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ABSTRACT 

This thesis presents three improvements to the current UCF MANUS systems. The first 

improvement modifies the existing fine motion controller into PI controller that has been 

optimized to prevent the object from leaving the view of the cameras used for visual servoing. 

This is achieved by adding a weight matrix to the proportional part of the controller that is 

constrained by an artificial ROI. When the feature points being used are approaching the 

boundaries of the ROI, the optimized controller weights are calculated using quadratic 

programming and added to the nominal proportional gain portion of the controller. The second 

improvement was a compensatory gross motion method designed to ensure that the desired 

object can be identified. If the object cannot be identified after the initial gross motion, the end-

effector will then be moved to one of three different locations around the object until the object 

is identified or all possible positions are checked. This framework combines the Kanade-Lucase-

Tomasi local tracking method with the ferns global detector/tracker to create a method that 

utilizes the strengths of both systems to overcome their inherent weaknesses. The last 

improvement is a particle-filter based tracking algorithm that robustifies the visual servoing 

function of fine motion. This method performs better than the current global detector/tracker that 

was being implemented by allowing the tracker to successfully track the object in complex 

environments with non-ideal conditions. 
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CHAPTER 1: INTRODUCTION 

1.1 UCF-MANUS System 

 

The MANUS arm developed by Exact Dynamics is an assistive robotic manipulator designed to 

help those confined to a wheelchair in their day-to-day activities. The arm is meant to be 

mounted to the side of a wheelchair and controlled via keypad or joystick. While this initial 

interface does allow for complete control of the MANUS and provides some pre-defined task 

functions built in, it is not very intuitive in design and takes a while to learn. The UCF MANUS 

has taken the initial interface and improved upon it by adding various interface options, along 

with a general automated function for grabbing and retrieving objects [Kim 2014]. 

 

The automated function and interface options are designed to allow those with varying levels of 

disability perform everyday tasks as much more easily than the default interface. This is done 

through a motion segmentation method [Kim 2012] that first identifies the location of the desired 

object for an initial gross motion. Once the gross motion has been performed the UCF MANUS 

will then identify the object to ensure that it has approached the desired object and then utilizing 

a fine motion algorithm it will align itself with the object in a suitable grasping position. If set to, 

the UCF MANUS will then proceed to approach, grab, and retrieve the object in question.  
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1.2 Problem Motivation 

While the current system that is in place for the UCF MANUS works well in most situations, it is 

susceptible to various problems that can be inherent to the methods that are being used for the 

different parts that make up the segmented motion. The first issue arises during the gross motion 

step. The method for gross motion involves a stereo analysis of 3-D points that have been 

identified as the desired object. The depth of the object away from the robot’s center is 

determined to see if the object is within reach of the manipulator. If the object is within range, 

the final position of the end-effector will be determined and the MANUS will move to the 

desired location placing the end-effector approximately 10cm from the object. Full details of the 

gross motion are given in [Kim 2012]. The issues that arise involve the pose of the object in 

relation to the end-effector. Since there is no object identification taking place, there is no way to 

determine beforehand if the desired object is the one being approached or if the face of the object 

being approached is identifiable, therefore grabbable according to the UCF MANUS’ setup.  

 

The next two issues happen during the fine motion stage of motion. The current control scheme 

designed for the fine motion is a proportional controller that utilizes the visual servoing 

dynamics that are expressed in [Kim 2012]. If there is a significant pose error in both the 

translational and rotational positions, the end-effector can lose sight of the object while the 

alignment with the object is being made. The second issue that arises during fine motion is due to 

the ability of the ferns global detector [Ozuysal 2007] that is being utilized to successfully track 

the desired object. Global detectors suffer from a lack of robustness when encountering multiple 
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identical objects, low frame rate, large initial offset, and motion discontinuity. Template based 

methods also can suffer from pose/appearances changes.  

1.3 Goal 

The goal of this thesis is to provide improvements to the current UCF MANUS system that allow 

it to perform robustly in unknown situations by addressing the issues mentioned in the previous 

section. 

1.4 Organization of Thesis 

The remainder of this thesis is organized into five different chapters. Chapter 2 will discuss the 

theory behind the different aspects of the segmented motion and go into the current ones being 

used with the UCF MANUS. Chapter 3 will discuss the modifications to the nominal and optimal 

fine motion control system. Chapter 4 will discuss the compensatory gross motion method 

implemented to ensure positive object identification or rejection.  Chapter 5 will present a 

particle-filter based visual servoing method that will act as the tracker for the fine motion. 

Chapter 6 summarizes the improvements to the UCF MANUS system.  

1.5 References 

Dae-Jin Kim; Zhao Wang; Paperno, N.; Behal, A., "System Design and Implementation of UCF 

MANUS—An Intelligent Assistive Robotic Manipulator," Mechatronics, IEEE/ASME 

Transactions on, vol.19, no.1, pp.225,237, Feb. 2014 doi: 

10.1109/TMECH.2012.2226597 

 

Dae-Jin Kim; Zhao Wang; Behal, A., "Motion Segmentation and Control Design for UCF- 

MANUS—An Intelligent Assistive Robotic Manipulator," Mechatronics, IEEE/ASME 

Transactions on, vol.17, no.5, pp.936, 948, Oct. 2012 doi: 

10.1109/TMECH.2011.2149730 
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M. Ozuysal, P. Fua, and V. Lepetit, “Fast Keypoint Recognition in Ten Lines of Code,” in Proc. 

IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, 

pp.1-8, 2007.  
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CHAPTER 2: BACKROUND AND RELATED WORK  

2.1 Introduction 

This chapter introduces the various methods that are implemented in the different portions of the 

motion control system of the UCF MANUS. Each section looks at one aspect of the design and 

the methods used to implement that particular task. The first part that is discussed is fine motion, 

followed by gross motion and compensatory gross motion, and ending with object tracking 

algorithms used for visual servoing. 

2.2 Chapter Objectives 

- Review of Fine Motion control algorithms 

- Review of Compensatory Gross Motion algorithms 

- Review of global, local, and particle filter tracking algorithms 

2.3 Fine Motion Control Algorithms 

The purpose of fine motion is to align the end-effector with the desired object so that a grasping 

motion can then be performed. To accomplish this, visual servoing controllers are implemented 

to guide the end-effector to the desired position based on feedback from the images being 

gathered. This can be performed using an image-based (IBVS), position-based (PBVS), or a 

hybrid approach which incorporates elements of both the IBVS and PBVS methods. 

 

IBVS is based on the idea of minimizing the error between the desired feature positions and 

current ones on the image plane. This is done by selecting a set of feature points that are 
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attributed to the object and giving them a desired position on the image space. The desired 

feature locations are usually acquired offline using a model of the object in question that will 

align the robot in an appropriate position to the object for the next task.  

 

PVBS is based on the 3-D recreation of the relationship between the object, camera, and end-

effector. The vision system being implemented is used to create a 3-D model that gives a desired 

position of the camera to the object that is to be reached from the current position. This takes 

away any use of the image in the control design. The issues that arise when using either IBVS or 

PBVS can be found in [Chaumette 1998]. While these systems can work well, they do not take 

into account the full system being used which can lead to, issues especially when significant 

errors are present. This is where hybrid methods have come into play. 

 

One of these methods is the 2- ½ D visual servoing method in [Malis 1999]. The name comes 

from the fact that the input to the control system is expressed in both the 3-D Cartesian space of 

the robot and the 2-D image space given by the camera.  The image plane is converted into a 

normalized plane based on the feature points’ z value in the camera coordinate system which 

allows for the desired camera position from the object to be acquired without utilizing a prior 3-

D model. This eliminates any necessity to develop a 3-D model of the scene and allows for the 

vision system to contribute to the control feedback. This in turn ensures that the object will 

remain within view of the camera and that the end-effector will arrive at the desired pose.  
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The visual servoing system that is implemented in the UCF MANUS is based off the 2- ½ D 

method designed by Malis. The MANUS utilizes the ferns global detector [] to create a template 

of the desired object that contains the necessary feature points that will then be used to determine 

the final pose of the end-effector at the end of the fine motion. Homography obtained from 

feature points is then decomposed to obtain the pose errors that are then fed into a proportional 

controller. The full details of the fine motion control system of the UCF MANUS can be found 

in [Kim 2012] and [Wang 2012]. 

2.4 Compensatory Gross Motion Control Algorithms 

The purpose of gross motion is to take a sub-region of the current field of view and then have the 

end-effector move toward the target area to gather more detailed information than what can be 

discerned at the current position. Since visual identification is employed by the UCF MANUS, a 

close enough proximity to an object is required to adequately gather enough feature points to 

make a positive identification. The details on the gross motion algorithm can be found in []. 

Since the pose of the object is not taken into account when performing gross motion, not enough 

feature points may be found to make a positive identification or multiple surfaces of the object 

may be present that prevent a positive identification due to the spread of feature points across the 

various surfaces. This has led to the development of compensatory motion. 

 

The first of these motions is a realignment scheme that generates orientation set points that aligns 

the camera optical axis with the least significant direction of variation of the feature point cloud 

that is created when attempting to identify an object. This method maintains the set distance from 
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the object that is obtained through the initial gross motion while re-orientating the camera’s x-y 

plane. The second motion scheme is referred to as “Get Another View”. This scheme will 

reposition the end-effector around the object to see if a more desirable set of feature points can 

be obtained for object identification. It is this method that will be expanded upon for the 

compensatory gross motion section of this thesis. 

2.5 Visual Tracking Techniques
1
 

In a visual tracking application, a target is detected and tracked over time to perform a given 

task. There are a large number of advanced processing algorithms available to track one or 

multiple targets in different problems. Generally, the target can be found using a global (or 

model-based) detector while a small portion of the object can be tracked using a local tracker. 

Global matching process can accurately locate a pattern which is most similar with a built-in 

model, however, they do not take into account the spatiotemporal constraints associated with a 

target. On the other hand, local matching processes can track a small set of image features with 

efficient usage of resources but it is impossible to determine whether the target (even partially) is 

correctly found or not. In order to overcome these drawbacks, fusion techniques have emerged in 

the last decade. Fusion of local and global information has been of interest for many robotics-

related researchers. [Ishiguro 1990] proposed an incremental build-up process of global map 

using omnidirectional stereo analysis in the vicinity of a mobile robot; a Kalman Filter (KF) was 

used to reduce the effect of uncertainty from noisy image measurements. In [Roumeliotis 1999], 

an Extended Kalman Filter (EKF) framework was used to estimate the position and orientation 

                                                           
1
 This section is comprised of sections of the manuscript “Particle Filter-Based Robust Visual Servoing for UCF-

MANUS – An Intelligent Assistive Robotic Manipulator” by N. Paperno, Z. Wang, D.-J. Kim, and A. Behal which is 
currently pending submission.  
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of the mobile robot using local odometry information and global sun position information. 

Compared with local odometry information, global sun position information is relatively 

infrequent but effective to compensate the estimation error using EKF framework. Similarly, 

fusion of Global Positioning System (GPS)-driven Genetic Algorithm (GA)-based global 

information and Inertial Navigation System (INS)-driven feature-based local information was 

done by [Fu 2006] using fuzzy logic. [Lee 2008] proposed a fusion of local odometry and global 

magnetic compass information to control an omnidirectional mobile robot. [Moore 2009] 

proposed a local frame based robotic navigation to overcome disadvantages of global frame and 

local body frame representations such as increase in uncertainty, multimodal noise, etc. [Se 

2005] proposed a vision-based global localization and mapping technique using fusion of local 

submaps and globally matched map information; the use of distinctive visual Scale-Invariant 

Feature Transform (SIFT) [Lowe 2004] features and backward correction algorithm were 

efficiently used to deal with uncertainty. In [Rodriguez- Losada 2006], Rodriguez- Losada 

proposed a local map fusion technique with novel analysis on Simultaneous Localization And 

Mapping (SLAM)-EKF framework in consideration of SLAM-EKF inconsistency and shape 

constraints. Recently, [Persson 2008] noted that rule-based fusion of global aerial imagery and 

locally generated geographical information using mobile robot was effective to build an 

improved semantic mapping. In RoboCup applications, Bayesian fusion [Pinheiro 2004] and 

Monte Carlo (MC) localization [Ferrein 2005] were adopted to estimate the ball position and to 

build a world model around player robots. The particle filter has become a well-established 

method that has proven to be more effective than its predecessors such as the EKF. Examples of 

comparisons between the particle filter and EKF can be found in [Kotecha 2003] and [Aydogmus 



10 
 

2012]. During the last decade, particle filter methods have proved to be an effective and 

powerful approach for single/multiple target tracking, due to their simplicity and flexible 

treatment of nonlinearity in the system dynamics and non-normality in the sources of 

uncertainty. A review of particle filter approach and its applications in various fields can be 

found in [Cappe 2007]. In [Wang 2009], Wang et al. propose a novel tracking method by 

incorporating the efficiency of the mean-shift algorithm with the multihypothesis characteristics 

of particle filtering in an adaptive manner. In [Okuma 2004], an offline-boosted detector was 

used to amend the proposal distribution of the particle filters for multi-target tracking. In [L 

2008], a cascade particle filter was designed for target tracking in a low frame rate video, where 

an integration of conventional tracking and detection was used. In order to solve the dynamic 

view planning problem, an improved particle filter with the largest effective sampling size was 

applied to accomplish 3-D tracking task in [Chen 2009]. In [Breitenstein 2009] and [Breitenstein 

a.t.b.p.], a novel multi-person tracking method was proposed in a particle filter framework, 

where both detectors and classifiers were used. In [Huang 2011], a particle filter approach was 

extended with depth estimation of the target for tracking multiple targets with possibility of 

overlapping. Recently in [Wang 2011], Wang et al. proposed an adaptive appearance modeling 

technique to handle various challenges in the tracking task; a third-order tensor was used to 

represent the target while the particle filter technique was used in the target state estimation. 

Similar applications of particle filter in 3-D human body tracking, position and orientation 

estimation, motion tracking, fuzzy spatial information based tracking can be found in [Peurum 

2010], [Won 2010],[Kristan 2010], [Rincon 2011], and [Widynski 2011]. 
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Consider the basic problem of tracking a point on a target object using images captured by an 

eye-in-hand configured camera as the robot undergoes translational and rotational motion at its 

end-effector. Given the special requirements for wheelchair mounted robotic arms (WMRAs), 

namely, that of being lightweight (for longer battery life) and having low center of gravity (for 

balance), these robots necessarily include extensive transmission and gearing. It is well known 

that transmission and gearing introduce kinematic uncertainties in the robot which may be 

modeled as additive noise in the commanded translational and rotational velocities at the 

endeffector. To formulate the problem, consider the dynamics of a pixel (or feature point) 

𝑝 = [𝑝𝑥 𝑝𝑦]𝑇on the target object as captured by the end-effector mounted camera as follows 

[Huchinson 1997] 

𝑝̇ = 𝐽𝑝𝑉 (2-1) 

where 𝐽𝑝 is known as the image Jacobian and defined as follows 

𝐽𝑝 = [
−

1

𝑍
0

𝑝𝑥

𝑍
𝑝𝑥𝑝𝑦 −(1 + 𝑝𝑥

2) 𝑝𝑦

0 −
1

𝑍

𝑝𝑦

𝑍
1 + 𝑝𝑦

2 −𝑝𝑥𝑝𝑦 −𝑝𝑥

] (2-2) 

In the above equation, Z denotes the Euclidean distance along the z-direction of the camera 

frame, while 𝑉 = [𝑣𝑐 𝜔𝑐]𝑇denotes the composite camera velocity vector comprising of its 

translational velocity 𝑣𝑐 and rotational velocity 𝜔𝑐. It is clear to see from the structure of (2-1) 

and (2-2) that any additive uncertainty in the composite velocity vector V will manifest itself 

nonlinearly in the pixel dynamics. Thus, the nonlinear image dynamics and the non-additive (and 

non- Gaussian as we will show in the sequel) nature of the “process noise” make this system not 
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amenable to Kalman-filter type of schemes – therefore, we contend that any estimation problem 

is best dealt with inside a particle filter (PF) type of framework. 

The UCF-MANUS is capable of utilizing computer vision (among other sensing modalities) for 

target tracking and manipulation in unstructured environments. Tests in the Assistive Robotics 

laboratory at UCF using the UCF-MANUS setup have shown that typically utilized global 

detection and local tracking based algorithms, when used exclusively, fall prey to typical 

problems such as multiple identical targets, lack of robustness when dealing with a large initial 

offset, motion discontinuity, etc. Specifically, global detectors are robust to low framerate video, 

motion discontinuity etc. while local trackers can easily handle multiplicity of the target in the 

same frame. However, their weaknesses and strengths are complementary to one another. This 

has motivated us to design and implement a fusion-based target-template matching algorithm in 

order to obtain robust and sustained target tracking under a variety of scenarios. By taking 

advantage of the aforementioned redeeming qualities of the global and local methods, the 

algorithm systematically prescribes empirically-validated choices for sub-image and/or feature 

points to consider at each step. As explained above, the system nonlinearity and non-additive 

nature of the process noise hinder us from getting a closed form solution; therefore, a 

probabilistic PF-based framework is developed in this paper; specifically, we propose a 

systematic way to improve the performance of a global matching function by augmenting it with 

a local matching function. The work presented here is novel as this paper does not simply ‘fuse’ 

global and local information in the traditional sense of the word; instead, a synergistic 

concatenation of the two sources of information is proposed in a probabilistic setup implemented 

via particle filters to find a better method of tracking objects. 
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2.6 Discussion 

This chapter as looked at the various techniques used in the different components of the motion 

control used by the UCF MANUS. Typical schemes for fine motion involve using an image-

based or position-based visual servoing design. These methods generally produce satisfactory 

results, but falter when presented with large pose errors and only take one aspect of the system 

into account. To overcome these deficiencies, hybrid methods have been implored to create more 

robust systems. The UCF MANUS uses one of these methods as the basis for its fine motion 

control design. 

 

Gross motion is implemented to maneuver the end-effector to an appropriate distance to the 

object so that identification can occur. This does not always lead to an optimal relationship 

between the object and end-effector that allows for a positive identification to be made. To 

correct this, compensatory motion schemes are introduced to yield a successful position from 

which the object can be identified from. 

 

Local and global tracking algorithms commonly used in visual servoing lack any robustness 

when encountering complex situations. Several algorithms have been developed to fuse the 

methods together to use their individual strengths to overcome their inherent weaknesses. 

Particle filters have been recent developments in that provide a suitable framework for such a 

fusion to take place. 
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CHAPTER 3: FINE MOTION OPTIMIZATION  

3.1 Introduction 

 

The purpose of fine motion is to precisely align the gripper with the desired object so that the 

robotic manipulator can grab the object. After gross motion has been performed and the desired 

object identified, the end-effector will then need to be aligned in such a way that the object can 

be grabbed without any problem. This is typically done using a visual servoing system that 

utilizes an object tracker of some kind. The existing nominal controller being implemented by 

the UCF MANUS is a proportion controller. For most cases, this controller will perform 

relatively well when aligning the end-effector to the object. Issues begin to arise when there are 

significant pose errors between the desired position for alignment and the current orientation 

with the object. To help overcome these difficulties, an optimized controller was developed to 

ensure that these issues did not hinder the robots performance. 

3.2 Chapter Objectives 

-Summarize control design 

- Go over initial implementation of method 

- State revisions to method needed for successful implementation using PI controller 
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3.3 Lyapunov-Based Optimization 

3.3.1 Lyapunov-Based Control Design 

The controller that will be discussed can be found in [Wang, 2012]. What will be presented here 

is a brief summary of the theory that comprises the control design. The UCF MANUS is 

implemented using a proportional controller in the form of 

𝜏𝑐 = 𝐿𝜏
𝑖 𝐾𝜏𝑒 (3- 3) 

where 𝐿𝜏
𝑖  contains the pixel and camera coordinate information (for more information on the 

technical development and definition, see [Wang, 2012] and [Malis, 1999]), 𝐾𝜏 is the gain 

matrix, and 𝑒 ≜ [𝑒𝑣
𝑇 𝑒𝜔

𝑇 ]𝑇 is the error signals. This controller works for the majority of cases 

without the need of any assistance, but is not optimal when dealing with large rotational errors. 

To help with this, the controller was modified to   

𝜏𝑐 = 𝐿𝜏
𝑖 𝐾𝜏𝑊𝑐𝑒 ( 3-4) 

where 𝑊𝑐 is a weight matrix designed to optimize the controller to optimize the output. This 

ensures that the object will remain within view of the camera so that the necessary data can be 

obtained to perform the Fine Motion required of the robot to align the end-effector with the 

object. A detailed explanation of the theory behind the development of the optimization and the 

corresponding stability analysis can be found in [Wang, 2012]. 

3.3.2 Implementation of Optimized Controller 

For the initial implementation of this controller, the gain matrix will be set as follows: 𝐾𝜏 =

𝑑𝑖𝑎𝑔(25,25,25,0.12,0.12,0.15). These are the normal gain values used in the controller if there 

is no need to optimize. The gains for the optimization portion will be set as follows: 𝐾𝜏 =
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𝑑𝑖𝑎𝑔(24,25,24,0.06,0.06,0.06). The gains for the optimization have been lowered as a safe 

guard in the off chance that the quadratic programming function deems the current solution as 

infeasible. This in turn slows down the movement speed of the robot so when a feasible solution 

is found it can be implemented. While for the initial paper the quadratic programming was being 

handled by Matlab using the “quadprog” function, for the final implementation here the 

quadratic programming will be taken care of using the CGAL library function “quad_comp”. 

While not as fast as the Matlab version, it does allow for all computation to take place within the 

same program as opposed to running a separate Matlab script that then needs to be 

communicated with.  

 

When the Fine Motion control begins, the current points are bounded within an artificial region 

of interest within the camera frame as seen in Fig. 3-1. This region of interest is what is used 

when determining whether or not the object is heading out of view of the camera. The farthest 

points in each direction are used monitored to determine the objects position in relation to the 

artificial ROI. If one of these points approaches or exits the ROI, then the optimization controller 

is implemented in place of the nominal one. As noted earlier, there is a possibility of the 

quadratic programming stating that the solution to the particular circumstances is infeasible. If 

this happens the weights are set in such a way that the robot will perform a backward motion to 

distance itself from the object as a way to keep it within the boundary. As stated earlier, the gains 

used for the optimal controller are slightly different from the nominal controller to help resolve 

these situations. Given that the time it takes for the quadratic programming to compute a solution 
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is greater than the time it takes for it to conclude that the solution is infeasible, it was necessary 

to slow the movement speed of the robot down long enough for a feasible solution to be found or 

have the robot retreat enough so that the object returns to within the bounding ROI.  

 

Figure 3-1: Initialization step for Fine Motion artificial ROI (black) around the object  

3.3.3 Conversion of Standard Fine Motion Controller to PI Controller  

While the new control design was successful in its initial performances, there were still some 

issues with the computational time being taken to complete the quadratic programming 

algorithm. In Matlab, this was not an issue given that the platform is optimized for mathematical 

computation. Since the programs that control the robot are done in Visual C++, the entirety of 

the program would need to be done on the same platform. This prevents the need to develop a 

separate program to handle the Matlab portion that would also need to be active along with the 
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current six programs required to run our interface and the need to create additional space for the 

Matlab libraries that would be required for the program. There are already defined functions in 

CGAL that can handle the necessary calculations. The consequence of this shift is that 

computational time is slightly increased given the way that the CGAL quadratic programming 

function works. This in turn prevents the modified control system from acting in time to correct 

the trajectory of the end-effector so that the object is within its view. 

 

To correct this, the controller was modified into a PI controller so that the gains could be lowered 

while maintaining a steady state error that was within our necessary threshold for a successful 

alignment. The new controller is in the form of 

𝜏𝑐 = 𝐿𝜏
𝑖 𝐾𝜏𝑊𝑐𝑒 + 𝐼𝜏 ∫ 𝑒 (3-5) 

where 𝐼𝜏 = 𝑑𝑖𝑎𝑔(0,0,0,1.7𝑒 − 4,1𝑒 − 5) are the integral gains for the system and the other 

values have been previously defined. As you will notice, only the rotational errors have integral 

gains while the translational errors have been zeroed out. This is due to the fact that the 

translational errors did not need to be altered because they continually converged below the 

threshold despite the changes to their proportional gain values. The main issue for this 

modification arose due to the speed at which the rotational errors were corrected. The necessary 

calculations could not be computed fast enough for them to be implemented. For this 

implementation, the proportional gain values for the rotational errors have been adjusted to 0.11, 

0.11 and 0.13 respectively. This is a slight decrease compared to their initial values, but gives the 

robot enough time to compute and implement the necessary steps for the optimization process. 
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The implementation of the PI controller is to ensure that the rotational errors converge below the 

necessary threshold. As seen in Fig. 3-2 (top), the roll error for the proportional controller 

converges and settles to -0.12. This does not hold true for the PI controller as the error seen 

quickly converges toward zero. 

 

Figure 3-2: Roll error for proportional controller (top) and PI controller (bottom) 

3.3.4 Roll Bounding  

Another minor issue that appears when doing fine motion is when the end-effector is trying to 

correct the roll error that is present. If the error is greater than |90|, the motion of the end-effector 

can lead to the connections between the sensors and cameras being strained or possible broken. 

This could also lead to the end-effector restricting its movement by being tangled within the 

wires. To correct this, a different desired position needs to be obtained. Since the objects that are 

grabbable by the UCF-MANUS are symmetric in shape along their grabbable surface, the new 

pose error can be found by setting the roll error to 180 − |𝑒𝑟|, where 𝑒𝑟 is the roll error. To 
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implement this, the image that is being received to calculate the error is also flipped 180
°
 so that 

proper error values can be determined. To relate the error values obtained from the new image to 

the actual position, y, pitch, and yaw errors are reset to their negative and depending on the 

position of the end-effector, x or z error is also reset to its negative. This ensures that while the 

end-effector is moving it maintains vision on the identifiable part of the object. In Fig. 3-3 below 

is an example using a Cheerios box. The initial image is taken as is and the following images are 

reversed for the remainder of the fine motion. 

 

Figure 3-3: Initial image for fine motion (top) and flipped image (bottom). 

3.4 Discussion 

This chapter discusses the use of a Lyapunov-based control system designed to optimize the 

existing UCF MANUS nominal control system. The optimal design constrains the system based 

on the artificial ROI in order to keep the object within the sight of the camera. The initial 
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implementation was modified to take into account the processing time and speed of the robotic 

manipulator. This led to the proportional controller being used being modified to a PI controller 

to ensure that the steady-state error converges to below the necessary threshold for a completed 

task.  

3.5 References 
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CHAPTER 4: COMPENSATORY GROSS MOTION  

4.1 Introduction 

The purpose of gross motion is to line up the end-effector with an object so that enough feature 

points can be gathered to make a positive identification of the desired object. This is not always 

the case. Identification algorithms perform better when there is very little error in pose between 

the displayed object and the templates that are being used. The face of the object that is being 

observed could be one that is not currently in the database or the object cannot be grasp from that 

particular side. The object could also be orient in such a way that the feature points being used 

are spread across more than one face of the object, leading to no positive identifications being 

found. To ensure that the desired object is identified, compensatory gross motion needs to be 

applied to handle situations that arise that lead to no object identification. 

4.2 Chapter Objectives 

-Lay out method to compensate gross motion 

-Discussion on “Get Another View” method and improvements 

4.3 “Get Another View” Approach 

The “Get Another View Approach” mentioned in [Kim, 2012] was developed to allow the robot 

to find a more advantageous view of the object that it can identify. This is to be used if no 

positive identification of the object can be found after the initial approach. If the object cannot be 

identified, the end-effector will be moved to a point that lies on a circle with radius r and center c 

that is ∆θ degrees from its current position. For this approach, r = d where d is the distance from 

the object to the end-effector and c = oc where oc is the assumed center of the object. An 
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illustration of this can be seen in Fig. 4-1 below. This method works relatively well for the first 

instance of no identification, but is not particularly suitable if there is need for the robot to find 

additional views to try and identify the chosen object. If there are not enough points for a well-

defined point cloud, then the two significant directions that would be used to define the plane of 

the circle that the end-effector would move upon cannot be formed. The initially proposed 

method also does not take into account that the end-effector may be moving to any previous 

positions that have been used for the particular instance of object identification. 

 

Figure 4-1: Position of end-effector relative to object and constructed circle for determining next position. 
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The implementation of this method has been modified to take into account these issues.  First, 

the robot will only take into account the front facing and top side. This will prevent the robot 

from trying to position itself outside of its reach or in a precarious position. This also limits the 

number of areas that have to be searched to three making the other modifications simpler. The 

second modification implements a default move in the instance not enough points remain to form 

a reliable point cloud. Since we know the offset distance that the robot will place the end-effector 

from the object with its initial gross motion, we can construct the circle that the end-effector can 

move about. From this we can estimate the final position based on the ∆θ that we are using. For 

our purposes, the circle will lie parallel to the z-plane, placing the end position above the current 

one. This done due to the fact that all objects used by the UCF MANUS are grabbable from their 

top surfaces. If there is no reliable point cloud found at the new location the process is 

terminated, given the assumption that there is no identifiable object in view. This remains true 

for any given point in the process. 

 

The last modification prevents the robot from checking the same area twice. This is done by 

logging the previous positions. Since there are only areas being considered, this is a very simple 

process. To be efficient in checking the necessary areas, the end-effector will be moved to the 

nearest orthogonal plane that has not been logged as a checked position. A flow chart of the 

entire method can be seen in Fig. 4-2.  
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Figure 4-2: Flow chart of Compensatory Gross Motion Process. Variables t and n are counters that keep track of 

how many times each process has been performed. Once those actions have been performed a certain amount of 

times, it is assumed that there is no identifiable object being viewed. 

A cereal box will be used as an example. In Fig. 4-3 (left) below, the end-effector has performed 

its initial gross motion and is unable to identify the object due to its pose. The object has two of 

its sides within view of the camera, one of which is not identifiable, but has enough texture on it 

to attract the attention of the global detector. There are three positions that the end-effector can 

now move to. The desirable position is located at position C. To ensure that the positions are 

searched in an optimal fashion, the end-effector will move to either position C or D. In this 

instance, the end-effector moved to position C and was able to get enough feature points to make 

a positive identification. 
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Figure 4-3: “Get Another View” approach tested on Cheerios box. The top pictures are of the position of the end-

effector in relation to the object and the bottom pictures are of the feature points found by Ferns for identification. 

 

4.4 Discussion 

This chapter presents a method that will be used to compensate any errors in the initial gross 

motion. The method presented expands upon the idea mentioned in [Kim, 2012] on altering the 
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position of the end-effect relative to the object in order to obtain a more satisfactory view. The 

method described above will search three alternative locations if necessary to find a position in 

which it can identify the desired object. Scenarios in which there are too few points to make 

identification have also been taken into account. 

4.5 References  

Dae-Jin Kim; Zhao Wang; Behal, A., "Motion Segmentation and Control Design for UCF- 

MANUS—An Intelligent Assistive Robotic Manipulator," Mechatronics, IEEE/ASME 

Transactions on, vol.17, no.5, pp.936,948, Oct. 2012 doi: 

10.1109/TMECH.2011.2149730  



31 
 

CHAPTER 5: PARTICLE FILTER-BASED VISUAL SERVOING
2
 

5.1 Introduction 

 

Visual servoing is a necessary application for creating a reliable automated system that can 

operate in a complex environment. For our application it allows the MANUS to find and retrieve 

desired objects for its user. The most common methods for this usually involve a global detector 

to identify the object and a local tracker to track a portion of the object while the robot is 

aligning itself. While these processes are easy to implement and can work rather effectively, they 

do possess some drawbacks that hinder them when it comes to operating in complex 

environments or with less than ideal conditions such as low frame rate. Since global detectors are 

model-based, they can be confused relatively easily by pose changes or a variety of other 

spatiotemporal constraints. Also if any similar objects are present in the frame, the detector can 

then identify the other object and instead proceed to align itself and grab the similar object as 

opposed to the desired one. To solve these problems, a novel solution using a particle filter that 

utilizes both a local and global tracking method has been developed and implemented with the 

UCF MANUS system. 

 

5.2 Chapter Objectives 

- Lay out Particle Filter framework. 

                                                           
2
 This section is comprised of sections of the manuscript “Particle Filter-Based Robust Visual Servoing for UCF-

MANUS – An Intelligent Assistive Robotic Manipulator” by N. Paperno, Z. Wang, D.-J. Kim, and A. Behal which is 
currently pending submission. 
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- Demonstrate ability of Particle Filter as tracking method on its own. 

- Demonstrate ability of Particle Filter as visual servoing method in loop. 

- Discussion on Particle Filter algorithm as an alternative to the current method. 

 

5.3 Particle Filter Framework 

5.3.1. Preliminaries 

Let us assume that a frame of image has been grabbed from the camera at time 𝑡. From this 

image, features points denoted as 𝑔𝑡 are extracted by a global detector. Using a known template 

model with a feature point set 𝐺𝑑, one can find another set of feature points  𝑔𝑑  ⊂ 𝐺𝑑 which 

shows a one-to-one correspondence with 𝑔𝑡. We can also define a global detector Region of 

Interest (ROI) 𝑦𝑡 which is a minimal polygon enclosing all feature points in 𝑔𝑡. We will use this 

global detector ROI 𝑦𝑡 to indicate the identified target on the frame grabbed at time 𝑡. 

Furthermore, the local tracker can also track a set of feature points 𝐿𝑡 at time 𝑡 matching with the 

feature point set 𝐿𝑡−1 in the frame grabbed at time 𝑡 − 1. Note that the feature points in 𝑔𝑡 and 𝐿𝑡 

are independent and obtained through global detector and local tracker, respectively. Next, we 

define the 𝑖𝑡ℎ particle as follows 

 𝜋𝑡
𝑖 = {𝑥𝑡

𝑖 , 𝑤𝑡
𝑖}       𝑖 = 1, … , 𝑁𝑝 (5-1) 

   

where 𝑥𝑡
𝑖 denotes the ROI encoded in the 𝑖𝑡ℎ particle, 𝑤𝑡

𝑖 is the weight associated with the 

particle, while 𝑁𝑝 denotes the number of particles. Then, given the feature point sets 𝑙𝑡
𝑖  ⊂
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𝐿𝑡 ∀𝑖 =  1, … , 𝑁𝑝, we define a particle filter ROI 𝑥𝑡
𝑖 on the frame grabbed at time t as a 

minimally enclosing polygon of the residual image features in the set 𝑙𝑡
𝑖  as 𝑥𝑡

𝑖 = 𝑟(𝑙𝑡
𝑖). This 

polygon ROI 𝑥𝑡
𝑖 for 𝑙𝑡

𝑖  can be explicitly given as 

𝑥𝑡
𝑖 = 𝑟(𝑙𝑡

𝑖) = ( 𝑝𝑡,1, 𝑝𝑡,2, … , 𝑝𝑡,𝑁𝑥
) (5-2) 

where 𝑝𝑡,𝑖 ∈ 𝑙𝑡
𝑖  and 𝑁𝑥 denotes the number of points on the boundary of this polygon. Note that 

𝑥𝑡
𝑖 can be considered as a polygon representation of the associated local feature set 𝑙𝑡

𝑖   in the 

image space. These particles are used to obtain particle filter output ROI 𝑦𝑡
𝑝̂
based on particle 

ROIs 𝑥𝑡
𝑖 and their associated weight 𝑤𝑡

𝑖. The global detector ROI 𝑦𝑡 is used as an observation at 

time 𝑡. Under the particle filter setup, our goal is to robustly identify the target from the currently 

grabbed image at time t and the observations 𝑦1:𝑡 up to time 𝑡. A posterior pdf can be described 

by a set of 𝑁𝑝 random samples (i.e., particles) as follows [Arulampalam 2001] 

𝑝(𝑥0:𝑡|𝑦1:𝑡) ≈ ∑ 𝑤𝑡
𝑖𝑁𝑝

𝑖=1
∙ 𝛿(𝑥0:𝑡 − 𝑥0:𝑡

𝑖 ) (5-3) 

where 𝑥𝑡
𝑖, 𝑤𝑡

𝑖, and 𝑦𝑡 have been previously defined. Fig. 5-1 shows an example of particles ROIs 

𝑥𝑡
𝑖 and output ROI 𝑦𝑡

𝑝
 for a cereal box. 

Remark 1: We note here that the enclosing polygon and not the features themselves are utilized 

as particles because in general, global and local tracking algorithms may not necessarily obtain 

similar or even overlapping sets of features on an object. 
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Figure 5-1: Particles ROIs (left) and output ROI (right) in frame 42 of a cereal-box video sequence recorded in the 

UCF Assistive Robotics Laboratory. 

5.3.2 Particle Filter Framework 

We begin by defining a novel measure of the degree and quality of overlap between two particle 

ROIs a and b in the form of an overlap ratio r(a,b) as follows 

𝑟(𝒂, 𝒃) ≜
𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑎
∙

𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑏
∙ 𝑒𝑥𝑝 (−𝑘𝑓(|𝑑|)) (5-4) 

Here, 𝐴𝑎 and 𝐴𝑏 denote, respectively, the area enclosed by the ROIs a and b while 𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 

denotes the area of overlap between the two ROIs. Furthermore, the function 𝑓 (∙) denotes a 

monotonically increasing function of its argument, 𝑑 represents the distance between the 

geometric centers of the two ROIs while 𝑘 is an empirical rate constant. To motivate the 

selection of this overlap ratio, we note that the first two factors in the definition of 𝑟(𝒂, 𝒃) 

capture the degree of overlap while the last factor encodes the quality of the overlap, e.g., 

between two particles, say a1 and a2 with identical ROI sizes and similar overlap area with b, we 

deem the one located more centrally with respect to b as having a better overlap than the other 

whose location is more peripheral. Note that by definition, 𝑟(𝒂, 𝒃) ∈ (0,1]. In this paper, the 
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empirical determination of the pdfs was obtained using the following choices: 𝑘 = 0.02  

and 𝑓(|𝑑|) = |𝑑|. Details of calculations for the underlying polygons considered in the definition 

of 𝑟(𝒂, 𝒃) can be found in the Appendix. As for the measurement process which enables the pdf 

update in the PF framework, one can choose from a bevy of available global template-based 

detectors; while SIFT [Lowe 2004] and SURF [Bay 2008] are commonly used detectors, in this 

paper, we turn toward a real-time implementable global detection-based tracker known as ferns 

[Ozuysal 2007]. 

 

1) Initialization Step: Given an initial specification of a target ROI R1 in the first frame as 

illustrated in the left part of Fig. 5-2, one can randomly generate particle ROIs 𝑥𝑙
𝑖 around the 

specified region as illustrated in the right part of Fig. 5-2. This is done by creating a set of 

offset values that have a uniform distribution and applying them to the borders of the initially 

specified ROI. Then, the local tracker will select good feature points for future tracking and 

each randomly generated particle ROI 𝑥𝑙
𝑖 will be associated with all feature points located 

inside it. We note that the initially specified target ROI may not exactly match with the ideal 

target ROI. By choosing a large number of particles randomly around the initial ROI, we can 

easily increase the probability of including the ideal ROI into the union of all particle ROIs. 

One can adjust the parameter of the uniform distribution used in the particle initialization step 

according to the quality of the initial selection, i.e., the generated particles could be spread in a 

large region if we expect the initial selection to be inaccurate. 



36 
 

 

Figure 5-2: Initialization of particles (right) using initial ROI (right). 

2) Prediction Step: As is well known, the standard PF process entails two broad steps, viz, a 

prediction based on the prior (pre-measurement) pdf and an update based on the posterior (post-

measurement) pdf. Specifically, assuming that we have a posterior pdf 𝑝(𝑥𝑡−1|𝑦1:𝑡−1) of the state 

at time 𝑡 − 1, the first step is to draw samples from the importance function as follows 

𝑥𝑡
𝑖~𝑝(𝑥𝑡|𝑥𝑡−1) (5-5)   

Normally, the prior is utilized as the importance function from which it is easier to draw samples. 

However, in the proposed method, this is difficult to implement using system dynamics. From 

(2-1) and (2-2), one can clearly see the difficulty in implementing the prediction step without 

explicit knowledge, assumption, or estimation of the depth of the various feature points that 

constitute an object of interest. Furthermore, knowledge of the nominal camera motion is 

required. A more practicable model-free (i.e., we do not need to know the camera velocity, 

camera parameters, target depth, etc.) predictor can be implemented by utilizing the seminal 

Kanade-Lucas-Tomasi (KLT) feature tracker [Shi 1994][Birchfield 2006] based on optical flow 
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which is based on the following relationship holding under small relative motion between 

frames: 

𝑝𝑡 ≈ 𝑝𝑡−1 + 𝑔𝑑 (5-6) 

where 𝑝𝑡, 𝑝𝑡−1 ∈ ℝ2 denote a feature point in the image at time 𝑡 and 𝑡 + 𝑑𝑡, respectively, 

𝑔 ∈ ℝ2×2 denotes the image gradient, while 𝑑 ∈ ℝ2 denotes the distance vector between the 

feature at times 𝑡 − 1 and 𝑡. Here, 𝑑 is computed as the distance that minimizes the intensity 

difference between a suitably chosen small window of pixels around the feature point in the 

images taken at time 𝑡 − 1  and 𝑡. By thus utilizing KLT to track all image features in set 𝐿𝑡−1 at 

frame # 𝑡 − 1  into 𝐿𝑡 in the image frame captured at time 𝑡, we can find the feature point subset 

𝑙𝑡
𝑖  ⊂ 𝐿𝑡 for 𝑥𝑡

𝑖 matching with 𝑙𝑡−1
𝑖  ⊂ 𝐿𝑡−1associated with i

th
 particle ROI 𝑥𝑡−1

𝑖 . The sample ROI 

for 𝑥𝑡
𝑖 can then be obtained as the minimum polygon including all the feature points in the set 𝑙𝑡

𝑖 . 

Remark 2: As noted earlier, we use KLT as our model-free predictor. To make a connection with 

the standard particle filter approach, the approximation inherent in the relation expressed by (5-

6) is the source for the process noise. Thus, we do not need to implement an explicit definition of 

an importance function for our particle filter unlike in the standard approach which requires use 

of a model and addition of process noise to the particles as drawn from the importance function. 

 

3) Update Step: In this step, the predicted prior pdf from the prediction step is corrected via 

observations by using a global detector. In order to robustify and speed up the performance of 

the global detector, the insight here is to apply the global detector in a sub-region based on the 

union of particle ROIs 𝑥𝑡
𝑖  whose corresponding weights are larger than an appropriately certain 
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threshold – this is in lieu of simply detecting the feature points from the entire image frame as is 

commonly done. Specifically, we define a region 𝑋𝑡 as follows 

𝑋𝑡 =∪ 𝑥𝑡
𝑖 , ∀𝑤𝑡

𝑖 > 𝑤𝑡ℎ, 𝑖 = 1, … , 𝑁𝑞 (5-7) 

In this predicted sub-region 𝑋𝑡, the global detector is more likely to locate the intended target 

without showing jumps between identical or similar targets in the same image frame. From a 

probabilistic perspective, these sub-regions 𝑥𝑡
𝑖 which are representative of the pdf 𝑝(𝑥𝑡|𝑦0:𝑡−1), 

can give us a potential region containing the target object with a much higher probability than 

any other region in the grabbed frame. During the implementation, one may apply the global 

detector based on a higher 𝑤𝑡ℎ at first. If the global detector is unable to detect the target, one 

can lower the threshold value and enlarge the predicted sub-region for the global detector in 

order to decrease the occurrence of false negatives. By applying the global detector on 

region 𝑋𝑡 of the current frame and comparing with the template frame, one can get the set of 

feature points gt (defined previously in Section III-A) which shows one-to-one correspondence 

with a template feature point set 𝑔𝑡  ⊂ 𝐺𝑡. Then, one can find an observed global detector ROI 𝑦𝑡  

which encloses all feature points in the feature point set 𝑔𝑡. Based on the measurement produced 

by the global detector inside the aforementioned sub-region, the associated weights of the 

particles in the prior distribution are updated based on the current observation using 

𝑤𝑡
𝑖̅̅ ̅ ∝ 𝑝(𝑦𝑡|𝑥𝑡

𝑖)𝑤𝑡−1
𝑖  (5-8) 

where 𝑝(𝑦𝑡|𝑥𝑡
𝑖) is defined as the observer posterior that can be approximated based on empirical 

observations as follows 
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𝑝(𝑦𝑡|𝑥𝑡
𝑖) =

2

√2𝜋𝜎2
𝑒𝑥𝑝 (

−(1−𝑟(𝑦𝑡,𝑥𝑡
𝑖))

2

2𝜎2 ) (5-9) 

where 𝑟 has been previously defined and 𝜎2 = 0.04. We calculated the empirical distribution of 

𝑟(∙,∙) by comparing a ground truth ROI to the measured ROIs given by the ferns detector over 

multiple image captures and then averaging it over multiple objects in our laboratory – this 

average distribution can be seen in the histogram shown in Fig. 5-3. We note here that the 

histogram may be further smoothed out by using data from more image captures and objects. 

While many different approximation functions can be utilized to capture this posterior 

distribution, we chose a simple 1-sided Gaussian distribution acting as an envelope for the 

empirical data. As will be seen in subsequent experimental results, even this simple choice leads 

to excellent tracking performance in a variety of scenarios. Finally, the associated weights of the 

updated particles computed using (5-9) are normalized using 

𝑤𝑡
𝑖 =

𝑤𝑡
𝑖̅̅ ̅̅

∑ 𝑤𝑡
𝑗̅̅ ̅̅𝑁𝑝

𝑗=1

 (5-10) 
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Figure 5-3: Posterior pdf for the particle filter overlaid over the histogram of the overlaps taken from various 

objects. This histogram was created by taking the overlaps of the ferns results to the ground truth of various objects. 

4) Output Step: Finally, the best estimate of the object ROI using the particle-filter based 

approach can be obtained by utilizing any of a number of different methods [Rekleitis 2004]. The 

following three methods are commonly employed: 1) utilize the particle with the maximum 

weight, 2) utilize a weighted sum of all particles, and 3) utilize a constrained weighted sum of all 

selected particles with weight higher than a user-defined threshold 0 < 𝜀 < 1 
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𝑦1:        𝑦𝑡
𝑝̂ = 𝑥𝑡

(𝑎𝑟𝑔 𝑚𝑎𝑥𝑗𝑤𝑡
𝑗

)

𝑦2:                𝑦𝑡
𝑝̂ = ∑ 𝑥𝑡

𝑖𝑤𝑡
𝑖𝑁𝑝

𝑖=1

𝑦3:   𝑦𝑡
𝑝̂ = ∑ 𝑥𝑡

𝑖𝑤𝑡
𝑖𝑁𝑝

𝑖=1
;  𝑤𝑡

𝑖 ≥ 𝜖

 (5-11) 

 

In the implementation scheme detailed in the following section, of the three output methods 

defined above, we have utilized the method of weighted sum with threshold. Since the results 

from the particle-filter based approach will be compared with results from the exclusive use of 

local or global methods, it is necessary to also define the object ROI estimate for those cases. 

When the local tracking algorithm is used solely (i.e., outside the particle filter framework), the 

estimated output ROI   𝑦𝑡
𝑙̂ is defined as the minimum polygon enclosing all local tracker feature 

points in the current frame tracked from the previous frame. On the other hand, the output of the 

global detector outside the particle filter framework is defined as 𝑦𝑡
𝑔̂

= 𝑦𝑡. Here, the 

superscripts 𝑝, 𝑙, and 𝑔, respectively, refer to particle-based, local and global approaches. 

 

5) Particle Resampling and Feature Replacement: In this proposed particle filter based 

synergistic approach, the particle set will be resampled based on the following criterion. In order 

to overcome the depletion of particle population after a few iterations, particles with insignificant 

weights need to be replaced (or resampled) according to a resampling policy, i.e., the current set 

of particles 𝜋𝑡
𝑖 = {𝑥𝑡

𝑖 , 𝑤𝑡
𝑖} , 𝑖 = 1, … , 𝑁𝑝 needs to be replaced with a new set of particles 𝜋𝑡

𝑖̅̅ ̅ =

{𝑥𝑡
𝑖̅, 𝑤𝑡

𝑖̅̅ ̅} , 𝑖 = 1, … , 𝑁𝑝 such that the ones with small weights will be eliminated (probabilistically) 

while the ones with higher weights will be duplicated. Note that the weights for the newly 
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sampled particle 𝑥𝑡
𝑖̅ will be assigned as 1/𝑁𝑝 uniformly. Two different quantities have been 

shown to estimate the number of insignificant (near-zero-weight) particles, namely, the 

coefficient of variation 𝑐𝑣𝑡
2 and the effective sample size 𝐸𝑆𝑆𝑡 which are defined as follows [Liu 

2001] 

𝑐𝑣𝑡
2 =

𝑣𝑎𝑟(𝑤𝑡
𝑖)

𝐸2(𝑤𝑡
𝑖)

=
1

𝑁𝑝
∑ (𝑁𝑝𝑤𝑝

𝑖 − 1)
2𝑁𝑝

𝑖=1
 (5-12) 

𝐸𝑆𝑆𝑡 =
𝑁𝑝

1+𝑐𝑣𝑡
2 (5-13) 

In this paper, we chose the second quantity as a decision criterion for resampling process. When 

the effective sample size drops below a certain threshold (usually below a percentage of the 

number of particles 𝑁𝑝), as follows 

𝐸𝑆𝑆𝑡 < 𝜂1𝑁𝑝, (5-14) 

then the particle population is resampled according to the weights of the particles as previously 

stated. In this paper, among different methods of resampling, we have applied the ‘Sequential 

Importance Sampling (SIS) with Resampling’ approach [Arulampalam 2001]. Further 

implementation details can be found in the proceeding section. Due to pattern occlusion or 

computational failures, local trackers show a tendency to lose features during tracking between 

two consecutive frames. Since the size of the particle ROI depends on the position of feature 

points of the local tracker, one may expect the particle ROI to shrink when the associated feature 

points on the ROI boundary are lost. In order to maintain the size of the particle ROI against 

unwanted shrinkage due to loss of feature points, we replace lost feature points via regeneration 

when the number of valid feature points is lower than a threshold. After regenerating local 
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tracker feature points inside the union set of the updated particles, each particle 𝑥𝑡
𝑖 then 

associates with the newly generated local feature points located inside it. 

5.3.3 Overall Algorithm 

The overall algorithm proceeds according to the steps given below. 

1) Set 𝑡 = 1; Grab a frame I1; According to the given initial ROI R1 located near the ideal target 

ROI, we generate particles 𝑥𝑙
𝑖 , 𝑖 = 1, … , 𝑁𝑝 randomly around R1; Generate local features 𝐿1; 

Associate subset 𝑙1
𝑖  ⊂ 𝐿1 with xi1 and set wi1= 1=Np; Hence, the ith particle can be described as 

follows 

𝜋𝑡
𝑖 = {𝑥𝑡

𝑖 , 𝑤𝑡
𝑖} , 𝑖 = 1, … , 𝑁𝑝 (5-15) 

2) Increase𝑡 = 𝑡 + 1; Grab a frame It; Compute the position of feature points by using a local 

tracker which is denoted by the mapping 𝑙𝑡−1
𝑖 → 𝑙𝑡

𝑖 . Then calculate 𝑥𝑡
𝑖 which is the minimal 

particle ROI enclosing feature point in the set 𝑙𝑡
𝑖 . 

3) Define sub-region 𝑦𝑡̅according to the predicted particle ROI 𝑥𝑡
𝑖 > 𝑤𝑡

𝑖 as in (5-7). 

4) Measurement 𝑦𝑡 is obtained by global detector applied in the sub-region 𝑦𝑡̅̅̅̅ , and then update 

weight 𝑤𝑡−1
𝑖  using 𝑝(𝑦𝑡|𝑥𝑡

𝑖) as in (5-8). 

5) Normalize weight according to (5-10), and then calculate the output 𝑦𝑡
𝑝̂
using (5-11). 

6) If 𝐸𝑆𝑆𝑡 < 𝜂1𝑁𝑝, 𝜂1 ∈ (0,1) or 𝑁𝑣 > 𝜂2𝑁𝑝, perform resampling to generate a new particle 

set 𝜋𝑡
𝑖̅̅ ̅. 
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7) Regenerate lost feature points for local tracker; update feature point set 𝑙𝑡
𝑖  for each particles. 

8) Go to step 2 unless last frame has been reached. 

5.4 Experimental Results 

5.4.1 Open Loop Experiments 

Here, the global detector, local tracker, and proposed particle filter based fusion approach have 

been tested and compared on the 6-DOF assistive robotic manipulator UCF-MANUS in the 

Assistive Robotics Laboratory at UCF [Kim 2012]. The input images are grabbed through a 

Dragonfly 2 firewire camera with 640 x 480 pixel-sized, 8bit image. In this experiment, a ferns 

based detector/tracker [Ozuysal 2007] is adopted as the global tracker while a Kanade-Lucas-

Tomasi (KLT) feature tracker [Shi 1994][Birchfield 2006] is used for local tracking for 

comparison with our proposed particle filter-based fusion approach. The target object is laid 

down on a table with a pepper-and-salt-like surface and never moved during the motion of the 

robot. The camera is mounted on the robot end-effector which is moved arbitrarily and a 

sequence of frames is captured. Based on this setup, three different tracking approaches (i.e., 

local, global, and particle filter based) are tested to track the target object in the sequence and 

compared with the ground truth ROI. As previously stated, we chose ‘Sequential Importance 

Sampling (SIS) with Resampling’ due to its simple structure and effectiveness in many 

applications [Arulampalam 2001]. Also, note that the number of particles has been chosen as 𝑁𝑝 

= 100 in all sets of experiments. The maximum number of feature points for the local tracker is 

chosen to be between 50 and 200 in the set of experiments shown below. The algorithm is 

implemented in C++ and tested on a PC with Intel Core(TM) i7 970 CPU and 8GB RAM. Note 
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that 𝑘 and 𝑓(∙) defined in (5-4) have been chosen as follows: 𝑘 = 0.02 and 𝑓(|𝑑|) = |𝑑|. In 

order to measure and compare the performance between the particle filter and the local/global 

methods, we define the instantaneous matching error 𝐸𝑡 between the ground truth ideal target 

ROI 𝑦
𝑡̅
 and estimated ROI 𝑦𝑡

𝑝̂
, 𝑦𝑡

𝑙̂, and 𝑦𝑡
𝑔̂

at time 𝑡 as follows  

𝐸𝑡 ≜ 1 − 𝑟(𝑦𝑡̅, 𝑦𝑡
𝑥̂) (5-16) 

where 𝑟(∙,∙) has been previously defined in (5-4) while 𝑦𝑡
𝑥̂ stands for the output ROI obtained 

from the particle filter based, local, and global approaches, respectively, when 𝑥 is 𝑝, 𝑙, and 𝑔. In 

Tables 5-1, 5-2, and 5-3, the overall performance of these three methods is compared by using 

RMSE, which is defined as follows 

𝑅𝑀𝑆𝐸 =  √
1

𝑁𝑡
∑ 𝐸𝑡

2𝑁𝑡
𝑡=1  (5-17) 

Here 𝑁𝑡 denotes the number of frames used to compute the RMSE in each of the experiments. 

 

1) Target Tracking with Multiple Identical Objects: Fig. 5-4 shows snapshots of observed global 

tracker target ROI 𝑦𝑡
𝑔̂

, local tracker ROI 𝑦𝑡
𝑙̂, and particle filter output ROI 𝑦𝑡

𝑝̂
 using three 

different approaches in a video containing 119 frames. In the experiment setting, there are three 

identical cereal boxes in the same frame initially out of which we designate the box in the middle 

as the target object. Note that we did not show any snapshots from the experiment result before 

frame #83 since the global detector fails to locate an ROI between frame #1 and frame #82. 

When one of the three cereal boxes (on the right) starts to move out of field of view, the global 

tracker can locate an ROI but it is not completely located on our designated target. In the global 
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matching case, unstable fixation or non-detection of the target object is clearly seen (first row of 

frame 114 in Fig. 5-4). The experimental results show that the success rate for the global tracker 

is only 13.5% over the 119 frames, i.e., only sixteen frames out of 119 can be identified 

correctly. In this experimental setting, we expected the local tracker to have a better performance 

than the global detector because of smooth and consistent target movement; this is confirmed by 

comparing the RMSE in Table 5-1 as well as the first and second rows in each of the annotated 

frames shown in Fig. 5-4. As compared with global and local matching processes, the synergistic 

chain of global and local matching processes implemented via particle filters (third row of each 

frame in Fig. 4 can most effectively track the object ROI in a consistent fashion; the particle 

filter based algorithm successfully detects the target in 115 out of 119 frames (success rate is 

96.6%). As can be seen in the last row of Table 5-1, the instantaneous matching error of the 

particle-filter based method is consistently lower than the local and global tracker. Furthermore, 

it can be seen in the second to last column of Table 5-1 that the fusion approach exhibits better 

RMSE performance as compared with the other two approaches. The variance of the local and 

global trackers is lower than that of the particle filter, but this is due to the consistent failure and 

poor performances of those methods. This fact holds true for the rest of the experiments given 

below. 
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Table 5-1: Mean and Variance of Errors for all used Estimators 

 Et in #77 Et in #81 Et in #86 Et in #114 RMSE variance of Et 

Global 1.000 1.000 0.977 0.921 0.8916 0.0242 

Local 0.966 0.974 0.889 0.933 0.8288 0.0232 

Particle Filter 0.511 0.436 0.468 0.385 0.6864 0.0547 

 

 

 

Figure 5-4: Sample results from Global (top), Local (middle), and Particle Filter (bottom) while tracking with 

multiple identical objects. 

frame #83 frame #98

frame #114 frame #119
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2) Target Tracking with Initial Offset in Low Frame Rate Video: In this experiment, we 

intend to track a single target in low frame rate video while the initial user selection of 

the target ROI contains an offset as can be seen from the left part of Fig. 5-5. The video is 

sampled at 5Hz from the camera. The average movement of target center across two 

consecutive frames is around 30 pixels. Since there is only one cereal box (i.e., an 

unambiguous target) in this sequence of frame, it implies that the global tracker should 

work properly in this configuration. Fig. 5-6 shows snapshots of estimated object ROI 

using the three different approaches. It can be clearly seen in row 2 of frame #7 and 

frame #10 that the local tracking algorithm yields a severely biased tracking result – the 

identified target ROI covers nearly the entire cereal box, which is nearly five to ten times 

larger than the ideal target ROI. From the problem configuration, we can surmise that 

movement discontinuity and initial offset greatly affect the performance of the local 

tracking algorithm. Due to the lack of update and correction mechanism for the local 

tracking algorithm, the falsely enlarged target ROI will be restored only when the 

mismatching feature points are lost. We note that this false enlargement due to feature 

mismatching occurs and persists even in the presence of the affine consistency check. 

While the global tracker works well in general, we note that it does fail in frame #32 

where the feature points on the drink bottle have been falsely matched and the observed 

ROI is greatly enlarged covering both the ideal target and a large part of the drink bottle. 

The success rate for the global detector is 94.5% i.e., only five frames out of 91 cannot be 

identified correctly. Finally, as can be seen in the last row of all frames shown in Fig. 5-6, 

the proposed particle filter based fusion approach can successfully detect the target. Over 
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all frames, the success rate for the proposed algorithm was 99%. From the last row in 

Table 5-2, it is easy to see that the matching error converges to a small value in a short 

period of time as compared with the results from the local and global approaches. 

Table 5-2: Mean and Variance of Errors for all used Estimators 

 Et in #7 Et in #30 Et in #81 Et in #90 RMSE variance of Et 

Global 0.941  0.748 0.805 0.975 0.9724 0.005214 

Local 0.966 0.974 0.889 0.933 0.8288 0.0232 

Particle Filter 0.492  0.355 0.156 0.108 0.3196 0.03086 

 

 

Figure 5-5: Initial Offset ROI for Open-loop experiments. Left: selection for experiment in 5.4.1.2. Right: selection 

for experiment in 5.4.1.3. 
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Figure 5-6: Sample results from Global (top), Local (middle), and Particle Filter (bottom) while tracking with large 

initial offset. 

 

frame #7 frame #10

frame #32 frame #89
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3) Target Tracking in Complex Environment: In this experiment, we intend to present the 

performance of the proposed approach for target tracking in a low frame rate video with 

multiple identical objects. It is clear to see in this case that this is a more challenging 

problem than the previous two cases since both the global and local tracker are expected 

to face stiff hurdles due to the complexity of the environment setting. Specifically, we 

expect that in the low frame rate video, the performance of the local tracking method will 

be severely affected due to the lack of motion continuity while the global tracker will be 

confused when multiple identical objects are presented in one frame at the same time. 

Note that we also consider a large offset in the user selection of the initial ROI as shown 

in the right part of Fig. 5-5. The video is sampled 5Hz from the camera and down 

sampled to 2.5Hz. The average movement of the target center cross two consecutive 

frames is around 30 pixels. Fig. 5-7 shows the target tracking results for each of the three 

techniques over four sample frames. Over the 155 frames of the video, the global tracker 

never finds the desired target (success rate 0.0%), since the dummy cereal box on the left 

(mimicking the target cereal box in the middle of the frame) is closer to the camera 

compared with the desired target – the global tracker favors the cereal box on the left of 

the frame because more details are available due to its location in the image foreground. 

On the other hand, due to the lack of motion continuity and the initial ROI offset, the 

local tracking algorithm suffers from feature point mismatching and the target ROI is 

falsely enlarged. In frame #91 of Fig. 5-7, two objects have been included in the 

estimated target ROI by the local tracker. Later in frame #119, another object is seen 

included in the estimated ROI which is nearly 10 times larger than the ground truth target 
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ROI. As seen in the first two rows of Table 5-3, both the global and local schemes show 

close to maximal tracking error; obviously, the variance is low because of consistent 

failure to track the target over the entire length of the video. In contrast with the local and 

global approaches, the success rate of the proposed particle filter approach is 97.4%. As 

seen from the last rows of Table 5-3 and each of the frames shown in Fig. 5-7, the 

particle filter approach outperforms by far the other two cases. 

Table 5-3: Mean and Variance of Errors for all used Estimators 

 Et in #7 Et in #13 Et in #91 Et in #119 RMSE variance of Et 

Global 1.000 1.000 1.000 1.000 0.9943 0.000506 

Local 0.701 0.768 1.000 0.959 0.9497 0.003964 

Particle Filter 0.292  0.333 0.647 0.331 0.4183 0.04612 
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Figure 5-7: Sample results from Global (top), Local (middle), and Particle Filter (bottom) while tracking in a 

complex environment. 

frame #3 frame #7

frame #91 frame #119
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4) Qualitative Comparison: For the qualitative comparison, our proposed method was tested 

against the Incremental Learning tracker presented in [Ross 2008] using the Dudek sequence. 

This sequence provides several challenges for the trackers that include several different changes 

in pose, appearance, and lighting. For these tests, the sequence was half-sampled keeping only 

the odd numbered frames. From Fig. 5-8, it can be seen that both trackers do a good job of 

tracking the head in the sequence. Both trackers handle partial obscurity (frame 215) and a 

change in appearance similarly (frame 453). As relates to alterations in pose and lighting, there 

seems to be a difference in what kinds of changes affect the trackers’ performances. Because of 

the probabilistic nature of the underlying global detector, there were a few cases in the Dudek 

sequence where the proposed tracker was unable to keep up with the person and lost the target 

object around frame 951. Both methods were also compared using two other data sets from [Ross 

2008], namely, David_Indoors and Sylvester, which produced similar results (see Fig. 5-9). 

While the proposed method worked fairly robustly with the Sylvester sequence, the IL method 

consistently failed toward the end of this sequence when there was an abrupt change in the 

direction of motion of the target object. Since the proposed method is template-based, we note 

here that the most commonly occurring pose from a sequences was chosen to be its template. 

Each method has its strengths and weaknesses when it comes to tracking an object. The fact that 

the IL tracker is not template-based does give it some extra robustness when it comes to dealing 

with appearance and some pose changes. That being said, the template component does help the 

proposed method stick to the target throughout the sequences with a few exceptions. This was 

evident in the David_Indoors sequence where significant lighting change was also present along 

with pose changes. As seen in the frames in the top row of Fig. 5-9, even though the proposed 
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method does not fully encompass the face, it is still able to track a portion of it and was seen to 

remain with it throughout the sequence. This can also be seen in the Sylvester sequence where, 

due to a significant pose change, the IL tracker loses the target while the proposed method 

manages to stick with it and continues tracking the target throughout the rest of the sequence.  

 

Figure 5-8: Sample comparison of results from IL tracker (red) to proposed method (green) on Dudek sequence. 

 

Figure 5-9: Sample comparison of results from IL tracker (red) to proposed method (green) on David_indoors (top) 

and Sylvester (bottom) sequences. 

The proposed method was also compared to a state-of-the-art particle filter based presented in 

[Wang 2011], which will be referred to as the TOT method (Third-Order Tensor). Since we were 

unable to obtain the code to test the method, we utilized the data presented in their paper and 

compared it with ours. Both trackers were tested using the Dudek Sequence and the Sylvester 
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sequence. As seen with the Dudek sequence in the top row of Fig. 5-10, the TOT method was 

able to handle partial occlusion better than our proposed method. Both trackers performed 

identically well when it came to the Sylvester sequence. However, a small limitation of the TOT 

method is its need for reliable initial tracking to collect good samples for accurate initialization 

of the proposed appearance model. 

 

Figure 5-10: Sample comparison of results from TOT method (red) to proposed method (green) on the Dudek (top) 

and Sylvester (bottom) sequences. 

5.4.2 Closed Loop Experiments 

The previous experiments show that the proposed method can perform better than its 

counterparts and on par, or in some situations better, than existing methods that exist. While 

these tests present issues that may affect the performance of the vision system based on its 

surroundings, they do not however take into account the effects of operating with a control 

scheme in a real-time scenario. To demonstrate that our method operates effectively in a real 

situation, we used the two similar objects (cereal boxes) experiment from the previous section to 

show that the proposed method performs better in conjunction with our control system than it 

does with the ferns method, which is what has been used so far on the UCF-MANUS. For this 
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version, a Golden Grahams and Cheerios box have been placed side by side one another and, 

using the gross and fine motion protocols [Kim 2012], the robot has been asked to align its 

grippers with the Cheerios box. As stated in the previous explanation of this experiment, even 

though the cereal boxes look different to us, they are identical when seen by the robot. The robot 

managed to successfully track the Cheerios box using the proposed method as opposed to using 

the ferns method. As seen in Fig. 5-11, the particle filter was able to maintain its ROI on the 

Cheerios box and successfully line up the grippers of the robot to the cereal box. The ferns 

method, however, started to track the Cheerios box but eventually jumped to the Golden 

Grahams box and tracked those instead. The ferns method also took about three times more 

iterations to complete the task than the proposed method. The fact that ferns jumps between the 

two boxes causes the error used for the control system to become erratic as clearly seen in the 

two graphs in the top row of Fig. 5-12. 

 

Figure 5-11: Comparison of servoing results using Ferns-based (top) and particle-filter-based (bottom) tracking. 

Frames were taken from the start, middle and end of the sequence. The desired object is highlighted in red and the 

real-time tracking ROI generated by each method is shown in white. 
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Figure 5-12: Robot end-effector position and orientation error profiles during a closed-loop visual servoing task 

using global detector-based tracking (top) vs. the particle-filter based tracking method (bottom). 

5.5 Discussion 

A particle filter (PF) based fusion framework is proposed to incorporate the global and local 

information for a visual tracking application relevant to assistive robotics. Iterative updating of 

particles’ weights and a resampling process are formulated under the PF approach to deploy a 

fusion of global and local information. A novel metric to quantify the degree and quality of 

overlap between two polygonal ROIs is defined and used to evaluate the prior and posterior pdfs. 

Experiments with video sequences gathered from the UCF-MANUS assistive robotic testbed 

show that the proposed method is effective at tracking a target object without fiduciary markers 
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and in a natural environment. Even in the presence of perturbations such as large initial offset, 

multiple identical objects, and low video frame rate, the proposed approach is consistently 

successful at target tracking compared with exclusively local or global approaches that show 

poor performance and are not robust to the aforementioned perturbations. The real-time 

implementation of the proposed tracker inside the UCF-MANUS fine motion control scheme 

shows its effectiveness at robustifying visual servoing.  
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CHAPTER 6: CONCLUSION AND FUTURE RESEARCH 

6.1 Introduction 

The purpose of these methods was to provide improvements to the UCF MANUS that would 

robustify its performance, allowing it to work in more complex environments and handle more 

difficult situations. The first improvement was a refinement of the current Fine Motion control 

algorithm that ensures that the end-effector will come in line with the desired object so that a 

grasping procedure can be performed either by the MANUS itself or the human operator. The 

second improvement was a compensatory gross motion procedure that improved the chances of 

the MANUS properly identifying the chosen object and the third improvement was a particle 

filter based tracking method that allows the MANUS to track the desired object in more complex 

environment. 

6.2 Chapter Objectives 

- Summarize methods used to improve fine motion control system. 

-Summarize methods used for compensatory gross motion 

-Summarize particle filter visual servoing method 

- Discuss the future scope of research to further these improvements and optimize other MANUS 

systems. 
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6.3 Summary of Design Modification 

6.3.1 Fine Motion Optimization 

The optimization of the fine motion control involved adding a weight matrix to the initial scheme 

that restricts the movement of the feature points being tracked to inside an artificial ROI. To 

ensure stability, the weights are then given an upper and lower bound and solved for using 

quadratic programming.  

 

During Fine Motion, if the outermost feature points are determined to be leaving the ROI the 

optimized controller is used in place of the nominal controller. If quadratic programming 

function determines that the solution for the weights is infeasible, the weights are then set to a 

predetermined value that initiates a backward motion of the end-effector away from the object. 

This allows the object to still remain in view of the camera and allows for the feature points to be 

transitioned back into the artificial ROI even if no feasible solutions are found. This method is 

described in detail in [Wang 2012] with some minor modifications to the actual implementation. 

 

In transitioning the method from being implemented with both Matlab and Visual Studios to just 

being implemented in Visual Studios, the nominal controller was modified from a proportional 

controller into a PI controller. Since the optimal controller requires more processing time for its 

calculations, the end-effector velocities needed to be slowed down enough so that when the 

optimal controller was initiated it had time to implement itself before the object was lost. This 
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initially led to a higher steady state error than the required threshold needed for a successful 

alignment. The PI controller was implemented to reduce the steady state error allow the end-

effector to complete its task.  

The roll error for fine motion is also bounded by ±90°. This ensures that the optimal grasping 

position is achieved. When the roll error is found to be greater than|90|, it is reset to 180-|er| and 

the image is flipped so that it better matches the template and more appropriate errors are 

obtained. The other errors are then set to their negative with the exception of whichever errors 

correspond to the z-direction in the camera coordinate system. This is to ensure proper alignment 

with the desired object. 

6.3.2 Compensatory Gross Motion 

The compensatory gross motion was designed to give the UCF MANUS different vantage points 

to identify an object. The method consists of moving the end effector along a circle to investigate 

the different sides of the object it has been asked to retrieve. The end-effector will be moved to 

the closest three sides of the object, being the right, left and top from the initial position, until the 

object is identified or all sides have been investigated.  

 

If there are not enough feature points left to attempt identification, the end-effector will be 

moved to a pre-defined position. The position selected for this implantation has been the top 

view of the object since all identifiable objects for the UCF MANUS are grabbable from the top 

position. If there are not enough feature points to attempt identification again, then the object is 
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considered unidentifiable by the current system. This method is an extension of the 

compensatory method mentioned in [Kim 2012].  

6.3.3 Particle Filter Based Visual Servoing 

The particle filter based method utilized here was developed to take advantages a local and 

global tracking method to create a robustified visual servoing method. The method utilizes the 

Kanade-Lucase-Tomasi local tracker and ferns global detector/tracker as the components of the 

overall method. The training for the ferns method is done offline and the resulting templates are 

added to an object database.  

 

The particle filter is initiated by creating the target ROI based on the features obtained using 

ferns to identify the chosen object. Once, the initial ROI is created, particles are formed by 

shifting the boundaries of the ROI by a randomly generated variable with a uniform distribution 

and are initially given equal weight. The KLT tracker will also be initiated within the ROI so that 

it can track the object throughout the frames.  

 

As the tracker progresses, the particles weights are updated to determine whether or not they are 

still viable to the process. The weights are determined by the overlap metric which looks to see 

how much of the identified object is within the bounds of the particle. If the particle is given a 

weight below the threshold, it is culled from the existing particles. If several particles are culled 

at once, new ones are generated in a similar fashion to the initiation step using the current output 
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ROI for the particle filter. This method is very closely follows the framework described in 

[Arulampalam 2001]. 

6.4 Scope of Future Research 

The methods developed in this thesis have addressed some issues that were present in current 

algorithms used for gross motion and fine motion of a robotic manipulator as well as visual 

servoing algorithms. This provides a more robust system that can be used in more complex 

environments than previously possible. The scopes of future research in improving the UCF 

MANUS system are: 

- Optimizing the user interface to make it easier to understand and be used 

- Develop a system designed to understand and compensate for user deficiencies  
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APPENDIX A: CALCULATION FOR UNDERLYING POLYGONS
3 

  

                                                           
3
 This section is comprised of sections of the manuscript “Particle Filter-Based Robust Visual Servoing for UCF-

MANUS – An Intelligent Assistive Robotic Manipulator” by N. Paperno, Z. Wang, D.-J. Kim, and A. Behal which is 
currently pending submission. 
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To compute 𝑟(𝑎, 𝑏) measurements for 𝐴𝑎 , 𝐴𝑏, and 𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 are needed. We know that the area of 

an arbitrary polygon Π with N pivot points {𝑝𝑥,𝑗, 𝑝𝑦,𝑗}, 𝑗 = 1, … , 𝑁 is given as follows 

𝐴𝛱 =
1

2
∑ (𝑝𝑥,𝑗𝑝𝑦,𝑗+1 − 𝑝𝑥,𝑗+1𝑝𝑦,𝑗)𝑁

𝑗=1  (A-1) 

Thus, the area of the polygons 𝐴𝑎 and 𝐴𝑏 can be calculated using (17) while the area of overlap 

can be computed by knowing the intersection points of the two underlying polygons. An 

intersection point (𝑝𝑥
∗ , 𝑝𝑦

∗ ) of two polygons Π1 and Π2 can be found using line segments 𝑙1and 𝑙2 

from each polygon as 

𝑝𝑥
∗ =

𝑏1𝑐2−𝑏2𝑐1

𝑎1𝑏2−𝑎2𝑏1
,   𝑖𝑓 𝑎1𝑏2 − 𝑎2𝑏1 ≠ 0 (A-2) 

𝑝𝑥
∗ =

𝑎2𝑐1−𝑎1𝑐2

𝑎1𝑏2−𝑎2𝑏1
,   𝑖𝑓 𝑎1𝑏2 − 𝑎2𝑏1 ≠ 0 (A-3) 

 

where each line segment is defined as 𝑎𝑖𝑝𝑥 + 𝑏𝑖𝑝𝑦 + 𝑐𝑖 = 0. 
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