
Computer Science • 18(2) 2017 http://dx.doi.org/10.7494/csci.2017.18.2.117

Marcin  Loś
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Abstract This paper deals with the application of an Alternating Direction Solver (ADS)

to a non-stationary linear elasticity problem solved with the isogeometric finite

element method (IGA-FEM). Employing a tensor product B-spline basis in

isogeometric analysis under some restrictions leads to a system of linear equa-

tions with a matrix possessing a tensor product structure. The ADI algo-

rithm is a direct method that exploits this Kronecker product structure to

solve the system in O (N), where N is the number of degrees of freedom (basis

functions). This is asymptotically faster than state-of-the-art, general-purpose,

multi-frontal direct solvers when applied to explicit dynamics. In this paper,

we also present a complexity analysis of the ADS incorporating dependence on

the B-spline basis of order p.
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1. Introduction

Isogeometric analysis is a variant of the Finite Element Method utilizing B-spline

basis functions and a geometry description to improve compatibility with existing

Computer-Aided Design (CAD) software [4, 13, 15, 17]. For higher-dimensional pro-

blems, the basis is customarily constructed as a tensor product of one-dimensional

bases. Under some additional conditions, this implies that the matrix of a system of

linear equations resulting from the employment of FEM can be decomposed as a ten-

sor product of matrices of one-dimensional problems that are banded and, thus, easily

inverted. This structure is exploited by the Alternating Direction Solver (ADS) to

solve a system with linear computational cost with respect to the number of degrees

of freedom.

The Alternating Direction Implicit (ADI) algorithm has been originally introdu-

ced in [2, 6, 16, 19] to solve parabolic problems. This method has been applied in

the context of isogeometric analysis to two-dimensional non-stationary problems [8],

three-dimensional flow problems [21], and as a preconditioner for iterative solvers in

the case of complex geometries [9]. Its main idea is to reduce the problem of solving

a linear system with a matrix M possesing tensor product structure A1⊗A2 · · ·⊗Ad

to solve multiple linear systems with matrices Ai. If these systems can be solved

efficiently, so can the full system with matrix M.

In this paper, we discuss the idea and implementation of the ADS algorithm,

establish its complexity taking the order of B-spline basis p into account (thus, exten-

ding the results of [8]), and present an application of isogeometric analysis and ADS

to a non-stationary three-dimensional linear elasticity problem.

The computational cost of the ADS solver is linear; thus, the ADI solver applied

for the solution of a time-dependent problem is able to solve each time step with

linear computational cost. In particular, the Newmark time-discretization method

with IGA-FEM discretization in space requires an L2 projection problem to be solved

at every time step. This projection problem can be solved using the ADS solver in

linear O (N) computational cost. Alternative approaches includes multi-frontal direct

solvers [3, 7], which have O
(
N2
)

computational cost for 3D problems [3]. Another

possibility is to apply iterative solvers; however, iterative methods require O (Nk)

computational cost, where k is the number of iterations, k in a range of (c,N0.5]

depending on the conditioning of the system, and the iterative algorithm, where

c � 1 [18]. Thus, the computational cost of our method is one order of magnitude

faster than multi-frontal solvers and k times faster than iterative solvers.

One can claim that the implicit method with direct solvers can perform faster;

however, these kinds of simulations (fast elastodynamics) require the utilization of

explicit methods that can be computed using linear computational cost ADS algo-

rithms. Thus, a comparison with the implicit method makes no sense at all, since

direct solvers have a computational cost of O
(
N2
)

for 3D IGA-FEM, and they are

one order of magnitude slower than our ADS algorithm.
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2. Fast isogeometric L2 projections

by Alternating Direction Implicit algorithm

The Alternating Direction Implicit (ADI) algorithm is a method of solving systems

of linear equations Mx = b, where M has a Kronecker product structure, that is

M = M1 ⊗M2 ⊗ · · · ⊗Mn (1)

and matrices Mi are square and invertible.1 This works by reducing the problem of

solving multiple systems of equations with Mi instead of the full M. Under some

assumptions, matrices arising from multidimensional L2-projection problems are se-

parable with respect to dimensions, and the matrices that appear in the decomposition

have simple structures, allowing for the efficient application of their inverses.

2.1. Application of ADI solver to L2-projection problem

Let us now see how the ADI solver can be applied to solving L2-projection problems

with the tensor product B-spline basis:

Np
i1i2i3

(x) = Np
i1

(x1)Np
i2

(x2)Np
i3

(x3) (2)

The L2-projection problem is equivalent to solving the system of linear equati-

ons Mx = b, where M is the Gram matrix of vectors comprising the basis. As

we shall see, the structure of matrix M facilitates the use of the ADI solver – M can

be decomposed as a Kronecker product of easily invertible matrices.

Using tensor product basis functions yields a natural Kronecker product structure

of matrix M. We have(
Np
i1i2i3

, Np
j1j2j3

)
L2(Ω)

=

∫
Ω

Np
i1i2i3

(x)Np
j1j2j3

(x) dΩ =

=

∫
Ω

Np
i1

(x1)Np
i2

(x2)Np
i3

(x3)Np
j1

(x1)Np
j3

(x3)Np
j3

(x3) dΩ

=

∫
Ω

Np
i1

(x1)Np
j1

(x1)Np
i2

(x2)Np
j2

(x2)Np
i3

(x3)Np
j3

(x3) dΩ

(3)

Our domain Ω is a product of intervals,

Ω =
[
ξ

(1)
0 , ξ(1)

n1

]
×
[
ξ

(2)
0 , ξ(2)

n2

]
×
[
ξ

(3)
0 , ξ(3)

n3

]
(4)

Therefore, the above integral can be factored into the product of integrals as

(
Np
i1i2i3

, Np
j1j2j3

)
L2(Ω)

=

(∫ ξ(1)n1

ξ
(1)
0

Np
i1
Np
j1

dx1

)(∫ ξ(2)n2

ξ
(2)
0

Np
i2
Np
j2

dx2

)(∫ ξ(3)n3

ξ
(3)
0

Np
i3
Np
j3

dx3

)
=
(
Np
i1
, Np

j1

)
L2(Ω1)

(
Np
i2
, Np

j2

)
L2(Ω2)

(
Np
i3
, Np

j3

)
L2(Ω3)

(5)

1It can be shown that rank (A ⊗ B) = rankA rankB, so the Kronecker product is invertible if
all of the factors are invertible.
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where Ωk =
[
ξ

(k)
0 , ξ

(k)
nk

]
. Let us denote the Gram matrix of the k-th one-dimensional

basis by Mk; i.e.,

(Mk)
j
i =

(
Np
i , N

p
j

)
L2(Ωk)

(6)

By eq. (5), we have

M j1j2j3
i1i2i3

= (M1)
j1
i1

(M2)
j2
i2

(M3)
j3
i3

(7)

which shows that M is the Kronecker product of the matrices for one-dimensional

bases:

M = M1 ⊗M2 ⊗M3 (8)

What remains to be shown is that the matrices for one-dimensional B-spline bases are

easily invertible. This is thanks to the locality of support of the B-spline basis func-

tions. Support of Np
i is [ξi−p−1, ξi], where we assume ξk = ξ0 for k < 0 and ξk = ξn

for k > n; hence, the supports of Np
i and Np

j are disjoint for |i − j| > p, and so we

have (
Np
i , N

p
j

)
L2(Ω)

= 0 (9)

Thus, matrix M is multi-diagonal with 2p+ 1 diagonals.

M1
1 · · · Mp+1

1 0 · · · · · · · · · · · · 0

M1
2 · · · Mp+1

2 Mp+2
2 0 · · · · · · · · · 0

...
. . .

. . .
. . .

. . .
...

M1
p+1

. . .
. . .

. . .
. . . M2p+2

p+1 0 · · · 0

0 M2
p+2

. . .
. . .

. . .
. . . M2p+3

p+2 · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 Mn−2p
n−p

. . .
. . .

. . .
. . . Mn

n−p
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · · · · 0 Mn−p
n Mn−p+1

n · · · Mn
n



(10)

where M j
i = (Bi, Bj)L2(Ω). Linear systems with such matrices can be efficiently solved

in linear time with respect to the number of degrees of freedom using LU factorization,

for example (which is O
(
p2N

)
for matrices with bandwidth p [10, Algorithm 4.3.1]).

3. Implementation

Let M = A1⊗A2⊗A3, where each Ai is ni×ni matrix and b is the right-hand-side

vector. Vector b has n1×· · ·×nd components and can be stored in a multidimensional

array, organized linearly in the memory so that the lower indices change faster. In this
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way, the LAPACK solver can be utilized to solve a linear system with multiple right-

hand sides stored in such an array. In the i-th step of the algorithm, linear systems

are constructed so that the i-th index is variable in each single system while the rest

are constant; hence, after each step, the array needs to be appropriately transposed

so that the i-th index changes fastest at the i-th step.

The pseudocode below uses two auxiliary functions:

• Solve(A, b) – LAPACK solver, takes matrix A and a sequence of right-hand

sides (vectors), solves all of the systems, and overrides each right-hand-side vector

with the solution of the corresponding system.

• Reorder(x, i) – reorders the multidimensional array representing the right-

hand-side vector. This operation assumes x is ordered such that i-th index is

changing fastest and changes this order so that afterwards (i+ 1)-th index chan-

ges fastest.

Algorithm 1: Alternating Direction Solver

Input: A1,A2, ,A3 – matrices

b – right-hand-side vector

Output: solution x

x← b ;

for i← 1 to 3 do

Solve(Ai, x);

Reorder(x, i)
end

The computational complexity of the algorithm is analyzed in Appendix A.

4. Numerical example – linear elasticity

As an example problem, we chose a small strain linear elasticity problem describing

the deformation of solid objects in the presence of an external force.

4.1. Formulation

Strong form of the equation is given by
ρ
∂2u

∂t2
= ∇ · σ + F on Ω× [0, T ]

u(x, 0) = u0 for x ∈ Ω

σ · n̂ = 0 on ∂ Ω

(11)

where Ω = [0, 1]3 is an unit cube, u is a 3-dimensional displacement vector to be

calculated, ρ is the material density, F is the applied external force density, and σ is

the rank-2 stress tensor is given by

σij = cijklεlk (12)
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where

εij =
1

2
(∂jui + ∂iuj) (13)

and c is a rank-4 elasticity tensor (Einstein’s summation convention applies in the

preceding equation). For our simulations, we assumed an isotropic material with

Lamé coefficients λ = µ = 1.

4.2. Time discretization

In order to utilize the forward Euler integration scheme, the above system of three

equations is converted to a system of six equations (disregarding the boundary conditi-

ons and initial state) by introducing additional variables corresponding to components

of the displacement’s velocity:

vi =
∂ui

∂t
(14)

to obtain 
∂tu = v

∂tv = ρ−1 (∇ · σ + F)

(15)

The corresponding weak formulation discretized with the explicit Newmark’s scheme

(with β = γ = 0) is the following: find u
(t)
i , v

(t)
i ∈ H1(Ω) for t = 1, . . . , T , and

i = 1, 2, 3 such that

(
u

(t+1)
i , w

)
L2(Ω)

=

(
u

(t)
i + ∆t v

(t)
i +

∆t2

2
a

(t)
i , w

)
L2(Ω)

(
v

(t+1)
i , w

)
L2(Ω)

=
(
v

(t)
i + ∆t a

(t)
i , w

)
L2(Ω)

a
(t)
i =

1

ρ
(σij,j + Fi)

(16)

for all w ∈ H1(Ω).

Using the Galerkin method, this problem can be restricted to a finite-dimensional

subspace V ⊂ H1(Ω) spanned by tensor product B-spline basis functions {Bi}. Such

a restricted problem is the same as above except that we require u
(t)
i , v

(t)
i ∈ V and

demand that (16) holds just for all w ∈ V .

Based on the structure of the problem, it can be seen that each computational

step – finding u
(t+1)
i and v

(t+1)
i – for each equation in the above system can be

seen as an instance of the following problem: given f ∈ H1(Ω), find a ∈ V such

that (a,w)L2(Ω) = (f, w)L2(Ω) for all w ∈ V .
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We have

a = a1B1 + . . . akBN (17)

where N is the number of basis functions (dimension of V ), so by the linearity of the

scalar product, the above problem is equivalent to the system of equations

a1 (B1,B1)L2(Ω) + · · · + aN (BN ,B1)L2(Ω) = (f,B1)L2(Ω)

a1 (B1,B2)L2(Ω) + · · · + aN (BN ,B2)L2(Ω) = (f,B2)L2(Ω)

...
...

...

a1 (B1,BN )L2(Ω) + · · · + aN (BN ,BN )L2(Ω) = (f,BN )L2(Ω)

(18)

The matrix of this system is the Gram matrix of the B-spline basis. In other

words, the computation of a single Newmark step is equivalent to solving the isogeo-

metric L2 projection problem. This can be done with linear computational cost using

a sequential ADS algorithm.

4.3. Numerical results

In our test case, a force is briefly applied to an initially undeformed cube. The force

is exerted by

F(x, t) = −φ(t/t0)r(x) p (19)

p = (1, 1, 1) (20)

t0 = 0.02 (21)

φ(t) =

t
2(1− t)2 if t ∈ (0, 1)

0 otherwise
(22)

r(x) = 10 exp
(
−10 ‖x− p‖2

)
(23)

i.e., it is a short impulse directed towards the origin applied at the opposite corner of

the cube.

Figure 1 displays results of the simulation with the time step ∆t = 10−4, mesh

size 12×12×12, and B-spline basis of order p = 2 (thus, (12 + 2)3 = 2, 744 degrees of

freedom in total). Displacement is magnified 20 times to make it visible. As expected,

the deformation originating at the corner where the force was applied propagates

through the whole cube. During the simulation, 30,000 iterations were performed in

less than 11 hours (1.46 seconds per iteration, on average) on a single machine with

Intel Core i5-2410M CPU (4 cores, 2.3 GHz) and 4 GB of RAM.
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 1. Deformation of cube during the simulation (color indicates the magnitude of defor-

mation): a) initial state; b) step 1000; c) step 4000; d) step 6000; e) step 8000; f) step 10 000;

g) step 12 000; h) step 14 000; i) step 16 000; j) step 18 000; k) step 20 000; l) step 22 000
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5. Conclusion and future work

In this paper, we described an Alternating Direction algorithm, explored its com-

plexity, and presented its application to a three-dimensional, non-stationary, linear

elasticity problem using the isogeometric finite element method. We have shown its

linear computational cost, which is superior with respect to the direct and iterative

solvers applied to the explicit dynamics problems. The three main directions of de-

velopment are parallelization of the method, extending the method for more-complex

geometries, and implementing some adaptive algorithms. We are also currently in-

vestigating the feasibility of applying a variant of ADS to diffusion interface models

with implicit time-stepping schemes (used in tumor modeling, for example) [11, 12].
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Appendix A. Complexity of the ADI algorithm

Definition 1. Let f, g : N→ R+ be functions. We write

• f ∈ O (g(n)) if there exist N ∈ N and M > 0 such that for all n ≥ N we have

f(n) ≤ g(n),

• f ∈ Ω (g(n)) if g ∈ O (f(n)),

• f ∈ Θ (g(n)) if f ∈ O (g(n)) and f ∈ Ω (g(n)).

Let M = A1 ⊗A2 ⊗ · · · ⊗Ad where Ai are ni × ni matrices and b be n1 · · ·nd
vector, indexed with d indices. Thus, the total number of degrees of freedom is N =

n1n2 · · ·nd. Let us denote by Ci the cost of solving a single linear system with

matrix Ai.

Theorem 1. Assuming Ci ∈ Ω (ni), the total cost of solving system Ax = b using

the ADS algorithm is of order
d∑
i=1

(∏
j 6=i

ni

)
Ci (24)

In particular, if Ci ∈ Θ (ni), the cost is Θ (N).

Proof. The ADS algorithm comprises d steps, each consisting of applying the inverse

of Ai to a set of vectors and transposing the right-hand side. At step k, there are

n1 · · ·nk−1nk+1 · · ·nd =
∏
i 6=k

ni (25)

systems of linear equations to be solved (systems are indexed with
j1, . . . , jk−1, jk+1, . . . , jd with jk ranging from 1 to nk); thus, the total cost of

solving them is

n1 · · ·nk−1nk+1 · · ·nd Ck =

(∏
i 6=k

ni

)
Ck (26)
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Summing these costs over all of the steps yields an estimate from the statement of

the theorem. Furthermore, if Ck ∈ Ω (nk) then∏
i 6=k

ni

Ck ∈ Ω

nk∏
i 6=k

ni

 = Ω

(∏
i

ni

)
= Ω (N) (27)

Size of the right-hand side vector is N . Transposition involves copying each of its

elements exactly once, so the cost of transposition is O (N). Thus, the dominating

factor is the cost of solving linear systems. Finally, assuming Ck ∈ Θ (nk), we can

replace Ω with Θ in the above, and we get∏
i6=k

ni

Ck ∈ Θ (N) (28)

Summing the costs of all of the steps, the total cost is thus Θ (dN) = Θ (N).

Since in the case of the L2-projection problem with B-spline basis matrices Mi

are banded with bandwidth p, we indeed have Ci ∈ Θ (ni), and the above theorem

implies that the ADS algorithm is linear with respect to the number of degrees of

freedom. For a more-precise estimate, we need to consider the order of continuity p.

Corollary 1. Using the LAPACK solver, the cost of solving system Mx = b resulting

from the L2-projection problem is Θ (pN) under the following assumptions:

(1) d > 2

(2) all ni grow at the same rate; i.e., ni = Θ (nj) for all i, j

Proof. The cost of LU factorization of n × n banded matrix with bandwidth p is

Θ
(
p2n
)

[10, Algorithm 4.3.1]. With the given LU factorization, solving the system

using forward and backward substitution can be done in Θ (pn) [10, Section 4.2.2].

Since the ADS algorithm requires solving multiple systems with the same matrix,

LU factorization can be computed only once and used to efficiently solve all of the

systems. For each i, there are
∏
j 6=i nj systems with matrix Mi; hence, we have

Ci = Θ

(
p ni +

p2
ini∏
j 6=i nj

)
= Θ

(
p ni + p2

in
2
i /N

)
(29)

Given the assumptions, we have

n2
i /N = O

(
1

ni

)
(30)

and so, the second summand in the above estimate is negligible. Therefore,

Ci = Θ (p ni) (31)

and by Theorem 1, the total cost is Θ (pN).
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