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Polarized absorption and fluorescence spectra were analyzed to establish individual energy~Stark!
levels of Nd31 ions in host crystals of Sr5~PO4!3F ~SFAP! and Ca5~PO4!3F ~FAP!. Site-selective
excitation and fluorescence facilitated differentiation between Nd31 ions in emitting sites associated
with 1.06mm stimulated emission, and nonemitting Nd31 ions in other sites. Measurements were
made on samples containing different concentrations of Nd31 at 4 K and higher temperatures.
Substitution of Nd31 for Sr21 or Ca21 was accompanied by passive charge compensation during
crystal growth. Crystal-field splitting calculations were performed according to site for Stark levels
of Nd31 ions identified spectroscopically. We obtained a final set of crystal-field parametersBnm for
Nd31 ions in fluorescing sites with a rms. deviation of 7 cm21 ~52 levels in Nd:SFAP! and 8 cm21

~59 levels in Nd:FAP!. For one of the nonemitting sites in Nd:FAP we obtained a final set ofBnm

parameters which gave a rms deviation of 6 cm21 between 46 experimental and calculated
levels. © 1996 American Institute of Physics.@S0021-8979~96!01403-2#

INTRODUCTION

Fluorapatite crystals Ca5~PO4!3F ~FAP!, Sr5~PO4!3F
~SFAP!, and Sr5~VO4!3F ~SVAP!, containing trivalent rare-
earth ions, have been grown recently with sufficiently favor-
able optical properties to warrant further study of their spec-
troscopy and evaluation of their laser performance.1–8 The
potential of these crystals as optical materials has been dem-
onstrated by the efficient generation of stimulated emission
at 1.04mm in Yb:SVAP,3,4,9 and by the successful use of
Er:FAP as a saturable absorber for passiveQ switching of an
Er31-doped phosphate glass laser operating at 1.53mm.10–12

Interpretation of the Nd:FAP spectra has been of interest to a
number of groups whose early studies~nearly 30 years ago!
centered around the luminescence features of the crystal and
its potential as a laser.13–18More recently, spectroscopy and
laser performance studies show that Nd:SVAP has promise
as a new laser source.8

The complex optical spectra attributed to rare-earth ions
occupying numerous crystal-field environments is a general
characteristic of the fluorapatite crystals grown with rare-
earth ions as dopants.6,7,11Heterovalent substitution by rare-
earth ions for Ca and Sr in two different positions in the
hexagonal crystal lattice, M~I! and M~II !, requires some form

of charge compensation.19–23 Possible charge-compensation
mechanisms for R31 ions in either or both host cation posi-
tions have been proposed by several groups.16,23,24The pos-
sible substitution of two types of lattice cations and the lo-
cation of charge-compensating ions and defects, relative to
the R31 ions, accounts for variation in the crystal-field envi-
ronment experienced by individual R31 ions. The particular
environment, or site, occupied by a R31 ion has considerable
influence over the optical behavior of that ion. For instance,
some of the Nd31 ions in these hosts do not emit radiation
upon excitation, and therefore are not likely to contribute to
laser action.5,9,24 Furthermore, some appear to serve as
quenching centers.24 Indeed, this characteristic is most evi-
dent for FAP crystals in which Nd31 ions appear to be dis-
tributed among both emitting and nonemitting sites. In SFAP,
Nd31 ions appear to occupy emitting sites predominantly.

Our purpose is to identify the details of the crystal-field
splitting of the energy levels of Nd31 ions that occupy both
emitting and nonemitting sites in Nd:FAP and Nd:SFAP us-
ing site-selective excitation and polarized absorption as op-
tical probes. This approach allows us to dissect complex ab-
sorption spectra and identify features which arise from Nd31

ions in specific sites. We find that the spectra of Nd:SFAP
have fewer absorption and emission lines than comparable
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spectra observed for Nd:FAP. This suggests that the avail-
ability of optical centers for appreciable occupation by Nd31

ions in SFAP is limited relative to FAP.
In the course of our ongoing investigation of R31-doped

FAP and SFAP crystals, we have observed polarized absorp-
tion and fluorescence spectra for non-Kramers ions such as
Eu31 and Pr31 consistent with selection rules associated with
Cs symmetry.

6,7 In both FAP and SFAP, such polarization
was observed for the principally occupied site, and therefore
attributed to be M~II !. Because Nd31 is a Kramers ion, we
have less direct evidence to suggest that Nd31 prefers the
M~II ! location as well. However, resemblances between the
spectra of Nd:SFAP and some of the features observed in the
spectra of Nd:FAP, and similar comparisons made between
other R:FAP and R:SFAP crystals, clearly indicate that the
emitting Nd31 ions in both FAP and SFAP occupy M~II !
locations withCs symmetry.

24 This hypothesis is consistent
with the suggestion by other groups15,16,18,23that the laser-
active R31 ions in FAP and SFAP occupy M~II ! locations
with Cs symmetry.

In addition to spectral features attributed to the princi-
pally occupied sites in Nd:FAP we observe relatively weaker
absorption lines which also polarize. Analysis of these spec-
tra is consistent with selection rules operating for Nd31 ions
in sites havingC3 symmetry. Since no Nd

31 ion emission is
observed for the site, we base this interpretation on the po-
larized absorption spectra reported in Table I. This site is one
of several nonfluorescing sites described by Maksimova and
Sobol’15,16who suggest that some Nd31 ions may substitute
into M~I! divalent cation sites. These sites haveC3 symmetry
and represent 40% of all cation sites in the undoped lattice.
They speculate that charge compensation for this site is suf-
ficiently remote so thatC3 symmetry is preserved for Nd31

ions in the site.25

Crystal-field splitting calculations were performed for
Stark levels of Nd31 ions in spectroscopically different sites.
Using crystal-field parametersBnm reported for Nd:SVAP as
a starting set,5 we obtained a final set for Nd31 ions in fluo-
rescing sites with a rms deviation of 7 cm21 ~52 levels in
Nd:SFAP! and 8 cm21 ~59 levels in Nd:FAP!. Pealeet al.5

obtained a rms of 6 cm21 for 28 levels of Nd31 in the emit-
ting site in Nd:SVAP. UsingBnm parameters obtained from a
lattice-sum calculation for Nd31 ions in sites ofC3 symme-
try, we obtained a final set ofBnm parameters which gave a
rms of 6 cm21 between 46 experimental and calculated lev-
els for one of the nonemitting sites.

EXPERIMENTAL DETAILS

Boules of Nd:SFAP and Nd:FAP containing nominally 1
at. wt % neodymium, were grown by the standard Czochral-
ski method at the University of Central Florida, CREOL. The
hexagonal crystals were cut parallel and perpendicular to the
crystalline optical axis~c axis!. Crystals containing lesser
quantities of Nd31 ions were also examined spectroscopi-
cally. The actual amount present was determined using in-
ductively coupled plasma atomic emission spectrometry on
chemically digested portions of samples used in our studies.

As a check, one of the crystals~Nd:SFAP! was analyzed
independently by Galbraith Laboratories~Knoxville, TN!.
The results were in agreement with our determinations. The
absorption spectra reported in Table I were obtained from
samples Nd:SFAP~0.29 at. wt % Nd! and Nd:FAP ~0.61
at. wt % Nd!. The Nd densities in these crystals are 331019

and 631019 ions/cm3, respectively.
Absorption spectra measured between 2650 and 300 nm

were obtained using a Cary model 2390 spectrophotometer
equipped with a continuous-flow liquid-helium cryostat that
allowed us to observe spectra at any temperature between 4
K and room temperature. Calibration of the instrument was
achieved by measurement of standard deuterium emission
lines in different orders. Spectral bandwidths were much less
than the bandwidths of the majority of absorption peaks ob-
served. The precision in measuring the spectra reported in
Table I was generally to within 0.1 nm. Supplemental ab-
sorption spectra were recorded using a Perkin–Elmer
Lambda 9 spectrophotometer covering the same wavelength
range. The instrument was equipped with a liquid-helium
conduction dewar. Absorption spectra measured between
4080 and 1920 nm were also obtained at room temperature
with a Nicolet 60sx Fourier transform infrared~FTIR! spec-
trometer.

Using the Cary spectrophotometer, we obtained axial
absorption spectra~with the light beam collinear with thec
axis of the crystal!, and polarized transverse absorption spec-
tra @with theE of the light beam perpendicular~s! and par-
allel ~p! to thec axis of the crystal#. We observed no spec-
troscopic evidence that would suggest a phase change in
either Nd:SFAP or Nd:FAP at temperatures below room
temperature.26 Orientation of the optical axis was determined
by placing the crystal between crossed polarizers and observ-
ing the characteristic ‘‘Maltese cross’’ pattern. We observed
no temperature-dependent~hot band! absorption spectra in
any of our samples. We conclude that the energy separation
between the ground-state Stark level and the first excited
Stark level in the4I 9/2 manifold is large relative to the ther-
mal energy associated with the temperatures at which our
measurements were made.

Site-selective excitation and fluorescence spectra were
obtained at 4 and 80 K using a Quantel Nd:YAG laser-
pumped dye laser having an output bandwidth of approxi-
mately 0.1 cm21. A 0.85 m double monochromator equipped
with a R928 photomultiplier tube~PMT! was used for fluo-
rescence detection and signals were processed using a boxcar
averager and gated integrator. Data were collected and stored
using a digital oscilloscope. A 0.22 m monochromator and
liquid-nitrogen-cooled germanium detector were used to de-
tect fluorescence between 1.0 and 1.5mm. An Oxford 1204D
continuous-flow liquid-helium cryostat allowed us to obtain
spectra from samples down to 4 K.

THE OBSERVED SPECTRA

At 4 K numerous absorption bands are observed in the
spectra of both crystals. Many bands are relatively broad and
have satellite structure. We attribute the spectra to Nd31 ions
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TABLE I. Absorption spectra of Nd31 in Sr5~PO4!3F and Ca5~PO4!3F.
a

2s11LJ
b

Nd:SFAPc Nd:FAPd Nd:FAPe

l ~Å!f ag E ~cm21!h l ~Å!f ag E ~cm21!h l ~Å!f ag E ~cm21!h Pi

4I 13/2 26 278 0.15 3804 26 190 0.1 3817 25 170 0.02 3972s,p
25 040 0.04 3992 s,p
24 620 0.04 4061 s
24 560 0.05 4070 s
24 370 0.06 4102 s,p

23 650 0.6 4227
23 390~b! 0.10 4275 23 520 0.4 4251

23 220 0.4 4306
23 104 0.80 4327 22 980 4350 s,p

22 910 0.6 4363 22 930 4360 s,p
22 880 0.54 4370 22 780 4389 22 860 4372 s
22 542 0.66 4435 22 590 4425 s,p
22 476 0.64 4448
22 397 1.01 4464
21 976 0.48 4549 22 200 4503

4I 15/2 17 510 0.45 5710 17 470 5723 17 375 5754s,p
16 950 5898 s,p
16 610 6018 s

16 130 6198
16 010 0.15 6244 16 034 6235 s,p
15 848 0.27 6308 15 850 6307

15 740 6352 15 740 6352 s
15 662 0.20 6383 15 670 6380 s,p
15 549 0.23 6430 15 523 6440
15 500 0.23 6450 15 500 6450
15 370 0.21 6505 15 210 6573 15 280 6543s,p
15 136 0.19 6605 15 130 6608 s
14 880 0.19 6718 14 887 6715

4F3/2 8870~b! 0.04 11 270
8839.8 0.73 11 309

8813.0 0.12 11344 8815~b! 0.46 11 341
8806.0 1.23 11353

8765.0 0.06 11 406 s,p
8737~b! 0.02 11 442 s,p
8704~b! 0.03 11 486 s,p
8664.0 0.08 11 539 s

8566.1 0.81 11 671
8537.4 1.33 11710
8522.2 0.48 11731

4F5/2 8160.1 0.04 12 251 8120~b! 0.38 12 312
8088.3 0.06 12 360 8100.0 1.25 12 342
8080.2 0.06 12 373 8085.6 0.20 12 364s,p
8046.4 2.30 12 425 8074~b! 0.13 12 382 s,p
8030.0 0.07 12 450 8010.4 0.21 12 480s,p

8003.2 2.03 12 492
7977.0 1.52 12 533 7968.2 0.11 12 546 s

2H9/2 7941.8 2.08 12 588
7933.8 1.10 12 601

7920.7 0.10 12 622 s,p
7905.2 0.43 12 646 7906.1 0.10 12 645 s
7881.1 0.79 12 685 7879.0 0.50 12 688
7852~b! 0.03 12 730 7840~b! 0.15 12 752 s,p

7823.5 0.02 12 779 7835.0 1.13 12 760
7797~b! 0.02 12 823 7798.0 0.40 12 820

7774.1 0.05 12 860 s
7759.9 0.31 12 883 7758.0 0.08 12 886s,p
7721.6 0.21 12 948
7706.3 0.12 12 973

7506~b! 0.50 13 020
7572~b! 0.03 13 202

4F7/2 7524.0 0.15 13 287 s,p
7504.4 2.64 13 326 7505~sh! 0.75 13 320 s,p
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TABLE I. ~Continued!.

2s11LJ
b

Nd:SFAPc Nd:FAPd Nd:FAPe

l ~Å!f ag E ~cm21!h l ~Å!f ag E ~cm21!h l ~Å!f ag E ~cm21!h Pi

7474.0 0.24 13 376 7487.1 0.40 13 353 s
7464.7 1.13 13 393

7424.0 1.21 13 460
7415.7 1.08 13 481

4S3/2 7400.1 1.55 13 510 7396.0 0.91 13 517 7397.0 0.25 13 514s,p
7370~b! 0.24 13 565 7395~sh! 0.10 13 519 s,p
7364~b! 0.07 13 572
7358.2 0.05 13 587
7336.3 0.05 13 627 7344 0.97 13 613 7344 0.97 13 613s,p
7332~b! 0.05 13 643
7320.9 0.67 13 657
7301.4 1.79 13 692
7183.7 1.15 13 918 7182~b! 0.56 13 920
7172~b! 0.05 13 939
7140~b! 0.02 14 000

4F9/2 6862.2 0.23 14 569
6854.0 0.61 14 586

6830.7 0.02 14 636
6828.2 0.44 14 641 6807.0 0.05 14 687s,p

6780.0 0.14 14 745 6775.5 0.05 14 755s,p
6771.6 0.06 14 763 s,p

6715.3 0.11 14 808 6738.1 0.05 14 837s,p
6714.0 0.10 14 890

6692.4 0.08 14 939
6656~b! 0.07 15 020

6667~b! 0.03 15 000 6642.1 0.12 15 052
6629~b! 0.02 15 085 6639~sh! 0.06 15 058 s
6614.8 0.12 15 113

2H11/2 6318~b! 0.03 15 823
6243.9 0.02 16 011 6264.4 0.08 15 959

6222.3 0.10 16 067 6220~b! 0.02 16 067 s
6215.0 0.05 16 086 6215~b! 0.01 16 086 s,p

6200.3 0.06 16 124 6202~b! 0.04 16 119 6202~b! 0.02 16 119 s
6191.1 0.03 16 148 6184.4 0.08 16 165 6198~b! 0.03 16 130 s,p
6177.3 0.04 16 185 6160.7 0.10 16 227 6184~b! 0.02 16 165 s,p
6159.1 0.05 16 232
6132.0 0.06 16 303

4G5/2 5901.0 1.09 16 942
5882.3 4.03 16 995

5865.4 1.17 17 044

2G7/2 5849.8 1.03 17 090 5856.1 0.74 17 071s,p
5815.0 0.73 17 192 s,p

5798.0 2.15 17 243 5806.0 3.71 17 219
5781.1 2.26 17 293

5758.6 3.67 17 361 5763.6 0.36 17 345 s
5747.0 1.45 17 396 5741.5 4.00 17 412
5726.1 2.27 17 459 5725.0 2.14 17 462
5703~b! 0.10 17 540 5704.5 1.56 17 525 5704.3 0.20 17 525s,p
5680.2 1.48 17 600 5680~b! 0.04 17 600 s,p

5661~b! 0.03 17 661 s,p

aSpectra obtained at 4 K; total Nd concentration~0.29 at. wt % in SFAP!; total Nd concentration~0.56 at. wt %
in FAP!.
bMultiplet manifolds of Nd31 ~4 f 3! split by the crystal field.
cTotal spectra of Nd31 ions in SFAP.
dSpectra of Nd31 ions in fluorescing sites in FAP.
eSpectra of Nd31 ions in nonfluorescing sites in FAP.
fWavelength in Å,b denotes broad.
gIntensity of axial spectra;a is in units of absorbance/cm.
hEnergy in units of vacuum wave numbers.
iPolarization of the transverse spectra.
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residing in different charge-compensated sites. The number
of absorption peaks associated with any given multiplet
manifold of Nd31~4 f 3! exceeds the expected number of
J11/2 transitions from the ground state of the ion in a single
site.27,28Most of the transitions observed in the spectra taken
on crystals of Nd:SFAP~containing 0.29 wt % Nd! and Nd-
:FAP ~containing 0.61 wt % Nd! appear in boths and p
polarizations in the transverse spectra. In Nd:FAP however,
within each multiplet manifold we observe additional mod-
erate to weak absorption peaks primarily in thes spectrum,
along with weak spectra appearing in both polarizations.

Of the two fluorapatite crystals studied, the absorption
spectrum of Nd:SFAP is easier to interpret because many
fewer satellite peaks are observed within the wavelength
range that spans a given multiplet. In fact Table I shows that
for each manifold in Nd:SFAP there are usuallyJ11/2 rela-
tively strong peaks accompanied by weaker and usually
broader satellite features, suggesting that Nd31 occupation of
a single site may dominate the observed spectra. This feature

is attributed to the growth conditions of Nd:SFAP, the doping
level of Nd31 ions,8 and the intrinsic lattice properties of
Nd:SFAP.

Site-selective excitation and fluorescence methods were
used to identify transitions differentiating Nd31 ions in the
different sites in Nd:FAP and to confirm that there is a pre-
dominant site for Nd31 ions in Nd:SFAP. The fluorescence
spectra appearing in Figs. 1 and 2, representing transitions
from the 4F3/2 manifold to the4I 9/2 and

4I 11/2 manifolds of
Nd31 in Nd:FAP, are primarily due to Nd31 ions in only one
of several sites. In Fig. 1 selectivity was achieved by narrow
band~0.1 cm21! excitation of the strongest peak~685.4 nm!
in the 4F9/2 manifold ~see Fig. 3 and Table I! followed by
nonradiative relaxation to the4F3/2 manifold. In Fig. 2 we
selectively excited one of the strong peaks in the4G5/2,

2G7/2
grouping at 588 nm. This excitation was followed by nonra-
diative relaxation to the4F3/2 manifold. Similar experiments
involving the same multiplets were carried out on Nd:SFAP
where the results gave the expected number of transitions for

FIG. 1. Emission spectrum at 4 K from the 4F3/2 to the 4I 9/2 ground-state
multiplet manifold; excitation of4F9/2 ~685 nm! Nd:FAP.

FIG. 2. Emission spectrum at 4 K from the 4F3/2 to the 4I 11/2 multiplet
manifold; excitation of4G5/2,

2G7/2 ~588 nm! Nd:FAP.

FIG. 3. Polarized absorption spectrum of the4F9/2 multiplet manifold of
Nd31 in FAP at 4 K.

FIG. 4. Emission spectrum at 4 K from the 4F3/2 to the 4I 9/2 ground-state
multiplet manifold; excitation of4F9/2 ~683 nm! Nd:SFAP.
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Nd31 in a single site. Figure 4 and 5 present the emission
spectra for the corresponding transitions in Nd:SFAP. From
Figs. 1 and 2 as well as from Figs. 4 and 5 we can see clearly
the large crystal-field splitting of the emitting Nd31 ions. In
both Nd:FAP and Nd:SFAP we observe fluorescence only
from the4F3/2 manifold. This observation is likely the result
of a large crystal-field splitting that greatly mixes states
above4F3/2 and the presence of high-energy phonons that in
coupling with electronic states can lead to strong nonradia-
tive relaxation processes.9,24The crystal-field splittings of the
4I 9/2 and

4I 11/2 multiplets obtained from fluorescence mea-
surements are given in Table II for both fluorapatites.

Figure 6 compares the 4 K excitation spectrum obtained
by detecting fluorescence at 1063 nm~4F3/2→4I 11/2,
Nd:FAP! with the 4 K axial transmittance spectrum obtained
between 500 and 540 nm (4G9/2,

4G7/2). The site-selective
excitation spectrum consists of five sharp peaks found be-
tween 505 and 517 nm~the number expected for4G9/2! and
four strong peaks found between 520 and 530 nm~the num-
ber expected for4G7/2!. Conspicuously absent from the exci-
tation spectrum are peaks associated with Nd31 ions in other
sites that are observed in the transmittance spectrum in Fig.
6. When excitation was carried out at wavelengths corre-
sponding to some of these weak peaks in the transmittance
spectrum, no fluorescence was observed at, or in the vicinity
of 1063 nm.

In Nd:SFAP the absorption spectrum between 500 and
540 nm obtained at 4 K shows a total of nine strong peaks
and several very weak broad bands indicating the dominance
of a single site, with the4G9/2,

4G7/2 multiplets clearly re-
solved. Further evidence supporting a single fluorescing site
in Nd:SFAP can be found by examining the 4 K absorption
spectrum of the2P1/2 multiplet. Over 90% of the integrated
absorbance is found in a single peak at 431.5 nm with three
other peaks at 430.3, 430.9, and 432.5 nm sharing less than
10% in total.

In Fig. 7 we compare the 4 K excitation spectrum pro-
duced by detecting fluorescence at 1063 nm (4F3/2→4I 11/2)

in Nd:FAP with the 4 K axial transmittance spectrum be-
tween 595 and 565 nm (2G7/2,

4G5/2). The site-selective ex-
citation spectrum is sharp, with three peaks~one possibly
with a shoulder! found between 570 and 578 nm~the 2G7/2

FIG. 5. Emission spectrum at 4 K from the 4F3/2 to the 4I 11/2 multiplet
manifold; excitation of4G5/2,

2G7/2 ~586 nm! Nd:SFAP.

FIG. 6. ~a! Transmittance spectrum of the4G9/2,
4G7/2 multiplet manifolds

at 4 K; ~b! site-selective excitation of the4G9/2,
4G7/2 multiplets at 4 K

Nd:FAP.

FIG. 7. ~a! Transmittance spectrum of the2G7/2,
4G5/2 multiplet manifolds

at 4 K; ~b! site-selective excitation of the2G7/2,
4G5/2 multiplets at 4 K

Nd:FAP.
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multiplet!, and three peaks observed between 580 and 590
nm ~the 4G5/2 multiplet!. Clearly the simplicity and spectral
resolution of the exciting laser, relative to the transmittance
obtained from the Cary spectrophotometer, point to the ad-
vantage of using narrow-band laser excitation to differentiate
between ions in different sites. The corresponding absorption
spectrum at 4 K for Nd:SFAP ~Table I! includes six very
strong lines, a weak/broad band~570.6 nm! and very weak
shoulders around the base of most of the strong lines that
were too difficult to measure systematically. The simplicity
of the spectrum supports the notion that Nd31 ions are found
predominantly in a single site in Nd:SFAP.

Returning to Fig. 7, we tried excitation at wavelengths
corresponding to absorption by Nd31 ions in other sites in
Nd:FAP, but failed to generate fluorescence. This suggests
that perhaps while Nd31 ions in numerous sites may absorb
energy, only those in one of the sites fluoresce. Those that
reside in the remaining so-called ‘‘dead’’ sites lose their en-
ergy nonradiatively; energy transfer to a different fluorescing
center is not evident.

Laser excitation of Nd:FAP was also carried out while
total fluorescence from the4F3/2 manifold was measured
nondispersively. This was accomplished by placing a high-
pass optical filter in front of the germanium detector to allow
detection of wavelengths greater than 800 nm. This permit-
ted the simultaneous detection of all fluorescence associated
with transitions between the4F3/2 manifold, and the

4I 9/2 and
4I 11/2 manifold for Nd31 ions in all sites. These experiments
indicate that the fluorescence originated primarily from a
single site, identified as the fluorescing site.

DISCUSSION AND CALCULATIONS

The spectra reported in Table I were obtained from
Nd31-doped fluorapatite crystals which have a hexagonal
structure that belongs to theP63/m ~# 176! space group

with two molecules per unit cell.22 The divalent metal ions
~Sr, Ca! occupy two sites, M~I! in the 4f site withC3 sym-
metry and M~II ! in the 6h site withCs symmetry. The ratio
of metal ions in these two sites is 60 to 40. Surrounding the
M~I! site are six nearest-neighbor oxygen ions that form a
distorted triangular prism. The M~II ! sites sit at the corners
of equilateral triangles with the F2 ion in the center. Substi-
tution of trivalent neodymium for a divalent cation was
achieved by passive charge compensation during crystal
growth.1

Recently, Morrison27 completed a point charge analysis
of symmetry-preserving charge compensation and vacancies
in the fluorapatites doped with Nd31 ions. Our approach in
the present study has been to calculate the crystal-field split-
ting of the energy levels of Nd:SFAP and Nd:FAP by con-
sidering the symmetry of the site27,28and the subsequent data
sets as the primary guide to the phenomenological set of
crystal-field parametersBnm obtained from the analysis. To
interpret the splitting of the levels in the fluorescing sites, we
used as a starting set ofBnm the values reported by Peale
et al.5 for Nd:SVAP. Our calculations were based onCs sym-
metry, the same symmetry used in Ref. 5.

The total Hamiltonian for the Nd31 ion includes terms
representing the free-ion and the crystal electric-field inter-
actions. The Racah and spin-orbit parameters entering into
the free-ion Hamiltonian were derived from an analysis
of the aqueous solution spectra.30 The appropriate values
as well as the details of the computation are given
elsewhere.30–34The crystal-field Hamiltonian is of the form

HCEF5 (
n even

(
m52n

n

Bnm* (
i51

N

Cnm~ i !, ~1!

where theBnm are the crystal-field parameters and the ex-
pressionsCnm are given as

TABLE II. Emission from4F3/2 to
4I 9/2 and

4I 11/2 at 4 K.

l ~Å!a

Nd:SFAP Nd:FAP

E ~cm21!b I c DE ~cm21!d l ~Å!a E ~cm21!b I c DE ~cm21!d

8797.0 11 364 vw ••• 8823.2 11 331 vw •••
8812.0 11 345 vss 0 8840.4 11 309 vss 0
9217.1 10 847 m 498 9163.2 10 910 vs 399

9186.2 10 883 w
9282.1 10 771 m 574 9259.3 10 797 m 512
9337.0 10 707 m 638 9306.7 10 742 w 567
9444 10 585 m 760 9429 10 602 w 707

10 583 9447 vs 1899 10 628 9407 vss 1902
11 100~sh! 9007 w 2340 11 099 9007 w 2302
11 148 8968 w 2378 11 140 8974 vw 2335

11 174 8947 vw
11 212 8917 m 2429 11 229 8903 w 2406
11 264 8875 m 2470 11 258 8880 w 2429
11 355 8804 w 2541 11 367 8795 w 2514

aWavelength in Å.
bEnergy of transition in units of vacuum wave numbers.
cRelative intensity within a manifold: vw~very weak!; w ~weak!; m ~moderate!; s ~strong!; vs ~very strong!; vss ~strongest!.
dSplitting of the multiplet manifold in cm21; energy of the Stark level.
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TABLE III. Crystal-field splitting: Nd31 ions inCs sites

2S11LJ
a No.b

E ~cm21!c

~expt.!
E ~cm21!d

~calc.! Free-ion percent mixture

4I 9/2 1 0 6.0 97.74I 9/212.124I11/210.124I 13/2
545 1 0 20.4 98.14I 9/211.724I 11/210.104I 13/2
~482! 2 498 486 98.94I 9/210.764I 11/210.194G5/2

2 399 387 98.74I 9/211.004I 11/210.154G5/2

3 574 566 99.24I 9/210.554I 11/210.114G5/2

3 512 512 99.54I 9/210.324I 11/210.104G5/2

4 638 647 98.24I 9/211.644I 11/210.084I 13/2
4 567 575 99.04I 9/210.844I 11/210.104G5/2

5 760 764 99.04I 9/210.734I 11/210.134G5/2

5 707 712 98.84I 9/210.964I 11/210.114G5/2

4I11/2 6 1899 1907 95.84I 11/212.174I 13/211.884I 9/2
2361 6 1902 1911 97.04I 11/211.844I 13/211.044I 9/2
~2332! 7 2340 2339 97.44I 11/211.624I 9/210.874I 13/2

7 2302 2307 98.14I 11/211.154I 9/210.644I 13/2
8 2378 2368 98.34I 11/210.774I 9/210.684I 13/2
8 2335 2327 98.24I 11/210.894I 9/210.714I13/2
9 2429 2418 98.94I 11/210.544I 13/210.434I9/2
9 2406 2393 99.04I 11/210.584I 9/210.324I 13/2
10 2470 2471 98.64I 11/210.714I 9/210.504I 13/2
10 2429 2431 98.54I 11/210.804I 9/210.564I 13/2
11 2541 2546 98.54I 11/210.804I 13/210.474I 9/2
11 2514 2521 98.44I 11/210.934I 13/210.454I 9/2

4I 13/2 12 3804 3815 96.64I 13/211.694I 15/211.544I 11/2
4323 12 3817 3799 97.64I 13/211.384I 15/210.954I 11/2
~4271! 13 4275 4275 96.44I 13/212.254I 11/211.204I 15/2

13 4227 4220 97.34I 13/211.804I 11/210.784I 15/2
14 4327 4328 99.14I 13/210.454I 15/210.194I 11/2
14 4251 4258 98.94I 13/210.594I 15/210.404I 11/2
15 4370 4370 99.14I 13/210.554I 15/210.274I 11/2
15 4306 4321 99.34I 13/210.344I 15/210.254I 11/2
16 ••• 4419 98.54I 13/210.754I 11/210.634I 15/2
16 4363 4357 98.44I 13/210.894I 11/210.574I 15/2
17 4464 4455 99.04I 13/210.474I 15/210.394I 11/2
17 4389 4395 99.04I 13/210.504I 15/210.364I 11/2
18 4549 4549 98.74I 13/210.754I 15/210.284I 11/2
18 4503 4505 98.74I 13/210.844I 15/210.324I 11/2

4I15/2 19 5710 5701 98.24I 15/211.664I 13/210.094I 11/2
6362 19 5723 5733 98.94I 15/210.994I 13/210.064I 11/2
~6361! 20 6244 6250 98.44I 15/211.384I 13/210.084F9/2

20 6198 6203 98.64I 15/211.154I 13/210.064F9/2

21 6308 6312 99.34I 15/210.464I 13/210.074F9/2

21 6307 6298 99.24I 15/210.664I 13/210.054F7/2

22 6383 6387 99.24I 15/210.574I 13/210.074I 11/2
22 6352 6357 99.44I 15/210.484I 13/210.044I 11/2
23 6450 6453 99.04I 15/210.794I 13/210.054F9/2

23 6440 6433 99.64I 15/210.324I 13/210.044I 11/2
24 6505 6510 99.54I 15/210.364I 13/210.034I 11/2
24 6450 6457 99.04I 15/210.744I 13/210.074F9/2

25 6605 6602 99.64I 15/210.324I 13/210.034F7/2

25 6573 6569 99.64I 15/210.284I 13/210.044F7/2

26 6718 6710 99.54I 15/210.264I 13/210.074F9/2

26 6715 6708 99.54I 15/210.284I 13/210.054F7/2

4F3/2 27 11 353 11 358 93.74F3/214.614F5/210.564F7/2

11 666 27 11 309 11 322 94.14F3/214.424F5/210.504G5/2

~11 614! 28 11 710 11 706 91.84F3/215.004F5/211.405G5/2

28 11 671 11 658 92.14F3/215.224F5/211.254G5/2

4F5/2 29 12 425 12 431 82.14F5/217.482H9/215.374F7/2

12 697 29 12 342 12 345 78.14F5/2112.9 2H9/214.554F7/2

~12 593! 30 12 601 12 601 52.74F5/2141.7 2H9/212.534F3/2

30 12 492 12 475 76.72H9/2120.7 4F5/211.164F3/2
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TABLE III. ~Continued.!

2S11LJ
a No.b

E ~cm21!c

~expt.!
E ~cm21!d

~calc.! Free-ion percent mixture

2H9/2 31 12 664 12 685 61.12H9/2135.2 4F5/211.674F3/2

12 912 31 12 533 12 532 56.14F5/2138.6 2H9/212.754F3/2

~12 375! 32 ••• 12 736 56.44F5/2140.1 2H9/211.084F3/2

32 12 588 12 589 50.42H9/2146.4 4F5/211.214F3/2

33 ••• 12 820 76.12H9/2120.3 4F5/211.484F3/2

33 12 688 12 676 63.42H9/2132.9 4F5/211.904F3/2

34 12 948 12 951 88.92H9/219.074F5/211.134F7/2

34 12 760 12 772 85.12H9/2113.0 4F5/211.084F7/2

35 12 973 12 984 81.12H9/2116.7 4F5/211.634F7/2

35 12 820 12 829 70.32H9/2127.5 4F5/211.514F7/2

36 ••• 13 215 96.52H9/212.044F5/210.634F9/2

36 13 020 13 024 96.92H9/211.814F5/210.544F9/2

4S3/2 37 13 393 13 396 89.84F7/213.824F5/213.524F9/2

13 554 37 13 322 13 327 92.34F7/212.874F9/212.544F5/2

~13 498! 38 13 510 13 513 93.54S3/215.074F7/210.494G5/2

38 13 460 13 461 80.44S3/2117.3 4F7/210.834F5/2
4F7/2 39 13 565 13 561 61.04F7/2132.8 4S3/212.764F5/2

13 676 39 13 481 13 490 73.34F7/2120.1 4S3/213.294F5/2

~13 597! 40 13 572 13 574 70.44S3/2126.2 4F7/211.554F5/2

40 13 517 13 515 97.14S3/212.124F7/210.184F9/2

41 13 692 13 692 93.44F7/212.764F9/211.214F5/2

41 13 613 13 611 94.44F7/212.244F9/211.334F5/2

42 ••• 13 998 95.14F7/211.582H9/211.102G7/2

42 13 920 13 910 95.74F7/211.214F9/211.202H9/2
4F9/2 43 14 641 14 627 95.94F9/211.964F7/210.894F5/2

14 901 43 14 586 14 584 96.94F9/211.424F7/210.674F5/2

~14 845! 44 14 808 14 813 94.34F9/214.424F7/210.542H11/2

44 14 745 14 742 95.34F9/213.664F7/210.472H11/2

45 14 939 14 946 94.34F9/213.204F7/211.902H11/2

45 14 890 14 893 94.94F9/212.944F7/211.582H11/2

46 ••• 15 083 95.54F9/212.622H11/211.092G7/2

46 15 020 15 020 95.84F9/212.332H11/210.962G7/2

47 15 113 15 117 94.54F9/214.592H11/210.382H9/2

47 15 052 15 054 95.14F9/214.062H11/210.362H9/2

2H11/2 48 ••• 16 086 98.42H11/210.942G7/210.204F9/2

48 16 067 16 069 98.72H11/210.602G7/210.214F9/2

16 152 49 16 124 16 119 98.52H11/210.504F9/210.502G7/2

~16 128! 49 16 086 16 093 98.72H11/210.524F9/210.362G7/2

50 16 148 16 145 97.72H11/211.174F9/210.512G7/2

50 16 119 16 123 98.22H11/211.024F9/210.332G7/2

51 16 185 16 189 96.82H11/211.462G7/211.254F9/2

51 16 165 16 169 96.92H11/211.414F9/211.142G7/2

52 16 232 16 243 98.12H11/211.054F9/210.572G7/2

52 16 227 16 210 98.62H11/210.684F9/210.422G7/2

53 16 303 16 300 93.42H11/215.034F9/210.732H9/2

53 ••• 16 261 94.52H11/214.374F9/210.582H9/2

4G5/2 54 17 044 17 041 56.44G5/2141.0 2G7/210.934F3/2

17 164 54 16 995 16 987 91.94G5/215.032G7/211.934F3/2

~17 041! 55 ••• 17 137 67.54G5/2129.3 2G7/211.514F3/2

55 17 090 17 087 78.14G5/2120.1 2G7/210.564F3/2

56 17 243 17 239 75.12G7/2122.6 4G5/210.812H11/2

56 17 219 17 234 60.24G5/2137.1 2G7/211.114F5/2
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Cnm~ i !5S 4p

~2n11! D
1/2

Ynm~u i ,f i !, ~2!

with

Cn2m5~21!mCnm* , ~3!

and theYnm are the usual spherical harmonics. InCs sym-
metry, the values ofm are restricted byn1m50,62,64,
with umu<n andn52, 4, and 6. The crystal-field splitting is
predominately determined by then evenBnm parameters.
For Cs symmetry this number is restricted to 15, but with a
simple rotation about the principal axis~c axis!, B22 can be
made real and positive and the number of parameters is then
reduced to 14.

In Table III we present the results for the lowest 13 mul-
tiplet manifolds of Nd31 ions in sites that fluoresce in Nd:S-
FAP and Nd:FAP. Because of the size of the splittings, the
free-ion percent mixture is also included. Multiplet mani-
folds 4F5/2,

2H9/2, and
4F7/2,

4S3/2 are highly mixed making

their 2S11LJ manifold assignments problematic for indi-
vidual Stark levels. We made repeated attempts to improve
our analysis by usingBnm parameters obtained from lattice-
sum calculations by Morrison27 based on different charge-
compensated models for Nd31 ions in M~II ! sites. These
efforts did not lead to any success. The final set of phenom-
enologicalBnm parameters is compared in Table IV with the
set reported for Nd:SVAP~our initial starting set!. The simi-
larity in sign and magnitude among the dominant terms, in-
cluding parametersB20, B22, andB40, suggest a common
symmetry site is involved in all three crystals. Variation
among smaller parameters is due to our inclusion of numer-
ous excited multiplet manifolds that are so highly mixed~see
Table III! that relatively small changes in the crystal-field
environment cause large changes in theJ mixing among
these manifolds. Pealeet al.5 restricted their analysis to the
splitting of the4I J and

4F3/2 manifolds alone.
We also carried out crystal-field splitting calculations

for Nd31 ions occupyingC3 sites in Nd:FAP. In this case
we found that one of Morrison’s lattice-sum calculations
provided us with a reasonable starting set ofBnm

parameters.27,35,36 This model involves the substitution of
Nd31 ions into M~I! sites, assuming that the charge compen-
sation is sufficiently remote so thatC3 symmetry is pre-
served. Maksimova and Sobol15,16 also describe a charge-
compensation model of this type. Since we observe no
fluorescence for this site on which to base our assignments,
we chose the symmetry of the ground-state Stark level to be
G4,5 as predicted using the Morrison parameters.27 This
choice is also consistent with the observed polarized absorp-
tion spectra usingC3 symmetry selection rules.

28 The results
of these calculations are given in Table V for multiplet mani-
folds above4I 11/2 where the experimental energy levels can
be drawn from Table I since no emission to the4I 9/2 and

4I 11/2
manifolds was observed. Again, the most difficult Stark lev-
els to identify are those with a high degree ofJ mixing. The
4F5/2,

2H9/2 manifolds and the4F7/2,
4S3/2 manifolds repre-

sent the most difficult manifolds to analyze.
In Table VI we see that relatively small changes in the

TABLE IV. Final set ofBnm parameters for Nd31 ions in fluorescing sites.

Bnm

parameter
SFAPa

~cm21!
FAPb

~cm21!
SVAPc

~cm21!

B20 2647 2528 2452
B22 533 520 410
B40 2075 1896 2219

ReB42 2138 2278 320
I mB42 883 439 57.6
ReB44 136 53.4 2148
I mB44 223 444 2186
B60 592 483 435

ReB62 173 289 281.3
I mB62 514 427 253
ReB64 213.6 2170 2255
I mB64 2514 2473 122
ReB66 2362 2407 266
I mB66 216.9 2131 395

arms derivation: 7 cm21, 52 levels~this work!.
brms derivation: 8 cm21, 59 levels~this work!.
crms derivation: 6 cm21, 28 levels~Ref. 5!.

TABLE III. ~Continued.!

2S11LJ
a No.b

E ~cm21!c

~expt.!
E ~cm21!d

~calc.! Free-ion percent mixture

2G7/2 57 17 293 17 296 90.72G7/216.87 4G5/211.24 4F5/2

17 217 57 17 361 17 358 74.22G7/2124.1 4G5/211.16 4F5/2

~17 323! 58 17 396 17 392 63.72G7/2133.4 4G5/210.972H11/2

58 17 412 17 404 92.92G7/215.35 4G5/210.69 2H11/2

59 17 459 17 462 64.42G7/2132.4 4G5/210.98 4F9/2

59 17 462 17 468 72.72G7/2126.1 4G5/210.30 2H11/2

60 17 540 17 540 73.74G5/2124.4 2G7/210.58 4F7/2

60 17 525 17 527 89.22G7/217.64 4G5/211.02 4F7/2

aMultiplet manifold of Nd31 ~4 f 3!; the centroid is given in cm21; the number without parentheses is the energy
for Nd:SFAP; the number with parentheses is the energy for Nd:FAP.
bFirst number in the pair represents the splitting for Nd:SFAP; the second number represents the splitting for
Nd:FAP in the fluorescing site.
cExperimental data from Tables I and II.
dCalculated splitting based onBnm parameters given in Table IV.
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TABLE V. Crystal-field splitting: Nd31 ions inC3 sites in Nd:FAP.

2S11LJ
a Level

E ~cm21!b

~expt.!
Gn

c

~expt.!
E ~cm21!d

~calc.!
Gn

d

~calc.! Free-ion percent mixture

4I 9/2 1 0 0.2 4,5 98.34I 9/211.514I 11/210.124I 13/2
~427! 2 ••• 270 6 97.54I 9/212.074I 11/210.324I 13/2

3 ••• 356 4,5 97.44I 9/212.404I 11/210.064G5/2

4 ••• 547 4,5 98.74I 9/210.904I 11/210.164I 13/2
5 ••• 675 6 97.34I 9/212.454I 11/210.094I 13/2

4I11/2 6 ••• 2043 6 96.44I 11/212.204I 9/211.294I 13/2
~2261! 7 ••• 2133 4,5 96.84I 11/212.544I 9/210.294I 13/2

8 ••• 2147 4,5 95.24I 11/212.384I 9/212.254I 13/2
9 ••• 2348 4,5 96.84I 11/211.724I 9/211.314I 13/2
10 ••• 2387 4,5 98.94I 11/210.404I 9/210.334I 13/2
11 ••• 2395 6 96.64I 11/212.324I 9/210.914I 13/2

4I13/2 12 3992 4,5 3989 4,5 96.94I 13/212.014I 11/211.024I 15/2
~4249! 13 4061 6 4064 6 96.24I 13/211.954I 15/211.494I 11/2

14 4102 4,5 4099 4,5 96.44I 13/213.024I 15/210.424I 11/2
15 4350 4,5 4350 4,5 97.94I 13/211.024I 11/210.744I 15/2
16 4360 4,5 4365 4,5 96.34I 13/211.854I 15/211.614I 15/2
17 4372 6 4375 6 97.94I 13/211.074I 15/210.674I 11/2
18 4425 4,5 4417 4,5 98.14I 13/211.004I 11/210.744I 15/2

4I15/2 19 5754 4,5 5752 4,5 96.94I 15/212.914I 13/210.054F9/2

~6211! 20 5898 4,5 5899 4,5 98.54I 15/211.184I 13/210.224I 11/2
21 6018 6 6014 6 98.94I 15/210.914I 13/210.054F9/2

22 6235 4,5 6236 4,5 98.54I 15/211.174I 13/210.114I 11/2
23 6352 6 6358 6 99.24I 15/210.424I 13/210.114F9/2

24 6380 4,5 6376 4,5 98.84I 15/210.744I 13/210.144F9/2

25 6543 4,5 6547 4,5 98.54I 15/211.114I 13/210.104F9/2

26 6608 6 6605 6 98.24I 15/211.644I 13/210.074I 11/2

4F3/2 27 11 406 4,5 11 399 4,5 97.54F3/210.884F3/210.572H9/2

~11520! 28 11 539 6 11 543 6 93.94F3/213.884F5/211.174F7/2

4F5/2 29 12 364 4,5 12 361 4,5 85.84F5/2111.7 2H9/211.194F7/2

~12 536! 30 12 480 4,5 12 483 4,5 65.24F5/2128.5 2H9/214.924F7/2

31 12 546 6 12 546 6 86.32H9/2111.1 4F5/211.124F3/2
2H9/2 32 12 622 4,5 12 626 4,5 70.52H9/2128.0 4F5/210.744F7/2

33 12 645 6 12 644 6 83.04F5/2112.6 2H9/213.584F3/2

~12 726! 34 12 752 4,5 12 759 4,5 87.42H9/2110.5 4F5/211.424F7/2

35 12 860 6 12 854 6 98.72H9/210.694F5/210.234F9/2

36 12 886 4,5 12 891 4,5 97.82H9/211.344F7/210.334F5/2

4F7/2 37 13 287 4,5 13 280 4,5 90.54F7/213.214S3/212.834F5/2

~13 466! 38 13 320 4,5 13 323 4,5 94.84S3/213.934F7/210.444G5/2

39 13 353 6 13 351 6 94.84S3/214.154F7/210.184G5/2
4S3/2 40 13 499 6 13 504 6 91.84F7/214.364S3/211.212H9/2

41 13 514 4,5 13 512 4,5 95.24F7/212.444F5/211.034F9/2

~13 346! 42 ••• 4,5 13 610 4,5 93.94F7/213.304F9/211.764F5/2

4F9/2 43 14 687 4,5 14 687 4,5 97.34F9/210.812H11/210.574F7/2

44 14 755 4,5 14 754 4,5 95.14F9/213.554F7/210.642H11/2

~14 797! 45 14 763 6 14 765 6 98.04F9/210.794F7/210.374F5/2

46 14 837 4,5 14 833 4,5 98.34F9/210.834F7/210.282G7/2

47 15 058 6 15 055 6 99.24F9/210.232G7/210.212H9/2

2H11/2 48 ••• 4,5 16 051 4,5 98.32H11/211.092G7/210.144F7/2

~16 101! 49 16 067 6 16 063 6 98.92H11/210.762G7/210.104F7/2

50 16 086 4,5 16 092 4,5 97.72H11/211.682G7/210.344F9/2

51 16 119 6 16 106 6 98.82H11/210.392G7/210.394F9/2

52 16 130 4,5 16 134 4,5 98.62H11/210.664F9/210.312H9/2

53 16 165 4,5 16 189 6 99.22H11/210.374F9/210.292G7/2

4G5/2 54 17 071 4,5 17 070 4,5 83.14G5/2115.3 2G7/210.384S3/2
~17 291! 55 17 192 4,5 17 193 4,5 75.74G5/2123.3 2G7/210.422H11/2

56 17 345 6 17 349 6 67.82G7/2130.5 4G5/210.842H11/2
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Bnm parameters are necessary to obtain a final rms value of 6
cm21 between 46 calculated and experimental levels. Overall
agreement suggests that the lattice-sum model is appropriate
for describing those Nd31 ions in one of the nonfluorescing
sites in Nd:FAP. We were not able to obtain sufficient data
sets to articulate other sites. The fact that we observed no
conclusive hot band data in absorption is not contradicted by
the predicted splitting of4I 9/2. For Nd

31 ions that occupy this
site, transitions from a Stark level 270 cm21 above the
ground state would very likely be too weak and broad to
observe even at room temperature.

In conclusion, site-selective spectroscopy has permitted
differentiation between Nd31 ions in multiple sites in the
fluorapatite crystals Nd:SFAP and Nd:FAP. Attempts to
refine the point-charge lattice-sum model are ongoing in
hopes of obtaining improved understanding of the complex
nature of charge compensation associated with heterovalent
substitution of R31 ions in crystals with the fluorapatite
structure.24,27
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