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Magnetohydrodynamic boundary layer on a flat plate:
Further analytic results

Bhimsen K. Shivamoggi and David K. Rollinsa)

Department of Mathematics, University of Central Florida, Orlando, Florida 32816

~Received 2 June 1998; accepted for publication 4 March 1999!

Further analytic results are deduced with the magnetohydrodynamic boundary layer
equations for a flat plate. The asymptotic behavior of the solutions is deduced using
the scaling group method. Then, an analytic perturbative procedure is used to
determine an approximate solution that exhibits this asymptotic behavior. ©1999
American Institute of Physics.@S0022-2488~99!02906-0#

I. INTRODUCTION

Greenspan and Carrier1 considered the flow of a viscous, electrically conducting, incompress-
ible fluid past a semi-infinite flat plate in the presence of a magnetic field which is uniform at
infinity and parallel to the stream. They reduced the boundary-layer equations then to a pair of
coupled nonlinear ordinary differential equations—

g91m~ f g82 f 8g!50, ~1!

f-1 f f 92
1

A2 gg950, ~2!

subject to the boundary conditions

h50: f 50, f 850, g50, ~3a!

h⇒`: f '2h, g'2h. ~3b!

Here, primes denote differentiation with respect to the independent variableh5 1
2yAU/nx;y mea-

sures the distance from the plate,x is the distance along the plate from the leading edge,U is the
undisturbed velocity, andn is the kinematic viscosity. Further, ifu andBx are thex components
of the velocity and magnetic fields, then

u5 1
2U f 8~h!, Bx5 1

2B0g8~h!,

B0 being the ambient magnetic field intensity. Finally,A[U/VA , whereVA is the Alfvén velocity
VA[B0 /A4pr, andm[4psn, r being the density ands the electrical conductivity of the fluid.

For sub-Alfvénic flows (A,1), disturbances travel upstream of the plate, invalidating the
notion of a boundary layer originating at the leading edge of the plate. As Greenspan and Carrier1

pointed out, this can be clearly seen by considering the case with infinite electrical conductivity,
m⇒`. For this case, Eqs.~1! and ~2! becomeg5 f , f-1(11(1/A2)) f f 950, so that one needs
A2.1 in order to preserve the usual boundary-layer situation. Reuter and Stewartson2 showed
that, for this case, the problem is mathematically ill posed, in the sense that it does not admit any
solutions such thatf 9(0).0 andg8(0).0. Stewartson and Wilson3 showed further that, even for
certain values ofA.1, the solutions turn out to be nonunique wheneverm,1.

a!Electronic mail: drollins@pegasus.cc.ucf.edu
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Equations~1! and ~2! are, on the other hand, highly nonlinear and, therefore, one may not
anticipate explicit analytical solutions for them. In this paper, we first deduce the asymptotic
behavior of the solutions of Eqs.~1! and ~2! using the scaling group method~Bluman and
Kumei4!. We then use an analytical perturbative procedure due to Benderet al.5 to determine an
approximate solution that has the above asymptotic behavior.

II. ASYMPTOTIC BEHAVIOR OF THE SOLUTION

In order to find the asymptotic behavior of the solutions of~1!–~3!, note first that Eqs.~1! and
~2! admit solutions of the form

f ;
1

h
, g;

1

h
; ~4!

~4! implies that Eqs.~1! and ~2! have the scaling group

f̄ 5a21f , ḡ5a21g, h̄5ah. ~5!

We may therefore introduce the following canonical coordinates

s5 f h, t5h2
d f

dh
, q5hg. ~6!

The transformation from~s,t! to ( f ,h) is given differentially by

ds

t1s
5

dh

h
. ~7!

The transformation rules of the various derivatives are

d2f

dh2 52
2t

h3 1
1

h3 ~ t1s!
dt

ds
,

d3f

dh3 5
6t

h42
5

h4 ~ t1s!
dt

ds
1

1

h4 ~ t1s!2
d2t

ds2 1
1

h4 ~ t1s!
dt

ds S dt

ds
11D ,

~8!
dg

dh
52

q

h2 1
1

h2 ~ t1s!
dq

ds
,

d2g

dh2 5
2

h3 q2
3

h3 ~ t1s!
dq

ds
1

1

h3 ~ t1s!2
d2q

ds2 1
1

h3 ~ t1s!
dq

ds S dt

ds
11D .

In terms of the new variables~s,t,q!, the boundary-value problem~1!–~3! becomes

6t25~ t1s!
dt

ds
1~ t1s!2

d2t

ds2 1~ t1s!
dt

ds S dt

ds
11D22st1s~ t1s!

dt

ds

2
1

A2 q@2q23~ t1s!#
dq

ds
1~ t1s!2

d2q

ds2 1~ t1s!
dq

ds S dt

ds
11D50, ~9!

2q23~ t1s!
dq

ds
1~ t1s!2

d2q

ds2 1~ t1s!
dq

ds S dt

ds
11D1mFs~ t1s!

dq

ds
2q~ t1s!G50, ~10!

s50:t50, q50, ~11!
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s⇒`:t⇒`, q⇒`. ~12!

Nears50, Eqs.~9! and ~10! show that

t'l1s, q'l2sp, ~13!

with

6l125l1~l111!1l1~l111!2'0, ~14a!

2l223pl2~l111!1p~p21!l2~l111!2l2p~l111!2'0, ~15a!

or

l151,2, ~14b!

l152,l2 arbitrary and p5 1
3,

2
3. ~15b!

l151 turns out to be the spurious root. The rootp5 1
3 is to be discarded because we require from

~6! and ~13! that 2p.1.
For l152, we obtain from~7! and ~13!,

s;h3. ~16!

Using ~16!, we have from~6!,

h⇒0: f ;h2, g;h ~17!

Nears⇒`, equations~9! and ~10! show that

t'l̃1s, q'l̃2s, ~18!

with

22l̃11l̃1~ l̃111!2
1

A2 l̃2@2l̃223l̃2~ l̃111!1l̃2~ l̃111!2#'0, ~19a!

2l̃223l̃2~ l̃111!1l̃2~ l̃111!2'0, ~20a!

or

l̃151, ~19b!

l̃2 arbitrary. ~20b!

Using ~19! and ~20!, we obtain from~7! and ~18!,

s;h2. ~21!

Using ~21!, we have from~6!,

h⇒`: f ;h, g;h. ~22!

Observe that the asymptotic behavior of the solutions, as exhibited by~17! and ~22!, is
independent of the Alfve´n numberA.
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III. AN ANALYTIC PERTURBATIVE SOLUTION

We now use a perturbative procedure due to Benderet al.5 to solve Eqs.~1! and ~2! analyti-
cally. This method has been used recently~Shivamoggi and Rollins6! to solve the Kadomtsev
equation for a heavy atom in a very strong magnetic field with very good results. We first replace
Eqs.~1! and ~2! by ones that contain a parameterd, i.e.,

g91m@g8 f d2 f 8gd#50, ~23!

f-1 f 9 f d2
1

A2 g9gd50. ~24!

Note that Eqs.~1! and ~2! are recovered whend51, andd50 corresponds to the linear zeroth-
order approximation. By identifyingd as the perturbation parameter, the solution~f,g! is then
expanded in a power series ind,

f 5 f 01d f 11d2f 21¯ ,
~25!

g5g01dg11d2g21¯ .

This then leads to a set of linear equations for (f n ,gn):O(1),

g091m~g082 f 08!50, ~26!

f 0-1 f 092
1

A2 g0950; ~27!

O(d),

g191m~g182 f 18!52m~g08• ln f 02 f 08• ln g0!, ~28!

f 1-1 f 192
1

A2 g1952 f 09• ln f 01
1

A2 g09• ln g0 , ~29!

etc.
Successive integrations of Eqs.~26! and ~27!, along with the use of~3!, lead to

g081m~g02 f 0!5a, ~30!

f 081 f 02
1

A2 g05ch, ~31!

wherec is an arbitrary constant and

a[g08~0!.0. ~32!

Using the boundary condition~3! at h⇒`, we obtain, from~31!,

c52e, ~33!

where

e[12
1

A2.0.

We have, from Eqs.~30! and ~31!,
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f 091~11m! f 081em f 052emh12e1a~12e!, ~34!

from which

f 05~D1es1h1D2es2h!2
2m1~22a!~12e!

me
12h, ~35!

where

s1,25
1
2@2~11m!6A~11m!224me#.

Using the boundary condition~3! at h50, we obtain

D152
1

s12s2
Fs2

2m1~22a!~12e!

me
12G ,

D25
1

s12s2
Fs1

2m1~22a!~12e!

me
12G . ~36!

We have from~32! and ~35! and ~36!, for smallh,

f 0' 1
2@a~12e!12e#h2, ~37a!

g0'ah. ~37b!

One may also obtain~37! directly from Eqs.~30! and ~31!.
Observe from~37a! that, for super-Alfve´nic flows (e.0), f 09(0).0, because

FIG. 1. Comparison of zeroth order approximate solution and numerical solution~bold! for nonlinear boundary value
problem for magnetohydrodynamic case.
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a~12e!12e.0,

on noting~32! and that (12e).0.
Further, we have from~31!, ~33!, and~35!, for largeh,

f 0'2h, ~38a!

g0'2h. ~38b!

One may also obtain~38! directly from Eqs.~30! and ~31!.
The agreement of~37! with ~17! on the one hand, and~38! with ~3b! on the other hand,

indicates that the asymptotic behavior~for bothsmall and largeh! of the solution of Eqs.~1! and
~2! can be accurately provided by the linearized versions of the latter. Indeed, the linearized~or the
zeroth-order! solution turns out to provide a reasonably accurate representation of the exact nu-
merical solution of Eqs.~1! and ~2! elsewhere as well.

In Fig. 1, the zeroth-order approximate analytic solutionf 0 given in~35! is compared with the
exact numerical solution of Eqs.~1! and~2!. The agreement seems to be very good, even though
f 0 is meant to be only a crude approximation to the exact solution. In fact, this feature is a
carryover from the hydrodynamic case. In the latter case,~35! reduces to

f 0~h!52e2h2212h, ~39!

in agreement with the one given by Benderet al.5 In Fig. 2, the zeroth-order approximate analytic
solution given by~39! is compared with the exact numerical solution of the Blasius equation,

FIG. 2. Comparison of zeroth order approximate solution and numerical solution~bold! for nonlinear boundary value
problem for hydrodynamic case.
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f-1 f f 950. ~40!

Again, the agreement seems to be very good.
Next, using~31! and ~35! in the O(d) equations~28! and ~29!, we see that a closed-form

analytic solution of these equations becomes very difficult to find.

IV. DISCUSSION

In this paper, we have deduced further analytic results with the magnetohydrodynamic bound-
ary layer equations~1! and ~2! for a flat plate. We first derived the asymptotic behavior of the
solutions using the scaling group method~Bluman and Kumei4!. We then sought to use an analytic
perturbative procedure due to Benderet al.5 to determine an approximate solution. However, the
linearized~or the zeroth-order! solution of the boundary-layer equations~1! and~2! turned out to
provide not only the required asymptotic behavior~for both small and largeh! of the exact
numerical solution of Eqs.~1! and ~2!, but also a reasonably accurate representation of the exact
numerical solution elsewhere.
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