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We evaluate the potential of single crystal PTS~p-toluene sulfonate! for all-optical applications at
the 1.32 mm communications wavelength by measuring the electronic and thermo-optic
nonlinearities, and the multiphoton absorption with picosecond pulses. With appropriate heat
sinking, duty cycles greater than 25% should be possible without significant cumulative thermal
effects for 1 W operating powers. ©1994 American Institute of Physics.

Materials must satisfy a series of figures of merit to be
useful for ultrafast all-optical switching and related
applications.1 First, they must exhibit a large, nonresonant,
optical Kerr-like response~n2.10212 cm2/W! for the
intensity-dependent refractive index in order to operate at
watt peak powers in centimeter long devices. Second, a non-
linear phase shift of at leastp should be possible over 1/e
attenuation distances for reasonable device throughput. This
requirement is embodied in two figures of merit
W5n2I SW/a1l.1 andT5a2l/n2,1 ~for 2p phase shift!,
where a1 and a2 are the one and two photon absorption
coefficients respectively, andI SW is the intensity required for
a 2p phase shift. Finally, absorption leads to index changes
via the thermo-optic effect which accumulate over many
pulses and compete with the all-optical index changes. As-
suming thatN pulses,Dt in width, are required for a cumu-
lative thermal index change equal to 10% of the electronic
index change, then the maximum allowed duty cycle is
D510N Dt/t% for any pulse width wheret is the thermal
relaxation time of the device structure.2 We have recently
shown that the one-dimensional conjugated polymer PTS,
poly@2,4-hexdiyne-1,6-diol-bis-p-toluene-sulfonate#, shows a
record high, nonresonant, nonlinear response of 231023

cm2/GW at 1.6mm and satisfies theT parameter as well.3

Here we show that PTS in the other important telecommuni-
cation window around 1.3mm should satisfy all of the above
stated requirements.

PTS has already been grown in an integrated waveguide
format with low losses in the near infrared.4 Here we con-
centrate on predevice linear and nonlinear measurements in a
bulk single crystal approximately 210mm thick. Linear
transmission was limited by Fresnel losses at the surfaces of
the crystal, and exceeded 80% for radiation polarized along
the conjugation axis. Nonlinear losses were measured with a
versatile parametric laser system with theZ-scan technique.
An example of our experimental results for both the open
and closed apertureZ-scan is shown in Fig. 1 for input
pulses at 1.30mm. As a result of the fits, also shown in Fig.

1, a two-photon absorption coefficient of 2064 cm/GW~a2!
is obtained. In addition, a positive intensity dependent refrac-
tive indexn2 of 3.260.331023 cm2/GW is measured from
the closed aperture data. The latter result was reconfirmed
with a hybrid Mach–Zehnder interferometer, which has been
developed to measure nonlinearly induced phase shifts as
small asp/100.5 In this case, just as previously observed for
the measurements at 1.6mm, a weak linear dependence~Fig.
2! of both nonlinear coefficients on input intensity was ob-
served, suggesting the presence of higher order effects at
input peak intensities used which ranged between 0.5 and 7
GW/cm2, i.e.,Dn5n2I1n3I

2 andDa5a2I1a3I
2. From the

measured variations versus intensity we deduced the next
higher order loss coefficient and intensity dependent refrac-
tive index to be respectivelya355.260.3 cm3/GW2 and
n3521.531024 cm4/GW2. Similar effects have been re-
ported at other wavelengths previously in poly-
diacetylenes.6,7 These higher order effects are negligible for
typical device switching intensities~.l/n2L.20 MW/cm2

for L52 cm and a 2p phase shift!. We directly evaluate a
value of T50.75. Based on linear loss measurements re-
ported by Thakuret al. and our experimental estimate of 10
GW/cm2 for the damage threshold intensity, we estimate that
W.100.4 Therefore both loss-related figures of merit are ac-
ceptible for PTS at this wavelength.

An important issue which is frequently overlooked in
assessing materials is the possibility that cumulative~over
many pulses!, large, optically induced index changes can ex-
ceed the instantaneous, Kerr-effect index changes at high
data rates. This effect is quantified by the duty cycle defined
previously. For example, in the case of semiconductor
waveguides, Gabrielet al.demonstrated that both free carrier
absorption and thermo-optic phase drifts can play an impor-
tant role.2 Here we employed a nonlinear Mach–Zehnder
interferometer developed to measure both the instantaneous
~single pulse! refractive nonlinearity and the accumulated
thermal phase shift generated by a 76 MHz train of 100
picosecond pulses. Figure 3 shows the phase shift induced by
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2000 pulses of varying intensity. The induced phase shift
varies quadratically with input intensity, implying a two pho-
ton absorption origin for the thermal phase shift. At the high-
est intensity used, 170 MW/cm2, the two photon induced
absorption is 3 cm21, much larger than the typical linear loss

of 0.2–0.3 cm21. We therefore conclude that two-photon ab-
sorption is the dominant loss mechanism forI.15 MW/cm2.

The maximum allowed duty cycle is estimated from the
interferometrically measured phase shifts. A single pulse
measurement of the electronic nonlinearity with 170
MW/cm2 input intensity showed a positive phase shift ofp/5
in our 210mm platelet.~This corresponds ton254310212

cm2/W, in good agreement with theZ-scan measurement ob-
tained at intensities one order of magnitude larger.! Because
the phase shift is linear in intensity, this would correspond to
a phase shift ofp/5 @20/170#5p/42.5 at the typical switching
intensity of 20 MW/cm2 for a 2-cm-long device. It required
3000, 170 MW/cm2, pulses to shift the fringes by-p/5 via the
thermal process. Because this is a two photon activated pro-
cess,N52.553104 pulses will be required to produce a
phase shift ofp/42.5 at a 20 MW/cm2 switching intensity.
Furthermore, with a well heat-sunk environment to dissipate
the heat, for example, a sapphire substrate for a waveguide, a
thermal decay time of 1ms is a conservative upper limit.
This implies a 25% duty cycle, i.e., switching of pulses sepa-
rated by three pulse widths is feasible at the stated intensity
levels with minimum cross talk due to thermal effects.

In summary, our measurements show that single crystal
PTS satisfies all of the important figures of merit for ultrafast
all-optical devices at 1.3mm. its nonlinearity is orders of
magnitude larger than that of other materials used in the
communications spectral windows which also satisfy the
same figures of merit, for example, silica and chalcogenide
glasses in fiber form, or AlGaAs.7–9 For example, a 2-cm-
long PTS device with a 2mm guiding core would need a
source of approximately 1 W peak~0.25 W average, 25%
duty cycle! power. Such sources should become available
soon at 1.3mm, making nonlinear devices viable and com-
patible with current state of the art fiber technology. Finally,
we note that the loss figures of merit are also very good at
1.60 mm, allowing even larger duty cycles at that
wavelength.3

FIG. 1. TypicalZ-scan data at 1.3mm. The open circles show the open
apertureZ-scan showing the presence of two-photon absorption with pulses
of 5.66 GW/cm2. The filled circles show the result of a closed aperture
Z-scan at 0.8 GW/cm2.

FIG. 2. Variation in the effectiven2 ~a!, anda2 ~b!, with peak input inten-
sity.

FIG. 3. Accumulated thermal nonlinear phase change for a PTS sample for
2000, 100 ps pulses as a function of the input intensity. Shown in the inset
is a schematic of the nonlinear phase shift with number of pulses for both
the electronic and thermal nonlinearities.
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