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Density matrix for an ideal driven current cylinder

O. Heinonen and M.D. Johnson
Department of Physics, University of Central Florida, Orlando, Florida 32816-2385
(Received 18 October 1993)

We consider an ideal mesoscopic cylinder in which a steady azimuthal current is generated.
We show that the closed interacting-electron system in the presence of the current is described by
a density matrix which is that of an equilibrium system without current but with a constrained

Hamiltonian.

Two recent papers present new approaches to nonequi-
librium steady-state systems. The important common
point made in both papers is that steady-state meso-
scopic systems can be described by a density matrix
which has the form of an equilibrium density matrix,
but with a constrained Hamiltonian. In the first paper,
Hershfield! demonstrated that the density matrix p of
a steady-state nonequilibrium quantum system has the
general form

p=ePBT) (1)
where H is the Hamiltonian, 3 is the inverse temperature
(we will use units in whichkg =hi=e=m.=1),andY
is an operator which depends on how the system is driven
out of equilibrium. This operator is defined implicitly in
terms of a nontrivial infinite set of differential equations.
In the other paper (Ref. 2, hereafter referred to as HJ),
we formulated an approach to steady-state mesoscopic
transport based on the maximum entropy principle of
nonequilibrium statistical mechanics.® Using the maxi-
mum entropy principle, we derived the following density
matrix for a multiterminal steady-state mesoscopic sys-
tem:

p = exp [—ﬂ (ﬁ - ;LN - Zfoja)} s (2)

where fu is the current incoming from terminal a and the
Lagrangian multipliers &, are adjusted to give the applied
source-drain current and zero current at all other termi-
nals. This density matrix, like that in Eq. (1), has the
form of an equilibrium density matrix of a constrained
Hamiltonian. It can also be argued on general grounds
using Galilean invariance that distributions of the form
obtained from Eq. (2) can be expected in an infinitely
long ideal mesoscopic wire.*

One important point to be noted is that the single-
particle distributions obtained in HJ (see also Ref. 5)
differ, even when linearized with respect to the currents,
from the local-equilibrium distributions typically used in
the Landauer-Biittiker® formalism of mesoscopic trans-
port. In the linear-response regime, one would not ex-
pect that measurements of, for example, conductivity di-
rectly probe the electron distributions, since it can in the
linear-response approximation be expressed as the trace
over the equilibrium density matrix and two-point cor-

0163-1829/94/49(19)/13740(4)/$06.00 49

relation functions. However, experiments conducted be-
yond the linear-response regime should be sensitive to the
nonequilibrium steady-state electron distributions. This
should be the case for precision measurements of the inte-
ger quantum Hall effect, where the measured Hall voltage
exceeds 16hw./e, with w. the cyclotron frequency. We
demonstrated in HJ that a transport theory based on
Eq. (2) can explain the quantization of the integer quan-
tum Hall effect at such large, but experimentally typical,
currents, while the Landauer-Biittiker formalism fails to
do so.

In deriving the density matrix Eq. (2) using the maxi-
mum entropy principle, it was necessary to make assump-
tions about which are the relevant observables, the ex-
pectation values of which are taken to be known. While
this is a standard procedure of the maximum entropy
approach to statistical mechanics, it is also the source of
some controversy about this approach, since no unam-
biguous procedure for choosing the observables exists.”
It is therefore desirable to inquire whether such steady-
state distributions in mesoscopic systems can be obtained
by other means. The purpose of the present paper is to
present one such example. We will show by an explicit
calculation that the exact density matrix in the presence
of a steady current is precisely that of HJ for a simple
specific case: a closed system of interacting (spinless)
electrons in an ideal, mesoscopic, two-dimensional cylin-
der. Here we obtain this result by considerations of equi-
librium thermodynamics in a rotating reference frame,
plus adiabatic switching on, without appeal to the maxi-
mum entropy principle. By an ideal system we mean that
there are no elastic or inelastic scattering processes other
than those resulting from electron-electron interactions.
A current is generated in the electron system by adiabat-
ically threading the cylinder with an integral number of
flux quanta. In this case, there is then a one-to-one cor-
respondence between the many-body eigenstates in the
presence and in the absence of the current. This allows
us to demonstrate that the density matrix in the pres-
ence of the current can be directly related to the density
matrix in the absence of current and has the form of an
equilibrium density matrix with a constrained Hamilto-
nian. While we draw no conclusions about open systems
here, we provide an explicit example of a system which
by an independent calculation proves to be described by
the density matrix obtained by HJ.

While the system studied here resembles those con-
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sidered in investigations of persistent currents® in meso-
scopic rings, there are important differences. In those
investigations the current as a function of an applied dc
magnetic flux is typically calculated for a non-interacting
system in the presence of elastic scatterers. (The role of
interactions in the presence of disorder is complicated and
unclear.?) Great care has to be taken to ensemble-average
correctly and to account correctly for the magnetic field
penetrating the ring itself in an experiment. Also, in the
presence of scatterers which break the rotational invari-
ance there is no adiabatic curve crossing as the magnetic
flux is increased adiabatically. Here we are considering a
closed impurity-free interacting electron system and the
flux is used only as a devicel® to generate the electric field
and the resulting current. Our ultimate goal is to obtain
the exact density matrix in the presence of a steady cur-
rent.

We take the system to be a two-dimensional interact-
ing electron gas confined to a cylindrical shell of radius R.
Positions on the shell are described by cylindrical coordi-
nates (r,6,z), with r = R. A uniform azimuthal electric
field E6 is generated by piercing the bore of the cylinder
with adiabatically increasing magnetic flux. The electric
field is described by a time-dependent vector potential

A(r,05) = 5 (2), 3)

where ®f is the magnetic flux piercing the cylinder’s
bore. The monotonically non-decreasing function f(t)
describes the adiabatic turning on of the vector poten-
tial, with f(t & —o0) = 0 and f(t =& o) = 1. We will
assume that & = p®, with p an integer and ®¢ = 27c the
flux quantum, so that the cylinder contains an integral
number of flux quanta as ¢ — co. From

10A
c ot (4)
the electric field then vanishes for ¢ — +oo but is finite
during the time that f is changing. This finite electric
field sets up an azimuthal current which persists as the
electric field vanishes, since the system is dissipationless.
With the vector potential given by Eq. (3), the first-
quantized many-body Hamiltonian is

H= Z s [—— + 25 [Le +PF ()]

+ZV (2:) + ZV(T,,) (5)

t#J

where the sums are over the N particles of the sys-
tem, V.(z) is a confining potential, r;; = |r; — ryl,
and V(r) is the electron-electron interaction. Note
that L,; = —:9/90; is the canonical angular momen-
tum operator, which is independent of A. The eigen-
states of H are given by N-particle wave functions ¥ =
W(21601,2202,...,2N0N). To proceed, we second-quantize
the Hamiltonian Eq. (5) using the field operators

$(2,0) =Y cmntmn(2,6) , (6)

m,n
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where the single-particle wave functions Ymn(z,0) =
L_cimb4 .(z) (normalized to give probability per unit

2nR
area) satisfy

[_2;' +Vc(z)] Ymn(2,0) = €mn¥mn(2,0). (7)

Here n is a subband index and m an angular momentum
index. The second-quantized Hamiltonian is

H Zemncmn mn Z [pf(t

t T
+§ E Viiny,na,ms,maCm ny Cm'—k,ny

m,m! k
ni,n2,n3,n4

xc c (8)

m',ng m—k,ng’

+2mpf(t) ;
m*Rg CrmnCmn

with Vi.n, np,ns,n, the matrix elements of the particle in-
teraction. The total angular momentum operator L, =

> L. becomes

L. = mchnCon: (9)
m,n

The azimuthal current density operator is 3'9(2, 0) =

%[12’1‘09’(;’ + (vgzz))lev], where vg = 2-111172([" + pf) is the
speed in the azimuthal direction. This can be written

1 !
= rm*R2 Z [m_—;- = + Pf(t)]

m,m' n,n’

30(219)

xe~{m=m0gs (N i(2)chnCin.  (10)

We also introduce an azimuthal current operator I by
integrating jg(z,0) over z and averaging over #, which
yields

2nm* R?

I= 1 Z[m +pf(t)]c1nncmn. (11)

It is straightforward to show that H, I, L,, and the
number operator N = S n €l nCmn all commute, so we

choose a basis in which a.ll are diagonal. In fact,

2wrm* R2 (

so a basis diagonal in L,and N is automatically diagonal
in I, and the eigenvalues I and M of I and L, are simply
related

Let us consider next the adiabatic evolution of some
N-electron wave function ¥. Suppose that ¥ is an eigen-
state of Hy = H(f = 0) with energy E and total angular
momentum M. From Eq. (5), the Hamiltonian in the
presence of the flux tube can be written

H=H+

pf 1
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As long as the field is switched on adiabatically (i.e.,
df /dt is much smaller than electron-electron scattering
rates), ¥ remains an eigenstate of H when f # 0. Al-
though its (canonical) total angular momentum is un-
changed, its energy and current change with f. Since
p is an integer, the vector potential as f — 1 can be
removed by a unitary gauge transformation:

T = exp (ipZGi‘Il) ,

(14)
H= exp <ipZt9,<) H exp (—ipZ&i) = H,.

The transformed state ¥ has total angular momentum
M + pN and is an eigenstate of Hy. Thus the spectrum
of the Hamiltonian for ¢ — oo is identical to the spec-
trum for t - —oo. In addition, when f = 1 the energy
and current of a state with angular momentum M are
precisely those of an eigenstate of Hy with angular mo-
mentum M + pN. It is clear from this and Eq. (13) that
as f grows from 0 to 1 the subset of the spectrum consist-
ing of eigenvalues of states with angular momentum M
evolves to the subset of eigenvalues of eigenstates of Hy
with angular momentum M + pN. This occurs with no
level crossings between states in this subspace (although
crossings occur between states with different M).

In particular, suppose we start at ¢ — —oo with the
system in the interacting ground state (with M = 0)
and adiabatically turn on the vector potential. Then at
t — oo the system’s energy and current will be that of
the lowest-energy eigenstate of Hy with angular momen-
tum pN. Thus the final energy and current are obtained
by finding the lowest-energy eigenstate of Hy in the sub-
space with (L,) = pN. In other words, the final state
when a current has been turned on can be found by ex-
tremizing Hp subject to the constraint that (L,) = pN.
Using Eq. (12), we can instead constrain the current to
be (Io) = pN/2wm*R? (where I, is the current operator
with f = 0). In practice, a convenient way to satisfy the
constraint is to introduce a Langrangian multiplier and
to look for stationary states of

H, — ¢, (15)

where ¢ is chosen so that Iy has the required eigenvalue.
We next turn to finite temperatures and consider a
system initially in contact with a particle reservoir, which
maintains the average number of particles at N, and in
thermal contact with a heat reservoir at temperature 7T'.
Initially (¢ & —oo) the density matrix is
po = e—ﬁ(Ho—uoN)7 (16)
and the system has zero average current (fO)T =
l‘r(foﬁo)/T&'(ﬁo) = 0. We then insulate the system ther-
mally from the heat reservoir and adiabatically turn on
the vector potential while keeping the average number N
fixed. There are two ways to understand what then hap-
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pens. First, notice that when the system is isolated ther-
mally each subspace of states with a given total angular
momentum M becomes a separate subsystem. Although
electron-electron interactions could cause reequilibration
within a subset, these interactions conserve total angular
momentum and so cannot, e.g., transfer energy from one
angular momentum subspace to another. Moreover, as
explained above, the energy of each state in a given sub-
set changes by exactly the same amount when f varies
[see Eq. (13)]. That is, the spacings in energy between
the states in each subspace remain constant and conse-
quently the occupancies of these states will not change.
Then the occupancy of a state at ¢ — oo is given pre-
cisely by its initial occupancy at ¢ — —oo. Consider
an N-electron state with initial energy E and angular
momentum M. Initially the occupancy of this state is
e BE=pmoN) At t — oo, this energy and current of this
state become

p
m*R?

M +pN) . (17)

E' =E+

(M + 3pN) ,

!

2rm* R2 (

The occupancy of this state is still e #(E=#oN) That is,
the occupancy is determined not by its energy E’, but
by E, which can be related to E’ and I’ using the above.
Since the initial and final sets of states are identical (for
p an integer), the density matrix can be written in terms
of the f = 0 operators Hy and Ip. Ast — oo, the density
matrix evolves to

ﬁ=exp{—ﬁ [Ho - ﬁ (iz + %pN) —uoN]}
= exp{—ﬁ (ﬁo —&lo - uN)}, (18)

where the final equality defines £ = 27p and p = po +
p?/2m* R2.

A second way to understand this result is to consider
equilibrium in a rotating reference frame. As the vector
potential is turned on, the system evolves adiabatically
as t — oo to a state with average current (I)7 = I. Af-
ter the electric field has returned to zero (as t — 00), we
transform to a coordinate frame rotating with an angular
velocity € relative to the laboratory frame, where Q is
chosen so that the azimuthal current is zero in the rotat-
ing frame. The Hamiltonian H in the rotating frame and
the Hamiltonian H in the original frame are related by!!

where
_ D
Q= e RE (20)

In the rotating frame, the system consists of an isolated
interacting electron gas at zero net current. In this frame,
one should expect the electron-electron interactions to
equilibrate the system. (This equilibration is at the same
temperature T that the system was in at t = —oo in the
laboratory frame, since the center-of-mass motion of a
system does not change the temperature.!2) Thus, in the
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rotating frame, the system has an equilibrium density
matrix

p=e PE-EN), (21)
We express this density operator in terms of the Hamilto-
nian Hj of the stationary frame at zero flux by first using
Eq. (19) and then gauging away the vector potential as

above. With the operators in their first-quantized form,
this gauge transformation gives

e-ﬁ(H—nﬁ—ﬁN) — exp (ingie—ﬁ(H—nL—ﬁN))

3

X exp (—ip Z 0,-)

= exp [-B(Ho —uN — QL)], (22)

13743

where p = i + p?/m*R%. Thus the system is described
by the density matrix

p= e—B(Ho—-ffo—#N)’ (23)

where we have used Eq. (12) [with I, = I(f = 0)], and
as before £ = 27wp. In practice one can regard p and
¢ as parameters which are adjusted to give the required
thermal averages of particle number and current. Thus
the density matrix is that of an equilibrium systems de-
scribed by a constrained Hamiltonian and is identical to
that [Eq. (2)] obtained in HJ by maximizing the entropy
subject to constraints on internal energy, particle num-
ber, and total current.
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