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Nitrides ~such as BN and TiN! are widely used in various industrial applications because of their
excellent wear and corrosion resistance and their thermal and electronic properties. The structural
and chemical features formed during plasma vapor deposition of Ti/TiN on BN substrates have been
studied using synchrotron radiation near edge absorption spectroscopy~NEXAFS!. Various phases
of interest have been formed with different annealing temperatures. Diffusion of the nitridation and
the interference from oxidation~e.g., TiO2! and boride formation are of particular concern. X-ray
photoelectron spectroscopy and secondary ion mass spectroscopy measurements complement our
NEXAFS data. Phase formation and chemical bonding between the coating and the substrate are
shown to be determining factors for the microhardness. ©1998 American Vacuum Society.
@S0734-2101~98!55703-X#

I. INTRODUCTION

The manufacturing of wear and corrosion resistant thin
film coatings is an important area of modern technology.
Many of these films also exhibit improved hardness and bet-
ter electrical conductivity. Cubic boron nitride (c-BN), simi-
lar to diamond in structure, is thermodynamically stable un-
der high pressure and temperature.1 The incorporation of a
transition metal~Ti! into the BN system introduces metallic
bonding which may increase better adhesion between the
coating and the substrate thus enhancing the wear properties
of these metal nitrides. The potential applications of these
nitrides vary from a high temperature, a radiation hard semi-
conductor or an efficient heat-dissipating semiconductor sub-
strate to its use in optics, cutting tools, and protective
coatings.2–5

Various researchers have adopted plasma vapor deposi-
tion ~PVD! and chemical vapor deposition~CVD! techniques
for processing Ti–B–N composite coatings.5–12 The Ti–
B–N phase diagram~Fig. 1! gives the composition for a

particular stoichiometry at thermodynamic equilibrium.13

However coatings deposited by the PVD technique are con-
sidered to be in a nonequilibrium state due to the high
quenching rates occurring during the deposition process.14

Some of the important physicochemical properties of these
thin films are due to the formation of various phases such as
TiN, TiNx , TiB2, BN, and TiBxNy .13 These multiphase
compounds provide improved hardness, wear resistance, and
toughness compared to that of single-phase materials. Sev-
eral spectroscopic techniques, such as Auger electron spec-
troscopy ~AES!, x-ray photoelectron spectroscopy~XPS!,
and cross-sectional transmission electron microscopy
~XTEM! combined with electron energy loss spectroscopy
~EELS! have been used to characterize the surfaces and in-
terfaces of metal nitrides.15,16 It is apparent from these stud-
ies that the nature of any adhesion is strongly related to the
extent of any physicochemical interactions that occur at the
interfaces,17 but information is often incomplete or conflict-
ing from the point of view of material characterization and
composition. The influence of postdeposition annealing on
the chemical and microstructural properties of these films is
also relatively unexplored. For example, in the cutting tool
industry TiN coated cutting tools subjected to harsh and ag-

a!Present address: Advanced Materials Processing and Analysis Center, and
Mechanical, Materials, and Aerospace Engineering Department, University
of Central Florida, Orlando, Florida 32816; electronic mail:
sseal@pegasus.cc.ucf.edu
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gressive tribological environments normally reaching high
temperatures due to frictional heating. Recently we have
demonstrated that the core-level x-ray photoelectron spec-
troscopy can be used to characterize the bonding and struc-
ture of the Ti coated BN substrate.18 In this study, we take
advantage of the local sensivity of core level photoabsorp-
tion spectroscopy to identify the presence and formation of
various Ti and B containing phases related to TiN film
growth on BN substrates and to address some questions con-
cerning the bonding structure of ternary Ti–B–N systems.
These phases are obtained by different annealing treatments
of Ti/TiN coated BN thin films. In addition, supporting data
have been obtained from XPS, secondary ion mass spectrom-
etry ~SIMS!, and microhardness measurements to further in-
vestigate the phase formation and changes in the mechanical
properties resulting from thermal treatment.

II. EXPERIMENT

A. Materials and methods

In this study the substrate materials were BN disks. The
disks were 6 mm in diameter and 3 mm in height. The
chemical composition of thec-BN was found by XPS to be
C-0.04, Fe-0.002, Mg-0.004, Al-0.002, Si-0.02, and Ca-0.05
with the balance being BN with 1:1 at. % and oxides.

Prior to the Ti/TiN deposition, the chamber was evacu-
ated and the BN substrates were ionically cleaned and heated
in the range of 200–650 °C. Ti and TiN films were grown by
the arc-plasma vapor deposition method: evaporation of pure
Ti into the argon plasma~Ti coating! and reactive N2 gas
~99.99 purity! ~TiN coating! at a chamber pressure of 0.001
and 0.01 Pa, respectively. Following the coating deposition,
a few of the coated specimens were subjected to postdeposi-

tion annealing in a quartz tube at 1000 and 1400 °C for 2 h in
a vacuum furnace.

B. Material characterization methods

1. X-ray photoelectron spectroscopy

The surface chemistry and composition of the deposited
layer and the resulting interfaces were studied using a
Hewlett-Packard~HP! 5950A x-ray photoelectron spectrom-
eter with an Al Ka ~1476 eV! anode. General calibration
produced a binding energy scale specified by Au (4f 7/2)
583.9860.05 at a linewidth of,1.0 eV. The charging
shifts produced by the insulating samples were removed by a
combination of charge neutralizer adjustments and fixing the
C (1s) binding energy of the hydrocarbon part of the adven-
titious carbon line at 284.6 eV.19 Surface oxides were re-
moved by Ar ion sputter etching at 2 keV. Curve fitting of
the data was performed by Shirley background subtraction,
using a nonlinear least square curve fitting method with a
Gaussian/Lorentzian function.20 The photoelectron peaks for
Ti (2p), B (1s), O (1s), and N (1s) of the deposited layers
~Ti/TiN on BN! were examined to characterize the chemical
interactions in theB–N–Ti systems.

2. Near edge x-ray absorption spectroscopy

Soft x-ray absorption spectroscopy offers a unique oppor-
tunity to directly measure the site-selective energy distribu-
tion of the unoccupied ‘‘d’ ’ states of these compounds. X-
ray absorption and emission are generally considered to be
independent of the excitation process producing a core hole.
Near edge x-ray absorption fine structure~NEXAFS!
spectro-
scopy21 has been used to study the bonding characteristics of
the surfaces of various nitrides.22 NEXAFS measurements
were carried out at beamline 6.3.2@equipped with a
Hettrick–Underwood type varied line space~VLS! grating
monochromator#,23,24 at the Advanced Light Source of
Lawrence Berkeley National Laboratory in the range of 50–
1000 eV. The resolving power of the monochromator,E/dE,
at theL2,3 edge of S is about 1700, and at the transition metal
L2,3 edges of Mn through Ni it is between 1000 and 1500.
This energy resolution was sufficient to distinguish the fine
changes in the spectra as a function of transition metal con-
tent. The B 1s ~K edge!, N 1s ~K edge! and Ti 2p ~L edge!
photoabsorption spectra of the selected thin films were em-
ployed and the standards reported in this article were ob-
tained by step scanning the monochromator and measuring
the total electron yield~photoelectrons, Auger, and second-
ary electrons! from the sample in an ultrahigh vacuum
~UHV! chamber. The incoming radiation intensity (I 0) was
measured by the photocurrent generated by the gold mesh
positioned immediately in front of the sample. In the high
energy region no structure in theI 0 was found. In the total
electron yield mode, the measured core level photoabsorp-
tion spectra provide an immediate depth sensitivity, with an
electron escape depth of about 60 Å compared to the 5–30 Å
of the photoemission process.

FIG. 1. Phase diagram of Ti–B–N ~Ref. 13!. Numbers circled are 1:
TiB21TiN1BN, 2: TiB21B1BN, 3: TiN12x1TiB2, and 4:
TiB1TiB21TiN12x .

1902 Seal et al. : Effect of temperature on Ti and TiN films 1902

J. Vac. Sci. Technol. A, Vol. 16, No. 3, May/Jun 1998



3. Secondary ion mass spectrometry

To analyze the chemical state of the near surface structure
of the deposited thin films, an alternating sputtering tech-
nique was employed. The elemental and phase distributions
of the surface coating were evaluated by a VG secondary ion
mass spectrometry~VG 12-2S Ionex MR3020 quadropole
SIMS!. The primary ion source was a dual plasmatron oxy-
gen ion source with an accelerating voltage of 6 keV and a
current of 10–50 nA. The thickness of the as deposited thin
films evaluated by SIMS was approximately 1mm.

4. Mechanical properties

The Vickers hardness (Hv) of the samples was measured
with a Tukon hardness tester~from the laboratory of the
Center of Research and Education in Optics and Lasers, Uni-
versity of Central Florida! under a load of 1 kg. The micro-
hardness values are calculated using the following equation:

Hv5~2L sin~a/2!/d2!, ~1!

whereL is the load~in kg!, d ~mm! is the measured length of
the diagonal, anda is the angle of indentation~135°!. The
penetration depth of the indentor was about 1/10 of the di-
agonal. For maximum hardness the indentor’s depth was
chosen at about 1/15 of the films thickness, so that the cal-
culated value was a true measurement of the coating hard-
ness.

III. RESULTS AND DISCUSSIONS

A. X-ray photoelectron spectroscopy

XPS was employed to investigate the chemical states of
the Ti–B–N systems at 1000 and 1400 °C for 2 h, respec-
tively. The XPS spectra of Ti–BN~1000 °C for 2 h! revealed
the expected presence of TiO2 @Ti (2p)BE;459 eV# on the
surface due to preferential air induced oxidation of the Ti.
Neither boron~B! or nitrogen~N! was found on the surface.
After heat treating the same film to 1400 °C for 2 h, the XPS
@Ti (2p), N (1s), B (1s), O (1s)# spectra exhibited a num-
ber of distinct phases, such as TiB2 @B (1s)BE 187.5 eV#,
TiN @Ti (2p)BE;455.5 eV: N (1s)BE5397.7 eV#,25 and BN
@B (1s)BE;190.4 eV#, plus perhaps some oxynitrides,26,27as
well as the expected oxides of B and Ti. This suggests that at
higher temperatures B and N species have diffused toward
the surface and have reacted with Ti, forming TiN and TiB2

compounds. These species improve the hardness, wear, and
corrosion resistance. It also forms B2O3 with O2 @B (1s)BE

5192.4– 193.1 eV#. The presence of a contribution at 399.13
eV in the N (1s) spectrum suggests that an oxynitride26 is
also present in the air-oxidized layer. Also, at 1400 °C we
observe a phase separation in the TiN1BN samples forming
the nonstoichiometric TiNx ~N/Ti.1 and different bonding
due to the excess nitrogen@N (1s)BE5396.2 eV at 1400 °C#.
The fraction of nonstoichiometrically bonded N atoms to Ti
may be one of the principal tribological factors for determin-
ing film quality.28 The presence of the TiB2 phase was not
found in this system. An increase in surface C—O and CvO

type species in the 1400 °C treated Ti1BN system suggests
an increase in surface oxidation compared to the 1000 °C
heat treated Ti1BN sample.

B. Near edge x-ray absorption fine structure
spectroscopy

For further confirmation of various phase formations~as
detected by XPS! we have measured the boron, titanium, and
nitrogen core photoabsorption spectra. The resonances in the
NEXAFS measurements21 are interpreted as transitions from
bound, localized core levels with discrete angular momen-
tum transition to their continum states.

Figure 2 shows the BK x-ray absorption~NEXAFS!
spectra of pure TiB2 and B2O3 powders. These measure-
ments are necessary to understand the complex Ti–B–N sys-
tem. The absorption spectra of B2O3 and TiB2 exhibit promi-
nent sharp peaks at 193.5 and 194 eV, respectively, and are
consistent with that in the literature.29 These peaks are asso-
ciated with pp* resonance states. In the case of TiB2 we
observe a slight shift in energy for the sharp feature at 194.0
eV in their absorption spectra. In the case ofc-BN spectra
~not shown! with sp3 bonding like diamond, the absorption
edge of boron appears to be at 193.9 eV~not a sharp reso-
nance! corresponding to the transition from the B (1s) core

FIG. 2. B K x-ray absorption edge spectra of~i! TiB2 and~ii ! B2O3 powder.
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level to as* state in the conduction band. We also measured
another sharp peak at 191.8 eV that indicated thep* peak of
the h-BN phases~sp2 bonding! present in our sample. Thus,
our BN substrate indicates the presence of a mixture ofsp2

andsp3 bonding.
Figure 3 shows the TiL2,3 absorption edge of clean TiN

and TiB2 powders. From these spectra one can observe the
unique atomic 3d states because they retain some localized
character upon forming solids. All these TiL2,3 edges dis-
play a two group structure which corresponds to the transi-
tions of 2p3/2– 3d and 2p1/2– 3d.

Figure 4~i! illustrates the BK absorption edge of a Ti/TiN
coated~by PVD! BN substrate heated at 1400 °C for 2 h. No
significant feature in the B 1s NEXAFS spectra region was
found to be present in the TiN/BN system@Fig. 4~ii !#. In the
Ti/BN system, prominentp* features at 194 and 191.7 eV
indicate the presence of TiB2 and BN phases in this compos-
ite system. A similar presence of TiB2 was observed in the
corresponding XPS spectra. Thes* absorption now appears
at 199.5 eV. The most stable phase of BN is the hexagonal
one, the transition temperature from cubic to hexagonal be-
ing about 1820 K.30 Since our annealing temperatures were
1000 and 1400 °C, no changes have taken place in thesp3

BN phase which is present with thesp2 BN phase at around
194 eV.~Note the broadening of the peak at 194 eV.! In the
1000 °C treated Ti/TiN coated BN, the presence of BN and
TiB2 was not observed, as also found from the XPS data.

Figure 5 shows the Ti2,3 L and NK absorption edges of a
heat treated~1400 °C, 2 h! Ti/TiN thin film grown on a BN
substrate. In the TiN/BN system, the prominent features at
459.3 and 457.6 eV indicate the formation of TiO2 ~suggest-

ing surface oxidation! and TiN phases. The peak structure at
459.5 eV in the curve of Fig. 5~ii ! shows the formation of the
TiB2 phase as was also suggested by our BK absorption
edge and our previous XPS measurements. At this annealing

FIG. 3. Ti L2,3 x-ray absorption edge spectra of~i! TiN and~ii ! TiB2 powder. FIG. 4. B K absorption edges of~i! Ti/BN and ~ii ! TiN/BN annealed at
1400 °C for 2 h.

FIG. 5. Ti L2,3 and N K absorption edges of~i! TiN/BN and ~ii ! Ti/BN
annealed at 1400 °C for 2 h.
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temperature, the corresponding N 1s absorption edge shows
the nitrogen enrichment in the TiN films@Fig. 5~i!# compared
to Ti films on the BN substrate. Also, several features at the
N 1s edge were found in curve~i! but are absent in curve
~ii !. In curve ~i! two new peaks at 397.5 and 399.8 eV are
attributed to the formation of stoichiometric and nonstoichio-
metric TiN. At higher annealing temperatures a phase sepa-
ration was also observed from our XPS studies. In addition,
microcracks were observed in the TiN films annealed at
1400 °C. Thus at higher temperatures B and N have diffused
to the outer surface to form borides and nitrides in the Ti/BN
system. In the case of 1000 °C treatment no boride was
found in the Ti/BN system. The presence of extensive sur-
face oxides was evident from both the NEXAFS and XPS
spectra~not shown!.

C. Secondary ion mass spectrometry

From our XPS and NEXAFS studies it was evident that
1000 °C treated Ti/BN does not exhibit the presence of
borides and nitrides on the deposited thin film surfaces.
SIMS, an extremely surface sensitive technique~it probes
5–10 Å of the outermost surface!, was performed to examine
the phase formation in the Ti/BN system. Figure 6~i! indi-
cates the presence of surface oxides and small amounts of
various nitrides and borides on the surface of Ti coated BN
that were not detected in our previous measurements. After
sputtering for 30 min, Fig. 6~ii ! indicates the removal of the
outer surface titanium oxides and oxynitride; further, the in-
tensity of the Ti–B type species intensifies. This clearly in-
dicates the formation of titanium borides in the inner layer of
the coating; this was also evident from our earlier XPS depth
profile results.31 We believe that the observed titanium
boride formation at intermediate Ti is likely due to the pres-
ence of excess elemental boron in the film once all the N
atoms are bonded to Ti, forming TiN.

D. Microhardness of the composite films

A Tukon hardness tester measured the microhardness of
the deposited thin films to correlate the mechanical proper-
ties of the deposited thin films to the corresponding surface
chemistry. In general, the thin film hardness is affected by
the mechanical properties of the underlying substrate. Both
BN and Ti have a lower hardness than TiB2 and TiN. It
should be noted that the Ti/BN system achieves higher hard-
ness ~Hv 3500! after annealing at 1400 rather than at
1000 °C~see Table I!. An increase in temperature promotes
the nucleation and growth of hardness and wear resistant
phases like those in TiB2 and TiN. This seems to appear in
the form of nanostructures. This is consistent with our earlier
XPS, NEXAFS, and SIMS data. Of course, we do not ex-
clude the presence of mixed Ti–B–N phases of various sto-
ichiometries as is evident from our earlier XPS studies.18 The
hardness values in the TiN/BN system treated at 1000 and
1400 °C are considerably lower than that of the 1400 °C
treated Ti/BN. In this system, only TiN was found to be
present and the hardness values~Table I! are comparable to
pure TiN ~Hv 2000!. TiN/BN annealed at 1400 °C exhibits a
lower hardness value ofHv 1500 compared to the one an-
nealed at 1000 °C. The decrease in hardness at higher tem-

FIG. 6. SIMS spectra of Ti/BN annealed at 1000 °C,~i! control and~ii ! after
sputtering.

TABLE I. Microhardness measurements of Ti–B–N systems.

Sample

Ti1BN TiN1BN Individual substrate

Annealed at
1000 °C

Annealed at
1400 °C

Annealed at
1000 °C

Annealed at
1400 °C Ti BN TiN TiB2

Hardness
HV

750 4200 1975 1500 650 — 2050 4010

1905 Seal et al. : Effect of temperature on Ti and TiN films 1905

JVST A - Vacuum, Surfaces, and Films



perature in the TiN/BN system can be understood as due to
the presence of nonstoichiometric TiNx along with stoichio-
metric TiN ~observed from XPS measurements!. The film
annealed at 1400 °C showed microcracks due to internal
stress during phase separation. This suggests that the coat-
ings with the best tribological properties contained the small-
est fraction of excess nitrogen bonds with titanium.32,33Also,
the films with maximum hardness contain a minimum of
TiNx and oxynitrides as is evident from the XPS studies.
This provides useful information for surface coating and
modification of cutting tools.

IV. CONCLUSION

Physical and chemical properties of Ti/TiN films on BN
substrates deposited by PVD have been studied. Distinct cor-
relations between surface chemistry and mechanical proper-
ties ~microhardness! of these thin films were observed.
Higher annealing temperature treatment of Ti/BN revealed
~by XPS! the formation of a TiB2 phase and a phase separa-
tion of TiN in the TiN/BN system. The sensitivity of NEX-
AFS spectroscopy is used to better understand the chemistry
and morphological changes occurring during the thermal
treatment of these nitride surfaces. NEXAFS measurements
provide a clear spectroscopic signature of TiB2 and TiN for-
mation and the presence ofsp2 and sp3 phases in the BN
substrate. An increase in the postdeposition annealed tem-
perature increases the hardness of Ti1BN to a maximum of
Hv 4200. But the hardness in TiN/BN under the same an-
nealing conditions was found to decrease due to the forma-
tion of nonstoichiometric TiN.
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