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PHYSICAL REVIEW A

VOLUME 41, NUMBER 1

Multiconfiguration Hartree-Fock calculation of the photoionization
of the Cs 7d excited state

H. P. Saha
Department of Physics, University of Central Florida, Orlando, Florida 32816-0993
(Received 21 August 1989)

The numerical multiconfiguration Hartree-Fock method is used to calculate the photoionization
cross section for the Cs 7d excited state. The electron correlation and the dynamical core-
polarization effects, which are very important for photonioization-cross-section calculations of the
cesium atom, have been taken into account in an ab initio manner through the configuration-
interaction procedure. A minimum has been found in the total photoionization cross section. The
calculation of the photoionization angular-distribution asymmetry parameter is proved to be an ex-
cellent test to determine the existence and location of the minimum in the cross section. The length
and velocity forms of the cross section and the asymmetry parameter are found to be in excellent
agreement over the entire incident photon energy range considered, suggesting that converged re-
sults may be obtained in this interval with the present approach. The results obtained are compared
with the recent experimental measurements of the absolute photoionization cross section and are
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found to be in good agreement.

I. INTRODUCTION

The alkali-metal atoms are currently receiving consid-
erable attention,! especially those processes involving
promotion of one electron outside the closed core. With
respect to many processes, these electrons can be as-
sumed to act independently of the core, and they are no-
torious for being strongly correlated.? Photoionization
cross sections of alkali-metal atoms in the excited state
have long provided a computational challenge to the
theorist. The polarization of the core by the valence elec-
tron generally requires studies beyond the Hartree-Fock
approximation. Moreover, the final-state continuum
functions are also affected by the polarizability of the
remaining ionic core. In recent years various calculations
have predicted the existence of minima in the photoion-
ization cross section of the excited states of atoms.’ ®
These minima arise when matrix elements as a function
of the ejected electron energy change their sign in the
l—1+1 or /—I/—1 channels. These minima are very
sensitive to the details of the initial- and the final-state
wave functions and as such provide an excellent test of
the approximation methods when compared with experi-
ment.

Cesium is the most interesting of the alkali metals be-
cause electron-election correlation and core-polarization
effects are largest for this atom. Recent experiments’?
have been performed on the photoionization of the excit-
ed states of cesium atom. Gerwert and Kollath’ mea-
sured relative photoionization cross section for the
7%P,,, and 6’D, , excited states of cesium in the visible
spectral range of the ionizing photon. The measurement
was performed using two pulsed dye lasers, pumped by
the same excimer laser, for population of the excited
states and for their photoionization. Very recently Bonin
et al.® measured absolute photoionization cross sections
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from the excited 72D, , state of cesium. Their technique
involves utilization of a simple measurement of the
reduction in the excited-atom fluorescence due to photo-
ionization. This method is different from the other exper-
iments on the excited-state cross section in that past ex-
periments generally relied on measurements of the total
number of ions or photoelectrons produced by photoion-
ization. Various theoretical calculations have been re-
ported on photoionization from the excited states of cesi-
um atom. Lahiri and Manson® performed calculation on
the photoionization cross section from the Cs 6d excited
state. They used Hartree-Slater central-field approxima-
tion and obtained a minimum in the total cross section
near the threshold. Later Msezane and Manson ' applied
the Hartree-Fock method to obtain the photoionization
cross section from the excited state of cesium. They
again found a minimum in the cross section but at a
higher energy. These results agree very well with the rel-
ative cross section measured by experiment.” Avdonina
and Amusia calculated photoionization cross sections
from the nd 2D states of cesium. They used random
phase approximation with exchange to obtain photoion-
ization cross section. They compared these results with
that obtained with other approximations and found that
results are sensitive to the choice of used approximations.

Recently Saha et al.!! applied the multiconfiguration
Hartree-Fock (MCHF) method!? to the calculation of the
partial photoionization cross section from the excited 4d
subshell of sodium in the energy region from 0.0 to 13.6
eV, employing procedures that allow optimization at
each kinetic energy of the important core-polarization
effects on the continuum function as well as for the incor-
poration of target and the ionic core configuration mixing
effects. In this paper we report a calculation on the pho-
toionization cross section from the excited 72D state of
cesium. The method we used is the multiconfiguration
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Hartree-Fock method applied earlier to the calculation of
photoionization cross section from the excited 4d state of
sodium. The calculations have been performed using
both the Hartree-Fock (HF) and the more sophisticated
MCHF method to calculate wave functions for the initial
excited discrete state and the final continuum state. The
main emphasis in this investigation is to take into ac-
count the electron correlation and the dynamical core-
polarization effects ab initio in order to obtain an accu-
rate photoionization cross section and compare them
with the recent experimental measurement.?

II. THEORY

A. Photoionization cross sections

In the dipole approximation the photoionization cross
section for a transition from an initial state i to a final
state f is given by

olw)=4r’aajo 3 (¥ |TIy)*.
fim

The operator T is the dipole transition operator given by

T=T,=3 Z,

ji=1

in the length form and

T=T,= v Vi

v E, o

in the velocity form. The matrix elements

M= ¢f| TW’;‘ )

are evaluated in atomic units. a is the fine-structure con-
|

B,,[(Cl))z

stant and a is the Bohr radius of the hydrogen atom. w
is the energy of the incident photon in a.u. ¢; and ¢ are,
respectively, the initial- and the final-state wave functions
and the sums run over the configurations f and all mag-
netic quantum numbers m. When ¢, and ¢, are exact
solutions of the same Hamiltonian equations, the length
and the velocity forms of the cross section will be identi-
cal.

B. Asymmetry parameters f3,,(®)

The angular distribution of photoelectrons ionized
from a particular excited subshell n/ by light polarized in
the € direction is related to the differential cross section
for photoionization at energy o by the relation'?

0'"[((0)

doulo) 148, (0)P,(&-k)
a0 4y TBul@P @k,

where 0 ,,(w) is the total photoionization cross section at
energy o corresponding to the electron ionized from the
excited subshell nl. P, is the second-order Legendre po-
lynominal, whose argument is the cosine of the angle be-
tween the polarization vector € of the incident radiation
and the direction k of the photoelectron momentum, and
dQ is the solid angle into which the photoelectron is scat-
tered. The asymmetry parameter is a function of w, aris-
ing because of interference between various final states of
the ion plus photoelectron. The parameter fB,;(w) is
more sensitive to the behavior of the photoionization am-
plitude and the phase shifts than the total or even the
partial cross section.

In the Cooper-Zare model, the asymmetry parameter
B.(@) is given by'*

1(1_1)T12‘1(0)+(1+1)(1+2)T[2+](w)_61(l+1)T[_l(w)T]+](C())COS(§[+1—51‘1)

QI+DITE (o) + U+ DT (0)]

where T, _ (w) and T, () are the radial parts of the di-
pole matrix element corresponding to the / —1 and / +1
channels, respectively, and &;(w) is the total phase shift
of the /th channel.

C. MCHF wave function for a continuum state

The MCHF wave function for a continuum state may
be expressed in terms of a single continuum orbital cou-
pled to a wave function for an N-electron core and the
other bound (N + 1)-electron configuration state.

Let

Yy LS;N)= 3 a;®(y;L.S;N)
j

be a wave function describing an N-electron core that is
an eigenstate of L, and S, in terms of N-electron bound
configuration states ®(y ;L .S.;N) with configuration y;
and term L_S,, mixing coefficients a » and the total ener-

r

gy E.. Let ¢, be a one-electron, continuum orbital with
orbital angular momentum /. Then a MCHF wave func-
tion for a continuum state with label y, energy E, and
term LS may be expressed in a series of the form

W(yLS;N+1)= 3 a;®(y;L.S;N)dy

i=1

+ S C®(y,LS;N+1),

i=1

where ®(y ;L S ;N )¢, represents the coupling of the N-
electron configuration with a single electron to yield an
antisymmetric configuration state for the (N +1)-
electron system with the designated final term value and
configuration v ;kl. The second term is the sum of
(N +1)-electron bound-state configurations which are
eigenstates with the same L and S and which are included
to allow for electron correlation and the core polariza-
tion.
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The MCHF method for continuum states assumes all
the radial functions describing the core are fixed, along
with the mixing coefficients a;. Other bound-state radial
functions may be determined variationally along with the
radial function for the continuum electron. A set of radi-
al function P;(r), i=1,...,m, which defines the above
MCHF wave function, is a solution of the coupled
integro-differential equation of the form

2
A 2z WD |p
dr? r r?

:%[Yi(r)Pi(r)+Xi(r)+I,-(r>]+ 2 eibilr).

The off-diagonal energy parameters €; are related to
Lagrange multipliers to ensure orthogonality assump-
tions. In the equation (2/r)Y,(r) is the screening poten-
tial, (2/r)X;(r) is the exchange function, and (2/r)I;(r)
represents terms arising from interactions between
configuration states.

Bound radial function satisfy the boundary conditions,

P(r)—r'*! and P/(r) — 0.

i
r—0 r—x

In this case the diagonal energy parameter g, is an eigen-
value of the integro-differential equation and hence needs
to be determined. The radial functions for the continuum
orbital satisfy the conditions

P(r)—r'tt,

1

r—0
172 ;
P(r) - |—— | sin kr——7+iln(2kr)+o,+8, ,
r—o | T 2 k

where o,=arg[(/+1—ig/k)] is the Coulomb phase
shift, §, is the residual phase shift, g=Z — N is the net
charge of the ion, and €; = —k?, k? being the kinetic en-
ergy of the continuum electron.

The coupled integro-differential equations are solved
numerically by the iterative method. The
multiconfiguration (MC) self-consistent-field (SCF) pro-
cedure is applied to compute both the bound and the con-
tinuum wave functions. The same numerical procedures
are used for both the bound and the continuum wave
functions. The bound radial functions are essentially
bound in nature and vary smoothly as r — «. The con-
tinuum radial function is obtained by outward integration
only, there being no exponentially decaying ‘“‘tail” region.
The continuum radial function was normalized by fitting
the computed values at two adjacent points to the regular
and irregular Coulomb functions as soon as the Coulomb
region is reached. The coefficients C, are solutions of the
system of equations

_zl<¢,lH~E1¢,,>C[,+ zl<¢[2H—Et¢j>aj=o,
= j=

where

O, =Dy, L.S;N)byy » j=1,...,m

and
D, =d(y, LS;N+1), i=1,...,m .

H is the Hamiltonian for the (N + 1)-electron system and
E=E_+k?/2 (in a.u.).

III. COMPUTATIONAL PROCEDURE

In our calculation we consider the process
fiwo+Cs(5525p®7d 2D )—Cs™ (5525p°'S)+e " (kp)?P°
—Cst(5s25p°1S)+e " (kf)2F° .

The accuracy of the photoionization cross section de-
pends on two factors: (1) accurate calculation of thresh-
old energy and (2) accurate calculation of the dipole ma-
trix element whose accuracy again depends on the wave
function of the initial and final states. As stated earlier,
the electron-electron correlation and the dynamical
core-polarization effects are very important for the pho-
toionization cross section of the Cs 7d excited state. Two
sets of calculations are performed in order to study the
effect of core polarization and the electron correlation by
the valence electron in the initial state and by the contin-
uum electron in the final state. In the HF calculation,
which neglects the electron correlation and the polariza-
tion effects, both the initial and the final states are
represented by the single configuration. In the MCHF
calculation, which considers the electron correlation and
polarization effects very accurately, all the configurations
contributing to these effects are included. To simplify the
evaluation of the electric dipole transition-matrix ele-
ments, the 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 5s, and 5p radi-
al functions for both the states are obtained from the HF
calculation of the core 5s25p° 'S state.

A. Initial-state wave function 5s25p%7d 2D

The initial bound-state wave function is calculated by
the multiconfiguration Hartree-Fock method.!> The
MCHF wave-function expansion was over the set of 23
configuration states coupled to form a 2D term:

{5525p%7d,55%5p>5d 6p,5s25p°6s6p,5s25p36p6d ,
5s5p®5d 6s,555p°6s6d,555p°5d?,5s5p%5d 6d |
S5s5p°6p2,5s5p®6d?}?D .

The above expansion represents the set of configurations
whose contribution towards the dipole matrix element is
appreciable. The initial-state wave function is obtained
by MCHEF calculation varying five orbitals simultaneous-
ly.

B. Final-state wave function

1. 5s25pSkp *pP°

The final MCHF wave-function expansion was over the
set of 36 configurations coupled to form a 2P° term:



41 MULTICONFIGURATION HARTREE-FOCK CALCULATION OF . .. 177

5525p46P3, 5525p*5d 26p,, 55 25p*6s26p, ,5525pkp, |2P° .
P 2

The radial functions 5d, 6s, 6p,, and kp, are varied
simultaneously at each kinetic energy of the photoelec-
tron.

2. 5s25pSkf 2F°

For the final continuum state 5s25p Skf 2F°, the MCHF
expansion was over the set of 41 configuration states:

{555p®5d6p,,555p°5d6p3,555p>6s6p3,5525p°5d6s
5p®5d26p,,5s*5p*5d 6s6p,,5s25p*5d%6p, ,
5s25p46s%6p,,5s25p*6p3,5525p Ok f ) 2F° .

In this expansion three bound radial functions 5d,6s,6p,
and one continuum radial function kf, are varied simul-
taneously at each kinetic energy of the photoelectron. In
all cases 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, Ss, and 5p wave
functions are kept fixed at the HF 55%5p° 'S value.

IV. RESULTS

The calculated photoionization HF threshold energy is
0.6338 eV and the MCHEF threshold energy is 0.6489 eV.
The MCHEF threshold energy compares very well with
the experimental'® value 0.6625 eV. In all the cross-
section calculations we used the experimental threshold
energy.

A. Photoionization cross section

In the HF approximation, the partial photoionization
cross section for the 7d —kf transition is calculated in
both the length and velocity forms for photoelectron en-
ergies from threshold to 2.5 Ry. At threshold this cross
section is large and decreases rapidly near the threshold
and then slowly as the energy increases. This cross sec-
tion approaches zero at about 0.99 Ry (length) and 0.96
Ry (velocity), after which the cross section increases
again and goes to a maximum at about 1.50 Ry (length)
and 1.45 Ry (velocity). With the further increase of ener-
gy, the cross section decreases slowly. There is a consid-
erable difference in the length and velocity cross sections,
particularly near the threshold and around the region
where the cross section goes to zero.

The partial photoionization cross section for the
7d — kp transition is calculated in the HF approximation
in both the length and the velocity forms for the same en-
ergy range. In this transition, the cross section decreases
from the threshold and goes to zero at about 0.30 Ry
(length) and 0.60 Ry (velocity), after which it increases
again and goes to a maximum at about 0.97 Ry (length)
and 1.65 Ry (velocity). The cross section decreases with
the further increase of energy. There is a considerable
difference between the HF length and HF velocity cross
sections in this transition; the difference increases with
the increase of energy.

The partial photoionization cross section for the
7d —kf transition is calculated in the MCHF approxi-

mation in both the length and velocity forms for the same
range of energy. This cross section has the similar quali-
tative structure as the corresponding quantities in the HF
approximation. In this case the cross section decreases
and goes to a zero at about 0.98 Ry (length) and 0.97 Ry
(velocity), after which it increases to a maximum at about
1.50 Ry (length) and 1.49 Ry (velocity). The cross section
decreases with the further increase of energy. The re-
markable feature of the MCHF results is that the length
and velocity cross sections are in excellent agreement
throughout the range of energy considered, whereas in
the HF approximation there is a considerable difference
in the length and velocity results. The agreement be-
tween the length and velocity results in the MCHF ap-
proximation clearly supports the accuracy of the MCHF
wave functions.

The partial photoionization cross sections for the
7d — kp transition in the MCHF approximation show the
same general qualitative behavior as that in the HF ap-
proximation. They are relatively large at threshold, de-
crease to a minimum, then increase and go to a maximum
and decrease again. In this case the minimum occurs at
0.55 Ry (both length and velocity) and they go to a max-
imum at above 1.35 Ry (both length and velocity). The
MCHEF length and the velocity cross section in this tran-
sition also agree very well throughout the range of energy
considered.

102 ]
10"
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3 .
2 4
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FIG. 1. Cs 7d photoionization cross sections as a function of
photoelectron energy (Ry) using the Hartree-Fock (HF) and
multiconfiguration Hartree-Fock (MCHF) wave functions.
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Except for the narrow, near-threshold region, the
7d —kp cross sections are very small compared to the
7d —kf cross sections obtained in the HF and the
MCHF approximation and do not contribute significantly
to the total cross section.

The total cross section is obtained by summing up the
two partial cross sections and is presented in Fig. 1 as a
function of photoelectron energy. In the figure both HF
length and velocity cross sections and the MCHF length
cross sections are shown. As there is negligible difference
between the MCHF length and the MCHEF velocity cross
sections, the MCHF velocity cross section is not shown
in the figure. The HF length and velocity total cross sec-
tions go to a minimum at about 0.99 Ry (length) and 0.96
Ry (velocity) respectively, whereas the MCHF cross sec-
tion goes to a minimum at about 0.98 Ry. The cross sec-
tions increase again and go to a maximum at about 1.50
Ry (HF length), 1.45 Ry (HF velocity), and 1.50 Ry
(MCHF). With the further increase of energy, the cross
sections decrease with the increase of energy. Comparing
the MCHF total cross section with the HF total cross
section, it is found that the MCHF cross sections do not
differ significantly from the HF length cross section ex-
cept near the threshold and around the cross-section
minimum. The MCHEF cross sections are lower than the
HF cross section near the threshold and the minimum is
shifted slightly towards the threshold.

In Fig. 2, the total cross sections obtained in the HF
and MCHF approximations are shown as a function of
photon energy along with the experimental points® in the
energy region where the measurements have been made.
As mentioned earlier, Bonin et al.® measured the abso-
lute photoionization cross section using the techniques
which utilize the simple measurement of the reduction in
the excited-atom fluorescence due to photoionization. It
is seen from the figure that there is a good agreement be-
tween the present results and the experiment over the
small energy region where the absolute measurement
have been made.

B. Asymmetry parameter 8,;(»)

The asymmetry parameter S3,,;(w) for the Cs 7d photo-
ionization is shown in the Fig. 3, where the HF and the
MCHEF results are presented as a function of photoelec-
tron energy. From the expression of the 3,,(w), it is seen
that at the point where the 7d — kf cross section is zero,
the photoelectron angular distribution asymmetry param-
eters f3,;(®) must be equal to 0.2. The asymmetry param-
eter 3,,(w) depends on the accuracy of the photoioniza-
tion amplitude and the phase shifts. From the figure it is
seen that the HF length and velocity reach $=0.2 at
about 0.99 Ry (length) and 0.96 Ry (velocity), whereas
the MCHEF results show 8=0.2 at about 0.98 Ry. On the

40 ‘t\
35 S\ Cs 7d
' \
A
30 N e HF (Length)
) —_—————— e HF (Velocity)
?, 25 MCHF (Length)
c ‘\\
.g . O 0 0O 0 0 O Experiment
]
) 20
1]
2]
2 s
5 -
10 H
5 -
0.5 10 15 20 25 3.0

Photon Energy (eV)

FIG. 2. Photoionization cross section for Cs 7d as a function of photon energy in the Hartree-Fock and the multiconfiguration
Hartree-Fock approximation compared with experiment. The experimental results are from Ref. 8.
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FIG. 3. Photoelectron angular distribution asymmetry parameter 3 for Cs 7d in both length and velocity formulations, using

Hartree-Fock and multiconfiguration Hartree-Fock wave functions.

other hand, the value of B,,(w) will be equal to 0.8 where
the cross section for the transition 7d — kp goes to zero.
It is seen from the figure that the HF length and velocity
results reach $=0.8 at about 0.30 Ry (length) and 0.60
Ry (velocity) and the MCHF results show 8=0.8 at
about 0.55 Ry. The MCHF length and velocity results
are nearly the same. As a result, in Fig. 3, we have
shown only the MCHF length results. Although the par-
tial photoionization cross sections for the 7d — kp transi-
tion do not contribute significantly to the total cross sec-
tions, they are very important in the calculation of the
photoelectron angular-distribution asymmetry parame-
ter. The difference between the HF and MCHEF results is
due to the effect of core polarization and the electron
correlation.

V. CONCLUSION

Extensive and careful studies of the photoionization
cross section for the Cs 7d excited state have been per-
formed using the multiconfiguration Hartree-Fock ap-
proximation. Short-range correlation and the long-range
dynamical core-polarization effects which are very impor-
tant for the photoionization cross section of the Cs atom
have been taken into account adequately in an ab initio
manner through the configuration-interaction pro-
cedures. The cross sections for the 7d — kp transition are
found to be very small compared to those for the 7d —kf
transition except the narrow near-threshold region. As a
result the cross sections for the 7d — kp transition do not
contribute significantly to the total cross sections. Al-
though the partial cross section for the 7d —kf transi-
tion in the MCHF approximation does not change very
much compared to that obtained in the HF approxima-
tion, the difference between the length and the velocity

cross sections in the HF approximation is reduced almost
completely in the MCHF approximation due to the in-
clusion of many configuration states which represent the
electron correlation and the dynamical core polarization.
The disagreement between the length and the velocity
cross section for the 7d — kp transition in the HF approx-
imation also shows up in the photoelectron angular dis-
tribution asymmetry parameter. It is found that the
present total cross sections agree well with the experi-
mental results in the energy region where the measure-
ments have been made. Excellent agreement between the
MCHEF length and velocity cross sections shows the accu-
racy of the initial- and the final-state wave functions. It
should be mentioned that we do not consider the effects
of spin-orbit interaction in the present calculation. We
believe that spin-orbit interaction will not change the to-
tal photoionization cross-section results significantly ex-
cept at the minimum. Finally, we conclude that the
MCHF method which can take into account the correla-
tion and the polarization effects very accurately and in an
ab initio manner predicts reliable results.
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