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Quadratic spatial solitons exist in media with second order nonlinearities
near the phase-matching condition for frequency mixing processes involving
two or three waves of different frequency. Discussed here are a number of
properties of these special solitons which are different from those of other
spatial solitons which rely on optically induced index changes for guiding.
First, the self-guiding properties of quadratic solitons are shown to have
completely different origins than solitons which rely on index changes. Sec-
ond, it is shown that there exists a large variety of quadratic solitons which
contain two or three distinct spectral components with relative amplitudes
depending on the phase mismatch, dimensionality of the propagation geome-
try, the soliton power and the launching conditions. Third, under appropriate
conditions, solitons can be formed even when the group velocity directions
for the spectral components lead to walk-off under normal circumstances.
Fourth, for type IT phase-matching in bulk crystals, seeded interactions lead

. to saturating amplifier characteristics.

PACS numbers: 42.65.Tg, 42.65.Y], 42.65.-k
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1. Introduction

The period of last 15-20 years has been an exciting time for solitons in-
vestigated experimentally in optics {1, 2]. Temporal solitons have been devel-
oped to the point of demonstration of long haul, WDM communications over
10000 miles [3]. After a short lull, the field was revived recently by the concept
of the “dispersion-managed” soliton and the practical application to long distance
transmission seems likely again [4].

Spatial solitons, beams which do not spread in space (versus time for the
temporal soliton), were recognized experimentally already in the 1970s in media
exhibiting saturating odd order nonlinearities [2, 5]. However, these spatial analogs
did not attract wide-spread attention until the mid to late 1980s when work on
spatial solitons in glass, CS,, and finally in AlGaAs slab waveguides operated
below half of the semiconductor band-gap was reported [2, 6-8]. Nevertheless,
the relevant nonlinearity was still x(® in the slab waveguide demonstrations, the
same as for temporal solitons in glass fibers. The only exception was the early
experiment in a bulk medium in which self-trapping was possible due to higher
order nonlinearities in addition to x(3) [5].

A large departure from these trends was reported in the early to mid 1990s.
Photorefractive solitons were first reported in 1993, just a year after they were
predicted theoretically [2, 9, 10]. This was soon followed by experimental reports
of “quadratic solitons” which had already been predicted in the mid 1970s [11-13].
These solitons were unusual -because the usual spatial diffraction is not arrested
by a “self-focusing” nonlinear index change. Instead, the self-trapping mechanism
is the rapid exchange of power between two or more waves of different frequency
coupled together by the second order nonlinearity X(z):

In this paper we will discuss experiments on these quadratic solitons which
illustrate some of the unique features not found with the other types of spatial
solitons reported to date [2]. The next section deals with the simple coupled mode
equations which describe quadratic solitons and their evolution for the (1+1)D
case, i.e. in slab waveguides. A number of experiments relevant to this case are
also discussed there. In the next section, the equations and experiments for the
(2+1)D geometry, i.e. bulk media will be presented. A discussion of some of the
similarities and differences between quadratic solitons and other solitons will be
given in the final section. '

2. (141)D quadratic solitons

2.1. Equations governing the evolution and propagation
of (1+1)D quadratic solitons

The coupled mode equations describing second harmonic generation for
beams with finite cross-section in a slab waveguide are well known. They are
sufficient for describing quadratic solitons. Consider a slab waveguide (1D) with
propagation along the z-axis in the y—z plane so that the guided wave confine-
ment occurs along the z-axis. For the simplest case of type I phase-matching, the
interacting fundamental and harmonic fields can be written, respectively, as
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Eq(r,t) = (1/2)a1(y, z) exp [i(wt — k1 2)] + cc,

Es5(r,t) = (1/2)as(y, z) exp [i(wt — k32)] + cc, (1)
where the subscript 1 identifies parameters at the fundamental frequency w, and
the subscript 3 refers to the second harmonic (2w). (Later the subscript 2 will
be used for the second, orthogonally polarized, input fundamental field in type II

phase-matching.) The complex field amplitudes are a;(y,z). The corresponding
coupled mode equations are ‘
2

5] 1 @8 .
gzal(y, z) — Tk{gﬁal(y’ z) = —il'a}(y, 2)as(y, ) exp (1Akz),

2

o 0 1 0 <
55950, ) + p3g-0s(0, 9) = =z ras(y,2) = ~ilal(y,2) exp(iAk2). (2

Here Ak = 2k —k3 is the linear wave vector mismatch (AkL the phase-mismatch),
I, the nonlinear coupling coefficient, is proportional to the effective second order
susceptibility x@ for the appropriate material symmetry class and field geome-
try, and pg is the harmonic Poynting vector walk-off angle from the z-axis. Here
I' includes the “overlap integral” of the fundamental and harmonic guided wave
fields. Note that walk-off between the two beams is absent for propagation along
the principal optical axes of a crystal. However, in the more general case, walk-off
can and does occur, complicating the soliton forming process in many doubling
crystals. It is important to note that these equations describe all of the soliton phe-
nomena discussed in this chapter, even the adiabatic (when valid) evolution from
input launching conditions which do not correspond to the stable steady-state
solutions. Missing is the coupling to radiation fields which occurs with highly
non-ideal launching conditions (of the type actually used in some of the experi-
ments described here). As a result the total launched power does not all end up in
the solitons propagating along the z-axis. In general, the further away the launch-
ing conditions are from the final soliton “modes”, the more non-adiabatic is the
field evolution. For launching of the fundamental only at high input powers, an
example of the evolution of the fields (at their peaks) is shown in Fig. 1. Note
the oscillatory behavior that dies off with distance as the fundamental and har-
monic fields readjust their relative amplitudes and phases to that of a quadratic
soliton [14].

A key feature of quadratic solitons is that they consist of more than one field
component. In fact it is the power exchange between the fundamental and har-
monic that leads to beam narrowing for both the fundamental and the harmonic,
as illustrated in Fig. 2. The key is the form of Eq.-(2). Clearly the driving term for
the harmonic is proportional to the fundamental field profile squared, i.e. the driv- -
ing term is narrower in space than the fundamental beam. As a result the initially
generated harmonic is narrower than the fundamental. Ignoring spatial diffraction
for the moment, the regenerated fundamental, proportional to af(z)as(z), is also
narrower than the initial fundamental. So, both beams are spatially narrowed by
this exchange of power between the fundamental and harmonic. This narrowing
mechanism compensates spatial diffraction, providing that enough power is con-
verted to the harmonic and that the distance over which substantial conversion
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Fundamental

Intensity at center
®
I
@

Propagation Distance

Fig. 1. Simulated spatial evolution towards a stable quadratic soliton of the peak fun-
damental and harmonic beam intensity when only the fundamental is excited at the

input.

— Total fundamental
— Input fundamental

--- Regenerated fundamental

Fig. 2. Pictorial schematic showing the narrowing of the second harmonic relative to the
fundamental, the narrowing of the regenerated fundamental, the diffracted fundamental

which was not doubled and the total fundamental.

occurs, the parametric gain length, is of order of or smaller than the diffraction
distance. If in addition there 1s walk-off of one or both beams, then the parametric
gain length must also be shorter than the shortest walk-off length.

Another key difference between quadratic and other solitons is the compo-
sition of the soliton fields. The equilibrium value of the quadratic soliton compo-
nents, their beam sizes and shapes depend on the wave vector mismatch as well
as the total soliton power. An example of the calculated variation in the soliton
threshold power and the relative fundamental and harmonic components are shown
in Fig. 3 [15]: Note that the phase-mismatch is a key parameter in describing a
quadratic soliton.
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Fig. 3. (a) The total normalized soliton intensity versus the normalized phase mismatch -
for the type I, (141)D case. (b) The fraction of the soliton power in the fundamental
and harmonic versus normalized phase mismatch for the type I, (141)D case.

2.2. Quadratic soliton generation .
The only report to date of (1+1)D quadratic solitons has been in LiNbOj3
Tiindiffused waveguides [13]. The geometry is shown in Fig. 4. Note that when
the beam is incident normal to the input face, both the fundamental and har-
monic beams travel together along the z-axis which is an optic axis. However,
for non-normal incidence in the z—z plane, the group and phase velocities are
collinear only for the y-polarized fundamental, but not for the z—z polarized har-
monic. Hence the group velocities are in slightly different directions, with the
angular difference increasing with increasing input angle ¢« from the input facet
normal. When the quadratic soliton is formed, the fundamental and harmonics are
so strongly coupled that they co-propagate, i.6. their group velocities are locked
together and forced to be co-directional (and hence the phase velocities are no
longer co-directional) [16]. The final soliton direction is governed by the relative
fractions of the fundamental and harmonic powers which constitute the soliton,
quite different from other spatial solitons which contain only one frequency com-
ponent.

TM, . y-axis (n;) .
“ | TE.2w)
G A S
z (n3) )
(2)
T MIg(w, low power) / TE(2Z2w, low power)

/

“zero deflection point™

LiNbO,

T
1
i
(b) /é' x-axis

Fig. 4. (a) Lithium niobate waveguide geometry for the soliton experiments. The or-
dinary and extraordinary optic axes are (z,y) and z, respectively. (b) Top view of the
propagation of the uncoupled fundamental and harmonic beams through the waveguide,
including walk-off. The “zero deflection point” is defined for Fig. 5.
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Fig. 5. The fundamental component of the soliton at the exit facet of the waveguide
for three angles of incidence « in the z—z plane from the normal to the input facet.
“Zero” position is defined in Fig. 4. ’
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Although quadratic solitons consist of both the fundamental and harmonic
components, in our experiments we launched only the fundamental and rely on .
the generation of the required harmonic with distance into the sample. Hence
it requires some propagation distance to establish the steady-state solitons. This
distance typically increases when the input conditions are progressively further

“from those of a quadratic soliton. Note the example in Fig. 1.

The intensity profiles of the solitons observed at the output end of the sample
are shown in Fig. 5 for various input angles « relative to the normal to the facet.
The geometry of the measurement, shown in Fig. 4b, identifies the ‘“zero” angle
point in Fig. 5. Specifically, it is the angle at which a low power fundamental
(non-solitonic) beam emerges from the end facet in the absence of soliton locking.
So the horizontal axis is therefore a measure of the pulling of the fundamental
propagation direction in the soliton away from that of a pure fundamental wave.
The results are in excellent agreement with theory.

2.3. Quadratic soliton collisions

Because a quadratic soliton contains two components with different frequen-
cies, one might expect that the interaction between two such solitons would exhibit
unique behavior. However, the range of interaction and collision phenomena for .
quadratic solitons has been shown to be quite similar to that found in saturable
media [17-20]. That is, depending on the crossing angle and relative phase between
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Fig. 6. The output from an interaction between two parallel input quadratic solitons

after propagation for 20 diffraction lengths versus relative phase angle between the input
solitons. Each horizontal slice corresponds to the results of a complete propagation.

the interacting solitons, the soliton either repel one another, attract one another,
or exchange energy, and this has been verified experimentally.

There is, however, an interesting case uncovered numerically which has not
been found to date in saturable media. As noted above, the same general phenom-
ena still occur, but the transition from.one type of behavior to another exhibits
interesting effects. There exists a sharp transition between fusion and repulsion
with increasing phase angle difference between the input solitons for negative
phase mismatch [18]. The numerical results are shown in Fig. 6 for 8 = -3,
where f = Akk;wZ is the normalized phase-mismatch and wy is the beam width. -
Here the output fields are shown after a propagation distance of 20 diffraction
lengths as a function of the relative phase between two solitons launched parallel
to one another at an initial separation of a few half-widths. Unfortunately, due to
technical reasons it has not been possible to study this behavior in the negative
phase-mismatch region of the LiNbOgs experiments discussed above.

3. (24+1)D quadratic solitons

3.1. Equations governing the evolution and propagation
of (2+1)D gquadratic solitons

The most general equations describing the harmonic generation process in
the 2D, type II case are more complicated than for the previously discussed 1D,
type I case. Here the extra fundamental quantities are identified with the sub-
script 2 and
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5a1 1 62a1 32(11 s * .
0z 2ik; ( dz2 " 9y2 ) ez exp (IMZ)’
o da 1 (8%, 6% . .
% + pz-g-zl T <67(122 + -W:-) = —il'ajaz exp(iAkz), (3)
Oa da 1 (6%3 & 6% . .
8_: Ps’a—; - 5-1-]6—3 <E:T3 + _8—3173) = —21Fq1a2 exp(—iAkz),

where Ak = ki +ko— k3 and p is the Poynting vector walk-off angle from the z-axis
for launching along the z-axis. Although the interplay between the three different
beams is complex, the net result is that each equation leads to beam narrowing
and, as long as the parametric gain length is the shortest length in the problem,
soliton locking still occurs. ‘

150 ' :
- I @D
g solitons ! |
£ H -solitons !
= :
]
= no 1
trapping : no
0 { 1 trapping
-10 1

Phase-Mismatch

Fig. 7. The total normalized soliton power versus normalized phase mismatch for type],

(24+1)D.
4
s
@ B3|
' % 20
2 7&\
@ :
0 . 9
0 amplitude 90 amplitude
Fig. 8. The spatial width of the two spectral components versus their amplitudes for

‘two different normalized phase mismatches; (a) # = -3, (b) 8 =3.

The type I case can easily be recovered from Egs. (3) and is similar to the
1D case (Egs. (2)) but with spatial diffraction in two dimensions. It is easier to
discuss the salient features for the (241)D case using type I instead of type II.
Shown in Fig. 7 is the trade-off between the soliton power and the normalized
phase-mismatch [20]. In contrast to the (14+1)D case, a finite total power is needed
to support quadratic solitons for both positive and negative phase mismatch. This
result carries over to the type II geometry. Figure 8 illustrates the variation in the
beam widths with amplitude [21]. Note that at high powers the asymptotic beam .
sizes for the fundamental and harmonic converge towards the same value.
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3.2. Type I quadratic soliton generation

Pqtassium niobate is a well-known doubling crystal which yields non-critical
type I, birefringent phase-matched doubling at a fundamental wavelength of 985 nm
at T' = 31.4°C. The relevant nonlinearity is di5 = —12 pm/V.

TOP VIEW

5 Diffraction Lengths

‘ Fig. 9. A photograph of a quadratic soliton in bulk KNbO; for type I SHG from a
985 nm fundamental input beam.

Shown in Fig. 9 for the first time is an actual photograph of a quadratic
soliton propagating in a crystal with just a fundamental input, made possible by
a very small concentration of defects and scattering centers within the crystal.
Note the lack of diffraction spreading over a propagation distance of 5 diffraction
lengths.

3.8. Type II quadratic solitons

For the type It experiments we used a standard KTP doubling crystal (for
1064 nm) with d'? = 2.7 pm/V, p» = 0.0033 rad and ps = 0.0049 rad [12]. There
are two orthogonally polarized fundamental beams, one of which is an o-ray and
the other is an e-ray that propagates (eneigy) at an angle ps relative to the o-ray.
The harmonic is also an o-ray so that at low powers all three beams walk away
from each other on propagation. The diameter of the input beams was 20 ym, and
they were focused onto the input face of the crystal. The beam output end-face of
the crystal was imaged onto a camera. Again, only the fundamental beams were
input into the crystal and the harmonic was generated on propagation.

Here we concentrate on two aspects of type II quadratic solitons which differ
from the usual properties of spatial solitons based on odd order nonlinearities and
index changes. The first is the extended family of solitons which exist for a wide
range of ratios of intensities for the two fundamental polarizations, and the second
is the amplifier-like effects which occur when the process is seeded.

3.8.1. Eztended family of spatial solitons

In going from type I to type II another degree of freedom is introduced by
the extra fundamental field [22, 14]. This essentially allows quadratic solitons to be .
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formed with a continuum of intensity ratios between the two fundamental beams.
In practice only one fundamental beam is incident onto the crystal. It excites
both an e- and o-polarized beam inside the crystal, with the ratio of e to o being
determined by the angle of the incident polarization vector relative to the e-beam
axis.

100
] .. A-.. fundamental e-wave
1 . ..y..- fundamental o-wave
75 b ---@--- second harmonic wave
v A
o X v,
53 ] 2 A
] - A
o ] . g
*g J ‘V-._. A
E ] X
5 ] S
a i A v
g 25 A —¥-
N LA YL AR TUSP Py .
] A.-‘..-O-"" * ooV
] 2. .
0 25 50 75 100

E-wave input fraction (%)

Fig. 10. Fraction of the output soliton in the e- and o-polarized fundamental waves,
and the e-polarized second harmonic wave versus fraction of the input fundamental in
the e-polarization. The process is on phase-match with an input fundamental energy of
13 ud.

The experimental results for the constituents of a soliton are shown in Fig. 10
for phase-matching [23]. The most obvious feature is that the e-beam component
of the soliton is the largest one when the input fundamental has I, > I,, and
vice versa. Over the range studied, ratios of almost 8:1 between the fundamental
components were measured. Furthermore, the harmonic component is always the
smallest with its peak value (which occurs when I, = I,) rising with decreasing
phase-mismatch [23].

3.8.2. Saturating amplification

It is well known in second order nonlinear optics that a signal (seed) beam
(ws, ks) can be amplified by a powerful pump beam (wp, kp) with the generation
of an idler (wi, ki), provided that energy and momentum are conserved, i.e. w, =
ws +w; and k, = ks + ki, respectively. The salient question is whether quadratic
solitons can be formed via amplification in this process.

The experiments were performed with the KTP crystal described above [24].
For a weak pump beam, only a diffracted pump beam is observed at the output.
However, when the pump pulse (0.53 um) was sufficiently intense, in this case 10s
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of uJ, the fundamental (1.064 pm) was effectively seeded by noise and amplified to
pJ levels. These energy levels exceed those required for soliton locking and indeed
a quadratic soliton was observed at the crystal output face. This is known as
the degenerate case of an optical parametric generator. (The non-degenerate case,
i.e. when ws # wj, has recently been reported by Trapani and coworkers [25].)
However, for lower pump energies, of order 10 uJ, a seed is required to trigger the
amplification process. As shown in Fig. 11, only a few pJ’s of seed are required
to form the soliton. The most interesting feature there is the flat plateau for
the fundamental output over 4-5 orders of magnitude of the input. This is the
consequence of the formation of a quadratic soliton for which the intensity ratios
of the harmonic to fundamental are fixed. Another interesting aspect of this process
is that the amplification and soliton formation is independent of the polarization of .
the seed fundamental, another feature which is a consequence of soliton formation.
This process could prove interesting for an amplifier in which a fixed output level
is attractive, for example for digital logic.

4.0 R IR I I ) A
a5 " total
|| —%—green
3.04 ~—a—|R
1 —2— (IR seed) |-
2.5

0.5

Qutput measured energy (nd)

N

o.o—ri-.-rAﬁ VRIENC IRELIT ; rrrr—rT
1E-8 1E7 1E6 1E5 1E4 -1E-3 001 01 1 10
Input FW seed energy (pJ)

Fig. 11. The output energy for the harmonic (green) and fundamental (infrared) com-
ponents of the soliton versus the fundamental seed beam energy. The pump energy was
8 ul.

An extension of this seeded process with a large cross-section pump beam
and a small cross-section seed beam has recently been used to generate quadratic
solitons nested inside the broad pump beam at the output [26].

4. Summary

Quadratic solitons exhibit many features uniquely different from those of
other spatial solitons. These differences stem from both the multi-frequency na-
ture of these solitons, and because the phase-mismatch is an additional free vari-
able. For example, these two characteristics combine to produce a rich variety of



702 : G.I. Stegeman et al.

solitons with different ratios of spectral components and polarization conditions.
Especially rich are type II solitons in' (241)D for which any ratio of the e- to
o-beam fundamental polarizations leads to a stable quadratic soliton. These ratios
can be further manipulated by changing the phase-matching condition Ak L, with
the threshold for soliton formation increasing with increasing |AkL|.

Another unique feature of quadratic solitons is that all of the soliton compo-
nents propagate in the same group velocity direction, even though the individual
waves would walk-off from each other in the absence of soliton formation. This is a
direct consequence of the locking mechanism itself in which rapid power exchange
guarantees the overlap of the interacting waves.

The gain inherent in second order processes also leads to a potentially useful
amplifier. The key point is that (a) the phase-mismatch condition is fixed by
geometry, (b) gain occurs with a weak fundamental seed with one pump photon
yielding a photon in each of the fundamental polarizations, and therefore (c) the
properties of the output solitons are fixed by (a), (b) and a fixed harmonic pulse
energy as long as the seed energy is small compared to the final fundamental energy.
Hence the output fundamental energy is independent of the input seed energy over
4-5 orders of magnitude of seed energy, i.e. the operational characteristics of a
saturating amplifier.
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