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Abstract In this paper, a prototype lifelogging system for monitoring people with cog-

nitive disabilities and elderly people as well as a method for the automatic de-

tection of dangerous activities are presented. The system allows for the remote

monitoring of observed people via an Internet website and respects the pri-

vacy of the people by displaying their silhouettes instead of their actual ima-

ges. The application allows for the viewing of both real-time and historical data.

The lifelogging data (skeleton coordinates) needed for posture and activity re-

cognition are acquired using Microsoft Kinect 2.0. Several activities are marked

as potentially dangerous and generate alarms sent to caregivers upon detection.

Recognition models are developed using Averaged Hidden Markov Models with

multiple learning sequences. Action recognition includes methods for differenti-

ating between normal and potentially dangerous activities (e.g., self-aggressive

autistic behavior) using the same motion trajectory. Some activity recognition

examples and results are presented.
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1. Introduction

In its original meaning, Lifelogging is a practice sharing one’s life data with other

people or even the general public with the use of various wearable devices. This

practice can be traced back to the 1980s when Steve Mann started his work on his

line of Wearable Wireless Webcam devices [6]. Since then, the popularity of lifelogging

has greatly increased. This was partially facilitated by the development of lighter and

more sophisticated wearable devices.

While lifelogging started out as a social phenomenon, its applications have since

spread. Nowadays, it can be used for the remote or automatic monitoring of people

in places like hospitals or for elderly care. Lifelogging can mean the acquisition of any

kind of real-time personal or life data, but it most commonly means the acquisition

of video data. In this case, however, remote care lifelogging systems have to ensure

the privacy of the people being observed.

Human Activity Recognition (HAR) is a research field that aims at classifying or

predicting the actions of an individual based on observations. Such a process is very

important for lifelogging, as it allows us to classify what the observed person is doing

(activity, body position, gestures, etc.) without assistance or with limited help from

the supervising individuals.

While HAR is used for recognizing a variety of activities in many applications,

there is a subfield of HAR called Abnormal Human Activity Recognition (or AHAR).

This subfield is concerned in recognizing abnormal, dangerous, or alarming situati-

ons that frequently arise in healthcare, elderly care, or care for cognitively impaired

persons (e.g., autistic children). Such situations include fainting, seizures, falling,

self-aggression, unattended home exits, and others. It is important to recognize such

abnormal activities automatically with high accuracy and a low false-positive rate.

In this paper, we present an approach to dangerous activity recognition (which

falls under AHAR) by the use of Hidden Markov Models (HMMs). In particular,

we employ Averaged Hidden Markov Models (AHMMs) as the basis for developing

a classifier that is able to recognize activities (including posture changes and hand acti-

vities) and classify an activity as potentially dangerous. We also present a prototype

of a lifelogging application that uses the developed classifier together with a Micro-

soft Kinect 2.0 sensor. The application allows for the real-time monitoring a person

without invading the person’s privacy while gathering data for future consultation

and providing automated alarm messages via e-mail or SMS.

The remainder of this paper is structured as follows. Section 2 presents an over-

view of literature on lifelogging as well as activity and gesture recognition. Section 3

contains the notation used throughout the remainder of the paper. Section 4 contains

the primary findings of the paper, including mathematic basics, methods, and the

process leading to the development of activity recognition models based on HMMs as

well as some examples, testing results, and definitions of the positions and activities

being recognized. Section 5 describes the prototype lifelogging application utilizing

the developed models. Finally, Section 6 presents the conclusions.
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2. Literature overview

In this section we present a review of the papers related to lifelogging as well as the

detection of abnormal and dangerous activities and gesture recognition, focusing on

those works most relevant to this paper. We also focus on the applications of the

presented approaches, including healthcare, support, and the monitoring of children

and the elderly.

2.1. Lifelogging

As explained in Section 1, lifelogging started out as a practice of sharing one’s life data

with other people, effectively becoming a social phenomenon with little connection

with science. However, new applications for lifelogging have been found recently

(healthcare in particular). This has led to a number of papers studying various

aspects of lifelogging or proposing it as a solution to some problems. In this overview,

we focused on lifelogging aspects relevant to the topic of this paper. For further

reading on other aspects of lifelogging, please consider [2].

Various limits and controversial aspects of lifelogging were the topic of a paper

by O’Hara et al. [9]. One such aspect discussed in the paper is privacy. The aut-

hors argued that the privacy concerns associated with lifelogging are overblown, as

the activity data collected by lifeloggers would often be voluntarily released into the

public domain. The authors also claimed that the information gathered through life-

logging can be empowering for the lifelogger and help him construct an online identity.

However, while true for the original life-sharing application of lifelogging, privacy is

more of a concern for other applications (like healthcare).

One example of such an application was presented in a paper by Wu et al.,

where the SensCare system for semi-automatic activity logging for elderly care was

introduced [19]. In their work, mobile sensors were employed with the ability to log

a user’s activity for 24 hours without charging. The authors concluded that their

unsupervised method of activity logging had a reasonable accuracy (an average F1

score of 0.65) and that the system is directly beneficial to the users, as it allows them

to recall their activities at particular points in the past. Moreover, the authors argue

that the lifelogging systems existing at the time generated low-quality activity logs,

severely limiting the uses of lifelogging for elderly care.

Yoshihara et al. proposed a lifelogging system for the elderly through a com-

bination of passive and active perception [21]. Passive perception was realized by

a network of sensors (including smartphones), while active perception was realized

by a conversation system for direct human-to-robot partner communication. Finally,

the lifelog data was visualized to the elderly peoples’ families and caretakers through

a cloud database.

Similarly, Van Kasteren et al. introduced an unintrusive activity monitoring

system for elderly care [4]. The system employed a wireless sensor network for col-

lecting observations. Two approaches were used: an HMM as an example of generative
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models and Conditional Random Fields (or CRFs) as an example of a discriminative

model. Finally, four real-world datasets were used to test the effectiveness of the

approaches. The results indicated that CRFs are more prone to overfitting. The au-

thors also concluded that the layout of a house greatly affects the performance of the

activity recognition.

As a final paper concerned with lifelogging, we discuss a work by Jalal et al. [3]

where a depth video sensor was used together with HMMs for human activity recog-

nition for elderly care in smart indoor environments. In the first step, information

from the depth sensor was used to train Markov models to recognize the activities.

In the second step, the trained system was used to produce lifelogs. The complete

system was tested against smart indoor activity and MSRDailyActivity3D datasets.

The results were promising, making the approach proposed by the authors suitable

for home, office, or hospital environments.

2.2. Abnormal activity recognition

In this subsection, we overview papers related to the recognition of abnormal activi-

ties, including fall detection and child tantrum analysis. For a more exhaustive review

on video-based abnormal human activity recognition, please consider [11].

The first category of abnormal situations often considered in the literature is

a human fall. As such, a number of approaches exist for detecting such situations

(most commonly based on visions). For example, Miaou et al. proposed a system

employing a MapCam omni-camera for elderly fall recognition [7]. The MapCam is

used to map a 360-degree field and eliminate blind zones. Personal information of

the observed people are used to fine-tune the system in order to reduce the number

of false alarms. Tests indicated that the accuracy of the system was 68% and 79.8%

without and with personal information, respectively. The authors claimed that the

system was reliable based on a Kappa value of 0.798.

The next paper on fall recognition for elderly care by Nana et al. employed

Kinect combined with a three-axis accelerometer for the generation of data that was

then classified with Support Vector Machines (SVMs) [8]. The experiments indicated

that the accuracy of the proposed system was above 98%. Acyclic graph SVMs for

fall recognition were also used by Yu et al. [22]. The authors employed background

subtraction, ellipse fitting, and a projection histogram for distinguishing different

human postures. Experiments based on a dataset of 15 people in a simulated home

environment indicated a high fall detection rate of over 97% while maintaining a low

false detection rate of below 1%.

Yin et al. proposed an abnormal activity recognition system based on wireless

sensors attached to a human body combined with SVM and kernel nonlinear regression

methods [20]. The authors emphasized the need for reducing the false positive rate.

The experiments on the real data indicated the effectiveness of the approach even

without explicitly labeling the abnormal activity data. This is beneficial, as abnormal

data is rarely compared to normal data.
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Khan and Sohn proposed an abnormal human activity system based on

R-transform, Kernel Discriminant Analysis, and HMMs [5]. The authors conside-

red a set of abnormal activities other than human fall, including chest pain, fainting,

vomiting, and headaches. The authors also ensured the privacy of the elderly people

by extracting binary silhouettes from video sensors. The tested average recognition

rate was over 95%.

Pal et al. considered gesture recognition for the purpose of avoiding occupational

hazards from prolonged sitting in a particular posture [10]. The authors employed

a similarity matching algorithm with 7 similarity measures for recognizing 14 different

gestures. The test results were statistically validated using the Friedman test. The

observed accuracy recognition was above 94%.

The last group of approaches concerns the care for people with cognitive impair-

ments, neurodevelopmental disorders (such as autism), or diseases. One example of

such an approach is a work by Rowe et al. [17], who proposed their CareWatch system

for the care for people with Alzheimer’s disease. The monitoring system was designed

to automatically recognize unattended home exits and improve caretaker sleep. The

effectiveness of the CareWatch system was tested on two clinical trials, with one of

them being completed and one still ongoing. Results showed the system decreased

the number of unattended exits and improved caretakers’ sleep. The system operated

for more than 200 months of combined operation times with no major failure.

A system for monitoring and recognizing potentially dangerous activities (inclu-

ding self-aggression) of cognitively impaired people was proposed by Postawka [14].

Averaged HMMs with an acceleration measure combined with a depth sensor were

used to distinguish dangerous and normal behavior. Tests using a set of data con-

taining hitting and touching sequences were used to ascertain the effectiveness of the

proposed approach. Finally, Yu et al. proposed an HMM and Kinect sensor approach

for observing the behavior of children [23]. Combined with medical knowledge, this

method was used to help recognize abnormal activities in children. The developed

prototype system was used to provide doctors and parents with valid and reliable

data concerning autism symptoms for early autism detection.

2.3. Final notes and summary

As for the final part of the literature overview, we present a few more papers and re-

views related to human activity and gesture recognition in general. We also summarize

the overview and draw several conclusions about the state of research on lifelogging

and abnormal activity recognition.

Postawka considered the problem of recognizing warm-up exercises with Ki-

nect 2.0 [13]. The approach used an averaged HMM, constructed using a proposed

Sequences Concatenation Algorithm. The resulting model was tested against 13 exer-

cises. The results indicated that the final averaged model combined the features of the

component models, recognized more sequences, and did not confuse the recognized

activities with others. Similarly, Siddiqui et al. considered the problem of recognizing
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human gestures, which is important from the viewpoint of Human-Computer Inte-

raction (HCI) [18]. Once again, Kinect was used to train an HMM-based algorithm

on three types of gestures. The algorithm was then evaluated against 228 test videos.

The final accuracy of the approach exceeded 80%. For a more exhaustive study of the

aspects of and approaches to human activity recognition with RGB cameras, depth

sensors, and other devices, please consider [1].

From the above literature overview, we can conclude that the recognition of ab-

normal human activities has garnered considerable attention among researchers, and

it only continues to develop. Its applications are mostly associated with healthcare

and elderly care, but they can also be used in detecting the early symptoms of various

cognitive impairments. Furthermore, AHAR is often combined with lifelogging, which

has long since stopped being merely the sharing one’s life data with others; nowadays,

it is being used to monitor the activities of elderly, children, patients, or even office

workers.

However, while privacy might not be a big concern for regular lifelogging, it is

a concern for its healthcare applications, as privacy helps ensure that those being

monitored feel comfortable. Finally, we note that video and depth sensors (Microsoft

Kinect in particular) are often used as a means of gathering lifelog data. Moreover,

utilizing Hidden Markov Models is one of the most commonly used approaches in

achieving Abnormal Human Activity Recognition.

3. Notation

In this section, we present the mathematical notation that will be used with the

Hidden Markov Models:

• λ = {A,B, π} – 3-tuple defining complete parameter set for HMM,

• N – number of states,

• M – number of observation symbols,

• T – length of observation sequence,

• A = {aij : i, j ∈ {1, . . . , N}} – state transition matrix,

• B = {bij : i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}} – probability distribution matrix for

observed symbols,

• π = {πi : i ∈ {1, . . . , N}} – initial state distribution vector,

• O = O1, O2, . . . , OT – observation sequence,

• I = i1, i2, . . . , iT – decoded state sequence,

• Oj:k = (Oj , Oj+1, . . . , Ok−1, Ok) – subsequence of O, including symbols from j-th

to k-th, inclusive.
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Additionally, for Averaged Hidden Markov Models (AHMMs), the following no-

tation has been applied:

• D – number of component models,

• x(d) : d ∈ {1, . . . , D} – value x from d-th component model,

• ¯̄X – cardinality of X.

4. Methods

All of the methods used in the research are based on basic Hidden Markov Models

and the algorithms described in Subsection 4.1. In particular, the solutions used for

action recognition are based on the Averaged Hidden Markov Models [13] obtained

by averaging multiple component models with a similar structure. The process of pa-

rameter calculation for such similar models is briefly described in Subsection 4.2. The

equations for averaging the component models are presented in Subsection 4.3.

The purpose of a lifelogging system requires the developed methods to be appli-

cable in real-time action recognition (as described in Subsection 4.4). The developed

system is also capable of potentially dangerous action detection – these methods are

described in Subsection 4.5. The modeled positions and activities are presented in

Subsection 4.6.

4.1. Hidden Markov Models

Modeling with the use of HMMs is a probabilistic method for the study of discrete time

series [12]. The complete model λ consists of three parameters: transition matrix A,

symbol distribution matrix B, and initial state distribution π. In the issue of HMMs,

there are three key problems that must be solved in order to use the models in practical

applications [16]:

Evaluation. Compute the probability of observation sequence P (O|λ) given observa-

tion sequence O and model λ = {A,B, π}. The mathematical solution to this problem

is presented in the equation below:

P (O|λ) =
∑
all I

P (O|I, λ)P (I|λ). (1)

The problem could be equivalently stated as “score/evaluate the model based on the

model parameters and observation sequence.” The problem is usually solved by a dy-

namic programming method called a forward-backward procedure with a complexity

of O(N2T ) instead of complexity O(NTT ) obtained by the direct implementation of

Equation (1) [16]. The method is very useful when we have multiple models and

we want to choose the one that describes the given observation sequence in the best

possible way.
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Decoding. Estimate state sequence I given observation sequence O and model λ =

{A,B, π}. The problem could be stated differently depending on the chosen optimality

criterion [16]. If the aim is to choose states it that are individually most likely, then the

impossible state sequence could be obtained in the model with disallowed transitions.

Therefore, the optimality criterion used in this problem is usually the single best path;

i.e., the issue is to maximize P (O, I|λ). For the solution of the latter criterion, the

Viterbi algorithm is used (along with dynamic programming).

Learning. Adjust model parameters λ = {A,B, π} in order to maximize probability

P (O|λ) given observation sequence O. So far, there is no analytical method to solve

this problem. Solutions are usually obtained with the use of an iterative procedure

(such as the Baum-Welch algorithm) or gradient methods [16].

4.2. Component models

The AHMM model is based on a single base model and on multiple child models,

which are structured in a similar fashion to the base model. In the learning phase, all

of the component models use the temporarily created Unique Lists (UL), including

only the HMM symbol changes in the learning sequence (e.g., learning sequence L =

(1 1 1 5 5 19 19 5) would have generated such an UL: LUL = (1 5 19 5)). The process

of UL generation is described by Equation (2).

L = (ai)
¯̄L
i=1 =⇒ LUL = (ai), ai 6= ai+1. (2)

The described procedure is only used for model structure designation; i.e., to establish

the beginning conditions for the Baum-Welch algorithm [16]. The component models

structure is defined by filling the zero and non-zero values in Matrix B, as the Baum-

Welch algorithm does not change zero to a positive number. Matrix A is initially an

upper triangular matrix defined as follows:

A = {aij} : aij =

{
0 for i < j

1
N−i+1 for i ≥ j

(3)

where i, j ∈ {1 · · ·N}.

Base model. The base model is a simple left-to-right HMM model [16] where subse-

quent states correspond to the subsequent HMM symbols in the UL. Basically, such

a structure could be interpreted as a non-ergodic Markov chain. The learning se-

quence chosen for generating the base model (later called the pattern and denoted

as P ) is the longest one in terms of the number of elements in the UL.

P = LULi
: ∀j∈D ¯̄LULi

≥ ¯̄LULj
(4)

The model parameters are calculated using the Baum-Welch algorithm. The number

of states in the base model is equal to N = ¯̄P + 1. The last state is introduced for

the eventual noise added in the later phases and BN = BN−1.
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Child models. Child models are generated based on the structure of the base model

and a new learning sequence. This process is realized by matching the symbols in

a pattern and a new sequence (denoted as N) using ULs (Fig. 1). The purpose of

the algorithm is to maximize the number of overlapping symbols while keeping the

symbol order. The problem could be stated as follows:

maximize ¯̄X, (5)

subject to P = (pi)
¯̄P
i=1,

N = (ni)
¯̄N
i=1,

X = {(pi, nj)} : pi = nj ,

∀k,l,m,r[(pk, nl) ∈ X ∧ (pm, nr) ∈ X ∧ k < m =⇒ l < r].

The child model has the same number of states as the base model, and the overlap-

ping symbols are assigned to the same state. The groups of symbols between the

overlapping pairs are undesirable both in the pattern and in the new sequences. Such

a group of mismatched symbols in the pattern means a long skip transition between

states, while a group of mismatched symbols in the new sequence means noise added

to the next used state (Fig. 1, case 2).

In contrast, the alternately mismatched symbols from the pattern and new se-

quence (Fig. 1, case 1) stand for using the existing state from the base model with

the HMM symbol replaced with the one from the new sequence. In such a case, we

do not lose the information about the symbol order.

Figure 1. Case 1: example of child algorithm; Case 2: unwanted situation

The problem might be resolved by an optimal algorithm; however, it is only

suitable for small instances. The method has been implemented as a tree-based

algorithm where the tree leaves correspond to the P and N index changes. For each

leaf in the new iteration, we get 3 new paths: (pi, nj+1), (pi+1, nj), and (pi+1, nj+1).

The algorithm is accelerated by cutting off the branches that cannot give a better

complete solution than the best partial solution already found (here, the worst future

case is applied). Number of leaves Y depends on the problem instance and is located

within the range of 2
¯̄P+ ¯̄N ≤ Y < 3

¯̄P+ ¯̄N .
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Because of the memory complexity, an approximate algorithm has been created

[13] that finds the optimal solution in most of the investigated cases. The method

cuts off each of the branches with a worse partial solution. The number of leaves is

estimated to be Y < 2
¯̄P+ ¯̄N .

4.3. Averaging models

In the last stage, all of the D similar component models are averaged. The vector

of weights w has to fulfill condition (6). Particularly, the arithmetic average (i.e.,

w = {wd = 1
D}) meets the requirements. The elements of matrices A and B and

vector π are calculated due to Equations (7), (8), and (9), respectively.

w = {wd : d ∈ {1, . . . , D} ∧ wd ≥ 0 ∧
∑D

d=1 wd = 1} (6)

āij =
∑D

d=1 wd · a(d)
ij (7)

b̄ij =
∑D

d=1 wd · b(d)
ij (8)

π̄i =
∑D

d=1 wd · π(d)
i (9)

Example 1 – Model generation

In an imaginary recognition system, the space is divided into M = 9 3D frag-

ments mapped into HMM symbols; i.e., bij ∈ {1, 2, . . . , 9}. For an activity, the two

learning sequences were recorded. For each discrete sample, the HMM symbol was

assigned. As a consequence, the model is created based on two learning sequences:

L1 = (5 5 5 5 5 7 7 7 6 6 6 6 3 3 2 2 2 2) and L2 = (7 7 7 7 7 4 4 4 2 8 8 8 1 1). For

each symbol list, the UL is created: L1UL
= (5 7 6 3 2) and L2UL

= (7 4 2 8 1).

The base model is created based on sequence L1, while both ULs have the

same length (otherwise, the longer one would be chosen). Number of states N = 6 is

the list length increased by 1. Initially, matrix B is filled with 1 for respective symbols

from L1UL
and with 0 otherwise. This means that only the following elements are

positive: b15, b27, b36, b43, b52, and b62. Matrix A is an upper triangular matrix

according to Equation (3), and vector π = (1 0 0 0 0 0). Next, the initially filled-in

matrices are forwarded to the Baum-Welch algorithm. The calculated parameters of

the base model are presented in Figures 2 and 3.

The child model is generated based on the base model and new sequence L2.

The solution for the child structure problem for P = L1UL
and N = L2UL

resolved by

the optimal or approximate algorithm is presented in Figure 4. The initial conditions

for Matrix B in the Baum-Welch procedure include the positive values for b15, b27,
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b36, b43, b44, b52, b61, b62, and b68. Matrix A is an upper triangular matrix again, and

vector π = {πi = 1
6}. The parameters calculated by the Baum-Welch algorithm are

presented in Figures 5 and 6. The initial distribution vector equals π = (0 1 0 0 0 0).

The averaged model is created based on the base model, child model, and

Equations (7)–(9). The final graph and HMM symbol distribution for the states is

presented in Figures 7 and 8. The initial distribution vector equals π = ( 1
2

1
2 0 0 0 0).

Figure 2. Base model – graph reflecting transition matrix

Figure 3. Base model – HMM symbol probability distribution for states

Figure 4. Solution for child structure problem

Figure 5. Child model – graph reflecting transition matrix
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Figure 6. Child model – HMM symbol probability distribution for states

Figure 7. Averaged model – graph reflecting transition matrix

Figure 8. Averaged model – HMM symbol probability distribution for states

4.4. Real-time recognition

Real-time recognition in an HMM is a much more complicated task than the typical

evaluation. The requested information is not just the question of whether sequence O

could be generated by model λ (by calculating posterior probability P (O|λ)) but also

whether the recognized activity is complete or not [14]. The posterior probability for

observation sequence O = O1:T and model λ fulfills the following condition:

P (O1:T |λ) > 0 =⇒ P (O1:t|λ) > 0, where t ∈ {1, . . . , T}, (10)

Thus, all of the partial beginning sequences of the complete activity sequence

would be recognized. Therefore, additional parameter NR (the ID of the last state

that must be accessed) has been added to the AHMM model. In the component

models, the value is set based on the learning sequence and obtained model. In the

resultant model, the value is chosen as NR = min{N (d)
R }.

Moreover, to check whether the recognized activity is complete or not, the last

state of the AHMM model is searched for the last symbol from the sequence. Vector

BN contains the probability distribution of the symbols that occurred at the end of all

of the learning sequences. Value b̄Nj = 0 means that the complete activity sequence

cannot end with symbol j.
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Summarizing, for each new symbol sequence O, the posterior probability is cal-

culated. If it is greater than zero, then condition b̄NOt > 0 is checked. If the condition

is fulfilled, then the state sequence is decoded using the Viterbi algorithm [16]; finally,

the last decoded state is compared with the NR value. If it is equal or greater, then the

sequence is marked as recognized and complete.

As the activity sequence could start at each time moment, a list of partial se-

quences is generated (Fig. 9). For each new observation symbol Ot 6= Ot−1, a new

partial sequence (single-element) is created and all other sequences already existing

in the list are prolonged by this new symbol. Each of these sequences are tested

by the algorithm from the previous paragraph. Partial sequence Ot1:t2 is deleted from

the list only when P (Ot1:t2 |λ) = 0 for all λ models.

Figure 9. List of partial sequences in real-time recognition

4.5. Potentially dangerous action detection

The potentially dangerous activities that are much different from all normal activities

are quite easy to detect using the previously described methods. The problem arises

when the motion uses the same trajectory as another modeled activity and the only

difference is the speed of motion [14].

Posterior probability P (O|λ) is not a sufficient threshold, as can be seen in the

exemplary diagram in Figure 10a. In the chart, the histograms of the log(P (O|λ))

value for the similar motions (hitting the head and touching the head with right hand)

have been presented. The diagrams are not separable.

20 30 40 50 60 70 80 90

0

2

4

6

8

10

12

20 30 40 50 60 70 80

0

2

4

6

8

10

12

14

16

18
a) b) c)

Figure 10. Examination of feature f quality as discriminant. Histograms for hitting and

touching head with one/both hands: a) f = log(P (O|λ)), right hand; b) f = ¯̄Ot1:t2 , right

hand; c) f = ¯̄Ot1:t2 , both hands
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In reality, with equally quantized time, number of samples ¯̄Ot1:t2 is a kind of

a measure for the speed of motion. In order to get rid of the idle processes at the

beginning and end of the action, the repeating symbols have been removed; e.g.,

L = (2 2 2 5 5 19 25 25) =⇒ L = (2 5 5 19 25). As can be seen in Figures 10b

and 10c, the number of observations in the sequence discriminates the classes; thus,

this feature has been calculated for each pair of normal and potentially dangerous

movements that use the same motion trajectory.

4.6. Experiments and results

The activities modeled in the system are presented in Table 1. The left column

presents the list of 7 positions recognized in the system. The position recognition is

realized based on tree-based classifier [15], with a recognition accuracy above 99% for

the test data.

Table 1
List of modeled exercises

Position Position change Activity

Standing (A) Standing → Sitting (chair) Right arm twisting forward

Sitting (chair) (B) Sitting (chair) → Standing Right arm twisting backward

Kneeling (C) Standing → Kneeling Raising and lowering right hand

Bending (D) Kneeling → Standing Left arm twisting forward

Lying (E) Standing → Bending → Standing Left arm twisting backward

On all fours (F) Sitting (chair) → Bending → Sitting (chair) Raising and lowering left hand

Sitting (ground) (G) Sitting (ground) → Lying Both hands twisting forward

(H) Lying → Sitting (ground) Both hands twisting backward

(I) Sitting (ground) → Standing Raising and lowering both hands

(J) Standing → Sitting (ground) Clapping hands

Clapping hands over the head

Crawling forward

Crawling backward

Touching head with right hand

Touching head with left hand

Touching head with both hands

Hitting head with right hand

Hitting head with left hand

Hitting head with both hands

The middle column contains a list of the 10 activities based on the position

changes. These activities are modeled with AHMMs. The average recognition rate

for these models is above 95%. The experiment results for these activities are discussed

later in this subsection. The activities are labeled with letters for easier reference.

Finally, the right column presents 19 activities based on hand movements. The

activities labeled as potentially dangerous are shown in italics. The average recog-

nition rates for the normal activity models are above 92% and 69% for one- and

two-hand activities, respectively [13]. The least recognized activity is crawling, as

such a motion is hardly captured by the device. The both-hand motions without
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crawling are recognized with an accuracy above 86%. The potentially dangerous acti-

vities are detected with a recognition rate of 84% and 52% for one- and both-hand

motions, respectively [14]. The system is fully scalable – the activities can be easily

modified by adding or removing models from the appropriate directory.

In this work, the emphasis has been placed on the activities based on posture

changes. Such models are versatile and can be applied to many problems. For exam-

ple, the classifier could be adjusted to detect the number of position changes within

a time period, which can then be used to estimate the emotional state of the observed

person (nervousness detection).

AHMMs have been adopted to this problem for the first time. The HMM ob-

servation symbols (position numbers) are obtained from the position classifier. For

each of the 10 activities, 41 sequences have been recorded. The recording contains

the different variants of each activity; e.g., two examples of Standing −→ Bending

−→ Standing activities are presented in Figure 11.

Figure 11. Two different variants of same activity (a few chosen frames)

The bone thickness in the picture only corresponds to the joint accuracy obtained

from the Kinect library (the thinner bones are inferred). The sequences composed

of the human silhouette coordinates and the HMM symbols were manually cut out

from the recording and sorted by the activity ID. Next, the sequences were divided

into a training set (16 sequences per action) and test set (25 sequences per action).

The learning phase proceeded in accordance with the description in Section 4.1. The

learned models were first examined by the sequences from the training set so as to

make sure that there are no false positives and each of the learning sequences is

recognized. Finally, the model’s confusion matrix (visible in Table 2) was calculated

for the test set.
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Table 2
Confusion matrix for activities based on position changes

(labels taken from middle column of Table 1)

A B C D E F G H I J

A 24 0 0 0 0 0 0 0 0 0

B 0 25 0 0 0 0 0 0 0 0

C 0 0 24 0 0 0 0 0 0 0

D 0 0 0 22 0 0 0 0 0 0

E 0 0 0 0 24 0 0 0 0 0

F 0 0 0 0 0 24 0 0 0 0

G 0 0 0 0 0 0 25 0 0 0

H 0 0 0 0 0 0 0 23 0 0

I 0 0 0 0 0 0 0 0 24 0

J 0 0 0 0 0 0 0 0 0 23

The average recognition rate for the activities based on position changes is 95.2%.

The good results are obtained due to the high classifier accuracy. However, it should

be noted that the real accuracy mainly depends on the observed person’s position re-

lative to the Kinect device. If the person is fully visible to the device, then the recog-

nition rate should be similar to the one measured in this experiment. Otherwise, the

limb coordinates may be incorrectly estimated by the Kinect library; therefore,

the classifier may return misleading information. On the other hand, such noisy

recordings (based only on a person’s silhouette) are not recognized by humans either.

Another important achievement is the lack of false positives. In the case of short

sequences (often containing 2 or 3 symbol changes), there is a risk of adding too many

transitions and too much noise to the model. In effect, such a model would recognize

not only its own activities but also many others that are seemingly not similar. Such

a problem occurred while not enforcing the alternate symbols in the child models.

5. Lifelogging application prototype

In this section, we present a prototype logging application created using the developed

activity recognition models along with a posture classifier. This application can be

divided into two major components: (1) a vision platform; and (2) a workspace PC

with a server. The architecture of the system is shown in Figure 12.

The vision platform consists of a Microsoft Kinect 2.0 sensor and a step motor.

Kinect is connected to the workspace server and sends the sensor data of the observed

person to the server using JSON. Such a system works, but the angle of observation

is limited. In order to alleviate this, a step motor is added to allow the Kinect sensor

to be rotated in order to change the observation angle. The step motor is controlled

by the input from the workstation server.
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Figure 12. Lifelogging application architecture

The workspace machine hosts a Node.js server (written in JavaScript), which

employs the developed models to recognize and classify the activities and positions.

An SQL database is used to store the observed data for future viewing. The server

analyzes the obtained image data and sends control signals to the step motor in order

to keep the observed person in the center of the observation area. The server also

hosts a webpage that can be used to access the application from anywhere in the world

via the Internet. The application also includes an alarm service for automatically

messaging the caretakers via e-mail or an SMS when a dangerous activity is detected.

Screenshots of the working application presenting some of its features are shown in

Figures 13, 14, and 15.

Figure 13. Example detection of non-dangerous activity
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Figure 14. Example detection of potentially dangerous activity

Figure 15. Example recognition history and statistics

The application has the following functionalities and features:

• the possibility of real-time monitoring of the activities of observed person by

multiple caretakers from anywhere in the world,

• the possibility of viewing historical data for a chosen time period, complete with

silhouette visualization,

• ensuring privacy by visualizing only the silhouette of the monitored person (in

both the real-time and historical modes),

• support for various web browsers with no need for dedicated software,

• automated recognition and classification of positions and activities with recogni-

tion of potentially dangerous activities,

• easily extendable – more recognition models for new activities can be added

simply by replacing a few files,
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• automated warning messages through e-mail or SMS in the case of recognizing

dangerous activity,

• the possibility of automatically keeping the monitored person in the center of the

viewing area with the use of a step motor,

• accounts for caretakers.

It should be noted that the presented application is just a prototype serving

to test the developed recognition method in practical applications. The classifier

performs well on its own; however, the addition of the database, server, and other

functionalities decreased the rate at which the data from the Kinect sensor is pro-

cessed, visualized, and classified. This in turn negatively affects the accuracy of the

classifier. In order to fix this, the application code or architecture must be optimi-

zed. Alternatively, the classifier could be improved to work faster (e.g., by the use of

parallel computing). Moreover, the number of currently recognized activities is still

limited, and more work is necessary to define models for a wider range of possible

activities.

The next issue concerns the mechanism of controlling the observed area by rota-

ting the Kinect sensor with the step motor. The drawback of this approach is the fact

that rotating about the X axis (up and down) forces the sensor to recalibrate itself

with regards to the floor level, which takes several seconds. Fortunately, rotation

about the X axis is not necessary in practice, because the observed person is unlikely

to move any part of his/her body higher than 2.5 meters above ground level. Thus,

the sensor can remain fixed with regards to the X axis as long as it covers the area

from the floor to 2.5 meters above it. However, rotation about the Y axis (left and

right) might be required in practice. Fortunately, slow movement about the Y axis is

possible. Alternatively, the application could be modified to employ more than one

sensor observing the same person and connected to the same server. Such a setup

would have two advantages. First, we can place a restriction that all sensors cannot

rotate at the same time, meaning at least one sensor remains operational when the

others are recalibrating. Second, multiple sensors observing the same person could

improve the accuracy of the position and activity recognition.

The issues above must be fixed before the application can be moved to the next

development stage; however, even at the current stage, the prototype highlights how

the developed activity recognition models could be used in practice without invading

the privacy of the observed people.

6. Conclusion and future work

In this paper, an Abnormal Human Activity Recognition model for the purpose of

lifelogging and the automated or semi-automated monitoring of elderly or other care-

requiring people were presented. The models are based on the concept of Averaged

Hidden Markov Models, which were used to recognize actions as well as detect poten-

tially dangerous activities; e.g., the self-aggressive behavior in autism. The AHMM
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activity models can be created for individuals and easily added to the system without

changing the source code. This feature is extremely important in the case of people

with autism, but it may be also useful in the case of different afflictions.

The methods for AHMM calculation based on HMM observation sequences were

presented in this paper. The description also included methods for potentially dan-

gerous activity detection and an algorithm for real-time action recognition with the

use of AHMMs. The recognition data included 7 human positions, 10 position chan-

ges, and 19 activities. The data was captured by a Microsoft Kinect 2.0 depth vision

sensor, which allows us to monitor the observed people without invading their privacy.

Moreover, a prototype lifelogging system was presented in this paper. The appli-

cation shows how the developed recognition models could be used in practice and

allows for the monitoring of observed people based on both real-time measurements

and historical data.

It should be noted that the models used for activity recognition have to be

chosen individually and adjusted to the specific problem. Further research will concern

adapting the described methods to be used for the support and monitoring of children

with low-functioning autism. Multiple long-term observations of a single child have

to be recorded and analyzed in cooperation with their parents and psychologists in

order to develop viable recognition models.
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