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Magnetohydrodynamic boundary layer on a flat plate:
Further analytic results

Bhimsen K. Shivamoggi and David K. Rollins?
Department of Mathematics, University of Central Florida, Orlando, Florida 32816

(Received 2 June 1998; accepted for publication 4 March 1999

Further analytic results are deduced with the magnetohydrodynamic boundary layer
equations for a flat plate. The asymptotic behavior of the solutions is deduced using
the scaling group method. Then, an analytic perturbative procedure is used to
determine an approximate solution that exhibits this asymptotic behaviod 99
American Institute of Physic§S0022-24889)02906-(

I. INTRODUCTION

Greenspan and Carrfezonsidered the flow of a viscous, electrically conducting, incompress-
ible fluid past a semi-infinite flat plate in the presence of a magnetic field which is uniform at
infinity and parallel to the stream. They reduced the boundary-layer equations then to a pair of
coupled nonlinear ordinary differential equations—

g"+u(fg'—1'g)=0, (1
n n 1 I
f"+ff —ﬁgg =0, 2

subject to the boundary conditions
7=0:f=0, f'=0, g=0, (33
n=wf~27y, g=27. (3b)

Here, primes denote differentiation with respect to the independent varably U/ vx;y mea-

sures the distance from the plateis the distance along the plate from the leading edlhs the

undisturbed velocity, and is the kinematic viscosity. Further, if and B, are thex components
of the velocity and magnetic fields, then

u=3Uf"(7), By=3Bog'(7),

B, being the ambient magnetic field intensity. Finaly=U/V,, , whereV, is the Alfven velocity
V,=By/v4mp, andu=4mov, p being the density and the electrical conductivity of the fluid.

For sub-Alfvanic flows (A<1), disturbances travel upstream of the plate, invalidating the
notion of a boundary layer originating at the leading edge of the plate. As Greenspan and Carrier
pointed out, this can be clearly seen by considering the case with infinite electrical conductivity,
u=. For this case, Eqgl) and (2) becomeg=f, f”+ (14 (1/A%))ff"=0, so that one needs
A?>1 in order to preserve the usual boundary-layer situation. Reuter and SteWatsoved
that, for this case, the problem is mathematically ill posed, in the sense that it does not admit any
solutions such thatt’(0)>0 andg’(0)>0. Stewartson and Wilsdrshowed further that, even for
certain values oA>1, the solutions turn out to be nonunigue whenexer1.
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Equations(1) and (2) are, on the other hand, highly nonlinear and, therefore, one may not
anticipate explicit analytical solutions for them. In this paper, we first deduce the asymptotic
behavior of the solutions of Eq$l) and (2) using the scaling group metha@luman and
Kumei®). We then use an analytical perturbative procedure due to Best@#P to determine an
approximate solution that has the above asymptotic behavior.

II. ASYMPTOTIC BEHAVIOR OF THE SOLUTION

In order to find the asymptotic behavior of the solutiongX(3), note first that Eqg(1) and
(2) admit solutions of the form

f 1 1 @
7’ g 7’

(4) implies that Eqs(1) and (2) have the scaling group

=a 'f, g=alg, 7=an 5
We may therefore introduce the following canonical coordinates

,df
s=fn, t—nd q=7g. (6)

The transformation frongs,t) to (f, ) is given differentially by

ds d7]
t+s 7’

@)

The transformation rules of the various derivatives are

d’f 2t 1 dt
d_nz___3+?(t+s)d_’
d’f 6t 5 o dt . L1 1 o dt dt+1)
ar = 7 7( S)d_s ( S)?‘ —a(t+s) 4ol g :
d 1 d ®
9__1 - q
%_ 7]2 7]2(t+S)d ’
d’g 2 3 dg 1 d2q 1 dt
a2 7 ?(t+s)£+?(t+ s)? a2t 3( +s )ds a1l

In terms of the new variables,t,g, the boundary-value problefi)—(3) becomes

2

6t—5 dt o dt t 5 dt
t=5(t+s) o+ (48 +(1+s) | g+l —2stHs(t+s) o
— 220029 3(t+9)] o T (tH9) gz +(t+5) | = +1]=0, (9)

d?q

5 dq(dt dq 3
29— 3(t+s) +(t+s) dsz+(t+s)d d—s+1 + s(t+s)d—s—q(t+s) =0, (10

s=0:t=0, q=0, (11
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S=xoit=w, g=o. (12)

Nears=0, Egs.(9) and (10) show that

t=~NiS, Qg=N\,sP, (13
with
6N — 5N (A + 1)+ N (N +1)%~0, (14a
2N 2= 3PN+ 1) +p(p—DAa(A 1+ 1)2Np(A 1 +1)2~0, (159
or
A=12, (14b)
N1=2\, arbitrary andp=13,2. (15b)

A;=1 turns out to be the spurious root. The rpet 1 is to be discarded because we require from
(6) and (13) that 2p>1.
For A;=2, we obtain from(7) and (13),
S~ 7]3. (16)
Using (16), we have from(6),
n=0:f~7° g~7n 17)

Nears=«, equationg9) and(10) show that

t~NiS, g=~N\,S, (18
with
— 2N+ N (N 1) — %7\2[27\2—37\2(7\1+ 1)+X,(X1+1)2]=0, (193
2X,—3X,(A 1+ 1)+ XN, +1)2~0, (20a
or
N=1, (19b)
\, arbitrary. (20b)

Using (19) and (20), we obtain from(7) and (18),
s~ 72 (21)
Using (21), we have from(6),
n=of~n, g~7. (22)

Observe that the asymptotic behavior of the solutions, as exhibite@ Byand (22), is
independent of the Alfue numberA.
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llI. AN ANALYTIC PERTURBATIVE SOLUTION

We now use a perturbative procedure due to Bemded® to solve Eqs(1) and(2) analyti-
cally. This method has been used recerihivamoggi and Rolliff§ to solve the Kadomtsev
equation for a heavy atom in a very strong magnetic field with very good results. We first replace
Egs.(1) and(2) by ones that contain a parameigri.e.,

g"+ulg't°—f'g’]=0, (23
"m ngod 1 O
f +ff—pgg=0. (29

Note that Eqs(1) and(2) are recovered wheA=1, and5=0 corresponds to the linear zeroth-
order approximation. By identifying as the perturbation parameter, the soluti@g) is then
expanded in a power series &

f:fo+ 5fl+ 52f2+ ,

, (25
9=got 691+ 8°Go+--.
This then leads to a set of linear equations fiy,(,,):O(1),
9o+ m(go—f0)=0, (26)
" 4 1 n
f0+fO—Kng=0; (27)
0(9),
91+ p(91—f1)=—n(gs Info—Tfo-Ingo), (28
n n 1 14 14 1 n
f1+f1_ﬁglz_fo'|nfo+ﬁgo'|ngo, (29
etc.
Successive integrations of Eq®6) and (27), along with the use of3), lead to
got m(go—fo)=a, (30
, 1
f0+f0_ﬁgO:C7]' (31)
wherec is an arbitrary constant and
a=g},(0)>0. (32
Using the boundary conditio(8) at =, we obtain, from(31),
c=2e, (33
where
1
€= _F>O

We have, from Eqs(30) and (31),
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fot(L+p)fit+eufo=2eun+2eta(l—re), (34
from which
2ut+(2—a)(1—e€
f0=(Dle<7177+D2e‘7277)_ K ( Me)( )+277, (35)
where

o10= 3 —(1+p) = (1+p)*—4uel.

Using the boundary conditio(8) at »=0, we obtain

1 2u+(2—a)(1—
D TGl e)+2}
g,— 09 ME
1 2u+(2—a)(1-
D,— oy put(2=a)( e)+2} (36
O1— 07 ME
We have from(32) and(35) and(36), for small 7,
fo~ 3 a(1-€)+2€] 77, (379
Jo~an. (37b

One may also obtai37) directly from Egs.(30) and (31).
Observe from(373 that, for super-Alfvaic flows (e>0), f{(0)>0, because

35

254

f(m)

0.5-

FIG. 1. Comparison of zeroth order approximate solution and numerical sol{it@d) for nonlinear boundary value
problem for magnetohydrodynamic case.
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a(l—e)+2€>0,

on noting(32) and that (- €)>0.
Further, we have fronG31), (33), and(35), for large 7,

fo~27, (383
9o~27. (38b)

One may also obtai38) directly from Egs.(30) and(31).

The agreement of37) with (17) on the one hand, an(B8) with (3b) on the other hand,
indicates that the asymptotic behavifwr both small and largey) of the solution of Eqs(1) and
(2) can be accurately provided by the linearized versions of the latter. Indeed, the lindarigesl
zeroth-order solution turns out to provide a reasonably accurate representation of the exact nu-
merical solution of Egs(1) and(2) elsewhere as well.

In Fig. 1, the zeroth-order approximate analytic solutigmiven in(35) is compared with the
exact numerical solution of Eq§l) and(2). The agreement seems to be very good, even though
fo is meant to be only a crude approximation to the exact solution. In fact, this feature is a
carryover from the hydrodynamic case. In the latter c&®®, reduces to

fo()=2e""—2+27, (39

in agreement with the one given by Benaerl?® In Fig. 2, the zeroth-order approximate analytic
solution given by(39) is compared with the exact numerical solution of the Blasius equation,

FIG. 2. Comparison of zeroth order approximate solution and numerical sol{it@d) for nonlinear boundary value
problem for hydrodynamic case.
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f”+ff"=0. (40

Again, the agreement seems to be very good.

Next, using(31) and (35) in the O(6) equations(28) and (29), we see that a closed-form
analytic solution of these equations becomes very difficult to find.

IV. DISCUSSION

In this paper, we have deduced further analytic results with the magnetohydrodynamic bound-
ary layer equationgl) and (2) for a flat plate. We first derived the asymptotic behavior of the
solutions using the scaling group meth@luman and Kuméj. We then sought to use an analytic
perturbative procedure due to Bendgral® to determine an approximate solution. However, the
linearized(or the zeroth-ordersolution of the boundary-layer equatiofly and(2) turned out to
provide not only the required asymptotic behavifor both small and largey) of the exact
numerical solution of Eq91) and(2), but also a reasonably accurate representation of the exact
numerical solution elsewhere.

ACKNOWLEDGMENTS

The authors are indebted to the referee for his valuable remarks that contributed to making the
presentation of the material more accurate.

1H. P. Greenspan and G. F. Carrier, J. Fluid Me&h77 (1959.

2G. E. H. Reuter and K. Stewartson, Phys. FIuid276 (1961).

3K. Stewartson and D. H. Wilson, J. Fluid Mect8, 337 (1964.

4G. W. Bluman and S. KumeiGroup Symmetries and Differential Equatiof@pringer-Verlag, Berlin, 1989
5C. M. Bender, K. A. Milton, S. S. Pensky, and L. M. Simmons, Jr., J. Math. P3§s1447(1989.

6B. K. Shivamoggi and D. K. Rollins, J. Phys. 20, 3681(1997.



	Magnetohydrodynamic boundary layer on a flat plate: Further analytic results
	Recommended Citation

	Magnetohydrodynamic boundary layer on a flat plate: Further analytic results

