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PHYSICAL REVIEW B

VOLUME 49, NUMBER 16

15 APRIL 1994-11

Failure of the integer quantum Hall effect without dissipation

O. Heinonen* and M. D. Johnson'
Department of Physics, University of Central Florida, Orlando, Florida 32816-2385
(Received 16 July 1993; revised manuscript received 10 January 1994)

Recent integer quantum Hall effect experiments on silicon samples have shown deviations from
the quantized Hall resistance despite a vanishing longitudinal resistance. Here we argue that single
short-range elastic scatterers at the edges can lead to observable deviations in the Hall conductivity
without backscattering, at the large currents typical experimentally. We do so within an approach
to steady-state mesoscopic transport which is not restricted to the linear-response regime (i.e., to

small currents).

I. INTRODUCTION

In the integer quantum Hall effect (IQHE), discovered
by von Klitzing, Dorda, and Pepper in 1980, the Hall re-
sistivity pg attains the values h/je2, where h is Plancks’s
constant, e is the electron charge, and j is an integer.!
When the Hall resistivity is quantized, the current flows
without dissipation through the system.

An elegant explanation of the IQHE at low currents
is given by the Landauer-Biittiker formalism, which
explains both quantization and lack of dissipation in
terms of edge channels that carry current without
backscattering.3 In this approach, it is assumed that
each edge is separately in a local equilibrium described
by a local chemical potential.# Ordinarily the local chem-
ical potentials are presumed to differ infinitesimally [so
that the Hall voltage Vg satisfies eVy/(fw.) < 1, where
we = eB/(m*c) is the cyclotron frequency]. This corre-
sponds to an infinitesimal total current. However, in a
typical experimental situation, the Hall voltage is much
larger than the cyclotron energy. For example, in pre-
cision measurements at the National Institute of Stan-
dards and Technologies, the lowest Hall voltage ever
measured is about sixteen times larger than hAw/e.®
The Landauer-Biittiker approach, which is fundamen-
tally a linear response theory,® does not yield” quanti-
zation when eVyg > Aw,, even though it is observed ex-
perimentally. We have recently presented an approach
to steady-state mesoscopic transport, based on the max-
imum entropy principle approach to nonequilibrium sta-
tistical mechanics, which is valid at arbitrary currents
and explains the IQHE at arbitrary currents in an ideal
system.” In the current paper we use this approach to
show how an unusual instance of the fazlure of quantiza-
tion can arise in certain IQHE systems.

The accuracy of the IQHE quantization, presently de-
termined experimentally to be about one part per bil-
lion (ppb) in GaAs heterojunctions,® has led to the use
of the IQHE to maintain the resistance standard. Re-
cently, however, deviations in the Hall resistivity of up
to 0.1 parts per million (ppm) from the quantized value
have been observed® despite the absence of dissipation
within experimental resolution. These deviations, ob-
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served in silicon metal-oxide semiconductor field-effect
transistors (Si MOSFET’s), are site dependent and de-
pend on thermal history.? It is easy to think of processes
such as inelastic scattering at the terminals or in the de-
vice, or backscattering, which destroy the quantization,
but these then simultaneously lead to dissipation. The
deviations observed in Si MOSFET’s are therefore pe-
culiar and worthy of further investigation for the follow-
ing reasons. First, as stated above, they occur despite
the absence of any measurable dissipation. Second, the
deviations appear as fluctuations in the Hall resistance
(not, for instance, as a constant offset in the Hall re-
sistance from that of the GaAs reference device) as the
gate voltage is varied at fixed current and magnetic field.
Third, the fluctuations are reproducible at low temper-
atures but depend on thermal history. This suggests
that defects such as ionized impurities in the inversion
layer or interface charges,!! which can diffuse at elevated
temperatures, are likely to be responsible for the devia-
tions. Such impurities typically act as short-range elas-
tic scatterers of the electrons. In the GaAs heterostruc-
tures used in high-precision experiments, impurities give
rise to smooth scattering potentials which only negligibly
disturb the quantization. But in Si MOSFET’s, impuri-
ties near the electron gas can provide short-range scat-
terers which, as we will argue, can cause observable devi-
ations from quantization. Such deviations can arise from
the mixing of discrete degenerate states in different Lan-
dau levels on one edge by a short-range elastic scatterer.
This does not violate the result by Prange!? that a single
short-range scatterer does not cause any deviations from
perfect quantization of the Hall resistivity. His result re-
quires that all states perturbed by the scatterer must be
occupied, and this may not be the case if the scatterer
is close to an edge. In this work we will argue that in
fact under certain circumstances short-range scatterers
can indeed give deviations from quantization in a man-
ner which appears to be consistent with the observations
by Yoshihiro et al.® This could occur if (1) the scatterer
is close to one edge so that only some of the perturbed
states are occupied, (2) the scatterer mixes degenerate
discrete states in different Landau levels,’® and (3) the
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currents are large so that eVy 2 fw. (but small com-
pared to currents at which the breakdown of the IQHE
begins'4). Since this occurs without backscattering, the
current flows without dissipation in the Hall bar.

Our argument for such observable deviations requires
that the density of current-carrying edge states be dis-
crete and determined by a length scale < 10~ m. Show-
ing that this occurs in devices takes some care; it is not
enough simply to note that typical devices are of this
size (or smaller). Typically in quantum Hall calculations
the system is treated as a closed system of length Lg
with some boundary conditions (perhaps periodic) im-
posed. This yields a density of states which scales with
the length Lo of the device. The following simple ar-
gument shows that, for a closed system, the density of
current-carrying edge states also scales with Lo. Each
bulk Landau level gives rise to a channel of edge states
which we may assume reside in a strip of length Ly and
width of order £5. [Here £g = (fic/eB)'/? is the mag-
netic length.] Each state fills an area 2m¢%, so in the strip
there are Lolg/(2nl%) edge states per channel. The en-
ergies of the edge states within this strip vary an amount
~ hw,, so the density of edge states per channel is of order
Lolp/(2mt%hw.). Thus for a closed system the density
of current-carrying states scales with the length of the
device. In a real experiment in an open mesoscopic sys-
tem, however, there are terminals and leads attached to
the actual device, and it is not clear if the “length” of
the system should include these. That is, it is not en-
tirely obvious whether or not the density of edge states
is determined by the length Lo of the device, or by some
larger, effective length L which takes into account the
existence of (and boundary conditions at) terminals and
leads. In fact, in mesoscopic physics transport is usually
regarded as a scattering process, with carriers injected
at reservoirs, scattered in the device, and removed at
other terminals. In this viewpoint, the number of car-
riers injected into the device from a reservoir depends
only on the number of particles in the reservoir moving
toward the device, so that the density of states of carri-
ers is determined by the reservoirs. If the reservoirs are
very large, the density of states of the injected carriers
becomes effectively continuous. This density could be ex-
pressed in terms of a very large effective length L. This
is assumed to be the case in most calculations in meso-
scopic physics. The rather subtle point we will make
here is that the density of injected current-carrying edge
states is in fact discrete on a length L which, although
larger than Ly, is small enough that it could render the
effects of the discreteness of the density of edge states
observable in high-precision measurements, at least for

the Si MOSFET’s used to study the IQHE.

II. COMPUTING THE HALL RESISTANCE

Let us begin by reinvestigating the conditions under
which the Landauer-Biittiker formalism?:3 leads to per-
fect quantization of the zero-temperature Hall resistivity.
For clarity we will consider a two-terminal system with
ideal terminals. Consider a system of non-interacting
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spinless electrons in a system of effective length L along
the y direction. (We will later estimate this effective
length.) The system is confined in the z direction by a
potential V(z), and a magnetic field B = Bz is applied.
In the absence of a scatterer, which would break trans-
lational invariance in the y direction, the smgle-electron
eigenstates in the Landau gauge are 9/ (a:)e"‘ v, with
energies €(k’',n), where n denotes the bulk Landau level.
These states are localized in the z direction within a
strip of width ~ £p centered on a position zy deter-
mined by k¥’ and the details of the confining potential.
We can require that the wave functions be eigenstates
of the magnetic translation operator in the y direction,
so that k'L = 2mmy + 6, where my = 0,+1,42,... .
This corresponds to choosing periodic boundary condi-
tions, which can be thought of as bending the system
into a cylinder. Then 6/2m can be interpreted as an ex-
tra magnetic flux (measured in units of the flux quan-
tum) through the cylinder’s bore. This particular choice
of boundary condition is convenient but otherwise of no
consequence. What is important for our purposes is that
the allowed values of k' are then discrete on a scale L™!.
Other choices of boundary conditions would select differ-
ent sets of discrete k', but with a spacing still of order
L. The function €(k’,n) can formally be extended to
a continuous function of k¥’ by continuously varying 6.

Next consider a strong, short-range scatterer of
strength Vo ~ hw. and range ~ {p positioned on one
edge of the system. States within a lateral separation of
the order of £ of the scatterer will then be phase shifted.
That is, a state which originally had quantum numbers
(k',n) will in the presence of the scatterer have energy
€(k,n), the same energy function evaluated at the shifted
wave number k = k' — §(k,n)/L; this expression defines
the phase shift §(k,n). The current i(k,n) carried by
each state can be obtained using the Hellman-Feynman
theorem,

. _ede(k,n)  ede(k,n)/dk
k) =5 =g ~RL+dojdk" (1)

In the absence of backscattering, the total current in the
system is obtained by summing i(k,n) over all occupied
states,

I= " i(k,n)

occupied
states

e Z/ de(km) [ o) (;2 32‘2)] dk, (2)

where the integral extends over occupied states. In
the usual Landauer-Biittiker formalism as applied to the
IQHE, it assumed that, after injection by reservoirs and
equilibration in the leads, the electrons on the two edges
occupy states up to local chemical potentials (u; and
pr = p+ Ap, say). The occupied single-particle states
of maximum and minimum k have guiding centers po-
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sitioned at the two edges, so Eq. (2) gives I = jfApu
to order L~=2d%§/dk?, where j is the number of occu-
pied Landau levels. If the measured Hall voltage is the
work per unit charge needed to transfer charge from one
edge to the other, then Vg = Apu/e, and one obtains
the IQHE conductivity oy = je?/h. More generally, in
nonideal systems electrons have a probability of being re-
flected or backscattered. In this case Eq. (2) is modified
by a factor in the integrand representing the probability
of transmission, and the Hall conductivity is of course not
quantized. Thus in the Landauer-Biittiker approach, the
Hall quantization at zero temperature in the presence of
impurities is explained by two facts: the lack of backscat-
tering, and a cancellation between the change in current
per state due to scattering and a corresponding change
in the density of states. The lack of backscattering can
be understood if states carrying current in opposite di-
rections lie on widely separated edges.?3

As mentioned above, the Landauer-Biittiker approach
only works at small currents. If the Hall voltage exceeds
the Landau-level spacing Aw,., so that only states carry-
ing current in one direction are occupied in some Landau
level, this approach does not give a quantized Hall resis-
tance even in an ideal system.” We have recently devel-
oped an approach to steady-state nonlinear mesoscopic
transport which overcomes this difficulty and gives the
correct quantization at large currents and voltages, in
ideal systems and in the case of smooth impurities.” Here
we will summarize this method. Our approach is based
on the formulation of nonequilibrium statistical mechan-
ics using the maximum entropy principle,!® and on recent
work by Hershfield.'® In this approach, the probability
of occupying a microstate is determined by maximizing
the (information) entropy, subject to certain macroscopic
constraints: on energy, particle number, and, in the case
of steady-state transport, net current. In the case of
mesoscopic transport (and neglecting electron-electron
interactions), this can be done exactly. In the case of a
two-terminal system, the resulting occupancies of single-
particle states (k,n) are”

1

T 1+ exp [B(e(k, n) — p — Ei(k,m))]’ ®)

f(k,n)

Here 3 is the inverse temperature 1/(kpT), p is the chem-
ical potential, and £ is a Lagrangian multiplier which
enforces the constraint on the net current through the
system. In the present paper we consider only the case
of no backscattering, but ¢(k,n), the current carried by a
single-particle state (k,n), can be modified as in Eq. (1)
by the presence of elastic scatterers.

At zero temperature states are occupied up to an en-
ergy pu+£&i(k,n). If only one Landau level is occupied, this
corresponds to a local Fermi energy at each edge, similar
to the Landauer-Biittiker approach [see Fig. 1(a)]. But
if more than one level is occupied, states on one edge are
occupied up to different energies in each level [Fig. 1(b)].
In this case the distributions differ from the local equi-
librium distributions of the Landauer-Biittiker approach;
that is, the occupancies on the edges are not described by
local chemical potentials uy,ur. Consequently we can-

O. HEINONEN AND M. D. JOHNSON 49

not simply define the Hall voltage in terms of a chemi-
cal potential difference up — 1 between the two edges.
Instead, we compute the Hall voltage (as described in
Ref. 7) in terms of the work required to move charge
from edge to edge (or, generally, terminal to terminal).
This gives a set of linear equations for the voltage in each
terminal.

The case of a parabolic confining potential (and no

Energy

T‘T
1

T
S S

T
bl

LR UL DL L L L

Energy

FIG. 1. Schematic occupancies of the two lowest Landau
levels in a parabolic confinement. At zero temperature, states
are occupied up to an energy u + £i(k,n) in Landau level n.
The wave number k is proportional to the transverse positions
of the states’ guiding centers. Occupied states are indicated
by x. (a) With states in only one Landau level occupied,
states at each edge are occupied up to a single energy which
can be viewed as a local Fermi energy. (b) With states in more
than one Landau level occupied, states in different Landau
levels on the same edge are occupied up to different energies.
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scatterers) can be solved analytically” and gives exact
quantization at T = 0 for any value of current (ignor-
ing current-induced breakdown!®). At finite tempera-
tures, the corrections to the Hall resistance are of order
exp(—fuw./kpT). For other confining potentials we find
numerically that this approach gives extremely accurate
quantization in systems with no impurities. This is illus-
trated by the solid line in Fig. 2. When smooth impurities
are added to the system, or when all the states disturbed
by a short-range scatterer are occupied, the Hall con-
ductivity is quantized with corrections of order L2, as
suggested by our discussion of the ordinary Landauer-
Biittiker approach.

In the present paper we investigate the effect of short-
range scatterers on the Hall quantization. We will ar-
gue that the terms formally of order L2 [such as the
L~2d2%§/dk? term in Eq. (2)] can, in fact, sometimes give
rise to observable deviations in the conductivity. This
can occur in the presence of short-range scatterers posi-
tioned at an edge, as a consequence of elastic intra-edge,
inter-Landau-level scattering. Again we emphasize that
this deviation can occur for systems despite the absence
of any backscattering which would give dissipation (and
hence a nonzero longitudinal resistivity in a four-terminal
measurement). In the following section we will present
the results of calculations of the Hall conductivity in the

= L i
o~ - ,
o |
s . j ]
: j
5 L R 4
1 —
A_‘O 1 1 i | l 1 1 1 1 i 1 1
200 400 600 800
N
FIG. 2. Hall conductivity vs particle number. The

system is a strip of length L = 80wnfp confined by a
parabolic potential V(z) = 0.045m"*w?2z?, with a temperature
kBT = 0.005/kw. and a current I = 0.2ew.. This corresponds
to a Hall voltage Vg = 1.257hw./e. The first ~ 500 electrons
go into the lowest Landau level; additional electrons go into
higher Landau levels. Full line: the Hall conductivity with
no scatterers. At the first plateau, the numerically-obtained
conductivity is quantized to within 20 ppb, and at the second
plateau, to within 0.02%. Dashed line: the Hall conductiv-
ity with a strong, short-range repulsive Gaussian scatterer of
strength Aw. and range £p added at (5.5,125)¢p. The devia-
tions at the center of the plateaus are in this case of the order
of a few percent. For larger systems they scale as £p/L.
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presence of short-range scatterers. We will focus on the
simplest case of a two-terminal system, but similar results
are obtained in the multiterminal case. The calculations
proceed as follows. The single-particle eigenstates of a
system of effective length L (and with periodic boundary
conditions) are calculated in the presence of a static po-
tential. This potential is the sum of the confining poten-
tial V(z) plus Gaussian potentials of strength Vy ~ fuw,
and range ~ £p describing short-range elastic scatterers
at an edge. The occupancy of a state is given by Eq. (3),
where the parameter £ and the chemical potential y are
determined by requiring that ) _, f(k,n)i(k,n) = I and
> nk f(nk) = N. Here I is the net current through the
device and N is the number of electrons present. I can be
varied from low currents to the much higher values typi-
cal experimentally. The Hall voltage is then obtained by
inverting a set of linear equations, as mentioned above
and explained in Ref. 7.

III. CONSEQUENCES OF INTRA-EDGE
ELASTIC SCATTERERS

Let us now examine the circumstances under which
short-range elastic scatterers can cause the conductivity
to deviate from its quantized value. We will proceed in
three steps, considering first the case of a single Landau
level and low currents, second the case of multiple levels
still at low currents, and third the case of multiple levels
at high (but experimentally typical) currents. While all
of these in principle could give deviations in quantization,
we will see that only the last can give rise to deviations
of observable magnitude.

First let us consider the case of very small net currents.
For clarity we will in this case use the Landauer-Biittiker
formalism, which gives correct results for the resistivity
at small currents. A single short-range scatterer causes
the phase shift §(k,n) to vary quickly for single-particle
states in its vicinity. As pointed out by Prange, when all
of the perturbed states are occupied, the Hall resistance
remains quantized exactly.'? But if only some are occu-
pied, the resistance can deviate from its quantized value.
This appears in Eq. (2) as the terms of order L~2d%5/dk?.
While formally of order L~2, these deviations can become
unusually large when the Fermi edge (the highest-energy
occupied single-particle state) is in the immediate vicin-
ity of the scatterer where §(k,n) varies abruptly. This is
illustrated in Fig. 3, which shows the differential conduc-
tivity, eAI/Ae, as a function of the Fermi energy (i.e.,
the energy of the highest-energy occupied single-particle
state) in the presence of a repulsive Gaussian scatterer of
strength V) = fw, and range £5. This plot is for the sim-
plest case in which only states in the lowest Landau level
are occupied. The differential conductivity is the ratio of
the increase in current to that in Fermi energy when one
more eigenstate is occupied. Like the total conductivity,
it is quantized with corrections of order L=2d2§/d%k. It
is clear from Fig. 3 that the deviation is largest when
the Fermi energy sweeps through the region of maximum
curvature of § (see the inset). The deviations from quan-
tization in this case are nonetheless unobservably small
in a macroscopic system.

Next let us see the effect of having more than one Lan-
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FIG. 3. The differential conductivity for
states in the n = 0 Landau level as a func-
] tion of the Fermi energy. The system is a
. strip of length L = 80m{p in the presence of
‘j an electric field Ex = 0.05hw./(efp)% and a
. repulsive Gaussian scatterer of strength fuv,.
] and range £p. The field is weak enough that
— states in adjacent Landau levels which are
] degenerate in the absence of the scatterer
are well separated in the z direction. At
] points where the curvature of the phase shift
4 is large, the differential conductance deviates
] from e®/h. Inset: The phase shift §(k,0) for
d states in the lowest Landau level.
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dau level participating in transport, to begin with in the
low-current limit. In this case it turns out that elastic
scattering between nearly degenerate states in different
levels at the edge can cause § to vary so abruptly that
terms of order L~2d2§/dk? are dramatically increased.!”
Consider a pair of states in two adjacent Landau levels
which, in the absence of scatterers, are nearly degenerate.
These states are separated by a lateral distance of order
¢p. Call these states (ko,0) and (k;,1). Typically the
pairs of discrete states closest to these [(ko+27/L,0) and
(k1 +2m/L,1)] are much less close to degeneracy. (This
is the case whenever the two Landau levels, as usual,
are not parallel, i.e., de(k,n’)/dk differs sufficiently for
n’ = 0,1.) Now put in a scatterer of strength V, in
the vicinity of these states. As a consequence of the scat-
terer these states will mix, and so the phase shifts §(k, n’)
will fluctuate abruptly in a range of k about these states
of order Ak ~ 1/L. An example of this is shown in
Fig. 4(a). This fluctuation reaches its maximum (call it
d¢) at the originally nearly-degenerate states, and so the
curvature d?§/dk? reaches a maximum in this vicinity of
order §¢/(Ak)? ~ L2§¢. That is, the phase shift will ex-
hibit isolated rapid fluctuations in the vicinity of certain
pairs of states which in the absence of the scatterer were
nearly degenerate. As the Fermi level sweeps through
these states, there will be a fluctuation in the differential
Hall conductivity of order L=2d%§/dk? ~ &¢. Conse-
quently deviations Ao in the Hall conductivity, formally
of order L~2d?§/dk?, become of order
e de

8o~ i [ Gpoedk (4)
integrated over the range Ak ~ L~! over which §¢ oc-
curs [see Eq. (2)]. The magnitude of §¢ is determined
by the splitting of the degeneracy caused by the scat-
terer, which is given by the off-diagonal matrix element
between the nearly degenerate states. These matrix el-

ements are of order Vofp/L. We expand the energies
€(k,n) to obtain the shift in energy caused by a phase
shift §¢ as (6¢/L)(de/dk). By equating this with the en-
ergy splitting Vofp/L, we obtain the following estimate
for 6¢:

Vols

00~ de/ar)" %)

This inserted in Eq. (4) then yields a deviation Ac in
the conductivity of order

Ao 1 V()KB (6)
e2/h  eVyg L -

For a strong scatterer, Vo ~ Aw,, and for typical voltages
Vy ~ 10fw./e. Thus typical fluctuations under these
circumstances are of order
Ao 14
Y TS (7)
e2/h 10 L
In fact, these deviations can be significant only if one
of the two perturbed states is occupied. Due to the mix-
ing of the two states, the current of the state evolving
from the lower level is decreased while that of the state
evolving from the upper is increased, and the pair’s de-
generacy is lifted by an amount Ae ~ Voflg/L. If both
states are occupied, which is likely when the total cur-
rent is small, the deviation is negligible, essentially be-
cause the decrease in current carried by the state in the
lower Landau level is offset by the increase in current
carried by the state in the upper one. This is illustrated
in the main portion of Fig. 4(b). There large jumps
in the total conductivity arise whenever one member of
the pair is occupied, but this is immediately canceled as
soon as the other member is filled. Hence deviations at
infinitesimal currents are observable only if the experi-
mental resolution is sufficient to resolve the splitting of
the degeneracy.!® The Hall voltage can be measured at
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sufficient resolution (for example, in the experiment by
Yoshihiro et al.,? the resolution was 0.01 nV, while for a
device of effective length L ~ 1073 m, in a strong field
with Vo ~ 10 meV and £ ~ 1078 m, the energy split
is of order 0.1 nV). But resolving the energy split also
requires kgT to be smaller than the energy spacing Ae.
This would require a temperature T of order 1 mK. Thus,
while elastic scattering between levels at one edge can in
principle give large fluctuations in resistance quantiza-
tion, these are not experimentally observable at small
currents.

Finally, let us consider the case of currents as large as
those typically realized experimentally, in the presence of
such a short-range scatterer on one edge, with multiple

FAILURE OF THE INTEGER QUANTUM HALL EFFECT . ..
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Landau levels involved in transport. In this case the de-
viations from quantization can be observably large. We
just showed that if both states of a pair (nearly degen-
erate in the absence of a scatterer, split by its presence)
are occupied, there is no significant deviation from quan-
tization. But if only one state is occupied, deviations re-
sult. Distributions of precisely this sort arise in our max-
imum entropy approach to mesoscopic transport, as we
explained earlier, when the currents become finite (and
nonzero). At such currents, states in the lower Landau
level are occupied to a higher energy than those in the
upper level. In the presence of a large current, there
will be many pairs of once-degenerate states lying in the
range of energy between the maximum occupied states

0.0 —
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6(k,0)/(2m)
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FIG. 4. (a) Phase shift vs energy for states
in the n = 0 Landau level in the presence
of a repulsive scatterer. This is the system
4 whose total conductivity at a finite current is
a shown as the dashed line in Fig. 2. For en-
ergies greater than about 1.8%w., the phase
shift exhibits rapid local fluctuations due to
i the strong mixing of degenerate states. (b)
Total conductivity for the same system vs

chemical potential difference Ay at low cur-
rents, obtained by summing the conductivi-
ties from the two Landau levels. At points
where the Fermi level sweeps past strongly
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mixed states, there are large deviations in the
conductivities from their ideal values. The
left movers in both Landau levels are occu-
pied to an energy p = 1.80 Aw,, and the right
movers are occupied to pg + Apu. Inset: Con-
ductivity per Landau level vs Ap (solid line
for n=0, dashed for n=1). The sum of the
. conductivities of both Landau levels is nearly
constant, except when only one member of a
strongly-mixed pair is occupied.
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of the two levels. Then in the lower Landau level many
such states (half of once-degenerate pairs) will be occu-
pied while the corresponding states in the upper Landau
level remain unoccupied. At each of these states, there
is an abrupt variation ~ d¢ in the phase shift §. Unlike
the situation with a small current, in this case the devia-
tions are cumulative, due to the effect of occupying only
one member of many such nearly degenerate pairs. This
can lead to a large effect (compared to the ppb accuracy
of measurements) which, as shown in Eq. (6), scales as
£p/L over a large range of electron density or magnetic
field. This is illustrated in Fig. 2(b).

IV. DISCUSSION

We have here argued that single short-range elastic
scatterers on an edge can give rise to observable devia-
tions in the Hall conductivity. Note that these deviations
from quantization are not generic. When the disorder is
smooth, the phase shifts are smooth. Even in the case of
a sharp scatterer, if all the states affected by it in both
Landau levels are occupied, the deviations are not ob-
servable. Only in the case of a short-range scatter on
the edge—influencing states in a range of energy where
one Landau level is occupied and not the next—can ob-
servable deviations occur. In this case the conductivity
will fluctuate about its quantized value as the Fermi en-
ergies sweep across the scatterer. This holds true with
several scatterers on one edge as long as the mean free
path between scattering events is much greater than the
magnetic length £ = y/fic/eB. With a high density of
scatterers, so that the mean free path is of order £p, the
scattering phase shifts become smooth.

We emphasize that this deviation occurs at steady
state in the absence of backscattering or inelastic scat-
tering in the device, and at currents below those at
which the current-induced breakdown occurs.!* In fact,
the mechanism for deviation that we present is significant
only when there is no backscattering. With backscatter-
ing, transport properties become dominated by the de-
tails of the transmission and reflection matrices, which
swamp the contribution of elastic forward scattering.

Let us briefly discuss the circumstances under which
this deviation could be observable. First, short-range
scatterers on the edge are needed. These are more likely
to be present in Si MOSFET’s, where ionized impuri-
ties in the inversion layer, interface charges, and interface
roughness provide strong, short-range elastic scatterers,
than in GaAs heterojunctions (see, however, Ref. 10).
The magnitude of the deviation depends on the differ-
ence between the Fermi levels of different levels on on
edge, €1 — €9 = {[i(k1,1) —i(ko,0)]. This grows with total
current (since £ then grows), and is significant only when
the currents i(k,n) in the two levels differ. This in turn
depends on the slopes de,/dk, which differ most when
the confinement is very stiff, or has curvature. In fact,
these slopes are equal only in the case of a potential V' (z)
which is linear in . The deviation is ultimately traced to
fluctuations in phase shift of order d¢ ~ Vyolp/(de/dk),
so the effect is stronger in weak magnetic fields. For the
purposes of metrology, it is desirable to minimize the de-
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viations due to short-range scatterers. In the absence of
other considerations, it is best to sit on the v = 1 plateau
to avoid interlevel scattering,'® or else to keep the current
small, with a Hall voltage much less than hw. (provided
a good signal-to-noise level can be obtained at lower cur-
rents).

The observability of the deviations depends on the dis-
creteness in the density of current-carrying states on the
edges, which is characterized by the effective length L.
It is clear from the preceeding section that the details of
the particular boundary conditions we used here played
no role beyond establishing the discreteness. To obtain
the deviations consistent with the experimental observa-
tions requires L/fp < 0.1 ppm = 1077, or, in a 10 T
field, L < 8 cm. Clearly if the discreteness is simply de-
termined by the length Lo of the device, this not very
stringent condition is satisfied. But, as mentioned ear-
lier, it is not obvious that L ~ Lo. We now turn to
an estimate of L, and show that it is small enough to
give rise to deviations of observable magnitude. A Si
MOSFET consists essentially of an inversion layer be-
low a SiO, spacer which in turn is below a gate. On
either end of the inversion layer is a three-dimensional
n*-doped layer to which contacts are attached to provide
the current source and sink. These might be thought to
serve as the three-dimensional ‘reservoirs’ which are key
to the ordinary understanding of mesoscopic transport.
From this viewpoint, the reservoirs determine the den-
sity of states injected into the device; if the reservoirs are
very large this density will be nearly continuous. This is
a common assumption in the mesoscopic literature, but,
we argue, is not the case here: the discreteness of the
density of states should be observable in high-precision
measurements. It is a simple matter to relate the density
of states in the three-dimensional reservoirs to the effec-
tive length L characterizing the density of states in the
two-dimensional device. We now do so, and by requiring
that this L be small enough to obtain the experimentally
observed deviations we will obtain a value for the size of
the source and drain which compares well with the actual
device parameters. The source and drain on the device
used by Yoshihiro et al. were made by ion implantation
and have a depth D ~ 1077 m, and an area a. The den-
sity of states g(e) of Landau level n in the source is (per
spin direction, ignoring the Zeeman energy)

o S (] e

We evaluate this expression at € =~ 4.5 meV, correspond-
ing to an energy between the n = 0 and n = 1 Landau
levels. The result is g(4.5 meV) ~ a x 10'® eV-"1m~2.
If the energies at the edge of the inversion layer increase
by 0.5kw, in a distance £g, then an L of 8 cm (required
to get the observed deviations in a 10 T field) corre-
sponds to a density of edge states of about 10° eV~1. By
equating these two expressions for the density of states,
we obtain @ ~ 1000 ym?2. This corresponds to an area
of implanted ions of approximate dimensions 10 x 100
pm, which is not unreasonable. This simple argument
shows that the density of current-carrying states in a Si
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MOSFET device could indeed be expected to be discrete
on the scale needed for the deviations to have the ob-
served magnitude.

Finally, we propose the following experimental tests
of the mechanism that we have proposed here. It may
be difficult to directly manufacture in a controlled way
a device which exhibits deviations of the type described
here.2° However, a device already found to exhibit them,
such as the device studied by Yoshihiro et al.,° can be
used to systematically study the magnitude of the devia-
tions. If these are studied as a function of magnetic field
for a given range of filling factor, so that the same inter-
val along the Hall plateau is studied at different magnetic
fields, a definite dependence on magnetic field should be
detected for the mechanism proposed here. According
to our arguments earlier, the deviations should scale as
£p/L, where L is the effective length of the system. It
then appears that there are two possibilities. (1) It may
be the case that the density of current-carrying states is
determined by three-dimensional reservoirs subjected to
the external magnetic field, i.e., the source and the drain.
By equating the density of states in these reservoirs [Eq.
(8)] with the density of edge states L/(2nfghw,) in a de-
vice of length L, we obtain L ~ hw./fg ~ B%/2. The
result is then that the deviations scale with the mag-
netic field as B~2. (2) On the other hand, it may be the
case that the effective length, i.e., the density of current
carrying states, is independent of magnetic field. This
would be the case if, for example, the density of states
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is determined by the actual device, and not by three-
dimensional reservoirs which are also subjected to the
magnetic field. Even if under ordinary circumstances L
is determined by the reservoirs, then this could occur if
they become so small that L becomes of the order of L.
It follows that the magnitude of the deviations then scale
as B~1/2. As a by-product, such an experiment will then
yield information which can help our understanding of
what determines the density of current-carrying states.
The calculation presented here is a semiquantitative
explanation of the deviations which may be expected
from the mechanism that we propose: intra-edge, inter-
Landau-level elastic scattering by short-range impurities.
Even so, we stress the fact that we are not aware of any
other explanation for the deviations observed by Yoshi-
hiro et al.® A more quantitative analysis of the mecha-
nism that we have proposed here requires better knowl-
edge of the density of current-carrying states. Some in-
formation about this could be provided, for example, by
the experiments proposed in the preceding paragraph.
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