
Karol Grzegorczyk
Marcin Kurdziel
Piotr Iwo Wójcik

EFFECTS OF SPARSE INITIALIZATION
IN DEEP BELIEF NETWORKS

Abstract Deep neural networks are often trained in two phases: first, hidden layers are

pretrained in an unsupervised manner, and then the network is fine-tuned with

error backpropagation. Pretraining is often carried out using Deep Belief Net-

works (DBNs), with initial weights set to small random values. However, re-

cent results established that well-designed initialization schemes, e.g., Sparse

Initialization (SI), can greatly improve the performance of networks that do not

use pretraining. An interesting question arising from these results is whether

such initialization techniques wouldn’t also improve pretrained networks. To

shed light on this question, in this work we evaluate SI in DBNs that are

used to pretrain discriminative networks. The motivation behind this research

is our observation that SI has an impact on the features learned by a DBN

during pretraining. Our results demonstrate that this improves network per-

formance: when pretraining starts from sparsely initialized weight matrices,

networks achieve lower classification errors after fine-tuning.

Keywords Sparse Initialization, Deep Belief Networks, Noisy Rectified Linear Units

Citation

2015/12/18; 01:11 str. 1/15

Computer Science • 16 (4) 2015 http://dx.doi.org/10.7494/csci.2015.16.4.313

Computer Science 16 (4) 2015: 313–327

313

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Computer Science Journal (AGH University of Science and Technology, Krakow)

https://core.ac.uk/display/236278507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://journals.agh.edu.pl/csci/


1. Introduction

For many years, the primary method for training feed-forward neural networks was

the error backpropagation algorithm [14]. Until recently, however, backpropagation

was unsuccessful in training deep neural networks (i.e., neural networks with more

than one hidden layer) to high levels of performance. This began to change in 2006

when Hinton & Salakhutdinov [7] demonstrated that deep neural networks can be

trained in two phases: greedy layer-wise pretraining followed by fine-tuninig with error

backpropagation. The pretraining in this ground-breaking result was unsupervised,

i.e., did not employ class labels, and its goal was to capture the hierarchy of features

extracted from the training data. Hinton and Salakhutdinov used stacked Restricted

Boltzmann Machines (RBMs) [15] to pretrain their networks. Since then, pretrained

deep neural networks demonstrated state-of-the-art performance in many machine

learning tasks.

More recently, several works explored the possibility of training deep neural net-

works without resorting to layer-wise pretraining. An important lesson from these

works is that training deep networks using only error backpropagation can lead to

competitive performance, provided that the network is initialized with a well-designed

random initialization scheme and a strong optimization method is used to backprop-

agate errors [18]. The most promising results along these lines were achieved using

the Sparse Initialization (SI) technique proposed by Martens in [10].

An interesting question arising from recent successes with networks that do not

use pretraining is whether initialization techniques developed therein wouldn’t also

improve pretrained networks. In particular, in this work we are interested in effects

of Martens’ SI on networks pretrained with RBMs. We, therefore, use SI to initial-

ize stacked RBMs before pretraining and fine-tuning them in discriminative settings.

We then compare the performance of networks trained in this manner with pretrained

networks that use currently-advised wholly-random initialization. Our results demon-

strate that SI improves performance also in pretrained networks, indicating that it

might be a better initialization scheme for these networks than the currently used

random initialization.

2. Background

Restricted Boltzmann Machine [15] is a generative model with units arranged in

a bipartite graph. It assigns to every configuration (v,h) of visible and hidden units

a probability of:

p (v,h) =
evaT+hbT+vWhT

∑
v′,h′

ev′aT+h′bT+v′Wh′T
(1)

where W is a weight matrix for connections between visible and hidden units, a

is a vector of visible unit biases and b is a vector of hidden unit biases. In the

simplest case, visible and hidden units are binary. That is: vi, hj ∈ {0, 1}, i = 1 . . . n,

2015/12/18; 01:11 str. 2/15

314 Karol Grzegorczyk, Marcin Kurdziel, Piotr Iwo Wójcik



j = 1 . . .m, where n is the number of visible units and m is the number of hidden

units. Then, the probability that a unit is on is typically given by the sigmoid non-

linearity: p (hj = 1|v) =
(
1 + e−(vW·j+bj)

)−1
, p (vi = 1|h) =

(
1 + e−(hWT

i·+ai)
)−1

,

where Wi· and W·j are the i-th row and the j-th column of the weight matrix W,

respectively. Note, however, that certain other activation functions can also be used

with RBMs, e.g., to model non-binary vectors [6].

During its training, RBM learns the probability distribution of the observed

data. To this end, RBM training algorithms approximate the gradient of the log-

likelihood of training vectors with respect to the weights and biases. One of the most

commonly used approximations to this gradient is the Contrastive Divergence (CD)

algorithm [5]. A training step in CD begins with taking a sample of visible and

hidden units over the training data. The algorithm thus picks a random training

example v(p) and then takes a sample h(p) of hidden units according to the activation

probabilities p
(
h

(p)
j = 1|v(p)

)
. Next, CD takes an approximate sample

(
v(n),h(n)

)

from the RBM model by performing alternating Gibbs sampling of the visible and

hidden units, starting the chain from the hidden configuration h(p). The gradient is

then approximated as:

∂ log p
(
v(p)

)

∂W
= v(p)T

h(p) − v(n)T
h(n)

∂ log p
(
v(p)

)

∂a
= v(p) − v(n)

∂ log p
(
v(p)

)

∂b
= h(p) − h(n)

(2)

In its fastest variant CD performs only one Gibbs step – the so-called CD1 algorithm.

CD1 was used by Hinton & Salakhutdinov [7] to train Deep Belief Net-

works (DBNs), i.e., stacked RBMs where the first RBM layer models observed data

and each subsequent RBM models outputs from the previous layer. This procedure

was used to obtain initial weights for deep autoencoders and deep multilayer percep-

tron networks. Networks initialized in this manner were then fine-tuned with error

backpropagation, ultimately achieving state-of-the-art performance on several dimen-

sionality reduction and classification tasks.

The pretraining procedure described in [7] was further developed by Nair &

Hinton [11] with the introduction of Noisy Rectified Linear Units (NReLUs), i.e.,

units with an activation function given by:

NReLU (x) = max
{

0, x+N
(

0,
(
1 + e−x

)−1
)}

(3)

Here, N
(
m, s2

)
denotes a random variable drawn from a Gaussian distribution with

mean m and variance s2. NReLUs replace binary hidden units during layer-wise

pretraining. Afterwards, when the network is fine-tuned with error backpropagation,

2015/12/18; 01:11 str. 3/15

Effects of Sparse Initialization in Deep Belief Networks 315



hidden layers employ a deterministic variant of the above activation function, i.e.:

ReLU (x) = max {0, x} (4)

Nair & Hinton demonstrated that networks with NReLUs in hidden layers outperform

networks with binary hidden layers on image classification tasks [11].

3. Related work

While layer-wise pretraining followed by fine-tuning with error backpropagation

proved to be an effective way of training deep neural networks, certain recent works

have focused on training such networks without the pretraining step. One lesson from

these works is that in networks that do not employ pretraining, the choice of a random

initialization scheme used for generating the initial weights has a significant impact

on the outcome of the training. In [4], Glorot & Bengio show why standard random

initialization is unsuited for error backpropagtion in deep networks, especially with

sigmoid activations. Then, they propose normalized initialization, where an n × m
weight matrix is drawn from a uniform distribution between ±

√
6/ (n+m), and show

that it can improve performance of deep networks with hyperbolic tangent activations.

In [10], Martens proposed the Hessian-free optimization method for backpropagation

networks. While this algorithm outperforms standard stochastic gradient descent, it

too benefits from a well-designed random initialization scheme. In particular, the

best results in [10] were obtained with there-proposed Sparse Initialization (SI) ap-

proach. SI initializes units with sparse, randomly generated weight vectors. To this

end, a fixed number of elements are randomly chosen in each weight vector. These

elements are initialized with random weights, usually drawn from a Gaussian distri-

bution. All other elements in the weights matrix are set to zero. SI was designed to

fulfill two goals: prevent the saturation of network units, and make the units initially

as different from each other as possible. Further evidence for the importance of ini-

tialization in networks with no pretraining was given by Sutskever et al. in [18]. This

work demonstrated that, under certain conditions, stochastic gradient descent can

match the performance of Martens’s Hessian-free optimizer. The conditions for these

performance levels were the use of proper random initialization (which was SI in this

case) and the use of momentum method [13] or Nesterov Accelerated Gradient [12]

during training.

Works cited above study various forms of random initialization for networks with

no pretraining. Comparatively less work has been published on initializing network

layers before pretraining. Standard advice for RBM pretraining is to draw the initial

weights from a Gaussian distribution with zero mean and a small standard devia-

tion [6]. Also, with binary visible units, CD pretraining can be sped up by adjusting

the visible biases to the mean input on the training set [6]. Nevertheless, Bergstra &

Bengio [2] carried out experiments that included choosing the initial weights for RBM

pretraining from several different random number distributions. The goal there was

to compare a random search for network hyper-parameters with manually-assisted

2015/12/18; 01:11 str. 4/15

316 Karol Grzegorczyk, Marcin Kurdziel, Piotr Iwo Wójcik



hyper-parameter optimization. When pretraining and fine-tuning stacked RBMs,

Bergstra & Bengio do not claim improvement over standard, manually-tuned hyper-

parameters, and conclude that in these networks, only a small fraction of sensible

hyper-parameters yield the best performance.

4. Sparse Initialization in Deep Belief Networks

with Noisy Rectified Linear Units

When pretraining DBNs, dense random initialization with small weights typically

gives good results. As we noted in the previous section, this kind of initialization is

currently advised for DBNs. Yet, given the recent results on initialization in networks

with no pretraining, one can ask whether pretraining couldn’t also benefit from better

initial weights. In particular, in this work we are interested in the effects of Martens’s

Sparse Initialization on networks pretrained with CD.

a) b)

0 500 1000 1500 2000 2500 3000 3500 4000
Filter

−200

0

200

400

600

800

1000

1200

1400

1600

K
u
rt

o
si

s

Dense initialization
Sparse initialization

0 200 400 600 800 1000
Filter

−2

0

2

4

6

8

10

12
K
u
rt

o
si

s

Dense initialization
Sparse initialization

c)

Figure 1. Kurtosis of filters (i.e., weight vectors of hidden units) learned by an RBM on the

NORB dataset, when initial weights were either drawn from a Gaussian distribution with zero

mean and small standard deviation (blue) or chosen with Sparse Initialization (red) (a). First

1000 filters from plot a. Filters on plots a and b are sorted according to their kurtoses (b).

Sample filters with kurtosis less than 10 (left), between 50 and 100 (center) and greater

than 200 (right). Note that kurtosis of an RBM filter corresponds to the kind of feature

learned by the filter (c).

Our motivation to investigate SI in pretrained networks is that with SI hid-

den units are initially very different from each other and, we hope, they could learn

a more diverse set of features than with classical dense initialization. Further mo-

tivation stems from the observation that RBMs with NReLUs in the hidden layer

2015/12/18; 01:11 str. 5/15

Effects of Sparse Initialization in Deep Belief Networks 317



are quite sensitive to initial weights. For example, we have repeated the pretraining

experiments reported by Nair & Hinton [11] for the NORB dataset [9], using either

dense initialization (with weights drawn from N
(
0, 0.012

)
distribution) or Sparse Ini-

tialization, where each unit had 15 non-zero weights (also drawn from N
(
0, 0.012

)
).

As noted by Nair & Hinton, on this dataset RBM learns Gabor-like edge detectors,

point-like features and global filters. The kind of feature learned by a hidden unit

is well reflected by kurtosis of its weight vector (Fig. 1c). By comparing kurtoses

for the two initialization methods (plots on Figs 1a and 1b), we observe that with

Sparse Initialization CD training gives less units with noisy global filters and more

edge detectors or filters with point-like features.

While SI may have an impact on features learned by an RBM, it is not clear

whether it may, in fact, improve the performance of pretrained neural networks. To

shed light on this question, we carried out experiments on two standard machine

learning datasets, where we compared the performance of pretrained and then fine-

tuned DBNs that use either standard dense initialization or are initialized with SI.

We report the results and details of these experiments in the subsequent sections.

5. Datasets and experiments

To evaluate SI in pretrained networks, we used two datasets commonly employed in

machine learning research, namely MNIST [8] and Jittered-Cluttered NORB [9].

Figure 2. Example MNIST digits.

The challenge in the MNIST dataset is the recognition of handwritten digits

(Fig. 2). It was built from a collection of digit images released by the U.S. National

Institute of Standards and Technology. Images were preprocessed, resized, and put

at the center of a 28× 28 pixel window. Pixels in the MNIST dataset are represented

by 255 grey-scale levels, but in our work pixel intensities are rescaled to the 〈0, 1〉
interval. The dataset comes in two standardized subsets, i.e., 60,000 training cases

and 10,000 test cases. It is also common when working with this dataset to use 10,000

examples from the training set as a validation set and train the network with the

remaining 50,000 examples.

The Jittered-Cluttered NORB dataset consists of 349,920 images that are split

into 291,600 training cases and 58,320 test cases. Each image depicts one of 50

toys captured in stereo mode under variable lighting and viewpoints (Fig. 3). The

images belong to six different classes, whose recognition is the task in this dataset.

Note that training and test sets depict different toy instances. Furthermore, toy

images are perturbed and presented on a complex background. These aspects of the

dataset make the classification task harder. Following Nair & Hinton [11], we resized

original images to 32×64 pixels, subtracted from each image its mean pixel intensity,

2015/12/18; 01:11 str. 6/15

318 Karol Grzegorczyk, Marcin Kurdziel, Piotr Iwo Wójcik



divided pixel intensities by the standard deviation of pixel intensities in the training

set, and constructed a validation set consisting of 58,320 cases from the training set.

Figure 3. Example NORB images (one from each of the six classes).

For the MNIST experiments, we used one of the network architectures reported

in [16]. It had 784 units in the input layer (which corresponds to the number of

pixels in an input image) and two hidden layers, each with 1000 units. Visible units

used the sigmoid activation function, while both hidden layers were made of NReLUs.

When the network was fine-tuned for digit classification, the probability distribution

for the ten different digits was represented by a 10-way softmax output layer [3]. The

MNIST network was pretrained with 100 CD1 epochs. Hyper-parameters for this

phase were chosen following the recommendations in [6] and the results of evaluation

on the validation set. To avoid overfitting, we used `2 regularization term [6] in both

layers. Momentum method [13] was used when updating weights and biases. The

following other hyper-parameters were selected for pretraining: learning rate in the

first layer λ = 0.01, learning rate in the second layer λ = 0.001, initial momentum

µ = 0.5, momentum after fifth epoch µ = 0.9, and weight penalty `2 = 2 ·10−5. In the

fine-tuning phase the whole network was trained with error backpropagation. With

experiments on the validation set, the following hyper-parameters were selected for

this phase: learning rate in both hidden layers λ = 0.03, learning rate in the softmax

layer λ = 0.15, and weight penalty in the softmax layer `2 = 5 · 10−5. We also used

momentum µ = 0.8 in all layers. Pretraining and fine-tuning used stochastic gradient

descent with mini-batches of size 128.

For the NORB dataset, we used the best performing network architecture

reported by Nair & Hinton [11], i.e., 2048 Gaussian input units [6], two hidden

layers with 4000 and 2000 NReLUs, respectively, and a 6-way softmax layer. Hyper-

parameters for pretraining were either adopted from [11] or chosen with experiments

on the validation set. That is, we pretrained each hidden layer using 300 CD1 epochs,

with learning rate λ = 0.001, weight penalty `2 = 2 ·10−5, initial momentum µ = 0.5,

and momentum µ = 0.9 after the fifth epoch. During fine-tuning, we used weight

penalty `2 = 10−5 in the softmax layer, learning rates λ = 0.01 in hidden layers,

2015/12/18; 01:11 str. 7/15

Effects of Sparse Initialization in Deep Belief Networks 319



λ = 0.1 in the softmax layer, and momentum µ = 0.8 in all layers. Both pretraining

and fine-tuning were carried out using stochastic gradient descent with 128-element

mini-batches.

When experimenting with SI in DBNs, we used a Gaussian distribution with

zero mean for non-zero weights. This choice follows the SI scheme used by Sutskever

et al. [18]. The biases were set to zero. In addition, we performed experiments on

the validation sets to choose the standard deviation of the Gaussian distribution and

the number of non-zero weights per hidden unit. For each dataset, we then selected

three variants of SI that performed best on the validation set. These variants were

evaluated on complete datasets, i.e., with pretraining and fine-tuning on the whole

training set and evaluation on the test set. In addition to these main experiments,

we also conducted tests with SI in the softmax layer. The tests were carried out with

either SI or dense initialization in the hidden layers. In these experiments specific

configurations of SI were also chosen following results from the validation sets. For

the reference dense initialization we used a Gaussian distribution with zero mean and

a small standard deviation of σ = 0.01.

Training deep neural networks requires significant computational resources. To

speed up the training, we implemented the software used to carry out the reported

experiments for Graphical Processing Units (GPUs). The implementation was done

with the NVIDIA CUDA platform1. For most of the implementation we relied on the

highly-optimized linear algebra kernels provided by the NVIDIA cuBLAS library. In

particular, cuBLAS kernels were used for matrix-matrix and matrix-vector operations

needed in CD and error backpropagation. The cuBLAS library uses column-major

order; therefore, we adopted this order for all matrices in our code. Examples in

mini-batch matrices are stored in rows. In weight matrices, weights vectors for the

hidden units are stored column-wise. We also adopted a convention that each mini-

batch matrix has an additional column filled with 1.0. This allows us to store biases

for visible and hidden units in the last row and the last column of the weight matrix,

respectively. Several element-wise matrix operations needed during training are not

available in CUDA libraries, so we implemented them with our own kernels. In these

kernels we adopted a domain decomposition in which each column is processed by

one work-group. The size of the work-group was set to 128, which is equal to the

size of our training mini-batches. To facilitate coalesced memory transactions and,

thus, improve the performance of cuBLAS and our own kernels, we allocate all GPU

matrices with proper padding added to each column. The padding ensures that matrix

columns begin at 512-byte aligned addresses. The memory allocated to the padding is

left unused. CD training requires the generation of large number of random numbers

on the GPU. We employ device API of the NVIDIA cuRAND library to efficiently

generate these numbers. The functionality of our GPU implementation is wrapped

with Python bindings. The host-side data processing is carried out with the NumPy

1http://www.nvidia.com/cuda

2015/12/18; 01:11 str. 8/15

320 Karol Grzegorczyk, Marcin Kurdziel, Piotr Iwo Wójcik



library. We conducted the experiments reported in this work on NVIDIA Tesla M2090

cards, using CUDA platform v5.5, Python 2.7.5 and NumPy 1.8.1.

6. Results

Plots on Figures 4 and 5 report classification errors on the test sets during network

fine-tuning. A summary of these results is given in Tables 1 and 1, where we report

performance with the early stopping criterion as well as the best performance during

fine-tuning. For the early stopping criterion, we use the epoch number in which the

network performed best on the validation set.

Table 1

Classification errors on the test sets with different initialization schemes in the hidden layers.

Results are reported for (a) MNIST and (b) NORB datasets. Early stopping is an error in

the epoch with best performance on the validation set. Minimal error is the lowest error

during fine-tuning.

a) Weight Classification error [%]

initialization Early stopping Minimal

Dense initialization 1.15 1.12

SI n = 5, σ = 0.2 1.07 1.06

SI n = 10, σ = 0.01 1.04 1.02

SI n = 15, σ = 0.01 1.08 1.04

b) Weight Classification error [%]

initialization Early stopping Minimal

Dense initialization 14.75 14.68

SI n = 10, σ = 0.1 14.38 14.33

SI n = 10, σ = 0.3 14.39 14.37

SI n = 15, σ = 0.1 14.37 14.32

On both datasets, networks that were initialized with SI before pretraining per-

formed better than the networks with dense initialization. While the difference is

notable on the more difficult NORB dataset, on the MNIST dataset Sparse Initial-

ization also improved the already non-trivial performance. On the NORB dataset we

also observe slightly faster backpropagation training when network is pretrained with

SI. Different choices for the number of non-zero weights and their standard devia-

tion led to slightly different performance, but all configurations of SI that we selected

on the validation sets performed better than dense initialization. In addition to the

reported results, we also carried out confirmatory experiments with eight different

seed values for randomness in SI. These experiments demonstrated that differences in

performance due to different random instances of SI are small and do not change the

conclusions of this section – we observed a standard deviation of error values slightly

below 0.13% on the NORB set and slightly below 0.04% on the MNIST set.

2015/12/18; 01:11 str. 9/15

Effects of Sparse Initialization in Deep Belief Networks 321



Improvement in network performance that we observe with SI comes from better

pretraining of the hidden layers. In particular, results reported in Figures 6 and 7,

and summarized in Table 2, show that SI in the classification layer does not lead to

further performance gain.

0 20 40 60 80 100
Epoch

1.00

1.05

1.10

1.15

1.20

1.25

1.30

C
la
ss
if
ic
a
ti
o
n
 e
rr
o
r 
(%

)

Dense initialization

SI n=5, σ=0.2

SI n=10, σ=0.01

SI n=15, σ=0.01

Figure 4. Classification errors on the MNIST test set with different initialization schemes in

the hidden layers.

0 20 40 60 80 100
Epoch

14.0

14.5

15.0

15.5

16.0

C
la
ss
if
ic
a
ti
o
n
 e
rr
o
r 
(%

)

Dense initialization

SI n=10, σ=0.1

SI n=10, σ=0.3

SI n=15, σ=0.1

Figure 5. Classification errors on the NORB test set with different initialization schemes in

the hidden layers.

2015/12/18; 01:11 str. 10/15

322 Karol Grzegorczyk, Marcin Kurdziel, Piotr Iwo Wójcik



Table 2

Classification errors on test sets with SI in the softmax layer. Results are reported for

(a) MNIST and (b) NORB datasets. Early stopping is an error in the epoch with best

performance on the validation set. Minimal error is the lowest error during fine-tuning.

a) Weight initialization Classification error [%]

hidden layers softmax layer early stopping minimal

Dense initialization SI n = 5, σ = 0.01 1.14 1.12

Dense initialization SI n = 10, σ = 0.01 1.11 1.11

Dense initialization SI n = 15, σ = 0.01 1.12 1.12

SI n = 10, σ = 0.01 SI n = 15, σ = 0.01 1.07 1.06

b) Weight initialization Classification error [%]

hidden layers softmax layer early stopping minimal

Dense initialization SI n = 5, σ = 0.3 14.71 14.68

Dense initialization SI n = 10, σ = 0.01 14.74 14.70

Dense initialization SI n = 10, σ = 0.1 14.63 14.61

SI n = 10, σ = 0.3 SI n = 10, σ = 0.01 14.34 14.32

a) b)

0 20 40 60 80 100
Epoch

1.00

1.05

1.10

1.15

1.20

1.25

1.30

C
la
ss
if
ic
a
ti
o
n
 e
rr
o
r 
(%

)

Dense initialization in all layers

Hidden: DI, Softmax: SI n=10, σ=0.01

Hidden: SI n=10, σ=0.01, Softmax: DI

Hidden: SI n=10, σ=0.01,
Softmax: SI n=15, σ=0.01

0 20 40 60 80 100
Epoch

1.00

1.05

1.10

1.15

1.20

1.25

1.30

C
la
ss
if
ic
a
ti
o
n
 e
rr
o
r 
(%

)

Dense initialization in all layers

Hidden: DI, Softmax: SI n=10, σ=0.01

Hidden: SI n=10, σ=0.01, Softmax: DI

Hidden: SI n=10, σ=0.01,
Softmax: SI n=15, σ=0.01

Figure 6. Classification errors on the MNIST test set with (a) SI in the softmax layer and

(b) SI in the softmax and hidden layers. Plots for dense initialization in the softmax layer

are included for comparison.

Networks that employed SI only in the classification layer performed similarly to

the reference networks that used dense initialization in all layers (Figures 6a and 7a).

On the other hand, when SI was used in all layers, performance was similar to net-

works that used SI only in the hidden layers (Figures 6b, 7b). Although plot on

Figure 7a reports a decrease in classification error on the NORB dataset with one

variant of SI in the softmax layer, this effect disappears when hidden layers are also

initialized with SI (Figure 7b).

2015/12/18; 01:11 str. 11/15

Effects of Sparse Initialization in Deep Belief Networks 323



a) b)

0 20 40 60 80 100
Epoch

14.0

14.5

15.0

15.5

16.0
C
la

ss
if
ic

a
ti
o
n
 e

rr
o
r 
(%

)

Dense initialization in all layers

Hidden: DI, Softmax: SI n=5, σ=0.3

Hidden: SI n=15, σ=0.1, Softmax: DI

Hidden: SI n=10, σ=0.3,
Softmax: SI n=10, σ=0.01

0 20 40 60 80 100
Epoch

14.0

14.5

15.0

15.5

16.0

C
la

ss
if
ic

a
ti
o
n
 e

rr
o
r 
(%

)

Dense initialization in all layers

Hidden: DI, Softmax: SI n=5, σ=0.3

Hidden: SI n=15, σ=0.1, Softmax: DI

Hidden: SI n=10, σ=0.3,
Softmax: SI n=10, σ=0.01

Figure 7. Classification errors on the NORB test set with (a) SI in the softmax layer and

(b) SI in the softmax and hidden layers. Plots for dense initialization in the softmax layer

are included for comparison.

7. Conclusions

Several works cited in section 3 report results that narrow (or even close) the gap

between the performance of deep neural networks that do not use pretraining and

networks studied by Hinton & Salakhutdinov [7]. Nevertheless, pretraining still serves

a useful purpose in deep networks. For example, as reported by Martens [10], Hessian-

free optimizer solves the problem of under-fitting in deep auto-encoders – and, in

effect, surpasses performance levels reported in [7] – but pretraining improves gener-

alization error obtained with this optimizer. A similar theme can be observed with

the dropout regularization technique proposed in [17]. Therein, Hinton et al. report

results for the MNIST dataset, where a network with dropout performed better than

the pretrained network reported in [7]. However, an even lower classification error

was obtained when dropout was used alongside pretraining [17]. Recommendations

given in [1] also indicate that pretraining typically helps. It is therefore possible that

certain techniques developed recently to improve performance of networks with no

pretraining may lead to even better performance with pretrained networks. Our work

goes in this direction. We studied the effects of Martens’s Sparse Initialization [10] in

DBNs employed to pretrain discriminative networks. This initialization scheme was

originally developed to train deep networks starting from random weights (i.e., with-

out pretraining) and demonstrated significant benefits in this application [18]. On

the other hand, in networks with pretraining, the standard approach was to simply

draw the initial weights from a Gaussian distribution with a small standard devia-

tion [6]. Our results, however, demonstrate that SI may be useful also in pretrained

networks. In particular, we demonstrate that DBNs with NReLUs in hidden layers

benefit from SI, especially on difficult classification tasks.

Results in Sutskever et al. [18] show that, apart from initialization, momentum

also plays an important role in deep networks with no pretraining. It is important

2015/12/18; 01:11 str. 12/15

324 Karol Grzegorczyk, Marcin Kurdziel, Piotr Iwo Wójcik



to note, however, that these results are mainly concerned with solving under-fitting

problems in deep auto-encoders. Nevertheless, a possible direction of further research

could be the evaluation of fine-tuning of DBNs with large momentum. While the usual

approach here is to use a small learning rate and conservative momentum coefficient

(e.g., µ = 0.8) [7], once error on the training set becomes low, using large momentum

could possibly improve training and the final classification performance.

Acknowledgments

This research is supported by the Polish National Center of Science grant

no. DEC-2013/09/B/ST6/01549 “Interactive Visual Text Analytics (IVTA): Devel-

opment of novel, user-driven text mining and visualization methods for large text

corpora exploration”.

Special thanks are due to (partial) financial supported by the Polish Ministry

of Science and Higher Education under AGH University of Science and Technology

grant 11.11.230.124 (statutory project).

This research was carried out with the support of the ”HPC Infrastructure for

Grand Challenges of Science and Engineering” Project, co-financed by the European

Regional Development Fund under the Innovative Economy Operational Programme.

This research was supported, in part, by PL-Grid Infrastructure.

References

[1] Bengio Y.: Practical Recommendations for Gradient-Based Training of Deep

Architectures. In: G. Montavon, G.B. Orr, K.R. Müller, eds, Neural Networks:

Tricks of the Trade, Lecture Notes in Computer Science, vol. 7700, pp. 437–478.

Springer, Berlin–Heidelberg, 2012.

[2] Bergstra J., Bengio Y.: Random Search for Hyper-parameter Optimization. Jour-

nal of Machine Learning Research, vol. 13, pp. 281–305, 2012.

[3] Bridle J.S.: Probabilistic Interpretation of Feedforward Classification Network

Outputs, with Relationships to Statistical Pattern Recognition. In: F. Soulié,

J. Hérault, eds, Neurocomputing, NATO ASI Series, vol. 68, pp. 227–236.

Springer, Berlin–Heidelberg, 1990.

[4] Glorot X., Bengio Y.: Understanding the difficulty of training deep feedforward

neural networks. In: Y.W. Teh, M. Titterington, eds, Proceedings of the 13th In-

ternational Conference on Artificial Intelligence and Statistics (AISTATS) 2010,

vol. 9, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

[5] Hinton G.E.: Training products of experts by minimizing contrastive divergence.

Neural Computation, vol. 14(8), pp. 1771–1800, 2002.

[6] Hinton G.E.: A Practical Guide to Training Restricted Boltzmann Machines. In:

G. Montavon, G.B. Orr, K.R. Müller, eds, Neural Networks: Tricks of the Trade,

Lecture Notes in Computer Science, vol. 7700, pp. 599–619. Springer, Berlin–

Heidelberg, 2012.

2015/12/18; 01:11 str. 13/15

Effects of Sparse Initialization in Deep Belief Networks 325



[7] Hinton G.E., Salakhutdinov R.R.: Reducing the dimensionality of data with

neural networks. Science, vol. 313(5786), pp. 504–507, 2006.

[8] LeCun Y., Bottou L., Bengio Y., Haffner P.: Gradient-based learning applied to

document recognition. Proceedings of the IEEE, vol. 86(11), pp. 2278–2324, 1998.

[9] LeCun Y., Huang F.J., Bottou L.: Learning methods for generic object recogni-

tion with invariance to pose and lighting. In: Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR04), vol. 2, pp. II–97. IEEE, 2004.

[10] Martens J.: Deep learning via Hessian-free optimization. In: J. Fürnkranz,

T. Joachims, eds, Proceedings of the 27th International Conference on Machine

Learning (ICML-10), pp. 735–742. Omnipress, 2010.

[11] Nair V., Hinton G.E.: Rectified Linear Units Improve Restricted Boltzmann Ma-

chines. In: J. Fürnkranz, T. Joachims, eds, Proceedings of the 27th International

Conference on Machine Learning (ICML-10), pp. 807–814. Omnipress, 2010.

[12] Nesterov Y.: A method of solving a convex programming problem with conver-

gence rate O (1/k2). Soviet Mathematics Doklady, vol. 27(2), pp. 372–376, 1983.

[13] Polyak B.T.: Some methods of speeding up the convergence of iteration methods.

USSR Computational Mathematics and Mathematical Physics, vol. 4(5), pp. 1–17,

1964.

[14] Rumelhart D.E., Hinton G.E., Williams R.J.: Learning representations by back-

propagating errors. Nature, vol. 323(6088), pp. 533–536, 1986.

[15] Smolensky P.: Information Processing in Dynamical Systems: Foundations of

Harmony Theory. In: D.E. Rumelhart, J.L. McClelland, CORPORATE PDP

Research Group, eds, Parallel Distributed Processing: Explorations in the Mi-

crostructure of Cognition, vol. 1, pp. 194–281. MIT Press, 1986.

[16] Srivastava N.: Improving neural networks with dropout. Master’s thesis, Univer-

sity of Toronto, 2013.

[17] Srivastava N., Hinton G.E., Krizhevsky A., Sutskever I., Salakhutdinov R.:

Dropout: A simple way to prevent neural networks from overfitting. The Journal

of Machine Learning Research, vol. 15(1), pp. 1929–1958, 2014.

[18] Sutskever I., Martens J., Dahl G., Hinton G.E.: On the importance of initial-

ization and momentum in deep learning. In: S. Dasgupta, D. Mcallester, eds,

Proceedings of the 30th International Conference on Machine Learning (ICML-

13), vol. 28, pp. 1139–1147. JMLR Workshop and Conference Proceedings, 2013.

Affiliations

Karol Grzegorczyk
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Department of Computer Science, Krakow, Poland, kgr@agh.edu.pl

2015/12/18; 01:11 str. 14/15

326 Karol Grzegorczyk, Marcin Kurdziel, Piotr Iwo Wójcik



Marcin Kurdziel
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Department of Computer Science, Krakow, Poland,
kurdziel@agh.edu.pl

Piotr Iwo Wójcik
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Department of Computer Science, Krakow, Poland, pwojcik@agh.edu.pl

Received: 16.10.2014

Revised: 18.12.2014

Accepted: 20.12.2014

2015/12/18; 01:11 str. 15/15

Effects of Sparse Initialization in Deep Belief Networks 327




	Karol Grzegorczyk, Marcin Kurdziel, Piotr Iwo Wójcik, Effects of Sparse Initialization in Deep Belief Networks

