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ON A WORKFLOW MODEL BASED
ON GENERALIZED COMMUNICATING
P SYSTEMS

Abstract This paper introduces a new formal mathematical model for investigating work-

flows from dynamical and behavioural point of view. The model is designed

on the basis of a special variant of the biology-inspired formal computational

model called membrane systems, where the jobs or services are represented by

membrane objects whose behaviour is defined by communication and general-

ization rules. The model supports running computations in a massive parallel

manner, which makes it ideal to model high throughput workflow interpreters.

Among the variants introduced in the literature, we have selected the Gener-

alized Communicating P Systems, as it focuses on the communication among

the membranes.

Most of the workflow languages, based on different formal models like Petri

nets or Communicating Sequential Processes, support several predefined struc-

tures – namely workflow patterns – to control the workflow interpretation such

as conditions, loops etc. In this paper we show how these patterns are adapted

into the membrane environment which, taking into account that membrane

systems can be used to study complex dynamic systems’ runtime behaviour,

makes this model a relevant alternative for the current models.
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1. Introduction

At present, distributed and parallel computing plays a key role in supporting research

communities. On top of technical infrastructure issues, researchers organize their

algorithms, applications as workflows by connecting them together. In this term

a workflow is represented by directed graphs where nodes are the applications, and

arcs represent dependency among them, which could be interpreted as data transfer

or some kind of interactions as well. Considering the requirement of re-usage of

workflows including the possibility to replace components, a workflow management

system must not affect the application itself.

In most cases workflow languages have formal mathematical bases such as Petri

nets or Communicating Sequential Processes, therefore, to design a flexible and adap-

tive workflow language, the most clear way is if the formal model itself supports dy-

namism and adaptability. Furthermore, it enables the workflow developer to simulate,

validate and verify his/her workflow in a formal mathematical environment. Gener-

alized Communication Membrane Systems (GCPS ), as they are constructed with at-

tention to the communication among membranes disregarding what is going on inside

a membrane, is ideal as a formal model for dynamic and massively parallel systems.

In this paper we narrow the set of control patterns identified by the observations

of van der Aalst, then we define this smallest set of control patterns as a membrane

construct to show that a modified GCPS can act as a formal model for workflow

management systems.

Commonly used workflow structures are identified and classified as control and

data flow patterns [16, 17] as a result of investigation by van der Aalst et al. in various

workflow languages. A major outcome of their work is that all of the possible workflow

structures can be created by connecting these patterns together. Moreover, a workflow

language is as strong in aspect of its descriptive power as much control or data patterns

are supported. Hence, if a formal model is capable to describe these patterns, it is

capable to describe all the possible workflow structures built on the patterns.

This paper is organized as follows. Section 2 introduces Membrane Systems in

general, section 3 details how Membrane System can model workflow enactment and

vice versa, what kind of formal tools are available in the literature for modelling work-

flow enactment. Then section 4 introduces the Generalized Communication P Systems

in general. The method we have used to select mandatory workflow patterns is shown

in Section 5. The subsequent section introduces our proposed modification of the gen-

eral GCPS model. Section 8 is on the adaptation of these patterns giving informal

descriptions and illustrations for them. Conclusions and acknowledgements close the

paper.

2. On membrane computing

Concept of Membrane Systems (or P systems) and its variants have been introduced

by Gheorghe Păun in [14] as a theoretic computation model that offers a mathemat-
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ical framework supported with generative grammatical systems for investigation of

massively parallel algorithms in a formal way.

The fundamental idea has come from biology namely from the investigation of

cell (membrane) systems; the entity used for computation is analogous with a living

cell contains chemical elements, such as oxygen, hydrogen etc. which are represented

by symbols of a given alphabet. As many symbols may be in cells, they may be

represented by strings, chains of symbols. But these strings are just for representation,

the theory defines that symbols compose a multiset in a cell, and the computation

is done on all combinations of the symbols in parallel. The computation itself is

formalized using generative grammatical rules (named evolution rules) on them as

well as the communication between cells (named communication rules).

The membrane system introduced by Georghe Păun contains a set of cells in

a tree-structure within an environment. The environment differs from membranes in

that it has no evolution rules, but it may be involved in the communication rules

of the cells, e.g. a cell can send a symbol out to the environment. In addition,

an environment may contain infinite instances of a symbol, while a cell can have

a finite number of symbol instances. A computation is controlled by synchronized

discrete time steps, on where generative and communication rules are applied. In

the field of general theory of membrane systems the applicable rules are selected in

a non-deterministic maximal parallel manner, which means that the rules are chosen

randomly from the set of the applicable rules, and they must be applied as many times

in parallel as many suitable pair of symbols are considered as well, such as minimal

parallel manner, etc.

Literature considers several variants for the original definition of a membrane

system, for instance, the structure may be generalized (investigated in the field of

tissue-based membrane system [10]), new types of rules (for instance membrane disso-

lution) are introduced to investigate dynamic behaviour of the cell structure (in [13]).

Mainly they are inspired from biology such as introducing permeability as a property

of a membrane, and allowing rule-creation during the computation.

3. Related work

Many formal models may be used for investigating workflows in different aspects

such as communicational (Communicating Sequence Processes, CSP [6] or Calculus

for Communicating Systems, CCS [11]), and functional or dynamic behaviour (Petri

nets [19]). However CSP and CCS offer low-level formal methods, which encumber

the focused investigation by increasing the complexity of the workflow structure.

Hence, and as it enables to focus on dynamic aspects, Petri nets have become

a widely used formalism for workflows as it is discussed in [19] and in [20] compared

with Pi-Calculus [12].

Nevertheless, classical Petri nets cannot be used for investigating dynamic

changes of the workflow structure, therefore several extensions have been introduced

such as coloured, timed or hierarchical Petri nets. These types are introduced in [5],
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and their usage in modelling a workflow management system is detailed in [19]; more-

over complete workflow systems based on Timed and Coloured Petri nets are shown

in [8, 9].

The relationship between Petri nets and generic P Systems has been studied in

[14] and among others by Zhengwei Qi et al., who compared the models in [15] and

proposed a hybrid model called MP-nets which has methods motivated by Active

P Systems (where the rules allow dissolution, or move of membranes) and can be

analysed by formal tools coming from the field of Petri nets (for instance, property of

boundedness or liveness are defined).

Conversion between Petri nets and P systems is studied by Kleijn et.al. in [7],

where they take the dynamical changes of the membrane structure into account. It

looks an appropriate approach, but the type of P system they use relies on evolution

(or reaction) rules, which must be left out of consideration in our case. Since, if we

investigate the model as a workflow management system, evolution rules – as they

are applied within the membrane – would represent the computation itself within the

node. A workflow management system handles the nodes as black-box applications,

therefore in our aspect using of evolution rules is not allowed.

Using membrane systems as formal method to express workflow managements

is investigated by Verma et al. [22], nevertheless they use the defaut definition of

a membrane system, which has some disadvantages such as they have to deal with

evolution rules defining what happens inside the node, what does not fit to the ap-

proach of workflow management, on where the nodes are used to be considered as

black-box applications.

Generalized Communication P System [21] focuses on the communication be-

tween certain cells or between cells and the environment by-passing all the evolution

rules. The original concept became a fruitful field of P systems many of its variants

proposed and investigated such as working in fair sequential model [18], with mini-

mal interaction [4] or in combination with classical automata [1] in aspect generative

power and size [3]. Moreover it is shown that GCP systems remain remain computa-

tionally complete if they are given with a singleton alphabet of objects and with only

one of the restricted types of rules [2].

In the aspect of P systems, in this paper we propose an other variant of General-

ized Communicating P Systems called Fine-tuned Communicating P System. In the

next section we give a brief introduction to this formal model.

4. Generalized Communicating P Systems

Generalized Communicating P Systems (GCPS ) originally has been conceived by

Verlan et al. [21] as a focused model on the field of membrane computing, where the

intercell communication is in focus leaving the evolution of the symbols within cells

out of consideration.
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The default model of GCPS of degree n, where n ≥ 1, is an (n+ 4)-tuple

Π = (O,E,w1, . . . , wn, R, o)

where:

• O is a finite alphabet, called the set of symbols of Π;

• E ⊆ O; called the the set of environmental symbols of Π;

• wi ∈ O∗, for all 1 ≤ i ≤ n, are strings which represent the multiset of objects

initially associated with cell i;

• R is a finite set of interaction rules of the form (a, i)(b, j) −→ (a, k)(b, l), where

a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if i = 0 and j = 0, then {a, b} ∩ (O \ E) 6= ∅; i.e.,

a /∈ E and/or b /∈ E.

• o ∈ {1, 2, . . . , n} specifies the output cell.

The P system consists of n cells, numbered from 1 to n. Each cell contain multi-

sets of symbols over O; initially cell i contains the multiset wi. The cell numbered by 0

is called the environment. The environment can be considered as a specific cell which

allows to contain symbols of E ⊆ O in an infinite number of copies. The cells interact

with each other by means of the rules in R having the form (a, i)(b, j) −→ (a, k)(b, l),

with a, b ∈ O and 0 ≤ i, j, k, l ≤ n. This kind of rule form gives a condition, namely,

symbols a and b must be in membranes i and j, respectively, and the effect of perform-

ing the rule is that a moves to membrane k and in parallel b moves to membrane l.

The computation starts on those symbols which are available initially

(w1, . . . , wn) in the cells, and performs a set of interaction rules selected non-

detereministically from the possible ones. According to the rules, symbols move from

a cell to an other one, remain in their cell or leave to the environment. When none of

the rules can be applied, the system halts, and the number of the symbols (or without

loss of generality we can limit the output to the number of a specified symbol) con-

tained by the output cell can be considered as a result. Empty cells are prohibited,

these cells are “dead”, they cannot receive further symbols anymore.

Interpretation of a node in terms of workflow management can be modelled as

the existence of a specified symbol in a cell, hence moving this symbol into the cell

means its execution, and moving it out from the cell means that the execution is

finished.

The original model operates on maximal parallel semantics meaning that once

an interaction rule has been selected to be used, it must be used on as many symbol

pairs as it is possible. Nevertheless the paper mentions that other rule semantics can

be considered depending on the number of the symbols processed by each application

of such a rule. Let us cite some of them:

1. One application of a rule (a, i)(b, j) −→ (a, k)(b, l) affects min(|wi|a,|wj |b) objects

(i.e. min(|wi|a,|wj |b) occurrences of a are moved from cell 1 to cell 2, and

min(|wi|a, |wj |b) occurrences of b are moved from cell 3 to cell 4) (〈h : h〉 se-

mantics).
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2. One application of a rule (a, i)(b, j) −→ (a, k)(b, l) affects one occurrence of a and

all occurrences of b (〈1 : all〉 semantics).

3. One application of a rule (a, i)(b, j) −→ (a, k)(b, l) affects h1 occurrences of a and

h2 occurrences of b, with h1, h2 arbitrary values such that 1 ≤ h1 ≤ |wi|a,

1 ≤ h2 ≤ |wj |b (〈 : 〈 semantics).

In this paper we give a variant of GCPS, where a rule semantics can be defined

on each communication rules in the system, in a fine-grain level, instead of defining

the application strategy globally for all rules. Moreover, to the best of our knowledge

there is no publication that investigates GCP systems modified in this way.

5. Control patterns

Workflow patterns were defined by van der Aalst et al. [17] after investigating many

commonly used scientific and business workflow languages in many aspects such as

control structures, data dependency or exception-handling techniques.

However, several workflow patterns are not independent from each other. A pat-

tern can be derived from another by generalizing it, or from two others by composing

them, as these relations are depicted in Figure 1 by solid and dashed edges, respec-

tively. Edges are considered to be directed from the specified or component patterns

to the pattern which is created using them.

Hence, we do not need all patterns to be formalized in GCPS, it is sufficient if

we implement those ones which meet the following requirements, all the others can

be created from them. We implement a pattern if and only if:

• it is the most generic;

• it is not composed from others;

• it is supported by at least two workflow languages

First and second condition follow from the construct of the patterns, the third

is to guarantee to focus on the “commonly used” patterns, and exclude the exotic

ones. The following patterns satisfy the requirements (marked by circles in Figure 1):

Exclusive Choice, Parallel Split, Generalized AND-Join, Multiple Merge, Acyclic Syn-

chronizing Merge, Blocking Partial Join, Interleaved Routing, Cancel Region, Multiple

Instances with A-priori runtime knowledge.

In section 8 we describe them one by one informally and define them as a certain

GCPS.

6. Power of GCPS in correlation with control patterns

Regarding the functional behaviour of the selected patterns, it can be observed that

some of them cannot be defined in the default GCPS model because of the manner

of the interaction rules. In this section we illustrate this statement with Generalized

AND-Join pattern.
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Figure 1. Control patterns (taken from [17]).

This pattern controls parallel branches of execution and waits till all of them are

executed successfully, then a single subsequent branch will be interpreted. Figure 2

shows an example structure of the Generalized AND-Join pattern specified for n

parallel branches, nodes A1, . . . , An represent the parallel branches, while node B is

to be executed after all the others.

Assuming that k symbols of a from n cells have already been moved to cell B.

This case shows the key point of this pattern, namely the system must wait for the

other n − k symbols before moving a symbol to the subsequent (n + 1)th cell. In

other words, we must guarantee that a rule must not be applied before all of the

symbols are available in the cell. Nevertheless the default semantics of an interaction

rule (r : (a, i)(x, j) −→ (a, n+ 1)(x, l)) makes this behaviour impossible, because the

semantics defines the followings:
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• the multiplicity of the symbols involved in the application of a rule is limited

to 1;

• once a rule is selected, it must be applied right during that step.

Figure 2. Generalized And-Join pattern.

Moreover, adding more applicable rules would just decrease the probability of

applying r, but would not block r till all of the symbols arrive. Other option if the

multiplicity of a symbol would be encoded into a set of temporary cells (for instance

appearing symbol a in ci would represent a in i times in the origin), but this technique

would increase the number of cells significantly.

Consequently Generalized AND-Join cannot be defined in GCPS model, hence

the basic model must be extended by defining more semantics for the interaction rules.

Some of them were mentioned by Verlan et al. as interesting variants of the core model

[21] nevertheless, the descriptive power of the modified versions still has not been

shown, and to the best of our knowledge there is no paper in the literature showing

these alternatives in action. On the grounds of these arguments in the next section

we introduce a variant of GCPS which defines independent application strategy for

each communication rule.

7. Fine-tuned Communicating P Systems

Since our proposed variant of Communicating P Systems (Fine-tuned Communicating

P Systems, FtCPS in what follows) is based on GCPS model introduced in Section 4,

we would not repeat the complete formal definition, but would focus on the differences

of the models.

FtCPS of degree n, where n ≥ 1, is an (n+ 4)-tuple,

Π = (O,E,w1, . . . , wn, R, h)

where:

• O is a finite alphabet, called the set of symbols of Π;

• E ⊆ O; called the the set of environmental symbols of Π;

• wi ∈ O∗, for all 1 ≤ i ≤ n, are strings which represent the multiset of objects

initially associated with cell i;
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• R is a finite set of interaction rules of the form (a, i)(b, j)
%−→ (a, k)(b, l), where

a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if i = 0 and j = 0, then {a, b} ∩ (O \ E) 6= ∅; i.e.,

a /∈ E and/or b /∈ E. Moreover % represents the semantics of the rule;

• h ⊆ {1, 2, . . . n} represents subset of cells as output cells.

Similarly to GCPS, FtCPS model handles n cells numbered from 1 to n,

which contain multisets of symbols over O; initially cell i contains the multiset

wi. The cells interact with each other by means of the rules in R having the form

(a, i)(b, j)
%−→ (a, k)(b, l), with a, b ∈ O and 0 ≤ i, j, k, l ≤ n. This formalization of

an interaction rule specifies a condition, namely, symbols a and b must be in mem-

branes i and j, respectively, and the effect of performing the rule is that a moves

to membrane k and in parallel b moves to membrane l. Moreover the application of

the rule is controlled by its semantics denoted by %, which depends on the number of

the symbols on which the rule is to be applied.The following types of semantics are

allowed:

A rule (a, i)(b, j)
%−→ (a, k)(b, l) with

• % = (p, q) (precise semantics) affects p instance of a in cell i and q instances of b

in cell j, and move all of them in one step to cell k and cell l respectively;

• % = (∗, ∗) (or star-star semantics) affects all instances of a in i and all instances

of b in j;

• % = (X,n−X) (complementer semantics) affects X instances of a in i and n-X

instances of b in j, where X marks the current number of occurrences of symbol

a in cell i; for instance if there are 3 symbols of a in cell i and n = 5, therefore

to be performable, this semantics requires 5− 3 = 2 symbols of b in cell j;

• if we do not specify precisely, the rule operates with default maximal parallel

semantics.

In terms of FtCP system, the followings can be remarked:

• GCPS allows one cell as output cell only. This restriction would make the model

inapplicable for investigation of control flow structures, because such simple pat-

terns cannot be described in this framework, which contains more than one output

jobs (simple split pattern has this property for instance).

• As a remark, Verlan et al. notice in [21] that variants of semantic manners

can be considered and several options are enumerated (one to all semantics,

star-star semantics- arbitary values etc.). Our work is inspired these remarks,

nevertheless, one but essential difference in our model is that we allow to define

different semantics for each communication rule, while the GCPS model one

execution semantics manner is defined globally for all interaction rules.

Start of a node execution in terms of FtCPS is the appearance of a specific symbol

called control symbol(symbol s in follows) in the cell that represents the node. Simu-

lating that the node is finished is done by moving symbol s from the cell to an other

cell. Hence workflow enactment can be considered as applying the communication

rules on the whole system.
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In the implementation in Section 8 we use different notation for denoting some

cells in the definitions of the pattern implementations, but these modifications only

serve the better understanding and have no any consequences in aspect of the seman-

tics of the system. We call those cells as entry point of the system and sublabel them

with pre, which contains symbol s in the initial configuration, and those one as exit

point with sublabel post, which are in the output set.

7.1. Complex workflow compositions

In order to use FtCPS as a formal model for workflow languages, the model must be

able to satisfy the following criteria:

• All of the relevant control flow patterns must be expressed by an FtCP system.

• The system must provide a solution for creating or generating complex control

flow strucures based on the patterns.

The pattern implementations are introduced together with the functioning of certain

patterns in Section 8.

Taking into consideration that the execution of the pattern starts by moving

a symbol s to one of its entry points, and the interpretation finishes if no communica-

tion rules can be applied, more complex control flow structures can be created by inter-

connecting these elementary patterns. It can be done by contstructing the union of the

structures, resolving the conflicting labels and introducing additional communication

rule(s) that perform movement of symbol s from an exit point of the former to an entry

point to the latter structure. Formally, assuming Π1 = (O1, E1, w
1
1, . . . , w

1
n, R1, h1)

and Π2 = (O2, E2, w
2
1 . . . , w

2
m, R2, h2) two FtCP system, moreover let i ∈ Π1 and

j ∈ Π2 be an exit point and entry point respectively. Then,

Πunion = (O1∪O2, E1∪E2, w11
, . . . w1n , w21

, . . . , w2j\s, . . . , w2m , Runion, {h1\i}∪h2)

where:

Runion = R1 ∪R2 ∪ {(s, 1i)(#, 2j)
(∗,1)−−−→ (s, 2j)(#, 2j)} (1)

As it can be seen the union structure contains the alphabet, the cells, the com-

munication rules defined in both component structures. As cell j is an entry point in

Π2, it contains a control symbol initially. Hence, to achieve that Π2 starts right after

at least one control symbol arrives to cell i, w2
j must not contain symbol s initially.

In contrast Runion is extended by an additional communication rule that implements

the transfer of one or more occurrences of symbol s from w1
i to w2

j , hence once at

least one symbol s arrives to i in Π1 in the next timestep it is moved to j in Π2

and enables the interpretation of rules involving cell j in Π2. Finally regarding the

union structure cell i is not an exit point anymore, it is withdrawn from the set of

the output cells.
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8. Defining workflow patterns in the model

In this paper we define the minimal set of workflow patterns in FtCPS. After a compre-

hensive investigation we realized that all of the patterns can be modeled by a FtCPS,

(which fact shows the expressibility and flexibility of the modelling environment) how-

ever, in some other cases the constructed structure utilizes the specific properties of

FtCPS, such as allowing specifing % semantics on a rule.

For completeness, at first we define the two simplest patterns in FtCPS, one that

defines one node only, and another, which implements two cells connected.

8.1. Node

A Node pattern means only one activity to be interpreted without any dependencies

or conditions. It can be defined as a FtCPS in a relatively easy way, there are three

cells, one is to represent the node itself, and two others for its pre and post state.

Moreover cell cont represents a container node in the system to where the unnecessary

symbols can be moved. Formally:

Πnode = ({s,#}, {}, {w1pre , w1, w1post , cont}, R, 1post)

where:

w1pre = s

w1 = #

w1post = #

R = {(s, 1pre)(#, 1) −→ (s, 1)(#, cont), (2)

(s, 1)(#, 1post) −→ (s, 1post)(#, cont)} (3)

Analysis: As it can be seen cell 1pre contains a symbol s denoting that the node

can be executed, all the others have a symbol # guaranteeing their liveness. The

computation starts with the application of rule 2 that moves one instance of symbol s

into the cell 1 and in parallel moved symbol # to the container. As 1pre is empty, it

“dies” meaning that no rules can be applied on it in the future. Then rule 3 is applied

moving symbol s to from cell 1 to cell 1post and in parallel with symbol # which is

moved from cell 1post to cont. The symbol s appears in 1post meaning that cell 1

has been executed and, since there are no more rules to be applied, the computation

halts.

8.2. Sequence

Sequence construction implements directed connection of two nodes, i.e. node B is

connected to node A means that node B must be executed after node A has been

finished. This behaviour is implemented in the next FtCPS.

ΠSequence = ({s,#}, {}, {w1pre , w1, w2, w2post , cont}, R, 2post)
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where:

w1pre = s

w1 = w2 = w2post = #

R = {(s, 1pre)(#, 1) −→ (s, 1)(#, cont), (4)

(s, 1)(#, 2) −→ (s, 2)(#, cont), (5)

(s, 2)(#, 2post) −→ (s, 2post)(#, cont)} (6)

Analysis: The system consists of 5 cells: 1pre and 2post are the entry and exit cells

of the system respectively; cell 1 is the node to be executed at first, while cell 2

will be executed after cell 1 ; moreover cont represents the container cell. According

to the initial configuration, rule 4 is applied moving symbol s from 1pre to cell 1,

while symbol # is being moved from cell 1 to the container. Next rule 5 is applied

thus, symbol s is moved to cell 2 implementing the essential meaning of the pattern.

Finally 6 is applied that moves symbol s to the exit cell (2post) of the system.

As no rule can be applied anymore, the computation halts.

8.3. Parallel Split

This construction represents splitting the interpretation chain to more branches that

are executed concurrently. For instance, there are three nodes (A,B,C), node A is

connected to both B and C, and B and C are not connected to each other. When

node A is interpreted, next node B and node C are allowed to be executed in parallel.

It is illustrated in Figure 3.

ΠParSplit = ({s,#}, {}, {w1pre , w1, w2, w3, w2post , w3post , wcont}, R, {2post, 3post})

where:

w1pre = s#

w1 = ## (7)

wcont = s (8)

w2 = w3 = w2post = w3post = {#}
R = {(s, 1pre)(#, 1pre) −→ (s, 1)(#, cont), (9)

(s, 1)(#, 1) −→ (s, cont)(#, cont), (10)

(s, cont)(s, cont) −→ (s, 2)(s, 3), (11)

(s, 2)(#, 2) −→ (s, 2post)(#, cont), (12)

(s, 3)(#, 3) −→ (s, 3post)(#, cont)} (13)

Analysis: According to the signature of the pattern to be implemented, the ΠParSplit

consists of one entry cell (labelled as 1pre) and two exit cells (denoted by 2post and

3post). In addition three cells (denoted by 1, 2 and 3) represents the nodes in the
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pattern, and an additional cell called cont is the container. Initially 1pre and cont

contain one instance of symbol s, all the others have # only inside. The computations

starts by applying rule 9, that simulates that cell 1 is being executed. In the next

step rule 10 moves symbol s and # from cell 1 to the container. Hence it stores 2

instances of symbol s, enabling 11 to be applied, which moves these symbols to cell 2

and cell 3, representing the starting of the subsequent parallel nodes. Then rule 12

and 13 can be applied meaning that all these nodes are executed, therefore the pattern

is interpreted, finally as no other rules to be applied, the computation halts.

Figure 3. Parallel Split pattern.

8.4. Exclusive Choice

The following pattern (illustrated in Figure 4) is equivalent to XOR in Bool Algebra,

if node B and C follows node A, and one, and only one subsequent node must be

enabled for execution after A is finished. This pattern can be implemented as an

FtCPS in a straight-forward way.

ΠExclCho = ({s,#}, {}, {w1pre , w1, w2, w3, w2post , w3post , cont}, R, {2post, 3post})

where:

w1pre = s

w1 = w2 = w2post = w3post = #

R = {(s, 1pre)(#, 1) −→ (s, 1)(#, cont), (14)

(s, 1)(#, 2) −→ (s, 2)(#, cont), (15)

(s, 2)(#, 2post) −→ (s, 2post)(#, cont), (16)

(s, 1)(#, 3) −→ (s, 3)(#, cont), (17)

(s, 3)(#, 3post) −→ (s, 3post)(#, cont)} (18)

Analysis: According to the signature of the pattern, one cell called 1pre represents

its entry point, while two others labeled as 2post and 2post are the exit points of the

system. Moreover there is a container cell as always, and three other cells given in

this case representing the nodes in the pattern. With the given initial configuration

rule 14 is applied moving symbol s to cell 1. Then either rule 15 or 17 can be applied,
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chosen non-deterministically. As it can be seen, this non-deterministic choice meets

the required behaviour meaning that precisely one of them will be “activated” for

execution. Then, depending on which rule has been chosen, a symbol s appears

either in cell 2 or cell 3 (by application of rule 16 or 18). Since no other rules can be

performed after this step, the computation stops.

Figure 4. Exclusive Choice pattern.

8.5. Generalized AND-Join

This pattern has already been introduced in Section 6 and illustrated in Figure 2 thus,

here we just give the proper FtCPS construct that fits to the required behaviour.

ΠGenJoin = ({a,#}, {}, {w1pre ..wnpre , w1, . . . wn+1, w(n+1)post , wcont}, R, (n+ 1)post)

where:

w(n+1)post = #

wcont = #

and ∀j ∈ {1, . . . , n}:

wj = #

wjpre = s

moreover ∀i ∈ {1, . . . , n} :

R = {(s, ipre)(#, i) −→ (s, i)(#, cont), (19)

(s, i)(#, i) −→ (s, cont)(#, cont), (20)

(s, i)(#, i) −→ (s, i)(#, i), (21)

(s, cont)(s, cont)
(n−1,1)−−−−−→ (s, cont)(s, n+ 1), (22)

(s, n+ 1)(#, (n+ 1)post) −→ (s, (n+ 1)post)(#, cont)} (23)

Analysis: For simulating the behavior of a Generalized AND-join pattern with n par-

allel branches, 2n + 3 cells are needed, n of them represent the different branches

(numbered 1 to n); another n cells labeled by 1pre . . . npre are entry points (one for
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each parallel branch); moreover there is a container cell similarly to the previous pat-

tern implementations; in addition a cell denoted by n + 1 is the subsequent node to

be executed when all the branches have been finished having an exit point associated

with (n+ 1)post label.

Initially all entry points contain one instance of symbol s, the container has one

instance of symbol #; cell n+1 and (n+1)post contain symbol # in one instance each.

The computation starts by applying rule 19 for each cell i ∈ {1 . . . , n}, resulting that

one instance of symbol s appears in each cell i ∈ 1 . . . n. Then for each cell i ∈ 1 . . . n,

both rules 20 and 21 are applicable (the left hand side of them are satisfied), rule

20 moves symbol s to the container, while rule 21 is just occupies the symbols, but

does nothing with them. Allowing non-deterministic choice in this step enables the

system to simulate that the parallel nodes can finish in different steps. Hence k

instances of symbol s appear in cell cont and rule 20 and 21 are applied in the further

steps as long as every symbol s from every branch move to the container. Once it

happens, rule 22 is applied – as it can be seen, it requires n instances of symbol s

in the container, and it performs moving of one instance to cell (n+1) representing

that the subsequent node can be interpreted. Finally rule 23 is applied that moves

symbol s to the cell (n + 1)post, which represents the exit point of the system, then

the computation halts.

8.6. Multiple Merge

The Multiple Merge pattern operates on the same structure: it deals with n parallel

branches, but instead of waiting for all branches to be finished, the subsequent branch

will be started if any of the parallel branches finishes. In this sense it does not differ

from the structure constructed by copying subsequent branch right after the parallel

branches without merging anything. In contrast this pattern enables the subsequent

node each time when the concurrent branches finish at a time even if more than one

branch finishes at the same time (it is illustrated in Figure 5).

Figure 5. Multiple Merge pattern.

The following FtCPS provides the function of the pattern by guaranteeing that

one and only one symbol is moved to the subsequent node at a time.
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ΠMultMerge =

= ({s,#}, {}, {w1pre . . . wnpre , w1, . . . wn+1, w(n+1)post , wcont}, R, (n+ 1)post)

where:

wcont = s#

wn+1 = w(n+1)post = #

and ∀j ∈ {1, . . . n}:

wj = #

wjpre = s

moreover ∀i ∈ {1, . . . , n}:

R = {(s, ipre)(#, i) −→ (s, i)(#, cont), (24)

(s, i)(#, i) −→ (s, cont)(#, cont), (25)

(s, i)(#, i) −→ (s, i)(#, i), (26)

(s, cont)(s, cont)
(∗−1,1)−−−−−→ (s, cont)(s, n+ 1), (27)

(s, n+ 1)(#, (n+ 1)post) −→ (s, (n+ 1)post)(#, cont)} (28)

Analysis: As it can be recognized, the implementation of this pattern in FtCPS op-

erates on exactly the same structure as used in case of the Generalized-AND-Join

pattern in the previous subsection, except for two aspects. First, minor difference is

that the container cell contains a symbol s initially; second, major difference is in the

application manner of rule 27. It will be applied if at least one symbol s arrives from

one of the concurrent brances, and it performs moves to the subsequent cell labeled

n + 1, instead of waiting for the appearance of all the n instances in the container.

Moreover, if more instances of symbol s arrive to the container in one step, rule 27

will be applied only once. Hence, the function of the pattern is realized.

8.7. Acyclic Synchronizing Merge

A node gets into different states during its execution on a remote infrastructure.

These states can be classified into two major groups, run-time states are temporary

ones which are mainly useful for debugging or tracking the execution in a fine grain

level, while end states are those ones which will not be changed anymore, such as error

or finished. This pattern provides merging methods as well as the previous patterns,

but it is supported with attention to end states of the parallel nodes. It means that

a subsequent branch will be enabled if all of the previous parallel branches are in end

state, even if some of them have been failed. This behaviour is shown in Figure 6.

The next FtCPS that achieves the same behaviour contains special symbols de-

noting the state of the node: symbol ↑ means that the node is finished successfully,
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while symbol ↓ means that the node is failed. We place n instances from both of

them in the container cell. Then the following FtCPS simulates Acyclic Synchroniz-

ing Merge pattern.

Figure 6. Acyclic Synchronizing Merge pattern.

ΠSyncMerge =

= ({↑, ↓,#}, {}, {w1pre , . . . wnpre , w1, . . . wn+1, w(n+1)post , cont}, R, (n+ 1)post) (29)

where:

wn+1 = #;wcont =↑n↓n

and ∀i ∈ {1, . . . , n}:
R = {(s, ipre)(#, i) −→ (s, i)(#, cont), (30)

(s, i)(↑, cont) −→ (s, i)(↑, i), (31)

(s, i)(↓, cont) −→ (s, i)(↓, i), (32)

(↑, i)(s, i) −→ (↑, cont)(s, cont), (33)

(↓, i)(s, i) −→ (↓, cont)(s, cont), (34)

(s, cont)(s, cont)
(n−1,1)−−−−−→ (s, cont)(s, n+ 1), (35)

(s, n+ 1)(#, n+ 1) −→ (s, (n+ 1)post)(#, cont)} (36)

Analysis: The system consists of 2n + 3 cells, n stand for the concurrent branches

(labeled by 1 . . . n), n other, labeled by 1pre, . . . , npre represent the entry points of

the system, moreover cell cont is the container, cell (n + 1) is the subsequent cell to

be executed, and the last one is labeled as (n+ 1)post is the exit point of the system.

The computation starts with the application of rules 30 (in parallel on each cell

i ∈ {1 . . . , n}), moving one instance of symbol s to each cell 1 . . . n. Then non-

deterministic choice and application of rule 31 and 32 determines that the certain

nodes are finished successfully (application of rule 31, that moves symbol ↑ to the

cell) or failed (application of rule 32, that moves symbol ↓ to the cell). Next rules 33

and rules 34 are applied in parallel on all of the n cells, moving n instance of symbol s

to the container. Rule 35 is applied only if all of the n symbols s are in the container

cell. By performing it one instance of symbol s is moved to the subsequent (n+1)

cell. At last, application of rule 36 moves this symbol to the exit point, presenting

that the execution of this pattern is finished.
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8.8. Blocking Partial Join

The Blocking Partial Join pattern is for converging multiple branches, similarly to

the Generalized AND-Join, but while the latter construct waits for all branches to

be finished, in case of Blocking Partial Join pattern the subsequent branch will be

executed for each number of k of the branches finished. After enabling the subsequent

node for k branches, the join construct resets and waits for collecting the next k

branches; during this process the incoming branches are blocked. Figure 7 shows an

example construct.

Figure 7. Blocking Partial Join pattern.

The next FtCPS is behaviourally equivalent to Blocking Partial Join pattern.

ΠPartJoin = (O, {γ}, {w0, . . . wn+1, wn+1post , wcont, wcounter}, R, (n+ 1)post)

where:

O = {s, b,#, δ}
wcounter = bkδn

wn+1 = wn+2 = wcont = {#}

and ∀i ∈ {1, . . . , n}:

wipre = s

wi = #

R = {(s, ipre)(#, i) −→ (s, i)(#, cont), (37)

(s, i)(#, n+ 1) −→ (s, n+ 1)(#, (n+ 1)post), (38)

(b, counter)(#, (n+ 1)post) −→ (b, n+ 1)(#, n+ 1), (39)

(s, n+ 1)(s, n+ 1)
(k−1,1)−−−−−→ (s, cont)(s, (n+ 1)post), (40)

(b, n+ 1)(δ, counter)
(k,1)−−−→ (b, counter)(δ, cont), (41)

(s, n+ 1)(δ, cont)
(n÷k,bn/kc)−−−−−−−−→ (s, cont)(δ, counter), (42)

(s, cont)(s, cont)
(n−1,1)−−−−−→ (s, cont)(s, (n+ 1)post)} (43)
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Analysis: Initially we place symbol s in the entry points of the structure denoted by

index 1pre...npre; the counter cell contains k number of symbol b. The computation

starts by applying rules 37 on each cell ipre for all i ∈ {1 . . . , n} in parallel. Thus, the

control symbol (s) appears in each cell i. In the next step one of rules 38 selected non-

deterministically, and then rule 39 moves # symbol back to cell n + 1 allowing new

application of one of the rules 38 in the next step. The computation iterates these two

rule applications in k times, that result k occurrences of symbol s and k occurrences

of symbol b in cell n+1. Next, rule 39 is applied once and k−1 instances of symbol s

move to the container while one occurrence of symbol s moves to the exit point of

the structure. After this rule 38 moves the next s symbol to cell n+ 1 and in parallel

all occurrences of symbol b are moved back to the counter, while one instance of δ

moves to the container. This loop does bn/kc iterations, moving bn/kc occurrences of

δ to the counter cell. At this step there are less than k control symbols are available

in cell i for all i ∈ {1 . . . , n}. Therefore rule 42 moves the remaining n ÷ k symbols

of s to the container cell, which enables the rule 43 to be applied, which moves the

last symbol s to the exit point of the system. As no other rules can be applied, the

computation halts.

8.9. Interleaved Routing

As it is illustrated in Figure 8, this pattern specifies multiple excursion applicable

on n parallel nodes connected to one another, guaranteeing that only one interaction

takes effect at the same time. The following structure simulates this behaviour as an

FtCPS.

ΠInterRout = (O, {},W,R, {post})
where:

O = {s, δ}
W = {w1pre , . . . , wnpre , w1, . . . wn, wfree, wocc, wres, wpost}

wfree = δ (44)

wpost = # (45)

and ∀i ∈ {1, . . . , n} : wi = #;wipre = s

R = {(s, ipre)(#, i) −→ (s, i)(#, cont), (46)

(s, i)(δ, free) −→ (s, res)(δ, occ), (47)

(s, res)(δ, occ) −→ (s, post)(δ, free)} (48)

Analysis: This pattern can be implemented as an FtCPS in a relatively straight-

forward way. Suppose that the computation started and hence rules 46 have already

been applied therefore, one occurrence of control symbol is in each cell i for all i ∈
{1, . . . , n}. However, only one symbol of δ is placed in cell free. Therefore, only

one rule will be chosen non-deterministically among rules 47 which, besides moving
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symbol s to cell res puts δ to cell occ preventing the others from being applied.

Then rule 48 can be applied that moves symbol s to cell post and symbol δ to cell

free enabling the application of one of the other rules 47 at the next step. This

process continues until at least one symbol s is in any of cells i ∈ {1, . . . , n}, then the

computation finishes.

Figure 8. Interleaved Routing pattern.

8.10. Cancel Region

The pattern cancels a complete region of nodes due to runtime environmental events

or user interventions (Fig. 9).

Figure 9. Cancel Region Example.

We construct the following FtCPS to implement this pattern.

ΠCancelReg = ({s, ε, γ}, {}, {w1pre , w1 . . . , wn, wnpost , wcont}, R, {npost})

where:

w1pre = s;∀i ∈ {1, . . . , n} : wi = wnpost = #;wcont = ε|γ

and ∀i ∈ {1, . . . , n}:

R = {(1pre, s)(#, 1pre) −→ (1pre, 1)(#, cont), (49)
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(a, i)(ε, cont) −→ (a, i+ 1)(ε, cont), (50)

(a, n)(ε, cont) −→ (a, npost)(ε, cont)} (51)

moreover ∀i ∈ [k . . . l − 1]:

(a, i)(γ, cont) −→ (a, cont)(γ, npost)} (52)

Analysis: The alphabet, besides containing the symbol s, has special symbols as well:

ε and γ mark whether the region is enabled to be interpreted (ε is in cell cont) or must

be cancelled (γ appears in cell cont). Note that ε and γ cannot be in cell c at the

same time. Without loss of generality we can assume that the cancel region contains

n cells connected in a chain; moreover let cell k identify the entry point of the region

and cell l mark its exit point. The entry point of the system contains symbol s only.

The computation is done as follows.

By performing rule 49 the interpretation enters to the first cell. The computation

is being processed by applying the rules of 50 one by one, as long as time step k.

At that time there are two options ahead depending on the content of the container

cell: if it contains symbol ε, then everything goes as before (by applying the next rule

of 50 and moving symbol s to the subsequent cell) and – if no symbol γ appeared

in the container cell during the execution, symbol s arrives to the exit point of the

system. Otherwise, if the container contains an instance of symbol γ, then rule 52

are applied. In this case the symbol s disappears from the cell-chain of execution and

goes to the container, while γ goes to the output cell marking that the computation

has been canceled.

8.11. Multiple Instances with a priori Runtime Knowledge

This structure is the same as Parallel Split, but, as the number of sub-branches are

generated according to run-time events (e.g. number of data generated previously),

at design time we do not know how many sub-branches will be generated (Fig. 10).

Figure 10. Multiple Instances with apriori Runtime Knowledge pattern.

Analysis: The realization is based on the low-level parallelization possibility of FtCPS,

namely the possibility to apply a rule as many times concurrently as many instances of
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symbols are in the certain cells which a rule refers to. Hence, utilizing this concurrent

nature of FtCPS, multiple instance pattern can be formulated in FtCPS as follows:

ΠMI = ({s,#, }, {s}, w1pre , w1, w1post , counter, cont,R, 1post)

where:

w1pre = #′;w1 = #′′;w1post = #; counter = bk; cont = #′′}

and ∀i ∈ {1, . . . , n}:

R = {(s, 0)(b, counter) −→ (s, 1pre)(b, 1pre), (53)

(s, 1pre)(b, 1pre) −→ (s, 1)(b, cont), (54)

(s, 1)(#, 1) −→ (s, 1post)(#, cont)} (55)

The key point of this pattern is to solve that simulating the execution of a node in

a number, which is unknown at the design time, in other words the number of the

instances must not be hard-coded into the rules. According to the former definition

of executing a node in terms of FtCP system, execution in many instances means

appearing as many instances of symbol s in the given cell as many instances of node

should be executed in parallel.

Utilizing the default maximal parallel semantics, it can be achieved easily.

The system consists of five cells, the entry point of the system is labeled as 1pre;

the node to be interpreted in many instances is labeled as 1; the exit point is 1post;

counter cell initially contains a specific symbol b in as many instances as many parallel

interpretation of cell i must be achieved, finally cell cont is the container cell.

The implementation assumes that symbol s, which appearance in a cell represents

its execution, is available in the environment in infinite instances. Symbol #,#′ and

#′′ stand for control the computation by counting the timesteps done.

The computation starts by applying rule 53, which moves k instances of s to cell

1pre. As step 2 rule 54 is applied in k instances and performs moving k instances of

symbol s and b to cell 1 and to the container cell respectively. Finally k instances of

symbol s will be moved to the exit point of the system represented by cell 1port by

applying rule 55.

9. Conclusion

In this paper we introduced a new variant of the Generalized Communicating P Sys-

tems called Fine-tuned Communication P System where independent application

strategies can be defined for each communication rule. Moreover we shown that

FtCPS can model the commonly used control flow patterns offering a powerful alter-

native in investigating workflow management systems with mathematical and formal

methods. In details, we have identified the smallest set of the patterns from which all

the others can be derived. Then we constructed and described in detail a semantically
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equivalent FtCPS for each of them. In addition, we have described a method to cre-

ate more complex control flow compositions in FtCPS using the patterns as building

blocks. As future work we plan to adapt techniques into FtCPS which have already

been defined in other fields of Membrane Systems to support further investigation of

dynamic aspects.
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