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Abstract The aim of this research is to build an open schema model for a digital sources
repository in a relational database. This required us to develop a few advanced
techniques. One of them was to keep and maintain a hierarchical data structure
pushed into the repository. A second was to create constraints on any hierarchi-
cal level that allows for the enforcement of data integrity and consistency. The
created solution is mainly based on a JSON file as a native column type, which
was designed for holding open schema documents. In this paper, we present
a model for any repository that uses hierarchical dynamic data. Additionally,
we include a structure for normalizing the input and description for the data
in order to keep all of the model assumptions. We compared our solution with
a well-known open schema model – Entity-Attribute-Value – in the scope of
saving data and querying about relationships and contents from the structure.
The results show that we achieved improvements in both the performance and
disk space usage, as we extended our model with a few new features that the
previous model does not include. The techniques developed in this research
can be applied in every domain where hierarchical dynamic data is required, as
demonstrated by the digital book repository that we have presented.
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1. Introduction

When it comes to choosing the best-suited database engine for dynamic data with
a hierarchical structure (e.g., the data in the book repository described in Section 3),
the answer is obvious at first glance – using NoSQL databases. This category includes
a document database, for example, which is a natural approach for storing free schema
documents based on the fact that they are well-supported [12]. However, in some cases
(e.g., a digital resource repository), a document database cannot be used. Document
database limitations include (but are not limited to) a lack of transactions, a lack
of data schema control, and poor support of the relationships between the data.
All of these features are provided by relational databases.

There are several data models in relational databases that allow for the storage
of open schema (also known as a generic data model [6]). This solution allows us to
modify the data model without changing the relational database schema. A couple
of the best-known solutions are Entity-Attribute-Value (EAV) [11] and inverted in-
dex [18]. Unfortunately, these lack schema readability; moreover, CRUD operations
are not as fast here as they are in the traditional model. However, many relatio-
nal databases recently started to support JavaScript Object Notification as a native
type. JavaScript Object Notification (JSON) [2] is a common data-interchange for-
mat designed primarily to serialize and transmit data over a network. It has many
advantages: it is easy for humans to read and write as a text format, relatively light-
weight (when compared to other alternatives), and supported in many programming
languages. It has an impact on storing dynamic data. According to a “new approach
to storing dynamic data in relational databases using JSON” [13], the performance
improvement was achieved when compared to the EAV model. The solution was also
compared with MongoDB (a representative document database), and the obtained
results were comparable. Although storing data in JSON has many advantages, it is
not free of imperfections. Representing dynamic objects’ schemas is difficult, and the
presented solution increases the complexity of query creation.

The main goal of this research is to prepare an open schema model that can be
used for creating a digital source repository. This domain uses data that possesses
a hierarchical structure. Additionally, for every type of data repository, it is required
to know the objects’ structure to create a query language, so the model should have
facilities to manage dynamic schema in a transparent way. Moreover, the reposi-
tory must keep cohesion between the objects and its references, so it should be able
to handle constraints on any hierarchical level, thus maintaining data consistency.
A partial solution is provided by the JSON features – the rest of the solution requi-
res preparation and testing. Developing an open schema model with a hierarchical
structure should be possible to adopt in every field of science and technology (where
such functionality is needed); so, the developed model must be universal.

This paper presents our model for a repository with hierarchical data in a re-
lational database. It comes along with a description of the terms for the repository
elements. These terms were used to create a component for keeping and maintaining
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the objects’ structure. It was designed to create constraints on the relationships on
any level in the hierarchy, which is a feature that is missing in the existing models.
We included a universal database schema for the model, which can be applied to any
repository along with a prepared object structure. We also described an architecture
for the final solution that was used in our benchmark. The product of the research
was tested and compared with the entity-attribute-model data model to measure the
achieved improvement in the time and disk space usage. The results show that our
model can be applied to any field where dynamic objects with a hierarchical repre-
sentation are needed.

Summarizing, the research goals are as follows:

1. Create a dynamic model for hierarchical data with support of JSON in which the
relationships and dynamic schema are maintained by a database engine.

2. Enable the creation of a DSL for querying data by keeping the structure of the
dynamic data.

3. Improve the query performance and disk space usage when compared to the
existing entity-attribute-model.

In the next section, we describe the current state of the art in the field of adapting
JSON into relational databases. We also include an overview of the existing open
schema model solutions. Then, we move on to presenting the terminology needed
for the generic data model for a repository along with its description. Later, we
describe the application of the created model to the repository. Finally, we present
an evaluation of the model in which we compared our model with the entity-attribute-
value model. At the end of the paper, we include our conclusions and the next steps
of our research.

2. Related work

The question of how to store data with a dynamic structure in a relational database
was asked a long time ago. It appeared when the diversity of the collected data
caused problems with their storage in a fixed database schema. One of the answers
for preparing an open schema storage approach was the development of the entity-
-attribute-value [11] and inverted index [18] models, which were applied to many fields
of science. However, these solutions were not perfect, so there were many attempts
to improve upon them. The experiments were made on clinical databases [3] and
bio-medical databases [11], for example. These ideas led to slight performance im-
provements; however, as mentioned earlier, the problems with the readability of the
schema that resulted in the difficulty of creating queries were not resolved. The per-
formance was still far from perfect, so relational database engines started to introduce
semi-structured objects as a native type. In the first approach, they introduced the
ability to store XML as a native type (Microsoft SQL Server 2005) [14], but its heavy
format increased disk usage [17].
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Most of the relational databases have already introduced the ability to store
JSON data:

• PostgreSQL 9.2 (2012),
• Oracle Database 12c Release 1 (2013),
• MySQL 5.7 (2015),
• Microsoft SQL Server 13.00 (2016).

This decreases the functional and performance gap between SQL and NoSQL [9].
Discussions on the utilization of JSON as a type for storing data with a dynamic

structure were conducted before database engines introduced it as a native type. The
most successful attempts to provide this feature consisted of custom implementations
of storing the JSON files. The most promising results were presented in “Enabling
JSON Document Stores in Relational Systems” [1] and “Sinew: a SQL system for
multi-structured data” [16], where two systems were introduced. The papers claim
that relational databases provide better performance than document databases in
some cases. They highly outperform the entity-attribute-value approach in every
test. Additionally, the extension of these benchmarks in “JSON data management:
supporting schema-less development in RDBMS” [8] has shown that introducing in-
dexes for JSON documents improves performance.

New perspectives in relational database engines opened up new opportunities
for a creating a repository for dynamic data in relational engines. The need for the
creation of such a system was diagnosed long ago. One of the well-known solutions
was a system called Lore, which was introduced in “Lore: A database management
system for semi-structured data” [10]. In this research, all of the aspects of a database
management system (including storage management, indexing, query processing and
optimization, and user interfaces) were revised. As a result, the created system was
designed to store any data structure; however, it required several adjustments outside
the database engine to allow it. Nowadays, the introduction of JSON as a native type
can simplify these settings and can be moved into a database engine, which should
improve the performance.

Designing such a repository will affect many fields of science. One of these is
criminal data, where the number of possible objects and relationships between them
is enormous. The adaptation of JSON was successfully presented in the “new approach
for storing dynamic data in relational databases using JSON” [13], where the tests
of the presented model showed a significant advantage over document databases in
real-use cases.

3. Modeling dynamic schema for generic repository

The main goal of this research is to create a model for the digital source repository
as a library of books and research papers. However, we always bear in mind that
we want to achieve wider applicability. In the beginning, we examined this problem;
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as a result, we observed that the initial use-case scenario can be broken down into
several elements. We divided them into two categories:

• resources – which are physical objects,
• relationships – which are connections between objects.

During the evaluation, we focused on two pairs of resources and relationships;
i.e., (Book, Author), and (See also, Related). These elements can have an enormous
variety of attributes, including multiple values of the same attribute (e.g., titles). The
simple example of a schema for Book and Author and the relationship between them
is shown in Figure 1. Undoubtedly, the presented case is simplified, but it is adequate
for understanding and addressing the problem.

Book #1

Title: 
The Da Vinci Code 

Language: 
ENG 

Title: 
Kod Leonarda da Vinci 

Language: 
PL 

See AlsoAuthor: 
Dan Brown 

Author #1

Name: 
Dan 

Surname: 
Brown 

Nationality: 
American 

Figure 1. Graphical schema of two dynamic objects and relationships between them for
digital source repository

3.1. Open schema model before JSON

For the verification of our research results, we selected an open schema model that,
with a few adjustments, could be used for implementing a repository with a dynamic
and hierarchical structure. Therefore, we applied our requirements to the EAV data
model. This forced an extension of the default model by adding two extra tables: one
for dictionary optimization, and one for resource linking.

Our goals require two types of relationships:

1. Resource-Resource – simple relationship between two resources; e.g., Book#1
has a relationship with Book#2.

2. Attribute-Resource – relationship between any attribute and external re-
source; e.g., Attribute Author in Resource Book#1 refers to Author#1.

In the schema in Figure 2, these types of relationships are realized by using the
EntityRelation table. The resource-resource relationship is represented by a row
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with valueId equal to the NULL value. The attribute-resource relationship row has
the valueId set to the identifier of the relationship attribute.

EntityName

idPK

name

Entity

idPK

entityIdFK

Value

idPK

referenceToEntityFK

parentFK

attributeIdFK

value

Attribute

idPK

nameEntityRelation

idPK

entityOneFK

entityTwoFK

valueIdFK

name

direction

Figure 2. Implementation of dynamic hierarchical model in EAV

The hierarchical structure of the attributes is implemented in two steps.
The reference of the first-level attributes to the resource is realized by setting
Value#referenceToEntity to the resource ID from Entity#id. The tree structure
of the attributes is created by setting Value#parent to the parent attribute. This
also means that NULL indicates the first level.

Summarizing, we have designed the five following tables in the EAV model:
• EntityName – dictionary table that contains names of resources.
• Entity – table that holds information about resource id and its type.
• Attribute – dictionary table that contains names of attributes.
• Value – table that holds string value of an attribute, relationship in hierarchy
(parent), resource owning value (referenceToEntity), and attribute id.

• EntityRelation – all relationships between resources, with the information of
name, direction, and type of relationship. If valueId is set, then type of rela-
tionship is attribute-resource; otherwise, resource-resource.
It is worth noticing that this schema facilitates the possibility of observing the

structure of the resource. However, it does not enforce consistency in the structure
between two resources of the same type. This is caused by not utilizing any control
schema mechanism. This implicates the problem of determining which attributes
appear in each resource type. Thus, the creation of an efficient DSL for queries is
almost impossible due to the huge number of joins required to examine the entire
structure.
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3.2. Open schema model after JSON

An analysis of the existing solutions resulted in the discovery of weaknesses in the pre-
vious model and gave us the inspiration for resolving them. We began the process of
developing the new model by defining the terminology required for the dynamic data
repository. As a result, we introduced Metadata, Template, Resource, and Rela-
tionship concepts. They can be divided into two categories: data storage and configu-
ration. However, Relationship is designed both for holding data content and ensuring
the repository integrity.

The primary unit of the repository is Metadata. The main idea of Metadata
is that it is arranged into a tree [15] with an unlimited number of children for the
parent. This allows us to represent data with a hierarchical structure. Metadata is
used in two meanings:

• Definition – which is used to control and maintain the schema. It contains in-
formation about itself: label, information about position in a hierarchical tree
(parent, ordinal number), type control (i.e., type of Metadata value – e.g., date,
text, number), constraints (e.g., regular expression, number range, or date for-
mat), and also a description and placeholder (if needed).

• Value – as an element of the content. It is defined as a key-value pair where the
key is a path in the hierarchical tree and the value stores its data.
The next piece of the repository configuration is Template, which connects the

metadata to each other into a logical unit. Template is defined by a label and a set
of metadata roots. It behaves like a root in a tree. It is worth noticing that the term
"Template” refers not only to the aforementioned first level of attributes but also the
entire sub-tree of the nodes reachable from such roots. It is used to create an identity
for an input; e.g., Book, Author, and See Also, which is demonstrated in Figure 1.

The major element in the repository (Resource) is responsible for holding the
normalized and validated input pushed into the repository. The validation mechanism
checks whether the content matches the template specified by the attached label. It
is not required to fill all of the metadata defined by Template, but a valid content must
not contain any metadata not included in Template. The normalization process is
responsible for transforming the data into a unified structure. This facilitates storage
and analysis of the input data. The designed structure is presented in Figure 3. It
starts with a root named content and refers to the first level of Metadata by labels.
They are combined by a list of input values that can refer to other resources and
can hold the next levels of metadata according to the hierarchical structure. The
next levels follow the same rules. The example of normalized input from Figure 1 is
presented in Figure 4.

The last element of the repository is named Relationship. This element is respon-
sible for controlling the schema and holding the data. This piece of the repository
is similar to Resource because it holds normalized content and has its own tem-
plate. The configuration part of the repository in this element is based on references
to resources in the relationship and direction. It might also reference Metadata.
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Relationships are created directly and indirectly: directly, when a relationship is of
the Resource-Resource type and is pushed into the repository; and indirectly, when
a relationship is of the Attribute-Resource type and is inferred from Metadata. The
second type ensures data integrity on any level in Resource’s hierarchy.

CONTENT

METADATA 
LABEL 1 

METADATA 
LABEL N 

...

VALUE

children children

... VALUE VALUE ... VALUE

reference to reference to

Figure 3. Visualization of structure used for normalization and validation
of repository input data

Figure 4. Digital repository input normalized to valid structure

A relational database schema that enables us to store the designed model is shown
in Figure 5. It consists of four main tables. Each element possesses its own table;
however, this implementation of the schema does not satisfy all of the requirements
posed at the beginning of our research.
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To achieve the remaining goals, we propose an extra layer with the mechanism
of validating and transforming the data pushed into the repository.

Resource

idPK

templateFK

content: JSON

Template
idPK

label: VARCHAR

Metadata

idPK

parent_idFK

label: VARCHAR

type_control: VARCHAR

description: VARCHAR

placeholder: JSON

ordinal_number: INT

contrains: JSON

Association table 

Relationship

idPK

resource_oneFK

resource_twoFK

metadata_idFK

templateFK

content: JSON

direction: INT

Figure 5. Model schema for dynamic repository in relational database

The algorithm consists of the following steps:
• before inserting the document, ensure its template already exists;
• push Data into Repository;
• validate and transform content:

– validate Metadata:

∗ ensure content has proper structure as described by Template,
∗ ensure values have proper type;

– transform content:

∗ JSON document to content structure,
∗ determine all indirect relationships of attribute-resource type and create
them;

• save all created entities in database.
The steps are applied for both Resource and Relationship. The presented data

flow can be implemented in the database engine as a procedure or trigger (or even
outside the database if needed).
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However, there is one main rule that needs to be respected: the whole process
must be carried out as a single transaction to preserve data consistency. Last but not
least, the unmentioned case of deleting Resource is subject to the constraints of the
schema. So, there is no possibility to delete a resource that is being referred to – if
there is a relationship between resources on any level (attribute/resource-resource),
the constraints in the relationship table will be checked, and the issue will need to be
resolved by the repository user.

4. Model application in repository

In the previous section, we presented a design of the model for a hierarchical dynamic
repository. However, it is not usable as a stand-alone solution; it must be utilized
by other components. Therefore, we prepared an entire architecture for our digital
resource repository (as presented in Figure 6). The ideas, however, are general and
can be applied to any domain.

API 

Store engine

DB FTSReplication

Query engine

Repository

Figure 6. Final repository architecture

As it can be observed, we divided it into several components. The first one is
Interface over the Internet (API) with the necessary methods for handling the data
processing. The two remaining services are Store Engine and Query Engine. Store
Engine is responsible for validating, transforming, and inserting data into the correct
tables. It is also responsible for creating and keeping the relationships between the
data (already mentioned in the data flow steps). Query Engine is responsible for
selecting the optimal query plan for executing the search action.
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To accomplish faster searching with the possibility of using a full-text search, we
decided to introduce a pattern: command query responsibility segregation. According
to [5], CQRS is a design pattern with a clear separation of reading and modifying the
data. Not only did we decide to utilize this technique by using two different engines,
but we also separated the query types between them. In the evaluated resource
repository, we have two search types:
1. search for content – e.g., search for book that has word ’digital’ in any lexical

form in Metadata value,
2. search for relationships – e.g., find all books that are connected by relationship

See also.
Thus, we ended up with two database engines: one with a built-in function for a full-
text search, and the second one – a relational database with native JSON support in
which we developed the model that keeps all of the data. It is also worth mentioning
that populating the FTS engine using the data kept in the relational engine is done
by a replication task.

5. Evaluation of model

In order to achieve our research goals, the next step was to compare the EAV mo-
del and the one we designed in the previous section. We started with selecting the
tools and database engines. Then, we prepared data sets and test use cases. Finally,
we analyzed the results of the executed tests.

5.1. Tools and database engines

Before we proceeded to the benchmark tests, we had to select the relational data-
base engine to compare our solution with the previous one. We decided to choose
PostgreSQL, which had promising results in many research projects [1, 13, 16]. Both
models were developed with the same engine (Version 10.4 – the latest at the time
of the research). Both implementations were also tested in the same run configura-
tion to obtain the most adequate comparison. The machine employed in the tests
had a 3.2 Ghz quad-core Intel i5-4460 processor with 16 GB of memory and 256 GB
of solid-state storage. During our test, we focused on the evaluation of the saving
process and queries about the relationship and accessing content. We decided to
omit the content query performance comparison since the data in both models can
be replicated to the search engine – e.g., Elasticsearch or Solr [7].

As a full-text search engine, we chose Elasticsearch 6.2. The major reason for
selecting this document database was its popularity in DB-engine rankings [4] and the
supporting tool – Logstash, which helped us create replication between the relational
database and the full-text search engine. Moreover, it has a feature crucial for our
model – it allows us to create a dynamic mapping for resource content. This is relevant
because we wanted to automate the indexing process by auto-applying analyzers for
different data types on all hierarchy levels without modifying the index configuration
during runtime.
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5.2. Test preparation

The process of preparing the data sets for the tests was based on goals – we wanted
to observe how increasing the number of resources while keeping the number of relati-
onships constant (and conversely) affected both models. For this purpose, we created
a data generator; it was based on a random selection of attributes from the complete
resource structure and filled by randomly selected values of data (e.g., names, last
names, lengths).

Thus, we generated 12 sets of data – 6 sets with different numbers of resources
(0.5 M, 1 M, 1.5 M, 2 M, 2.5 M, 3 M) and 1 million relationships, and 6 sets with dif-
ferent numbers of relationships (0.5 M, 1 M, 1.5 M, 2 M, 2.5 M, 3 M) and 1 million re-
sources. Each data set was generated in two variants that differed by the maximum
depth of each hierarchy tree: 2 (H2) and 5 (H5). In each data set, we created two
types of resources (Book and Author) and two types of relationships (See also and
Related).

For the benchmark, we selected three queries that were supposed to compare the
models at various levels.
(Q1) In the first query, we wanted to test the difference for the request for the values

of the attributes of the resources related to a specified resource. Therefore, we
implemented the following use case: for the given books, find the books titles
that have relationships with them.

(Q2) In the second query, we wanted to test the difference in the requests for the
resources related to another resource’s metadata. So, we implemented the fol-
lowing use case: find the books of a given author.

(Q3) As the last-use case, we wanted to obtain data from Resource, so we created the
following query: obtain the first pages of 100 selected books.

For each data set, we executed each query ten times and computed the median.
The implementation of the selected queries in both models is included below.

-- Implementation of Q1 in EAV
SELECT value.value FROM entityRelation
JOIN value ON value.referenceToEntity = entityRelation.entityTwo
WHERE value.attributeId = ? AND entityRelation.entityOne = ?
AND entityRelation.name = ?

-- Implementation of Q1 in developed model
SELECT resource.content #> ’{title, 0, value}’ FROM resource
JOIN relationship ON relationship.resource_two = resource.id
WHERE relationship.resource_one = ? AND relationship.template = ?;

-- Implementation of Q2 in EAV
SELECT entityRelation.entityOne FROM entityRelation
JOIN value ON entityRelation.valueId = value.id
WHERE value.attributeId = ? AND entityRelation.entityTwo = ?
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-- Implementation of Q2 in developed model
SELECT relationship.resource_one FROM relationship
WHERE relationship.metadata_id = ? AND relationship.resource_two = ?

-- Implementation of Q3 in EAV
SELECT v.value FROM value v
JOIN value v2 ON v.id = v2.parent
WHERE v2.attributeId = ? AND v.attributeId = ?
AND v2.referenceToEntity IN (?);

-- Implementation of Q3 in developed model
SELECT content #> ’{page_content, 0, value}’ FROM resource
WHERE template_id = ? AND id IN (?);

5.3. Test results

In the beginning, we measured the time it took to insert the data for both models.
In the case of our model, the measurements included all of the steps: validation,
transforming the data to a valid structure, and creating all of the needed indirect
constraints for the relationships. Additionally, we measured the size of the database
on the disk for each data set. In Figure 7, we presented the results for the data
sets with a constant number of relationships (Figure 7a) and with a constant number
of resources (Figure 7b). In both cases, we calculated how many times we achieved
better results in our model as compared to the EAV model.

An analysis of the results from Figure 7 led us to several conclusions. Increasing
the number of resources with constant numbers of relationships does indeed improve
the insertion time when compared to the EAV model. Increasing the max hierarchy
level also helped us obtain better results. However, the constant number of relations-
hips brings us different results. In this case, we see a slight decrease in the relative
difference between the models – since the relationships do not have any attributes, the
benefits of our solution become negligible. However, our model is capable of holding
the attributes of the relationships, whereas the EAV model is not. It is worth noticing
that the disk space usage is correlated with the insertion time. The speedup is corre-
lated with the weight of the JSON documents – which is noticeable in a comparison
of the time results and disk space in H5 and for constant numbers of relationships for
1M, 1.5M, and 2M.

In the next step, we ran three prepared queries on each data set. These results
are presented in Figures 8 and 9. In Q1, we obtained a speedup compared to the
EAV model. The efficiency gains are partially due to accessing the JSON files in our
model instead of the Value table in the EAV model. The most important factor, how-
ever, is the better modeling of the relationship types (Template compared with field
EntityRelation#type). This is particularly visible when the number of relationships
increases (Figures 8b and 9b).
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In Q2, we checked a simpler version of Q1 – it does not require access to a re-
source’s content. As a result, the improvement measured in this query is not as good
as in Q1, but an improvement is still achieved. This was expected, since the im-
plementation of the query is similar in both models. The primary advantage of our
solution is its lower disk space usage.
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Figure 7. Measurements obtained during insertion process compared to EAV model:
a) performance improvement for operations on data with constant number of relationships;
b) performance improvement for operations on data with constant number of resources
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Figure 8. Measurements obtained during running queries and compared with EAV model:
a) median of speedup for queries(H2) with constant number of relationships;
b) median of speedup for queries(H2) with constant number of resources
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Figure 9. Measurements obtained during running queries and compared with EAV model:
a) median of speedup for queries(H5) with constant number of relationships;
b) median of speedup for queries(H5) with constant number of resources

In Q3, we tried to examine the case of extracting a value from the structure.
In this query, we observed the highest (stable) speedup when compared to the EAV
model. In this case, it is clear that increasing the max level of a hierarchy provides
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better results. This is due to the use of JSON. The results of these measurements
and all of the other tests are presented in Tables 1, 2, 3, and 4.

Table 1
Median of measurements for operations for data sets with constant numbers of relationships

Our model EAV
Results Insert Time Disk Space Insert Time Disk Space

H2
0.5 M 00:08:26 0.72 GB 00:17:53 1.71 GB
1 M 00:13:08 1.25 GB 00:33:09 3.27 GB
1.5 M 00:15:50 1.78 GB 00:49:37 4.82 GB
2 M 00:18:35 2.32 GB 01:04:45 6.38 GB
2.5 M 00:20:36 2.85 GB 01:20:21 7.93 GB
3 M 00:22:13 3.37 GB 01:35:37 9.49 GB

H5
0.5 M 00:09:25 0.95 GB 00:29:02 2.88 GB
1 M 00:17:01 2.02 GB 01:24:56 8.56 GB
1.5 M 00:15:40 1.82 GB 00:50:23 5.06 GB
2 M 00:17:37 2.55 GB 01:03:52 6.28 GB
1.5 M 00:21:47 3.49 GB 01:42:58 10.49 GB
3 M 00:22:56 3.70 GB 01:51:50 11.04 GB

Table 2
Median of measurements for operations for data sets with constant numbers of resources

Our model EAV
Results Insert Time Disk Space Insert Time Disk Space

H2
0.5 M 00:08:07 1.16 GB 00:32:10 3.19 GB
1 M 00:12:21 1.25 GB 00:32:55 3.27 GB
1.5 M 00:16:54 1.34 GB 00:34:47 3.34 GB
2 M 00:23:20 1.44 GB 00:34:49 3.42 GB
2.5 M 00:28:56 1.54 GB 00:36:10 3.50 GB
3 M 00:37:19 1.62 GB 00:40:24 3.57 GB

H5
0.5 M 00:10:25 1.61 GB 00:58:53 6.02 GB
1 M 00:15:06 1.74 GB 00:58:37 5.76 GB
1.5 M 00:18:53 1.42 GB 00:38:19 3.71 GB
2 M 00:26:37 1.94 GB 01:05:56 6.41 GB
2.5 M 00:29:49 1.62 GB 00:57:34 3.87 GB
3 M 00:40:11 2.33 GB 01:27:15 8.54 GB
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Table 3
Median of measurements for execution on queries for data sets

with constant numbers of relationships

Results

Constant numbers of relationships

H2 H5

Our model EAV Our model EAV

Q1

[ms]

Q2

[ms]

Q3

[ms]

Q1

[ms]

Q2

[ms]

Q3

[ms]

Q1

[ms]

Q2

[ms]

Q3

[ms]

Q1

[ms]

Q2

[ms]

Q3

[ms]

0.5M 9 4 1 12 4 3 9 4 2 20 10 5

1M 8 4 2 13 7 7 13 5 3 22 9 10

1.5M 8 5 2 13 9 10 11 5 2 19 8 9

2M 11 6 2 14 9 11 13 9 5 18 13 12

2.5M 12 7 3 16 9 11 12 9 5 17 13 12

3M 13 7 4 16 13 13 13 7 3 17 11 13

Table 4
Median of measurements for execution on queries for data sets with

constant numbers of resources

Results

Constant numbers of relationships

H2 H5

Our model EAV Our model EAV

Q1

[ms]

Q2

[ms]

Q3

[ms]

Q1

[ms]

Q2

[ms]

Q3

[ms]

Q1

[ms]

Q2

[ms]

Q3

[ms]

Q1

[ms]

Q2

[ms]

Q3

[ms]

0.5M 9 5 1 12 7 7 10 4 2 12 8 10

1M 10 5 2 18 9 7 11 4 2 21 10 10

1.5M 11 4 2 20 8 7 11 5 2 32 11 9

2M 11 7 2 31 12 9 16 7 2 41 9 11

2.5M 13 5 2 34 9 8 14 5 2 37 9 11

3M 11 5 2 48 11 9 18 7 2 47 11 10

6. Conclusion and future work

At the beginning of the paper, we highlighted that we wanted to prepare an open
schema model that can be used in creating a digital source repository. Not only did
we achieve applicability to the digital repository, we also developed a general solution
that can be used in all fields of science and technology where hierarchical dynamic
data is utilized. Moreover, we managed to produce a model with a few extra features
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that were not included in our previous open schema solution. Summarizing, our
solution supports the following:

• open schema model for hierarchical data – by using JSON as data type for
dynamic objects,

• information about resource structure – by introducing schema configuration
tables (Metadata and Template) to keep all information about resource structure
with validation component for data integrity,

• consistency of data relationships – by introducing relationship table and all
needed constraints,

• possibility of creating relationship on any level – by creating necessary
fields in relationship table to maintain two types of relationships: resource-
resource and attribute-resource.

After the design process, we proceeded to test our model. For this purpose, we
implemented an entity-attribute-value and compared it with our solution in several
different usage scenarios. We evaluated the process of inserting data and three queries
that were supposed to demonstrate how the performance of a relationship search
and extraction of data differ between the two models. The prepared data sets were
combined with two categories of data: a varying number of resources with a constant
number of relationships and a varying number of relationships with a constant number
of resources. The results led us to some valuable conclusions. We observed that, by
using JSON for storing dynamic data, we decreased the used disk space, which resulted
in decreasing the times of inserting the data and executing the queries. The advantage
of our solution when compared to EAV grows with increasing both the number of
resources and the max hierarchy level. Due to the simplification of the schema, we
also observed a speedup in the tests with a constant number of resources and varying
number of relationships despite the fact that our model and EAV are relatively similar
in this case – we only added attributes that were not used. The results prove that we
can apply this model to a real application without concerns about its performance.

Although our model is universal and complete for the presented purpose, we have
a few ideas on how we can improve this repository. First of all, we are going to in-
troduce the possibility of executing graph queries for the relationships, seeing as the
performance of the existing algorithms leaves much to be desired. We believe that
creating an algorithm based on a dynamic JSON structure can provide a significant
performance boost. We hope that such an algorithm will be comparable in perfor-
mance to the graph databases under some circumstances. The second idea is based
on CQRS, which was introduced in the section on repository architecture for sepa-
rating queries type. We have yet to develop a mechanism that allows us to execute
queries involving both relationships between the resources and their contents. We are
considering two strategies: first-query data (Elasticsearch) or first-query relationships
(PostgreSQL). We do not know which approach should be used for a mixed query yet
– e.g., find authors for books with a title containing ‘Foo’. We expect both ideas to
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be viable; implementing either should significantly increase the applicability of our
solution to domains that require complex queries.
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