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Electron-temperature measurement in laser-produced plasmas by the ratio
of isoelectronic line intensities
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Orlando, Florida 32826

P. A. Jaanimagi and R. Epstein
Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14627-1299

(Received 27 January 1992)

A class of spectroscopic line ratios has been adapted as a diagnostic of electron temperature from
(100 eV to &1 keV. The diagnostic makes use of the ratio of line intensities from isoelectronic

states of diA'erent elements in specially prepared targets. The diagnostic is simple to interpret, shows
weak dependence on plasma density, requires only low to moderate spectral resolution, uses a single
charge state, and can be adapted to minimize line reabsorption and wavelength coincidences with other
spectral lines. We present theoretical and experimental results.

PACS number(s): 52.70.La, 32.30.Rj, 52.25.—b

Measurements of temperature in dense regions of
laser-produced plasmas [1] typically depend on one of two
spectroscopic techniques: the .ratio of lines produced in
sequential charge states of a single species or the slope of
continuum emission.

Measurement of the slope of continuum emission can be
difficult in high-Z plasmas or others for which a pure con-
tinuum spectrum is difficult to obtain. Line-ratio diagnos-
tics of temperature have different difficulties: Fundamen-
tally, the ratio can be complex to interpret, cross sections
or rates may not be well established, or there may be
significant contributions from coincidental or blended
lines; practically, this may include dynamic range limits in
comparing lines of very different intensity, resolution limi-
tations in resolving unrelated close-lying lines, and
difficulties in evaluating whole-line intensities where line
shapes differ or where there are significant contributions
from far-lying line-shape wings.

Using the ratio of lines which are isoelectronic in origin
simplifies interpretation and offers concrete advantages in
experimental use. In this paper we outline the technique,
illustrate the simplifications, give modeling results of the
dependence of the ratio on temperature and density, and
demonstrate its experimental application in examples of
time-integrated and time-resolved spectroscopy. A more
detailed comparison with other, established, temperature
diagnostics is the subject of a planned followup paper [2].

In astrophysical plasmas, the ratio of lines produced by
species of different atomic number is often used to infer
the relative abundance of constituent elements, consistent
with a model of the distribution of electron temperature
and density in the plasma. The approach is reversed here:
Laser-plasma targets are constructed to have a thin radi-
ating layer comprised of a known ratio of two elements

whose atomic number differs only slightly, chosen accord-
ing to the anticipated temperature of the plasma, and the
line intensities from isoelectronic transitions of the
different species provide a diagnostic of the plasma condi-
tions. Typical combinations include KCl or NaF, which
provide a well-mixed layer with a fixed stoichiometry, or
Ti-V or Ti-Cr deposited in a fixed ratio using an alloy
sputter block, and analyzed after deposition to verify the
proportions.

The elements of the thin layer, having comparable ion-
ization energies, reach similar but not identical distribu-
tions of charge state during irradiation of the target.
Isoelectronic ionization states of these two elements then
have analogous electron configurations, and the ions differ
only in their nuclear charge Z. For our purposes, the
wave functions of two nearly stripped ions may be nearly
equivalent mathematically when described in distance and
energy parameters rescaled by the nuclear charge Z.
Consequently, calculations rescaled in energy or radius
(e.g., where these enter the cross sections for excitation or
ionization) should produce similar results.

Steady-state coronal model calculations of relative
abundance of H-like Na and Si show abundances ex-
pressed as a function of the dimensionless parameter
T,/gz (electron temperature rescaled by the ionization
energy) produce similar curves [3]; the electron tempera-
ture can be expressed as an energy, and the ionization en-
ergy written as Z gH, which demonstrates the atomic-
number scaling. Similar curves result for the distribution
of excited states of each ion. In Fig. 1(a), this scaled simi-
larity is illustrated for several level populations of hydro-
genlike and heliumlike K and Cl.

Thus the ratio of intensities of lines produced from
transition between identical configurations of isoelectronic
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FIG. 3. Time-integrated spectrum from Ti-V alloy thin
signature-layer target includes He-like 1s 'So —1s2p 'P~ reso-
nance (R), intercombination (I), and Li-like multiplet of Ti
near 4750 eV, and the Ti 1s2'So —Is3p 'P~ line ("Hes") near
5580 eU; isoelectronic lines in V are visible at 5200 and 6120
eV. Also visible are long-wavelength satellites to the 1-3 reso-
nance lines. The ratio of Ti to U in the target was 3:7 in order to
balance line intensities.

combination and satellite lines, and the respective
1s 'So-1s3p 'P~ resonances. Ratios from the resonance
and intercombination lines and of the intercombination
and satellite lines indicate a time-integrated and
intensity-history-weighted density between mid-1022
cm and about 10 cm . The 1s 'So-1s 3p 'P] reso-
nance lines are certainly optically thin in this case, and
their ratio yields a time-integrated electron temperature
of about 600 eV.

A similar Ti-V shot (15412) was recorded with a
planar-crystal streak spectrograph [6]. This instrument
affords a spectral resolving power A,/M~ 1000, and a
time resolution of about 15 ps. The ls 'So-Is3p'P~
lines of He-like Ti and V were streaked, and Fig. 4(a)
shows their ratio. An independent optical fiducial, record-
ed alongside the x-ray data, established the time t =0 of
the peak of the irradiating laser pulse [7].

Figure 4(b) gives the temperature history inferred from
the measured ratio in Fig. 4(a), using the data of Fig.
1(b). In fabricating the targets, the Ti-V alloy ratio (3:7)
was chosen in anticipation of the relative ionization, so as
to bring the two He-like line intensities near to equal
values, simplifying quantitative reduction of streak cam-
era data. For comparison, these figures include the inten-
sity history of the Ti line used in the ratio, showing burn-
through before the peak of the laser. At times after the
peak, the line ratio and inferred temperature of the ioniz-
ing layer increase slightly, as is also measured in com-
panion experiments using the time-resolved ratio of the
ls 'So-1s 2p 'P

~ resonance to close-lying Li-like satellite
lines [1];this may be due to continued heating as the layer
joins the coronal plasma. It may also indicate changing
population mechanisms in the late-time recombing
plasmas —explicitly time-dependent modeling is now be-
ing conducted with a recent, fully time-dependent, version
of RATION to evaluate both the recombining phase and
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FIG. 4. (a) Time-resolved isoelectronic line ratios for
1s 'Sp —1s 3p 'P~ lines of Ti and U, as above. Data shown have
been corrected for the 3:7 alloy ratio. (b) Time-resolved tem-
peratures deduced from (a). The intensity history of the Ti line
above is included (dashed line), illustrating the increased error
bars for small signals at early and late times. Time 0 marks the
peak of the laser pulse, determined by a streaked optical fiducial
pulse (not shown).

early-time ionization.
The current diagnostic approach can be of particular

use when using high-throughput, low-resolution spectros-
copy such as that provided by a transmission grating spec-
trograph. Where resolution is not sufficient to resolve in-
dividual lines useful for temperature measurement, the
two-element method may be applied to unresolved multi-
plets of isoelectronic lines for each element, where the
multiplets are themselves resolved from each other. We
have recorded such emission from a transmission-grating
streak spectrogram of a SiQz target with known amounts
of Na. Unresolved multiplets of H- and He-like lines and
recombination continuua were distinguishable as being
from Si, Na, and other target elements. Analysis of the
unresolved isoelectronic features then showed that the
temperature of the emission zone of this particular shot
rose during irradiation from about 350 to roughly 500 eV.

It is useful to recall that rather than measuring true
thermodynamic temperature, any 1ine ratio technique pro-
vides a parametrization of the electron energy distribu-
tion, which may itself not be Maxwellian, i.e., the statisti-
cal temperature of the diagnostic populations is not neces-
sarily identical with any thermodynamic temperature.
Any ratio characterizes the electron distribution over the
range of electron energies which contribute to the popula-
tions of the two radiating states. Like any ratio technique,
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the isoelectronic ratio temperature may parametrize a
particular region of the distribution; with the flexibility of
choosing lines from different elements, it is important to
choose elements of similar enough Z that the isoelectronic
lines of each ion sample the electron distribution compar-
ably.

Commonly, the ratio of resonance lines from two high-
lying levels in generalized local thermodynamic equilibri-
um with the next ionization state is used as temperature
diagnostic. Typically, two such lines of comparable inten-
sity lie too close to one another in energy to provide good
temperature resolution by their ratio. Additionally, such
high-lying lines may be affected by ionization lowering at
high electron densities. In general, the two-element iso-
electronic technique we describe offers particular advan-
tages as a spectroscopic diagnostic temperature, as fol-
lows. (1) Interpretation of the ratio is simplified by con-
sidering isoelectronic lines, since the mechanisms control-
ling the two line intensities and line shapes are the same.
(2) Intense lines of relatively simple or well-characterized
origin can be used. (3) Since the same population mecha-
nisms will contribute comparably to both lines, calcula-
tional errors will typically be somewhat reduced in the ra-
tio, rather than typically being compounded. (4) The
technique is broadly applicable and adaptable over dif-
ferent temperature ranges, using different pairs of target

materials. (5) Many lines become available in this tech-
nique, choosing to suit a particular diagnostic spectral
range or resolution, or plasma opacity condition, or to
avoid overlap with emission or absorption lines from other
target elements. (6) Control of the stoichiometry of ele-
ments in the target can be used to control a priori relative
line intensities, in order to improve quantitative reduction,
or to accommodate limitations in dynamic range by mak-
ing intensities the same to zeroth order.
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