
David P. Gluch∗, Andrew J. Kornecki∗

AUTOMATED CODE GENERATION
FOR SAFETY-RELATED APPLICATIONS: A CASE STUDY
This paper addresses issues relating to the suitability of using automated code generation
(ACG) technologies for the development of real-time, safety-critical systems. This research
explored the characteristics of model-based software development methodologies and the au-
tomated code generation tools that support them. Specifically, data related to the engineering
challenges, skills, and effort associated with ACG practices and technologies were collected
as part of a case study. Characteristics such as the generated code’s organization, size, read-
ability, traceability to model, real-time constructs, and exception handling were identified. In
addition, the case study involved software engineering practices that incorporate integrated
analysis and design iterations throughout a model-based development process. The research
investigated both the static and dynamic characteristics of the selected techniques and tools,
identified characteristics of ACG tools with potential impact on safety, and considered the
semantic consistency between representations.

Keywords: Software Enginnering Process, Software Tools, Automatic Code Generation

AUTOMATYCZNA GENERACJA PROGRAMÓW
DLA KOMPUTEROWYCH SYSTEMÓW BEZPIECZEŃSTWA:
PRZYKŁAD STUDIALNY
Artykuł opisuje możliwości zastosowań technologii automatycznej generacji programów
(AGP) dla komputerowych systemów bezpieczeństwa. Przeprowadzone badania koncen-
trowały się na charakterystykach systemów oprogramowania bazujących na modelowa-
niu i automatycznych narzędziach oprogramowania. W szczególności studium pozwoliło
na kolekcję danych dotyczących wymagań inżynieryjnych, wiedzy i wysiłku koniecznego
do pomyślnej realizacji projektu wykorzystującego praktykę i technologię AGP. Takie
charakterystyki, jak organizacja generowanego programu, rozmiar, łatwość czytania, rela-
cja między programem a modelem, konstrukcje programu ułatwiające operacje w czasie
rzeczywistym i generacja przerwań, były przedmiotem identyfikacji. Dodatkowo, projekt uży-
wał metodologii inżynierii oprogramowania, gdzie analiza i konstrukcja były zintegrowane
w procesie realizacji programu na bazie modelu. Analiza dotyczyła statycznych i dynami-
cznych charakterystyk wybranych technik i narzędzi oprogramowania wpływających na bez-
pieczeństwo systemu.

Słowa kluczowe: inżynieria oprogramowania, narzędzia oprogramowania, automatyczna
generacja kodu

∗ Embry Riddle Aeronautical University (ERAU), Daytona Beach, FL 32114, USA,
gluchd, kornecka @erau.edu

Computer Science • Vol. 8 Special Edition • 2007

37

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Journal (AGH University of Science and Technology, Krakow)

https://core.ac.uk/display/236278353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Software development employing Model-Based Development (MBD) and automated
code generation (ACG) from design models has the potential to enhance both the
quality of the resulting system and efficiency of the development process. However,
safety- and mission-critical systems in aviation, aerospace, medical equipment, trans-
portation, nuclear, and weapons system applications require rigorous verification and
validation, often under explicit guidelines and standards defined for the application
domain. The suitability of ACG techniques for the implementation of such systems
within regulated industries is still being discussed. This paper presents the results of
investigations into the engineering challenges associated with the application of ACG
technologies, specifically focusing on issues related to ensuring the correctness of the
code for safety-critical applications.
The main objective of this work has been to investigate and compile software

engineering observations on the use of ACG techniques and tools for safety-critical
software development using case studies. The compiled data highlight important char-
acteristics of MBD methodologies and the ACG tools that support them. The research
explored the characteristics of model-based software development methodologies and
the automated code generation tools that support them. Specifically, data related
to the engineering challenges, skills, and effort associated with ACG practices and
technologies were collected. These data can be used to determine whether ACG is
a viable approach for the creation of safety-critical systems and whether ACG can
provide improved efficiency and effectiveness in design, verification, and validation.
The case studies involved software engineering practices that incorporate integrated
analysis and design iterations throughout the MBD process.
The research focused on the implementation of generated code on a real-time

target processing environment and assessing static and dynamic properties of the
generated code. Static analysis involves inspections and reviews of the generated code
files. Dynamic analysis uses tools to ascertain the executable run-time parameters.
The collected metrics included the number of files generated, lines of code generated,
number of functions generated, readability of code, footprint, number of threads,
execution time, etc. These data can be used to determine whether ACG is a viable
approach for the creation of safety-critical systems and whether ACG can provide
improved efficiency and effectiveness in design, verification, and validation.

2. Background

There is a growing tendency in software systems development to work at higher lev-
els of abstraction and to integrate design and analysis, employing models (analyzable
formulations) as principal design representations and sophisticated development envi-
ronments (tools). These model-based approaches rely on building conceptual models
of a software system and analyzing those models (via simulation, animation, and semi-
formal or formal model checking) before translation into a conventional programming

38 David P. Gluch, Andrew J. Kornecki

language format. Consistency of the requirements and correctness of specifications are
critical issues explored in literature [4, 5]. Model-Based Development languages have
became the de facto Lingua Franca of modern software engineering. Modern software
design tools typically address the use of modeling throughout the development lifecy-
cle. These practices rely on the capabilities of Integrated Development Environments
(IDE) to produce target software (e.g. automated code generators and compilers).
Software IDE based on various abstract modeling languages (e.g. UML, state

machines, finite automata, CSP) are widely used for software development in di-
verse applications [2]. In addition, they offer the potential to reduce or eliminate the
software construction phase of development by providing automated code generation
capabilities. However, the use of these technologies for the development of safety-
critical systems presents formidable engineering challenges and design concerns. The
issues of assurance and correctness of code generation, specifically as applied to safety
critical systems, have been explored widely in literature [1, 3, 7, 11, 13, 14].
The introduction of ACG technologies and practices into safety-critical applica-

tions must provide support for traceability throughout the development process and
design transparency (visibility and clear definition of the formal foundations for de-
sign representations and the transitions among them) at a level sufficient to enable
effective independent review and certification. Automated systems often limit the vis-
ibility into the engineering processes, specifically restricting observation by human
reviewers to pre- and post-transformed artifacts. Sometimes visibility is augmented
with narrow access to interim representations. However, the rationale and supporting
formalism for transitions are often not evident to a reviewer. For example, in trac-
ing/reviewing the transition of a design from source to the machine code produced by
a compiler, only the input source text and output compiled source text are available
to a reviewer. Occasionally, (e.g. multi-pass compilers) there is some visibility into
intermediate representations. However, the core compiler algorithms and optimiza-
tion strategies are not evident in the design artifacts and must be determined from
tool user guides, on-line help, etc. A misinterpretation of compiler transformation
algorithms may result in a failure to recognize design errors.
In the case of transforming models to source code, traceability and transparen-

cy are equally and perhaps more challenging. In this context, the challenges involve
concerns centered on semantic precision as well as explicit design transparency, and
traceability from requirements through to executable runtime modules. Between each
representation: modeling language, source code, and executables, in addition to a syn-
tax discontinuity, there is a semantic boundary where abstractions in one phase must
be translated into constructs in another. To ensure correctness, the transformations
across these boundaries, as manifested syntactically and semantically, must be ex-
plicit and unambiguous. For effective design, this is a bi-directional concern (e.g. to
ensure the consistency changes made in source code must be reflected in the mod-
eling language). A precise and explicit definition of the interfaces at the boundaries
will ensure traceability and visibility in verification and validation for safety-critical
application systems.

Automated code generation for safety-related applications (...) 39

As models are translated into source code, particularly for real-time safety-critical
systems, a significant challenge is to ensure unambiguous, traceable, and transparent
mapping of a modeling language’s constructs and constraints into those of source
code. In addition to this application model mapping, there must be an unambiguous,
traceable, and transparent mapping to a target runtime environment. This execution
model mapping involves both general and target specific considerations.

3. Automated Code Generation

In Automated Code Generation well-formed input representations (models) are trans-
formed into “source text” using a tool with ACG functionality to facilitate the trans-
formation. The process is conceptually comparable to one used in compilation of the
source code to machine representation [12]. For the ACG, a well-formed representa-
tion may be a set of UML class diagrams, state transition diagrams, an architecture
description language model, or a variety of other modeling artifacts. Various levels of
support for this transformation can be provided. The target source code languages
(e.g. Ada, C/C++, Java) can be compiled into machine code for download and exe-
cution within an application environment.
ACG can be considered as the next logical step in specifying and describing

a software system. In earlier computing eras, developers used binary machine lan-
guage to represent the required software functionality. Subsequently, assembly lan-
guage provided the developers with more human-readable form (which was auto-
matically translated into binary code). Another level was introduced with high-level
languages (automatically translated into binary through compilers/interpreters). Cur-
rently, the use of formalized modeling languages in form of diagrams and other visual
representations provide higher levels of abstraction in software engineering. This en-
ables developers to focus on the vital elements of the system rather than on mundane
coding. Code generators handle the translation from graphical model to high-level
language representation. The level of abstraction is now raised to the point where
the system/software architects and designers can contribute more to the engineering
solution.
MBD tools support two basic development approaches: structural and functional.

The former is more often associated with a software engineering viewpoint where
a system is defined in terms of its structure and behavior. The most popular paradigm
used is that associated with UML notation. The later is related to control engineering
viewpoint wherein a system is defined as sequence of blocks, each realizing one of the
system functions. In each of the representations the behavior is defined as sequence of
state transitions. Matlab/Simulink/RTW, RoseRT, Rhapsody, Tau, Artisan
Studio, Esterel Studio, RT Builder. Sildex, STOOD, Beacon, and SCADE
are examples of such tools. A majority of these tools include some ACG functionality.
Code generators may be text-based or graphical. Some of the tools are capable

of fully automated code generation directly from model artifacts. Some use a model
to produce a code framework and require the developer to manually enter much of

40 David P. Gluch, Andrew J. Kornecki

the detailed implementation code. Several tools are based on a proprietary internal
language, a formal notation supporting a specific code generation paradigm.
The tools allow a user to create models of the software structure and behavior

that the tools convert into modules of source code. The accepted approach is to
create dedicated modules for each graphical block that could be used in the model.
The generated program instantiates the macros and stitches together the inputs to
the outputs of the blocks. The code generation needs to be analyzed to show direct
mapping of the model as entered by the designer and the generated code. For many
modern tools one needs to select only a subset of the available modeling components
to assure easy mapping to the generated code. It is necessary to analyze the limits
and constraints in terms of the number of components, connections, hierarchy levels,
etc.
Despite widespread use of ACG tools, such issues as inconsistency of the behav-

ior of the modeled system due to the nature of the model representation [10] and
effectiveness of the ACG tools use in safety critical systems [8, 9] still require further
investigation.

4. Project methodology

A Power Boat Autopilot (PBA), a system that controls the dynamics of a small pow-
ered watercraft, was selected as the case study for the project. The PBA involved
concurrency, real-time constraints, and closed-loop behavior as well as safety-critical
requirements. To implement the system, three commercial tools with ACG function-
ality were selected. The selection was based on the tools availability, level of use in
industry, and modeling approach. The tools represented both object-oriented (UML
2.0) and structured approaches but all three are capable of producing C-language
code.
Common software architecture for the PBA was created (Fig. 1). Three de-

velopers, graduate students of software engineering program, used Statemate 3.3,
Rhapsody 5.2 and Matlab 7.0.1 to implement this common design and generate
C-language code. Each developer was responsible for modeling the system, generat-
ing, compiling, and downloading the code to a real time target environment, and
conducting the planned static and dynamic analysis on the model.
The primary representation of the common architecture was different in each

of the tools. In Matlab, Stateflow diagrams and finite state machine representa-
tions were used to model the system. In Statemate, the common architecture was
mapped into an activity diagram. In Rhapsody for C, class diagrams are required
to represent a top-level view of the system, even though the tool does not generate
object-oriented code. While there are differences in their modeling approaches, all of
the tools generate source code in the C language.
A combination of static analysis and dynamic exploration of the run-time execu-

tion were used in an assessment of the automated code generators and their interop-
erability with integrated development environments.

Automated code generation for safety-related applications (...) 41

Fig. 1. Case Study Common Architecture

Static inspections and reviews of the code generated by the tools were conduct-
ed. These provided quantitative and qualitative (including readability, organization,
modularity) information about the generated code. The quantitative metrics (e.g.
lines of code, number of functions) were determined from the code. The code inspec-
tion also provided information on real-time and concurrency constructs. For instance,
scheduling approaches (priority based or cyclic execution) can be identified in the
code. Multithreading and concurrency, synchronization and mutual exclusion could
be explored and identified in the code.

Dynamic analysis included exploration of the run-time environment. The gener-
ated code was compiled and downloaded to a real-time target and executed. Some
characteristics of the executable (footprint, number of threads, timing) were assessed
by tool-supported observation of the run-time behavior, monitoring the presence of
multitasking, and assessment of priorities, memory utilization, etc.

5. Considerations in safety-critical systems

The basic premise of this phase of the research has been to identify the features of
the tool with an impact on safety of the target application. Table 1 captures the
tool features related to the safety of the generated software product. Each feature
is identified with appropriate questions to be asked of a tool vendor when selecting
a specific tool for use in safety critical application.

42 David P. Gluch, Andrew J. Kornecki

Table 1
Tool characteristics supporting rigorous development with a focus on safety

Category Description/Question

Exception Handler Design
Support

Does the tool facilitate creation of exception handlers? Is the imple-
mentation of those handlers visible to the developer?

Fault Tolerance Constructs Does the tool support or facilitate creation of fault tolerance con-
structs?

Safety Components Library Does the tool have any pre-built component libraries with components
applicable to safety critical applications?

Range Enforcing Does the tool support, in design and/or runtime, range limitations on
variables?

Message Passing What message passing and communication methods does the tool use?
Are they visible to the developer?

Formal Language Does the tool use a formal language? If so, what it is it? Is it a standard?

Legacy Import Can the tool import legacy code or integrate with it in some way?

Real Time Support Does the tool have any timing constructs? Does it facilitate testing the
meeting of deadlines?

Analysis Support What support does the tool include for analysis of the models?

Syntax Checking What syntax checking capabilities does the tool have?

Loop Condition Checking Does the tool check for infinite loops?

Deadlock and Livelock Can the tool detect deadlock or livelock in the behavioral models?

Dead Code Checking Does the tool check for dead code or unreachable states in state ma-
chines?

Deterministic Checker Does the tool check the behavioral models for determinism?

Memory Usage Prediction
and Analysis

Can the tool predict overall memory usage? Can it track actual memory
usage?

Memory Protection Does the tool allow for memory protection and separation of processes
in the design?

Performance Prediction and
Analysis?

Can the tool predict performance? Can it track actual performance?

Simulation Based Analysis Does the tool have simulation capabilities?

Extended Simulation
Support

Does the tool support long-term and multi-run execution simulation?

Simulation Coverage
Tracker

Does the tool track coverage in the simulation, inputs, outputs, condi-
tions, paths, etc.?

Stress Testing Support Does the tool perform stress testing?

Fault Injection Analysis Does the tool support fault injection?

Testing Support Does the tool integrate with any testing tools?

Hazard Analysis Tools Does the tool integrate with any hazard analysis tools?

Requirements Management
Tools

Does the tool integrate with any requirements management tools?

Reliability Analysis Tools Does the tool integrate with any reliability analysis tools?

Traceability Does the tool provide any traceability between requirements and mod-
els?

Requirements Validation Does the tool support verification or validation to check models against
requirements?

Compiler Selection Can the developer to choose a specific compiler to work with the tool?

Compiler Integration Is the tool flexible to allow developers select the compile options?

Code Generation Options What options does the tool give on the structure or method of gener-
ating the code?

Automated code generation for safety-related applications (...) 43

6. Experimental results

The use of MBD allowed system structure and functions to be captured quickly and
enabled the production of easily understood models. The models facilitated commu-
nication of key architectural issues among team members. Team members could help
each other since the representations of the system were straightforward, even though
team members used different tools and methodologies. Problems with the system were
quickly found and eliminated using the analysis features of the tools.
Each tool required varying levels of detail, yet all demanded too much detail for

the architectural level. For example, when creating a class with one tool, the developer
is required to express the exact type of an attribute (even though it may not be known
or prudent to decide upon the type so early in the design). The separation of concerns
and judicious postponement of design decisions are not strictly enforced in the tools.
A common thread among all of the tools was that a visual representation of

a system, at any given point, may or may not represent the complete model of the
system resident in the tool. However, at times a developer may be convinced that
what is being shown is everything that exists. This may lead to misunderstandings
and errors in the system design. An example is creating an association between classes.
When the association line is drawn, changes occur to the model and the classes are
associated. If that line is then deleted in the visual representation, the only change
is that the line is no longer shown in the visual presentation. The association and all
that it implies still exist in the system model unless it is removed via another explicit
action. This demonstrates the need for a sound knowledge of the tool.
For qualitative measures code readability, traceability to the model, location and

content of comments were used. For quantitative analysis the number of lines of code,
total size of object file, and the number of functions generated were measured. For this
particular example, Statemate generated the least amount: 680 LOC, with Rhap-
sody and Matlab generating 1,356 LOC and 3,656 LOC respectively. In addition,
many of the comments in the generated code did not clearly explain the original design
constructs. For example, they specify the beginning and end of files. To fully under-
stand the generated code, a user must understand how each function is generated,
since this information is not provided in comments.
Table 2 summarizes these results.
Downloading executable code to a target system for each of the tools involves

different procedures and requires substantial knowledge of the target execution en-
vironment (e.g. the target operating system). Two of the tools allowed the user to
connect and run directly from them. Another required running the code directly from
the target using an addition to the dedicated target. One key lesson learned in the
research is the importance of interoperability. Each of the tools should have clearly
defined and working interfaces with other tools and environments (compilers, linkers,
loaders, operating system etc.).
All the tools provided some level of transparency to a runtime environment.

For example in one case, by analyzing the model the number of tasks running on

44 David P. Gluch, Andrew J. Kornecki

the system could be identified. Similarly, in another case, when running the software
on a real-time target and using a logic analyzer it was clear what concurrent threads
corresponded to the active objects defined in the model. In others, the user cannot see
what task corresponds to what active class. In general low level transparency is much
less effective. For example, when trying to determine when individual functions are
called, started or stopped, the user cannot see these events. In general, a supporting
tool was required to identify the code execution sequence.

Table 2
Aggregate Results of the Analysis

Statemate 3.3 Rhapsody 5.2 Matlab 7.0.1

of .c and .h files 4(.h) and 3(.c) 5(.h) and 5(.c) 6(.h) and 3(.c)

Readability

Consistent naming Yes Yes Yes

of Comments Low Low Low

Comment rationale Yes Yes Yes

Location of Comments End of function
and files

Per attribute and
methods section

Start of every
function

Explanatory No No No
Model to Code
Constructs Evident Evident Evident

LOC 680 1356 3656

Concurrency Constructs No No No

of Tasks Spawned 1∗ 3 3

For Matlab, the number of tasks in the target software is equal to the number
of different sample time rates defined for Stateflow bloks expressed as a statechart in
the model. It may have a separate thread of execution associated with each thread.
However, a block cannot have multiple sub threads for parallel states inside the stat-
echart. Matlab requires specific parameters to be set during model configuration
to generate code handling multitasking. The tasking mode in configuration settings
needs to be set to multitasking. An interesting observation while experimenting with
this facility was that if the model does not have different sample rates, the multitask-
ing functionality does not work. It gives a compilation error requesting to use at least
two different sample rates.
One general observation is the importance of documentation. The documenta-

tion must be specific and well understood, especially regarding how the code generator
works and how to interface with other environments and tools. This is the key for
efficiently using the tool and in understanding, manipulating, and analyzing the gen-
erated code.
The developers recorded their efforts using Personal Software Process (PSP)

techniques [6]. Effort was categorized as: modeling, compiling/downloading, or stat-
ic/dynamic analysis. The percentage assignment of this effort to the three development
areas is presented in Table 3.

Automated code generation for safety-related applications (...) 45

Table 3
Effort Analysis

TOOL Modeling Compiling
and Downloading

Static
and Dynamic Analysis Administrative

Statemate 15% 39% 16% 30%

Rhapsody 10% 42% 15% 33%

Matlab 20% 50% 12% 18%

It is interesting to note the relatively high effort on creating the code and down-
loading to the target. While tools make the model development and analysis activities
quite user-friendly, the creation of executable code requires good knowledge of run-
time environment and the idiosyncrasies of the host-target. We anticipate that for
more experienced users of the tools, the percentage of time in the compiling and
downloading category would be less. Many of the problems encountered in this case
study resulted from mistakes with and misunderstandings of the tool. This situation
was not unexpected, since the researchers did not have experience with the tools prior
to the start of the project.

A number of technical problems occurred during the compiling process with the
tools. In one case, it was possible to generate ANSI C code from the model but the
generated make files did not work. This resulted mismatches of syntax, for example
‘/’ is used as path recognition instead of ‘\’ and options are identified by ‘opt’ and not
as ‘-opt’ (therefore options are treated as folders and not as compiler options). Once
these problems were identified and addressed, scheduler libraries were recognized.

7. Conclusions

Increasingly, handcrafting of source code is being replaced by more sophisticated
development practices (e.g. MBD) that are supported by tools with some form of
automated code generation capabilities. Features of these practices and tools that en-
sure determinism, correctness, robustness, and conformance to standards are crucial
to overall system quality. In addition, for the development of safety-critical systems,
traceability and transparency of the design and implementation artifacts throughout
the complete engineering process are vital to complying with industry and certifica-
tion standards. In adopting new technologies or practices, management and technical
members of organization must recognize these requirements.

Model-based development techniques and the automated tools (in particular
ACG tools) that support them must provide the means to facilitate and document
traceability and provide undistorted visibility into the design and implementation ar-
tifacts. There is a semantic mapping at boundaries of the progressive representations
of the system, from the model to implementation. This mapping must be unambigu-
ous (deterministic) and there must be visibility (transparency) into this mapping.
A tool’s capabilities in ensuring traceability between artifacts generated from one de-

46 David P. Gluch, Andrew J. Kornecki

velopment phase to another can be a starting point to make the arguments about tool
quality and usability in a regulated industry.
Different skills and knowledge will be required for the adoption of the MBD

practices. The expert at abstract modeling (abstractionists) will be a dominant pro-
fessional within MBD practices, supplanting the central position held by a skilled
programmer in manual code development practices. These abstractionists understand
the foundations of software systems architecture, modeling techniques, the implication
of the selected solution on the resulting code, and the relation between the abstract
development environment and the runtime execution environment of a target system.

Acknowledgements

The authors acknowledge the support of the CRM Guidant and the contribution of Ste-
fano Grimaldi, Soma Mitra, and Sona Johri, graduate students in the ERAU Master
of Software Engineering program, in the research leading up to this paper.

References

[1] Denney E., Fischer B., Schumann J.: Adding Assurance to Automatically Gen-
erated Code. Proceedings of Eighth IEEE International Symposium on High As-
surance Systems Engineering (HASE’04), March 2004

[2] Federal Aviation Administration, Software Tools Forum, Embry Riddle Uni-
versity, Daytona Beach, Fl., May 2004 http://www.erau.edu/db/campus/
softwaretoolsforum.html

[3] Halbwachs N., Raymond P., Ratel C.: Generating efficient code from data-flow
programs. Third International Symposium on Programming Language Implemen-
tation and Logic Programming, Passau (Germany), August 1991

[4] Heitmeyer C. L., Jeffords R.D., Labaw B.G.: Automated Consistency Checking
of Requirements Specifications. ACM Transactions of Software Engineering and
Methodology, 5(3):231–261, July 1996.

[5] Hohman W.: Supporting Model-Based Development with Unambiguous Specifica-
tions, Formal Verification and Correct-By-Construction Embedded Software. SAE
World Congress, Detroit, MI, 2004, March 8–11

[6] Humphrey W.: Introduction to the Personal Software Process. Addison-Wesley,
Reading, Mass, 1994

[7] Keenan D. J., Heimdahl M.: Code Generation from Hierarchical State Machines.
Proceedings of the International Symposium on Requirements Engineering, 1997

[8] Kornecki A., Zalewski J.: Experimental Evaluation of Software Development Tools
for Safety Critical Real-Time Systems. NASA Journal Innovations in Systems and
Software Engineering, July 2005

[9] Kornecki A., Zalewski J.: Assessment of Software Development Tools for Safety
Critical Real Time Systems. Invited Paper in IFAC Workshop on Programmable
Devices and Systems, Ostrava, Czech Republic, February 2003, pp. 2–7

Automated code generation for safety-related applications (...) 47

[10] Kornecki A., Erwin J.: Characteristics of Safety Critical Software. Proceedings of
the 22nd International System Safety Conference, System Safety Society, ISBN
0-9721385-4-4, Providence, RI, August 2004

[11] O’Halloran C.: Issues for the Automatic Generation of Safety Critical Soft-
ware. 15th IEEE International Conference on Automated Software Engineering
(ASE’00), 2000

[12] Stepney S.: High Integrity Compilation. Prentice Hall, 1993
[13] Vestal S.: Assuring the Correctness of Automatically Generated Software.
AIAA/IEEE Digital Avionics Systems Conference, volume 13, 1994, pp. 111–118

[14] Whalen M.W., Heimdahl M.: An Approach to Automatic Code Generation for
Safety-Critical Systems. Proceedings of the 14th IEEE International Conference
on Automated Software Engineering, Orlando, October 1999

48 David P. Gluch, Andrew J. Kornecki

