to the Helmholtz equation [8].  By virtue of their field shape, non-diffracting beams propagate 

unaltered through free space, maintaining the exact transverse field shape of the beam after 

propagating over an arbitrary distance [8], undergoing no changes beyond the addition of an 

arbitrary phase.  Thus the shape and features of the beam remain unaltered during propagation.  

The Rayleigh range, which defines the spread of individual features found within the beam, is 

effectively infinite for this class of beams [39] [40] [4].   

Non-diffracting beams possess a number of unique properties beyond features impervious to 

diffraction.  Non-diffracting beams are capable of reconstructing their geometry after 

propagating through solid obstructions, enabling regeneration of the beam during propagation 

[41] [40] [42].  In special cases, motion of beam transverse features can be obtained during 
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propagation.  This includes accelerating, lateral translation that has been observed in the case of 

Airy beams [5] [43], and rotational and spiraling motion that has been observed for Bessel beams 

[44] [45] [46] [47] [48] [49]. 

Ideal non-diffracting beams have both infinite energy and infinite spatial extension, making them 

unrealizable in a laboratory setting.  However, there exist finite energy, spatially confined 

approximations of non-diffracting beams which can be produced in a lab [50].  Such 

approximately non-diffracting beams can propagate a finite distance through space unaltered 

before diffraction effects set it. 

 

3.1 Diffraction Theory 

Light has been understood as the propagation of electromagnetic waves since Maxwell compiled 

a complete set of equations describing electrodynamics.  Like all waves, its propagation physics 

are dictated by diffraction.  Diffraction physics therefore dictate the limits and capabilities of 

light propagation. 

Light diffraction is dictated by the Helmholtz equation.  In the absence of free charge or currents, 

Maxwell’s equations are reduced to [51]  

∇ ⋅ 𝐸�⃑ = 0 (15) 

∇ ⋅ 𝐵�⃑ = 0 (16) 

∇ × 𝐸�⃑ =
𝜕𝐵�⃑
𝜕𝑡

 (17) 
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∇ × 𝐵�⃑ =
𝑛2

𝑐2
𝜕𝐸�⃑
𝜕𝑡

 (18) 

If polarization effects are neglected, such as by assuming the electromagnetic wave is of uniform 

polarization, an assumption consistent with most laser light sources, the Helmholtz equation can 

be obtained as a simultaneous solution to the above set of equations.  The Helmholtz equation is 

given as 

∇2𝐸 −
𝑛2

𝑐2
𝜕2𝐸
𝜕𝑡2

= 0 (19) 

The Helmholtz equation dictates all scalar diffraction effects within a linear media in the absence 

of free charge or current.  Diffraction can be alternatively described using the Rayleigh-

Sommerfeld diffraction integral [1] 

𝐸(𝑥2,𝑦2, 𝑧) =
𝑧
𝑖𝜆
� 𝐸(𝑥1,𝑦1, 0)

𝑒𝑖𝑘𝑙

𝑙2
𝑑𝑥1𝑑𝑦1

∞

−∞
 (20) 

𝑙 =  �(𝑥2 − 𝑥1)2 +  (𝑦2 − 𝑦1)2 + 𝑧2 (21) 

which can be approximated using the Fresnel diffraction integral 

𝐸(𝑥2,𝑦2, 𝑧) =
𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
 � 𝐸(𝑥1,𝑦1, 0) exp �

𝑖𝑘
2𝑧

((𝑥2 − 𝑥1)2 +  (𝑦2 − 𝑦1)2)� 𝑑𝑥1𝑑𝑦1
∞

−∞
 (22) 

for values of z for which 

𝑧3 ≫
𝜋

4𝜆
 [(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2]𝑚𝑎𝑥2  (23) 

The integral formulation of diffraction provided in equations 20 and 22 have proven sufficient to 

describe the evolution of Bessel beams and their superpositions from both spatial filters and 

axicons, as will be discussed. 
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3.2 Consequences of Diffraction 

Diffraction places inherent limits on optical imaging and beam propagation.  In the case of beam 

propagation, beam confinement and the range over which a beam is confined during propagation 

is limited by diffraction and the Rayleigh range [30].  For a Gaussian beam, which provides an 

accurate representation for the beam shape found in most lasers and optical systems, the 

Rayleigh range scales as the square of the minimum beam spot size.  Specifically, for a Gaussian 

beam described by 

𝐸(𝑟, 𝑧) = 𝐸0(𝑧) exp �−
𝑟2

𝑤2(𝑧)� exp[𝑖𝜓(𝑟, 𝑧)] (24) 

the beamwaist 𝑤(𝑧) will diverge at  a rate described by [30]  

𝑤(𝑧) = 𝑤0�1 +  �
𝑧
𝑧𝑅
�
2
 (25) 

where 𝑤0  is the minimum beam waist which is typically used to defined the radius of the 

minimum beam spot size and 𝑧𝑅 is the Rayleigh range defined by 

𝑧𝑅 ≡
𝑛𝜋𝑤0

2

𝜆
 (26) 

which can be observed to scale are the square of the minimum beam waist.  As the beam expands 

the electric field strength is reduced by 

𝐸0(𝑟) =
𝑧𝑅

�𝑧2 + 𝑧𝑅2
𝐸0 (27) 

The beam wavefront curvature is given by 𝜓(𝑟, 𝑧) which is described by 
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𝜓(𝑟, 𝑧) =
𝑟2

𝑅2(𝑧) + arctan
𝑧
𝑧𝑅

 (28) 

where 𝑅(𝑧) is the beam radius of curvature described by 

𝑅(𝑧) = 𝑧 �1 + �
𝜋𝑤0

2

𝜆𝑧
�
2

� (29) 

From equations 25 and 26 it is apparent the beam will only remained confined to the minimum 

beam waist for a distance proportional to the square of that beam waist, and that the far-field 

beam divergence will be inversely proportional to the minimum beam waist.  This introduces a 

problematic tradeoff: the smaller the beam spot required, the shorter the distance the beam can 

propagate while being confined to the required radius.  It is a problem that can be rectified using 

non-diffracting beams. 

 

3.3 Bessel Beams 

Perhaps the most extensively investigated non-diffracting beam geometry is the Bessel beam 

[50].  Bessel beams are a family of beams which comprise a complete set of exact solutions to 

the Helmholtz equation when expanded in cylindrical-polar coordinates [39] [8].  The transverse 

profile which describes the electric field strength of the Bessel beam perpendicular to the 

direction of propagation is described by a Bessel function, giving this class of beams their name.  

In addition to satisfying the Helmholtz equation, Bessel beams form a complete orthonormal 

basis for scalar waveforms in three dimensional space [52].  Axial symmetric beams are 

described entirely by order zero Bessel beams within this basis.  Conversely, any azimuthal 
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asymmetry present in a scalar waveform requires Bessel beams of order other than zero to 

describe when expanded in this particular basis. 

As per all non-diffracting beams, ideal Bessel beams contain both infinite energy and require an 

infinite beam aperture [53].  In practice, truncated approximations of Bessel beams must be 

employed to carry out experiments.  Typically, Bessel-Gauss beams are employed as 

approximations of the ideal case [50].  Bessel-Gauss beams are an aperture limited version of the 

ideal case, limited in both diameter and propagation distance by a Gaussian envelope. 

Bessel-Gauss beams can be obtained in the laboratory through the use of an axicon [54] [55], 

spatial filtering [56], specially designed holographic plates [57] [58], or a system of diffractive 

optical elements [59].  The aforementioned techniques will typically yield order zero Bessel 

beams.  Higher order Bessel beams can be obtained by using these techniques in conjunction 

with either azimuthal phase elements that introduce integer topological charge [60] [61], or a 

Laguerre-Gauss beam [62] [63].  

Bessel beam generation can be described using diffraction theory [39].  To evaluate Bessel beam 

diffraction, cylindrical-polar coordinates are used.  The Fresnel diffraction integral in cylindrical 

coordinates is given by 

𝐸2(𝑟2,𝜙2) =
exp(𝑖𝑘𝑧)
𝑖𝜆𝑧

exp �𝑖
𝑘𝑟22

2𝑧
� 

⋅ � 𝑑𝑟1
∞

0
� 𝑑𝜙1 �𝑟1𝐸1(𝑟1,𝜙1) exp�𝑖

𝑘𝑟12

2𝑧
� exp �−𝑖

𝑘𝑟1𝑟2
𝑧

cos(𝜙2 − 𝜙1)��
2𝜋

0
 

(30) 
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Expanding the electric field as a Fourier series in 𝜙, 

𝐸(𝑟,𝜙) =  � 𝐸𝑚(𝑟) exp(𝑖𝑚𝜙)
∞

𝑚= −∞

 (31) 

employing the Jacobi-Anger expansion, 

exp �−
𝑘0𝑟1𝑟2
𝑧

cos(𝜙2 − 𝜙1) � =  � (−𝑖)𝑚𝐽𝑚 �
𝑘𝑟1𝑟2
𝑧

� exp(−𝑖𝑚𝜙1) exp(𝑖𝑚𝜙2)
∞

𝑚= −∞

 (32) 

observing the orthogonally relationship, 

� 𝑑𝜙1
2𝜋

0
� � (−𝑖)𝑙𝐸𝑚(𝑟) J𝑙 �

𝑘𝑟1𝑟2
𝑧

� exp(𝑖𝑚𝜙1) exp(−𝑖𝑙𝜙1) exp(𝑖𝑚𝜙2)
∞

𝑚= −∞

∞

𝑙= −∞

=  2𝜋 � (−𝑖)𝑚𝐸𝑚(𝑟1)𝐽𝑚 �
𝑘𝑟1𝑟2
𝑧

� exp(𝑖𝑚𝜙2)
∞

𝑚= −∞

 

(33) 

and substituting the results into the Fresnel diffraction integral yields 

𝐸2(𝑟2,𝜙2) =
𝑘𝑒𝑥𝑝(𝑖𝑘𝑧)

𝑖𝑧
exp �𝑖

𝑘𝑟22

2𝑧
� ⋅ 

� (−𝑖)𝑚 exp(𝑖𝑚𝜙2)� 𝑑𝑟1 𝑟1𝐸1𝑚(𝑟1)𝐽𝑚 �
𝑘𝑟1𝑟2
𝑧

� exp�𝑖
𝑘𝑟12

2𝑧
�

∞

0

∞

𝑚= −∞

=  � (−𝑖)𝑚 exp(𝑖𝑚𝜙2)𝐸2𝑚(𝑟2)
∞

𝑚= −∞

 

(34) 

Equation 34 is the Fresnel diffraction integral represented using a modified Hankel transform 

𝐸2𝑚(𝑟2) =  
𝑘𝑒𝑥𝑝(𝑖𝑘𝑧)

𝑖𝑧
exp �𝑖

𝑘𝑟22

2𝑧
�� 𝑑𝑟1 𝑟1𝐸1𝑚(𝑟1)𝐽𝑚 �

𝑘𝑟1𝑟2
𝑧

� exp�𝑖
𝑘𝑟12

2𝑧
�

∞

0
 (35) 
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Equations in 34 and 35 can be used in place of the Fresnel diffraction integral when working in 

cylindrical-polar coordinates. 

While there are numerous means to truncate a Bessel beam, only Bessel-Gauss beams will be 

considered using the above equations.  Of the numerous methods for generating Bessel beams, 

only two methods where investigated experimentally, both of which can be described explicitly 

through the use of diffraction theory.   Ideal Bessel beams can be taken as a special case of 

Bessel-Gauss beams for which the Gaussian beam waist 𝑤 → ∞, for which the subsequent 

analysis is also valid.   

 

3.4 Generating Bessel Beams through Spatial Filtering 

Spatial filtering is a means to construct an arbitrary beam shape through the application of the 

spatial Fourier transform.  When undergoing diffraction, the Fourier transform of a transverse 

wavefront will be obtained in the Fraunhofer limit, normally expressed as 

𝑧 ≫
𝐷2

𝜆
 (36) 

where D is the beam diameter.  Thus under normal circumstances, a spatial Fourier transform of 

the wavefront can only be obtained at large propagation distances.  However, if a wavefront is 

incident on a spherical lens, its spatial Fourier transform will instead be found at the lens focal 

plane. 
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Beam synthesis through the application of spatial filtering is obtained by first determining the 

spatial Fourier transform of the desired beam.  A mask is then used to selectively block any 

components not part of the desired spatial Fourier transform in the beam.  The remaining filtered 

beam is transmitted through a lens, after which the desired beam shape will be found at the lens 

focal plane.   

This method benefits from simple experimental implementation as spherical lenses are readily 

available and the mask required to shape the beam can be quickly fabricated using a mill and 

sheets of basic materials, such as plastics and metals.  However, this method makes inefficient 

use of incident light, as any light not present in the desired spatial frequencies is lost. 

Bessel beams can be represented as an infinite collection of plane waves, all of which whose 

normals make the same angle relative to the optical axis [3].  Each plane is of different azimuthal 

orientation, and collectively the plane waves are distributed evenly around the optical axis.  The 

spatial Fourier transform corresponding to such a configuration is a uniform irradiance, infinitely 

thin ring.  An implementation of this Fourier transform can then be obtained by placing and 

aligning a ring slit in the path of a collimated beam, followed by a spherical lens in series, for 

which a Bessel beam is obtained. 

Mathematically, synthesis of a Bessel beam through the use of spatial filtering can be described 

through the application of the previously derived diffraction integrals.  Starting with a Gaussian 

beam with an azimuthal charge of m 

𝐸(𝑟) = 𝐸0 exp �−
𝑟2

𝑤2� exp(𝑖𝑚𝜙) (37) 
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The Gaussian beam is filtered using a ring mask, which is a thin annular aperture of radius 𝑟0 and 

radial width Δ𝑟.  The electric field immediately after the mask will be 

𝐸(𝑟,𝜙) = 𝐸0Δ𝑟 exp�−
𝑟02

𝑤2� 𝛿(𝑟 − 𝑟0) exp(𝑖𝑚𝜙) (38) 

If this field is then transmitted through a lens of focal length 𝑓 immediately after the annular 

mask, the resulting field will be 

𝐸(𝑟,𝜙) = 𝐸0Δ𝑟 exp �−
𝑟02

𝑤2� 𝛿(𝑟 − 𝑟0) exp�−𝑖
𝑘𝑟2

2𝑓
� exp(𝑖𝑚𝜙) (39) 

Substituting this expression into the Fresnel diffraction integral 

𝐸2(𝑟2,𝜙2) =  (−𝑖)𝑚𝐸2,𝑚(𝑟2) exp(𝑖𝑚𝜙2) 

=  (−𝑖)𝑚𝐸0Δ𝑟 exp �−
𝑟2

𝑤2�
𝑘𝑒𝑥𝑝(𝑖𝑘𝑧)

𝑖𝑧
exp �𝑖

𝑘𝑟22

2𝑧
� exp(𝑖𝑚𝜙2) 

⋅ � 𝑑𝑟1 𝑟1𝐽𝑚 �
𝑘𝑟1𝑟2
𝑧

� 𝛿(𝑟 − 𝑟0) exp �𝑖
𝑘𝑟12

2
�

1
𝑧
−

1
𝑓
��

∞

0
 

= (−𝑖)𝑚𝐸0Δ𝑟 exp �−
𝑟02

𝑤2� 𝐽𝑚 �
𝑘𝑟0
𝑧
𝑟2�

𝑘𝑟0 exp(𝑖𝑘𝑧)
𝑧

exp �𝑖
𝑘𝑟22

2𝑧
� exp(𝑖𝑚𝜙) 

(40) 

At the focal plane of the lens, where 𝑧 = 𝑓 

𝐸(𝑟) = (−𝑖)𝑚𝐸0Δ𝑟
𝑘𝑟0
𝑓

exp�−
𝑟02

𝑤2� 𝐽𝑚 �
𝑘𝑟0
𝑓
𝑟� exp �𝑖𝑘 �𝑓 −

𝑟2

2𝑓
�� exp(𝑖𝑚𝜙) (41) 

The irradiance corresponding to this electric field distribution is 

𝐼(𝑟) = 𝐼0 �
𝑘𝑟0
𝑓
Δr�

2

exp�−
𝑟02

𝑤2� 𝐽𝑚
2 �

𝑘𝑟0
𝑓
𝑟� (42) 
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Equation 42 describes an order m Bessel beam which is present in the immediate vicinity of the 

lens focal length.  Because the spatial Fourier transform is only present near the lens focal plane, 

the spatial extent of Bessel beams generated in this manner is limited.  This limitation 

corresponds in part to the limited energy that is typically extracted from the spatial filtering 

technique. 

 

3.5 Bessel Beam Generation Using an Axicon Lens 

Axicons provide a means for generating Bessel beams that is both simple and makes efficient use 

of incident radiation power.  Axicons are conical lenses.  Like conventional lenses, axicons 

introduce a radially dependent phase lag across an incident wavefront.  Due to axicon geometry, 

the phase lag varies linearly with radial distance, while a conventional lens induces a quadratic 

phase lag across the wavefront of an incident wave.   

By transmitting a Gaussian beam through an axicon, Bessel-Gauss beams are readily obtained 

[55] [62].  As in the case of spatial filtering, the fixed refraction angle of the axicon generates a 

family of azimuthally symmetric plane waves possessing normals making identical angles with 

respect to the optical axis.  Axicons are defined by a conical apex angle, which determines the 

slope of the axicon conical geometry and dictates scale and propagation of the Bessel beams 

resulting from axicon synthesis. 

Axicon synthesis can be described analytically by applying the stationary phase approximation to 

the Fresenel diffraction integral [39].  To describe the effects of an axicon on an incident 
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wavefront, the thin lens approximation is used.  In the thin lens approximation, the refracted 

wavefront of immediately after an axicon is described as 

𝐸𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑒𝑑(𝑟,𝜙) = 𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑟,𝜙) ⋅ exp(−𝑖𝑘𝛽𝑟) (43) 

where 𝛽 is the refraction angle associated with the axicon.  The refraction angle is related to the 

axicon conical apex angle 𝛼𝑝 by 

𝛽 = (𝑛 − 1)
�𝜋 − 𝛼𝑝 �

2
 (44) 

where n is the refractive index of the axicon glass.  Starting with a Gaussian beam having peak 

irradiance 𝐼0 an associated peak electric field strength, 𝐸0 =  � 2
𝑐𝜖0

𝐼0, and an azimuthal charge of 

m (obtainable through the application of a vortex phase plate) 

𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = 𝐸0 exp �−
𝑟2

𝑤2� exp(𝑖𝑚𝜙) (45) 

and applying the axicon wavefront phase lag yields 

𝐸1 =  𝐸0 exp �−
𝑟2

𝑤2� exp(−𝑖𝑘𝛽𝑟) exp(𝑖𝑚𝜙) (46) 

Substituting this result into the Fresnel diffraction integral gives 

𝐸2(𝑟2,𝜙2) = (−𝑖)𝑚𝐸2,𝑚(𝑟2) exp(𝑖𝑚𝜙2)

= (−𝑖)𝑚𝐸0
𝑘 exp(𝑖𝑘𝑧)

𝑖𝑧
exp �𝑖

𝑘𝑟22

2𝑧
� exp(𝑖𝑚𝜙2)

⋅ � 𝑑𝑟1𝑟1𝐽𝑚 �
𝑘𝑟1𝑟2
𝑧

� exp�−
𝑟12

𝑤2� exp �𝑖
𝑘𝑟12

2𝑧
� exp(−𝑖𝑘𝛽𝑟1)

∞

0
 

(47) 
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To solve Equation 47, the stationary phase method is used (see Appendix D).  Applying the 

method of stationary phase 

𝜓 =
𝑘𝑟12

2𝑧
− 𝑘𝛽𝑟1 (48) 

𝜕𝜓
𝜕𝑟1

=
𝑘𝑟1
𝑧
− 𝑘𝛽 = 0 (49) 

𝜕2𝜓
𝜕𝑟12

=
𝑘
𝑧

 (50) 

𝑟1 = 𝛽𝑧 (51) 

and substituting the results yields 

𝐸2(𝑟2,𝜙2) = (−𝑖)𝑚𝐸0𝛽𝑘 J𝑚(𝛽𝑘𝑟2)exp�−
𝛽2𝑧2

𝑤2 � exp(𝑖𝑘𝑧) exp �𝑖
𝛽2𝑘𝑧

2
� exp �𝑖

𝑘𝑟22

2𝑧
�

⋅ � 𝑑𝑟1 exp �𝑖
𝑘

2𝑧
(𝑟1 − 𝛽𝑧)2�

∞

0
 

(52) 

Solving the integral associated with the second order phase term gives 

� 𝑑𝑟1 exp �𝑖
𝑘

2𝑧
(𝑟1 − 𝛽𝑧)2�

∞

0
=  � 𝑑𝑢 exp �𝑖

𝑘
2𝑧
𝑢2�

∞

−𝛽𝑧

=  �
𝜋𝑧
2𝑘

exp �−𝑖
𝜋
4
� �1 + erf��𝑖

𝛽2𝑘𝑧
2

�� 

(53) 

Defining the quantities 

𝑘⊥ = 𝛽𝑘 (54) 
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𝑙𝑛𝑑 =
𝑤
𝛽

 (55) 

𝐺(𝑧) =  �1 + erf��𝑖
𝑘⊥2𝑧
2𝑘

�� (56) 

the diffracted field can then be reduced to 

𝐸2(𝑟2) =  𝑒−𝑖
(3+2𝑚)𝜋

4  

⋅ 𝐸0𝐽𝑚(𝑘⊥𝑟2)�𝜋
𝑘⊥2𝑧
2𝑘

exp�−
𝑧2

𝑙𝑛𝑑2
� exp�𝑖

𝑘𝑟22

2𝑧
� exp �𝑖 �𝑘 −

𝑘⊥2

2𝑘
� 𝑧� exp(𝑖𝑚𝜙)𝐺(𝑧) 

(57) 

Here the quantities 𝑘⊥  and 𝑙𝑛𝑑  have definite physical meaning.  The quantity 𝑙𝑛𝑑  is the non-

diffracting length of the Bessel-Gauss beam.  It represents the finite propagation distance of the 

Bessel-Gauss beam as a consequence of its finite spatial extent, as illustrated in Figure 11.  A 

Bessel beam of infinite spatial extent can be obtained by taking 𝑤 → ∞ for which 𝑙𝑛𝑑 → ∞.  In 

this case the Bessel beam propagates indefinitely as expected. 

The quantity 𝑘⊥  is the component of the wavevector normal to the direction of propagation, 

which can also be obtained through the dispersion relationship derived from the Helmholtz 

equation.  The dispersion relation obtained here and that obtained from the Helmholtz equation 

are equivalent for 𝑘⊥ ≪ 𝑘 or 𝛽 ≪ 1.  Because for all experiments carried out the refraction angle 

was limited to 𝛽 < 0.005, this condition is always satisfied.  Under this condition the dispersion 

relation 

𝑘2 = 𝑘𝑧2 + 𝑘⊥2  (58) 

can be shown to reduce to   
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𝑘𝑧 = 𝑘�1 −
𝑘⊥2

𝑘2
≈ 𝑘 −

𝑘⊥2

2𝑘
 (59) 

which is the longitudinal wavenumber given in Equation 57.  The irradiance of the Bessel beam 

can then be obtained from the electric field 

𝐼(𝑟) =
1
2
𝑐𝜖0𝐸∗𝐸 (60) 

𝐼(𝑟) = 𝐼0𝜋2𝐽𝑚2 (𝑘⊥𝑟)
𝑘⊥2𝑧
2𝑘

exp�−
2𝑧2

𝑙𝑛𝑑2
� |𝐺(𝑧)|2 (61) 

 

Figure 11:  Geometric illustration of the diffraction-free length of a Bessel beam generated from an axicon 
illuminated with a Gaussian beam. 

From Equation 61, an axicon generated Bessel beam is expected to propagate from 𝑧 = 0 to 

𝑧 = 𝑙𝑛𝑑 , with a maximum on axis irradiance at 𝑧 = 𝑙𝑛𝑑
2

 as shown in Figure 11.  On axis, 
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irradiances on the order of 𝐼 ≅ 𝛽2𝜋3

𝜆
𝐼0 are obtained, well in excess of the Gaussian beam peak 

irradiance 𝐼0.  The falloff of beam irradiance with distance described by the exponential of the 

Bessel beam is a consequence of the limited aperture of the beam as previously described.   

 

Figure 12:  Geometric representation of the linear scaling of on-axis Bessel beam irradiance with propagation 
distance. 

The linear increase of beam irradiance with distance observed in Equation 61 is an artifact of 

axicon generation.  The fixed refraction angle of an axicon results in a direct linear mapping of 

radial displacement along the axicon to longitudinal displacement along the propagation axis.  

Irradiance along the beam axis corresponds to irradiance integrated over the circumference of the 

axicon at a fixed radius, as shown in Figure 12.  For increasing propagation distance, the radius 



40 
 

of this circumference will increase, corresponding to an increase in integrated power if the 

irradiance incident on the axicon is uniform. 

Because of the extended propagation distance and high conversion efficiencies, axicon 

generation is ideal when extended, high irradiance Bessel beams are desired.  Such benefits will 

prove suitable for the generation of Bessel filaments, to be discussed in Chapter 4. 

 

3.6 Helical Beams 

Beam geometries of greater complexity can be obtained through the superposition of multiple 

Bessel beams [60] [64] [65] [66] [67].  Such beam superposition exhibit transverse irradiance 

profiles that are periodic with propagation distance [68], rather than invariant with beam 

propagation as in the case of a single Bessel beam.  Such beam superposition techniques have 

enabled the synthesis of a variety of beam structures, which can be observed to rotate either as a 

function of propagation distance [56] [68] [49] [45] [46], or as a function of optical system 

parameters [48] [69] [70].  Rotating beam geometries have a wide variety of applications, 

including optical micromanipulation [66] [67] [70] [71] [72] [73], vortex motion in Bose-

Einstein condensates [69], high resolution imaging [74] [75] [76], complex optofluidity [77], and 

propeller solitons [78] [79] [80].   

Helical beams are a class of non-diffracting beams characterized by a pair of diffraction 

impervious irradiance peaks arranged in diametrically opposite locations across the propagation 

axis, which rotate about the propagation axis during beam propagation.  Helical beams are 
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obtained through the superposition of two order one Bessel beams of opposite azimuthal charge, 

as previously illustrated mathematically by Bekshaev et al. [44].  While the features of individual 

non-diffracting beams remained unaltered with the exception of a phase term during propagation, 

the resulting superposition of the two beams will not maintain its transverse shape due to the 

mutual interference between the individual Bessel beams.  However, such transverse structure 

will vary periodically while propagating through space [68].  In the case of helical beams, such 

periodic variations in the beam profile correspond to the rotation of the helical beam about the 

optical axis. 

 

Figure 13:  The transverse irradiance (top) and phase (bottom) profiles of order ±1 Bessel beams and their 
resulting superposition (right). 

To illustrate the construction of a helical beam from a Bessel beam basis, consider two arbitrary 

order one Bessel beams of opposite azimuthal charge and equal on axis field strength as depicted 

in Figure 13.  

𝐸1(𝑟,𝜙, 𝑧) = 𝐽1�𝑘⊥1𝑟� exp(𝑖𝜙) exp �𝑖 �𝑘 −
𝑘⊥1
2

2𝑘
� 𝑧� (62) 
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𝐸−1(𝑟,𝜙, 𝑧) = 𝐽1�𝑘⊥−1𝑟� exp(−𝑖𝜙) exp �𝑖 �𝑘 −
𝑘⊥−1
2

2𝑘
� 𝑧� (63) 

where the approximation in Equation 59 was used to satisfy the dispersion relation.  If the 

perpendicular wavenumbers are sufficiently close that the approximation 𝐽1�𝑘⊥1𝑟� ≅ 𝐽1�𝑘⊥2𝑟� is 

valid, than the superposition of the two Bessel beams is 

𝐸(𝑟,𝜙, 𝑧) = 𝐸1(𝑟,𝜙, 𝑧) + 𝐸−1(𝑟, 𝑧)

≅ 𝐽1�𝑘⊥1𝑧� exp(𝑖𝑘𝑧) �exp �𝑖 �𝜙 −
𝑘⊥1
2

2𝑘
𝑧�� + exp �−𝑖 �𝜙 +

𝑘⊥−1
2

2𝑘
𝑧���

= 2𝐽1�𝑘⊥1𝑧� cos�𝜙 −
𝑘⊥1
2 − 𝑘⊥−1

2

4𝑘
𝑧� exp �𝑖 �𝑘 −

𝑘⊥1
2 + 𝑘⊥−1

2

2𝑘
𝑧�� 

(64) 

The spatial irradiance corresponding to this field shape is 

𝐼(𝑟,𝜙, 𝑧) ∝ 𝐽12�𝑘⊥1𝑧� cos2 �𝜙 −
𝑘⊥1
2 − 𝑘⊥−1

2

4𝑘
𝑧� (65) 

The cosine term in Equation 65 indicates the beam irradiance rotates at the rate of defined by 

𝑑𝜃
𝑑𝑧

=
𝑘⊥1
2 − 𝑘⊥−1

2

4𝑘
 (66) 

From the above equations it can be concluded that under the appropriate conditions, helical 

beams can be obtained as a superposition of two order one Bessel beams.   
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3.7 Coaxial Helical Beam Synthesis 

While Helical beams synthesis is conceptually simple as it only requires a sum of two discrete 

components in a natural basis of the Helmholtz equation, achieving helical beams experimentally 

requires precise alignment in space, and for the case of pulsed light, precise alignment in time.  

Helical beam synthesis therefore requires an approach that can readily deal with the alignment 

problems presented in obtaining the correct Bessel beam superposition. 

 

Figure 14:  Conceptual layout of an optical configuration used for helical beam synthesis. 

To overcome the alignment problems present in obtaining an aligned Bessel beam superposition, 

a coaxial beam synthesis approach was adopted.  Coaxial helical beam synthesis is carried out by 

applying the phase necessary to generate two oppositely charge Bessel beams to radially 

disparate sections of the same incident beam.   In this approach, a unit azimuthal charge and 

fixed refraction angle is applied to the beam within a radius 𝑟𝑠, while the opposite azimuthal 

charge and a different refraction angle will be applied the remainder of the beam outside of this 

radius.  A conceptual diagram of a coaxial helical beam setup is illustrated in Figure 14. 
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To ensure both beams overlap along the optical axis, a greater diffraction angle must be applied 

to the outermost beam, ensuring faster convergence of the outer beam towards the optical axis.  

Mathematically, this optical configuration depicted in Figure 14 is represented by 

𝐸𝑖𝑛𝑛𝑒𝑟 = exp(−𝑖𝜙) exp(−𝑖𝑘𝛽𝑖𝑟)𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (67) 

for 𝑟 < 𝑟𝑠, and by  

𝐸𝑜𝑢𝑡𝑒𝑟 = exp(𝑖𝜙) exp(−𝑖𝑘𝛽𝑜𝑟)𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (68) 

for 𝑟 > 𝑟𝑠, where 𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 is the incident Gaussian beam, 𝑟𝑠 is the separation radius between the 

inner and outer section of the coaxial optics, and 𝛽𝑖 and 𝛽𝑜 are the cumulative refraction angles 

associated with the inner and outer radial regions of the optics. 

As in the previous cases, this optical configuration can be evaluated using the Fresnel diffraction 

integral.  Expressing the beam immediately after the refractive elements as 

𝐸1(𝑟,𝜙) = 

𝐸0 exp �−
𝑟2

𝑤2� [𝑢(𝑟 − 𝑟𝑠) exp(𝑖𝑘𝛽𝑜𝑟) exp(𝑖𝜙) + 𝑢(𝑟𝑠 − 𝑟) exp(−𝑖𝑘𝛽𝑖𝑟) exp(−𝑖𝜙)] 
(69) 

where 𝑢(𝑟) is the step function, and substituting the resulting field into the Fresnel diffraction 

integral yields 

𝐸2(𝑟2,𝜙2) =  −𝑖𝐸2,1(𝑟1) exp(𝑖𝜙) + 𝑖𝐸2,−1(𝑟1) exp(−𝑖𝜙) (70) 

where 
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𝐸2,1(𝑟2) = 𝐸0
𝑘 exp(𝑖𝑘𝑧)

𝑖𝑧
exp �𝑖

𝑘𝑟22

2𝑧
�

⋅ � 𝑑𝑟1𝑟1𝑢(𝑟1 − 𝑟𝑠)𝐽1 �
𝑘𝑟1𝑟2
𝑧

� exp �−
𝑟12

𝑤2� exp�𝑖
𝑘𝑟12

2𝑧
� exp(−𝑖𝑘𝛽𝑜𝑟1)

∞

0
 

(71) 

𝐸2,−1(𝑟2) = −𝐸0
𝑘 exp(𝑖𝑘𝑧)

𝑖𝑧
exp �𝑖

𝑘𝑟22

2𝑧
�

⋅ � 𝑑𝑟1𝑟1𝑢(𝑟𝑠 − 𝑟1)𝐽1 �
𝑘𝑟1𝑟2
𝑧

� exp �−
𝑟12

𝑤2� exp�𝑖
𝑘𝑟12

2𝑧
� exp(−𝑖𝑘𝛽𝑖𝑟1)

∞

0
 

(72) 

Here the identity 𝐽−𝑛(𝑥) =  (−1)𝑛𝐽𝑛(𝑥)  was employed to express 𝐸2,−1(𝑟)  in terms of 𝐽1 .  

Solving equations 71 and 72 using the stationary phase approximation yields 

𝐸2,1(𝑟2) =  𝑒−𝑖
3𝜋
4 ⋅ 

𝐸0𝑢 �𝑧 −
𝑟𝑠
𝛽𝑜
� 𝐽1�𝑘⊥,𝑜𝑟2��𝜋

𝑘⊥,𝑜
2 𝑧
2𝑘

exp�−
𝑧2

𝑙𝑑𝑓,𝑜
2 � exp�𝑖

𝑘𝑟22

2𝑧
� exp �𝑖 �𝑘 −

𝑘⊥,𝑜
2

2𝑘
�𝑧� 𝐺𝑜(𝑧) 

(73) 

𝐸2,−1(𝑟2) =  𝑒𝑖
𝜋
4 ⋅ 

𝐸0𝑢 �𝑧 −
𝑟𝑠
𝛽𝑖
� 𝐽1�𝑘⊥,𝑖𝑟2��𝜋

𝑘⊥,𝑖
2 𝑧
2𝑘

exp �−
𝑧2

𝑙𝑑𝑓,𝑖
2 � exp�𝑖

𝑘𝑟22

2𝑧
� exp �𝑖 �𝑘 −

𝑘⊥,𝑖
2

2𝑘
� 𝑧� 𝐺𝑖(𝑧) 

(74) 

where 

𝑘⊥,𝑜 = 𝛽𝑜𝑘 (75) 

𝑘⊥,𝑖 = 𝛽𝑖𝑘 (76) 

𝑙𝑑𝑓,𝑜 =
𝑤
𝛽𝑜

 (77) 
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𝑙𝑑𝑓,𝑖 =
𝑤
𝛽𝑖

 (78) 

For 𝑟𝑠
𝛽𝑜

< 𝑧 < 𝑟𝑠
𝛽𝑖

, interference between the two Bessel beams is obtained on the optical axis 

resulting in the field described by 

𝐸2(𝑟2,𝜙2) =  𝑒𝑖
3𝜋
4 𝐸0 ⋅ 

�𝐽1�𝑘⊥,𝑜𝑟2��𝜋
𝑘⊥,𝑜
2 𝑧
2𝑘

exp �− 𝑧2

𝑙𝑑𝑓,𝑜
2 � exp �𝑖 𝑘𝑟2

2

2𝑧
� exp �𝑖 �𝑘 − 𝑘⊥,𝑜

2

2𝑘
� 𝑧� exp(𝑖𝜙)𝐺𝑜(𝑧) +

 𝐽1�𝑘⊥,𝑖𝑟2��𝜋
𝑘⊥,𝑖
2 𝑧

2𝑘
exp �− 𝑧2

𝑙𝑑𝑓,𝑖
2 � exp �𝑖 𝑘𝑟2

2

2𝑧
� exp �𝑖 �𝑘 − 𝑘⊥,𝑖

2

2𝑘
� 𝑧� exp(−𝑖𝜙)𝐺𝑖(𝑧)�  

(79) 

Defining the quantity 

𝐻(𝑟, 𝑧) = 1 −
𝑘⊥,𝑜

𝑘⊥,𝑖

𝐽1�𝑘⊥,𝑜𝑟�𝐺𝑜(𝑧)
𝐽1�𝑘⊥,𝑖𝑟�𝐺𝑖(𝑧)

exp ��
1
𝑙𝑑𝑓,𝑖
2 −

1
𝑙𝑑𝑓,𝑜
2 � 𝑧� (80) 

and rearranging 

𝐸2(𝑟,𝜙) =  𝑒𝑖
3𝜋
4 𝐸0𝐽1�𝑘⊥,𝑜𝑟��𝜋

𝑘⊥,𝑜
2 𝑧
2𝑘

exp �−
𝑧2

𝑙𝑑𝑓,𝑜
2 � exp�𝑖

𝑘𝑟2

2𝑧
�𝐺𝑜(𝑧) 

�exp �𝑖 �𝑘 −
𝑘⊥,𝑜
2

2𝑘
� 𝑧� exp(𝑖𝜙) +  exp �𝑖 �𝑘 −

𝑘⊥,𝑖
2

2𝑘
� 𝑧� exp(−𝑖𝜙)� 

+ 𝑒𝑖
3𝜋
4 𝐸0𝐻(𝑟, 𝑧) ⋅ 

𝐽1�𝑘⊥,𝑖𝑟��𝜋
𝑘⊥,𝑖
2 𝑧
2𝑘

exp�−
𝑧2

𝑙𝑑𝑓,𝑖
2 � exp �𝑖

𝑘𝑟2

2𝑧
� exp �𝑖 �𝑘 −

𝑘⊥,𝑖
2

2𝑘
� 𝑧� exp(−𝑖𝜙)𝐺𝑖(𝑧) 

(81) 

and observing that 
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exp �𝑖 �𝑘 −
𝑘⊥,𝑜
2

2𝑘
� 𝑧� exp(𝑖𝜙) + exp �𝑖 �𝑘 −

𝑘⊥,𝑖
2

2𝑘
�� exp(−𝑖𝜙)

= 2 cos�𝜙 −
𝑘⊥,𝑜
2 − 𝑘⊥,𝑖

2

4𝑘
𝑧� exp �𝑖 �𝑘 −

𝑘⊥,𝑜
2 + 𝑘⊥,𝑖

2

4𝑘
� 𝑧� 

(82) 

the diffracted field reduces to 

𝐸(𝑟,𝜙) =  𝑒𝑖
3𝜋
4 2𝐸0𝐽1�𝑘⊥,𝑜𝑟��𝜋

𝑘⊥,𝑜
2 𝑧
2𝑘

exp �−
𝑧2

𝑙𝑑𝑓,𝑜
2 � exp�𝑖

𝑘𝑟2

2𝑧
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𝐺𝑜(𝑧) cos�𝜙 −
𝑘⊥,𝑜
2 − 𝑘⊥,𝑖

2

4𝑘
𝑧� exp �𝑖 �𝑘 −

𝑘⊥,𝑜
2 + 𝑘⊥,𝑖

2

4𝑘
� 𝑧� +  𝑒𝑖

3𝜋
4 𝐸0𝐻(𝑟, 𝑧) ⋅ 

𝐽1�𝑘⊥,𝑖𝑟��𝜋
𝑘⊥,𝑖
2 𝑧
2𝑘

exp�−
𝑧2

𝑙𝑑𝑓,𝑖
2 � exp �𝑖

𝑘𝑟2

2𝑧
� exp �𝑖 �𝑘 −

𝑘⊥,𝑖
2

2𝑘
� 𝑧� exp(−𝑖𝜙)𝐺𝑖(𝑧) 

(83) 

The irradiance corresponding to the electric field in Equation 83 is 

𝐼(𝑟,𝜙) =  4𝜋
𝑘⊥,𝑜
2 𝑧
2𝑘

𝐼0𝐽12�𝑘⊥,𝑜𝑟� exp �−
2𝑧2

𝑙𝑑𝑓,𝑜
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2

4𝑘
𝑧�

+  𝜋
𝑘⊥,𝑖
2 𝑧
2𝑘

𝐼0𝐻2(𝑟, 𝑧)𝐽12�𝑘⊥,𝑖𝑟� exp�−
2𝑧2

𝑙𝑑𝑓,𝑖
2 � 𝐺𝑖2(𝑧)

+ 4𝜋
𝑘⊥,𝑜𝑘⊥,𝑖𝑧

2𝑘
𝐼0𝐽1�𝑘⊥,𝑜𝑟�𝐽1�𝑘⊥,𝑖𝑟�|𝐻(𝑟, 𝑧)𝐺𝑜(𝑧)𝐺𝑖(𝑧)| ⋅ 

exp �−�
1

𝑙𝑑𝑓,𝑜
2 +

1
𝑙𝑑𝑓,𝑖
2 � 𝑧� cos2 �𝜙 −

𝑘⊥,𝑜
2 − 𝑘⊥,𝑖

2

4𝑘
𝑧� 

(84) 

In the lim 𝛽𝑖 → 𝛽𝑜, 𝐻(𝑟, 𝑧) → 0, and the irradiance reduces to  

𝐼(𝑟,𝜙) =  4𝜋
𝑘⊥,𝑜
2 𝑧
2𝑘

𝐼0𝐽12�𝑘⊥,𝑜𝑟� exp �−
2𝑧2

𝑙𝑑𝑓,𝑜
2 � |𝐺𝑜(𝑧)|2 cos2 �𝜙 −

𝑘⊥,𝑜
2 − 𝑘⊥,𝑖

2

4𝑘
𝑧� (85) 
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which is contains both the Bessel profile and the cosine term responsible for rotation found in 

Equation 65, which are responsible for the fundamental properties of the helical beam.  The 

remaining terms are those found in Equation 61 for a Bessel beam obtained from a Gaussian 

beam and axicon, and are the artifacts and aperture limitations associated with axicon generation 

of the non-diffracting beam. 

The beam irradiance rotates during propagation according to 

𝜃(𝑟, 𝑧) = 𝜙 −
𝑘⊥,𝑜
2 − 𝑘⊥,𝑖

2

4𝑘
 (86) 

with a rotation rate of 

𝜕𝜃
𝜕𝑧

=
𝑘⊥,𝑜
2 − 𝑘⊥,𝑖

2

4𝑘
=
𝜋
2
𝛽𝑜2 − 𝛽𝑖2

𝜆
 (87) 

For the coaxial optical setup, beam rotation is dictated entirely by the two refractive angles used 

and the wavelength of light.  The quadratic dependence of rotation rate implies more full 

rotations of the helical beam can be obtained for greater refractive angles, as non-diffracting 

distance scales only as the inverse with respect to the axicon refraction angles. 

The scale of the helical beam can also be estimated from Equation 85.  Observing that each 

irradiance peak is bounded by the first and second zeros of 𝐽1�𝑘⊥,𝑜𝑟�, the diameter of the 

individual irradiance peaks cannot exceed  

𝑑𝑚𝑎𝑥 =
3.8317
𝑘⊥

=
1.22𝜆
𝛽𝑜 + 𝛽𝑖

 (88) 
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The spacing of the helical beam irradiance peaks can similarly be estimated.  Assuming each 

irradiance peak is centered on the first extremum of 𝐽1�𝑘⊥,𝑜𝑟�, and observing that the cosine term 

in Equation 85 requires an azimuthal separation of 𝜋, then the center of the irradiance peaks are 

separated by a distance of 

𝑑𝑠𝑒𝑝 =
3.6824
𝑘⊥

=
1.17𝜆
𝛽𝑜 + 𝛽𝑖

 (89) 

Equations 87, 88 and 89 illustrate that the refraction angles 𝛽𝑜 and 𝛽𝑖 dictate the rotation rate, 

size and separation of the helical beam.  The rotation rate scales quadratically with the refraction 

angles, while the beam diameter scales inversely with respect to these angles.  Thus the beam 

size can be increased at the cost of beam rotation rate. 

To obtain helical beams with propagation distances on the order of a meter or more, refraction 

angles less than a degree are used.  Using refraction angles of 𝛽𝑖 = 0.15∘  and 𝛽𝑜 = 0.25∘  at 

𝜆 = 800 𝑛𝑚 to synthesize helical beams will result in a pair of 140 𝜇𝑚 helical beams spaced 

134 𝜇𝑚 apart which complete a single rotation about the optical axis every 27 cm as derived 

from equations 87-89.  

 

 

 

 

 



50 
 

3.8 Longitudinal Compression Due to the Addition of a Lens 

Bessel and helical beams are assumed to be generated using a collimated Gaussian beam.  In 

practice, departures from collimation may be present, and both Bessel and helical beams may be 

synthesized using diverging or converging Gaussian beams.  Such departures from collimation 

can be modeled, or even caused by, a lens being placed in series with an axicon. If the lens is 

assumed to be sufficiently close to the axicon, the resulting diffraction integral only needs to be 

evaluated once.   

To calculate the effects of a lens on an otherwise known diffracted field, assume the incident 

field originally takes the form 

𝐸(𝑟,𝜙) = 𝑓(𝑟) exp[−𝑖𝑔(𝑟)] exp(𝑖𝑚𝜙) (90) 

Applying the phase of a lens of focal length f 

𝐸(𝑟,𝜙) = 𝑓(𝑟) exp[−𝑖𝑔(𝑟)] exp �−𝑖
𝑘𝑟2

2𝑓
� exp(𝑖𝑚𝜙) (91) 

and substituting in the Fresnel diffraction integral gives 

𝐸2(𝑟2,𝜙2) =  (−𝑖)𝑚𝐸2,𝑚(𝑟2) exp(𝑖𝑚𝜙2) =  (−𝑖)𝑚
𝑘𝑒𝑥𝑝(𝑖𝑘𝑧)

𝑖𝑧
exp �𝑖

𝑘𝑟22

2𝑧
� exp(𝑖𝑚𝜙2) 

⋅ � 𝑑𝑟1 𝑟1𝑓(𝑟1)𝐽𝑚 �
𝑘𝑟1𝑟2
𝑧

� exp[−𝑖𝑔(𝑟1)] exp �𝑖
𝑘𝑟12

2
�

1
𝑧
−

1
𝑓
��

∞

0
 

(92) 

Applying the stationary phase approximation as described previously 

𝜓(𝑟1) =
𝑘𝑟12

2
�

1
𝑧
−

1
𝑓
� −  𝑔(𝑟1) (93) 
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𝜕𝜓(𝑟1)
𝜕𝑟1

= 𝑘𝑟1 �
1
𝑧
−

1
𝑓
� −  

𝜕𝑔(𝑟1)
𝜕𝑟1

= 0 (94) 

𝜕2𝜓(𝑟1)
𝜕𝑟12

= 𝑘 �
1
𝑧
−

1
𝑓
� −  

𝜕2𝑔(𝑟1)
𝜕𝑟12

 (95) 

𝑟1 =
1
𝑘
𝜕𝑔(𝑟1)
𝜕𝑟1

�
1
𝑧
−

1
𝑓
�
−1

=  �1 −
𝑧
𝑓
�
−1
�

1
𝑘
𝜕𝑔(𝑟1)
𝜕𝑟1

� 𝑧 = 𝐹(𝑧)𝛽(𝑟1)𝑧 (96) 

� exp �
𝑖
2
𝜕2𝜓(𝑟1)
𝜕𝑟12

(𝑟1 − 𝐹(𝑧)𝛽(𝑟1)𝑧)2� 𝑑𝑟1 (97) 

where 

𝛽(𝑟) =
1
𝑘
𝜕𝑔(𝑟)
𝜕𝑟

 (98) 

is the generalized refraction angle and 

𝐹(𝑧) =  �1 −
𝑧
𝑓
�
−1

 (99) 

From this equation the effects of a lens can be represented by the transformation  

𝑧′ =
𝑧

𝐹(𝑧′)
 (100) 
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Figure 15:  Transformation of the propagation axis illustrating the effect of a lens on non-diffracting beam 
generation.  The propagation axis is compressed as it approaches the Fraunhofer plane.  For originally periodic 
non-diffracting beams, this results in a decrease in beam period during propagation. 

Equation 100 describes a spatially dependent contraction of the propagation axis, which is 

depicted in Figure 15.  The contraction of the propagation is highly non-uniform, with no 

contraction occurring at 𝑧 = 0  and infinite contraction occurring at 𝑧 = 𝑓  where the infinite 

propagation values for the collimated case coincide with the focal plane in the lens augmented 

case.  By contracting the propagation axis for any beam evaluated using the stationary phase 

approximation for a collimate beam, a new beam shape can be obtained corresponding to 

identical beam preparation incorporating the addition of a converging lens of focal length f.  

Mathematically, this process is carried out by applying Equation 100 to the propagation 

coordinate of any previously evaluated non-diffracting beam. 
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3.9 Numerical Modeling of Helical Beams 

A Fresnel diffraction solver was written in MATLAB (R2008a version 7.6.0.324) to generate 

two-dimensional irradiance plots of diffracted light fields.  This solver was used both as a model 

to compare against experiments, and as a means to devise efficiently manufactured phase 

elements for the generation of diffraction free beams.  Through a numerical implementation of 

the Fresnel diffraction integral, the solver was able to calculate a diffracted irradiance 

distribution an arbitrary distance from an incident wavefront, assuming the Fresnel criteria are 

satisfied. 

The Fresnel diffraction integral was implemented using a fast-Fourier transform.  Starting with 

the Fresnel diffraction integral 

𝐸2(𝑥2,𝑦2, 𝑧) =
𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
 � 𝐸1(𝑥1,𝑦1, 0) exp �

𝑖𝑘
2𝑧

((𝑥2 − 𝑥1)2 +  (𝑦2 − 𝑦1)2)� 𝑑𝑥1𝑑𝑦1
∞

−∞
 (101) 

defining 𝐾 = 𝑘
2𝑧

 and rearranging gives 

𝐸(𝑥2,𝑦2, 𝑧) =
𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
exp[𝑖𝐾(𝑥22 + 𝑦22)] ⋅ 

� 𝐸1(𝑥1,𝑦1, 0) exp[𝑖𝐾(𝑥12 + 𝑦12)] exp[−𝑖2𝐾(𝑥1𝑥2 + 𝑦1𝑦2)]𝑑𝑥1𝑑𝑦1
∞

−∞
 

(102) 

Making the change of variables 

𝑢 = 2𝐾𝑥2 (103) 

𝑣 = 2𝐾𝑦2 (104) 

𝐸2(𝑢, 𝑣, 𝑧) =
𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
⋅ (105) 
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exp �
𝑖

4𝐾
(𝑢2 + 𝑣2)�� 𝐸1(𝑥1,𝑦1, 0) exp[𝑖𝐾(𝑥12 + 𝑦12)] exp[−𝑖(𝑢𝑥1 + 𝑣𝑦1)]𝑑𝑥1𝑑𝑦1

∞

−∞
 

and applying the definition of the Fourier transform gives 

𝐸2(𝑢, 𝑣, 𝑧) =
𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
exp �

𝑖
4𝐾

(𝑢2 + 𝑣2)�ℱ[𝐸1(𝑥1,𝑦1, 0) exp[𝑖𝐾(𝑥12 + 𝑦12)]] (106) 

 

The Fresnel diffraction code was implemented by applying Equation 106 to a numerical 

representation of a spatially resolved electromagnetic wavefront.  The Fourier transform in 

Equation 106 was implemented using a two-dimensional fast-Fourier transform algorithm, which 

was provided as a standard functional routine in MATLAB.  The change of variables in the plane 

of the diffracted field was accounted for by rescaling the x and y axes of the diffracted field. 

The model flow chart is provided in Figure 16.  The model uses a two-dimensional fast-Fourier 

transform to implement a discretized Fresnel diffraction integral as described above.  Optical 

elements were simulated using spatially resolved phase delays that were applied to two-

dimensional representations of an incident collimated Gaussian beam before the diffraction 

integral is evaluated.  The distance between the incident beam and the diffracted field is 

incorporated as a numerical argument within the Fresnel diffraction integral. 

Numerical simulations were used to evaluate optical setups used in the synthesis of a variety of 

Bessel beams and helical beams, and used to evaluate individual components used within these 

optical setups, such as vortex plates.  For each optical configuration of interest, the simulation 

was run for a range of propagation distance.   
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Figure 16:  Fresnel diffraction simulation flowchart. 

The simulation was also used to reproduce all non-diffracting beams experiments carried out and 

used as a benchmark for comparison.  For these cases, the simulated optical setup was 

configured to provide the best possible approximation of experiment.  To better represent optical 

elements used within the experiment, a Zygo microscope was used to characterize the surfaces of 

both axicons used in the experiments.  The phase lag used to simulate these elements was then 

calculated directly from the surface data obtained using the microscope.   

The simulation was also employed in the design of many of the optical elements used in 

experiments.  To obtain arbitrary phase profiles, such as those used in the vortex plates, additive 

phase lithography was employed to fabricate specialized phase plates to match the phase profiles 
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required by experiment [81].  The phase lag variations obtained from the phase plates result from 

changes in phase plate thickness, so that thickness profile of the plates correspond to the phase 

profile modification of beams transmitted through the plates.   

As a consequence of the fabrication method, phase plate thickness cannot be varied 

continuously.  Rather, the thickness profile is obtained from a series of discrete steps used to 

approximate a continuous profile.  The greater number of discrete steps required, the better the 

approximation to the continuous profile.  However, additional steps require additional fabrication 

mask, which increase the cost of fabrication.  To avoid incurring excessive fabrication cost, the 

Fresnel diffraction code was used to simulate phase plates fabricated using a varying number of 

discretized steps, to determine the minimum number of steps required to obtain the desired 

refraction pattern from the device.  

 

3.10 Helical Beam Experimental Setup 

Helical beams were generated using both continuous and pulsed laser light [6].  For both 

experiments, the MTFL laser was used as the light source.  To produce the wavefront necessary 

to generate helical beams, the configuration shown in Figure 14 had to be implemented in an 

experimental setting.  The resulting setup is shown in Figure 17. 

Like its conceptual counterpart, the experimental setup employed a pair of 5 mm diameter vortex 

plates in series with a pair of 1” diameter axicons.  Unlike the conceptual layout, the radius 

separating the azimuthal phases, 1.25 mm, and that separating the refractive angles, 6.35 mm, 
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were not equal.  Thus telescoping optics were implemented to enlarged the collimated the 

incident Gaussian beam after transmission through the phase plate, so the virtual separation 

radius of the plates in the magnified beam matched that of the axicons.   

 

Figure 17:  Optical setup used to generated and characterize continuous and pulsed helical beams.  TL1 and TL2 
form a telescope which increases the beam diameter by a factor of 3.   

The setup in Figure 17 consists of the MTFL laser, a telescope, the vortex plates, and the axicon 

pair.  The focal spot of the telescope is placed within a 28 cm diameter cylindrical vacuum 

chamber kept at 54 mTorr to prevent plasma formation when using pulsed laser light.  

Collimated light from MTFL is transmitted through a telescope composed of a 20 cm(TL1) and a 

60 cm (TL2) converging lens separated by 80 cm.  The vortex plates (V1, V2) were located 4 cm 
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beyond the internal focus of the telescope, also within the vacuum chamber.  The axicons (A1, 

A2) were placed 4.5 cm beyond the telescope and aligned with the optical axis. 

The vortex plate pair, depicted in Figure 18, consisted of two 5 mm diameter phase plates.  One 

plate induced an azimuthal charge of exp(𝑖𝜙) on the beam lying outside a radius of 1.25 mm, 

while a second plate induces an azimuthal charge exp(−𝑖𝜙) for the beam lying within the 1.25 

mm radius.  The vortex plates were fabricated using an additive micro-lithographic technique 

from fused silica [81]. The vortex plates consisted of 16 azimuthal segments of constant 

thickness arranged to form a unit topological vortex at 800 nm.  Discrete levels were first created 

in photoresist and then transferred to fused silica using CHF3:O2 inductively coupled plasma 

etching.   

 

Figure 18:  Three-dimensional color map renderings of the surface of the two vortex plates used in experiments.  
The sign azimuthal charge associated with each plates can be switched by inverting the plate orientation. 

Two 1” diameter axicons were placed in series at the output of the telescope.  The first of the pair 

was a specialized axicon which provided two refraction angles: an angle of 𝛽𝑜 = 0.28∘  for 

𝑟 > 6.35 𝑚𝑚  and refraction angle of 𝛽𝑖 = 0.10∘  for 𝑟 < 6.35 𝑚𝑚 .  A conventional axicon, 

which provided a fixed refraction angle of 𝛽 = 0.15∘, was placed immediately after this element. 



59 
 

Collectively, the series arrangement of axicons resulted in refraction angles of 𝛽𝑜 = 0.43𝑜 and 

𝛽𝑖 = 0.25𝑜. 

MFTL was used to generate both continuous and pulsed light.  Measured power output was 290 

mW.  The laser center wavelength was measured to be 785 nm.  Spectral bandwidth was 

measured to be 75 nm FWHM during modelocked operation, and 1 nm FWHM during 

continuous operation.  Laser chirp was uncompensated, resulting in 100 fs pulses during 

modelocked operation.  The modelocked repetition rate was 75 MHz. 

Through the use of the telescope configuration, the vortex plate phase was expanded and 

projected onto the axicon pair such that the separation radius of the projected phase and the first 

axicon matched (Figure 17).  The Gaussian beam waist was 33.5 mm of immediately after the 

telescope, overfilling the axicons.  Beam clipping on the 25 mm diameter axicons resulted in a 

76% power loss.  The filament imaging system was used to evaluate the transverse irradiance 

profiles of both the continuous and pulsed helical beams. 

By substituting the parameters of the experimental setup into the expression provided in the 

theory sections of the chapter, helical beam characteristics can be predicted.  Incorporating the 

2.1 m effective focal length of the telescope and using equations 73 and 74 in conjunction with 

the transformation given by Equation 100, the helical beam was expected to propagate from 54 

cm to 85 cm. Substituting the experimental refraction angles into Equation 87 and again applying 

Equation 100, the helical beam should rotate at a rate of one cycle every 4.7 cm at 54 cm, 

accelerating to a rotation rate of one cycle every 3.0 cm at 85 cm.  Evaluating Equation 88 at 54 

cm, the maximum spot size of each irradiance peak should not exceed 54 𝜇𝑚. 
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3.11 Helical Beam Experimental Results 

Helical beams were initially generated using a 785 nm continuous laser beam.  Transverse beam 

profile images were recorded in 5 mm intervals along the optical axis.  The helical beam was 

found to propagate from 60 ± 0.5 𝑐𝑚 from the experimental setup to 80 ± 0.5 𝑐𝑚, which falls 

within the propagation range predicted by theory.   

The helical beams obtained using the continuous light are shown in the second row of Figure 19.  

The helical beams were composed of two 50 𝜇𝑚 diameter irradiance peaks, falling within the 

54 𝜇𝑚 maximum spot size predicted from Equation 88, separated by a 25 𝜇𝑚 null.  The beam 

structure as a whole measured 125 𝜇𝑚 across.  At each point along the optical axis within the 

beam propagation range, a helical beam irradiance profile is observed.  Sideband flares resulting 

from irradiance peaks present in the second ring associated with 𝐽12(𝑟) are also present in many 

of the observed irradiance profiles.  

The results were compared against a simulation of the experimental setup in Figure 17 carried 

out using the numerical model described in the previous section.  A comparison between 

numerical and experimental results is provided in Figure 19 along one full rotation of the helical 

beam.  Irradiance profiles obtain from experiment and simulation share three important features.  

All experimental profiles contain two identifiable irradiance peaks, although almost equally 

intense sidebands are present in many of the profiles.  A clear null is also always present at the 

center of the beam structure.  Finally, experimentally rates of rotation agree with those found 

within the simulation. 
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Figure 19:  Transverse helical beam profiles as a function of propagation distance obtained using the setup shown 
in Figure 17 from both simulation and experiment.  Upper Row: Simulation, Middle Row: Continuous Beam, 
Bottom Row: Pulsed Beam 

The rotation angle for both simulation and experiment were obtained from their irradiance 

profiles and are plotted in Figure 20 as a function of propagation distance.  Agreement between 

experiment and simulation can be observed directly from the plot.  From the plot, the helical 

beam can be observed to make a complete rotation approximately every 4 cm.  The same 

conclusion can be made by analyzing Figure 19.  This rotation rate is also predicted by Equation 

87 for a distance of 65 cm.  However, variations in the rate of rotation due to the 2.1 m effective 
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focal length of the telescope as a consequence of the transformation given in Equation 100 are 

not observed. 

 

Figure 20:  Cumulative rotation angle as a function of propagation distance.  The way in which the rotation angle is 
defined is show on the right figure, while the data is plotted in the left figure. 

The experiment was repeated using ultrafast pulses.  As in the continuous case, the helical beam 

was observed to propagate from 60 to 80 cm.  The transverse profiles recorded for pulsed helical 

beams were nearly identical to those obtained for the continuous case, as shown in Figure 19, 

and exhibit the same rotation angle and rate, as can be seen in Figure 20.  Pulsed helical beams 

were found to exhibit a clearer irradiance structure than their continuous counterparts.  It is 

hypothesized that this is a consequence of MTFL’s optimization for pulsed operation. 
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3.12 Conclusion 

A serial arrangement for generating double helical beams through the interference of two first 

order Bessel beams has been successfully demonstrated.  Although this arrangement was devised 

through the application of linear diffraction theory to a continuous Gaussian beam, the 

configuration has also been demonstrated to operate with ultrafast pulses. A diffraction model 

was able to provide an adequate description of the double helical beam dimensions and rotation 

rate. The transverse beam profiles obtained through the simulation reproduced the basic 

structural features of the helical beam profiles obtained in the laboratory. These models can be 

extended to pulsed beams on a limited basis. 

Experimentally obtained double helical beams produced rapid, consistent and controlled 

rotations dictated by the optical setup in a manner consistent with analytical and numerical 

models.  Double helical beam dimensions, rotation rate and propagation distance can be readily 

altered by appropriate selection of optical elements, demonstrating the extensive control that can 

be obtained over beam propagation through the understanding and application of diffraction 

theory. 
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CHAPTER 4:  LASER FILAMENTATION IN AIR 

Ultrafast laser pulses above critical power (typically 3 GW in normal air) undergo filamentation 

during propagation through transparent media [82].  The irradiance of such light filaments is of 

the order 10-100 TW/cm2, which is sufficient to ionize oxygen and nitrogen through a 

combination of multi-photon and tunneling ionization [82] [7] [83].  This results in a plasma 

channel at the core of the light filament.  The collective nonlinear effects involved in the 

propagation of a laser filament, including self-focusing through the Kerr effect and defocusing 

due to the free electrons present in the plasma core, enable the propagation of a limited beam 

diameter laser pulse well beyond the Rayleigh range predicted through diffraction theory, 

leading to a behavior described as self-channeling [84].  Because of these properties, 

filamentation provides a unique means to deliver confined radiation over extended propagation 

distances, and to generate unique plasma structures in air. 

 

4.1 Filament Characteristics 

The interplay between the nonlinear effects and plasma formation responsible for the formation 

of laser plasma filaments enable laser filaments to adopt a number of physical characteristics that 

are independent of the laser used to generate the filament.  Filaments form when the 

instantaneous power of an ultrafast pulse is sufficient to overcome linear diffraction through Kerr 

self-focusing [85] [82].  This limit is defined as the critical power, which for Gaussian beams is 

given as: 
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𝑃𝑐𝑟 =
3.77𝜆2

8𝜋𝑛2𝑛0
 (107) 

In air, this limit is 5-10 GW for pulses less than 100 fs in duration [86] (for pulses exceeding 100 

fs, the molecular response contributions increase the Kerr index, altering this value).  Because of 

the large instantaneous powers required for filament formation, in practice filaments are 

generated using high energy ultrafast pulses. 

Laser filaments are composed of a high irradiance core surrounded by a lower irradiance 

peripheral field.  Light in the core takes on a Townesian profile [87] [88] and measures 50 to 120 

𝜇𝑚 in diameter [7] [89] [82].  Irradiance in the core is between 10 and 100 TW/cm2, which is 

sufficient to generate a plasma density of at least 1016 𝑐𝑚−3 [85] [82] [90].  Plasma formation 

limits core peak irradiance to 100 TW/cm2, regardless of the pulse energy used to form the 

filament [91] [28].  Increasing laser pulse energy beyond that necessary to achieve filamentation 

will instead resulting in the formation of multiple filaments, with each additional filament 

sharing the same approximate physical properties and dimensions with those of a single filament 

core [92] [93].  

Surrounding the filament core is the peripheral field.  The peripheral field is a region of coherent 

ultrafast light extending from the filament core to a radial distance comparable to the initial 

diameter of the beam responsible for generation of the filament.  Peripheral field irradiance is 

approximately a hundredth of that found within the filament core, in the range 0.1 TW/cm2 to 1 

TW/cm2.  The peripheral field serves as an energy reservoir which replenishes energy lost to 

plasma absorption in the core, enabling extended propagation of the filament [94] [95].  It can 
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also provide energy to replenish the filament core should the core be truncated by an obstruction 

during propagation, resulting in the “regeneration” of the filament [96] [97]. 

 

4.2 Filamentation Physics 

Filamentation begins with laser self-focusing, which is driven by the Kerr effect.  The Kerr effect 

is an increase in the refractive of a dielectric that is proportional to the field irradiance.  

Mathematically, the Kerr effect can be expressed as [82] 

𝑛 = 𝑛0 + 𝑛2𝐼 (108) 

where 𝑛0 is the linear diffractive index, and 𝑛2 is the Kerr index, both of which are properties of 

the optical medium.  When the optical field is spatially inhomogeneous, the Kerr effect will 

modify the wavefront of a propagating electromagnetic wave due to changes in the irradiance 

based refractive index along the wavefront.   

In the special case where a Gaussian beam, a typical and reasonably accurate approximation of 

most laser beams, is responsible for the spatial inhomogeneity, the Kerr effect can be shown to 

act as a spherical lens in the lim 𝑟 → 0.  Starting with a Gaussian beam of beamwaist w described 

by 

𝐼(𝑟) = 𝐼0 exp �−
𝑟2

𝑤2� (109) 

and substituting the irradiance into Equation 108 gives 
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𝑛(𝑟) = 𝑛0 + 𝑛2𝐼0 exp �−
𝑟2

𝑤2� (110) 

Applying the Maclaurin series expansion [98] to the refractive index results in the power series 

𝑛(𝑟) = 𝑛0 + 𝑛2𝐼0 −
𝑛2𝐼0
𝑤2 𝑟2 +

𝑛2𝐼0
2𝑤4 𝑟

4 + 𝑂(𝑟6) (111) 

The corresponding modification to the wavefront phase is 

exp[𝑖𝑘𝑛(𝑟)𝑧] = exp(𝑖𝑘𝑛0𝑧) exp(𝑖𝑘𝑛2𝐼0𝑧) exp �−𝑖
𝑘𝑛2𝐼0𝑧
𝑤2 𝑟2� exp �𝑖

𝑘𝑛2𝐼0𝑧
2𝑤4 𝑟4� (112) 

In the lim 𝑟 → 0 and over a length 𝛿𝑧 this expression reduces to 

exp[𝑖𝑘𝑛(𝑟)𝛿𝑧] = exp(𝑖𝑘′𝛿𝑧) exp �−𝑖
𝑘𝑛2𝐼0𝛿𝑧
𝑤2 𝑟2� (113) 

Comparing this approximate wavefront to that for a spherical lens 

exp �−𝑖
𝑘

2𝑓
𝑟2� = exp �−𝑖

𝑘𝑛2𝐼0𝛿𝑧
𝑤2 𝑟2� (114) 

gives an equivalent focal length for the Kerr effect resulting from propagating a finite distance 

𝛿𝑧 through a Kerr media 

𝑓𝑘𝑒𝑟𝑟 =
𝑤2

2𝑛2𝐼0𝛿𝑧
 (115) 

Thus, in this limit the Kerr effects modifies the wavefront of the Gaussian beam in a manner 

identical to that of a lens of focal length 𝑓𝑘𝑒𝑟𝑟.   

However, for large r, this approximation ceases to be valid.  In particular, at  

𝑟(𝑧) = √2𝑤(𝑧) (116) 
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the quadratic correction in the Maclaurin series overtakes to linear correction and the analogy to 

a lens ceases to be valid.   

While a spherical lens will refract the entirety of the incident field such that all radiated will be 

confined to a diffraction limited spot within the focal plane of the lens, the optical Kerr effect 

will only refract light sufficiently close to the optical axis, where the approximation in Equation 

113 remains valid, into a diffraction limited spot.  Because the beam waist continually contracts 

under the effect of propagation, the radius for which the Kerr lens approximation will be valid 

decreases during propagation, approaching zero in the limit.  This results in the presence of beam 

energy at all distances from the optical axis within the diameter of the original beam that has not 

been refracted into the core of the filament, which form the peripheral field. 

  

4.3 Nonlinear Schrodinger Equation 

The nonlinear Schrodinger equation can be derived from Maxwell’s equations in a media with a 

nonlinear polarization response.  This equation is obtained by making a slowly varying envelope 

approximation along the propagation axis [99].   

Starting with the wave equation 

∇��⃑ × �∇��⃑ × 𝐸�⃑ � +
1
𝑐2
𝜕2𝐸�⃑
𝜕𝑡2

= −
1

𝜖0𝑐2
𝜕2𝑃�⃑
𝜕𝑡2

 (117) 

∇��⃑ 2𝐸�⃑ −
1
𝑐2
𝜕2𝐸�⃑
𝜕𝑡2

=
1

𝜖0𝑐2
𝜕2𝑃�⃑
𝜕𝑡2

+ ∇��⃑ �∇��⃑ ⋅ 𝐸�⃑ � (118) 
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The nonlinear Schrodinger equation is obtained by making the envelope approximation 

𝐸�⃑ = 𝐴(𝑥,𝑦, 𝑧) exp[𝑖(𝑘𝑧 − 𝜔𝑡)] 𝑒̂ + 𝐴(𝑥,𝑦, 𝑧) exp[−𝑖(𝑘𝑧 − 𝜔𝑡)] 𝑒̂ (119) 

This approximation is valid for 

�
𝜕2𝐴
𝜕𝑧2

� ≪ �2𝑘
𝜕𝐴
𝜕𝑧
� (120) 

Assuming a Gaussian envelope of the form 

𝐴(𝑥,𝑦, 𝑧) = 𝐴0(𝑥,𝑦) exp �−
𝑧2

(𝑐𝜏)2� (121) 

Substituting this expression back into Equation 120 gives 

�
𝑧2

(𝑐𝜏)2 − 1� ≪
4𝜋𝑧
𝜆

 (122) 

Limiting z to |𝑧| < 2𝑐𝜏 reduces Equation 122 to 

𝜏 ≫
3𝜆

8𝜋𝑐
 (123) 

At 800 nm, Equation 123 reduces to 

𝜏 ≫ 0.32 𝑓𝑠 (124) 

Thus pulses several femtoseconds in duration should satisfy the slowly varying envelope 

approximation.  Substituting the envelope expansion into Equation 118 (see Appendix E) yields 

the nonlinear Schrodinger equation: 

2𝑖𝑘
𝜕𝐴
𝜕𝑧

+ ∇⊥2𝐴 + 3𝑘2
𝜒̂3(𝜔,−𝜔,𝜔)

1 + 𝜒̂1(𝜔)
|𝐴|2𝐴 = 0 (125) 



70 
 

The nonlinear Schrodinger equation describes the nonlinear propagation of an electromagnetic 

wave through a Kerr media when the envelope approximation is valid [100]. 

 

4.4 Ionization within a Filament 

Due to their high instantaneous irradiance, filaments are able to ionize the air through a 

combination of multiphoton and tunneling ionization [82].  This results in a plasma which persist 

for ≅ 1 𝑛𝑠 and decays over the course of ≅ 200 𝑛𝑠 [101].  The plasma in the filament core is a 

weakly ionized air plasma possessing a density of approximately 1016 electrons/cm3, or a 0.1% 

ionization of the air.  The air plasma present in the filament core is essential to stabilizing the 

filament during propagation, as it reduces the core refractive index, counteracting the optical 

Kerr effect and preventing the formation of an optical singularity. 

The dynamics of filament ionization in air are given by [82] 

𝜕𝜌
𝜕𝑡

= 𝑊(𝐼)(𝜌𝑎𝑡 − 𝜌) +
𝜎
𝑈𝑖
𝜌𝐼 (126) 

where 𝑊(𝐼)  is the photoionization rate, 𝜌  is the plasma density and 𝜌𝑎𝑡  is the atmospheric 

density.  The photoionization rate is then broken down into the multiphoton ionization rate [102] 

[82] 

𝑊(𝜔0, 𝐼) = 𝜎𝑘𝐼𝑘 (127) 

where 𝜎𝑘 is the mutliphoton ionization cross-section for a k photon process, and the tunneling 

ionization rate is given by [82] 
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𝑊(𝐸) = 𝜔𝑎.𝑢.�𝐶𝑛∗,𝑙∗�
2 𝑈0

2𝑈𝑖𝑡
�6
𝜋
�

2𝐸0
𝐸
�
2𝑛∗−32

exp �−
2𝐸0
𝐸
� (128) 

By considering the multiphoton effects in isolation and assuming the irradiance is given a priori, 

the ionization dynamics can be reduced to 

𝜕𝜌
𝜕𝑡

= 𝜎𝑘𝐼𝑘(𝜌𝑎𝑡 − 𝜌) (129) 

Rearranging Equation 129 yields a first order inhomogeneous differential equation 

𝜕𝜌
𝜕𝑡

+ 𝜎𝑘𝐼𝑘𝜌 = 𝜎𝑘𝐼𝑘𝜌𝑎𝑡 (130) 

For a constant irradiance, Equation 130 has the general solution 

𝜌(𝑡) = 𝐴 exp(−𝜎𝑘𝐼𝑘𝑡) + 𝑓(𝑡) (131) 

For the initial condition 𝜌 = 0 at 𝑡 = 0, this reduces to 

𝜌(𝑡) = 𝜌𝑎𝑡[1 − exp(−𝜎𝑘𝐼𝑘𝑡)] (132) 

Thus for a laser pulse of duration 𝜏, the plasma density can be approximated by  

𝜌 = 𝜌𝑎𝑡[1 − exp(−𝜎𝑘𝐼𝑘𝜏)] (133) 

Equation 130 can also be solved for a temporal Gaussian pulse to better approximate ultrafast 

laser pulse.  Starting with a Gaussian pulse of temporal duration 𝜏 described by 

𝐼 = 𝐼0 exp �−
2𝑡2

�𝜏2�
2� = 𝐼0 exp�−

8𝑡2

𝜏2
� (134) 

Substituting the Gaussian irradiance into Equation 130 yields 
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𝜕𝜌
𝜕𝑡

= 𝜎𝑘𝐼0𝑘 exp�−
8𝑘𝑡2

𝜏2
� (𝜌𝑎𝑡 − 𝜌) (135) 

This equation is of the form 

𝜕𝑥
𝜕𝑡

+ 𝛼𝑥 exp(−𝑎𝑡2) = 𝛽 exp(−𝑎𝑡2) (136) 

Evaluating the homogenous part 

𝜕𝑥
𝜕𝑡

+ 𝛼𝑥 exp(−𝑎𝑡2) = 0 (137) 

and rearranging 

𝜕𝑥
𝑥

= −𝛼 exp(−𝑎𝑡2)𝜕𝑡 (138) 

and integrating 

ln(𝑥) = −𝛼� exp(−𝑎𝑡2)𝜕𝑡 = −
𝛼
2
�
𝜋
𝑎

erf�√𝑎𝑡� (139) 

gives the general solution 

𝑥 = 𝐴 exp �−
𝛼
2
�
𝜋
𝑎

erf�√𝑎𝑡�� + 𝑓(𝑡) (140) 

Solving for the inhomogeneous part and requiring 𝑥 = 0 at 𝑡 = 0 gives 

𝑥 =
𝛽
𝛼
�1 − exp�−

𝛼
2
�
𝜋
𝑎

erf�√𝑎𝑡��� (141) 

Making the substitutions 

𝛼 = 𝜎𝑘𝐼0𝑘 (142) 



73 
 

𝛽 = 𝜎𝑘𝐼0𝑘𝜌𝑎𝑡 (143) 

𝑎 =
8𝑘
𝜏2

 (144) 

And substituting 

𝜌 = 𝜌𝑎𝑡 �1 − exp�−
𝜎𝑘𝐼0𝑘𝜏

4
�
𝜋

2𝑘
erf�

2
𝜏
�2
𝑘
𝑡��� (145) 

At times well after the laser pulse has passed, but before the plasma has recombined with the air,  

𝑡 ≫ 𝜏
2
�𝑘
2
 , for which Equation 145 reduces to 

𝜌 = 𝜌𝑎𝑡 �1 − exp�−
𝜎𝑘𝐼0𝑘𝜏

4
�
𝜋

2𝑘
�� = 𝜌𝑎𝑡�1 − exp�−𝜅𝜎𝑘𝐼0𝑘𝜏�� (146) 

where 

𝜅 =
1
4
�
𝜋

2𝑘
 (147) 

Equation 146 can further be evaluated by applying tabulated atmospheric data.  Taking the 

atmospheric density values 

𝜌𝑂2,𝑛 = 2.4 ⋅ 10−7
𝑘𝑔
𝑐𝑚3 

𝜌𝑁2,𝑛 = 9.6 ⋅ 10−7
𝑘𝑔
𝑐𝑚3 

and taking the multiphoton ionization cross-section for 800 nm from Couairon et al. [82] 

𝜎8,𝑂2 = 2.81 ⋅ 10−96
𝑠 ⋅ 𝑐𝑚16

𝑊8  
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𝜎11,𝑁2 = 6.31 ⋅ 10−140
𝑠 ⋅ 𝑐𝑚22

𝑊11  

and substituting the ionization rate equation yields the ionization value for oxygen and nitrogen 

as a function of peak irradiance and pulse duration  

𝜌𝑂2,𝑒 = 2.4 ⋅ 10−7
𝑘𝑔
𝑐𝑚3 �1 − exp�−�

𝐼0

86.6 𝑇𝑊𝑐𝑚2

�

8
𝜏
𝑓𝑠
�� (148) 

𝜌𝑁2,𝑒 = 9.6 ⋅ 10−7
𝑘𝑔
𝑐𝑚3 �1 − exp�−�

𝐼0

119 𝑇𝑊
𝑐𝑚2

�

11
𝜏
𝑓𝑠
�� (149) 

Equations 148 and 149 provide physical values for the plasma density obtained through a purely 

multiphoton ultrafast pulse driven ionization process in air.   

 

4.5 Effects of the Plasma on Filament Propagation 

The plasma present at the core of a filament is fundamental to the propagation physics of the 

filament.  The core plasma plays two important roles in filament propagation.  First, the presence 

of the plasma reduces the local refractive index in the core of the filament, counteracting the 

filament and preventing optical collapse [10].  Second, the formation of the plasma requires 

energy from the ultrafast pulse responsible for filamentation to drive the ionization process.  This 

introduces an energy loss mechanism that slowly depletes the energy present in the filament.  

Once the energy in the filament is insufficient to maintain the instantaneous power necessary to 

counteract diffraction through the Kerr effect, the filament will diffract and end.  
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The reduction in refractive index due to the presence of a plasma can be mathematically 

represented as [103] [82] 

𝑛 = 𝑛0 −
𝜌

2𝜌𝑐
 (150) 

where 𝜌 is the plasma density of the filament and 𝜌𝑐 is the plasma critical density.  

 

4.6 Rayleigh-Sommerfeld Model 

The Fresnel diffraction integral proved effective and predicting and modeling beam propagation 

in the previous chapter, where only linear beam propagation needed to be considered.  To deal 

with nonlinearities using diffraction integrals, nonlinearities can be modeled as irradiance 

dependent phase lags.  This approach requires repeated diffraction calculations over short, 

incremental distances to account for the changes in the nonlinear contributions to the refractive 

index during beam propagation.  Both the Fresnel and Fraunhofer diffraction integrals require a 

minimum propagation distance to satisfy the underlying assumptions required for the validity of 

the integrals, and are unsuitable for any approach that requires vanishing propagation distances 

in the limit. 

The Rayleigh-Sommerfeld integral is not subject to any limits on propagation distance and is 

therefore valid in the limit 𝑑𝑧 → 0 .  In cylindrical coordinates, the Rayleigh-Sommerfeld 

diffraction integral can be expressed as 
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𝐸2(𝑟2,𝜃2, 𝑧) =
1
𝑖𝜆
�𝑟1𝐸1(𝑟1,𝜃1)

exp(𝑖𝑘𝑙)
𝑙

cos�𝑛�⃑ ⋅ 𝑙� (151) 

where 

𝑙 = �𝑟12 + 𝑟22 − 2𝑟1𝑟2 cos(𝜃2 − 𝜃1) + 𝑧2 (152) 

and 𝑛�⃑  is the normal relative to the surface associated with the incident field.  When considering 

incident and diffracted fields on a pair of parallel plane separated by a finite distance, the cosine 

term reduces to 

cos2�𝑛�⃑ ⋅ 𝑙� = 1 − sin2�𝑛�⃑ ⋅ 𝑙� =
𝑧2

𝑙2
 (153) 

cos�𝑛�⃑ ⋅ 𝑙� =
𝑧
𝑙
 (154) 

Substituting back into the Rayleigh-Sommerfeld integral gives 

𝐸2(𝑟2,𝜃2, 𝑧) =
𝑧
𝑖𝜆
�𝑟1𝐸1(𝑟1,𝜃1)

exp(𝑖𝑘𝑙)
𝑙2

𝑑𝑟1𝑑𝜃1 (155) 

For an azimuthally symmetric field the Rayleigh-Sommerfeld integral reduces to 

𝐸2(𝑟2, 𝑧) =
𝑧
𝑖𝜆
�𝑑𝑟1 𝑟1𝐸1(𝑟1)�𝑑𝜃

exp(𝑖𝑘𝑙)
𝑙2

 (156) 

where 
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𝑙 = �𝑟12 + 𝑟22 − 2𝑟1𝑟2 cos 𝜃 + 𝑧2 (157) 

While this integral lacks a simple analytical solution it does possess an elegant numerical 

solution.  Converting the double integral in Equation 156 to a double sum over with infinitesimal 

propagation distance dz 

𝐸2(𝑟2, 𝑧) =
𝑑𝑧
𝑖𝜆
�𝛿𝑟1𝑟1𝐸1(𝑟1)�𝛿𝜃

exp(𝑖𝑘𝑙)
𝑙2

𝜃𝑟1

 (158) 

defining the matrix 𝑲�  using the matrix elements 

𝑲�𝑟1,𝑟2 = �𝛿𝜃
exp[𝑖𝑘𝑙(𝑟1, 𝑟2,𝑑𝑧)]

𝑙2(𝑟1, 𝑟2,𝑑𝑧)
𝜃

 (159) 

and defining the arrays  

𝒓1 = [0: 𝛿𝑟1:𝑛𝛿𝑟1] (160) 

𝒓2 = [0: 𝛿𝑟2:𝑛𝛿𝑟2] (161) 

𝑬1 = [𝐸1(0):𝐸1(𝛿𝑟1):𝐸1(𝑛𝛿𝑟1)] (162) 

𝑬2 = [𝐸2(0):𝐸2(𝛿𝑟2):𝐸2(𝑛𝛿𝑟2)] (163) 

the above summation reduces to the matrix equation 

𝑬2 =
𝛿𝑧
𝑖𝜆
𝑲� [𝒓1 ⋅ 𝑬1] (164) 
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Here the matrix 𝑲�  is dependent only on the arrays 𝒓1  and 𝒓2 , the wavenumber k, and the 

incremental spacing dz.  It is independent of the envelope and wavefront of the incident electric 

field.  In particular, for 𝒓1 = 𝒓2, 𝑲�  will be a square matrix.  Thus for a numerical grid of constant 

size and spacing, the matrix 𝑲�  need only be solved once for a given wavelength.  Once 𝑲�  is 

known, diffraction can be repeatedly evaluated using the Equation 164 with no need to re-

evaluate 𝑲� . 

A simple Rayleigh-Sommerfeld model of filamentation was implemented as follows.  First, the 

appropriate matrices 𝑲�  where generated by substituting the appropriate grid sizes, the 

longitudinal spacings dz, and the laser center wavelength 𝜆 = 800 𝑛𝑚 into Equation 159.  A 

Gaussian beam modified by the phase lag of a spherical lens was taken as the input.  The 

diffraction of the incident beam was then evaluated through iterative multiplications of the 

matrix 𝑲� .  Between each iteration, the phase lag resulting from the Kerr effect and plasma 

defocusing for an interval dz was applied to the wavefront. 

The Kerr effect was evaluated by calculating the radially resolved irradiance of the beam during 

each iteration of the diffraction code, and using it along with a value for the Kerr index in air of 

𝑛2 = 3 ⋅ 10−19 𝑐𝑚2 𝑊⁄ = 3 𝜇𝑚2 ∕ 𝑇𝑊  taken from literature [28] [29] to solve Equation 108.  

To evaluate plasma defocusing, plasma density was calculated from equations 148 and 149.  The 

resulting values were then used in Equation 150 to calculate the resulting refractive index 

reduction. 
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Figure 21:  Filament beam waist as a function of propagation distance, as obtain from the Rayleigh-Sommerfeld 
model and experiment. 

To evaluate the effectiveness of the model, it was compared against experimental measurements 

carried out by Khan Lim.  A laser filament was obtained by focusing a 5.3 mJ, 50 fs, 800 nm 

ultrafast pulses through a 2 m lens.  Similar settings were used within the simulation.  The beam 

waist as a function of propagation distance for experiment and simulation is shown in Figure 21.  

For the experiment, the beam waist is evaluated along the two orthogonal axis of the camera 

used to record the image of the filament.   

For the first 150 cm propagation, the beam waist obtained from simulation matches that obtained 

from the y-axis camera measurements.  The simulation does overestimate the beam waist 
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between 150 and 200 cm of propagation, but accurately predicts the point of optical collapse at 2 

m.  The simulation also predicts stable propagation of the filament over 1 m, but without 

incorporating a mechanism of energy loss, it currently cannot predict the end of the filament. 

 

Figure 22:  Transverse beam profiles obtained from simulation and experiment at the beginning of the filament. 

The beam transverse profile obtained from simulation was also compared to experiment. 

Experimental beam profiles were recorded 2 m from the lens.  The results along with the profile 

obtained from the model are shown in Figure 22.  An excellent agreement is obtained between 

the simulated and experimental pulse envelope, particularly between the simulation and camera 

x-axis. 
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This original approach to simulation, while limited because of the relatively simplistic 

underlying modeling assumptions, is able to accurately model the early stages of filamentation.  

It illustrates the application of a Bessel beam basis to evaluate laser filamentation. 

 

4.7 Helical Filaments 

To improve both the experimental and practical implementations of laser filamentation in air, 

improved control of filamentation in general and multiple filamentation in particular is required.  

A simple and frequently employed means of controlling filaments is the use of converging 

lenses, which are used both to control the location and distance at which filamentation occurs.  

However, lenses offer limited control once pulse energy is sufficient to induce multiple 

filamentation, where the relative orientation of the filaments and in many cases even the number 

of filaments are no longer under the experimenter’s control. 

The synthesis of helical beams in Chapter 3 illustrated that in the linear case, the position, size 

and orientation of multiple irradiance spots can be controlled over extended propagation distance 

through the application of non-diffracting beams.  Furthermore, the beam synthesis techniques 

were suitable for both continuous and pulsed beams, so the optical setup used in helical beam 

synthesis can readily be adapted to pulsed beams of instantaneous power in excess of the critical 

power required for filamentation. 

Ionizing Bessel channels have already been experimentally produced in several recent 

experiments by illuminating an axicon with laser pulses possessing peak powers in excess of the 
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critical power for filamentation in air [104] [105] [106] [107].  Filaments have also been 

obtained using ultrafast Airy pulses, where the transverse acceleration obtained with ordinary 

Airy beams was also observed for the filamenting structure and plasma channel present at the 

filament core [108] [109].  Generating ionizing helical channels using pulses of sufficient energy 

in conjunction with helical beam synthesis optics is a logical extension of these results, and has 

been carried out with some degree of success. 

 

Figure 23:  Experimental Setup 

To generate helical filaments, pulsed helical beams were produced using 12.9 ± 0.3 𝑚𝐽, 50 fs 

laser pulses from MTFL.  Helical beams were synthesized from these pulses using the optical 

setup depicted in Figure 23, consisting of a vortex plate, a double angle axicon, and a 

conventional axicon placed in series along the laser propagation axis.  The coaxial vortex plate 

was composed of an inner vortex plate 5 mm in diameter that induced a unit azimuthal charge 

onto an 800 nm beam, and a surrounding 10 mm diameter phase plate the induced that the 

opposite azimuthal charge on the beam.  The custom axicon featured two separate cone angles.  

Within the inner diameter of 12.7 mm, the axicon refracted light at an angle of 0.10∘, while light 
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outside this diameter was refracted at 0.28∘.  The conventional axicon had an apex angle of 

179.4∘ corresponding to a refraction angle of approximately 0.15∘. 

A telescope was used to match the transverse scales of the laser beam, axicons and vortex plate 

in a manner suitable for helical beam generation.  The telescope was composed of a -200 mm and 

500 mm focal length lens separated 310 mm apart to expand the incident laser pulse by a factor of 

2.5.  The coaxial vortex plate was located 50 mm behind the -200 mm lens, which resulted in the 

radial expansion of its phase pattern within the telescope.  The custom axicon was placed 100 

mm behind the telescope, and the conventional axicon 70 mm behind the custom axicon.  Both 

the coaxial vortex plates and the custom axicon were mounted on 2-axis translation stages, 

enabling precise transverse alignment between both axicons and the phase plates. 

 

Figure 24:  Optical setup used to record transverse images of high peak power and filamenting ultrafast pulses. 

Transverse images were recorded with a calibrated optical apparatus designed by Khan Lim 

which is depicted in Figure 23 and Figure 24.  This system was designed to record the beam 
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profiles of high energy ultrafast pulses and laser filaments.  The imaging apparatus employed 

four grazing incident wedges aligned in series for pulse energy reduction.  A set of calibrated, 

interchangeable neutral density filters was located behind the wedges.  A spherical lens located 

in front of the neutral density filters was placed to image the surface of the first wedge onto a 

CCD camera, which was used to record the image. 

 

Figure 25:  Layout and dimensions of the electrodes used to evaluate filament plasma density. 

Ionization resulting from the helical beam was measured using a pair of 20 mm x 25 mm copper 

electrodes shown in Figure 25. The electrodes were spaced 6 mm apart, and raised to a potential 

of 5.6 𝑘𝑉 ± 0.2 𝑘𝑉 using the driver circuit shown in Figure 26.  An oscilloscope, buffered using 

protective circuitry shown in Figure 27, monitored the voltage drop across a 6 𝑀Ω  resistor 

placed in series with the cathode. 
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Figure 26:  Electrode driving circuit.  High-voltage is applied across VDC.  Signal is measured by monitoring the 
voltage drop across the variable resistor. 

Two experiments were carried out using the aforementioned experimental setup.  Helical beams 

were first generated with 133 𝜇𝐽 ± 4 𝜇𝐽  pulses to evaluate the performance of the synthesis 

optics in the absence of nonlinear effects, and to eliminate the optical setup as a cause of failure 

in the event that ionizing helical beams could not be obtained.  Using the imaging apparatus, the 

transverse profile of the beams were recorded at incremental distances from the helical beam 

synthesizer, providing both beam rotation and beam fluence measurements as a function of 

distance. 

 

Figure 27:  Protection and amplification circuit used to evaluate the voltage drop obtained from the electrode driver 
circuit. 
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Once helical beam synthesis was verified at 133 𝜇𝐽, the experiment was repeated using pulse 

energies of 11.9 ± 0.3 𝑚𝐽, which possess ten times the critical power for filamentation in air.  

Transverse images were again recorded as a function of propagation distance.  In addition, 

ionization measurements were carried out by evaluating the current passing through the copper 

electrode pair at incremental distances along the optical axis, with ten discharge current 

measurements recorded at each point.   

For both experiments, helical beams were obtained.  The helical beams extended from 883 mm to 

1148 mm as measured from the end of the helical beam synthesizer.  The helical beams 

underwent an approximately constant rate of rotation during propagation between these points of 

observation. 

 

Figure 28:  Helical beam transverse profiles as a function of propagation distance.  Helical beams generated using 
133 uJ pulses are shown in the upper figure associated with each distance, those obtained using 11.9 mJ pulses are 
shown in the lower figures. 

The helical beam transverse profiles taken over the interval of observation are shown in Figure 

28.  For 133 𝜇𝐽 pulses, a helical beam composed of two isolated, rotating, elliptical spots is 

obtained in every recorded transverse image.  When pulse energy is increased, a considerably 
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greater fluence relative to the peak fluence is found between the irradiance peaks.  In addition, 

for many of the transverse images taken of 11.9 mJ helical pulses, one or both of the irradiance 

peaks undergoes geometric distortions, losing the elliptical shaped observed for 133 𝜇𝐽. 

 

Figure 29:  Helical beam cumulative rotation angle as a function of propagation distance. 

The angles of both helical beams were recorded as a function propagation distance and compared 

with simulation, using the description of the rotation angle as illustrated in Figure 20.  To better 

model the axicons in the simulation, thickness measurements were taken using a Zygo 

microscope, and the resulting data used to calculate the phase lag in the simulation.  The beam 

rotation angle calculated from experiment and from simulation is shown in Figure 29.  The 

values found for each of the cases fell within 60∘ relative to each other over the distance for 

which the helical beam was observed.  The angles in all three datasets were also found to vary 

linearly with propagation distance, consistent with the description developed in Chapter 3. 
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Figure 30:  Fluence as a function of propagation distance, both both 133 uJ pulses (left) and 11.9 mJ pulses (right). 
Both plots share the same scale.  

Beam peak fluence was obtained from the transverse beam profiles, and is plotted as a function 

of propagation distance for both 133 𝜇𝐽 and 11.9 mJ as shown in Figure 30.  Beam peak fluence 

obtained at 11.9 mJ was on average five times greater than that obtained at 133 𝜇𝐽, despite the 

two order of magnitude difference between the two pulse energies used.  This suggests the 

energy clamping mechanism well known in filamentation is in effect [85]. 
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Figure 31:  Ionization signal strength as a function of beam propagation distance.  A typical ionization signal is 
shown on the left, while aggregate data is shown on the right. 

Ionization caused by the pulsed helical beams was observed on the oscilloscope as millivolt 

level,  17 𝜇𝑠  pulses which occurred a few microseconds after the laser trigger pulse.  The 

recorded pulses were filtered using a 1-2-4-2-1 algorithm and the resulting signal averaged over 

17 𝜇𝑠 to obtain an amplitude representation of each measurements.  These results were then 

averaged over the 10 samples recorded at each point, and the standard deviation was taken as the 

error.  The results are plotted in Figure 31. 

From Figure 31, the laser pulses are observed to undergo ionization between 1000 and 1150 mm 

from the helical beam synthesizer.  This ionization coincides with the second half of the 

observed helical beam, indicating that the helical beam underwent ionization, but only after 

propagating 120 mm.  The greatest distortions in the helical beam that occur when pulse energy 

is increased from 133 𝜇𝐽 to 11.9 mJ are observed at 1102 mm and 1119 mm, within the largest 

peak of the ionization signal, indicating that the resulting air plasma may be responsible for 

observed distortions in the helical beam. 
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Figure 32:  Nitrogen fluorescence obtained when a telescope with a 40 cm equivalent focal length was used in 
conjunction with the helical beam synthesizer.  Two longitudinally separate ionization peaks can clearly be 
observed. 

The data in Figure 31 features two longitudinally separated ionization peaks.  These features 

were also be observed as nitrogen fluorescence when the telescope used in the experimental 

setup was replaced with a telescope with a 40 cm equivalent focal length, which enabled peak 

irradiances sufficient for the observation of visible fluorescence, as shown in Figure 32.  Two 

clear, isolated visible fluorescence peaks can be observed in Figure 32, consistent with the peak 

observed in the ionization data. 

Helical filaments were successfully generated, as can be confirmed from the observation of both 

beam ionization and irradiance clamping when the helical beam was driven by a 13 mJ, 50 fs 

pulse.  The beam profile of the helical beam was significantly distorted when undergoing 

filamentation, which may be a consequence of synthesizing a beam spot which is smaller than 

that which would have been obtained from filamentation without preparation.  The use of a 

helical beam with a larger transverse scale may avert the problem of beam distortion during 

filamentation.  Despite the beam distortion, the experiment demonstrates filaments can be guided 

along a helical path using a non-diffracting beam.  
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CHAPTER 5:  REMOTE GENERATION OF RF RADIATION 
USING FILAMENTS 

The remote generation of radiation represents a new paradigm for the delivery of 

electromagnetic radiation.  In contrast to conventional means of delivering radiant energy, where 

energy is required to propagate over extended distances before use, remote generation uses a 

laser driven transient source of radiation, typically a plasma, to generate radiant energy in the 

precise point in space where it is required. 

Such remote sources of radiation have a range of applications, including the generation of remote 

white light sources of radiation for remote spectroscopy and the generation of remote radio 

frequency sources for use in remote sensing and ground penetrating radar [110] [17].  Due to the 

nature of the laser plasma typically used, such remote radiation sources are often suitable for the 

generation of electromagnetic radiation ranging in frequency from the RF spectrum to the 

ultraviolet spectrum [16] [111].  In the work presented here, investigation of such remote sources 

will be confined to the radio frequency spectrum. 

The creation of a remote RF radiation source requires a means to generate and drive the transient 

radiation source.  An ideal means of driving the source is to employ the laser filaments discussed 

in Chapter 4, which enable the delivery of confined ultrafast pulses over extended distances.  

Because of the presence of transient currents driven by the ponderomotive force and other effects 

within the plasma found in the filament core, the laser filament provides a source of remotely 

generated RF radiation as it propagates through the atmosphere [112] [113].  However, the laser 

filaments themself prove to be highly inefficient sources of RF radiation, having conversion 
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efficiencies on the order of 10-9 [114], unless additional methods are employed to enhance the 

resulting RF radiation [115].  If considerable RF power is required from the laser filament, a 

means other than the filamentation process in air is required to extract radio frequency radiation 

from laser filaments. 

Alternatively, filaments can be used to irradiate solid matter.  The irradiation of solid matter with 

ultrafast pulses has been shown to generate RF radiation both in vacuum [116] [117] and in air 

[111].  When matter is irradiated with low irradiance pulses, the irradiated surface will undergo 

melting and vaporization consistent with conventional heating.  However, for femtosecond 

pulses with field strengths in excess of 108 V/cm, dielectric breakdown is expected [118] based 

on extrapolation from 10 ps dielectric breakdown experiments.   

For filaments possessing an irradiance 1013 − 1014  W/cm2, the associated electric field is 

(0.9 − 2.7) ⋅ 108 V/m, which falls along the predicted threshold of dielectric breakdown.  Any 

successful effort to increase the on-axis irradiance beyond that obtained for an unaugmented 

filament will yield an irradiance in excess of the breakdown threshold.  Should the breakdown 

threshold be exceeded, the high irradiance present in the core of the filament will convert the 

material surface directly from a solid to a plasma on a sub-picosecond timescale [119].  The 

plasma and electron density resulting from this process is far in excess of the 1016  W/cm2 

electron density obtained within the filament core, enabling the generation of transient currents 

far greater than those found within the filament core and consequently a far stronger radio 

frequency emissions.   
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RF radiation from filament-matter interaction can be further enhanced by using a lens to prepare 

the laser filament.  In addition to improving shot to shot stability, a spherical lens will refract the 

peripheral field of a filament onto the optical axis at the lens focal plane, temporarily enhancing 

on-axis beam irradiances along with electron emission responsible for RF radiation.  This can be 

used to ensure the peak electric field of the filament exceeds the breakdown threshold of 

irradiated solids. 

 

5.1 RF Generation Model 

The generation of RF radiation from laser solid interactions was modeled numerically using 

MATLAB.  In the model, which is illustrated in Figure 33, incident laser radiation is assumed to 

ionize the surface of irradiated matter through a combination of multi-photon ionization and 

avalanche ionization, resulting in the generation of free electrons.  The electrons were then 

assumed to stream directly away from the surface at the electron thermal velocity, until their 

momentum was arrested by collisions with neutral air molecules.  This results in a short distance, 

transient current which acts as a broadband dipole radiator. 

The electron dynamics resulting from laser-matter interaction can be expressed as a series of 

differential equations, which can be numerically solved using the Euler method.  Before 

evaluating electron dynamics, the time and space resolved incident irradiance was determined.  

To obtain the irradiance, the incident laser pulse was assumed to be Gaussian in both space and 

time, and the pulse was assumed to be cylindrically symmetric.  Departures from Gaussian 

behavior in space were accounted for using an above unity M2 factor.  Departures from Gaussian 
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behavior in time, usually resulting from chirp, were accounted for by increasing the beam 

temporal pulse duration to match the temporal pulse broadening associated with the pulse chirp. 

 

Figure 33:  Illustrated summary of the model used to evaluate filament-matter induced RF radiation. 

Laser pulses are experimentally characterized by the temporal pulse width, the spatial pulse 

width, and the pulse energy.  To obtain the pulse irradiance, first instantaneous pulse power was 

obtained by integrating over the temporal pulse envelope and rearranging the result. 

𝐸𝑝 =  𝑃0 �𝑑𝑡 exp �−
𝑡2

𝜏2
� = 𝑃0𝜏√𝜋 (165) 

𝑃0 =
𝐸
𝜏√𝜋

 (166) 
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𝑃(𝑡) = 𝑃0 exp�−
𝑡2

𝜏2
� (167) 

Here, 𝐸𝑝 is the pulse energy, 𝑃(𝑡) is the instantaneous pulse power, 𝑃0 is the peak instantaneous 

pulse power, and 𝜏  is the pulse duration.  For the experiment being modeled, 𝐸𝑝 = 8 𝑚𝐽 , 

𝜏 = 50 𝑓𝑠 and 𝑀2 = 1.7. 

Pulse irradiance is obtained from the time resolved pulse power, under the assumption that 

material surface lies in the focal plane of the lens used to focus the pulse energy onto the surface.  

Under these assumptions, the irradiance is described by an Airy disk 

𝐼(𝑟, 𝑡) = 𝐼(𝑡) �
2𝐽1 �

𝜋𝑑𝑟
𝜆𝑓 �

𝜋𝑑𝑟
𝜆𝑓

�

2

 (168) 

This irradiance profile can be approximated using the Gaussian 

𝐼(𝑟, 𝑡) = 𝐼(𝑡) exp �−
𝑟2

2𝑤2� (169) 

where  

𝑤 =
0.42𝜆𝑓
𝑑

 (170) 

To account for an above unit M2 this expression is modified to 

𝑤 =
0.42𝜆𝑓
𝑑

𝑀2 (171) 

Irradiance is then related to power through the integral 
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𝑃(𝑡) = 2𝜋𝐼(𝑡)�𝑑𝑟 𝑟 exp �−
𝑟2

2𝑤2� = 2𝜋𝑤2𝐼(𝑡)  (172) 

𝐼(𝑡) =
𝑃(𝑡)

2𝜋𝑤2 (173) 

Combining this with the time domain expression from Equation 169 gives 

𝐼(𝑟, 𝑡) = 𝐼0 exp �−
𝑟2

2𝑤2� exp�−
𝑡2

𝜏2
� (174) 

𝐼0 =
𝐸𝑝

2𝜋𝜏𝑤2√𝜋
 (175) 

For laser pulses above the critical power of 3 GW, the pulse will undergo Kerr self-focusing 

even in the absence of a lens, resulting in a laser plasma filament.  While the true transverse 

profile of a filament is Townesian, filaments can also be approximated using a Gaussian profile, 

using the same functional formed as listed above.  However, unlike the above case, the beam 

waist and peak irradiance will be fixed by those parameters experimentally obtained for laser 

filaments from literature, namely 

𝑤 = 50 𝜇𝑚 − 100 𝜇𝑚 (176) 

𝐼0 = 1013 − 1014 𝑊/𝑐𝑚2 (177) 

Filamentation is simulated by taking the maximum of the focused pulse profile and the filament 

profile and each point in space and time, essentially preventing the incident irradiance from 

falling below that defined for a filament. 

Once the incident irradiance has been determined, electron temperature is calculated using the 

incident irradiance and electronic specific heat for the material in question.  Because the physics 

under investigation takes place on a sub picosecond time scale, it is assumed there is insufficient 
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time for energy transfer between the electrons and the material lattice.  Therefore, the thermal 

dynamics of the electrons may be dealt with in isolation.  To further simplify the problem, it is 

assumed that the conduction of heat away from the surface can be neglected on the femtosecond 

time scale, and that the laser power is all deposited within a single skin depth of the material.  It 

is also assumed that no light is reflected from the material surface prior to the formation of 

plasma. 

The surface electron temperature evolves according to [120] 

𝛾𝑇
𝑑𝑇(𝑟, 𝑡)
𝑑𝑡

=
𝐼(𝑟, 𝑡)
𝑑𝑠

 (178) 

where 𝛾 is the electronic specific heat and 𝑑𝑠 is the skin depth.  For copper, 𝛾 = 420 𝐽
𝑘𝑔⋅𝐾

 [121] 

and 𝛾 = 97.0 𝐽
𝑚3𝐾2

 [122].  The skin depth can be obtained using  

𝑑𝑠 =
𝜆

2𝜋𝜅
 (179) 

where 𝜅  is the extinction coefficient.  For copper, 𝜅 = 5.26  [123], yielding a skin depth of 

𝑑𝑠 = 24 𝑛𝑚.  

The temperature is calculated by applying the Euler algorithm to the above differential equation 

using the irradiance profile given in Equation 174.  The resulting temperature is resolved in both 

the radial and temporal dimensions.  Specific temperature varies depending on time, focal length 

and radially location, but the peak temperature obtained for a 1 m focal length lens in the 

simulation was 250,000 K or 22 eV. 

The electron thermal velocity is obtained from the electron temperature using 
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𝑣𝑡ℎ =  �
8𝑘𝐵𝑇
𝜋𝑚𝑒

 (180) 

as provided by [123], which is assumed to be the velocity at which the electrons travel away 

from the material surface after ionization.  Here 𝑘𝐵  is Boltzmann’s constant and 𝑚𝑒  is the 

electron mass.  As dictated by Equation 180, the thermal velocity corresponding to 250,000 K is 

𝑣𝑡ℎ = 3.1 ⋅ 106 𝑚
𝑠

. 

Most of the materials used in the generation of remote radio frequency radiation during 

experiments were metals.  For metals, it is assumed that the material is initially in the ground 

state, and that the electrons are separated from their ionization state by an empty conduction 

band, and that the energy spacing between the electrons in their ground state and the top of the 

conduction band is the work function of the metal in question.  For copper, a work function of 

4.65 eV, taken from Eastman et al., is chosen [124] [125] [126] [122]. 

Incident laser radiation is assumed to ionize the metal through a combination of multiphoton and 

avalanche ionization, which move the electrons from the ground state to the ionization state.  The 

time evolution on the free electron density due to these two processes is then described by [127] 

𝑑𝑁
𝑑𝑡

= 𝛼𝐼𝑁 + 𝜎𝑘𝐼𝑘 (181) 

where 𝛼 is the avalanche ionization coefficient and 𝜎𝑘 is the multiphoton ionization coefficient 

for k photon ionization.   

For copper, values for the avalanche and multiphoton ionization coefficients could not be 

obtained.  For 800 nm light, three photons of 1.55 eV are required to overcome the copper work 
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function of 4.65 eV.  This property was used to find another material with a similar bandgap to 

be used as a surrogate.  Lenzer et al. provides the required coefficients for BBS glass, which has 

a bandgap requiring 3 photons to cross at 780 nm.  These coefficients are 𝛼 = 1.2 𝑐𝑚
2

𝐽
 and 

𝜎3 = 7 ⋅ 1017 1
𝑝𝑠⋅𝑐𝑚3 �

𝑐𝑚2

𝑇𝑊
�
3
 [127], and were used in to simulate copper in the absence of copper 

specific data.  

The total electron density that can be obtained through ionization is assumed to be limited by the 

critical electron density associated with the incident laser radiation.  Once this value is exceeded, 

the plasma frequency of the free electrons exceeds that of the incident laser pulse, preventing 

additional radiation for reaching the material surface and acting as a clamping mechanism [118]. 

The electron plasma frequency is defined as 

𝜔𝑝 =  �
𝑁𝑒2

𝜖0𝑚𝑒
 (182) 

From which the critical density can be obtained by setting the plasma frequency to the laser pulse 

center frequency and solving for the electron number density 

𝑁𝑐 =
𝜖0𝑚𝑒𝜔2

𝑒2
=

4𝜋2𝑚𝑒𝜖0𝑐2

𝜆2𝑒2
 (183) 

For 800 nm light, the resulting critical density is 𝑁𝑐 = 1.75 ⋅ 1021 𝑐𝑚−3. 

The electron density solved using the ionization equations above are taken as a boundary 

condition, with the additional restriction that the resulting electron density may never exceed the 

critical electron density.  During each logic cycle of the numerical simulation, ionized electrons 
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are permitted to stream away from the material surface at the thermal velocity, to be replaced by 

electrons generated through ionization during the next cycle in the code.  However, electrons 

generated during the previous cycle are still used to seed electrons in the following logic cycle.  

Once electrons have escaped the material surface, they are assumed to travel at a velocity of 𝑣𝑡ℎ 

until they collide with an air molecule.  At this point it is assumed all forward velocity is lost, so 

that electrons that have collided are no longer factored into the current that will be responsible 

for the dipole radiation predicted by the simulation.  The dynamics for the collisional 

depopulation process are dictated by 

𝑑𝑁
𝑑𝑡

=  −𝜈𝑁 (184) 

where 𝜈 is the electron-neutral collision frequency in air defined by 

𝜈 =
𝑣𝑡ℎ
𝑢

 (185) 

and 𝑢 is the electron mean-free path.  For air at standard temperature and pressure, 𝑢 = 69 𝑛𝑚 

[123]. 
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Figure 34:  Code flow chart describing the filament matter induced RF radiation simulation. 

The time and spaced resolved number density resulting from surface ionization, critical density 

saturation, electron propagation from the surface, and electron loss due to collisions is 

numerically calculated as part of a single, self-contained process, with the time and radially 

resolved incident irradiance and surface temperature treated as fixed constants for these 

calculations, as these values are obtained by the code prior to carrying out ionization 

calculations.  Once the computations for the electron density values for all points in time and 

space are complete, the current density resulting from electron motion is obtained from 
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𝐽(𝑟, 𝑧, 𝑡) = 𝑒𝑣𝑡ℎ𝑁(𝑟, 𝑧, 𝑡)  (186) 

The total current can then be obtained by radially integrating over the current density 

𝐼(𝑧, 𝑡) =  �𝑑𝑟 𝑟 𝐽(𝑟, 𝑧, 𝑡) (187) 

As this current is directed away for the material surface and extends only a short distance, it can 

be treated as an infinitesimal dipole radiator.  To treat the current using antenna theory 

formalism, it is taken to the Fourier domain 

𝐼(𝑧,𝜔) =  ℱ[𝐼(𝑧, 𝑡)] (188) 

The radiated electric field spectrum is then calculated using the expression for an infinitesimal 

dipole 

𝐸(𝜔,𝑅,𝜃) =  �𝑑𝑧
𝜔𝐼(𝑧,𝜔)
4𝜋𝑐𝜖0𝑅

sin𝜃 (189) 

where 𝑅 is the distance between the laser-matter interaction and the field point and 𝜃 is the angle 

between the field point and the surface normal.  From the electric field spectrum, the integrated 

field strength is then obtained using Parseval’s theorem 

𝐸𝑡𝑜𝑡(𝑅,𝜃) =  ��𝐸2(𝑤,𝑅, 𝜃)𝑑𝜔 (190) 

The integrated field strength is then evaluated as a function of lens focal length given in 

equations 170 and 171, by evaluating the entire series of equation listed in this section for each 

focal length of interest.  These lens resolved RF field measurements can then be used as a 

benchmark for comparison against experiment. 
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5.2 RF Detection and Measurement 

Given the duration of the laser pulses used to drive the plasma responsible for RF radiation, and 

the temporary duration of the resulting plasma, resulting RF radiation is expected to be short 

lived and broadband.  For these reasons, single-shot, broadband measurements are required to 

evaluate the RF radiation.  To carry out such measurements, a Tektronix CSA7404 was used, 

which is a single-shot oscilloscope with a 4 GHz bandwidth and 20 GS/s sample rate. 

 

Figure 35:  Horn antennas used in all RF experiments. 

To extend the measurement range of the CSA7404, a custom built heterodyne receiver was used.  

The heterodyne receiver has a 4 GHz channel bandwidth to match both the bandwidth and time 

response of the oscilloscope, and a 1-40 GHz spectral range, providing the oscilloscope access to 

a spectral bandwidth 10 times that available unaided.  A pair of polarization sensitive, broadband 

horn antennas, the 1-18 GHz Sunol Sciences DRH-118 and the 18-40 GHz Q-Par Angus 

QPS180K, were used to couple RF radiation from free space into the instrumentation. 
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Figure 36:  Heterodyne signal processing system used to evaluate RF radiation. 

The heterodyne system layout is shown in Figure 36.  The heterodyne receiver downconverts a 

continuous band of 4 GHz lying within the 1-40 GHz spectrum while simultaneously filtering 

frequencies lying outside the spectral range of interest.  This is accomplished by first mixing the 

incoming signal with a 1-20 GHz carrier to shift the desired spectrum to 16-20 GHz.  A bandpass 

filter is then used to reject frequencies lying outside this spectral range.  The filtered signal is 

then amplified and mixed with a fixed 16 GHz carrier which shifts the remaining signal to 0-4 

GHz, which is then analyzed using the CSA7404.  A pre-amplifier is placed immediately after 

the horn antennas to increase system sensitivity and reduce the system noise figure. 

The signal processing system was calibrated by performing spectrally resolved gain 

measurements with a known, tunable frequency source.  Subsequent RF measurements were 

carried out in the time domain.  To correct for the frequency response of the heterodyne receiver 

and the antennas, the measured RF signal is first converted to the frequency domain.  This was 

done using either an internal Fourier transform function on the oscilloscope, or by carrying a 

fast-Fourier transform within MATLAB.  Signals obtained from the system were then corrected 

using the resulting gain spectrum, by subtracting the gain spectrum from the signal spectrum 

using MATLAB code.      
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The spectrum of the incident field is obtained from the measured spectrum using antenna theory.  

The irradiance of the electromagnetic field is related to the measured power through 

𝐼(𝜔) =
𝑃(𝜔)
𝐴𝑒(𝜔) (191) 

where I is the spectrally resolved irradiance, P is the spectrally resolved cable power, and 𝐴𝑒 is 

the antenna effective area given by 

𝐴𝑒(𝜔) =
𝜆2

4𝜋
𝐺(𝜔) (192) 

provided the antenna is properly aligned [128].  Here G is the antenna gain, which is a function 

of frequency.  Manufacturer provided values of the gain were used to obtain the antenna 

effective area.  The incident electric field is then obtained from the measured irradiance using the 

Poynting relation 

�𝐸�⃑ � = �
2𝐼
𝑐𝜖0

 (193) 

To evaluate the total energy associated with a given RF pulse, Parseval’s theorem was used to 

evaluate the total irradiance contained within the spectrum [129].  The above equation was also 

applied to obtain the integrated electric field, which is the peak electric field of a time-bandwidth 

limited pulse possessing the irradiance and bandwidth of the measured field. 
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5.3 Terawatt Filament Experiments 

The first set of experiments was conducted using the TW laser system.  These were performed 

jointly by the present author and Dr. Robert Bernath.  Pulses with energy of 8 mJ generated from 

TW were used to irradiate planar targets composed of copper, aluminum, polyformaldehyde, 

fused silica and sapphire.  Pulses from TW were turned into the 50 m laser range, and permitted 

to propagate 30 m before reaching a spherical lens.  The targets under investigation were placed 

within the focal plane of the lens and their surfaces aligned to be normal relative to the laser 

propagation axis.  Laser self-filamentation was observed during beam propagation, and was 

found to prevent diffraction from increasing the laser spot size before the lens was reached.    

 

Figure 37:  Experimental setup used to evaluate filament induced RF radiation in the Terawatt experiments. 

The 1-18 GHz horn antenna was placed 30 cm from the target, at an angle 20∘ relative to the 

target surface normal, as shown in Figure 37.  The antenna was oriented for both horizontal and 

vertical polarization measurements.  Data was collected by firing a single laser pulse onto the 

target through the setup while the CSA7404 monitored data using a trigger synchronized to the 

laser.  For each material, the experiment was repeated using several different mixing 

configurations on the heterodyne receiver, until sufficient data was obtained to reconstruct a 1-18 

GHz spectrum. 
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For all the materials investigated, the interaction of laser filaments with the material surface 

resulted in short RF pulses, as shown Figure 38.  These pulses possessed subnanosecond rise 

times and 2-20 ns fall times.  The large disparity between the observed rise and fall times may be 

due to cable ring or similar parasitic oscillations in the detection system extending the pulse 

trailing edge, suggesting the observed RF pulses are a combination of an RF impulse followed by 

a tail formed by ringing. 

 

Figure 38:  Raw oscilloscope traces. 

The spectrum of the measured signals was obtained by carrying out a fast-Fourier transform 

using internal oscilloscope math functions.  The spectra obtained for the five materials 

investigated are shown in Figure 39 for horizontal polarization and Figure 40 for vertical 

polarizations.  The RF spectra for all materials extended from 4 GHz or less to 18 GHz, the upper 

frequency limit of the measurements, for both polarizations.  Some materials, such as copper, 
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polyformaldehyde and sapphire have weak spectral components that extend down to 1 GHz, 

filling the whole spectra range under investigation.  For all materials, the measured spectrum 

does not converge to zero at the upper measurement limit of 18 GHz, indicating that the actual 

spectrum extends beyond this frequency.    

 

Figure 39:  Spectral measurements of laser-matter induced RF radiation, conducted using a horizontally polarized 
antenna. 
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Figure 40:  Spectral measurements of laser-matter induced RF radiation, conducted using a vertically polarized 
antenna. 

Strong polarization dependence was observed from the data.  On average, signals obtained when 

the antenna was horizontally aligned possessed irradiances an order of magnitude greater than 

those obtained for vertical polarizations.  This polarization response is consistent with an 

infinitesimal dipole radiator aligned along the beam propagation axis, for which a horizontally 

polarized antenna would be polarization matched while a vertically aligned antenna would be 

cross polarized. 

 

 

 



110 
 

5.4 High Frequency Experiments 

RF emissions were also evaluated within the 18-40 GHz range.  Aluminum, copper and delron 

were irradiated by reflecting 50 fs, 11.8 ± 0.4 𝑚𝐽 pulses from MTFL off a long focal length 

concave mirror located 9 m from the target.  Laser filamentation began 3 m from the mirror.  The 

laser pulse propagated over the remaining 6 m as a filament before irradiating the target surface.  

The target surface was always aligned normal to the incident laser pulse. 

The experimental setup is shown in Figure 41.  RF radiation was measured using the QPS180K 

horn antenna, which was aligned to and located 10 cm from the irradiated surface.  The antenna 

was oriented at angles of 10o, 45o, and 90o relative to the surface normal in the horizontal plane, 

and also place directly above the target, maintaining its 10 cm distance from the irradiated 

surface, to obtain angularly resolved RF measurements.  For each orientation, measurements 

were taken using both antenna polarizations, obtained by 90o rotations of the antenna, and for 

both laser polarizations, obtained using a quarter-wave plate, to determine laser and field 

polarization dependence of the RF radiation.   
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Figure 41:  Experimental setup used to evaluate 21-35 GHz laser filament induced RF radiation. 

The heterodyne detector and oscilloscope were synchronized to the incident laser pulses by 

triggering off a fast photodiode monitoring the visible light that resulted from the plasma which 

formed on the target surface.  The oscilloscopes internal math function was used to record the 

resulting RF spectra.  To obtain an RF background, a beam block was used to prevent the 

filament from reaching the target, and the RF spectra for each experimental configuration were 

recorded under these conditions. 

For the above experimental conditions, RF spectra proved to be weak, with a signal to noise ratio 

only marginally greater than one.  In the case of Delron, no spectra could be observed other than 
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the background, and the resulting RF signal was concluded to be below the detection threshold of 

the equipment.  Spectra were obtained for both aluminum and copper. 

 

Figure 42:  Sample time domain measurement of filament induced RF radiation and corresponding spectra. 

A time domain image and corresponding compiled spectrum is shown in Figure 42.  The time 

domain plot is characteristic of all RF signals above the detection threshold of the measurement 

system.  All such pulses were sub-nanosecond in duration and limited to the bandwidth of the 

instrumentation.  This indicates the duration of the measured RF pulses are shorter than the band 

limited response of the oscilloscope of 250 ps, and have a coherent spectrum in excess of 14 

GHz.  The measured spectra corresponding to the RF pulses are relatively uniform and extend 

across all measured frequencies, suggesting that the true spectrum extends beyond the 21-35 

GHz frequency range evaluated in this experiment. 
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Figure 43:  Filament induced RF radiation evaluated at several orientations relative to the surface normal for 
irradiated copper. 

Rudimentary radiation pattern measurements were carried out by evaluating the filament induced 

RF radiation at three separate angles relative to the surface normal within the horizontal plane.  

For each angle, measurements were carried out with the antenna both horizontally and vertically 

aligned, and using both horizontal and vertically polarized laser light.  The resulting spectra 

obtained from these measurements along with total irradiance and field strength obtained from 

the spectra which are shown in Figure 43.  For horizontal polarizations, a clear angular 

dependence is observed, with maximum radiated power obtained at 90o relative to the surface 

normal.  For vertical polarizations, the total field irradiance was both independent of angle and 

weaker than the field irradiance obtained for horizontal polarization at any angle.  This leads to 
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the conclusion that the FIRF obtained from copper is horizontally polarized, with an antenna 

pattern which peaks at 90o relative to the surface normal and approaches the background value 

observed for vertical polarizations as the angle relative to the surface normal approaches zero.   

 

Figure 44:  FIRF measurements taken out of the horizontal plane. 

To better characterize the polarization of filament induced RF radiation, RF measurements were 

repeated with the antenna located direct above the target, outside of the horizontal plane.  The 

experimental arrangement, direction of field polarization, and results are shown in Figure 44.  

Total field irradiance was twice as strong when the antenna polarization was parallel to the 

surface normal, while irradiance comparable to those obtained from vertically polarized 

measurements in the horizontal plane was obtained when the antenna was polarized orthogonal 

to the surface normal.  Given the approximate cylindrical symmetry of the arrangement (the 
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setup is cylindrically symmetric in the absence of the ground plane), these results are consistent 

with those obtained at 90o relative to the surface normal in the horizontal plane. 

 

Figure 45:  Orientation of RF polarizations in spherical coordinates. 

A simple arrangement that describes the polarization response obtained from the angle resolved 

and out of plane experiments is shown in Figure 45.  Here the z-axis of the spherical coordinate 

system is aligned parallel to the surface normal.  If the filament induced RF radiation is taken to 

be polarized along the zenith within this arrangement, then the experimentally observed 

polarization dependence is satisfied.  This polarization arrangement is consistent with a dipole 

radiation source aligned to the target normal. 
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Table 1:  Total spectral irradiance as a function of laser polarization and orientation relative to the target for 
horizontally polarized copper measurements. 

Laser Polarization 𝜃 = 10𝑜 𝜃 = 45𝑜 𝜃 = 90𝑜 Above Target 

Horizontal 26
𝑛𝑊
𝑐𝑚2 48

𝑛𝑊
𝑐𝑚2 58

𝑛𝑊
𝑐𝑚2 41

𝑛𝑊
𝑐𝑚2 

Vertical 27
𝑛𝑊
𝑐𝑚2 42

𝑛𝑊
𝑐𝑚2 50

𝑛𝑊
𝑐𝑚2 25

𝑛𝑊
𝑐𝑚2 

 

The influence of laser polarization on filament induced RF radiation was also investigated by 

carrying out all aforementioned measurements for both laser polarizations.  The polarization 

dependence of the previously discussed angle resolved FIRF measurements are summarized in 

Table 1.  Laser polarization had little influence on measurements taken within the horizontal 

plane, with disparities no greater than 16% observed between the two laser polarizations.  FIRF 

radiation can therefore be concluded to be independent of laser polarization.  This further 

reinforces the concept of a dipole like radiator that explains the previously observed polarization 

dependence of FIRF. 

  

5.5 Focal Length Resolved FIRF Experiments 

Laser filamentation occurs when an ultrafast pulse exceeds the critical power for filamentation.  

Because of the Kerr effect responsible for filamentation, no additional optical elements are 

required to achieve filamentation once this threshold is exceeded.  However, filaments and their 

characteristics can be altered by modifying the optical wavefront of the laser pulse responsible 
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for filamentation prior to the onset of filamentation, such as when a conventional converging 

lens is used to assist and control the filamentation process. 

The most obvious effect of using a lens to assist in filamentation is the reduced propagation 

distance required before the onset of filamentation.  Another effect that proves to be important is 

the wavefront modification to the peripheral field.  While the Kerr effect at the center of a 

Gaussian beam is identical to that of a converging lens in that energy from the refracted 

wavefront will eventually reach the optical axis, energy lying at the beams periphery will never 

reach the optical axis due to the departure of the Gaussian refractive index lag from that of a 

spherical lens, as described in Chapter 4.  However, when a spherical lens is used to assist in the 

filamentation process, the wavefront modification will result in the eventual convergence of all 

incident light with the optical axis, increasing optical power at or near the optical axis, much like 

the linear case.    

The RF radiation resulting from filament matter interaction using unaided filament formation 

proved to be particular weak, often below the detection threshold of heterodyne detector, while 

clear RF signals were obtained from those experiments which used a lens to assist with filament 

formation.  To better understand the effects of using a lens to assist in filament formation on 

filament-matter induced RF radiation, the dependence of RF radiation on lens focal length was 

investigated. 
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Figure 46:  Experimental setup used to evaluate the effect of focality on filament induced RF radiation. 

The experimental setup is depicted in Figure 46.  An 8 mJ laser pulse was turned into the laser 

range using a plane mirror.  The laser pulse was then passed through one of several different 

lenses, of focal length 20 cm, 50 cm, 1 m, 2 m, 3 m, 5 m or 10 m, located at a fixed distance from 

the turning mirror.  A target composed of a solid sheet of aluminum, copper or delron was then 

placed in the focal plane of the lens.  The target was mounted on a two-axis translation stage, so 

that it could be adjusted in the plane perpendicular to the incident beam.  The surface of each 

material that was exposed to the laser was cleaned with acetone before the experimental was 

carried out.  The exposed surface was oriented normal to the beam propagation path. 
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The 1-18 GHz horn antenna was placed 30 cm from the target at an angle of 20∘ relative to the 

exposed surface normal.   The oscilloscope trigger was connected to a fast photodiode, which 

monitored the visible light emission from the plasma that was generated whenever a laser pulse 

irradiated the target surface.  The receiver was adjusted to filter RF frequencies outside of 9-13 

GHz and to downconvert 9-13 GHz to 0-4 GHz. 

Each experiment was carried out by selecting a material and lens focal length.  The material 

target was then placed in the focal plane of the lens.  The antenna and photodiode were moved 

with the target whenever the lens was replaced with a lens of different focal length, so that the 

antenna and photodiode always maintained a fixed distance and orientation with respect to the 

target. 

Each experiment was carried out by irradiating the target with 30 separate laser pulses.  Between 

each pulse, the translation stage on which the target was mounted was used to move the ablated 

region of the target surface outside the beam path, so each subsequent pulse would strike a 

surface free from ablation damage caused by previous laser shots.  Oscilloscope trigger settings 

ensured that only a single oscilloscope trace was taken for each laser pulse. 

Radiation background characterization was conducted by placing a beam block in the beam path 

between the antenna and the photodiode.  With the beam block in place, the photodiode still 

registered individual laser pulses while the antenna collected background radiation in the absence 

of any laser plasma.  Thirty background measurements were taken under these conditions for use 

as a reference. 
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Raw time domain samples are shown in Figure 47.  For all RF pulses, measured pulse duration 

was less than one nanosecond, typically between 0.5 and 1 ns.  This is only marginally greater 

than the 250 ps minimum time resolution of the detection setup as dictated by the 4 GHz analog 

bandwidth of the equipment used.  Pulses typically exhibited both a positive and negative signal 

voltage component with a single zero crossing.  In most cases, one component is considerably 

stronger relative to the other.  Many pulses possess an oscillatory tail with a signal strength 

between one-quarter and one-tenth of the peak-to-peak value of the main pulse, which persist for 

up to 10 ns and appear to be composed of oscillations that are too rapid to be temporally 

resolved. 

 

Figure 47:  Time domain samples collected for a 50 cm focal length lenses. 

The spectrum of the measured signals was obtained by carrying out a fast-Fourier transform on 

the data in MATLAB.  The measured signal spectra were converted to power signal spectra, and 

then averaged across the 30 pulses used for each of the experimental runs.  The resulting spectra 

for copper are plotted in Figure 48.  Each plot contains a frequency spectrum recorded both in 

the presence (blue) and absence (yellow) of a laser-matter interaction.   
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Figure 48:  RF spectra generated from laser-matter interaction with copper lying within the focal plane of a 
spherical lens.  For each lens evaluated, 30 spectra where recorded and averaged.  RF radiation background 
measurements are shown in yellow, while RF signal measurements are given in blue. 

For a lens focal length of 5 m, a signal to noise ratio only marginally greater than one is 

observed.  By shortening the lens focal length, the strength of the measured signal is increased 

across the entire bandwidth of observation.  For a focal length of 1 m, the recorded signal field 

strength is approximately an order of magnitude greater than the background field across the 

entire spectrum under investigation, indicating an abrupt increase in RF pulse power when 

transition from a 2 m lens to a 1 m lens. 

The total irradiance and field strength was calculated for all measured spectra.  For each material 

and lens focal length, the average and standard deviation was calculated from the resulting 
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ensemble.  The standard deviation was taken as the measurement error.  A plot of the average 

field strengths as a function of both material and focal length is plotted in Figure 49. 

 

Figure 49:  Integrated RF pulse field strength as a function of focal length. 

For the three materials investigated, RF emission field strength was less than 0.04 V/m when lens 

focal lengths of 2 m or more were used.  When the focal length is reduced to 1 m, an order of 

magnitude increase in measured field strength is observed for copper and aluminum, for which a 

RF field strength of 0.31 V/m and 0.32 V/m are obtained.  However, increases in field strength 

when the lens focal length is further reduced for these materials is minimal, with a maximum 

field of 0.42 V/m and 0.36 V/m obtained for copper and aluminum respectively using a 50 cm 

lens while further reduction in lens focal length results in a minor reduction in measured field 

strength for both materials. 
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A similar pattern is observed for delron.  Here, the onset of the order of magnitude increase in 

field strength is delayed, and a field comparable to those obtained for copper and aluminum at 

focal lengths of 1 m or less required a 20 cm focal length lens. 

 

Figure 50:  Comparison of simulation results to data for filament-matter induced RF radiation. 

The focal length dependence observed in  is unusual in that the observed field strengths seemed 

to be separated into two discrete plateaus, with field strength values observed for focal lengths of 

1 m or less being an order of magnitude greater than those observed for 2 m or more.  From 

Equation 181, a continual increase of RF radiation field strength with lens focal length would be 

expected.  However, the plasma critical density limits the charge carriers that can be extracted 

from the material, resulting in the saturation of the measured field once sufficient irradiance is 

obtained.  Once the extraction limit is reached, decreases in focal length only reduces the 
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material surface available for free electron extraction, resulting in a gradual reduction in RF field 

strength with decreasing focal length, explaining the first plateau. 

In the case of increasing focal length, natural filamentation will maintain a peak on-axis 

irradiance of approximately 5 ⋅ 1013 𝑊/𝑐𝑚2 over a 100 𝜇𝑚 diameter, ensuring a minimal level 

of electron extraction even as the focal length approaches infinity.  In addition to this effect, the 

noise limits the detection threshold of the measurements, as can be seen from Figure 48.  These 

effects collectively result in the second plateau. 

With the exception of the noise, all of these effects have been incorporated into the numerical 

model discussed in the beginning of this chapter.  Simulation results for copper are shown in 

Figure 50.  Agreement is obtained between simulation and experiment for lens focal lengths of 2 

m or less.  The model underestimates the field strengths obtained at 3 and 5 m because it does not 

account for noise. 

 

5.6 Conclusion 

Measurable broadband, fast-pulsed RF radiation can be obtained by focusing laser filaments onto 

a variety of solid media.  The resulting pulses are only a few nanoseconds in duration and are 

sufficiently broadband to fill the spectra under investigation.  The pulse polarization is consistent 

with a dipole radiator aligned to the laser propagation direction. 

By modeling the RF source as a stream of filament driven avalanche ionized electrons traveling 

away from the irradiated material at the electron thermal velocity, a dipole radiation source was 
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obtained.  Focality resolved FIRF measurements could be accurately calculated using the 

simulated dipole radiator for focal lengths as great as 2 m, and could likely be extended to longer 

focal lengths if the effect of noise on the RF measurements could be reconciled with the model.  

This suggest the observed RF radiation is a consequence of a sub-picosecond stream of 

breakdown electrons resulting from the filament-matter interaction, as opposed to a slower 

thermal process.  
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CHAPTER 6:  MICROWAVE GUIDING USING FILAMENTS 

The most straightforward application of the conductive channels that lie within the core of the 

filaments is to guide electric current directly along the plasma.  In this regard, laser filaments 

have been employed to trigger and guide high-voltage discharges along the laser propagation 

path, in the hopes of eventually achieving laser guided lightning.  Such laser assisted discharges 

have been demonstrated at distances up to 4 m and result in straighter discharge paths then 

obtained for the normal dielectric breakdown of air [130].   

More recently, laser filaments have been employed as waveguides.  In 2007, Dormidonov et al. 

claimed an array of plasma filaments could be used as a waveguide for microwave frequency 

radiation, which would be confined by the array as microwave frequencies fall below the 

filament plasma frequency [12].  Musin et al made a similar claim, but on the basis of index 

guiding along the filament array [18].  Guiding of microwaves with filaments were 

experimentally demonstrated by Chateauneuf et al., using a 100 TW laser system to produce a 

cylindrical array of filaments 45 mm in diameter, which guided microwaves in a manner 

described by Dormidonov [13].  A separate means of guiding microwaves was investigated by 

Bogatov et al, in which a filament was used in conjunction with a copper wire to form a twin-

lead transmission line capable of transmitting a 24 GHz microwave signal [131]. 

Recent research suggests that filamenting non-diffracting beams are a promising source of 

waveguiding geometries.  In 2008, Polesana et al claimed pulsed ultrafast Bessel beams could be 

used to produce filamentation [132].  This was demonstrate by Akturk et al. and Polynkin et al., 

who used Bessel filaments to produce plasma channels of 1 m and 2.25 m in length respectively 
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[133] [104].  Among their findings, Bessel filaments were found to produce plasma channels that 

were both longer and more stable than their equivalent Gaussian counterparts, characteristic 

which are desirable for microwave guiding applications.  Previously, Fan et al. generated a 

cylindrical plasma sheath 10 𝜇𝑚 in diameter using a 5th order Bessel beam produced using 100 

ps pulses [134].  However, the peak irradiance of 2.5 TW/cm2 obtained in the experiment was not 

sufficient to obtain filamentation. 

It is believed that the phenomenon investigated in the previous chapters can be readily adapted to 

the end of microwave guiding using transient plasma and filament structures, and that microwave 

guiding experiments are a natural and logical extension of the investigations that have been 

undertaken on the previous topics.  To this end, various guiding structures that can be obtained 

through the application of filaments and non-diffracting beams are theoretically investigated. 

 

6.1 Filaments as Waveguiding Elements 

Laser filaments in air under normal circumstances possess several properties that are consistently 

reproducible despite changes in the laser pulses and experimental conditions used in their 

generation.  These properties include the filament peak irradiance, the filament core diameter, 

and the filament plasma density.  Such consistency in filament properties are desirable in that 

they enabled evaluation of filament guiding structures prior to establishing the particular 

properties of the laser pulse used in their generation.  However, such consistency is also 

problematic when it is desired to modify filament properties to improve their radiation guiding 

characteristics. 
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Filaments possess two properties which enable them to guide radiation.  The 50-100 𝜇𝑚 

transient plasma present in the filament core possesses a resistivity of 40 𝑘Ω/𝑚 [82] [101].  

Given the electron density in filaments of at least 1016 𝑐𝑚−3, the resulting plasma frequency of 

the core is 5.6 – 17.8 THz, well above the operating frequency of conventional RF and 

microwave communication systems.  Filaments can therefore be employed as conductors [90], to 

either guide lower frequency RF radiation as a transmission line by conducting RF current 

through a pair of two or more electromagnetically coupled filaments, or as a waveguide at 

microwave and THz frequency, by confining traveling wave modes within an array of 

conductive filaments. 

Alternatively, the refractive index drop associated with a filament can be used to theoretically 

guide electromagnetic waves of any frequency.  By arranging multiple filaments such that a 

refractive index drop occurs with increasing distance from the optical axis, a dielectric guiding 

structure can be obtained, operating in a manner analogous to optical fiber.  In both cases, 

arranging and maintaining the correct filament geometries, and if necessary, finding a means to 

modify undesirable filament properties, is critical in obtaining effective guiding structures. 

 

6.2 Synthesis of Guiding Structures 

All filament based microwave guiding structure needs to have a definite transverse cross section 

which maintains its geometry during propagation.  While the mechanisms for maintaining shape 

and geometry are already present in the filamentation process, multi-filamentation proves to be 
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far more chaotic and difficult to maintain.  To improve the quality and control of a multi-

filamentation process, geometry maintaining light pulses with several irradiance peaks, each 

corresponding to a filament, would be ideal.  Such beams are the non-diffracting beams 

discussed in Chapter 3, which have already been shown to influence filament propagation in 

Chapter 4. 

Generating structured beams ideal for microwave guiding requires the generation of arbitrary 

transverse beam profiles.  As discussed previously, Bessel beams form a basis for scalar 

(uniformly polarized) electromagnetic waves that are particularly effective in describing radially 

symmetric structures, implying any microwave guiding structure can be obtained through a 

suitable superposition of Bessel beams.  However, it is quite possible an infinite superposition of 

Bessel beams will be required to obtain a specific geometry.  Thus, optimal beam guiding 

geometries should enable both efficient guiding while simultaneously requiring a small number 

of Bessel beams to synthesize, or alternatively an efficient method for generating a large to 

infinite superposition of Bessel beams. 

 

6.3 Filament Transmission Line 

While the conductive plasma channel within a filament can be used in the direct conduction of 

current, the high impedance of 40 𝑘Ω/𝑚 [101] obtained using individual filaments requires the 

use of high-voltage power supplies to drive current over extended distances.  Alternatively, 

multiple filaments can be used to synthesize transmission line structures from plasma channels, 

which can be used in the transport of radio-frequency and microwave signals. 
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Transmission line theory will be used to analyze the guiding properties of these plasma channel 

arrangements.  In general, signal propagation along transmission lines is described by the 

equations [135] 

𝜕2𝑉
𝜕𝑥2

− 𝛾2𝑉 = 0 (194) 

𝜕2𝐼
𝜕𝑥2

− 𝛾2𝐼 = 0 (195) 

where the propagation constant 𝛾 is defined by the distributed resistance (R), the distributed 

conductance (C), the distributed inductance (L), and the distributed leakage conductance (G) 

through 

𝛾2 = (𝑅 + 𝑖𝜔𝐿)(𝐺 + 𝑖𝜔𝐶) (196) 

Equations 194 and 195 have the solutions 

𝑉(𝑥) = 𝑉+ exp(−𝛾𝑥) + 𝑉− exp(𝛾𝑥) (197) 

𝐼(𝑥) = 𝐼+ exp(−𝛾𝑥) + 𝐼− exp(𝛾𝑥) (198) 

which are related by the line impedance 

𝑉
𝐼

=  𝑍 =
𝑅 + 𝑖𝜔𝐿

𝛾
= �𝑅 + 𝑖𝜔𝐿

𝐺 + 𝑖𝜔𝐶
 (199) 

 

The simplest transmission line structure is the twin-lead or ladder line.  This transmission line is 

composed of two parallel conductors.  Signals traveling along the line drive alternating current in 

both conductors with a relative potential difference between the conductor pair, resulting in a 
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time varying electric field.  The electric field propagates between the conductors supported by 

current at either end.  Such ladder lines represent the simplest wave guiding structures that can 

be obtained using laser filaments, requiring the simultaneous generation of only two parallel 

filaments. 

 

Figure 51:  Depiction of a twin-lead line with relevant dimensions. 

Ladder line properties are well understood and are given by [135] 

𝑅 =
𝜎
𝜋𝑎2

 (200) 

𝐿 =
𝜇
𝜋

arccosh �
𝐷
2𝑎
� (201) 

𝐺 =
𝜋𝜎𝑙

arccosh � 𝐷2𝑎�
 (202) 

𝐶 =
𝜋𝜖

arccosh � 𝐷2𝑎�
 (203) 



132 
 

for perfectly cylindrical, symmetric conductors.  Here, a is the radius of the individual 

conductors, 𝜎 is the conductance of the lines, 𝜎𝑙 is the leakage conductance between the lines, 

and D is the spacing between the axes of each conductor.  To evaluate filament based ladder 

lines, the following parameters are used to represent filaments [82] [101] 

𝑎 = 50 𝜇𝑚 (204) 

𝐺 ≅ 0 (205) 

𝜖 = 𝜖0 (206) 

𝜇 = 𝜇0 (207) 

𝑅 = 40
𝑘Ω
𝑚

 (208) 

The requirement that equations 201 and 203 have non-singular, real values introduces the 

additional restriction that 

𝐷 > 100 𝜇𝑚 (209) 

These values can be used to calculate 𝛾 by substituting 𝐺 = 0 along with equations 201 and 203 

into Equation 196 gives 

𝛾 = �𝑖
𝜋𝜖0𝜔𝑅

arccosh � 𝐷2𝑎�
+
𝜔2

𝑐2
 

(210) 

Separating 𝛾 into its real and imaginary components 

𝛾 = 𝛼 + 𝑖𝜁 (211) 

Equation 210 can be expressed as a combination of loss (𝛼) and phase (𝜁) terms 
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𝛼 = ��
𝜋𝜖0𝜔𝑅

arccosh � 𝐷2𝑎�
�

2

+ �
𝜔
𝑐
�
4
�

1
4

cos �arctan�
𝜋𝑅

2𝜇0𝜔 arccosh � 𝐷2𝑎�
�� (212) 

𝜁 = ��
𝜋𝜖0𝜔𝑅

arccosh � 𝐷2𝑎�
�

2

+ �
𝜔
𝑐
�
4
�

1
4

sin �arctan�
𝜋𝑅

2𝜇0𝜔 arccosh � 𝐷2𝑎�
�� (213) 

The transmission line performance can now be evaluated by solving equations 212 and 213 using 

the values listed in equations 204 to 209. 

 

Figure 52:  Frequency dependent propagation losses of twin-lead filament lines of various spacings. 

The transmission line losses were calculated from Equation 212 using MATLAB.  The results 

are shown in Figure 52.  Acceptable losses of 10 dB/m or less are obtained for frequencies below 

10 MHz.  Unfortunately, the plasma resulting from filamentation only persist for 1 ns [101], 

making the guiding structure suitable only for frequencies over 1 GHz. 
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To make use of filament twin-lead lines for guiding, either the losses need to be reduced for 

frequencies over 1 GHz, or filament plasma needs to persist for at least a microsecond.  

Fortunately, a means of extending the duration of the plasma channel is available using a series 

of laser pulses, where the initial laser pulses is used to form the filament according to the physics 

described in Chapter 4, and one of more subsequent pulses, typically nanoseconds in duration 

[136], are used to heat the plasma within the filament.  This igniter-heater approach to 

filamentation has proved to extend plasma channel lifetimes to at least 1 𝜇𝑠  [137] [138], 

sufficiently long to support MHz frequency guiding on the twin-lead transmission line. 

 

Figure 53:  Frequency dependent losses of twin-lead lines of various spacings possessing conductivity 100 times 
that of unaugmented laser filaments. 
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The effect of increasing filament conductivity on transmission line performance was also 

investigated.  By increasing filament conductivity by a factor of 100 to obtain a line impedance 

of 400 Ω/𝑚, losses can be kept below 10 dB/m over the entire frequency range investigated, as 

shown in Figure 53.  These calculations demonstrate that the performance of filament 

transmission lines can be improved in both transmission efficiency and bandwidth by several 

orders of magnitude if an effective means of increasing filament conductivity can be identified. 

Further improvements in transmission line performance can be obtained using a twisted pair 

transmission line.  A twisted pair is a twin-lead line is composed of two conductors which are 

twisted along a central axis.  The twisted pair arrangement is a geometric modification to the 

twin-lead line that improves EMI resistance and reduces radiation losses along the transmission 

line.  A filament analog to such transmission lines can readily be obtained from the helical 

filaments demonstrated in Chapter 4. 

From the theory devised for filament transmission lines, an experimental procedure for the 

filament guiding of microwave radiation can be devised.  First either multiple femtosecond 

pulses are used to generate a pair of parallel propagating filaments, are multiple filaments are 

obtained from a specially prepared ultrafast pulse, as in the case of helical beams.  A several 

hundred millijoule nanosecond laser pulse with a delay up to 1 ms is then focused onto the 

filament plasma channels using an axicon [136].  A microsecond to sub-microsecond radio-

frequency pulse using a 10-100 MHz carrier and synchronized with the nanosecond laser is then 

coupled onto the filament.  If this procedure is carried out correctly, the guiding of the RF pulse 

along the filament pair is expected. 
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6.4 Waveguiding Using Filaments 

 Electromagnetic waves of frequency below the plasma frequency 

𝜔𝑝 = �
𝑛𝑒2

𝜖0𝑚
 (214) 

treat the associated plasma as a conductor and are unable to propagate through the plasma.  

Under such conditions, the plasma could be employed as the boundary of a waveguide.  In the 

case where the plasma is generated through laser filamentation, the plasma electron density will 

fall in the range 

𝑛𝑒 = 1016 − 1017
1
𝑐𝑚3 (215) 

yielding a plasma frequency of 

𝑓𝑝 = 2𝜋𝜔𝑝 = 2𝜋�
�1016 − 1017 1

𝑐𝑚3� ⋅
106𝑐𝑚3

𝑚3 ⋅ (1.60 ⋅ 10−19𝐶)2

8.854 ⋅ 10−12 𝐹𝑚 ⋅ 9.11 ⋅ 10−31 𝑘𝑔
= 5.6 − 17.8 𝑇𝐻𝑧 (216) 

Assuming a cylindrical filament geometry can be obtained for which the electric field of a 

guided wave is zero for a radius of 𝑟 = 𝑟0, with an interior void of plasma, then for 𝑟 < 𝑟0 the 

electric field using the waveguide can be described using the equations  

�
𝜕2

𝜕𝑟2
+

1
𝑟
𝜕
𝜕𝑟

+
1
𝑟2

𝜕2

𝜕𝜙2 +
𝜔2

𝑐2
− 𝑘2� 𝐸𝑧 = 0 (217) 
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�
𝜕2

𝜕𝑟2
+

1
𝑟
𝜕
𝜕𝑟

+
1
𝑟2

𝜕2

𝜕𝜙2 +
𝜔2

𝑐2
− 𝑘2� 𝐵𝑧 = 0 (218) 

where the remaining vector components are described by 

𝐸𝑟 =
𝑖

𝜔2

𝑐2 − 𝑘2
�𝑘
𝜕𝐸𝑧
𝜕𝑟

+
𝜔
𝑟
𝜕𝐵𝑧
𝜕𝜙

� (219) 

𝐸𝜙 =
𝑖

𝜔2

𝑐2 − 𝑘2
�
𝑘
𝑟
𝜕𝐸𝑧
𝜕𝜙

− 𝜔
𝜕𝐵𝑧
𝜕𝑟

� (220) 

𝐵𝑟 =
𝑖

𝜔2

𝑐2 − 𝑘2
�𝑘
𝜕𝐵𝑧
𝜕𝑟

−
𝜔
𝑟𝑐2

𝜕𝐸𝑧
𝜕𝜙

� (221) 

𝐵𝜙 =
𝑖

𝜔2

𝑐2 − 𝑘2
�
𝑘
𝑟
𝜕𝐵𝑧
𝜕𝜙

+
𝜔
𝑐2
𝜕𝐸𝑧
𝜕𝑟

� (222) 

The electric and magnetic fields may be obtained by first solving for longitudinal components of 

the electromagnetic field and then acquiring the remaining components by substituting into the 

above equations (see Appendix F).  The solutions to the above equations are 

𝐸𝑧 = 𝐸𝑧,0𝐽𝑚(𝑘⊥𝑟) exp(𝑖𝑚𝜙) (223) 

𝐵𝑧 = 𝐵𝑧,0𝐽𝑚(𝑘⊥𝑟) exp(𝑖𝑚𝜙) (224) 

where 
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𝑘⊥2  =
𝜔2

𝑐2
− 𝑘2 (225) 

The boundary condition requires 

𝐽𝑚(𝑘⊥𝑟0) = 0 (226) 

which imposes the condition 

𝑘⊥ ≥
2.40
𝑟0

 (227) 

which corresponds to 

𝐽0(𝑘⊥𝑟0) = 0 (228) 

Observing that 

𝑘⊥ ≤
𝜔
𝑐

 (229) 

then 

𝑟0 ≥
2.40𝑐
𝜔

≥
2.40𝑐
𝜔𝑝

≥
2.40 ⋅ 3.00 ⋅ 108 𝑚𝑠

2𝜋 ⋅ 5.6 𝑇𝐻𝑧
= 20 𝜇𝑚 (230) 

Therefore any viable filament guiding structure must be at least 40 𝜇𝑚 in diameter to prevent the 

cutoff frequency from exceeding the plasma frequency.  Provided this conditions is satisfied, 

single mode operation is desirable.  Single mode operation obtained by ensuring the next order 

mode is below the cutoff frequency as dictated by the boundary conditions 
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𝐽1(𝑘⊥𝑟) = 0 (231) 

for which 

𝑘⊥ ≤
3.83
𝑟0

 (232) 

thus establishing a range for single mode propagation of 

0.382
𝑐
𝑟0
≤ 𝜈 ≤ 0.610

𝑐
𝑟0

 (233) 

To synthesize the guiding structure, a hollow array of filaments must be obtained.  Such an 

arrangement can be obtained using an ultrafast pulse with a null at the center of the beam.  

Observing that in the expansion of any beam in the orthonormal basis 

𝐸(𝑟,𝜙) = � 𝑏(𝜙) exp(𝑖𝑚𝜙)
∞

𝑚=−∞

� 𝑎(𝑘)𝐽𝑚(𝑘𝑟)𝑑𝑘
∞

0
 (234) 

where k is the wavenumber, the following relations hold 

� 𝑎(𝑘)𝐽0(0)𝑑𝑘
∞

0
≠ 0 ∀ 𝑎(𝑘) 𝑠. 𝑡.� 𝑎(𝑘)𝑑𝑘

∞

0
≠ 0 (235) 

� 𝑎(𝑘)𝐽𝑚(0)𝑑𝑘
∞

0
= 0 ∀ 𝑎(𝑘),𝑚 ≠ 0 (236) 

Therefore, it is sufficient to generate a beam with no zero order azimuthal modes to obtain a 

hollow beam.  Because conventional Gaussian beams lack any azimuthal components when 

expanded in the basis of Equation 234, hollow beams can typically be obtained by transmission 

of a Gaussian beam through any vortex plate which induces an integer azimuthal phase.  As 
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special case, the use of an axicon in series with an azimuthal phase plate of order m can be used 

to obtain the Bessel beam 

𝐸(𝑟,𝜙) = 𝐸0𝐽𝑚(𝑘⊥𝑟) exp(𝑖𝑚𝜙) = 𝐸0𝐽𝑚(𝛽𝑘𝑟) exp(𝑖𝑚𝜙) (237) 

Such Bessel beams form a series of concentric rings, as in the case of the zero order Bessel 

beams, but have a null as opposed to a peak on the optical axis.  The innermost hollow ring of 

these Bessel beams will have the highest irradiance, and therefore be the first to filament.  The 

diameter of the innermost ring will be at least 

𝑑 ≥ 2
1.8412
𝑘⊥

=
3.68
𝛽𝑘

=
0.59𝜆
𝛽

 (238) 

where the minimum diameter corresponds to order ±1 Bessel beams, while larger diameters are 

obtained for Bessel beams of order |𝑚| > 1. 

 

Figure 54:  Irradiance profile of a higher order Bessel beam (left) and the filament array resulting from the 
propagation of a 12th order Bessel beam in water recorded by Shiffler et al. [139] 

Review of literature indicates such hollow beam structures will result in the cylindrical arrays 

which are desirable for guiding if sufficient instantaneous power is available.  Filament arrays in 

water have been obtained by Shiffler et al. using order 4, 8, 12 and 18 Bessel beams [139], 
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obtaining a number of filaments in the array equal to the azimuthal order of the beam, as shown 

in Figure 53.  Because of the higher operating frequency of the cylindrical filament waveguides, 

and igniter-heater concept need not be employed when using this approach to guiding microwave 

radiation. 

 

6.5 Index Guiding Using Filaments 

While the filament plasma can be used as a surrogate for a conductive waveguide, the refractive 

index change associated with filamentation can be used in the index guiding of electromagnetic 

radiation.  Index guiding requires a drop in refractive index with increasing distance from the 

optical axis.  Provided this condition is satisfied, then for a cylindrical geometry the guided fields 

will be described by 

𝐸𝑧(𝑟,𝜙, 𝑧) = 𝐴𝐽𝑚(k⊥r) exp(𝑖𝑚𝜙) exp(𝑖𝑘𝑧𝑧) (239) 

𝐻𝑧(𝑟,𝜙, 𝑧) = 𝐵𝐽𝑚(𝑘⊥𝑟) exp(𝑖𝑚𝜙) exp(𝑖𝑘𝑧𝑧) (240) 

the remaining vector components can be retrieved using 

𝐸𝑟 =
−𝑖

𝑘2𝑛2 − 𝑘𝑧2
�𝑘𝑧

𝜕𝐸𝑧
𝜕𝑧

+ 𝑖
𝑚
𝑟
𝜂0𝐻𝑧� (241) 

𝐸𝜙 =
1

𝑘2𝑛2 − 𝑘𝑧2
�𝑘𝑧

𝑚
𝑟
𝐸𝑧 + 𝑖𝑘𝜂0

𝜕𝐻𝑧
𝜕𝑟

� (242) 
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𝐻𝑟 =
−1

𝑘2𝑛2 − 𝑘𝑧2
�𝑖𝑘𝑧

𝜕𝐻𝑧
𝜕𝑟

+
𝑘2𝑛2

𝜂0
𝑚
𝑟
𝐸𝑧� (243) 

𝐻𝜙 =
−𝑖

𝑘2𝑛2 − 𝑘𝑧2
�𝑖𝑘𝑧

𝑚
𝑟
𝐻𝑧 +

𝑘2𝑛2

𝜂0
𝜕𝐸𝑧
𝜕𝑧

� (244) 

where 

𝜂0 = �
𝜇0
𝜖0

 (245) 

For 𝑛1 > 𝑛2, where 𝑛1 is the refractive index at the interior, the dispersion relation is given by 

𝑘⊥2 + 𝑘𝑧2 = 𝑘2𝑛12 (246) 

for the guided modes and by 

−𝛾2 + 𝑘𝑧2 = 𝑘2𝑛22 (247) 

for the evanescent modes on the exterior.  Collectively both these modes are related by 

𝑢2 + 𝑤2 = 𝑉2 (248) 

where 

𝑢 ≡ 𝑘⊥𝑎 (249) 

𝑤 ≡ 𝛾𝑎 (250) 

𝑉 ≡ 𝑘𝑎�𝑛12 − 𝑛22 (251) 

and a is the radius of the waveguiding region. 
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For simplicity, only single mode operation will be considered.  Single mode operation requires 

𝑉 < 2.4048 (252) 

By substituting Equation 251 into Equation 252, the maximum frequency which guarantees 

single mode operation can be obtained 

𝜈 =
𝜔
2𝜋

<
0.383

�𝑛12 − 𝑛22
𝑐
𝑎

 (253) 

In the case of single mode operation, only the HE11 modes will be confined.  These modes are 

described by 

𝐸𝑧(𝑟,𝜙) = 𝐴𝐽1(𝑘⊥𝑟) exp(𝑖𝜙) (254) 

𝐻𝑧(𝑟,𝜙) = 𝐵𝐽1(𝜅𝑟) exp(𝑖𝜙) (255) 

𝐸𝑟(𝑟,𝜙) = 𝐸0𝐽0(𝑘⊥𝑟) (256) 

𝐸𝜙(𝑟,𝜙) = 𝑖𝐸0𝐽(𝑘⊥𝑟) (257) 

𝐻𝑟(𝑟,𝜙) = −𝑖𝐸0 �
𝑘𝑧
𝜇0𝜔

� 𝐽0(𝑘⊥𝑟) (258) 

𝐻𝜙(𝑟,𝜙) = 𝐸0 �
𝑘𝑧
𝜇0𝜔

� 𝐽0(𝑘⊥𝑟) (259) 

where 

𝐸0 = −𝑖
𝐴𝑘𝑧
𝑘⊥

 (260) 
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The mode diameter associated with the HE11 modes can be approximated as the diameter 

associated with the first zero of the zero order Bessel function 

𝑑𝑚𝑜𝑑𝑒 = 2a = 2 ⋅
2.40
𝑘⊥

≥ 4.80
𝑐
𝜔

= 0.764
𝑐
𝜈

 (261) 

To establish a lower frequency limit for index guiding, at least 10% of the guided mode is 

required to remain within the guiding structure 

𝑑𝑚𝑜𝑑𝑒 ≤ 20a (262) 

The corresponding frequency constraint is 

𝜈 ≥ 0.038
𝑐
𝑎

 (263) 

Combining this restriction with that obtain from Equation 253 results in the additional restriction 

0.383

�𝑛12 − 𝑛22
𝑐
𝑎

> 0.038
𝑐
𝑎

 (264) 

or 

𝑛12 − 𝑛22 < 100 (265) 

The numerical aperture for such an index guiding structure is given by 

𝑁𝐴 = 𝑛0 sin𝜃𝑚 =  �𝑛12 − 𝑛22 (266) 

To evaluate index guiding using filaments, three refractive indices will be considered.  The 

refractive index of air is 
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𝑛0 = 1.000293 (267) 

the refractive index in the filament core due to the Kerr effect is 

𝑛𝑘𝑐 = 𝑛0 + 𝑛2𝐼 = 1.000293 + 3 ⋅ 10−19
𝑐𝑚2

𝑊
�1013 − 1014

𝑊
𝑐𝑚2�

= 1.000296 − 1.00034 

(268) 

and the refractive index resulting from the formation of an air plasma in the filament 

𝑛 = 𝑛0 −
𝜌

2𝜌𝑐
= 1 −

𝑁𝑒2

2𝑚𝑒𝜖0𝜔2 = 1 − 1.59 ⋅ 10−3
𝑐𝑚3

𝑠2
1016 1

𝑐𝑚3

𝜔2 = 1 − �
635 𝑀𝐻𝑧

𝜈
�
2

 (269) 

Equation 269 is only valid for guiding waves with frequencies over 635 MHz. 

The  refractive index change in the peripheral field due to the Kerr effect can safely be neglected 

as  

𝑛𝑘𝑝 = 𝑛0 + 𝑛2𝐼 = 1.000293 +  3 ⋅ 10−19
𝑐𝑚2

𝑊
�1011 − 1012

𝑊
𝑐𝑚2� ≈ 1.000293 = 𝑛0 (270) 

If the Kerr effect is used as the means of index guiding, the limit for single mode operation is 

𝜈 <
115 𝐺𝐻𝑧 ⋅ 𝑚𝑚

𝑎
(107 − 408) = (12.3 𝑇𝐻𝑧 −  46.9 𝑇𝐻𝑧)

𝑚𝑚
𝑎

 (271) 

However, the numerical aperture is limited to 

𝑁𝐴 ≤ 0.00245 − 0.00938 (272) 

which makes coupling radiation into the waveguiding structure extremely difficult. 

If the plasma refractive index is used for index guiding then 
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𝜈 <
115 𝐺𝐻𝑧 ⋅ 𝑚𝑚

𝑎
��

898 𝑀𝐻𝑧
𝜈

�
2

− �
635 𝑀𝐻𝑧

𝜈
�
4

�
−12

 (273) 

rearranging gives 

𝑎 < 128 𝑚𝑚�1 −  �
449 𝑀𝐻𝑧

𝜈
�
2

�
−12

 (274) 

Equation 274 indicates that for index guiding using filament plasma, single mode operation can 

be obtained for all frequencies provided the plasma cylinder diameter is less than 25 cm across.  

Given the energy requirements to generate such a structure, it is likely most practical filament 

index guiding schemes will automatically satisfy this requirement.  The restriction can 

alternatively be expressed as 

�
449 𝑀𝐻𝑧

𝜈
�
2

+ �
128 𝑚𝑚

𝑎
�
2

> 1 (275) 

The numerical aperture for this guiding mechanism is 

𝑁𝐴 = ��
898 𝑀𝐻𝑧

𝜈
�
2

− �
635 𝑀𝐻𝑧

𝜈
�
4

 (276) 

In the limit of large frequencies,  𝜈 ≫ 635 𝑀𝐻𝑧, Equation 276 reduced to 

𝑁𝐴 =
898 𝑀𝐻𝑧

𝜈
 (277) 

Unlike the Kerr index guiding case, index guiding using the plasma enables scaling of the 

numerical aperture by altering the frequency of the guided waves, making coupling of radiation 

into the structure far more practical.  
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CHAPTER 7:  CONCLUSION 

Several methods of overcoming diffraction have either been evaluated theoretically, 

demonstrated experimentally, or evaluated using both approaches.   

 Non-diffracting beams have been shown to provide exceptional control over beam propagation, 

enabling laser beams to curve and spiral in a manner contradictory to the behavior of 

conventional laser beams.  The behavior of non-diffracting beams can be thoroughly and 

accurately described using scalar diffraction theory, in particular by employing the Fresnel 

diffraction integral.  Through the proper understanding of diffraction theory, beam geometry, 

shape and dimension can be dictated through the proper modification of the beam wavefront.   

Laser filamentation is a process which manifests automatically for pulses of sufficient 

instantaneous power, but can be readily adapted to control beam propagation.  Filamentation 

enables the propagation of confined pulses over enormous distances and the generation of 

conductive plasma channels in air.  Filamentation can be controlled through proper control and 

preparation of the laser pulse wavefront.  The techniques developed for the generation and 

control of non-diffracting beams can be adapted to the preparation of laser filaments, which can 

be used to provide control over multiple filamentation.  Thus filament arrays can be engineering 

using correctly designed non-diffracting beams. 

Laser filaments proved to be an ideal means to deliver the energy necessary to generate a remote 

plasma source of RF radiation.  Because the electric field associated with the filament was on the 

threshold of dielectric breakdown responsible for the generation of electrons needed in the 
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generation of RF radiation, preparation of the filament was necessary to obtain an irradiance 

sufficient to generate a strong RF pulse.  If the proper measures are taken, filament driven 

plasmas provide fast pulsed, broadband sources of radiation which can be generated at 

considerable distances. 

Engineered filaments, whether obtained through preparation using non-diffracting beams or 

other means, provide a novel means to guide RF and microwave radiation.  As few as two 

filaments can be used to construct filament arrays which act as transmission lines, suitable for the 

guidance of RF radiation below 100 MHz provided and igniter-heater technique is employed to 

extend the lifetime of the filament plasma.  For higher frequencies, filament arrays can be 

employed as waveguides, guiding radiation by either using the filament plasma as a conductive 

boundary or the associated index modification for index guiding.  These techniques should 

provide excellent means to confine radiation in the atmosphere, but require experimental 

investigation. 

Collectively, the techniques which have been investigated provide a range of methods to combat 

diffraction effects and deliver radiant energy.  With further refinement, these measures should 

prove to be effective under a wide variety of circumstances. 
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7.1 Contingencies 

Despite the elegant solutions which presented themselves theoretically, a number of severe 

problems hampered experimental progress on the topics under investigation. 

The serial configuration used for helical beam synthesis was easy to implement and align.  

Unfortunately, the double angle axicons proved difficult to fabricate.  Those acquired from 

manufacturers did not match specifications.  This resulted in additional alignment problems and 

reduction in the helical beam propagation distance.  This also resulted in a mismatch between the 

helical beam propagation characteristics predicted using theory and those observed in the 

laboratory.  The latter problem was corrected by mapping the surface of the axicons using a 

Zygo microscope and using the Zygo data in place of the specifications to carry out the 

theoretical calculations.  To avoid all problems associated with bulk axicon fabrication errors, 

phase plates that can be used in place of these specialized axicons have been designed and are 

currently being tested (see Section 2.2.1). 

Additional problems manifest when helical beams are generated using multi-millijoule pulses, 

which are necessary for the generation of filaments.  Although a damage threshold of 500 𝑚𝐽/

𝑐𝑚2 was calculated from ablation test carried out on the phase plates, the phase plates used to 

induce azimuthal phase lags suffered optical damage at far lower fluences during experiments.   

When making the first attempt to generate helical filaments, photodarkening on the 5 mm 

azimuthal phase plates was observed for pulse energies in excess of 5 mJ.   Upon replacing the 5 

mm phase plates with 10 mm phase plates, white light generation, a precursor to more permanent 

optical damage, was observed for pulse energies in excess of 12 mJ.  Fortunately, pulse energies 
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of 12 mJ proved sufficient for helical filament generation in the latter case.  Methods of 

increasing phase plate area are being investigated to further increase helical beam pulse energy. 

Depending on experimental conditions, the RF signals obtained in the filament induced RF 

radiation experiments would be obscured by other local RF sources.  Particularly problematic 

were the Pockels cells and associated electronics used in the MTFL laser.  These systems would 

generate a burst of RF radiation at approximately the same time the filament induced RF pulses 

would be observed.  RF shielding was found to reduce the Pockels cell noise, but the resulting 

reduction in RF power was not sufficient to prevent the Pockels cells from obscuring the 

filament induced pulses.  Ultimately, the RF experiments had to be moved to the 50 m laser 

range to place sufficient distance between the Pockels cells and the horn antennas to prevent the 

Pockels cell noise from contaminating the measurements, and additional RF filters were placed 

in series with the antenna to better reject Pockels cell noise. 

 

7.2 Future Prospects 

The helical beams investigated in Chapter 3 are one among a potentially infinite number of non-

diffracting beam structures which can be synthesized through the modification of laser beam 

wavefronts guided by the understanding of diffraction field.  As previously discussed, many such 

structures have already been investigated, including curving Airy beams and spiraling zero-order 

Bessel beams.   The generation of larger, more complicated non-diffracting beam arrays is a 

natural extension of this line of research.  For some geometries, large beam arrays can be readily 
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obtained.  In the case of helical beam synthesis, using vortex plates that provide mth order 

azimuthal charges in place of unit azimuthal charges will result in arrays of 2m beams. 

Of particular interest is the generation of non-diffracting arrays of composed of two or more 

concentric rings of beams.  If such arrays could be generated with energy sufficient for 

filamentation, they could be employed as the waveguiding structures described in Chapter 6.  

Because of the control that would be available using this method, it may be possible to generate 

geometries suitable for photonic bandgap waveguiding.  

 

7.2.1 Fresnel Axicons 

Axicons have proven to be an effective means to generate Bessel beams.  However, considerable 

difficulty has been encountered in fabricating precise double angle axicons required for by the 

serial configuration used in helical beam synthesis.  As an alternative to conventional axicons, 

the use of Fresnel axicons for Bessel beam generation has been employed.  Fresnel axicons are 

radially symmetric blazed gratings whose first order mode diffracts and an angle identical to that 

obtained with a conventional axicons.  This approach is advantageous in that a double angle 

axicon can be obtained by fabricating a Frensel axicon using two distinct grating periods.  There 

are problems associated with this approach, as device performance is wavelength specific and 

dispersion occurs when using the device with ultrafast pulses.  Despite these problems, initial test 

indicate Fresnel axicons yield higher quality beams than their bulk counterpart, and reduce the 

time and difficulty associated with conducting helical beam experiments significantly. 
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The use of diffractive gratings also presents an additional approach to the synthesis of helical 

beams or any other beam structure obtained through the superposition of non-diffracting beams.  

By making use of multiple grating diffraction modes, two separate non-diffracting beams can be 

obtained simultaneously, without the need to separate the beam into two separate radial sections.  

Such an approach could enable the generation of longer helical beams without the need to 

increase the system aperture.  This approach may very well represent to future of non-diffracting 

beam synthesis and merits future investigation. 

 

7.2.2 Photonic Time-Stretch Microwave Detection 

The broadband nature of filament-induced RF radiation investigated in Chapter 5 creates 

considerable experimental difficult, as the equipment used to analyze the radiation is limited both 

in bandwidth and sample rate.  While the spectra being investigated potentially extends into the 

THz frequency, the single-shot communication signal analyzer used in the experiment was 

limited to 4 GHz.  Oscilloscopes of greater bandwidth and sample rate are commercially 

available, but are prohibitively expensive.  While the heterodyne system described in Chapter 5 

was an effective and cost effective means to circumvent these problems, employing this system 

is both time consuming and partially dependent upon the shot-to-shot stability of the radiation 

being investigated. 

A technique known as photonic-time stretch has been devised to increase the effective bandwidth 

and sample rate of analog-to-digital converters by two orders of magnitude [140], achieving 

effective sample rates as one tera-sample per second [141].  Photonic-time stretch employs 
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broadband electro-optic modulators to modulate chirped ultrafast pulses with an analog signal.  

This creates and time to wavelength mapping between the analog signal and the ultrafast pulse.  

By further chirping the ultrafast pulse, the relative temporal duration between different points 

along the analog signal is increase in proportion to the duration of the ultrafast pulse as the 

different spectral components of the ultrafast pulse are separated further in time.  This has the 

effect of slowing the dynamic of the analog signal, greatly increasing to time resolution extracted 

when the signal is analyzed using an analog-to-digital converter. 

This technique can be applied to analyze an unknown, fast pulsed microwave signal by routing 

the signal from a broadband antenna to an electro-optic modulator.  This would enable true 

single-shot analysis of microwave spectra well in excess of 40 GHz.  Bandwidth limitations are 

dictated both by the bandwidth of the microwave front end and by the effective bandwidth of the 

analog-to-digital signal converter used after the time-stretch, which is a product of the signal 

converter bandwidth and the stretch factor.  A current bandwidth limitation of 100 GHz is 

estimated [142], based on the maximum bandwidth of state-of-the-art microwave components 

that are commercially available. 

The chief drawback of this method that many analog-to-digital converters operating in parallel 

are required to analyze a continuous time-stretched signal.  However, because the signal of 

interest are microwave pulses no greater than a few nanoseconds in duration with arbitrary 

temporal spacing between events, only a single analog-to-digital converter is required.  

Consequently, photonic-time stretch is far easier and cheaper to implement for this particular 

application than it is to implement in general. 
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Cost estimates have been carried out for a preliminary photonic-stretch design intended to enable  

100 GHz bandwidth single shot measurements to be carried out using our existing 4 GHz 

oscilloscope.  System cost estimates, which included the microwave circuitry, optics, and 

ultrafast laser, but omitting any required antennas, indicate the system could be purchased and 

assembled for no more than $40,000.   This makes the system an attractive alternative to the 

several hundred thousand dollar single-shot 10-20 GHz oscilloscopes which are currently 

available.  
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APPENDIX A:  PHYSICAL CONSTANTS 
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Speed of Light:     𝑐 = 3.00 ⋅ 108 𝑚
𝑠

 

Permittivity of Free Space:    𝜖0 = 8.854 ⋅ 10−12 𝐹
𝑚

 

Permeability of Free Space:    𝜇0 = 4𝜋 ⋅ 10−7 𝐻
𝑚

 

Electron Charge:     𝑒 = 1.60 ⋅ 10−19𝐶 

Electron Mass:     𝑚𝑒 = 9.11 ⋅ 10−31𝑘𝑔 
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APPENDIX B:  GAS PROPERTIES 

 

  



158 
 

Air 

Density:      𝜌𝑎𝑡 = 1.2 𝑘𝑔
𝑚3 = 1.2 ⋅ 10−6 𝑘𝑔

𝑐𝑚3 

Number Density:     𝑁𝑎𝑡 = 5.16 ⋅ 1025 1
𝑐𝑚3 = 5.16 ⋅ 1019 1

𝑐𝑚3 

 

Nitrogen 

Ionization Energy:     𝑈𝑖 = 15.576 𝑒𝑉 

Multiphoton Ionization Cross-Section, 800 nm: 𝜎11 = 6.31 ⋅ 10−140 𝑐𝑚22

𝑊11⋅𝑠
 

 

Oxygen 

Ionization Energy:     𝑈𝑖 = 12.063 𝑒𝑉 

Multiphoton Ionization Cross-Section, 800 nm: 𝜎8 = 2.81 ⋅ 10−96 𝑐𝑚
16

𝑊8⋅𝑠
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APPENDIX C: KNOWN INTEGRALS 
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� exp(−𝑞2𝑥2)𝑑𝑥
∞

0
=
√𝜋
2𝑞

 

� exp(−𝑞2𝑥2)𝑑𝑥
𝑢

0
=
√𝜋
2𝑞

erf(𝑞𝑢) 

� exp(−𝑖𝑞2𝑥2)𝑑𝑥
∞

0
=
√𝜋
2𝑞

exp �−𝑖
𝜋
4
� 

� exp(−𝑖𝑞2𝑥2)𝑑𝑥
𝑢

0
=
√𝜋
2𝑞

exp �−𝑖
𝜋
4
� erf �𝑞𝑢 exp �𝑖

𝜋
4
�� 

� exp[−(𝑎𝑥2 + 2𝑏𝑥 + 𝑐)]𝑑𝑥 =
1
2
�
𝜋
𝑎

exp�
𝑏2 − 𝑎𝑐

𝑎
� erf �√𝑎𝑥 −

𝑏
√𝑎
� 
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APPENDIX D: METHOD OF STATIONARY PHASE 
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Given 

𝐼 =  �𝑓(𝑥) exp[𝑖𝜙(𝑥)]𝑑𝑥 

Then the integral can be approximated by expanding 𝜙(𝑥) in a Taylor series about 𝑥0 where 

𝜕𝜙(𝑥0)
𝜕𝑥

= 0 and evaluating 𝑓(𝑥) at 𝑥0.  The Taylor expansion about this point is 

𝜙(𝑥)  ≈ 𝜙(𝑥0) +
1
2
𝜕2𝜙(𝑥0)
𝜕𝑥2

(𝑥 − 𝑥0)2 

Under these conditions the integral 𝐼 reduces to 

𝐼 = 𝑓(𝑥0) exp[𝑖𝜙(𝑥0)]� exp �
𝑖
2
𝜕2𝜙(𝑥0)
𝜕𝑥2

(𝑥 − 𝑥0)2� 𝑑𝑥 
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APPENDIX E:  NONLINEAR SCHRODINGER EQUATION 
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The nonlinear Schrodinger equation has been widely applied in literature, and is derived below.  

Starting with the wave equation 

∇��⃑ × �∇��⃑ × 𝐸�⃑ � +
1
𝑐2
𝜕2𝐸�⃑
𝜕𝑡2

= −
1

𝜖0𝑐2
𝜕2𝑃�⃑
𝜕𝑡2

 (278) 

∇��⃑ 2𝐸�⃑ −
1
𝑐2
𝜕2𝐸�⃑
𝜕𝑡2

=
1

𝜖0𝑐2
𝜕2𝑃�⃑
𝜕𝑡2

+ ∇��⃑ �∇��⃑ ⋅ 𝐸�⃑ � (279) 

where the polarization term is given by 

𝑃�⃑ (𝑡) = 𝜖0 � 𝜒1(𝑡 − 𝑡1)𝐸�⃑ (𝑡1)𝜕𝑡1
∞

−∞
+ 𝜖0 � 𝜒3(𝑡 − 𝑡1, 𝑡 − 𝑡2, 𝑡 − 𝑡3) �𝐸�⃑ (𝑡1) ⋅ 𝐸�⃑ (𝑡2)� 𝐸�⃑ (𝑡3)𝜕𝑡1𝜕𝑡2𝜕𝑡3

∞

−∞
 (280) 

The nonlinear Schrodinger equation is obtained by making the envelope approximation 

𝐸�⃑ = 𝐴(𝑥,𝑦, 𝑧) exp[𝑖(𝑘𝑧 − 𝜔𝑡)] 𝑒̂ + 𝐴(𝑥,𝑦, 𝑧) exp[−𝑖(𝑘𝑧 − 𝜔𝑡)] 𝑒̂ (281) 

For calculations using this approximation, both exponential terms will not be used.  Instead, 

exponential terms will be chosen for each calculation such that the results produce only the 

positive fundamental frequency.  It will further be assumed that the media is polarized in the 

direction of the electric field, and the incident electromagnetic wave is uniformly polarized.  

Under such assumptions, the electromagnetic field can be treated as a scalar field. 

Let 

𝑃�⃑ (𝑡) = 𝑃(𝑡)𝑒̂ (282) 

correspond to 

𝐸�⃑ (𝑡) = 𝐸(𝑡)𝑒̂ (283) 

and, take  
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∇��⃑ �∇��⃑ ⋅ 𝐸�⃑ � = 0 (284) 

Under these assumptions the wave equation simplifies to 

∇2𝐸 −
1
𝑐
𝜕2𝐸
𝜕𝑡2

=
1

𝜖0𝑐2
𝜕2𝑃
𝜕𝑡2

 (285) 

Given the linear susceptibility 

𝑃𝐿(𝑡) = 𝜖0 � 𝜒1(𝑡 − 𝑡1)𝐸(𝑡1)𝜕𝑡1
∞

−∞
 (286) 

and substituting the envelope expansion into the linear susceptibility gives 

𝑃𝐿(𝑡) = 𝜖0𝐴 exp(𝑖𝑘𝑧)� 𝜒1(𝑡 − 𝑡1)
∞

−∞
exp(𝑖𝜔𝑡1)𝜕𝑡1 (287) 

Making the change of variables𝜏 = 𝑡 − 𝑡1, and enforce causality, 𝜒(𝑡) = 0 for 𝑡 < 0, then 

𝑃𝐿 = −𝜖0𝐴 exp[𝑖(𝑘𝑧 − 𝜔𝑡)]� 𝜒1(𝜏) exp(𝑖𝜔𝜏)𝜕𝜏
−∞

∞

= 𝜖0𝐴 exp[𝑖(𝑘𝑧 − 𝜔𝑡)]� 𝜒1(𝜏) exp(𝑖𝜔𝜏)𝜕𝜏
∞

−∞
 

(288) 

apply the definition of the Fourier transform results in 

𝑃𝐿 = 𝜖0𝐴𝜒̂1(−𝜔) exp[𝑖(𝑘𝑧 − 𝜔𝑡)] (289) 

Assuming that 𝜒1(𝑡) is real, 𝜒̂1(𝜔) = 𝜒̂1(−𝜔), then 

𝑃𝐿 = 𝜖0𝐴𝜒̂1(𝜔) exp[𝑖(𝑘𝑧 − 𝜔𝑡)] (290) 

Substituting gives 
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𝜕2𝑃𝐿
𝜕𝑡2

= −𝜔2𝜖0𝐴𝜒̂(𝜔) exp[𝑖(𝑘𝑧 − 𝜔𝑡)] (291) 

The nonlinear polarization is given by 

𝑃𝑁𝐿 = 𝜖0 � 𝜒3(𝑡 − 𝑡1, 𝑡 − 𝑡2, 𝑡 − 𝑡3)𝐸(𝑡1)𝐸(𝑡2)𝐸(𝑡3)𝜕𝑡1𝜕𝑡2𝜕𝑡3
∞

−∞
 (292) 

Substituting into the envelope expansion 

𝑃𝑁𝐿 =  3𝜖0|𝐴|2𝐴 exp(𝑖𝑘𝑧) 

⋅ � 𝜒3(𝑡 − 𝑡1, 𝑡 − 𝑡2, 𝑡 − 𝑡3) exp(−𝑖𝜔𝑡1) exp(𝑖𝜔𝑡2) exp(−𝑖𝜔𝑡3)𝜕𝑡1𝜕𝑡2𝜕𝑡3
∞

−∞
 

(293) 

and making the change of variables 

𝜏1 = 𝑡 − 𝑡1 (294) 

𝜏2 = 𝑡 − 𝑡2 (295) 

𝜏3 = 𝑡 − 𝑡3 (296) 

results in 

𝑃𝑁𝐿 = −3𝜖0|𝐴|2𝐴 exp[𝑖(𝑘𝑧 − 𝜔𝑡)] 

⋅ � 𝜒3(𝜏1, 𝜏2, 𝜏3) exp(𝑖𝜔𝜏1) exp(−𝑖𝜔𝜏2) exp(𝑖𝜔𝜏3)𝜕𝜏1𝜕𝜏2𝜕𝜏3
−∞

∞
 

(297) 

𝑃𝑁𝐿 = 3𝜖0|𝐴|2𝐴 exp[𝑖(𝑘𝑧 − 𝜔𝑡)] 

⋅ � 𝜒3(𝜏1, 𝜏2, 𝜏3) exp(𝑖𝜔𝜏1) exp(−𝑖𝜔𝜏2) exp(𝑖𝜔𝜏3)𝜕𝜏1𝜕𝜏2𝜕𝜏3
∞

−∞
 

(298) 

Applying the definition of the Fourier transform gives 

𝑃𝑁𝐿 = 3𝜖0|𝐴|2𝐴𝜒̂3(𝜔,−𝜔,𝜔) exp[𝑖(𝑘𝑧 − 𝜔𝑡)] (299) 
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Substitution yields 

𝜕2𝑃𝑁𝐿
𝜕𝑡2

= −3𝜔3𝜖0|𝐴|2𝐴𝜒̂3(𝜔,−𝜔,𝜔) exp[𝑖(𝑘𝑧 − 𝜔𝑡)] (300) 

Expanding the Laplacian 

∇2𝐸 =
𝜕2𝐸
𝜕𝑧2

+ ∇⊥2𝐸 (301) 

and substituting the envelope expansion given in Equation 119 into ∇2𝐸 yields 

∇2𝐸 = �
𝜕2𝐴
𝜕𝑧2

+ 2𝑖𝑘
𝜕𝐴
𝜕𝑧

− 𝑘2𝐴 + ∇⊥2𝐴� exp[𝑖(𝑘𝑧 + 𝜔𝑡)] (302) 

Substituting the envelope expansion into 𝜕
2𝐸
𝜕𝑡2

 gives 

𝜕2𝐸
𝜕𝑡2

=
𝜔2

𝑐2
𝐴 exp[𝑖(𝑘𝑧 − 𝜔𝑡)] (303) 

Returning to the Helmholtz equation 

∇2𝐸 −
1
𝑐2
𝜕2𝐸
𝜕𝑡2

=
1
𝜖0
𝜕2𝑃
𝜕𝑡2

 (304) 

Substitute the envelope expansion terms and divide by exp[𝑖(𝑘𝑧 − 𝜔𝑡)] 

𝜕2𝐴
𝜕𝑧2

+ 2𝑖𝑘
𝜕𝐴
𝜕𝑧

− 𝑘2𝐴 + ∇⊥2𝐴 +
𝜔2

𝑐2
𝐴 = −

𝜔2

𝑐2
𝐴𝜒̂1(𝜔) −

3𝜔2

𝑐2
|𝐴|2𝐴𝜒̂3(𝜔,−𝜔,𝜔) (305) 

Making the approximation �𝜕
2𝐴
𝜕𝑧2

� ≪ �2𝑖𝑘 𝜕𝐴
𝜕𝑧
� and rearranging gives 

2𝑖𝑘
𝜕𝐴
𝜕𝑧

− 𝑘2𝐴 + ∇⊥2𝐴 +
𝜔2

𝑐2
[1 + 𝜒̂1(𝜔)]𝐴 = −

3𝜔2

𝑐2
|𝐴|2𝐴𝜒̂3(𝜔,−𝜔,𝜔) (306) 

Establishing the dispersion relation 



168 
 

𝑘2 =
𝜔2

𝑐2
[1 + 𝜒̂1(𝜔)] (307) 

And substitute into the wave equation yields the nonlinear Schrodinger equation. 

2𝑖𝑘
𝜕𝐴
𝜕𝑧

+ ∇⊥2𝐴 + 3𝑘2
𝜒̂3(𝜔,−𝜔,𝜔)

1 + 𝜒̂1(𝜔)
|𝐴|2𝐴 = 0 (308) 
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APPENDIX F:  WAVEGUIDING EQUATIONS 

 

  



170 
 

Starting with Maxwell’s equations 

∇��⃑ ⋅ 𝐸�⃑ = 0 (309) 

∇��⃑ ⋅ 𝐵�⃑ = 0 (310) 

∇��⃑ × 𝐸�⃑ = −
𝜕𝐵�⃑
𝜕𝑡

 (311) 

∇��⃑ × 𝐵�⃑ =
1
𝑐2
𝜕𝐸�⃑
𝜕𝑡

 (312) 

Assuming solutions of the form 

𝐸�⃑ = 𝐸�⃑ 0(𝑟,𝜙) exp[𝑖(𝑘𝑧 − 𝜔𝑡)] (313) 

𝐵�⃑ = 𝐵�⃑ 0(𝑟,𝜙) exp[𝑖(𝑘𝑧 − 𝜔𝑡)] (314) 

And expanding in cylindrical coordinates 

∇��⃑ ⋅ 𝐸�⃑ =
1
𝑟

(𝑟𝐸𝑟) +
1
𝑟
𝜕𝐸𝜙
𝜕𝜙

+
𝜕𝐸𝑧
𝜕𝑧

= 0 (315) 

∇��⃑ ⋅ 𝐵�⃑ =
1
𝑟

(𝑟𝐵𝑟) +
1
𝑟
𝜕𝐵𝜙
𝜕𝜙

+
𝜕𝐵𝑧
𝜕𝑧

= 0 (316) 

∇��⃑ × 𝐸�⃑ = ��
1
𝑟
𝜕𝐸𝑧
𝜕𝜙

− 𝑖𝑘𝐸𝜙� 𝑟̂ + �𝑖𝑘𝐸𝑟 −
𝜕𝐸𝑧
𝜕𝑟

�𝜙� +
1
𝑟
�
𝜕
𝜕𝑟 �

𝑟𝐸𝜙� −
𝜕𝐸𝑟
𝜕𝜙

� 𝑧̂� exp[𝑖(𝑘𝑧 − 𝜔𝑡)] (317) 

∇��⃑ × 𝐵�⃑ = ��
1
𝑟
𝜕𝐵𝑧
𝜕𝜙

− 𝑖𝑘𝐵𝜙� 𝑟̂ + �𝑖𝑘𝐵𝑟 −
𝜕𝐵𝑧
𝜕𝑟

�𝜙� +
1
𝑟
�
𝜕
𝜕𝑟 �

𝑟𝐵𝜙� −
𝜕𝐵𝑟
𝜕𝜙

� 𝑧̂� exp[𝑖(𝑘𝑧 − 𝜔𝑡)] (318) 
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𝜕𝐸�⃑
𝜕𝑡

= −𝑖𝜔𝐸𝑟𝑟̂ − 𝑖𝜔𝐸𝜙𝜙� − 𝑖𝜔𝐸𝑧𝑧̂ (319) 

𝜕𝐵�⃑
𝜕𝑡

= −𝑖𝜔𝐵𝑟𝑟̂ − 𝑖𝜔𝐵𝜙𝜙� − 𝑖𝜔𝐵𝑧𝑧̂ (320) 

Solving Maxwell’s equations with this expansion 

𝜕
𝜕𝑟
�𝑟𝐸𝜙� −

𝜕𝐸𝑟
𝜕𝜙

= 𝑖𝜔𝑟𝐵𝑧 (321) 

1
𝑟
𝜕𝐸𝑧
𝜕𝜙

− 𝑖𝑘𝐸𝜙 = 𝑖𝜔𝐵𝑟 (322) 

𝑖𝑘𝐸𝑟 −
𝜕𝐸𝑧
𝜕𝑟

= 𝑖𝜔𝐵𝜙 (323) 

𝜕
𝜕𝑟
�𝑟𝐵𝜙� −

𝜕𝐵𝑟
𝜕𝜙

= −
𝑖𝜔𝑟
𝑐2

𝐸𝑧 (324) 

1
𝑟
𝜕𝐵𝑧
𝜕𝜙

− 𝑖𝑘𝐵𝜙 = −
𝑖𝜔
𝑐2
𝐸𝑟 (325) 

𝑖𝑘𝐵𝑧 −
𝜕𝐵𝑧
𝜕𝑟

= −
𝑖𝜔
𝑐2
𝐸𝜙 (326) 

And rearranging 

𝑘2𝐸𝑟 = 𝑘𝜔𝐵𝜙 − 𝑖𝑘
𝜕𝐸𝑧
𝜕𝑟

 (327) 

𝑘2𝐸𝜙 = −𝑘𝜔𝐵𝑟 −
𝑖𝑘
𝑟
𝜕𝐸𝑧
𝜕𝜙

 (328) 
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𝜔2

𝑐2
𝐵𝑟 = −

𝑘𝜔
𝑐2

𝐸𝜙 −
𝑖𝜔
𝑟𝑐2

𝜕𝐸𝑧
𝜕𝜙

 (329) 

𝜔2

𝑐2
𝐵𝜙 =

𝑘𝜔
𝑐2

𝐸𝑟 +
𝑖𝜔
𝑐2
𝜕𝐸𝑧
𝜕𝑟

 (330) 

𝜔2

𝑐2
𝐸𝑟 = 𝑘𝜔𝐵𝜙 +

𝑖𝜔
𝑟
𝜕𝐵𝑧
𝜕𝜙

 (331) 

𝜔2

𝑐2
𝐸𝜙 = −𝑘𝜔𝐵𝑟 − 𝑖𝜔

𝜕𝐵𝑧
𝜕𝑟

 (332) 

𝑘2𝐵𝑟 = −
𝑘𝜔
𝑐2

𝐸𝜙 − 𝑖𝑘
𝜕𝐵𝑧
𝜕𝑟

 (333) 

𝑘2𝐵𝜙 =
𝑘𝜔
𝑐2

𝐸𝑟 −
𝑖𝑘
𝑟
𝜕𝐵𝑧
𝜕𝜙

 (334) 

Further rearranging 

𝐸𝑟 =
𝑖

𝜔2

𝑐2 − 𝑘2
�𝑘
𝜕𝐸𝑧
𝜕𝑟

+
𝜔
𝑟
𝜕𝐵𝑧
𝜕𝜙

� (335) 

𝐸𝜙 =
𝑖

𝜔2

𝑐2 − 𝑘2
�
𝑘
𝑟
𝜕𝐸𝑧
𝜕𝜙

− 𝜔
𝜕𝐵𝑧
𝜕𝑟

� (336) 

𝐵𝑟 =
𝑖

𝜔2

𝑐2 − 𝑘2
�𝑘
𝜕𝐵𝑧
𝜕𝑟

−
𝜔
𝑟𝑐2

𝜕𝐸𝑧
𝜕𝜙

� (337) 
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𝐵𝜙 =
𝑖

𝜔2

𝑐2 − 𝑘2
�
𝑘
𝑟
𝜕𝐵𝑧
𝜕𝜙

+
𝜔
𝑐2
𝜕𝐸𝑧
𝜕𝑟

� (338) 

and substituting 

𝑖
𝜔2

𝑐2 − 𝑘2
�
𝑘
𝑟
𝜕
𝜕𝑟
�𝑟
𝜕𝐸𝑧
𝜕𝑟

� +
𝜔
𝑟
𝜕2𝐵𝑧
𝜕𝑟𝜕𝜙

+
𝑘
𝑟2
𝜕2𝐸𝑧
𝜕𝜙2 −

𝜔
𝑟
𝜕2𝐵𝑧
𝜕𝜙𝜕𝑟

�+ 𝑖𝑘𝐸𝑧 = 0 (339) 

𝑖
𝜔2

𝑐2 − 𝑘2
�
𝑘
𝑟
𝜕
𝜕𝑟
�𝑟
𝜕𝐸𝑧
𝜕𝑟

� +
𝜔
𝑟
𝜕2𝐵𝑧
𝜕𝑟𝜕𝜙

+
𝑘
𝑟2
𝜕2𝐸𝑧
𝜕𝜙2 −

𝜔
𝑟
𝜕2𝐵𝑧
𝜕𝜙𝜕𝑟

�+ 𝑖𝑘𝐸𝑧 = 0 (340) 

Further rearranging yields 

�
𝜕2

𝜕𝑟2
+

1
𝑟
𝜕
𝜕𝑟

+
1
𝑟2

𝜕2

𝜕𝜙2 +
𝜔2

𝑐2
− 𝑘2� 𝐸𝑧 = 0 (341) 

�
𝜕2

𝜕𝑟2
+

1
𝑟
𝜕
𝜕𝑟

+
1
𝑟2

𝜕2

𝜕𝜙2 +
𝜔2

𝑐2
− 𝑘2� 𝐵𝑧 = 0 (342) 
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