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Geometry of quantum evolution and the coherent state

Subir K. Bose and Binayak Dutta-Roy
Department ofPhysics, University of Central Florida, Orlando, Florida 32816

(Received 5 November 1990)

The geometric approach to quantum mechanics initiated by Berry's remarkable discovery [Proc.
R. Soc. London Ser. A 392, 45 (1984)] of the anholonomy of the phase of the wave function and sub-
sequent developments leading to a recent reformulation of the geometry of quantum evolution by
Anandan and Aharonov [Phys. Rev. Lett. 65, 1697 (1990)] is shown to find an explicit and sugges-
tive realization through the coherent-state representation.

I. INTRODUCTION

Upon the adiabatic variation of parameters, I X; I, in
the Hamiltonian of a system through a closed path C, the
wave function was found by Berry' to acquire, apart from
the familiar dynamical phase (exp[( i/A) —jE(t)dt]) as-

sociated with the time evolution of the state being so
transported with instantaneous eigen energy E(t), an ad-
ditional phase ( exp [ i y( C) ] ) depending only on the
geometry of the parameter space and the path traversed
therein. Simon gave a topological meaning to the
Berry's phase as the holonomy of a complex line bundle.
Aharonov and Anandan showed how any closed path in
the projective Hilbert space (of state vectors modulo
phases) has a geometric phase associated with it and from
this point of view the underlying parameter space has but
a secondary role, and adiabaticity is not an essential in-
gredient. Samuel and Bhandari properly emphasizing
the metric on the projective Hilbert space (P) put the
concept of the geometric phase in an even more general
setting which would apply to essentially any type of
quantum evolution conceivable, liberated from the con-
straints of having to be adiabatic, cyclic, or even unitary.

In a recent paper Anandan and Aharonov have relat-
ed the metric in projective Hilbert space, P, with the
time-energy uncertainty product. They consider the evo-
lution of a nonstationary state ~g(t) & governed by the
Schrodinger equation

le ~ip(t) & =M(t)~1/r(t) &,
d
dt

(1)

enabling a Taylor-series expansion,

~y(t+dt) &
= ~1'(t) &

— dt H~q(t—) &

fi

dt
lq(t) &+ —H'Ill(t) &

+O((dt) ),
from which follows

(2)

)(y(t) ~q(t +dt) & ~'=1—,+O((dt)'), (3a)

where

(aE)'= &, q H'~q& —(q~8~1i &'. (3b)

On the other hand, a natural measure of the squared
"distance" between two nearby quantum states is the de-
viation from unity of the square modulus of their scalar
product (their overlap), namely, b,s, 2

= 1 —
~ ( 1

~
2 & ~, and

several authors ' have considered similar definitions.
Anandan and Aharonov, comparing Eq. (3a) with the
definition of the Fubini-Study metric, arrive at the in-
teresting correlation

ds =DE dt/A, (4)

which they paraphrase through the evocative statement
that AE/A is the "magnitude of the velocity of the sys-
tem in the projective Hilbert space" providing thereby a
new geometric meaning to the uncertainty in energy for a
quantum system.

It is important to emphasize that for the realization of
the interpretation advocated by Anandan and Aharonov
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it is essential to consider nonstationary states of a quan-
tum system, rather than eigenstates of the Hamiltonian as
considered by Berry, as in the latter case hE —+0 whereas
dt ~ ~ so that ds is finite and nonzero, and this singular
limit is not suitable for the study of the physical manifes-
tations of the Fubini-Study metric. The objective of the
present investigation is to explore the contention that the
coherent states provide a particularly convenient frame-
work for the illustration of the geometry of quantum evo-
lution in this context. With this end in view the two ar-
chetypal examples of a spinning particle in a time-varying
magnetic field and that of a parametrically varying oscil-
lator are considered. In each case the method of presen-
tation followed is to start with the underlying bosonic
representation of the Heisenberg-Weyl algebra and then
to set up the relevant Heisenberg equations of motion.
This has the added advantage in that these equations are
formally identical to Hamilton's equations of classical
mechanics, and the relationship with the corresponding
classical anholonomy associated with the Hannay an-
gles" ' is quite transparent. Furthermore, as we shall
see in the case of the particle in a magnetic field the gen-
eralization from the case of spin- —,

' to that of general an-

gular momentum is easily accomplished. In this frame-
work we determine the Berry phases and then go on to
construct the coherent states and set up the Fubini-Study
metric for each system in order to illustrate the geometric
interpretation due to Anandan and Aharonov. We use
the notion of adiabaticity even though it is not essential
to this approach in order to maintain contact with earlier
studies, as also for ease of explicit solution and interpre-
tation.

II. SPIN IN A MAt NETIC FIELD

Consider a particle of spin —,
' and magnetic moment p

precessing in a homogeneous though time-dependent
magnetic field B(t) described by the Hamiltonian

H = —
)M B(t)=—po B(t),

where B(t) is taken to be slowly varying (in comparison
to the Larmor frequency coL =pB /A') keeping its magni-
tude fixed but gyrating with angular frequency e about
the z axis, sweeping out a cone of semivertical angle 0,
whence

H = p—B(bt.b~ b—b ),
through a canonical, albeit time-dependent transforma-
tion

b+ =+cos( —,'9)e'" a++sin( —,'9)e '"~ a

b = —sin( —,'9)e'" a+ +cos( —,'9)e '" a

(Sa)

(Sb)

= +i coL b+ +i ,' e(cos—9)b+—i—,
' e(sin9) b

b~ = — [b—,H]+d
dt + at

i coL b —i ,'e(—cos—9)b —i—,'e(sin9)b+ .

(9a)

(9b)

These can readily be solved exactly, but in order to find
the Berry phase it suffices to work to the first order of
adiabaticity (here e/coL ), and accordingly one obtains

b+ ( T)—exp [+icoL T + i eT( 1 —cos9) /2) b+ (0), (10)

corresponding to a round trip of the magnetic field
(t = T =2'/e) giving the Berry phase in the Heisenberg
picture, with all its geometric connotations involving the
relevant solid angle [Q(C)=2'(1 —cos9)] in parameter

space, over and above the dynamic phase' given by coL T.
The result obtained here can easily be converted to the
more familiar form in terms of the phase of the state vec-
tor by going from the Heisenberg to the Schrodinger pic-
ture. Furthermore, the generalization from the case of
spin- —, to arbitrary angular momentum j is easily accom-
plished by taking recourse to the well-known Schwinger
construction

)j+m(bt )j —m

IO),
Q(j +m)l(j —m)!

and the corresponding Berry phase, —mQ(C), can be
read off through an inspection of Eqs. (10) and (11).

In order to illustrate the concepts developed by Anan-
dan and Aharonov it behooves us to consider the
angular-momentum coherent state'

which corresponds to a rotation bringing the z axis along
the instantaneous direction of the magnetic field. The
Heisenberg equations of motion are accordingly given by

b~ = — [—b~, H]+d i ~b+

B(t)=B(sin9 cos(et), sin9 sin(et), cos9) . (5b)

In accordance with the program outlined in the Introduc-
tion we search for a bosonic realization:

[a, , a ]=0=[at,a ],[a, , a ]=5; with i j =+,

2j ' 1/2

(1+Igl')i „=,
(12)

such that

o, =(a+a+ —a a ),
and

(6b)

where X is the normalization constant, g a complex num-
ber specifying the state, and („') is the binomial combina-
toric (2j )!/n!(2j —n)! For a particle in such a state with
gyromagnetic ratio g placed in a magnetic field B the
spread in energy is easily calculated to be

o ~ =
—,( o +i o)=a ~a~. (6c) bE =gBI glA&2j I(1+ lg'I'). (13)

The Hamiltonian expressed in terms of a+ and a+ can be
put into a convenient form

The coherent state [Eq. (12)] may be reexpressed in terms
of the Heisenberg-Weyl operators to yield
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{gbt +bt )"lo&,(1+ g )J (2j)!
wherein implementing Eq. (10) the time development of
the wave packet is given by

!
2ij co& T —isj ( I cose—)T

pT=e

Hamiltonian is obtainable from that for the simple oscil-
lator by a scaling and rotation in phase space, a canonical
transformation of the Bogoliubov-Valatin type, namely,

b =—&Z/~+&~/Z +i1 Y
a

2 v'a-z

X i/exp[ 2—icoL T+ieT(1 —cos8)] & . (15) 1 Y+—VZ/I~ —v ~/Z i- a~,
2 &kz (20)

Ip, v &
=

I cosh[ I vl (1+ lp I
)'] ]

—'"
co +j j—m j

X g g ljm&,&(j+ m )!(j—m )!
(17)

which assumes an elegant appearance when expressed in
terms of the Heisenberg-Weyl operators:

ln, k&=[ cho(slnl'+lkl')] '"cosh(mt++pa' )10&,

(18)

Thus even after a cycle (a time T =2m/e later when the
Hamiltonian will have returned to its starting value) the
state shall gain not only a phase, but more importantly,
unlike what obtains for a stationary state, shall have
changed to a diferent state and shall have moved in pro
jective Hilbert space. The geometry of this movement is
best described by considering the Fubini-Study metric
given by

(ds)'=1 —l(g+dglg& l'

2J
(1+~2+~~)2 [

where g, and g2 are the real and imaginary parts of g, and
the metric above is that for the surface of a sphere of ra-
dius 2J expressed in isothermal co-ordinates', and can be
brought to the more familiar form through the substitu-
tion (=exp(i@/2)tan(e/2), where 6 and Cs are the usu-
al co-latitude and azimuth angles.

One could go on to discuss this same problem in the
format of the transport of a more general wave packet
where different j's are also superposed centered around a
given value of the angular momentum. Such a state is
indeed available to us, ' having been constructed through
the strategem of a noncompact extension of the SU(2)
group, ' and reads

where ~= (XZ —Y ) '~, suggests itself, and brings the
Hamiltonian to the form

H=ficu(t)(b b+ —,') . (21)

l COb + I
Z d Y

b
2v dt Z

r

Z d Y —iv
l

2v dt Z (22a)

db = ——[b, ]
db

dt A' '
Bt

= +LCOb l
Z d Y
2v dt Z

z d Y+i~+i
2a dt Z b, (22b)

and the terms representing the coupling between the
creation and the annihilation operators contributing, as
before, to second order in adiabaticity, can be disregard-
ed for the purpose of calculating the Berry phase, and the
approximate solution

b(t)-exp i f cu(t)—dt

Here co(t) =~(t)coo i—s the "instantaneous frequency" and
the operator b (and b ) is explicitly time dependent
through the "externally" varied parameters. The Heisen-
berg equations of motion for the system are thus

ab
dt A

' Bt

'~0 Z d YX exp f— —dt b (0)
2 co dt Z

where v=ri and p=g/ri. The evolution of this wave
packet has already been considered earlier' in order to
establish the relationship with the Hannay angle.

(23)

suftices. Contact with the usual expression' ' for the
phase can be established as before by going over to the
Schrodinger picture and furthermore, by rewriting the
second phase factor in Eq. (23) as a line integral in pa-
rameter space by simply noting that

III. THE GENERALIZED PARAMETRIC
HARMONIC OSCILLATOR

d dX
dt dt

(24)

where X stands for (X, Y, Z) and V is the gradient opera-
tor in parameter space.

To illustrate the motion in the projective Hilbert space
it is again appropriate to construct the corresponding
coherent state:

Introducing the annihilation (and creation) operator
through a =(p imcooq)l+2—men A' o[and a =(p
+imcooq)/"t/2mcoofi], and recognizing that the system

The general time-dependent quadratic Hamiltonian
with one freedom, appropriately symmetrized, is given by

p2 Q)o
H (t) =Z(t) + Y(t)(pq +qp)+X(t) 'm cooq-

2Pl 2 2

(19)
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IP& =e I~I' y —,In &=ebb t I(), &n! (25)

which is an eigenstate of the operator b obtained from the
primitive operator a through a canonical transformation
IEq. (20)] of the generic form

b =A, (t)a + t-,(t)a

with

(26a)

Ip&, = pexp +i Jco(t)dt

. &o Zf —v — dR l,2 co Z (27)

to first order in adiabaticity. Once again the change in
the state is to be noted (in contrast to the appearance of a
phase for the stationary state); and in order to depict the
corresponding motion in the projective Hilbert space the
underlying Fubini-Study metric is easily determined tus-
ing Eq. (25) and introducing /3, and Pz for the real and
imaginary parts of P]:

(ds)'—= 1 —
I &P+dPIP & I'=(dyt)'+(de)', (28)

which corresponds to a Aat Euclidean space. If, however,
the "distance" had been expressed in terms of the "primi-
tive coordinates" obtained from the eigenvalue a of the

(26b)

These states are the squeezed coherent states as they in-
volve Uiz a vis the corresponding coherent states for the
primitive a operator, a scaling and rotation (a squeezing
in one direction) in phase space. The time development
of this state is easily obtained by implementing Eq. (23) in
Eq. (25) to yield

operator a then the associated squeezing and rotation
would be manifest in the metric. It is perhaps appropri-
ate to point out that our definition of the distance, here
and earlier, differs from that of Anandan and Aharonov
by an overall factor of 2. This has been done to maintain
consistency with the earlier definition given by Berry as
the rea1 symmetric part of the quantum geometric tensor,
and more importantly, in order to correspond to the in-
tuitive notion of velocity in phase space as shall be illus-
trated by a simple example. Consider a simple harmonic
oscillator described by a Hamiltonian

2

H = p + —,'rncooxi=%coo(ata+ —,'), (29)

IV. CONCLUSION

Thus we conclude that the main contention of Anan-
dan and Aharonov's recent paper regarding the
geometry of quantum evolution, its relation with the un-
certainty principle and with the Fubini-Study metric in
projective Hilbert space can be explicitly and simply real-
ized in the context of coherent states. This is illustrated
by considering the problems of the spin in a magnetic
field and the generalized parametric oscillator.

and the associated coherent state specified by the com-
plex number a with real and imaginary parts ai and a2,
then putting a(0)= Ia(0)Iexp(i8) the time development
of the state would be characterized by ct(t)
=a(0)exp(i cot) and hence with (ds) =(dat) +(daz)
and ct, = Ict(0)Icos(cot +t) ) and az= Ia(0)Isin(cot +t) ),
the velocity in the projective Hilbert space is
ds ldt =co

I
a

I
which also agrees with the velocity in phase

space of a point moving with angular velocity co along a
circle of radius IctI. And of course the velocity is in
agreement, as it must, with that given by the spread of
energy corresponding to this state, namely, b,F. =fico Ia I.
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