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PHYSICAL REVIEW E VOLUME 56, NUMBER 4 OCTOBER 1997

Dynamics of low-dimensional dipolar systems

J. M. Surf and Weili Lud
Department of Physics, University of Central Florida, Orlando, Florida 32816
(Received 9 April 1997; revised manuscript received 1 July 1997

Time decays of low-dimensional magnetic dipoles with anisotropic energy barriers were studied theoreti-
cally. We found that the dynamic behaviors are interaction specific. For a chain with ferromagnetic coupling,
a single mode dominates and the decay is essentially exponential. For antiferromagnetic coupling, the dynam-
ics can be characterized by two distinct groups of time scales. The spectrum results in a plateau in the decay
of remanent magnetization. This novel behavior differs from the prediction of the mean-field theory. For a
two-dimensional rectangular lattice, a transition between the bimodal decay and a quasilogarithmic decay
occurs when the ratio of length to width vari¢$1063-651X%97)06310-1

PACS numbd(s): 02.50—r

I. INTRODUCTION 1
W((T—>—0')=F[1—0'tanf'(/3H)], 2
Although slow relaxation is a universal phenomenon in 0
complex systems such as glas$@s], spin glasse$3,4],  wherer, is a characteristic time scalg,the Boltzmann fac-
and disordered materials in general, microscopic mechagr, andH the effective field on the spiw. Glauber has
nisms that govern general features observed in diverse sygycceeded in solving the one-dimensional case of Bdor
tems are still poorly understood. Recent experiments on thguantum spins exactly and great insight is obtained about the
dynamic susceptibilitiefs] and magnetizatior$] of frozen  complex cooperative dynamics in interacting systé.
ferrofluids demonstrated that the dipole interaction between The choice of transition rate depends on the specific sys-
magnetic particles has a dramatic influence on the dynamiogm studied. For classical system with an anisotropy barrier,

of the system and the effect might be accounted for byyeel's flipping transition ratd15] is often used:
simple laws. Inspired by this work, it is our motivation to

study dynamics based on similar dipolar systems.
For a noninteracting system, the decay of a physical quan- W(o——0o)= T_o ex;{ ~BEp
tity g(t) towards equilibrium can be described by a simple
exponential 7]. The time scale of the decay is described bywhere E,, is the activation barrier. Equatiof8) is well
a relaxation timer. It has been suggested that the nonexpoknown in the study of the relaxation process of magnetic fine
nential decay is associated with the frustrated interaction angarticle systems and has recently been used in the investiga-
disorder, which leads to a broad distribution of relaxationtion of magnetic remanence of perpendicular méfix-19.
times[8]. Taking this distribution into account, the time de- A mean-field version of Eq3), with no disorder assumed, is
pendence can be described by able to reproduce the quasilogarithmic decay observed in
perpendicular film medifl7]. This is a clear indication that
a broad spectrum of time scales, as implied by quasilogarith-
I _ mic law, can exist in a uniform interacting system.
at) fo w(nexp(—tindr, @ The present work addresses the dynamics of one-
dimensional1D) dipole rings based on N#s theory of flip-
ping transition in Eq(3). For antiferromagnetic coupling, the
wherew(7) is the distribution function fot~. To incorporate  model displays a novel bimodal relaxation, characteristically
the effect of correlation in strong interacting systems, a hierdlifferent from the prediction of mean-field theory. Although
archy among relaxation channels has been introd{ieéd not reported experimentally yet, we stress that the phenom-
However, since such an approach is phenomenological iBna are observable in real perpendicular media under proper
nature, it provides no obvious link to the microscopic origin conditions, as demonstrated by our Monte Carlo simulations
of the distributionw(7). for the film geometry. In Sec. Il we will describe our model
Microscopic understanding of the cooperative dynamicsand methods. Our model is based on a real system of super-
can be achieved through the study of various mofds-14  paramagnetic fine particles similar to the ones in R8f.
which usually introduce specific transition rates. For ex-The system had been suggested as a model for studying the
ample, in dynamics for the Ising model, the transition rateglass transition20]. The geometric arrangements include
for a sping to flip into — o is chosen a§10,14 ferromagnetic chains with periodic boundary condition, anti-
ferromagnetic rings in which the spin orientations are per-
pendicular to the plane on which they reside, and films of
*Present address: Physics Department, Florida International Unrectangular lattices with antiferromagnetic couplings. The
versity, University Park, Miami, FL 33199. methods involve solving eigenproblems for smaller systems
"Electronic address: luo@pegasus.cc.ucf.edu and dynamic Monte Carlo simulations on large systems. The

oH\?
1+2—Eb) , 3)
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discussion of the results will be presented in Sec. Ill. Our First we consider a chain & equal-spaced particles with
calculations indicate that for a chain structure, unlike theeasy axes all parallel. The bond angiethe angle between
Glauber model where the total magnetization always decay§; and the easy axes, takes two values, O ati@, which
exponentially, a distinction exists between ferromagnetic andorrespond to ferromagnetic and antiferromagnetic coupling,
antiferromagnetic chains. While ferromagnetic chains distespectively{23]. Periodic boundaries are imposed and only
play a quasiexponential decay of remanence, the antiferrdhe nearest-neighbor interaction is considered. Scaling time
magnetic chains show a more complex behavior. At largehy yal and the energy by anisotropy enengy/, we have
antiferromagnetic couplings, the relaxation channels are seg-

regated into two groups each with distinct time scales and as . Joi(oi_1+oii1)\?
a result, a plateau in the decay of remanence appears. The W(gi——oi)=exp =T | 1+ ——————] |,
Monte Carlo simulation suggests that inclusion of far-away 7)

neighbors does not modify our results significantly in one

dimension. Thus the features should be characteristic of reglhere T=kgT nscacKV) > and J=2u?(KVr3) 1
chain structure. For an antiferromagnetic square lattice, a tri-- ;,2(KVr®)~! for B=0,7/2. r is the separation between
modal decay is observed if only nearest-neighbor interactioparticles. For a one-dimensional system with Ising-like spin
is considered. However, long-ranged interaction plays a veryariable and nearest-neighbor interaction, it has been shown

important role in 2D by smearing the plateaus into a continupy Glauber that the general form of transition probability is
ous quasilogarithmic decay. For films with rectangular lat{10]

tice, a transition between the bimodal decay and a quasiloga-

rithmic decay is predicted when the ratio of length to width W(oi— — o) =}%a{l+80\_10141
varies. Experimental possibility of observing the effect is .
discussed. —:v(1+d)oi(oi_1t+oi)}, (8

where y=tanh(2/T) is determined from detailed balance

condition. « and 6, however, cannot be determined without
Our model is based on the frozen ferrofluids studied infurther specifying the system. In E¢B), if we define

Ref.[5]. It consists of single domained particles with a size

Il. THE MODEL

of 100 A. Each particle has a magnetic moment for tempera- a=exp(—LT)[1+exp(—J?/T)cosh2J/T)],

ture below the Curie point which tends to align with the easy

axis[5,6,21,22. For simplicity, we assume that the applied exp(—J%/T)cosh2J/T)—1

magnetic fieldH is along the easy axis, and the energy of ~exp(—J%T)cosh2dIT) + 1’ ©)

each particle obeyf7,15,17

then Eqs(7) and(8) are the same. Glauber obtained analyti-
cal solution of Eq(8) only for §=0; the resulting decay of

] ] ] the total magnetization is a simple exponenfitd]. In the
where K is the anisotropic energy constait, and u the present cased is nonzero.

volume and the magnetic moment of the particle, respec- e dynamic evolution of the system is governed by a
tively, and 6 the angle between the magnetization and easyiycnhastic master equation:

axis. The local minima of Eq(l) are atd=0 and. Thus

the moment of each particle is equivalent to that of a two-

level system. As a result, the moment can also be representeg{ p(oqi:-on,t)=— E W(oi— —oj)p(oq g on,t)

by a variableo= cos, taking only two valuesr=1,—1 for !

0=0,7. Thermal flipping of magnetization betweeh=0

andsr across an energy barrier occurs at a frequency obeying + E W(—oy— o)

Neel's formula[15]: !

E=KV sirf6— uH coss, (4)

Xp(a-l'”_o-i“'o.Nlt)! (10)

% KV MHar
W(o— —o)=voexg — ) 5)

Eﬁ(1+2Kv

wherep(a--- oy ,t) is the probability that the spins take on
the set of valuesd;---oy) at timet. With § nonzero, the
whereW is the transition probability of flipping from one analytic solution of Eq(10) is impossible for arbitraryN.
state to another in unit time, and, is the characteristic For smallN, however, it is possible to solve its eigenmodes
frequency of the system at high temperature which has beemumerically. To eliminate nonmagnetic modes which de-
suggested by N [15] and confirmed by experimefif] as  scribe deviation from equilibrium without change of magne-
10° Hz. IdentifyingKV asE,, W has the exact form of Eq. tization, we observe from Edq10) that

(3). Here the effective magnetic field comes from the mag-
netic dipole-dipole interaction between particles: d

g (oiy o)== o [W(oy,— =0
H=3I’,J(r”,uj)/rﬁ—,u,]/rﬁ, (6) ++W(0-Ik

wherer’; is the vector of separation between partidlesnd
" ——a)]), (1)
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where(A)=%, ..., A(o)p(oy---oy.t) denotes the expec- lll. RESULTS AND DISCUSSION

tation value ofA at timet. In particular, magnetization is A. Analytical results for N=1,2,3
M=3N (0}). Using Eq.(11), one-spin functions such as
M=3N (o}) will be coupled to three-spin functions such as
Gg=2N ((0y_1070i,1), Which will in turn be coupled to
other spin correlation functions. The process will be trun-
cated automatically as the correlation functions approach th
size of the chain. In this way, a much smaller eigensystem i
obtained. FON= 10, we have a 34 34 matrix, compared to
the otherwise 10241024 matrix from the original master
equation. The complete sets of matrix elements are obtaine
in this way forN<10.

Systems of longer chaindN(~ 10 OQO) an_d film geometry even for largeN.
can be explqred by_Monte Car!o S|m.ulat|on. The.effect of For three particles, uses of Eq1l) on (o) and
long-ranged interaction is also investigated. For film struc- o1 1010,4,) produce two coupled equations relating
ture, we consider a rectangular lattice with easy axis of aIK_ '2*1 : Hld Gp—Z p q
particles normal to the plane. This introduces an antiferro- i{oi) andG=2(0i10107):
magnetic coupling among particles. We adopt the algorithm d /M —1+y(1+8) -6
2 of Binder[24], which may be summarized as follows. For — ( G) =( )
an assembly oN particles, the transition rate of the system dat 3[y(1+6)—-0s] -3
R is defined as the probability per unit time that a flipping
occurs, which is equal to the sum of transition rate of indi-
vidual particleW(a;):

For the cases dil=1,2, time decays are easily calculated
from Egs. (5), (9), and (10) and are shown to be simple
exponential:m(t)=e M. ForN=1, \=2e 7. For N=2,
A=2exd—T }1+J/2)?]. Here the interaction simply in-
Ereases the relaxation time=\ "1 for ferromagnetic cou-
ﬁling J>0 and decreases the relaxation timfor antiferro-
magnetic coupling/<0. ForN= 3, the dynamics is complex.

e begin with the case &= 3. The case can be reduced to
2X 2 eigenproblem and is exactly solvable. The solution
exhibits important features of bimodal decay which persist

" s

Eigenvalues and eigenvectors can be easily computed for
this set of equations. To determimg for the remanent de-
cay, we note that at=0, (g)h:o:(g). This can be ex-
pressed as a linear combination of right eigenvectors. In this
Rzz W(o). (120  way, we find

|

Nio=al4—y(1+ 6+ U],
The probability that the earliest flipping occurs betwden 1= ald4=v( ) ]

andt+dt for theith spin is Wy o= 3{1+xU26-2— y(1+ 8]},
Pi(t)dt=W(o;)exp(—Rt)dt. (13

U=\[4-y(1+)-12A1-y)(1-¢&). (17
In practice, this is realized through the following steps.

(1) Sett=0.

(2) Samplet; for each spin according to the distribution
W(i)exd —W(i)t].

(3) Sett=t+min{t;}, in which a particular spin is chosen
according tot, = min{t;}.

Now suppose that interactidd| is larger than thermal en-
ergy but both are smaller than anisotropic engfd¥. Then
we have 2J|/T>1, exp2|J|/T)<1, and exptJiT)~1.
Using Eq.(9) and to the leading term @[ exp(—2[J|/T)], we
have forJ>0,

(4) Spinv is allowed to flip. Ny~exf —(1—J)2/T],

(5) Steps(2)—(4) are repeated.

The algorithm is very efficient for dynamic process in- No~12 exg — (1+4J3)/T],
volving time scales much longer than the basic unit scale
v L. w;~0,

All our calculations involve the remanent ded@p]. The
spins are initially up in the presence of a saturation field. The wo~1, (1839
field is removed at=0 and the decay begins. The normal-
ized magnetization is and forJ<0,

M(t) 1% 2' )\1%3qu_(1_|~]|)2/1—]'
m(t) M(0) N P2 (o) P WieXp(— Ait), Ny~ 4 expl— 1IT),

(14)

~2-1 —(2]3|-3AIT
where\, is the eigenfrequency of channleland for finite wi~5 =5 exil = (2] = IH/T],

system the integral over in Eq. (1) is replaced by a sum- wo~1+ 3 exd — (23] 32)/T]. (18b)
mation over discrete channél. The nonlinear relaxation 2730e
time 7, is defined a$11,12 An important difference is observed in dynamics between

| ferromagnetic and antiferromagnetic coupling from Egs.
N _ (189 and (18b). For J>0, the slower channel has nearly
o™ fo dt m(t) _gl Wik 19 100% weight and is thus dominant. The corresponding decay
can be approximated as simple exponential with a relaxation
wherer, =\, ! is the relaxation time of channél time 7,=X\, ! which increases exponentially with On the
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100, e accaen e nmmmmmnnan 0.4+
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024 -018 -0.12 -0.06 000 006 012 018 024 N 0.4 T « J=-0.08
J =
osd N = . mJ=-0.20
FIG. 1. The distribution of two relaxation channels andw, s A - s AJ=-032
as a function of coupling strength(J>0, ferromagnetic coupling A u .
and J<O0, antiferromagnetic couplingor N=3, and the blocking a1 d u
temperaturel = 0.04. A A ] ¥ 2hd
0 -
other hand, folJ<0, the two channels of decay are compa- 10° 10° 107 100 10"
rable and the dynamics will be characterized by two time (b) T
scalesr; and 7,. While the shorter time-; decreases expo-
nentially with increasingJ|, the longer timer, is nearly FIG. 2. The distribution of relaxation channels versygor N

fixed. At large|J|, w; and w, approach their asymptotic =10 andT=0.04. (a) A spectrum showing two relaxation chan-
values of2 and 1, respectively. In this limitr,> 7, and the ~ nels atJ=—0.2. (b) As |J| increases from 0.08 to 0.32, the fast

nonlinear relaxation time iksee Eq(15)] channels consistently shift towards small relaxation times while the
slow channels appear to be fixed. Note that at the right end of the
T~ Wo 7o~ (1/12)exp(1/T) (19 spectrum(slow mode} three types of symbols representing differ-

entJ’s overlap with each other and are difficult to distinguish.
independent ofl. In Fig. 1, w; and w, are plotted as a
function of J at Ty, the blocking temperature of a single which does not decay until a much later time that represents
magnetic dipole(Tg=0.04, or in real dimensioKV/kgT=  the free relaxation of a single particle. In large coupling
25.) From Fig. 1, we see that the dominance of the slowetimit, similar to N=3, we haver,>r, and the nonlinear
channel over the faster channel is established for the entinelaxation time is
range of ferromagnetic coupling>0.

T~ M, 72 (20)

B. Numerical results for 3<N<10 independent ofl and solely determined by the slower time

The above features are typical of the dynamics for chairscale. The only exception is féf=4 where only a group of
structures. FoN larger than 3 and for large antiferromag- two fast modes is found.
netic couplings, the bimodal character remains. By using Eq. We interpret the bimodal feature in the following way.
(11) for various correlation functions; =\; * andw; can be  There are two distinct time scales,<7,, wherer, corre-
determined numerically by solving the matrix for eigenval- sSponds to the flip time of a spin under the influence of the
ues. For 3XN<10, the time decay of the remanence is
trivial for the ferromagnetic coupling—the dominant channel 0.60
accounts for over 96% of the total weight. This results from -
the fact that, at the early stage, the remanence relaxes\s’
through the slowest channel, i.e., the longest time scale. In
contrast, for antiferromagnetic coupling, the shortest time
scale is responsible for the initial decay and a two-channel
decay is observed.

A spectrum for antiferromagnetic coupling ldt=10 and 0.20 L1
different J is shown in Fig. 2. A prominent feature of the
spectrum is its two distinct channels—the fast and the slow
modes. With increasingJ|, the fast modes shift towards
small 7 while the slow modes are nearly fixed in weight and 0.00
relaxation timer, insensitive to the variation of)|. This 104 108 108 10 p 10"
indicates that most spin flips occur around two distinct time
scales:t;< 1, and a plateau in between. In Fig. 3, decays of FiG. 3. Time decays of remanence for differdwitat T=0.04
remanent magnetizations for differeNt at T=0.04 andJ  and J=-0.32. A plateau inm(t), that extends to four decades,
= —0.32 are plotted. After the sudden drop at the early timeexists in all cases. Note the curves are nearly indistinguishable from
each system retains a finite residual magnetizatign each other foN=8.

N=10

0.40 L

W ;> N & ©
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TABLE I. The plateau heightn, at finite N. The m are evaluated by spectrum decomposition at
T=0.04 andJ=—0.32.

N 3 5 6 7 8 9 10 11 12

m, as fraction  1/3 1/5 1/9 17 2/15 11/81  71/525 67/495 1151/8505
m,’s value 0.33333 0.20000 0.11111 0.14286 0.13333 0.13580 0.13524 0.13535 0.13533
my 0.33333 0.20000 0.11111 0.14286 0.13333 0.13580 0.13524

interaction andr, is the relaxation time of the free particle at ~ Figure 3 suggests that results for lafgenight converge
blocking temperature. Spins which can flip at time scaleto a unique curve, an important implication for macroscopic
aroundr, are considered as superparamagnetic while spinsystems. Then, in Table | exhibits an oscillatory conver-
which can flip at time longer tham, are considered as gence withN. From this convergent character, it is con-
blocked. So a spin is superparamagnetic only if the twacluded that the value af, for infinite long chain is between
neighboring spins are parallel to it. As a result, in the time0.135 33 and 0.135 35. At large coupling limit, this value is
window of 7;, the flipping is completely irreversible. For solely determined by the statistics of irreversible flipping ac-
any N, we start with the spin-all-up configuration and pro- cording to a simple mathematical rule and is independent of
ceed every parallel flipping event with equal probability until physical parameters.

all spins are blocked inside the time window of. The

magnetization of the blocked state, divided My gives the C. Monte Carlo simulations

value of m,. Following examples demonstrate haw is _ _ _

determinedwe represent a chain of spins y-spin up and 1. Antiferromagnetic chain

|—spin down). For a 1D chainm, cannot exceed;, the In order to decide the effect of long-range dipole interac-

value corresponding to a configuration of repetition of trimertion from all neighbors on the results from the preceding
such asTT|. Keeping the periodic boundary condition in section, in which only the nearest neighbors are included,
mind, we realize that every spin in this configuration isand to confirm the convergence of the decay curves, Monte
blocked and this is exactly the case fdr 3. Carlo simulation of remanence decay was performed for

For N>3, due to the stochastic nature of the flippin,  much larger systems. Although the discrete spectrum is lost,
is reduced and approaches to a convergent value when a meaningful comparison can be made with previous analy-
~10. To illustrate the method, the casesNo£4, 6, and 9  sjs for finiteN.

are presentedrecall the periodity of the boundary In Fig. 4 simulated remanence decays For10 000 at
J=—-0.32 and blocking temperature @=0.04 are shown
TT11=1111=171]1=blocked, (213 along with numerical calculation dfil=10. Also shown is
N ) the simulated decay with the long-range interaction consid-
TTITIT=111111=351111T1+35] 11T/ 1="Dblocked, ered for all spins. For nearest-neighbor interaction, the

(21b Monte Carlo simulation and analytical calculation fbr
=10 show remarkable agreememt,&0.135). Inclusion of

T TI=111747111
1 1 080 1
=3T3 LTI :
b N=10,000 N.N.
FETTLTTTITT N o NIONN.
) ) 040+ 7 = = = N=10,000 Dipolar
=3TLTITIITL+eTT LTI >
g
HELTITTLTLT+5LTLTLTITT 0zl
=Dblocked. (210
These givem, =5 and 31 for N=6 and 9. Equatiori21a)
also shows tham, =0 for N=4, an anomalous case with no 000+ t ’ y
plateau character. Results for differdstwere compiled in 10 10° 10° 10'° 10"
Table | for N up to 12. Also shown in Table | i;}, the t

value ofm, determined by the spectrum decomposition at FIG. 4. The decay of remanence from Monte Carlo simulation
T=0.04 andJ= —0.32 by summing the distribution Weights ¢, 5 chajn withN=10 000,T=0.04, andi= —0.32. N.N. includes

of the slow channels: m; =X oy moeli - Both methods  nearest-neighbor interaction only while dipolar interaction includes
give identical result ofm, to the displayed accuracy. This g|| the long-range contributions. Also included is tKe= 10 result
intuitive diagrammatic approach also suggests that spins witltom direct calculation of eigenmodes. For the N.N. case, the results
one neighboring spin up and one neighboring spin downef N=10 and 10 000 show perfect agreement. Inclusion of dipolar
experiencing no local field, decay freely only at time scalecontribution beyond nearest neighbor produces minor modification
To. in 1D.
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1.00 + 100y
— N N. 0.80 <
0.75 + ,
= = = Dipolar —~ 0604
Q . S
E 050 + "« £ 040+
L}
025 1 0.20 4
0.00
0.00 | . I 10° 10° 10° 10"
1.0 10* 10° 10" p

FIG. 6. Decays of remanence from Monte Carlo simulation for a
40X 40 stretchable rectangular lattice with a length-to-width ratio
R. T=0.04 andJ=—0.22. Increasingr from 1 to 2.2, a transition
r%rom quasilogarithmic to bimodal decay is observed.

FIG. 5. The decay of remanence from Monte Carlo simulation
for a 4040 square latticeT=0.04 andJ= —0.22. For nearest-
neighbor approximatior(N.N.), two plateaus(trimodal) are dis-
played with heights 0.27 and 0.06. The heights are determined fro
the plotting data. Dipolar contribution beyond nearest neighbor is ) )
much more important in 2D and the resulting decay is quasilogac@use a larger number of configurations leads to more relax-

rithmic, in accordance with the mean-field prediction. ation channels. This will result in a continuous quasilogarith-
mic decay in agreement with the mean-field theory, as shown
in Fig. 5. Inclusion of a X7 array of neighbors has shown
convergence in this case and the quasilogarithmic law is ex-
hibited over nine decades.

far-away-neighbor contributions produces minor
modification—the curve shifts towards smalht early time
Egdcr)?{ d'?hsé'?,t:;yrelztrgne;{ ngrlinsd;gieismthg:tg:ﬁ i?]o?gltéutrl]cgn _ Finally we consider a special geometry which allows a
icsyand justifies our usg of nearest-neiphbor a roxin%/ationr}ransmon of dynamics between quasilogarithmic and bimo-
J . ghbor app . —dal. The construction uses a stretchable rectangular lattice
Snapshots taken from pieces of the chain within the time : . . - .
; . ; ._Wwith a length-to-width ratidR [21] (R=1 for square lattice
range of the plateau confirm the prewzolulsly mentioned PICEor R>1, the effective dimensionality is reduced with an
ture: The spins that have not yet deca residual spins unbalanc’ed coupling. Figure 6 showsyremanent decays for a
are caught between antiparallel spins and experience no driv;, ping. Flg Y

ing force even though the average field, or the mean field, iéOX 40 lattice withJ=—0.22 and blocking temperature

not zero at the time. =Q.04 for differentR. For R=1, the decay i§ quasilogarith-
The mean-field theory fod<0 predicts a quasilogarith- mic. IncreasingR to 2.2, the decay shows bimodal character
mic remanent decay. For a system to be quasilogarithmi@’Ith a decayless plateau extending about three orders_ of
over decadesw(r) must extend over decades and be uni-nagnitude, separating the fast and slow decays. The time
formly distributed over logarithmic scale of[26], in con- distribution of the fast decay is broader as a result of the

trast to the composition ofv(7) of the above model. This lateral coupling,

. . . . . For monodispersed spherical cobalt partitle =3 kOe
disagreement is due to the low dimensionality of the model : ; .
e : and a typical diameteD =64 A, the blocking temperature
and the breakdown of the mean-field assumption. T—0.04 corresponds to a temperature of 84 K while

—0.22 corresponds to an interparticle spacing of 85 A. For
2. 2D film with perpendicular anisotropy film morphology with magnetic micropore deposition where
To study the effect of dimensionality, time decay of re-the reversal mechanism is known to be incoheriitl],

manence for a 2D antiferromagnetic film is simulated. ThesmallerT should be used due to the overestimat&ofOther
geometric arrangement is such that all particles embedded figalistic complications may also arise, for example, polydis-
the film have anisotropic axis normal to the plane. This is thePersity, geometric correction, and so on. However, the feasi-
geometry used in most particulate normal recording medi®ility of such experimental observation is possible. So far
[17-20. Figure 5 shows simulated decays for ax4D  only quasilogarithmic time dependence has been reported on
square lattice withJ=—0.22 and blocking temperature  Systems used as recording mefli&,18§.
=0.04. With the nearest-neighbor approximation, the decay
can be characterized by a trimodal behavtrat is, two
plateauy with 7y <7,<73 andw;~0.73,w,~0.21, andw,
~0.06. For each spin with four nearest neighbors, these time Effects of interaction on the dynamics of dipolar systems
scales are easily identified with the three stages of relaxare studied by analytical, numerical, and the Monte Carlo
ations corresponding to different neighboring configurationssimulation. The dramatic difference was found between the
(1) relaxation atr, is for spins with four neighbors parallel, ferromagnetic and the antiferromagnetic couplings in one-
(2) the one atr, is for spins with three neighbors parallel and dimensional systems. For ferromagnetic interaction, the time
one antiparallel, an¢B) free relaxation at is for spins with  decay of the remanent magnetization is essentially exponen-
two neighbors parallel and two antiparallel. However, thetial, while for antiferromagnetic interaction, two distinct time
long-ranged coupling plays a very important role in 2D be-scales were found; the plateau between the two times corre-
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sponds to the blocking of spins. The bimodal feature wasible, in contrast to the case of EF) wherer; and 7, can
found to cross over to a quasilogarithmic decay when theliffer by many orders of magnitude fod|>T.
dimensionality is increased. There is a similarity between the
current model and the mode-coupling the®y] in which
decoupling of relaxation channels was also found. ACKNOWLEDGMENTS
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