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Intracavity gain and absorption dynamics of hybrid modelocked
semiconductor lasers using multiple quantum well saturable absorbers

S. Gee, R. Coffie, and P. J. Delfyetta)

Department of Electrical & Computer Engineering and Department of Physics, Center for Research and
Education in Optics and Lasers (CREOL), University of Central Florida, Orlando,
Florida 32816-2700

G. Alphonse and J. Connolly
David Sarnoff Research Center, Princeton, New Jersey 08543-5300

~Received 5 May 1997; accepted for publication 3 September 1997!

Time resolved intracavity gain, saturable absorption dynamics, intracavity intensity pulse profiles,
and their corresponding spectrograms, were measured in an external cavity hybrid mode-locked
semiconductor diode laser. These measurements were performed to obtain fundamental information
of the mode-locking dynamics and to determine their role in the pulse shaping and chirping
dynamics. The results of these experiments show that the integrating nonlinearity associated with
gain depletion, coupled with group velocity dispersion, leads to asymmetric intensity pulse profiles
with predominantly cubic temporal phase, while saturable absorption coupled with group velocity
dispersion tends to linearize the chirp. Exploitation of these dynamics may allow researchers to
generate optical pulses with higher peak intensities than previously reported. ©1997 American
Institute of Physics.@S0003-6951~97!01244-8#

Compact sources of ultrashort, high power optical pulses
are necessary for realizing applications in areas of applied
nonlinear photonics. Semiconductor lasers are viable candi-
dates owing to their small size, good wall plug efficiency,
and robustness. However, the dynamics of semiconductor
laser media prevent the production of high power ultrashort
optical pulses.1,2 In this letter, we present experimental mea-
surements of the intracavity gain and saturable absorber dy-
namics, to investigate their role in the pulse formation and
chirping dynamics in hybrid mode-locked semiconductor di-
ode lasers. To support these measurements, intracavity inten-
sity pulse profiles and their corresponding spectrograms were
measured to provide direct experimental observation of the
effects suggested by the intracavity dynamics.

The experimental setup is shown in Fig. 1. An external
cavity hybrid mode-locked semiconductor laser producing
;700 fs optical pulses at 300 MHz, centered at 830 nm is
the laser system under test.3 The output pulses from the laser
system are used as the probing pulses and injected into the
laser oscillator using a polarizing beam splitter. To monitor
the gain and absorption dynamics, the transmitted probe
beam is partially deflected from the cavity using a pellicle
beam splitter and detected by standard lock-in techniques.

In Fig. 2 is the time resolved intracavity gain measure-
ment. The salient features are the two transient reductions of
gain superimposed on a sinusoidally varying gain. The tran-
sient gain reductions are owing to the intracavity pulse pass-
ing through the semiconductor laser amplifier~SOA!. The
important observation is that the carrier heating and cooling
effects are not observed in the gain dynamics, i.e., the SOA
exhibits conventional gain dynamics. This is important be-
cause frequency chirping mechanisms such as self-phase
modulation are strongly coupled to the gain dynamics. In
addition, it should be noted that the gain has recovered to its

initial value within 350 ps, in contrast to the gain recovery
time of 1.1 ns. This is owing to the time varying pumping
rate associated with the rf bias current. It should also be
noted that the pulses do not pass through the SOA device at
the point of maximum gain. This is owing to the location of
the SOA device with respect to the rear reflector. Since the
SOA device is not located at the rear reflector, the displace-
ment of the SOA forces the optical pulses to travel through
the SOA at times when the optical gain is approximately
equal for each pulse. This manifests itself as the optical
pulses passing through the SOA at times symmetrically dis-
placed from the point of maximum gain. In our case, this
corresponds to the round trip time between the SOA and the
rear reflector.

The time resolved intracavity saturable absorption was
also measured. The time resolved reflectance of the multi-

a!Electronic mail: delfyett@creol.ucf.edu

FIG. 1. Experimental setup for intracavity gain dynamic measurement
~MQW! multiple quantum well saturable absorber,~PBS! polarizing beam
splitter, ~SOA! semiconductor laser amplifier,~OC! output coupler,~G! dif-
fraction grating,~S! slit, ~I! optical isolator,~P! polarizer,~WP! half wave
plate.
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quantum well~MQW! mirror exhibits a relative increase of
20% with a rise time of 10 ps, corresponding to the inte-
grated pulse intensity. The absorber only exhibits a slow re-
covery; with an exponential absorption recovery time con-
stant of 280 ps. It should be noted that the recovery time
measured in these experiments differs as compared to previ-
ously measured absorber recovery times.4,5 These differences
may be attributed to differences in the MQW absorber design
and differences in the optical transverse mode profile of the
lasers used in this versus prior measurements.

To demonstrate the pulse shaping effects induced by the
saturable absorber, input and output pulse intensity profiles
were measured. This was achieved by cross correlating the
intracavity pulses with the compressed output optical pulse.
Cross correlation information is then obtained by examining
the side lobes of the three-peak correlation signal. In Fig. 3
~top! is the intensity pulse profile of the optical pulse before
the saturable absorber, and Fig. 3~bottom! is the intensity
pulse profile of the optical pulse after the saturable absorber.
The salient feature is the reduction of the rising edge of the
optical pulse from 6 to 3 ps; representing a change of nomi-
nally 50% per round trip. It should be noted that the shoul-

ders in the correlation traces are artifacts created by the two-
pulse correlation technique employed.

In order to assess the effect of the nonlinear dynamics on
the chirping properties of the generated optical pulses, the
instantaneous frequency of the optical pulses were directly
measured by spectrally resolving the cross-correlated inten-
sity profiles at the second harmonic frequency.6,7 Those were
measured at three locations of the cavity, i.e., the laser out-
put, before the saturable absorber and after the saturable ab-
sorber. One of the resulting spectrograms is shown in Fig. 4.
In each case, the spectrograms show optical pulses with fast
rising edges, with slower trailing edges. These effects were
clearly observed in the cross correlation traces above. In ad-
dition, the spectrograms show that the instantaneous fre-
quency of the optical pulses are not constant, that is the
center or carrier wavelength varies throughout the pulse du-
ration. In these traces, the center wavelength is upchirped
and tends to vary linearly over a major portion of the optical
pulse. Quantitatively, the spectrograms show a total wave-
length variation of 0.8 am at the second harmonic wave-
length, implying a total wavelength chirp of 1.6 nm at the
fundamental wavelength. It should be noted that the chirp
exists over the duration of the pulse, implying a nonlinear
dispersion of;5ps/nm.

The intracavity pulse shapes and the corresponding spec-
trograms can be easily explained once the intracavity nonlin-
ear dynamics are considered.8 It has been shown that a pulse
propagating through a semiconductor optical amplifier will
have a time dependent frequency impressed upon it, where
the instantaneous frequency will exactly follow the optical
pulse shape.8,9 This occurs through self-phase modulation,
where the nonlinearity is an integrating nonlinearity. Under
this condition, the instantaneous frequency varies directly
proportional to the optical intensity. The instantaneous fre-
quency, defined asv inst5v2]f/]t, implies that the pre-
dominantly parabolic frequency sweep corresponds to cubic
temporal phase. It should be noted that an instantaneous Kerr
nonlinearity leads to primarily linear frequency sweep, or
quadratic temporal phase. The immediate consequence of the
integrating nonlinearity is that, when coupled with group ve-
locity dispersion~GVD!, the GVD slows down the blue fre-
quency components at the front and rear of the pulse, while
the center portion of the pulse~red! is allowed to propagate
towards the front of the pulse, yielding the pulse steepening
effect observed. This is in direct contrast to conventional
mode-locked lasers with instantaneous nonlinearities, where
GVD symmetrically broadens the optical pulse. When the

FIG. 2. Time resolved intracavity gain dynamic measurement, showing
transient gain depletion due to pulse passage through the SOA, and a long
term sinusoidal gain recovery owing to the rf modulation frequency

FIG. 3. Intracavity temporal pulse profiles:~Top! Intensity pulse profile
before the intracavity saturable absorber.~Bottom! Intensity pulse profile
after the intracavity saturable absorber.

FIG. 4. Spectrally resolved cross correlation of the intracavity pulse mea-
sured after the saturable absorber.
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optical pulse impinges upon the saturable absorber, the front
of the optical pulse is removed. In addition to the resulting
decrease of the rise time of the optical pulse, the chirp on the
rising edge is also removed, resulting in an optical pulse
which not only possesses a fast rising edge, a slow trailing,
but also a chirp which is predominantly linear over the main
portion of the optical pulse.

These effects can be simulated by considering the optical
intensity profiles and their instantaneous frequencies using
the nonlinear dynamics described above. It should be noted
that the simulation was performed by employing a simple
model using normalized nonlinear parameters in order to
demonstrate the salient features of the pulse shaping process.
In Fig. 5 ~top!, is the optical pulse shape and its correspond-

ing instantaneous frequency after a symmetric pulse has en-
countered a finite amount of dispersion. Note the asymmetric
temporal broadening and the modification of the instanta-
neous frequency. In Fig. 5~bottom! are the results after the
saturable absorber. Note the faster rising edge of the pulse, as
compared to Fig. 5~top!, and also note that the chirp is now
predominantly linear over the main portion of the optical
pulse. These results suggest that by increasing the intracavity
gain, power, and GVD, larger chirping can be obtained,
yielding shorter pulses after dispersion compensation. This
simple model of SPM, GVD, and saturable absorption sup-
ports the experimental results, and provide a clearer under-
standing of the pulse shaping and chirping dynamics of hy-
brid mode-locked diode lasers.

In summary, experiments have been performed to mea-
sure the intracavity dynamics in order to provide a better
understanding of the pulse shaping and chirping dynamics.
The important observation is that the integrating nonlinearity
leads to asymmetric pulse broadening, while the linearization
of the chirp is obtained by the combined effects of GVD and
saturable absorption. These results provide a better picture of
the pulse production process and chirping mechanisms in
mode-locked diode lasers and may enhance the production of
ultrashort optical pulses.

This work was supported by the National Science Foun-
dation Grant No. ECS-9410771
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FIG. 5. Intensity pulse profiles and the corresponding instantaneous fre-
quency of pulses:~Top! after a dispersive media with quadratic dispersion,
~Bottom! after the intracavity saturable absorber.
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