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Abstract Computational effort is a common issue for solving large-scale complex sym-

metric linear systems, particularly in quantum chemistry applications. In order

to alleviate this problem, we propose a parallel algorithm of improved conjugate

gradient-type iterative (ICSYM). Using three-term recurrence relation and or-

thogonal properties of residual vectors to replace the tridiagonalization process

of classical CSYM, which allows to decrease the degree of the reduce-operator

from two to one communication at each iteration and to reduce the amount

of vector updates and vector multiplications. Several numerical examples are

implemented to show that high performance of proposed improved version is

obtained both in convergent rate and in parallel efficiency.
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1. Introduction

In practical quantum chemistry applications, a complex symmetric eigenvalue pro-

blem is encountered for determining the laser-induced molecular resonance states of

H+
2 in an electro-magnetic field [1]. The dominant computational time is to solve

complex symmetric linear systems, particularly for determining several eigenvalues.

Thus, in this work we concentrate on developing an efficient algorithm to solve this

linear system, Ax = b, where A is an n × n non-Hermitian but symmetric matrix,

i.e., A 6= AH and A = AT ∈ Cn×n. In fact, this typical kind of linear systems also

arise from other valuable application areas such as electromagnetic scattering from

a large open cavity [12], scattering problems in computational electromagnetics [17],

Maxwell’s equations [8, 10] and Helmholtz equations [6, 9]. With the development

of technology and methodology, more large-scale problems are encountered to be

solved efficiently. Recently, advanced methodologies for solving complex symmetric

linear systems have been thoroughly discussed in many papers, such as the com-

plex symmetric quasi-minimal residual method (QMR-SYM) [14], symmetric complex

bi-conjugate gradient conjugate residual-type method (SCBiCG) [5, 7], bi-conjugate

gradient conjugate residual-type method (BiCGCR) [5,7], conjugate orthogonal con-

jugate gradient method (COCG) [15] and conjugate A-orthogonal conjugate residual

method (COCR) [7, 13]. However, they have a common limitation that they are not

stable or applicable in large-scale dense complex symmetric linear systems. In order to

overcome this limitation, the conjugate gradient-type iterative algorithm (CSYM) [3]

was proposed, as it has tremendous advantages in small storage capacity and stable

computations.

From the parallel algorithm of view, the above algorithms applied for solving

large-scale linear systems suffer a main bottleneck due to the global communication

of the inner products. It becomes more serious when the number of parallel processors

is argumented. This results in much lower parallel efficiency.

Nowadays, there are three popular strategies to overcome this issue. The first

one is to decrease the number of the reduce-operator by eliminating data dependen-

cies. The second one is to restructure the algorithm so that the communication and

computation can be overlapped efficiently. The last one is to replace the computation

involving global communications by the other computation without global communi-

cations [18, 21]. Moreover, these strategies have been widely applied to develop the

parallel algorithms for solving large linear systems arising from the practical engi-

neering applications, such as the parallel QMR method [2], the improved conjugate

residual squared method (ICRS) [20], the improved Biorthogonal Conjugate Gradient

method (BiCG) [18], the improved stabilized BiCG method (BiCGSTAB) [19] and

the parallel COCR method (PCOCR) [21]. However, the above methods exhibit poor

parallel performance and numerical instabilities for solving relatively dense linear sys-

tems. Therefore, in this work, an improved parallel algorithms based on CSYM is

proposed by adopting the above parallel strategies to solve large-scale complex sym-

metric linear systems, particularly more efficient for large-scale dense matrices.
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The remainder of this paper is organized as follows. In Section 2, description

of the improved CSYM algorithm is mentioned for solving linear systems with large

relatively dense or dense complex symmetric matrices. Then, theoretical analysis and

parallel implementation about two algorithms (CSYM and ICSYM) are presented in

Section 3. In Section 4, numerical experiments arising in some practical problems are

discussed. Finally, we end with some conclusions in Section 5.

For the convenience of our statements, we use the following notation throughout

the paper: the symbols A, AT are used to denote the conjugate, the transpose,

respectively. The inner product in space Cn is defined as [x, y] = yHx , where x, y ∈ Cn

are column vectors. ‖x‖2 is the 2-norm of vector x.

2. Description of improved CSYM

In order to highlight the improved characteristics of ICSYM compared with classical

CSYM, we firstly introduce a brief overview of the CSYM algorithm [3]. Then the

detailed induction of ICSYM is depicted.

2.1. Fundamental of CSYM

Given an initial vector x0, the residual vector r0 = b−Ax0, then q1 = r0
‖r0‖2 . In order

to obtain q2, q3, . . . , three-term recurrence relation is iteratively implemented by the

following scheme,

AQk = QkHk + bkqk+1e
T
k , (1)

where Qk = (q1, q2, . . . , qk), ek = (0, 0, . . . , 1)T ∈ Rk, k = 1, 2, . . . and Hk is a k × k
symmetric tridiagonal matrix,

Hk =



a1 b1
b1 a2 b2

b2 a3
. . .

. . .
. . . bk−1
bk−1 ak

 .

The iteration xk can be obtained from the column space of Qk,

xk = x0 +Qkfk ∈ span{q1, q2, . . . , qk}, k = 1, 2, . . . ,

where fk = (f
(1)
k ), f

(2)
k , . . . , f

(k)
k )T ∈ Ck. Since rk = b − Axk is orthogonal to the

conjugate column vectors of Qk denoted (q1, q2, . . . , qk), i.e.

[rk, qi] = 0, i = 1, 2, . . . , k.
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We can represent the residual vector as follows,

rk = b−Axk = b−A(x0 +Qkfk) = r0 −QkHkfk − bkqk+1e
T
k fk

= q1‖r0‖2 −QkHkfk − bkqk+1f
(k)
k

= Q1(‖r0‖2 −Hkfk)e1 − bkqk+1f
(k)
k ,

(2)

where f
(k)
k is the k-th component of fk. After doing inner product with qi(i =

1, 2, . . . , k) on both sides of the equation (2), we get

‖r0‖2e1 = Hkfk. (3)

Then the solution fk is obtained by QR decomposition on Hk. More details can be

found in the literature [5].

2.2. Implementation of CSYM

The CSYM algorithm can be described as follows.

Algorithm 1. The CSYM algorithm [3]

1) Choose initial vector x0 ∈ Cn, let k := 0, calculate

r0 = b−Ax0, q0 = 0, q1 =
r0
‖r0‖2

, a1 = [Aq1, q1], c−1 = 0, b0 = 0, s−1 = 0,

τ1 = ‖r0‖2, c0 = 0, s0 = 0, p−1 = p0 = 0 .

2) The loop will continue until ‖rk‖2 < tol‖b‖2 is satisfied, where tol ∈ R+

(tolerance for termination); otherwise, calculate

ηk = ck−2ck−1bk−1 + sk−1ak, γk = ck−1ak − ck−2sk−1bk−1, θk = sk−2bk−1,

w = Aqk − akqk − bk−1qk−1, bk = ‖w‖2.

If bk = 0, the loop stops; otherwise, calculate qk+1 =
w

bk
, ak+1 = [Aqk+1, qk+1].

If γk 6= 0, ck =
|γk|√
|γk|2 + b2k

, sk =
γk
|γk|

bk√
|γk|2 + b2k

, ξk =
γk
|γk|

√
|γk|2 + b2k;

otherwise, calculate ck = 0, sk = 1, ξk = bk, pk =
qk − ηkpk−1 − θkpk−2

ξk
,

τk+1 = −skτk, xk = xk−1 + τkckpk, ‖rk‖2 = |τk+1| .

3) Let k := k + 1 , and turn back to 2).

The following two propositions can be induced by the derivation of CSYM and

algorithm 1.

Proposition 1. For the iteration xk generated by the CSYM algorithm, there

holds that rk = −bkqk+1f
(k)
k , where f

(k)
k is the k-th component of fk.
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The analogous derivation of Proposition 1 can refer to the literature [3].

Proposition 2. For the residual vector rk generated by the CSYM algorithm,

there holds that

[rk, rj ] = 0, j = 1, 2, . . . , k − 1.

Proof. It is known that q1, q2, . . . , qk are mutually orthogonal, i.e.,

[qk, qj ] = 0, j = 1, 2, . . . , k − 1,

hence,

[qk+1, qj+1] = qTk+1qk+1 = qHk+1qk+1 = [qk+1, qj+1] = 0.

From the Proposition 1, the residual vector rk satisfies

rk = −bkqk+1f
(k)
k , (4)

there holds that

[rk, rj ] = [−bkqk+1f
(k)
k ,−bjqj+1f

(j)
j ] = 0. (5)

Remark 1. From above process, we observe that the premise of the calculation

of ak+1 is to know the result of bk, and they cannot be calculated synchronously.

Therefore, we have to calculate twice inner products dependently for each bk, ak+1,

which results in expensive calculations due to twice global communication between

all processors.

In order to deal with this problem, three-term recurrence relation [16] and ortho-

gonal properties of residual vectors is applied to replace the tridiagonalization process

in this work during the calculation of the vector qk and the tridiagonal matrix Hk

with classical CSYM. The detailed implementation is given in the following section.

2.3. Improved CSYM algorithm

An improve CSYM algorithm (ICSYM) is proposed after adjusting the overall ite-

ration steps, it will reduce the number of global communication per iteration. The

ICSYM algorithm is described in detailed as follows.

According to the formula (1) and the formula (4), we have

bkqk+1 = Aqk − akqk − bk−1qk−1,

and it is known that rk is a constant of qk+1, thus the residual vector satisfies the

following relationship,

rk+1 = ρk(rk − γkArk) + µkrk−1.

Choosing A = O ∈ Cn×n, the identical relation rj = b − Axj ≡ b is always satisfied.

Due to the arbitrariness of b, we can represent b = ρkb+ µkb and µk = 1− ρk, then

rk+1 = ρk(rk − γkArk) + (1− ρk)rk−1. (6)
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According to the formula (6) the orthogonal properties of residual vectors,

[rk+1, rk] = 0, [rk−1, rk] = 0, [rk+1, rk−1] = 0, we have

γk =
[rk, rk]

[Ark, rk]
, ρk =

[rk−1, rk−1]

[rk−1, rk−1] + γk[Ark, rk−1]
.

Since

[Ark, rk−1] = [rk, Ark−1] = [Ark−1, rk],

Ark−1 = −ρ−1k−1γ
−1
k−1rk + γ−1k−1rk−1 + ρ−1k−1γ

−1
k−1(1− ρk−1)rk−2,

we can obtain

ρk =

(
1− γk

γk−1ρk−1

[rk, rk]

[rk−1, rk−1]

)−1
.

Thus,

xk+1 = ρk(xk + γkrk) + (1− ρk)xk−1.

2.4. Implementation of ICSYM

The ICSYM algorithm based on the above manipulation can be given below.

Algorithm 2. The ICSYM algorithm

1) Choose initial vector x0 ∈ Cn, ρ0 = 1, let k := 0, calculate

r0 = b−Ax0, γ0 =
[r0, r0]

[Ar0, r0]
, x1 = ρ0(x0 + γ0r0), r1 = ρ0(r0 − γ0Ar0).

2) If ‖rk‖2 < tol‖b‖2 is satisfied, stop the loop, where tol ∈ R+; otherwise,

calculate,

γk =
[rk, rk]

[Ark, rk]
, ρk =

(
1− γk

γk−1ρk−1

[rk, rk]

[rk−1, rk−1]

)−1
,

xk+1 = ρk(xk + γkrk) + (1− ρk)xk−1, rk+1 = ρk(rk − γkArk) + (1− ρk)rk−1.

3) Let k := k + 1 , and turn back to 2).

Remark 2. From above process, we observed that two dependent inner pro-

ducts (ak+1 and bk) are transformed into two independent inner products ([rk, rk] and

[Ark, rk]), which only needs one global communication per iteration. Therefore, it can

significantly reduce the global communication time on parallel distributed memory

computers.

3. Theoretical analysis and parallel implementation

In order to indicate the parallel performance of both the CSYM and the ICSYM

algorithms, we firstly mention a brief theoretical analysis of two algorithms, and then

the corresponding parallel implementation will be discussed.
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3.1. Theoretical analysis about two algorithms

The amount of calculation per iteration including several terms such as vector update

(represents the additive operation between vectors), vector-multi (represents multi-

plication of vector), matrix-vector (represents the matrix and vector multiplication),

inner product and All-reduce (represents all-reduce operator) are given in Table 1.

Table 1
The amount of calculation per iteration

Algorithm Vector update Vector-multi Matrix-vector Inner product All-reduce

CSYM 5 7 1 2 2

ICSYM 4 6 1 2 1

From Table 1, we can see that the ICSYM algorithm needs only four vector upda-

tes and six vector multiplications which are less than the number needed (5 and 7) in

the CSYM algorithm. As we know the dominant time depends on vector multiplica-

tions and global communication at each iteration, the proposed ICSYM can decrease

the reduce-operator per iteration from two to one communication. Therefore, the

ICSYM algorithm has better parallel performance than CSYM.

3.2. Parallel implementation of ICSYM

In this section we discuss the parallel implementation of the ICSYM algorithm inclu-

ding data storage and implementation of every iteration.

3.2.1. Data storage

For convenience let p be the number of processors, pi (i = 1, 2, . . . , p) represent ith

processor and l is integer in n = pl.

Mark

A = (AT
1 , A

T
2 , · · · , AT

p )T, b = (bT1 , b
T
2 , · · · , bTp )T, s = (sT1 , s

T
2 , · · · , sTp )T,

x(k) = ((x
(k)
1 )T, (x

(k)
2 )T, · · · , (x(k)p )T)T, r(k) = ((r

(k)
1 )T, (r

(k)
2 )T, · · · , (r(k)p )T)T,

where Ai is a l×n sub-block matrix, bi, x
(k)
i , r

(k)
i , si are l×1 vectors (k = 0, 1, 2, . . . ),

which are stored on the processor pi (i = 1, 2, · · · , p). The similar storage manners can

be found in the reference [4]. Detailed descriptions of parallel computing is mentioned

in the following.

3.2.2. Parallel implementation of ICSYM

In each processor pi(i = 1, 2, · · · , p), computing process and cycling process have to be

implemented. Moreover, the most important point of the parallel implementation is

all-reduce operator involved in each processor pi simultaneously, which collects values



392 Yingchun Zhang, Quanyi Lv, Manyu Xiao, Gongnan Xie, Piotr Breitkopf

from all processors and distributes the result back to all processors. In this work, the

sum operator is applied in the all-reduce.

1) Computing process:

Given x(0) and ρ0 = 1, calculate

r
(0)
i = bi −Aix

(0), si = Air(0), [r
(0)
i , r

(0)
i ] and [si, r

(0)
i ],

after one all-reduce, we can obtain [r(0), r(0)] and [s, r(0)], then calculate

γ0 =
[r(0), r(0)]

[s, r(0)]
, x

(1)
i = x

(0)
i + γ0r

(0)
i , r

(1)
i = r

(0)
i − γ0si.

2) Cycling process:

For k = 1, 2, · · · , calculate

si = Air(k), [r
(k)
i , r

(k)
i ] and [si, r

(k)
i ],

we can get [r(k), r(k)] and [s, r(k)] after all-reduce, then calculate

γk =
[r(k), r(k)]

[s, r(k)]
, ρk =

(
1− γk

γk−1ρk−1

[r(k), r(k)]

[r(k−1), r(k−1)]

)−1
,

x
(k+1)
i = ρk(x

(k)
i + γkr

(k)
i ) + (1− ρk)x

(k−1)
i , r

(k+1)
i = ρk(r

(k)
i − γksi) + (1− ρk)r

(k−1)
i .

Remark 3. As we can see from the above parallel implementation, only one

time global communication (all-reduce) at each iteration is needed to calculate for

[r(k), r(k)] and [s, r(k)].

3.3. Parallel analysis of CSYM and ICSYM

In order to further illustrate the parallel performance, we give a detailed parallel

analysis which is similar to the literature [21].

According to the literature [21], we can know that the time of a vector update

without communication or the time of a vector-multi is

tvec−upd = tvec−mul = 2tfln/p,

where tfl denotes the time for a floating point operation.

The time of a matrix-vector is

tmat−vec = (2nz − 1)tfln/p+ 2nmts + 2(2nb + nm)tw,

and the time of k inner products which only need one parallel computation is

tinn−prod(k) = 2ktfln/p+ 2(ts + ktw)logp,
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where nz is the number of nonzero elements at each row, nm represents the number of

messages sent and received, nb is the number of boundary data elements per processor,

ts is the start time of communication, tw is the time required to transmit a word

between two processors.

Therefore, we can observe that the time of two algorithms at each iteration is

TCSYM = 5tvec−upd + 7tvec−mul + tmat−vec + 2tinn−prod(1)

= (2nz + 27)tfln/p+ 4(ts + tw)logp+ 2nmts + 2(2nb + nm)tw,

and

TICSYM = 4tvec−upd + 6tvec−mul + tmat−vec + tinn−prod(2)

= (2nz + 23)tfln/p+ 2(ts + 2tw)logp+ 2nmts + 2(2nb + nm)tw,

respectively.

Because tf < tw � ts is satisfied, and nm can be ignored in the distributed

parallel computer, we can obtain TICSYM < TCSYM . Moreover, the number of

processors for minimum parallel time about two algorithms can be obtained by taking

the partial derivatives, i.e.,

pCSYM =
(2nz + 27)tflnln2

4(ts + tw)
,

and

pICSYM =
(2nz + 23)tflnln2

2(ts + 2tw)
.

Then,

pICSYM

pCSYM
≈ 2.

Hence, ICSYM has the better scalability than CSYM.

In addition, when n is fixed and p is large enough, we can get that the performance

improving rate of ICSYM is

η =
TCSYM

TICSYM
≈ 4tfln+ 2tsplogp

(2nz + 27)tfln+ 4tsplogp
→ 50%.

The data further illustrates that the improving rate of ICSYM compared with ICSYM

can reach 50% in theroy.

Finally, we provide the scalability analysis about two algorithms.

According to the definition of iso-efficiency function [11, 21], T se = E
1−ET

cost,

and T cost = pT par − T se, where T par denotes the parallel time, T se denotes the

sequential time, T cost presents the extra time, E is the parallel efficiency.
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Hence, we can obtain the correlation formula between the number of processors

and the parallel efficiency of two algorithms,

nCSYM =
4(ts + tw)E

(2nz + 27)tfl(1− E)
plogp ≈ 4tsE

(2nz + 27)tfl(1− E)
plogp,

nICSYM =
2(ts + 2tw)E

(2nz + 23)tfl(1− E)
plogp ≈ 2tsE

(2nz + 23)tfl(1− E)
plogp.

From above analysis, in the case of equal parallel computational efficiency, the

number of processors of CSYM is about twice times than that of ICSYM when p

increases. Therefore, the parallelism and scalability of ICSYM is better than that of

CSYM.

4. Numerical experiments

We provide different numerical experiments to illustrate the performance of the

ICSYM algorithm in this section. Then the detailed numerical results are depicted.

Test case I

In order to evaluate the performance of ICSYM, we first consider two practi-

cal problems arising from quantum chemistry [1], quantum chemistry (QC2534) and

quantum chemistry (QC324) respectively. Then we report a random example to

further verify the applicability of ICSYM for dense linear system, the coefficient ma-

trix consisting of a great number of nonzero elements is generated via the xLATMR

routine in LAPACK. Additionally, the right-hand side b for each test problem is cho-

sen as (1 + i, . . . , 1 + i)T. The number of nonzero elements for three matrices is

shown in Table 2. Numerical results compared with five algorithms (ICSYM, CSYM,

COCR [7, 13], COCG [7] and QMR-SYM [14]) can be seen in Table 3. Convergence

histories of the different iterative algorithms for each test problem are illustrated from

Figure 1 to Figure 3.

These cases have been carried out in MATLAB R2017b with a Windows 7 (64 bit)

on Inter(R) Core(TM) i7-6700 CPU 3.40Ghz and 16.00GB of RAM. Then we compare

with five algorithms (ICSYM, CSYM, COCR, COCG and QMR-SYM) in terms of

number of iterations (abbreviated as Iters), CPU consuming time in seconds (abbre-

viated as CPU). The case in terms of Iters, CPU is reported by means of tables while

convergence histories are shown in figure with Iters (on the horizontal axis) versus

log10 of the updated relative residual 2-norm which defines as log10
‖b−Axk‖2
‖b‖2 (on the

vertical axis).

In our implementations, the initial guess is chosen to be zero vector and the stop-

ping criteria for all algorithms is tol = 10−8 , where xk is the current approximation.

In addition, Size stands for the number of rows (M) and columns (N) in the matrix,

expressed as M × N . Num-nonzero represents the number of nonzero elements in
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a matrix. Density means the percentage of nonzero elements. The “–” which appears

in Table 3 means prohibitive CPU time and the number of iterations.

Table 2
The number of nonzero elements for three matrices

Matrix QC2534 QC324 RANDOM MATRIX

Size 2534 × 2534 324 × 324 800 × 800

Num-nonzero 463 360 26 730 599 800

Density 7.22% 25.46% 93.72%

Table 3
Numerical results of five algorithms for three matrices

Matrix
QC2534 QC324 RANDOM MATRIX

Iters CPU Iters CPU Iters CPU

ICSYM 1047 1.94 847 0.07 1630 0.90

CSYM 1066 1.95 855 0.09 1639 1.07

COCR 5003 4.41 1625 0.10 – –

COCG 5067 4.32 1598 0.09 – –

QMR-SYM – – 2830 0.30 – –
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Figure 1. Convergence histories for QC2534 with the sparse coefficient matrix
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Figure 2. Convergence histories for QC324 with the relatively dense coefficient matrix
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Figure 3. Convergence histories for RANDOM MATRIX with the dense coefficient matrix

According to the characteristics of three matrices in Table 2, matrix QC2534 is

a sparse complex symmetric matrix, and matrix QC324 is a relatively dense complex

symmetric matrix. On the contrary, the random matrix with more nonzero elements
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given in the fourth column of Table 2 is a dense complex symmetric matrix. From

the numerical results shown in Table 3, we can observe that both the ICSYM and the

CSYM algorithms are feasible and effective for solving all types of complex symmetric

linear systems. Additionally, we can see clearly that the number of iterations and CPU

time of both the ICSYM and the CSYM algorithms are less than that of other three

methods (COCR, COCG and QMR-SYM) for solving all types of complex symmetric

linear systems. Moreover, it can be seen that the ICSYM algorithm requires less CPU

time than that of the CSYM algorithm. This is normal because the amount of vector

updates and vector multiplications per iteration step in ICSYM is less than that in

CSYM.

The phenomenon of convergence rates can be further exhibited from Figure 1 to

Figure 3, it is much faster in CSYM and ICSYM than that of other three methods

(COCR, COCG and QMR-SYM). From Figure 3, we observe that three algorithms

(COCR, COCG and QMR-SYM) fail to converge and have not a downward trend

even using 3500 iteration steps, it is further illustrated that both the ICSYM and

the CSYM algorithms are the best solvers for solving dense complex symmetric linear

systems among the five algorithms. In addition, there are shown the same phenomena

from Figure 1 to Figure 3 that the convergence curves of both the ICSYM and the

CSYM algorithms are almost coincident when reaches a certain number of iterations.

That means that the indeed idea of ICSYM is the same as CSYM.

In conclusion, both the ICSYM and the CSYM algorithms have almost the same

numerical stability and are recommended to solve all types of complex symmetric

linear systems arising from quantum chemistry. Furthermore, it is more efficient for

solving relatively dense or dense complex symmetric linear systems. Therefore, in

order to verify the parallel performance of the improved algorithm, the following case

is discussed in detailed for solving large dense linear systems and compared with

classical CSYM.

Test case II

In this case, the results evaluations of parallel performance about two algorithms

(ICSYM and CSYM)are given in Figure 4 and Figure 5. The dimension of matrix

equals 40000, and the density (the proportion of non-zero elements) is more than 70%.

The case has been carried out in the parallel machine Lenovo Shenteng 1800 cluster.

Note: The speedup shown in Figure 4 is computed as the ratio of the parallel

computing time and that using one processor. Saving computational time is obtai-

ned by 1 − TA(p)/TB(p) and depicted in Figure 5, where TA(p) and TB(p) are the

computing times on p processors of ICSYM and CSYM respectively.

From the results in Figure 4, we can observe distinctly that the speed up of the

ICSYM algorithm is faster than that of the CSYM algorithm. Moreover the speedup

has a remarkable growth with increasing number of processors compared with the

CSYM algorithm. From Figure 5, the ratio of the saving computational time of

ICSYM becomes larger with increasing the number of processors.
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5. Conclusions

In this paper, a parallel algorithm called ICSYM is proposed for solving large-scale

complex symmetric linear systems. The numerical test results are shown that:

(1) ICSYM algorithm is available for all types of complex symmetric linear sy-

stems. In the comparison with other four algorithms mentioned (CSYM, COCR,
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COCG and QMR-SYM), it is shown that the ICSYM algorithm is more efficient for

solving complex symmetric linear systems. Moreover, it is more obvious for solving

large relatively dense or dense complex symmetric linear systems.

(2) For the large-scale complex symmetric linear systems, the ICSYM algorithm

not only has better parallelism than the CSYM algorithm but also has the similar

numerical stability.

In conclusion, the ICSYM algorithm is high-efficiency and good stable for solving

complex symmetric linear systems, particularly large-scale dense linear systems.

Future research will address to develop preconditioning strategies to enhance the

performance, particularly in the large complex symmetric linear systems from

the practical engineering applications.
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