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The harmonic lattice, recoilless transitions, and the coherent state

David S. Bateman, Subir K. Bose, and Binayak Dutta-Roy?
Department of Physics, University of Central Florida, Orlando, Florida 32816

Manoranjan Bhattacharyya
Saha Institute of Nuclear Physics, Calcutta, India

(Received 12 December 1990; accepted 28 October 1991)

The probability for recoilless transitions, relevant for the understanding of x-ray scattering from
atoms bound in a crystal (applicable also to elastic scattering of neutrons from solids and to the
Mossbauer effect), given by the Debye—Waller factor, is derived in a novel manner using the
coherent state basis for the normal mode oscillators describing the harmonic lattice, a method
which, while being simple and elegant, also reveals the relationship to a heuristic classical

discussion of the problem.

I. THE PROBABILITY FOR RECOILLESS
TRANSITIONS

The intensity distribution in x-ray diffraction spots from
atoms in a lattice (made diffuse bY thermal vibrations) is
given by the Debye—Waller factor.” The result also applies
to the determination of the fraction of gamma rays emitted
(or absorbed) resonantly (without change in energy due to
recoil) by a nucleus bound in a crystal that occurs in the
celebrated Mossbauer effect as well as for the case of elastic
scattering of neutrons from solids. The probability that a
nucleus in the lattice emits (or absorbs) a photon of mo-
mentum p without any change in the state of the lattice
is given by the square modulus of the overlap between
the state vector ¢®*%|L)), corresponding to the lattice
with a “site,” displaced by X with respect to its equilibrium
position and recoiling with momentum p, and the state
| L;) representing the undisturbed lattice. Of course, with a
solid at temperature T it is also essential to include the
thermal average (shown below through a second set of
angular brackets) thus yielding the basic formula

f=1 (L X L) r|?, (1)

from which the Debye~-Waller factor f is to be calculated.
Here, it needs to be noted that p the photon momentum is
a number while X is an operator. Lattice vibrations in a
solid, in the harmonic approximation, are described in
terms of the normal modes, with corresponding coordi-
nates {£.}, and hence by an ensemble of oscillators with
frequencies {w}. The state of the lattice can then be spec-
ified by providing the oscillator quantum numbers (occu-
pancies) of the different modes, viz., |{n;}). We can now
express t/l\le component of X in the direction of recoil, p- p-X
(where p is the unit vector along p), in terms of the
normal-mode coordinates £ for the lattice:

3N
p'x = 21 cs‘.l;sv
s=

(2a)
with the normalization condition
N
2 =1, (2b)

s=1
on the expansion coefficients, where 3N is the number of
degrees of freedom for N atoms in three dimensions. Ex-

pressing the displacement of the nucleus in terms of the
normal modes of the lattice (made possible by the fact that
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the normal modes are but combinations of the displace-
ments of the nuclei) enables us to discuss the response of
the lattice as a whole to the decay or scattering event. The
underlying theory and the associated calculation to obtain
the probability for such recoilless processes were per-
formed by Lamb? for neutron scattering from nuclei of
atoms bound in a solid, and the correspondin g situation for
photons has been considered by Mossbauer” and by Viss-
cher.* A simplified derlvatlon for the Mossbauer effect was
presented by Lipkin® and also by Weisskopf.® Singwi and
SJolander used an approach developed by van Hove® to
arrive at the result. Interestingly, a discussion of this prob-
lem based on a classical picture for the process provided by
Shapiro has also yielded an identical formula, a fact that
has been remarked upon as being unexpected” in the book
on Méssbauer effect by Frauenfelder.” The quantal calcu-
lations of f, referred to above, employ the Fock space (oc-
cupation number) representation and involve manipula-
tions of Hermite polynomials and Bessel functions.
Furthermore, some of the papers arrive at the exact result,
despite certain approximations, which were later shown!®
to be unnecessary on the basis of mathematical identities
involving Hermite polynomials. The present derivation, us-
ing the device of coherent states, will avoid these unneces-
sary complications (using, as we shall see, nothing more
complicated than Gaussian integrals) and the “mystery”
of the unexpected agreement with the classical result will
be clarified.

II. THE COHERENT STATE

The energy eigenstates of the proto-typical one-
dimensional harmonic oscillator, described by the Hamil-
tonian

H=p*/2m+imw*x?, (3)

are best developed through the introduction of the annihi-
lation and creation operators:

a=(p—imwx)/ 2maoh, (4a)
a'= (p+imwx)/ 2mah, (4b)

whereby the normalized nth excited state (or the state of »
quanta), |n), may be generated from the ground (or ‘vac-
uum’) state |0) through the repeated application of the
creation operator:

[n)=(a')"/ /n!|0). (5)
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A set of nonstatlonary normalized states, known as coher-
ent states,!! first introduced by Schrodmger, is obtained
through a superposition of the occupation number states,
thus

(6a)

|a) e la|?2 z Tln}

where a is a complex number. These are minimum uncer-
tainty wavepackets as the variance of the position and the
momentum for an oscillator in such a state obtainable from

(Ax)’=(a|x|a)—(a|x|a):=#/2mo="F, (6b)

(Ap):=(a|p?|a) —{a|p|a)’=timw/2=1#/4P, (6¢c)

satisfy AxAp=7i/2. These states have been widely applied
to nonlinear optics and laser physics.”*!> Their domain
of usefulness has been extended to the description of the
superfiuid state,’ plon production,'” nuclear structure, 18-20
infrared problems in quantum electrodynamlcs, quantum
theory of noise,?? plasma physics,? elucidation of classi-
cal correspondences,”? and to various other dreas of
physics.?

These coherent states, which are in fact eigenstates of
the annihilation operator a, belonging to the eigenvalue «,
form a complete (actually an overcomplete) set:

d’a
fia><a Ly 7
m

where the integration is over the plane of complex a. This
“decomposmon of the identity” is very useful, in that var-
ious operators, and in particular the density operator’’ p
(which we shall need when performing thermal averages)
can be conveniently incorporated into the formalism,
through the so-called P representation:'>!*

d’a
p= [ SP@|a)al, (8a)
which is but the density operator expressed in the basis of
the coherent states. For oscillators in thermal equilibrium
at a temperature T

P(a)=(1/{n))e 1217, (8b)
where the average occupancy (n) is given by
<n>=e—ﬁm/kT/(l_e—ﬁw/kT)’ (8¢)

k being the Boltzmann constant. These expressions for P
are derived in both Refs. 13 and 14. The thermal average of
any quantity evaluated in the coherent state basis is thus
found by using P(a) as a welght function in determining
the mean.

Another great advantage of the coherent state represen-
tation resides in the ease with which classical limits can be
realized. Thus taking cognizance of the nonstationary
character of the state, and putting in the time dependence
appropriate for each stationary component (|n)), we
have, but for an irrelevant overall phase factor:

la),=|a(t))=|ae™ ™), (9

where the notation used above expresses the fact that with
the elapse of time the coherent state retains its form,
though the eigenvalue a of the annihilation operator a,
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which labels the state will have changed to ae™ . Now

writing @ = —i|a|e™™, it can be verified that
La|x|a),=2|a| yA/2mw cos(wt+06), (10)
wherein the limit
a-w and #A-02|a| i/2mo—4, (11)

yields, in an explicit manner, the classical correspondence
for the time-dependent displacement for an oscillator, viz.,
A cos(wt+0), and moreover the quantal fluctuations ex-
pressed through the uncertainties [refer Eqs. (6a) and
(6b)] go to zero in this limit.

II1. CALCULATION OF f IN THE COHERENT
STATE BASIS

In order to evaluate the matrix element occurring in f
[see Eq. (1)] it is appropriate to express the exponent
therein in terms of the normal mode coordinates {£,} [vide
Eq. (2a)], and, furthermore, to convert these to the corre-
sponding phonon annihilation and creation operators a,

and a;' [using relations analogous to Egs. (4a) and (4b)]:

&=il(a,—a)), (12)
where for the sake of brevity we have introduced I

= #/2me, with o, the modal angular frequency. The
matrix element in question therefore becomes

; 1
{a} || {a}y = [[ {a;|e” PPla=e)|qy,  (13)

where the lattice state is being descnbed through the mul-
timode coherent state |{a})= slas) It is at this stage
that the immense advantage of the coherent state basis
begins to manifest itself; for realizing that the kets are
eigenstates of the annihilation operator while the bras of
the creation operators, the matrix element can be readily
evaluated, provided one can move the as to the right of the
a's. This is accomplished through the Baker—Hausdorff
formula, which generalizes the formula ¢*-¢” = ¢**” to the
case when the exponents are operators which do not com-
mute. In the special case where two operators 4 and B are
such that their commutator [4,B], is an ordinary number
(viz. not an operator), one has:

At B —pA. B o~ (1/D)[4,B] (14)
Thus the operator on the right-hand side of Eq. (13) may
be more conveniently expressed, using the Baker—
Hausdorff formula, as
e_’(PIs/ﬁ)cs(as_aI) = e(p’;/ﬁ)cﬂz e~ (ply#)cqy, e (szg/ﬁz)c‘g/Z’ ( 15)

where use has been made of [a,aT]= 1. Accordingly,

(asle—(pI,/ﬁ)cs(araI) lay) =e—(pzlg/ﬁz)cf/Z,e(pl/ﬁ)cs(a:‘—as)’

(16)
where we have exploited the fact that the coherent states
are eigenstates of the annihilation operators. Implementing
Eq. (16) in Eq. (13) we arrive at
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. 2 2
( {as} I e,p.X/ﬁI {as}) —e—2E&plyMim(ay) , ,—E(c/2) (ply/H) ;
(17)

which in turn [using Eq. (6b) for each mode] leads to
[{{a}|?* | {a}) |?

= o PELR/R

=P UXD=CON/R (18)

a generalization of van Hove’s result®>® appropriate to a
basis with (X)3£0. To obtain the thermal-averaged prob-
ability we use the P representation of the density matrix,
taking the P-weighted mean, employing the weighting pro-
vided by Eq. (8b), to get

({a} ¥ | {aD))r

d*a,

2
_e—(l/z))::cs(plj/ﬁ)ZH f‘rr D o—lasl?/ng)
e~ 2itplyMeim(ay) (19a)
with
(ngy=e M0/ T /(1 e~ Ras/kT), (19b)

The Gaussian integrals [over Re(a,) and Im(a,)] are
readily performed [refer to the Appendix] to yield

. 2 2
(({as} | ezp-X/ﬁl {as}> ) T=e—(1/2)2,ts(p1,/ﬁ) (1+2(n,))

—e (R/Z)Es(cf/ﬁms)wth(ﬁwJZkT)’ (20)
where we have substituted the recoil energy R for p?/2m.
Now the summation over the phonon modes may be re-
placed by a frequency integral at the cost of introducing a
spectral weight function g(w), and consequently the
Debye-Waller factor becomes

f=e—R/3Nf[g(w)/ﬁw]coth(ﬁwﬂkT)dw’ 2n
where the expansion coefficients ¢,, being frequency inde-
pendent,’ have been put equal to 1/3N in deference to the
normalization condition [Eq. (2b)].

In the Einstein model of the solid there is a single fre-
quency wg and consequently the normalized frequency dis-
tribution being

g(w)=3Nb(w—wg), (22a)
the Debye-Waller factor becomes
f=e‘ [R/kTE]coth(TE/T), (22b)

where Tz, the characteristic temperature of the oscillator,
is defined through fiwy = kTj. In the Debye model of the
solid, on the other hand,

g(®) = (IN/03)*@(wp—o), (23a)

where © is the Heaviside step function, which is zero for
negative values of its argument and unity for positive val-
ues. A change of variables, x=#w/kT, enables us to ob-
tain:
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Tp/T xdx
fo (1)

Sf=exp

3R laa T\?
5tz ()
(23b)

wherein the Debye temperature has been introduced via
#iwp = kTp. This is the expression for the Debye-~Waller
factor as it appears in the literature. Thus we have dem-
onstrated how the use of coherent states allows the deriva-
tion of these well-known results in a stralghtforward and
graceful manner.

The classical derivation of the fraction of unshifted emis-
sion from an oscillating source, originallg due to Shapiro,
as discussed in Frauenfelder’s textbook,” depends on the
basic notion that radiation from an oscillating source (vi-
brating with frequency w) suffers Doppler shifts, and the
amplitude of the unshifted line (of frequency ), and that
of the Doppler wings (of frequencies Q£ w, ) +20, etc.),
could be obtained from the expansion and collection of
corresponding terms from:

exp[ —iQt+iK-Xo+K-Acos (wt+6) ], (24)

which represents the wave emitted (with wave vector K)
by this source which is oscillating with amplitude A about
its mean position X; with a single frequency @ (as is the
case with the Einstein solid). The amplitude of the un-
shifted line may be extracted from this expression through
an integration with respect to the phase € (a process that
would integrate’ out to zero all the Doppler wings). It is
interesting to observe that the result of this calculation
agrees with that arrived at through the method based on
the proper quantum treatment of the problem. That this is
expected to be the case is made evident in our approach via
the coherent state basis, which is ideally suited to expose
just such classical correspondences, when it is recognized
that Eq. (16), expressing the relevant probability ampli-
tude, is the quantal analog of Eq. (24). If one were now to
insert the time-dependent parametrization of a,, as intro-
duced through Egs. (9) and (10), the exact parallelism of
the procedure of averaging over A and 6 for the classical
calculation and the integration over the modulus and phase
of the complex variable a in the quantum case provides the
underlying reason for the mathematical equivalence be-
tween the two approaches, at least where P(a) is a func-
tion of |a|, which holds when we are concerned with the
system in thermal equilibrium.

Thus we have demonstrated the efficacy of the coherent
state basis for the calculation of the probability for recoil-
less transitions in crystal lattices, through the ease and
elegance of the derivation, and have also exhibited the in-
herent advantage in making contact with the classical de-
scription. It is suggested that the use of the coherent state
basis in problems involving phonons could also prove to be
advantageous in other problems of solid-state physics too.

APPENDIX

The process of thermal averaging when we are working
in the coherent state basis involves carrying out integra-
tions in the complex a-plane using the weighting corre-
sponding to an equilibrium distribution. Thus, for exam-
ple, carrying out the integration on the right-hand side of
Eq. (19a) may be instructive. Writing a;, = £ + iz the
relevant integral becomes
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2
f da, o=/ ap . 2i(plyRcim(ay)
7(ny)

_ 1 J‘+eo dge—é‘z/(ns)

w(ng)

% f T gy o= 2ol R,

o

Completing the square in the quadratic form in % in the
second exponent in the integrand by writing it as

1 L, 2 I\?
ayl iz ) +é(%) @,

and then displacing the variable of integration, 7'=7
+ icy pl(ny) /#i, both the integrals adopt the standard form
of the Gaussian integral. Accordingly, the above integral

yields:

eSS Pl/MnY).
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SHAKESPEARE AND THE SECOND LAW OF THERMODYNAMICS

A good many times I have been present at gatherings of people who, by the standards of the
traditional culture, are thought highly educated and who have with considerable gusto been
expressing their incredulity at the illiteracy of scientists. Once or twice I have been provoked and
have asked the company how many of them could describe the Second Law of Thermodynamics.
The response was cold: it was also negative. Yet I was asking something which is about the
scientific equivalent of: Have you read a work of Shakespeare’s?

C. P. Snow, The Two Cultures and the Scientific Revolution (Cambridge, U. P., New York, 1959), pp. 15-16.
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