Site-Selective Excitation And Polarized Absorption Spectra Of Nd3+ In Sr-5(Po4)(3)F And Ca-5(Po4)(3)F

John B. Gruber

Clyde A. Morrison
Michael D. Seltzer
Andrew O. Wright
Melvin P. Nadler

See next page for additional authors

Find similar works at: https://stars.library.ucf.edu/facultybib1990
University of Central Florida Libraries http://library.ucf.edu

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 1990s by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation

Gruber, John B.; Morrison, Clyde A.; Seltzer, Michael D.; Wright, Andrew O.; Nadler, Melvin P.; Allik, Toomas H.; Hutchinson, J. Andrew; and Chai, Bruce H. T., "Site-Selective Excitation And Polarized Absorption Spectra Of Nd3+ In Sr-5(Po4)(3)F And Ca-5(Po4)(3)F" (1996). Faculty Bibliography 1990s. 3039. https://stars.library.ucf.edu/facultybib1990/3039

Authors

John B. Gruber, Clyde A. Morrison, Michael D. Seltzer, Andrew O. Wright, Melvin P. Nadler, Toomas H. Allik, J. Andrew Hutchinson, and Bruce H. T. Chai

Site-selective excitation and polarized absorption spectra of Nd^{3+} in $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$ and $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right) 3 \mathrm{~F}$

Cite as: Journal of Applied Physics 79, 1746 (1996); https://doi.org/10.1063/1.360964 Submitted: 25 July 1995 . Accepted: 13 October 1995 . Published Online: 17 August 1998

John B. Gruber, Clyde A. Morrison, Michael D. Seltzer, Andrew O. Wright, Melvin P. Nadler, Toomas H. Allik, J. Andrew Hutchinson, and Bruce H. T. Chai

View Online

ARTICLES YOU MAY BE INTERESTED IN

Lamp-pumped laser performance of $\mathrm{Nd}^{3+}: \mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$ operating both separately and simultaneously at 1.059 and $1.328 \mu \mathrm{~m}$
Journal of Applied Physics 80, 1280 (1996); https://doi.org/10.1063/1.362926
Site-selective excitation and polarized absorption and emission spectra of trivalent thulium and erbium in strontium fluorapatite
Journal of Applied Physics 81, 6585 (1997); https://doi.org/10.1063/1.365197
Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. $\mathrm{Pr}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Pm}^{3+}, \mathrm{Sm}^{3+}$,
$\mathrm{Dy}^{3+}, \mathrm{Ho}^{3+}, \mathrm{Er}^{3+}$, and Tm^{3+}
The Journal of Chemical Physics 49, 4424 (1968); https://doi.org/10.1063/1.1669893

Lock-in Amplifiers

... and more, from DC to 600 MHz

Site-selective excitation and polarized absorption spectra of Nd^{3+} in $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$ and $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$

John B. Gruber
Department of Physics, San Jose State University, San Jose, California 95192-0106

Clyde A. Morrison
Army Research Laboratory, Adelphi, Maryland 20783-1145
Michael D. Seltzer, Andrew O. Wright, and Melvin P. Nadler
Naval Air Warfare Center Weapons Division, China Lake, California 93555-6001
Toomas H. Allik
Science Applications International Corporation, 1710 Goodridge Drive, McLean, Virginia 22102
J. Andrew Hutchinson

Night Vision and Electronics Sensors Directorate, U.S. Army, Fort Belvoir, Virginia 22060-5806
Bruce H. T. Chai
Center for Research on Electro-optics and Lasers, University of Central Florida, Orlando, Florida 32836
(Received 25 July 1995; accepted for publication 13 October 1995)
Polarized absorption and fluorescence spectra were analyzed to establish individual energy (Stark) levels of Nd^{3+} ions in host crystals of $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$ (SFAP) and $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$ (FAP). Site-selective excitation and fluorescence facilitated differentiation between Nd^{3+} ions in emitting sites associated with $1.06 \mu \mathrm{~m}$ stimulated emission, and nonemitting Nd^{3+} ions in other sites. Measurements were made on samples containing different concentrations of Nd^{3+} at 4 K and higher temperatures. Substitution of Nd^{3+} for Sr^{2+} or Ca^{2+} was accompanied by passive charge compensation during crystal growth. Crystal-field splitting calculations were performed according to site for Stark levels of Nd^{3+} ions identified spectroscopically. We obtained a final set of crystal-field parameters $B_{n m}$ for Nd^{3+} ions in fluorescing sites with a rms. deviation of $7 \mathrm{~cm}^{-1}$ (52 levels in Nd:SFAP) and $8 \mathrm{~cm}^{-1}$ (59 levels in Nd:FAP). For one of the nonemitting sites in Nd:FAP we obtained a final set of $B_{n m}$ parameters which gave a rms deviation of $6 \mathrm{~cm}^{-1}$ between 46 experimental and calculated levels. © 1996 American Institute of Physics. [S0021-8979(96)01403-2]

INTRODUCTION

Fluorapatite crystals $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$ (FAP), $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$ (SFAP), and $\mathrm{Sr}_{5}\left(\mathrm{VO}_{4}\right)_{3} \mathrm{~F}$ (SVAP), containing trivalent rareearth ions, have been grown recently with sufficiently favorable optical properties to warrant further study of their spectroscopy and evaluation of their laser performance. ${ }^{1-8}$ The potential of these crystals as optical materials has been demonstrated by the efficient generation of stimulated emission at $1.04 \mu \mathrm{~m}$ in $\mathrm{Yb}: S V A P,{ }^{3,4,9}$ and by the successful use of Er:FAP as a saturable absorber for passive Q switching of an Er^{3+}-doped phosphate glass laser operating at $1.53 \mu \mathrm{~m} .{ }^{10-12}$ Interpretation of the Nd:FAP spectra has been of interest to a number of groups whose early studies (nearly 30 years ago) centered around the luminescence features of the crystal and its potential as a laser. ${ }^{13-18}$ More recently, spectroscopy and laser performance studies show that Nd:SVAP has promise as a new laser source. ${ }^{8}$

The complex optical spectra attributed to rare-earth ions occupying numerous crystal-field environments is a general characteristic of the fluorapatite crystals grown with rareearth ions as dopants. ${ }^{6,7,11}$ Heterovalent substitution by rareearth ions for Ca and Sr in two different positions in the hexagonal crystal lattice, $\mathrm{M}(\mathrm{I})$ and $\mathrm{M}(\mathrm{II})$, requires some form
of charge compensation. ${ }^{19-23}$ Possible charge-compensation mechanisms for R^{3+} ions in either or both host cation positions have been proposed by several groups. ${ }^{16,23,24}$ The possible substitution of two types of lattice cations and the location of charge-compensating ions and defects, relative to the R^{3+} ions, accounts for variation in the crystal-field environment experienced by individual R^{3+} ions. The particular environment, or site, occupied by a R^{3+} ion has considerable influence over the optical behavior of that ion. For instance, some of the Nd^{3+} ions in these hosts do not emit radiation upon excitation, and therefore are not likely to contribute to laser action. ${ }^{5,9,24}$ Furthermore, some appear to serve as quenching centers. ${ }^{24}$ Indeed, this characteristic is most evident for FAP crystals in which Nd^{3+} ions appear to be distributed among both emitting and nonemitting sites. In SFAP, Nd^{3+} ions appear to occupy emitting sites predominantly.

Our purpose is to identify the details of the crystal-field splitting of the energy levels of Nd^{3+} ions that occupy both emitting and nonemitting sites in Nd:FAP and Nd:SFAP using site-selective excitation and polarized absorption as optical probes. This approach allows us to dissect complex absorption spectra and identify features which arise from Nd^{3+} ions in specific sites. We find that the spectra of Nd:SFAP have fewer absorption and emission lines than comparable
spectra observed for Nd:FAP. This suggests that the availability of optical centers for appreciable occupation by Nd^{3+} ions in SFAP is limited relative to FAP.

In the course of our ongoing investigation of R^{3+}-doped FAP and SFAP crystals, we have observed polarized absorption and fluorescence spectra for non-Kramers ions such as Eu^{3+} and Pr^{3+} consistent with selection rules associated with C_{s} symmetry. ${ }^{6,7}$ In both FAP and SFAP, such polarization was observed for the principally occupied site, and therefore attributed to be $\mathrm{M}(\mathrm{II})$. Because Nd^{3+} is a Kramers ion, we have less direct evidence to suggest that Nd^{3+} prefers the M(II) location as well. However, resemblances between the spectra of Nd:SFAP and some of the features observed in the spectra of Nd:FAP, and similar comparisons made between other R:FAP and R:SFAP crystals, clearly indicate that the emitting Nd^{3+} ions in both FAP and SFAP occupy M(II) locations with C_{s} symmetry. ${ }^{24}$ This hypothesis is consistent with the suggestion by other groups ${ }^{15,16,18,23}$ that the laseractive R^{3+} ions in FAP and SFAP occupy M(II) locations with C_{s} symmetry.

In addition to spectral features attributed to the principally occupied sites in Nd:FAP we observe relatively weaker absorption lines which also polarize. Analysis of these spectra is consistent with selection rules operating for Nd^{3+} ions in sites having C_{3} symmetry. Since no Nd^{3+} ion emission is observed for the site, we base this interpretation on the polarized absorption spectra reported in Table I. This site is one of several nonfluorescing sites described by Maksimova and Sobol ${ }^{15,16}$ who suggest that some Nd^{3+} ions may substitute into $\mathrm{M}(\mathrm{I})$ divalent cation sites. These sites have C_{3} symmetry and represent 40% of all cation sites in the undoped lattice. They speculate that charge compensation for this site is sufficiently remote so that C_{3} symmetry is preserved for Nd^{3+} ions in the site. ${ }^{25}$

Crystal-field splitting calculations were performed for Stark levels of Nd^{3+} ions in spectroscopically different sites. Using crystal-field parameters B_{nm} reported for Nd:SVAP as a starting set, ${ }^{5}$ we obtained a final set for Nd^{3+} ions in fluorescing sites with a rms deviation of $7 \mathrm{~cm}^{-1}$ (52 levels in $\mathrm{Nd}: \mathrm{SFAP}$) and $8 \mathrm{~cm}^{-1}$ (59 levels in Nd:FAP). Peale et al. ${ }^{5}$ obtained a rms of $6 \mathrm{~cm}^{-1}$ for 28 levels of Nd^{3+} in the emitting site in Nd:SVAP. Using $B_{n m}$ parameters obtained from a lattice-sum calculation for Nd^{3+} ions in sites of C_{3} symmetry, we obtained a final set of $B_{n m}$ parameters which gave a rms of $6 \mathrm{~cm}^{-1}$ between 46 experimental and calculated levels for one of the nonemitting sites.

EXPERIMENTAL DETAILS

Boules of Nd:SFAP and Nd:FAP containing nominally 1 at. wt \% neodymium, were grown by the standard Czochralski method at the University of Central Florida, CREOL. The hexagonal crystals were cut parallel and perpendicular to the crystalline optical axis (c axis). Crystals containing lesser quantities of Nd^{3+} ions were also examined spectroscopically. The actual amount present was determined using inductively coupled plasma atomic emission spectrometry on chemically digested portions of samples used in our studies.

As a check, one of the crystals (Nd:SFAP) was analyzed independently by Galbraith Laboratories (Knoxville, TN). The results were in agreement with our determinations. The absorption spectra reported in Table I were obtained from samples Nd:SFAP (0.29 at. wt \% Nd) and Nd:FAP (0.61 at. wt $\% \mathrm{Nd})$. The Nd densities in these crystals are 3×10^{19} and 6×10^{19} ions $/ \mathrm{cm}^{3}$, respectively.

Absorption spectra measured between 2650 and 300 nm were obtained using a Cary model 2390 spectrophotometer equipped with a continuous-flow liquid-helium cryostat that allowed us to observe spectra at any temperature between 4 K and room temperature. Calibration of the instrument was achieved by measurement of standard deuterium emission lines in different orders. Spectral bandwidths were much less than the bandwidths of the majority of absorption peaks observed. The precision in measuring the spectra reported in Table I was generally to within 0.1 nm . Supplemental absorption spectra were recorded using a Perkin-Elmer Lambda 9 spectrophotometer covering the same wavelength range. The instrument was equipped with a liquid-helium conduction dewar. Absorption spectra measured between 4080 and 1920 nm were also obtained at room temperature with a Nicolet 60sx Fourier transform infrared (FTIR) spectrometer.

Using the Cary spectrophotometer, we obtained axial absorption spectra (with the light beam collinear with the c axis of the crystal), and polarized transverse absorption spectra [with the \mathbf{E} of the light beam perpendicular (σ) and parallel (π) to the c axis of the crystal]. We observed no spectroscopic evidence that would suggest a phase change in either Nd:SFAP or Nd:FAP at temperatures below room temperature. ${ }^{26}$ Orientation of the optical axis was determined by placing the crystal between crossed polarizers and observing the characteristic "Maltese cross" pattern. We observed no temperature-dependent (hot band) absorption spectra in any of our samples. We conclude that the energy separation between the ground-state Stark level and the first excited Stark level in the ${ }^{4} I_{9 / 2}$ manifold is large relative to the thermal energy associated with the temperatures at which our measurements were made.

Site-selective excitation and fluorescence spectra were obtained at 4 and 80 K using a Quantel Nd:YAG laserpumped dye laser having an output bandwidth of approximately $0.1 \mathrm{~cm}^{-1}$. A 0.85 m double monochromator equipped with a R928 photomultiplier tube (PMT) was used for fluorescence detection and signals were processed using a boxcar averager and gated integrator. Data were collected and stored using a digital oscilloscope. A 0.22 m monochromator and liquid-nitrogen-cooled germanium detector were used to detect fluorescence between 1.0 and $1.5 \mu \mathrm{~m}$. An Oxford 1204D continuous-flow liquid-helium cryostat allowed us to obtain spectra from samples down to 4 K .

THE OBSERVED SPECTRA

At 4 K numerous absorption bands are observed in the spectra of both crystals. Many bands are relatively broad and have satellite structure. We attribute the spectra to Nd^{3+} ions

TABLE I. Absorption spectra of Nd^{3+} in $\mathrm{Sr}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$ and $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}^{\mathrm{a}}$

${ }^{2 s+1} L_{J}{ }^{\text {b }}$	$\mathrm{Nd}: \mathrm{SFAP}^{\text {c }}$			Nd:FAP ${ }^{\text {d }}$			Nd:FAP ${ }^{\text {e }}$			
	$\lambda(\AA){ }^{\text {f }}$	$\alpha^{\text {g }}$	$E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{h}}$	$\lambda(\AA){ }^{\text {f }}$	$\alpha^{\text {g }}$	$E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{h}}$	$\lambda(\AA){ }^{\text {f }}$	$\alpha^{\text {g }}$	$E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{h}}$	$P^{\text {i }}$
${ }^{4} I_{13 / 2}$	26278	0.15	3804	26190	0.1	3817	25170	0.02	3972	σ, π
							25040	0.04	3992	σ, π
							24620	0.04	4061	σ
							24560	0.05	4070	σ
							24370	0.06	4102	σ, π
				23650	0.6	4227				
	23 390(b)	0.10	4275	23520	0.4	4251				
				23220	0.4	4306				
	23104	0.80	4327				22980		4350	σ, π
				22910	0.6	4363	22930		4360	σ, π
	22880	0.54	4370	22780		4389	22860		4372	σ
	22542	0.66	4435				22590		4425	σ, π
	22476	0.64	4448							
	22397	1.01	4464							
	21976	0.48	4549	22200		4503				
${ }^{4} I_{15 / 2}$	17510	0.45	5710	17470		5723	17375		5754	σ, π
							16950		5898	σ, π
							16610		6018	σ
				16130		6198				
	16010	0.15	6244				16034		6235	σ, π
	15848	0.27	6308	15850		6307				
				15740		6352	15740		6352	σ
	15662	0.20	6383				15670		6380	σ, π
	15549	0.23	6430	15523		6440				
	15500	0.23	6450	15500		6450				
	15370	0.21	6505	15210		6573	15280		6543	σ, π
	15136	0.19	6605				15130		6608	σ
	14880	0.19	6718	14887		6715				
${ }^{4} F_{3 / 2}$				8870(b)	0.04	11270				
				8839.8	0.73	11309				
	8813.0	0.12	11344	8815(b)	0.46	11341				
	8806.0	1.23	11353							
							8765.0	0.06	11406	σ, π
							8737(b)	0.02	11442	σ, π
							8704(b)	0.03	11486	σ, π
							8664.0		11539	σ
				8566.1	0.81	11671				
	8537.4	1.33	11710							
	8522.2	0.48	11731							
${ }^{4} F_{5 / 2}$	8160.1	0.04	12251	8120(b)	0.38	12312				
	8088.3	0.06	12360	8100.0	1.25	12342				
	8080.2	0.06	12373				8085.6	0.20	12364	σ, π
	8046.4	2.30	12425				8074(b)	0.13	12382	σ, π
	8030.0	0.07	12450				8010.4	0.21	12480	σ, π
				8003.2	2.03	12492				
				7977.0	1.52	12533	7968.2	0.11	12546	σ
${ }^{2} H_{9 / 2}$				7941.8	2.08	12588				
	7933.8	1.10	12601							
							7920.7	0.10	12622	σ, π
	7905.2	0.43	12646				7906.1	0.10	12645	σ
	7881.1	0.79	12685	7879.0	0.50	12688				
	7852(b)	0.03	12730				7840(b)	0.15	12752	σ, π
	7823.5	0.02	12779	7835.0	1.13	12760				
	7797(b)	0.02	12823	7798.0	0.40	12820				
							7774.1	0.05	12860	σ
	7759.9	0.31	12883				7758.0	0.08	12886	σ, π
	7721.6	0.21	12948							
	7706.3	0.12	12973							
				7506(b)	0.50	13020				
	7572(b)	0.03	13202							
${ }^{4} F_{7 / 2}$							7524.0	0.15	13287	σ, π
				7504.4	2.64	13326	$7505(\mathrm{sh})$	0.75	13320	σ, π

TABLE I. (Continued).

${ }^{\text {a }}$ Spectra obtained at 4 K ; total Nd concentration (0.29 at. wt \% in SFAP); total Nd concentration (0.56 at. wt \% in FAP).
${ }^{\text {b }}$ Multiplet manifolds of $\mathrm{Nd}^{3+}\left(4 f^{3}\right)$ split by the crystal field.
${ }^{\text {c }}$ Total spectra of Nd^{3+} ions in SFAP.
${ }^{\mathrm{d}}$ Spectra of Nd^{3+} ions in fluorescing sites in FAP.
${ }^{e}$ Spectra of Nd^{3+} ions in nonfluorescing sites in FAP.
${ }^{\mathrm{f}}$ Wavelength in \AA, b denotes broad.
${ }^{\mathrm{g}}$ Intensity of axial spectra; α is in units of absorbance/cm.
${ }^{\mathrm{h}}$ Energy in units of vacuum wave numbers.
${ }^{i}$ Polarization of the transverse spectra.

FIG. 1. Emission spectrum at 4 K from the ${ }^{4} F_{3 / 2}$ to the ${ }^{4} I_{9 / 2}$ ground-state multiplet manifold; excitation of ${ }^{4} F_{9 / 2}(685 \mathrm{~nm}) \mathrm{Nd}: F A P$.
residing in different charge-compensated sites. The number of absorption peaks associated with any given multiplet manifold of $\mathrm{Nd}^{3+}\left(4 f^{3}\right)$ exceeds the expected number of $J+1 / 2$ transitions from the ground state of the ion in a single site. ${ }^{27,28}$ Most of the transitions observed in the spectra taken on crystals of Nd:SFAP (containing $0.29 \mathrm{wt} \% \mathrm{Nd}$) and Nd:FAP (containing $0.61 \mathrm{wt} \% \mathrm{Nd}$) appear in both σ and π polarizations in the transverse spectra. In Nd:FAP however, within each multiplet manifold we observe additional moderate to weak absorption peaks primarily in the σ spectrum, along with weak spectra appearing in both polarizations.

Of the two fluorapatite crystals studied, the absorption spectrum of Nd:SFAP is easier to interpret because many fewer satellite peaks are observed within the wavelength range that spans a given multiplet. In fact Table I shows that for each manifold in Nd:SFAP there are usually $J+1 / 2$ relatively strong peaks accompanied by weaker and usually broader satellite features, suggesting that Nd^{3+} occupation of a single site may dominate the observed spectra. This feature

FIG. 2. Emission spectrum at 4 K from the ${ }^{4} F_{3 / 2}$ to the ${ }^{4} I_{11 / 2}$ multiplet manifold; excitation of ${ }^{4} G_{5 / 2},{ }^{2} G_{7 / 2}(588 \mathrm{~nm}) \mathrm{Nd}$:FAP.

FIG. 3. Polarized absorption spectrum of the ${ }^{4} F_{9 / 2}$ multiplet manifold of Nd^{3+} in FAP at 4 K .
is attributed to the growth conditions of Nd:SFAP, the doping level of Nd^{3+} ions, ${ }^{8}$ and the intrinsic lattice properties of Nd:SFAP.

Site-selective excitation and fluorescence methods were used to identify transitions differentiating Nd^{3+} ions in the different sites in Nd:FAP and to confirm that there is a predominant site for Nd^{3+} ions in Nd:SFAP. The fluorescence spectra appearing in Figs. 1 and 2, representing transitions from the ${ }^{4} F_{3 / 2}$ manifold to the ${ }^{4} I_{9 / 2}$ and ${ }^{4} I_{11 / 2}$ manifolds of Nd^{3+} in Nd:FAP, are primarily due to Nd^{3+} ions in only one of several sites. In Fig. 1 selectivity was achieved by narrow band ($0.1 \mathrm{~cm}^{-1}$) excitation of the strongest peak (685.4 nm) in the ${ }^{4} F_{9 / 2}$ manifold (see Fig. 3 and Table I) followed by nonradiative relaxation to the ${ }^{4} F_{3 / 2}$ manifold. In Fig. 2 we selectively excited one of the strong peaks in the ${ }^{4} G_{5 / 2},{ }^{2} G_{7 / 2}$ grouping at 588 nm . This excitation was followed by nonradiative relaxation to the ${ }^{4} F_{3 / 2}$ manifold. Similar experiments involving the same multiplets were carried out on Nd:SFAP where the results gave the expected number of transitions for

FIG. 4. Emission spectrum at 4 K from the ${ }^{4} F_{3 / 2}$ to the ${ }^{4} I_{9 / 2}$ ground-state multiplet manifold; excitation of ${ }^{4} F_{9 / 2}(683 \mathrm{~nm})$ Nd:SFAP.

FIG. 5. Emission spectrum at 4 K from the ${ }^{4} F_{3 / 2}$ to the ${ }^{4} I_{11 / 2}$ multiplet manifold; excitation of ${ }^{4} G_{5 / 2},{ }^{2} G_{7 / 2}(586 \mathrm{~nm}) \mathrm{Nd}$:SFAP.
Nd^{3+} in a single site. Figure 4 and 5 present the emission spectra for the corresponding transitions in Nd:SFAP. From Figs. 1 and 2 as well as from Figs. 4 and 5 we can see clearly the large crystal-field splitting of the emitting Nd^{3+} ions. In both Nd:FAP and Nd:SFAP we observe fluorescence only from the ${ }^{4} F_{3 / 2}$ manifold. This observation is likely the result of a large crystal-field splitting that greatly mixes states above ${ }^{4} F_{3 / 2}$ and the presence of high-energy phonons that in coupling with electronic states can lead to strong nonradiative relaxation processes. ${ }^{9,24}$ The crystal-field splittings of the ${ }^{4} I_{9 / 2}$ and ${ }^{4} I_{11 / 2}$ multiplets obtained from fluorescence measurements are given in Table II for both fluorapatites.

Figure 6 compares the 4 K excitation spectrum obtained by detecting fluorescence at $1063 \mathrm{~nm}\left({ }^{4} F_{3 / 2} \rightarrow{ }^{4} I_{11 / 2}\right.$, Nd:FAP) with the 4 K axial transmittance spectrum obtained between 500 and $540 \mathrm{~nm}\left({ }^{4} G_{9 / 2},{ }^{4} G_{7 / 2}\right)$. The site-selective excitation spectrum consists of five sharp peaks found between 505 and 517 nm (the number expected for ${ }^{4} \mathrm{G}_{9 / 2}$) and four strong peaks found between 520 and 530 nm (the number expected for ${ }^{4} G_{7 / 2}$). Conspicuously absent from the excitation spectrum are peaks associated with Nd^{3+} ions in other sites that are observed in the transmittance spectrum in Fig. 6. When excitation was carried out at wavelengths corresponding to some of these weak peaks in the transmittance spectrum, no fluorescence was observed at, or in the vicinity of 1063 nm .

In Nd:SFAP the absorption spectrum between 500 and 540 nm obtained at 4 K shows a total of nine strong peaks and several very weak broad bands indicating the dominance of a single site, with the ${ }^{4} G_{9 / 2},{ }^{4} G_{7 / 2}$ multiplets clearly resolved. Further evidence supporting a single fluorescing site in Nd:SFAP can be found by examining the 4 K absorption spectrum of the ${ }^{2} P_{1 / 2}$ multiplet. Over 90% of the integrated absorbance is found in a single peak at 431.5 nm with three other peaks at $430.3,430.9$, and 432.5 nm sharing less than 10% in total.

In Fig. 7 we compare the 4 K excitation spectrum produced by detecting fluorescence at $1063 \mathrm{~nm}\left({ }^{4} F_{3 / 2} \rightarrow{ }^{4} I_{11 / 2}\right)$

FIG. 6. (a) Transmittance spectrum of the ${ }^{4} G_{9 / 2},{ }^{4} G_{7 / 2}$ multiplet manifolds at 4 K ; (b) site-selective excitation of the ${ }^{4} G_{9 / 2},{ }^{4} G_{7 / 2}$ multiplets at 4 K Nd:FAP.
in Nd:FAP with the 4 K axial transmittance spectrum between 595 and $565 \mathrm{~nm}\left({ }^{2} G_{7 / 2},{ }^{4} G_{5 / 2}\right)$. The site-selective excitation spectrum is sharp, with three peaks (one possibly with a shoulder) found between 570 and 578 nm (the ${ }^{2} G_{7 / 2}$

FIG. 7. (a) Transmittance spectrum of the ${ }^{2} G_{7 / 2},{ }^{4} G_{5 / 2}$ multiplet manifolds at 4 K ; (b) site-selective excitation of the ${ }^{2} G_{7 / 2},{ }^{4} G_{5 / 2}$ multiplets at 4 K Nd:FAP.

TABLE II. Emission from ${ }^{4} F_{3 / 2}$ to ${ }^{4} I_{9 / 2}$ and ${ }^{4} I_{11 / 2}$ at 4 K .

$\lambda(\AA)^{\text {a }}$	Nd:SFAP			Nd:FAP			
	$E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{b}}$	$I^{\text {c }}$	$\Delta E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{d}}$	$\lambda(\AA)^{\mathrm{a}}$	$E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{b}}$	$I^{\text {c }}$	$\Delta E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{d}}$
8797.0	11364	vw	\cdots	8823.2	11331	vw	\cdots
8812.0	11345	vss	0	8840.4	11309	vss	0
9217.1	10847	m	498	9163.2	10910	vs	399
				9186.2	10883	w	
9282.1	10771	m	574	9259.3	10797	m	512
9337.0	10707	m	638	9306.7	10742	w	567
9444	10585	m	760	9429	10602	w	707
10583	9447	vs	1899	10628	9407	vss	1902
$11100(\mathrm{sh})$	9007	w	2340	11099	9007	w	2302
11148	8968	w	2378	11140	8974	vw	2335
				11174	8947	vw	
11212	8917	m	2429	11229	8903	w	2406
11264	8875	m	2470	11258	8880	w	2429
11355	8804	w	2541	11367	8795	w	2514

${ }^{\text {a }}$ Wavelength in \AA.
${ }^{\text {b }}$ Energy of transition in units of vacuum wave numbers.
${ }^{\mathrm{c}}$ Relative intensity within a manifold: vw (very weak); w (weak); m (moderate); s (strong); vs (very strong); vss (strongest).
${ }^{\mathrm{d}}$ Splitting of the multiplet manifold in cm^{-1}; energy of the Stark level.
multiplet), and three peaks observed between 580 and 590 nm (the ${ }^{4} G_{5 / 2}$ multiplet). Clearly the simplicity and spectral resolution of the exciting laser, relative to the transmittance obtained from the Cary spectrophotometer, point to the advantage of using narrow-band laser excitation to differentiate between ions in different sites. The corresponding absorption spectrum at 4 K for Nd:SFAP (Table I) includes six very strong lines, a weak/broad band (570.6 nm) and very weak shoulders around the base of most of the strong lines that were too difficult to measure systematically. The simplicity of the spectrum supports the notion that Nd^{3+} ions are found predominantly in a single site in Nd:SFAP.

Returning to Fig. 7, we tried excitation at wavelengths corresponding to absorption by Nd^{3+} ions in other sites in Nd:FAP, but failed to generate fluorescence. This suggests that perhaps while Nd^{3+} ions in numerous sites may absorb energy, only those in one of the sites fluoresce. Those that reside in the remaining so-called "dead" sites lose their energy nonradiatively; energy transfer to a different fluorescing center is not evident.

Laser excitation of Nd:FAP was also carried out while total fluorescence from the ${ }^{4} F_{3 / 2}$ manifold was measured nondispersively. This was accomplished by placing a highpass optical filter in front of the germanium detector to allow detection of wavelengths greater than 800 nm . This permitted the simultaneous detection of all fluorescence associated with transitions between the ${ }^{4} F_{3 / 2}$ manifold, and the ${ }^{4} I_{9 / 2}$ and ${ }^{4} I_{11 / 2}$ manifold for Nd^{3+} ions in all sites. These experiments indicate that the fluorescence originated primarily from a single site, identified as the fluorescing site.

DISCUSSION AND CALCULATIONS

The spectra reported in Table I were obtained from Nd^{3+}-doped fluorapatite crystals which have a hexagonal structure that belongs to the $P 6_{3} / m$ (\# 176) space group
with two molecules per unit cell. ${ }^{22}$ The divalent metal ions (Sr, Ca) occupy two sites, $\mathrm{M}(\mathrm{I})$ in the $4 f$ site with C_{3} symmetry and $\mathrm{M}(\mathrm{II})$ in the $6 h$ site with C_{s} symmetry. The ratio of metal ions in these two sites is 60 to 40 . Surrounding the $\mathrm{M}(\mathrm{I})$ site are six nearest-neighbor oxygen ions that form a distorted triangular prism. The $M(I I)$ sites sit at the corners of equilateral triangles with the F^{-}ion in the center. Substitution of trivalent neodymium for a divalent cation was achieved by passive charge compensation during crystal growth. ${ }^{1}$

Recently, Morrison ${ }^{27}$ completed a point charge analysis of symmetry-preserving charge compensation and vacancies in the fluorapatites doped with Nd^{3+} ions. Our approach in the present study has been to calculate the crystal-field splitting of the energy levels of Nd:SFAP and Nd:FAP by considering the symmetry of the site ${ }^{27,28}$ and the subsequent data sets as the primary guide to the phenomenological set of crystal-field parameters $B_{n m}$ obtained from the analysis. To interpret the splitting of the levels in the fluorescing sites, we used as a starting set of $B_{n m}$ the values reported by Peale et al. ${ }^{5}$ for Nd:SVAP. Our calculations were based on C_{s} symmetry, the same symmetry used in Ref. 5.

The total Hamiltonian for the Nd^{3+} ion includes terms representing the free-ion and the crystal electric-field interactions. The Racah and spin-orbit parameters entering into the free-ion Hamiltonian were derived from an analysis of the aqueous solution spectra. ${ }^{30}$ The appropriate values as well as the details of the computation are given elsewhere. ${ }^{30-34}$ The crystal-field Hamiltonian is of the form

$$
\begin{equation*}
H_{\mathrm{CEF}}=\sum_{n} \sum_{\text {even }}^{n} B_{n=-n}^{*} \sum_{i=1}^{N} C_{n m}(i), \tag{1}
\end{equation*}
$$

where the $B_{n m}$ are the crystal-field parameters and the expressions $C_{n m}$ are given as

TABLE III. Crystal-field splitting: Nd^{3+} ions in C_{s} sites

${ }^{2 S+1} L_{J}{ }^{\text {a }}$	No. ${ }^{\text {b }}$	$\begin{gathered} E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{c}} \\ (\text { expt. }) \end{gathered}$	$\begin{gathered} E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{d}} \\ (\text { calc. }) \end{gathered}$	Free-ion percent mixture
${ }^{4} I_{9 / 2}$	1	0	6.0	$97.7{ }^{4} I_{9 / 2}+2.12{ }^{4} I_{11 / 2}+0.12{ }^{4} I_{13 / 2}$
545	1	0	-0.4	$98.1{ }^{4} I_{9 / 2}+1.72{ }^{4} I_{11 / 2}+0.10{ }^{4} I_{13 / 2}$
(482)	2	498	486	$98.9{ }^{4} I_{9 / 2}+0.76{ }^{4} I_{11 / 2}+0.19{ }^{4} G_{5 / 2}$
	2	399	387	$98.7{ }^{4} I_{9 / 2}+1.00{ }^{4} I_{11 / 2}+0.15{ }^{4} G_{5 / 2}$
	3	574	566	$99.2{ }^{4} I_{9 / 2}+0.55{ }^{4} I_{11 / 2}+0.11{ }^{4} G_{5 / 2}$
	3	512	512	$99.5{ }^{4} I_{9 / 2}+0.32{ }^{4} I_{11 / 2}+0.10{ }^{4} G_{5 / 2}$
	4	638	647	$98.2{ }^{4} I_{9 / 2}+1.64{ }^{4} I_{11 / 2}+0.08{ }^{4} I_{13 / 2}$
	4	567	575	$99.0{ }^{4} I_{9 / 2}+0.84{ }^{4} I_{11 / 2}+0.10{ }^{4} G_{5 / 2}$
	5	760	764	$99.0{ }^{4} I_{9 / 2}+0.73{ }^{4} I_{11 / 2}+0.13{ }^{4} G_{5 / 2}$
	5	707	712	$98.8{ }^{4} I_{9 / 2}+0.96{ }^{4} I_{11 / 2}+0.11{ }^{4} G_{5 / 2}$
${ }^{4} I_{11 / 2}$	6	1899	1907	$95.8{ }^{4} I_{11 / 2}+2.17{ }^{4} I_{13 / 2}+1.88{ }^{4} I_{9 / 2}$
2361	6	1902	1911	$97.0{ }^{4} I_{11 / 2}+1.84{ }^{4} I_{13 / 2}+1.04{ }^{4} I_{9 / 2}$
(2332)	7	2340	2339	$97.4{ }^{4} I_{11 / 2}+1.62{ }^{4} I_{9 / 2}+0.87{ }^{4} I_{13 / 2}$
	7	2302	2307	$98.1{ }^{4} I_{11 / 2}+1.15{ }^{4} I_{9 / 2}+0.64{ }^{4} I_{13 / 2}$
	8	2378	2368	$98.3{ }^{4} I_{11 / 2}+0.77{ }^{4} I_{9 / 2}+0.68{ }^{4} I_{13 / 2}$
	8	2335	2327	$98.2{ }^{4} I_{11 / 2}+0.89{ }^{4} I_{9 / 2}+0.71{ }^{4} I_{13 / 2}$
	9	2429	2418	$98.9{ }^{4} I_{11 / 2}+0.54{ }^{4} I_{13 / 2}+0.43{ }^{4} I_{9 / 2}$
	9	2406	2393	$99.0{ }^{4} I_{11 / 2}+0.58{ }^{4} I_{9 / 2}+0.32{ }^{4} I_{13 / 2}$
	10	2470	2471	$98.6{ }^{4} I_{11 / 2}+0.71{ }^{4} I_{9 / 2}+0.50{ }^{4} I_{13 / 2}$
	10	2429	2431	$98.5{ }^{4} I_{11 / 2}+0.80{ }^{4} I_{9 / 2}+0.56{ }^{4} I_{13 / 2}$
	11	2541	2546	$98.5{ }^{4} I_{11 / 2}+0.80{ }^{4} I_{13 / 2}+0.47{ }^{4} I_{9 / 2}$
	11	2514	2521	$98.4{ }^{4} I_{11 / 2}+0.93{ }^{4} I_{13 / 2}+0.45{ }^{4} I_{9 / 2}$
${ }^{4} I_{13 / 2}$	12	3804	3815	$96.6{ }^{4} I_{13 / 2}+1.69{ }^{4} I_{15 / 2}+1.54{ }^{4} I_{11 / 2}$
4323	12	3817	3799	$97.6{ }^{4} I_{13 / 2}+1.38{ }^{4} I_{15 / 2}+0.95{ }^{4} I_{11 / 2}$
(4271)	13	4275	4275	$96.4{ }^{4} I_{13 / 2}+2.25{ }^{4} I_{11 / 2}+1.20{ }^{4} I_{15 / 2}$
	13	4227	4220	$97.3{ }^{4} I_{13 / 2}+1.80{ }^{4} I_{11 / 2}+0.78{ }^{4} I_{15 / 2}$
	14	4327	4328	$99.1{ }^{4} I_{13 / 2}+0.45{ }^{4} I_{15 / 2}+0.19{ }^{4} I_{11 / 2}$
	14	4251	4258	$98.9{ }^{4} I_{13 / 2}+0.59{ }^{4} I_{15 / 2}+0.40{ }^{4} I_{11 / 2}$
	15	4370	4370	$99.1{ }^{4} I_{13 / 2}+0.55{ }^{4} I_{15 / 2}+0.27{ }^{4} I_{11 / 2}$
	15	4306	4321	$99.3{ }^{4} I_{13 / 2}+0.34{ }^{4} I_{15 / 2}+0.25{ }^{4} I_{11 / 2}$
	16	...	4419	$98.5{ }^{4} I_{13 / 2}+0.75{ }^{4} I_{11 / 2}+0.63{ }^{4} I_{15 / 2}$
	16	4363	4357	$98.4{ }^{4} I_{13 / 2}+0.89{ }^{4} I_{11 / 2}+0.57{ }^{4} I_{15 / 2}$
	17	4464	4455	$99.0{ }^{4} I_{13 / 2}+0.47{ }^{4} I_{15 / 2}+0.39{ }^{4} I_{11 / 2}$
	17	4389	4395	$99.0{ }^{4} I_{13 / 2}+0.50{ }^{4} I_{15 / 2}+0.36{ }^{4} I_{11 / 2}$
	18	4549	4549	$98.7{ }^{4} I_{13 / 2}+0.75{ }^{4} I_{15 / 2}+0.28{ }^{4} I_{11 / 2}$
	18	4503	4505	$98.7{ }^{4} I_{13 / 2}+0.84{ }^{4} I_{15 / 2}+0.32{ }^{4} I_{11 / 2}$
${ }^{4} I_{15 / 2}$	19	5710	5701	$98.2{ }^{4} I_{15 / 2}+1.66{ }^{4} I_{13 / 2}+0.09{ }^{4} I_{11 / 2}$
6362	19	5723	5733	$98.9{ }^{4} I_{15 / 2}+0.99{ }^{4} I_{13 / 2}+0.06{ }^{4} I_{11 / 2}$
(6361)	20	6244	6250	$98.4{ }^{4} I_{15 / 2}+1.38{ }^{4} I_{13 / 2}+0.08{ }^{4} F_{9 / 2}$
	20	6198	6203	$98.6{ }^{4} I_{15 / 2}+1.15{ }^{4} I_{13 / 2}+0.06{ }^{4} F_{9 / 2}$
	21	6308	6312	$99.3{ }^{4} I_{15 / 2}+0.46{ }^{4} I_{13 / 2}+0.07{ }^{4} F_{9 / 2}$
	21	6307	6298	$99.2{ }^{4} I_{15 / 2}+0.66{ }^{4} I_{13 / 2}+0.05{ }^{4} F_{7 / 2}$
	22	6383	6387	$99.2{ }^{4} I_{15 / 2}+0.57{ }^{4} I_{13 / 2}+0.07{ }^{4} I_{11 / 2}$
	22	6352	6357	$99.4{ }^{4} I_{15 / 2}+0.48{ }^{4} I_{13 / 2}+0.04{ }^{4} I_{11 / 2}$
	23	6450	6453	$99.0{ }^{4} I_{15 / 2}+0.79{ }^{4} I_{13 / 2}+0.05{ }^{4} F_{9 / 2}$
	23	6440	6433	$99.6{ }^{4} I_{15 / 2}+0.32{ }^{4} I_{13 / 2}+0.04{ }^{4} I_{11 / 2}$
	24	6505	6510	$99.5{ }^{4} I_{15 / 2}+0.36{ }^{4} I_{13 / 2}+0.03{ }^{4} I_{11 / 2}$
	24	6450	6457	$99.0{ }^{4} I_{15 / 2}+0.74{ }^{4} I_{13 / 2}+0.07{ }^{4} F_{9 / 2}$
	25	6605	6602	$99.6{ }^{4} I_{15 / 2}+0.32{ }^{4} I_{13 / 2}+0.03{ }^{4} F_{7 / 2}$
	25	6573	6569	$99.6{ }^{4} I_{15 / 2}+0.28{ }^{4} I_{13 / 2}+0.04{ }^{4} F_{7 / 2}$
	26	6718	6710	$99.5{ }^{4} I_{15 / 2}+0.26{ }^{4} I_{13 / 2}+0.07{ }^{4} F_{9 / 2}$
	26	6715	6708	$99.5{ }^{4} I_{15 / 2}+0.28{ }^{4} I_{13 / 2}+0.05{ }^{4} F_{7 / 2}$
${ }^{4} F_{3 / 2}$	27	11353	11358	$93.7{ }^{4} F_{3 / 2}+4.61{ }^{4} F_{5 / 2}+0.56{ }^{4} F_{7 / 2}$
11666	27	11309	11322	$94.1{ }^{4} F_{3 / 2}+4.42{ }^{4} F_{5 / 2}+0.50{ }^{4} G_{5 / 2}$
(11 614)	28	11710	11706	$91.8{ }^{4} F_{3 / 2}+5.00{ }^{4} F_{5 / 2}+1.40{ }^{5} G_{5 / 2}$
	28	11671	11658	$92.1{ }^{4} F_{3 / 2}+5.22{ }^{4} F_{5 / 2}+1.25{ }^{4} G_{5 / 2}$
${ }^{4} F_{5 / 2}$	29	12425	12431	$82.1{ }^{4} F_{5 / 2}+7.48{ }^{2} H_{9 / 2}+5.37{ }^{4} F_{7 / 2}$
12697	29	12342	12345	$78.1{ }^{4} F_{5 / 2}+12.9{ }^{2} H_{9 / 2}+4.55{ }^{4} F_{7 / 2}$
(12 593)	30	12601	12601	$52.7{ }^{4} F_{5 / 2}+41.7{ }^{2} H_{9 / 2}+2.53{ }^{4} F_{3 / 2}$
	30	12492	12475	$76.7{ }^{2} H_{9 / 2}+20.7{ }^{4} F_{5 / 2}+1.16{ }^{4} F_{3 / 2}$

TABLE III. (Continued.)

${ }^{2 S+1} L_{J}{ }^{\text {a }}$	No. ${ }^{\text {b }}$	$\begin{gathered} E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{c}} \\ (\text { expt. }) \end{gathered}$	$\begin{gathered} E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{d}} \\ (\text { calc. }) \end{gathered}$	Free-ion percent mixture
${ }^{2} H_{9 / 2}$	31	12664	12685	$61.1{ }^{2} H_{9 / 2}+35.2{ }^{4} F_{5 / 2}+1.67{ }^{4} F_{3 / 2}$
12912	31	12533	12532	$56.1{ }^{4} F_{5 / 2}+38.6{ }^{2} H_{9 / 2}+2.75{ }^{4} F_{3 / 2}$
(12 375)	32	...	12736	$56.4{ }^{4} F_{5 / 2}+40.1{ }^{2} H_{9 / 2}+1.08{ }^{4} F_{3 / 2}$
	32	12588	12589	$50.4{ }^{2} H_{9 / 2}+46.4{ }^{4} F_{5 / 2}+1.21{ }^{4} F_{3 / 2}$
	33	...	12820	$76.1{ }^{2} H_{9 / 2}+20.3{ }^{4} F_{5 / 2}+1.48{ }^{4} F_{3 / 2}$
	33	12688	12676	$63.4{ }^{2} H_{9 / 2}+32.9{ }^{4} F_{5 / 2}+1.90{ }^{4} F_{3 / 2}$
	34	12948	12951	$88.9{ }^{2} H_{9 / 2}+9.07{ }^{4} F_{5 / 2}+1.13{ }^{4} F_{7 / 2}$
	34	12760	12772	$85.1{ }^{2} H_{9 / 2}+13.0{ }^{4} F_{5 / 2}+1.08{ }^{4} F_{7 / 2}$
	35	12973	12984	$81.1{ }^{2} H_{9 / 2}+16.7{ }^{4} F_{5 / 2}+1.63{ }^{4} F_{7 / 2}$
	35	12820	12829	$70.3{ }^{2} H_{9 / 2}+27.5{ }^{4} F_{5 / 2}+1.51{ }^{4} F_{7 / 2}$
	36	...	13215	$96.5{ }^{2} H_{9 / 2}+2.04{ }^{4} F_{5 / 2}+0.63{ }^{4} F_{9 / 2}$
	36	13020	13024	$96.9{ }^{2} H_{9 / 2}+1.81{ }^{4} F_{5 / 2}+0.54{ }^{4} F_{9 / 2}$
${ }^{4} S_{3 / 2}$	37	13393	13396	$89.8{ }^{4} F_{7 / 2}+3.82{ }^{4} F_{5 / 2}+3.52{ }^{4} F_{9 / 2}$
13554	37	13322	13327	$92.3{ }^{4} F_{7 / 2}+2.87{ }^{4} F_{9 / 2}+2.54{ }^{4} F_{5 / 2}$
(13 498)	38	13510	13513	$93.5{ }^{4} S_{3 / 2}+5.07{ }^{4} F_{7 / 2}+0.49{ }^{4} G_{5 / 2}$
	38	13460	13461	$80.4{ }^{4} S_{3 / 2}+17.3{ }^{4} F_{7 / 2}+0.83{ }^{4} F_{5 / 2}$
${ }^{4} F_{7 / 2}$	39	13565	13561	$61.0{ }^{4} F_{7 / 2}+32.8{ }^{4} S_{3 / 2}+2.76{ }^{4} F_{5 / 2}$
13676	39	13481	13490	$73.3{ }^{4} F_{7 / 2}+20.1{ }^{4} S_{3 / 2}+3.29{ }^{4} F_{5 / 2}$
(13 597)	40	13572	13574	$70.4{ }^{4} S_{3 / 2}+26.2{ }^{4} F_{7 / 2}+1.55{ }^{4} F_{5 / 2}$
	40	13517	13515	$97.1{ }^{4} S_{3 / 2}+2.12{ }^{4} F_{7 / 2}+0.18{ }^{4} F_{9 / 2}$
	41	13692	13692	$93.4{ }^{4} F_{7 / 2}+2.76{ }^{4} F_{9 / 2}+1.21{ }^{4} F_{5 / 2}$
	41	13613	13611	$94.4{ }^{4} F_{7 / 2}+2.24{ }^{4} F_{9 / 2}+1.33{ }^{4} F_{5 / 2}$
	42	...	13998	$95.1{ }^{4} F_{7 / 2}+1.58{ }^{2} H_{9 / 2}+1.10{ }^{2} G_{7 / 2}$
	42	13920	13910	$95.7{ }^{4} F_{7 / 2}+1.21{ }^{4} F_{9 / 2}+1.20{ }^{2} H_{9 / 2}$
${ }^{4} F_{9 / 2}$	43	14641	14627	$95.9{ }^{4} F_{9 / 2}+1.96{ }^{4} F_{7 / 2}+0.89{ }^{4} F_{5 / 2}$
14901	43	14586	14584	$96.9{ }^{4} F_{9 / 2}+1.42{ }^{4} F_{7 / 2}+0.67{ }^{4} F_{5 / 2}$
(14 845)	44	14808	14813	$94.3{ }^{4} F_{9 / 2}+4.42{ }^{4} F_{7 / 2}+0.54{ }^{2} H_{11 / 2}$
	44	14745	14742	$95.3{ }^{4} F_{9 / 2}+3.66{ }^{4} F_{7 / 2}+0.47{ }^{2} H_{11 / 2}$
	45	14939	14946	$94.3{ }^{4} F_{9 / 2}+3.20{ }^{4} F_{7 / 2}+1.90{ }^{2} H_{11 / 2}$
	45	14890	14893	$94.9{ }^{4} F_{9 / 2}+2.94{ }^{4} F_{7 / 2}+1.58{ }^{2} H_{11 / 2}$
	46	...	15083	$95.5{ }^{4} F_{9 / 2}+2.62{ }^{2} H_{11 / 2}+1.09{ }^{2} G_{7 / 2}$
	46	15020	15020	$95.8{ }^{4} F_{9 / 2}+2.33{ }^{2} H_{11 / 2}+0.96{ }^{2} G_{7 / 2}$
	47	15113	15117	$94.5{ }^{4} F_{9 / 2}+4.59{ }^{2} H_{11 / 2}+0.38{ }^{2} H_{9 / 2}$
	47	15052	15054	$95.1{ }^{4} F_{9 / 2}+4.06{ }^{2} H_{11 / 2}+0.36{ }^{2} H_{9 / 2}$
${ }^{2} H_{11 / 2}$	48	...	16086	$98.4{ }^{2} H_{11 / 2}+0.94{ }^{2} G_{7 / 2}+0.20{ }^{4} F_{9 / 2}$
	48	16067	16069	$98.7{ }^{2} H_{11 / 2}+0.60{ }^{2} G_{7 / 2}+0.21{ }^{4} F_{9 / 2}$
16152	49	16124	16119	$98.5{ }^{2} H_{11 / 2}+0.50{ }^{4} F_{9 / 2}+0.50{ }^{2} G_{7 / 2}$
(16 128)	49	16086	16093	$98.7{ }^{2} H_{11 / 2}+0.52{ }^{4} F_{9 / 2}+0.36{ }^{2} G_{7 / 2}$
	50	16148	16145	$97.7{ }^{2} H_{11 / 2}+1.17{ }^{4} F_{9 / 2}+0.51{ }^{2} G_{7 / 2}$
	50	16119	16123	$98.2{ }^{2} H_{11 / 2}+1.02{ }^{4} F_{9 / 2}+0.33{ }^{2} G_{7 / 2}$
	51	16185	16189	$96.8{ }^{2} H_{11 / 2}+1.46{ }^{2} G_{7 / 2}+1.25{ }^{4} F_{9 / 2}$
	51	16165	16169	$96.9{ }^{2} H_{11 / 2}+1.41{ }^{4} F_{9 / 2}+1.14{ }^{2} G_{7 / 2}$
	52	16232	16243	$98.1{ }^{2} H_{11 / 2}+1.05{ }^{4} F_{9 / 2}+0.57{ }^{2} G_{7 / 2}$
	52	16227	16210	$98.6{ }^{2} H_{11 / 2}+0.68{ }^{4} F_{9 / 2}+0.42{ }^{2} G_{7 / 2}$
	53	16303	16300	$93.4{ }^{2} H_{11 / 2}+5.03{ }^{4} F_{9 / 2}+0.73{ }^{2} H_{9 / 2}$
	53	...	16261	$94.5{ }^{2} H_{11 / 2}+4.37{ }^{4} F_{9 / 2}+0.58{ }^{2} H_{9 / 2}$
${ }^{4} G_{5 / 2}$	54	17044	17041	$56.4{ }^{4} G_{5 / 2}+41.0{ }^{2} G_{7 / 2}+0.93{ }^{4} F_{3 / 2}$
17164	54	16995	16987	$91.9{ }^{4} G_{5 / 2}+5.03{ }^{2} G_{7 / 2}+1.93{ }^{4} F_{3 / 2}$
(17 041)	55	...	17137	$67.5{ }^{4} G_{5 / 2}+29.3{ }^{2} G_{7 / 2}+1.51{ }^{4} F_{3 / 2}$
	55	17090	17087	$78.1{ }^{4} G_{5 / 2}+20.1{ }^{2} G_{7 / 2}+0.56{ }^{4} F_{3 / 2}$
	56	17243	17239	$75.1{ }^{2} G_{7 / 2}+22.6{ }^{4} G_{5 / 2}+0.81{ }^{2} H_{11 / 2}$
	56	17219	17234	$60.2{ }^{4} G_{5 / 2}+37.1{ }^{2} G_{7 / 2}+1.11{ }^{4} F_{5 / 2}$

TABLE III. (Continued.)

${ }^{2 S+1} L_{J}{ }^{\mathrm{a}}$	No. ${ }^{\mathrm{b}}$	$E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{c}}$ $($ (expt.)	$E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{d}}$ $(\mathrm{calc}$.)	Free-ion percent mixture
${ }^{2} G_{7 / 2}$	57	17293	17296	$90.7{ }^{2} G_{7 / 2}+6.87{ }^{4} G_{5 / 2}+1.24{ }^{4} F_{5 / 2}$
17217	57	17361	17358	$74.2{ }^{2} G_{7 / 2}+24.1{ }^{4} G_{5 / 2}+1.16{ }^{4} F_{5 / 2}$
(17323)	58	17396	17392	$63.7{ }^{2} G_{7 / 2}+33.4{ }^{4} G_{5 / 2}+0.97{ }^{2} H_{11 / 2}$
	58	17412	17404	$92.9{ }^{2} G_{7 / 2}+5.35{ }^{4} G_{5 / 2}+0.69{ }^{2} H_{11 / 2}$
	59	17459	17462	$64.4{ }^{2} G_{7 / 2}+32.4{ }^{4} G_{5 / 2}+0.98{ }^{4} F_{9 / 2}$
	59	17462	17468	$72.7{ }^{2} G_{7 / 2}+26.1{ }^{4} G_{5 / 2}+0.30{ }^{2} H_{11 / 2}$
	60	17540	17540	$73.7{ }^{4} G_{5 / 2}+24.4{ }^{2} G_{7 / 2}+0.58{ }^{4} F_{7 / 2}$
	60	17525	17527	$89.2{ }^{2} G_{7 / 2}+7.64{ }^{4} G_{5 / 2}+1.02{ }^{4} F_{7 / 2}$

${ }^{\text {a }}$ Multiplet manifold of $\mathrm{Nd}^{3+}\left(4 f^{3}\right)$; the centroid is given in cm^{-1}; the number without parentheses is the energy for Nd:SFAP; the number with parentheses is the energy for Nd:FAP.
${ }^{\mathrm{b}}$ First number in the pair represents the splitting for Nd:SFAP; the second number represents the splitting for Nd :FAP in the fluorescing site.
${ }^{\text {c }}$ Experimental data from Tables I and II.
${ }^{\mathrm{d}}$ Calculated splitting based on $B_{n m}$ parameters given in Table IV.

$$
\begin{equation*}
C_{n m}(i)=\left(\frac{4 \pi}{(2 n+1)}\right)^{1 / 2} Y_{n m}\left(\theta_{i}, \phi_{i}\right) \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{n-m}=(-1)^{m} C_{n m}^{*}, \tag{3}
\end{equation*}
$$

and the $Y_{n m}$ are the usual spherical harmonics. In C_{s} symmetry, the values of m are restricted by $n+m=0, \pm 2, \pm 4$, with $|m| \leqslant n$ and $n=2,4$, and 6 . The crystal-field splitting is predominately determined by the n even $B_{n m}$ parameters. For C_{s} symmetry this number is restricted to 15 , but with a simple rotation about the principal axis (c axis), B_{22} can be made real and positive and the number of parameters is then reduced to 14 .

In Table III we present the results for the lowest 13 mul tiplet manifolds of Nd^{3+} ions in sites that fluoresce in Nd :SFAP and Nd:FAP. Because of the size of the splittings, the free-ion percent mixture is also included. Multiplet manifolds ${ }^{4} F_{5 / 2},{ }^{2} H_{9 / 2}$, and ${ }^{4} F_{7 / 2},{ }^{4} S_{3 / 2}$ are highly mixed making

TABLE IV. Final set of $B_{n m}$ parameters for Nd^{3+} ions in fluorescing sites.

$B_{n m}$ parameter	SFAP $^{\mathrm{a}}$ $\left(\mathrm{cm}^{-1}\right)$	FAP $^{\mathrm{b}}$ $\left(\mathrm{cm}^{-1}\right)$	SVAP $^{\mathrm{c}}$ $\left(\mathrm{cm}^{-1}\right)$
B_{20}	2647	2528	2452
B_{22}	533	520	410
B_{40}	2075	1896	2219
$\operatorname{Re} B_{42}$	-138	-278	320
$I_{m} B_{42}$	883	439	57.6
$\operatorname{Re} B_{44}$	136	53.4	-148
$I_{m} B_{44}$	223	444	-186
B_{60}	592	483	435
$\operatorname{Re} B_{62}$	173	289	-81.3
$I_{m} B_{62}$	514	427	253
$\operatorname{Re} B_{64}$	-13.6	-170	-255
$I_{m} B_{64}$	-514	-473	122
$\operatorname{Re} B_{66}$	-362	-407	266
$I_{m} B_{66}$	-16.9	-131	395

${ }^{\text {a }}$ rms derivation: $7 \mathrm{~cm}^{-1}$, 52 levels (this work).
${ }^{\mathrm{b}} \mathrm{rms}$ derivation: $8 \mathrm{~cm}^{-1}, 59$ levels (this work).
${ }^{\mathrm{c}}$ rms derivation: $6 \mathrm{~cm}^{-1}, 28$ levels (Ref. 5).
their ${ }^{2 S+1} L_{J}$ manifold assignments problematic for individual Stark levels. We made repeated attempts to improve our analysis by using $B_{n m}$ parameters obtained from latticesum calculations by Morrison ${ }^{27}$ based on different chargecompensated models for Nd^{3+} ions in $\mathrm{M}(\mathrm{II})$ sites. These efforts did not lead to any success. The final set of phenomenological $B_{n m}$ parameters is compared in Table IV with the set reported for Nd:SVAP (our initial starting set). The similarity in sign and magnitude among the dominant terms, including parameters B_{20}, B_{22}, and B_{40}, suggest a common symmetry site is involved in all three crystals. Variation among smaller parameters is due to our inclusion of numerous excited multiplet manifolds that are so highly mixed (see Table III) that relatively small changes in the crystal-field environment cause large changes in the J mixing among these manifolds. Peale et al. ${ }^{5}$ restricted their analysis to the splitting of the ${ }^{4} I_{J}$ and ${ }^{4} F_{3 / 2}$ manifolds alone.

We also carried out crystal-field splitting calculations for Nd^{3+} ions occupying C_{3} sites in Nd:FAP. In this case we found that one of Morrison's lattice-sum calculations provided us with a reasonable starting set of $B_{n m}$ parameters. ${ }^{27,35,36}$ This model involves the substitution of Nd^{3+} ions into $\mathrm{M}(\mathrm{I})$ sites, assuming that the charge compensation is sufficiently remote so that C_{3} symmetry is preserved. Maksimova and Sobol ${ }^{15,16}$ also describe a chargecompensation model of this type. Since we observe no fluorescence for this site on which to base our assignments, we chose the symmetry of the ground-state Stark level to be $\Gamma_{4,5}$ as predicted using the Morrison parameters. ${ }^{27}$ This choice is also consistent with the observed polarized absorption spectra using C_{3} symmetry selection rules. ${ }^{28}$ The results of these calculations are given in Table V for multiplet manifolds above ${ }^{4} I_{11 / 2}$ where the experimental energy levels can be drawn from Table I since no emission to the ${ }^{4} I_{9 / 2}$ and ${ }^{4} I_{11 / 2}$ manifolds was observed. Again, the most difficult Stark levels to identify are those with a high degree of J mixing. The ${ }^{4} F_{5 / 2},{ }^{2} H_{9 / 2}$ manifolds and the ${ }^{4} F_{7 / 2},{ }^{4} S_{3 / 2}$ manifolds represent the most difficult manifolds to analyze.

In Table VI we see that relatively small changes in the

TABLE V. Crystal-field splitting: Nd^{3+} ions in C_{3} sites in Nd:FAP.

${ }^{2 S+1} L_{J}{ }^{\text {a }}$	Level	$\begin{gathered} E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{b}} \\ (\mathrm{expt} .) \end{gathered}$	$\begin{gathered} \Gamma_{n}^{\mathrm{c}} \\ \text { (expt.) } \end{gathered}$	$\begin{gathered} E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{d}} \\ (\text { calc. }) \end{gathered}$	$\begin{gathered} \Gamma_{n}{ }^{\mathrm{d}} \\ \text { (calc.) } \end{gathered}$	Free-ion percent mixture
$\begin{aligned} & { }^{4} I_{9 / 2} \\ & (427) \end{aligned}$	1	0		0.2	4,5	$98.3{ }^{4} I_{9 / 2}+1.51{ }^{4} I_{11 / 2}+0.12{ }^{4} I_{13 / 2}$
	2	\cdots		270	6	$97.5{ }^{4} I_{9 / 2}+2.07{ }^{4} I_{11 / 2}+0.32{ }^{4} I_{13 / 2}$
	3	\ldots		356	4,5	$97.4{ }^{4} I_{9 / 2}+2.40{ }^{4} I_{11 / 2}+0.06{ }^{4} G_{5 / 2}$
	4	\cdots		547	4,5	$98.7{ }^{4} I_{9 / 2}+0.90{ }^{4} I_{11 / 2}+0.16{ }^{4} I_{13 / 2}$
	5	\cdots		675	6	$97.3{ }^{4} I_{9 / 2}+2.45{ }^{4} I_{11 / 2}+0.09{ }^{4} I_{13 / 2}$
$\begin{aligned} & { }^{4} I_{11 / 2} \\ & (2261) \end{aligned}$	6	...		2043	6	$96.4{ }^{4} I_{11 / 2}+2.20{ }^{4} I_{9 / 2}+1.29{ }^{4} I_{13 / 2}$
	7	\ldots		2133	4,5	$96.8{ }^{4} I_{11 / 2}+2.54{ }^{4} I_{9 / 2}+0.29{ }^{4} I_{13 / 2}$
	8	\cdots		2147	4,5	$95.2{ }^{4} I_{11 / 2}+2.38{ }^{4} I_{9 / 2}+2.25{ }^{4} I_{13 / 2}$
	9	\cdots		2348	4,5	$96.8{ }^{4} I_{11 / 2}+1.72{ }^{4} I_{9 / 2}+1.31{ }^{4} I_{13 / 2}$
	10	\cdots		2387	4,5	$98.9{ }^{4} I_{11 / 2}+0.40{ }^{4} I_{9 / 2}+0.33{ }^{4} I_{13 / 2}$
	11	\cdots		2395	6	$96.6{ }^{4} I_{11 / 2}+2.32{ }^{4} I_{9 / 2}+0.91{ }^{4} I_{13 / 2}$
$\begin{aligned} & { }^{4} I_{13 / 2} \\ & (4249) \end{aligned}$	12	3992	4,5	3989	4,5	$96.9{ }^{4} I_{13 / 2}+2.01{ }^{4} I_{11 / 2}+1.02{ }^{4} I_{15 / 2}$
	13	4061	6	4064	6	$96.2{ }^{4} I_{13 / 2}+1.95{ }^{4} I_{15 / 2}+1.49{ }^{4} I_{11 / 2}$
	14	4102	4,5	4099	4,5	$96.4{ }^{4} I_{13 / 2}+3.02{ }^{4} I_{15 / 2}+0.42{ }^{4} I_{11 / 2}$
	15	4350	4,5	4350	4,5	$97.9{ }^{4} I_{13 / 2}+1.02{ }^{4} I_{11 / 2}+0.74{ }^{4} I_{15 / 2}$
	16	4360	4,5	4365	4,5	$96.3{ }^{4} I_{13 / 2}+1.85{ }^{4} I_{15 / 2}+1.61{ }^{4} I_{15 / 2}$
	17	4372	6	4375	6	$97.9{ }^{4} I_{13 / 2}+1.07{ }^{4} I_{15 / 2}+0.67{ }^{4} I_{11 / 2}$
	18	4425	4,5	4417	4,5	$98.1{ }^{4} I_{13 / 2}+1.00{ }^{4} I_{11 / 2}+0.74{ }^{4} I_{15 / 2}$
$\begin{aligned} & { }^{4} I_{15 / 2} \\ & (6211) \end{aligned}$	19	5754	4,5	5752	4,5	$96.9{ }^{4} I_{15 / 2}+2.91{ }^{4} I_{13 / 2}+0.05{ }^{4} F_{9 / 2}$
	20	5898	4,5	5899	4,5	$98.5{ }^{4} I_{15 / 2}+1.18{ }^{4} I_{13 / 2}+0.22{ }^{4} I_{11 / 2}$
	21	6018	6	6014	6	$98.9{ }^{4} I_{15 / 2}+0.91{ }^{4} I_{13 / 2}+0.05{ }^{4} F_{9 / 2}$
	22	6235	4,5	6236	4,5	$98.5{ }^{4} I_{15 / 2}+1.17{ }^{4} I_{13 / 2}+0.11{ }^{4} I_{11 / 2}$
	23	6352	6	6358	6	$99.2{ }^{4} I_{15 / 2}+0.42{ }^{4} I_{13 / 2}+0.11^{4} F_{9 / 2}$
	24	6380	4,5	6376	4,5	$98.8{ }^{4} I_{15 / 2}+0.74{ }^{4} I_{13 / 2}+0.14{ }^{4} F_{9 / 2}$
	25	6543	4,5	6547	4,5	$98.5{ }^{4} I_{15 / 2}+1.11{ }^{4} I_{13 / 2}+0.10{ }^{4} F_{9 / 2}$
	26	6608	6	6605	6	$98.2{ }^{4} I_{15 / 2}+1.64{ }^{4} I_{13 / 2}+0.07{ }^{4} I_{11 / 2}$
$\begin{aligned} & { }^{4} F_{3 / 2} \\ & (11520) \end{aligned}$	27	11406	4,5	11399	4,5	$97.5{ }^{4} F_{3 / 2}+0.88{ }^{4} F_{3 / 2}+0.57{ }^{2} H_{9 / 2}$
	28	11539	6	11543	6	$93.9{ }^{4} F_{3 / 2}+3.88{ }^{4} F_{5 / 2}+1.17{ }^{4} F_{7 / 2}$
$\begin{aligned} & { }^{4} F_{5 / 2} \\ & (12536) \end{aligned}$	29	12364	4,5	12361	4,5	$85.8{ }^{4} F_{5 / 2}+11.7{ }^{2} H_{9 / 2}+1.19{ }^{4} F_{7 / 2}$
	30	12480	4,5	12483	4,5	$65.2{ }^{4} F_{5 / 2}+28.5{ }^{2} H_{9 / 2}+4.92{ }^{4} F_{7 / 2}$
	31	12546	6	12546	6	$86.3{ }^{2} H_{9 / 2}+11.1{ }^{4} F_{5 / 2}+1.12{ }^{4} F_{3 / 2}$
${ }^{2} H_{9 / 2}$	32	12622	4,5	12626	4,5	$70.5{ }^{2} H_{9 / 2}+28.0{ }^{4} F_{5 / 2}+0.74{ }^{4} F_{7 / 2}$
	33	12645	6	12644	6	$83.0{ }^{4} F_{5 / 2}+12.6{ }^{2} H_{9 / 2}+3.58{ }^{4} F_{3 / 2}$
(12 726)	34	12752	4,5	12759	4,5	$87.4{ }^{2} H_{9 / 2}+10.5{ }^{4} F_{5 / 2}+1.42{ }^{4} F_{7 / 2}$
	35	12860	6	12854	6	$98.7{ }^{2} H_{9 / 2}+0.69{ }^{4} F_{5 / 2}+0.23{ }^{4} F_{9 / 2}$
	36	12886	4,5	12891	4,5	$97.8{ }^{2} H_{9 / 2}+1.34{ }^{4} F_{7 / 2}+0.33{ }^{4} F_{5 / 2}$
$\begin{aligned} & { }^{4} F_{7 / 2} \\ & (13466) \end{aligned}$	37	13287	4,5	13280	4,5	$90.5{ }^{4} F_{7 / 2}+3.21{ }^{4} S_{3 / 2}+2.83{ }^{4} F_{5 / 2}$
	38	13320	4,5	13323	4,5	$94.8{ }^{4} S_{3 / 2}+3.93{ }^{4} F_{7 / 2}+0.44{ }^{4} G_{5 / 2}$
	39	13353	6	13351	6	$94.8{ }^{4} S_{3 / 2}+4.15{ }^{4} F_{7 / 2}+0.18{ }^{4} G_{5 / 2}$
${ }^{4} S_{3 / 2}$	40	13499	6	13504	6	$91.8{ }^{4} F_{7 / 2}+4.36{ }^{4} S_{3 / 2}+1.21{ }^{2} H_{9 / 2}$
	41	13514	4,5	13512	4,5	$95.2{ }^{4} F_{7 / 2}+2.44{ }^{4} F_{5 / 2}+1.03{ }^{4} F_{9 / 2}$
(13 346)	42	...	4,5	13610	4,5	$93.9{ }^{4} F_{7 / 2}+3.30{ }^{4} F_{9 / 2}+1.76{ }^{4} F_{5 / 2}$
${ }^{4} F_{9 / 2}$	43	14687	4,5	14687	4,5	$97.3{ }^{4} F_{9 / 2}+0.81{ }^{2} H_{11 / 2}+0.57{ }^{4} F_{7 / 2}$
	44	14755	4,5	14754	4,5	$95.1{ }^{4} F_{9 / 2}+3.55{ }^{4} F_{7 / 2}+0.64{ }^{2} H_{11 / 2}$
(14 797)	45	14763	6	14765	6	$98.0{ }^{4} F_{9 / 2}+0.79{ }^{4} F_{7 / 2}+0.37{ }^{4} F_{5 / 2}$
	46	14837	4,5	14833	4,5	$98.3{ }^{4} F_{9 / 2}+0.83{ }^{4} F_{7 / 2}+0.28{ }^{2} G_{7 / 2}$
	47	15058	6	15055	6	$99.2{ }^{4} F_{9 / 2}+0.23{ }^{2} G_{7 / 2}+0.21{ }^{2} H_{9 / 2}$
$\begin{aligned} & { }^{2} H_{11 / 2} \\ & (16101) \end{aligned}$	48	...	4,5	16051	4,5	$98.3{ }^{2} H_{11 / 2}+1.09{ }^{2} G_{7 / 2}+0.14{ }^{4} F_{7 / 2}$
	49	16067	6	16063	6	$98.9{ }^{2} H_{11 / 2}+0.76{ }^{2} G_{7 / 2}+0.10{ }^{4} F_{7 / 2}$
	50	16086	4,5	16092	4,5	$97.7{ }^{2} H_{11 / 2}+1.68{ }^{2} G_{7 / 2}+0.34{ }^{4} F_{9 / 2}$
	51	16119	6	16106	6	$98.8{ }^{2} H_{11 / 2}+0.39{ }^{2} G_{7 / 2}+0.39{ }^{4} F_{9 / 2}$
	52	16130	4,5	16134	4,5	$98.6{ }^{2} H_{11 / 2}+0.66{ }^{4} F_{9 / 2}+0.31{ }^{2} H_{9 / 2}$
	53	16165	4,5	16189	6	$99.2{ }^{2} H_{11 / 2}+0.37{ }^{4} F_{9 / 2}+0.29{ }^{2} G_{7 / 2}$
$\begin{aligned} & { }^{4} G_{5 / 2} \\ & (17291) \end{aligned}$	54	$\begin{aligned} & 17071 \\ & 17192 \\ & 17345 \end{aligned}$	4,5	17070	4,5	$83.1{ }^{4} G_{5 / 2}+15.3{ }^{2} G_{7 / 2}+0.38{ }^{4} S_{3 / 2}$
	55		4,5	17193	4,5	$75.7{ }^{4} G_{5 / 2}+23.3{ }^{2} G_{7 / 2}+0.42{ }^{2} H_{11 / 2}$
	56		6	17349	6	$67.8{ }^{2} G_{7 / 2}+30.5{ }^{4} G_{5 / 2}+0.84{ }^{2} H_{11 / 2}$

TABLE V. (Continued.)

${ }^{2 S+1} L_{J}{ }^{\mathrm{a}}$	Level	$E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{b}}$ $($ expt. $)$	$\Gamma_{n}{ }^{\mathrm{c}}$ $($ expt. $)$	$E\left(\mathrm{~cm}^{-1}\right)^{\mathrm{b}}$ (calc).	$\Gamma_{n}{ }^{\mathrm{d}}$ $($ calc. $)$	Free-ion percent mixture
${ }^{2} G_{7 / 2}$	57	17525	4,5	17528	4,5	$97.4^{2} G_{7 / 2}+1.02{ }^{2} H_{11 / 2}+0.97{ }^{4} G_{5 / 2}$
(17459)	58	17600	4,5	17596	4,5	$84.2{ }^{2} G_{7 / 2}+14.6{ }^{4} G_{5 / 2}+0.39{ }^{2} H_{11 / 2}$
	59	17661	4,5	17653	4,5	$74.3{ }^{2} G_{7 / 2}+23.5{ }^{4} G_{5 / 2}+1.11{ }^{2} H_{11 / 2}$
	60	\cdots	6	17681	6	$68.3{ }^{4} G_{5 / 2}+30.3{ }^{2} G_{7 / 2}+0.44{ }^{2} H_{11 / 2}$

${ }^{\text {a }}$ Multiplet manifold of $\mathrm{Nd}^{3+}\left(4 f^{3}\right)$; the centroid in parentheses is given in cm^{-1}.
${ }^{\mathrm{b}}$ Experimental levels taken from Table I.
${ }^{c}$ Assignments based on selection rules for C_{3} symmetry assuming the ground-state level is $\Gamma_{4,5}$.
${ }^{\mathrm{d}}$ Calculated splitting and predicted symmetry labels $\left(\Gamma_{4,5}\right.$ or $\left.\Gamma_{6}\right)$ based on $B_{n m}$ parameters reported in Table VI.
$B_{n m}$ parameters are necessary to obtain a final rms value of 6 cm^{-1} between 46 calculated and experimental levels. Overall agreement suggests that the lattice-sum model is appropriate for describing those Nd^{3+} ions in one of the nonfluorescing sites in Nd:FAP. We were not able to obtain sufficient data sets to articulate other sites. The fact that we observed no conclusive hot band data in absorption is not contradicted by the predicted splitting of ${ }^{4} I_{9 / 2}$. For Nd^{3+} ions that occupy this site, transitions from a Stark level $270 \mathrm{~cm}^{-1}$ above the ground state would very likely be too weak and broad to observe even at room temperature.

In conclusion, site-selective spectroscopy has permitted differentiation between Nd^{3+} ions in multiple sites in the fluorapatite crystals $\mathrm{Nd}: \mathrm{SFAP}$ and $\mathrm{Nd}: \mathrm{FAP}$. Attempts to refine the point-charge lattice-sum model are ongoing in hopes of obtaining improved understanding of the complex nature of charge compensation associated with heterovalent substitution of R^{3+} ions in crystals with the fluorapatite structure. ${ }^{24,27}$

TABLE VI. Crystal-field parameters for Nd^{3+} ions in C_{3} sites in Nd:FAP.

$B_{n m}$ parameter	Lattice sum $^{\mathrm{a}}$ $\left(\mathrm{cm}^{-1}\right)$	Final set $^{\mathrm{b}}$ $\left(\mathrm{cm}^{-1}\right)$
B_{20}	1247	1251
B_{40}	-2252	-2518
B_{43}	1016	605
B_{60}	-1176	-1237
$\operatorname{Re} B_{63}$	890	899
$I_{m} B_{63}$	-260	-126
$\operatorname{Re} B_{66}$	-117	-14.6
$I_{m} B_{66}$	356	474
$I_{2}(B)^{\mathrm{c}}$	1247	
$I_{4}(B)$	2671	
$I_{6}(B)$	1544	

[^0]
ACKNOWLEDGMENTS

The authors wish to thank Professor R. E. Peale (Department of Physics, University of Central Florida, Orlando, FL) for allowing us to compare our independent results with his, and Dr. B. Zandi (U.S. Army Research Laboratory, Ft. Belvoir, VA) for checking the results of our crystal-field splitting calculations.
${ }^{1}$ B. H. T. Chai, in Novel Laser Sources and Applications, edited by J. F. Becker, A. C. Tam, J. B. Gruber, and L. Lam (SPIE, Bellingham, WA, 1994), p. 5.
${ }^{2}$ J. B. Gruber, J. A. Hutchinson, D. C. Harris, M. D. Seltzer, T. H. Allik, C. A. Morrison, and M. P. Scripsick, in Materials Research Society Symposium Proceedings, edited by B. H. T. Chai, S. A. Payne, T. Y. Fan, and T. H. Allik (Materials Research Society, Pittsburgh, PA, 1994), Vol. 329, p. 209.
${ }^{3}$ L. D. De Loach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. QE-29, 1179 (1993).
${ }^{4}$ S. A. Payne, L. K. Smith, L. D. De Loach, W. L. Kway, J. B. Tassano, and W. F. Krupke, IEEE J. Quantum Electron. QE-31, 412 (1993); see also S. A. Payne, W. F. Krupke, L. K. Smith, L. D. De Loach, and W. L. Kway, in OSA Proceedings on Advanced Solid-State Lasers, edited by L. L. Chase and A. A. Pinto (Optical Society of America, Washington DC, 1992), Vol. 13, p. 227.
${ }^{5}$ R. E. Peale, P. L. Summers, H. Weidner, B. H. T. Chai, and C. A. Morrison, J. Appl. Phys. 77, 270 (1995).
${ }^{6}$ A. O. Wright, M. D. Seltzer, J. B. Gruber, and B. H. T. Chai, J. Appl. Phys. (to be published).
${ }^{7}$ A. O. Wright, M. D. Seltzer, J. B. Gruber, B. Zandi, L. D. Merkle, and B. H. T. Chai (unpublished).
${ }^{8}$ P. Hong, X. X. Zhang, R. E. Peale, H. Weidner, M. Bass, and B. H. T. Chai, J. Appl. Phys. 77, 294 (1995).
${ }^{9}$ L. D. De Loach, S. A. Payne, W. L. Kway, J. B. Tassano, S. N. Dixit, and W. F. Krupke, J. Lumin. 62, 85 (1994).
${ }^{10}$ T. H. Allik, J. B. Gruber, M. D. Seltzer, M. E. Hills, K. Spariosu, R. D. Stultz, M. Birnbaum, C. A. Morrison, B. H. T. Chai, J. A. Hutchinson, and L. D. Merkle, in OSA Proceedings on Advanced Solid-State Lasers, edited by L. L. Chase and A. A. Pinto (Optical Society of America, Washington DC, 1993), Vol. 15, p. 246.
${ }^{11}$ J. B. Gruber, M. D. Seltzer, M. E. Hills, T. H. Allik, J. A. Hutchinson, C. A. Morrison, and B. H. T. Chai, Opt. Mater. 3, 99 (1994).
${ }^{12}$ K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, Appl. Phys. Lett. 62, 2763 (1993).
${ }^{13}$ R. C. Ohlmann, K. B. Steinbruegge, and R. Mazelsky, Appl. Opt. 7, 905 (1968).
${ }^{14}$ R. Mazelsky, R. C. Ohlmann, and K. Steinbruegge, J. Electrochem. Soc. Solid State Sci. 115, 68 (1968).
${ }^{15}$ G. V. Maksimova and A. A. Sobol', Inorg. Mater. 8, 945 (1972).
${ }^{16}$ G. V. Maksimova and A. A. Sobol', Tr. Fiz. Inst. Akad. Nauk. 60, 55 (1972).
${ }^{17}$ K. B. Steinbruegge, T. Henningsin, R. H. Hopkins, R. Mazelsky, N. T. Melamed, E. P. Riedel, and G. W. Roland, Appl. Opt. 11, 999 (1972).
${ }^{18}$ F. M. Ryan, R. W. Warren, R. H. Hopkins, and J. Murphy, J. Electrochem. Soc. Solid State Sci. 125, 1493 (1978).
${ }^{19}$ J. B. Gruber, C. A. Morrison, D. C. Harris, M. D. Seltzer, T. H. Allik, J. A. Hutchinson, and M. P. Scripsick, J. Appl. Phys. 77, 4321 (1995).
${ }^{20}$ St. Naray-Szabo, Z. Kristallogr. 75, 387 (1930).
${ }^{21}$ R. W. Wyckoff, Cryst. Struct. 3, 228 (1965).
${ }^{22}$ J. M. Hughes, M. Cameron, and K. D. Crowley, Am. Mineral. 74, 870 (1989).
${ }^{23}$ M. E. Fleet and Y.-M. Pan, J. Solid State Chem. 112, 78 (1994).
${ }^{24}$ J. B. Gruber, Tunable Lasers for Engineering and Biological Applications (SPIE, Bellingham, WA, 1992).
${ }^{25}$ G. V. Maksimova and A. A. Sobol', Proc. P. N. Lebedev Phys. Inst. 60, 59 (1974).
${ }^{26}$ M. Greenblatt and J. H. Pifer, J. Chem. Phys. 66, 559 (1977).
${ }^{27}$ C. A. Morrison, Army Research Laboratory, Report ARL-TR-708, Adelphi, MD, April, 1995.
${ }^{28}$ H. A. Bethe, Ann. Phys. (Leipzig) 3, 133 (1929).
${ }^{29}$ J. L. Prather, Atomic Energy Levels in Crystals, NBS Monograph 19 (U.S. Department of Commerce, National Bureau of Standards, Washington DC, 1961).
${ }^{30}$ W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem Phys. 49, 4412 (1968); 49, 4424 (1968); 49, 4443 (1968); 49, 4447 (1968); 49, 4450 (1968).
${ }^{31}$ C. A. Morrison and R. P. Leavitt, J. Chem. Phys. 71, 2366 (1979).
${ }^{32}$ N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, J. Chem. Phys. 76, 3877 (1982).
${ }^{33}$ J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, J. Chem. Phys. 82, 5373 (1985).
${ }^{34}$ C. A. Morrison and R. P. Leavitt, in Handbook of the Physics and Chemistry of Rare Earths, edited by K. Gschneidner, Jr., and L. Eyring (NorthHolland, New York, 1982), Vol. 5, p. 461.
${ }^{35}$ R. P. Leavitt, C. A. Morrison, and D. E. Wortman, Three Parameter Theory of Crystal Fields, HDL-TR-1673 (June 1975); NTIS No. ADA017849 (U.S. Army Research Laboratory, Adelphi, MD, 1975).
${ }^{36}$ C. A. Morrison, Angular Momentum Theory Applied to Interactions in Solids, Lecture Notes in Chemistry, No. 47 (Springer, New York, 1988); a discussion on the reduction of the number of independent $B_{n m}$ by rotation is given on pp. 86-87.

[^0]: ${ }^{\text {a }}$ Charge on oxygen taken as -1.8 , phosphorus +4.2 , in electron charge units; x-ray crystallography data taken from Ref. 22 for symmetry properties and bond distances; for details regarding calculations see Ref. 35.
 ${ }^{\mathrm{b}}$ Since fluorescence is not observed, fitting analysis involved 14 multiplet manifolds higher in energy than the ${ }^{4} I_{9 / 2}$ and ${ }^{4} I_{11 / 2}$; original estimates for the centroids of ${ }^{4} I_{9 / 2}$ and ${ }^{4} I_{11 / 2}$ were taken from Table III.
 ${ }^{\mathrm{c}}$ Rotational invariants, $I_{n}(B)$, are in units of cm^{-1} (Ref. 31).

