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Spin-ensemble density-functional theory for inhomogeneous quantum Hall systems

M. I. Lubin, O. Heinonen, and M. D. Johnson
Department of Physics, University of Central Florida, Orlando, Florida 32816-2385

~Received 10 January 1997; revised manuscript received 14 July 1997!

We have developed an ensemble density-functional theory that includes spin degrees of freedom for non-
uniform quantum Hall systems. We have applied this theory using a local-spin-density approximation to study
the edge reconstruction of parabolically confined quantum dots. For a Zeeman splitting below a certain critical
value, the edge of a completely polarized maximum density droplet reconstructs into a spin-unpolarized
structure. For larger Zeeman splittings, the edge remains polarized and develops an exchange hole.
@S0163-1829~97!07240-8#

I. INTRODUCTION

In this paper we develop a spin-ensemble density-
functional approach for the study of inhomogeneous quan-
tum Hall systems. This permits the study of properties, such
as edge structures, of systems with many electrons.~Some
results for spin-polarized systems were reported earlier.1–3!
We show here that fractional Hall systems cannot be de-
scribed using conventional density-functional approaches,
but that the generalization known asensembledensity-
functional theory is a very suitable tool. For spin-polarized
systems our implementation of ensemble density-functional
theory gives results in excellent agreement with other ap-
proaches in limits where comparisons can be made~e.g., the
semiclassical limit, and the limit of small system size!. A
generalization to include the spin degree of freedom lets us
study the interplay of density and spin during edge recon-
structions in realistically large systems.

The quantum Hall effects~QHE’s! occur4 in a two-
dimensional electron gas in a magnetic fieldB5Bẑ perpen-
dicular to the electron system.5 A quantum treatment of the
motion of an infinite, homogeneous system shows that the
kinetic energy takes discrete values (n11/2)\vc , wheren
is the Landau-level index (n50,1,2,...) andvc5eB/m* c is
the cyclotron frequency~m* is the effective mass of an elec-
tron!. Each Landau level containsnB5B/F0 states per unit
area, or one state for each magnetic-flux quantumF05hc/e,
giving rise to a macroscopic Landau-level degeneracy. The
ratio of the electron areal densityn(r ) to nB defines the
filling factor n(r )5n(r )/nB . The filling factor also can be
expressed asn52p l B

2n, wherel B5A\c/eB is the magnetic
length.

For an explanation of experimental studies it is highly
desirable to have a computational approach that accurately
treats systems with of the order of 12103 electrons, and that
can include effects such as accurate confinements, spin de-
grees of freedom, and finite layer thickness. Exact numerical
diagonalizations are limited to very small systems
(N&10).6,7 Semiclassical methods8,9 do not accurately treat
electron-electron interactions, and effective field theories10

cannot give accurate quantitative information about many
system properties. A method that can deal with a larger num-
ber of electrons is the composite fermion theory in the Har-

tree approximation.11 However, in this approach, the singular
Chern-Simons gauge field is replaced by its smooth spatial
average, and the composite fermion mass has to be put into
the calculations by hand. Furthermore, interpretation of the
results is sometimes difficult and ambiguous. On the other
hand, density-functional theory~DFT! is known as a general
quantitative method to include exchange-correlation effects
in inhomogeneous systems without any fitting parameters. In
this paper we show thatensembleDFT can be used for quan-
tum Hall systems with highly accurate results.

DFT was originally formulated by Hohenberg and Kohn
as a practical method for a description of the ground-state
properties of many-body systems.12 The foundation of DFT
is the Hohenberg-Kohn theorem, which states that the
ground-state density uniquely determines the Hamiltonian of
a system~to within a constant!. Furthermore, a variational
principle states that the ground-state density minimizes the
energy of the system. We will use the constrained search
formulation of Levy13 for the Hohenberg-Kohn theorem and
its associated variational principle. In this elegant approach
the ground-state energyE can be written as a functional of
the density,

E@n#5F@n#1E drn~r !Vext~r !. ~1!

Here

F@n#5 inf
C→n

^CuT̂1V̂eeuC&, ~2!

with T̂, V̂ee, andV̂ext kinetic energy, electron-electron inter-
actions, and external potential, respectively.13 The infimum
is taken over all many-body statesC that yield a fixed den-
sity n(r ). F@n# so defined is then a universal functional of
the densityn(r ). For a given external potentialVext, the true
ground-state density is the functionn(r ), which minimizes
E@n# in Eq. ~1!.

Practical computations using DFT are typically done by
introducing an auxiliary noninteracting system with a
ground-state densityns(r ), and by asserting that there exists
an effective potentialVs(r ) for this system such that
ns(r )5n(r ), with n(r ) the ground-state density of the real,
interacting system. The density is then obtained from a Slater
determinant of the Kohn-Sham~KS! orbitals ca(r ),
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ns(r )5(a51
N uca(r )u2, which are obtained by self-

consistently solving the KS equations14

heffca~r !5@T1Vs~r !#ca~r !5«aca~r !. ~3!

The self-consistency is achieved in practice by iteratively
obtaining the eigenstates and occupying theN eigenstates
with the lowest eigenvalues«a . The effective potential
Vs(r ) can be derived from the Hohenberg-Kohn theorem and
its associated variational principle. The result is

Vs~r !5Vext~r !1VH~r !1Vxc~r !. ~4!

Here,VH(r ) is the classical Hartree potential, andVxc(r ) is
the exchange-correlation potential. In practical calculations,
the local-density approximation~LDA ! is often used.14 In
this approximation, one writes

Exc
LDA5E drn~r !exc„n~r !…, ~5!

whereexc(n) is the exchange-correlation energy per particle
of an infinite, homogeneous system of densityn. The
exchange-correlation potential is then obtained as

Vxc
LDA~r !5

d@nexc~n!#

dn U
n5n~r !

. ~6!

Systems for which the ground-state density can be repre-
sented by a single ground-state wave function~whether the
ground state is degenerate or not! are called pure-statev
representable. There are systems that are known not to be
pure-statev representable, as shown first by Levy15 and
Lieb.16 However, there exists a generalization of the
Hohenberg-Kohn theorem that provides a one-to-one corre-
spondence between a ground-state densityn(r ) and the
Hamiltonian even for systems that are not pure-statev rep-
resentable, but whose density can be obtained from an en-
semble of degenerate ground states. The functionalF@n# in
Eq. ~2! is extended to include ensembles over degenerate
ground statesuC i&, D̂5( i 51

q di uC i&^C i u, with di5di* >0,
( i 51

q di51. This then yields the generalization

FE@n#5 inf
D̂→n

Tr$D̂~ T̂1V̂ee!%, ~7!

with the infimum taken over allD̂ yielding a fixed density
n(r ). There is then a generalized variational principle that
states thatFE@n# is minimized by the ground-state density,
which can now be represented by an ensemble of wave func-
tions, even if it cannot be represented by a single ground
state. This generalization is calledensemble density-
functional theory. The key question for a practical calcula-
tion is whether the conventional KS scheme can be applied.
In fact, this requires a stronger criterion than noninteracting
pure-statev representability, which guarantees only that
some superposition of noninteracting ground states yield the
desired density. But to use the conventional KS scheme it is
necessary that the density be noninteractingv representable
by a single Slater determinant. As we shall see below in Sec.
II, fractional QHE systems are systems in which there is a
huge degeneracy in the KS orbitals, and the density cannot in

general be obtained from asingle Slater determinant of KS
orbitals, so an ensemble DFT has to be used.

In Sec. III we present a test of the accuracy of our en-
semble DFT scheme by applying it to spin-polarized quan-
tum Hall dots and comparing with numerical diagonaliza-
tions. In GaAs samples, where most of QHE experiments
have been done, the spin degree of freedom is important, and
may lead to inhomogeneous spin densities. The small mag-
nitude of the Lande´ factor g* ~about 0.44 in GaAs! makes
the existence of partly polarized states energetically
possible17,18 even atn,1. In Sec. IV we use our scheme to
describe the spin-textured edge reconstruction ofn51 quan-
tum Hall dots. Finally, conclusions are given in Sec. V.

II. V REPRESENTABILITY AND THE QUANTUM HALL
EFFECT

In practical ensemble DFT calculations one introduces as
in the KS scheme an auxiliary noninteracting system that
provides the basis for the density matrix and has a ground-
state density identical to the interacting system at hand. The
variational principle again yields19 the KS equations, Eq.~3!.
However, the density forN electrons is now given by

n~r !5(
a

f auca~r !u2, (
a

f a5N, ~8!

with the occupation numbersf a in the interval 0< f a<1.
One obtains fractional occupanciesf a only when the corre-
sponding KS eigenvalues«a are degenerate and equal to the
Fermi energy«F . ~If «a,«F , then f a51.!

Let us show briefly why applying DFT to the fractional
quantum Hall effect~FQHE! inevitably requires ensemble
DFT. Consider a circularly symmetricN-particle FQHE sys-
tem with a uniform density corresponding ton51/3 out to
some radiusr 0'A6NlB . ~At the edge the density falls to
zero within a distance of orderl B . We will ignore details
near the edge, which are irrelevant for our discussion.! That
such systems exist is well demonstrated by the excellent
agreement between the Laughlin wave function and experi-
ments, and by many numerical calculations.20,21 We wish to
model this interacting system with an auxiliary noninteract-
ing system using DFT. To do so we must establish that there
exists a unique effective single-particle potentialVs that
gives a~possibly degenerate! ground stateC with the desired
density. We can readily establish that the desiredVs is sim-
ply a constant by using the generalization of the Hohenberg-
Kohn theorem to degenerate ground states, as follows. We
first chooseVs(r )5const, and we will show that this choice
of Vs will yield a ground state with the correct density. Due
to the circular symmetry the KS orbitals are the usual sym-
metric gauge eigenstatescnm(r ), with n the Landau-level
index andm angular momentum. For a givenn these orbitals
are degenerate inm. Consequently everyN-particle Slater
determinant made up of anyN lowest-Landau-level (n50)
orbitals is a ground state—the noninteracting ground state is
hugely degenerate. We now explicitly demonstrate that we
can construct a ground state with the desired density. For
example, we may choose the particular superposition of de-
terminants that yields the Laughlin wave function. Or, more
simply, choose C5(1/))(C11C21C3), where
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C1 ,C2 ,C3 are the Slater determinants made up of
lowest-Landau-level orbitals with, respectively,$m%
5$0,3,6, . . .%,$1,4,7, . . .%,$2,5,8, . . .%. Both choices yield
N-particle wave functions with the desired density corre-
sponding ton51/3 in the bulk.

Thus there exists a potentialVs(r )5const for which a
noninteracting ground state yields the correct density. The
generalized Hohenberg-Kohn theorem then ensures that this
potential is unique~to within a constant!. Since we must use
this Vs , we must construct the density in the noninteracting
system from the orbitalscnm . But to get the right density
requires fractional occupancy of these orbitals.~For ex-
ample, consider the origin: all lowest-Landau-level orbitals
with mÞ0 vanish at the origin, andc00 has a local filling
factor of unity atr 50. Hence to get a filling factorn51/3 at
r 50 requires thatc00 have occupancy 1/3.! This example
leads to the key result of this section: it is impossible to
construct the FQHE ground-state density from asingleSlater
determinant of KS orbitals. Hence the conventional KS ap-
proach cannot be used, and we must turn to ensemble
density-functional theory.

It is evident from this example that the FQHE may in
general be noninteracting pure-statev representable, i.e., the
ground-state density can be extracted from a single noninter-
acting ground state consisting of a sum over degenerate
Slater determinants. However, this is not a very useful state-
ment for practical purposes, where the important consider-
ation is whether or not the ground-state density can be con-
structed from asingle ground-stateSlater determinant of KS
orbitals. Whenever the KS orbitals have degeneracies that
lead to degenerate ground states of the noninteracting sys-
tem, the conventional KS scheme cannot be used and one
needs to try ensemble density-functional theory.

In inhomogeneous QHE systems, which may include re-
gions with locally fractional and integer fillings, not all KS
orbitals are degenerate, but there does exist a set of degen-
erate orbitals at the Fermi energy. By a simple extension of
the above argument, ensemble DFT must be used for these
systems, too. For inhomogeneous systems one findsM orbit-
als with «a,«F and D degenerate orbitals with«a5«F .
One constructs determinantal wavefunctionsC i in which all
M low-energy orbitals are occupied; theC i differ by which
N2M of the D degenerate orbitals are occupied. Withu ia
denoting the occupancy of orbitala in the determinantC i ,
the total density of the ensemble can then be written

n~r !5(
a

(
i 51

q

diu iauca~r !u2, ~9!

wheredi is the weight ofC i in the ensemble. Comparing the
result with Eq.~8!, one can see how the fractional occupa-
tional numbersf a of the degenerate KS orbitals follow from
the weightsdi in the expansion of density matrix:

f a5(
i 51

q

diu ia . ~10!

If the ground-state density can be written in this form, then
one can appeal to the ensemble generalization of the
Hohenberg-Kohn theorem and its generalized variational
principle, as explained in Sec. I. However, a procedure to

compute the fractional occupanciesf a has not existed,22 and
one major advance in our work is that we have found a
simple way to generate the occupancies, at least for the
FQHE. ~The procedure is explained in our earlier work.1,2!
Applying ensemble DFT to the FQHE, we have found that
fractionally occupied KS orbitals are indeed degenerate at
the Fermi energy, consistent with our demonstration above
that the ground-state density of an FQHE cannot in general
be obtained from a single ground-state Slater determinant of
KS orbitals.

III. SPIN-POLARIZED QUANTUM DOT
IN A FQHE REGIME

Quantum dots can contain from one to several thousand
electrons, typically with very inhomogeneous density distri-
butions. Moreover, quantum dots are believed to have highly
correlated ground states in strong magnetic fields.23 Hence
these are ideal systems to examine the usefulness of our en-
semble DFT approach, including the important question of
how well the strong correlation effects are included com-
pared, say, with exact diagonalization studies.6,7 In this sec-
tion we will use a small-system spin-polarized quantum dot
as a test case to study our ensemble DFT approach and to
compare our results with those obtained by numerical
diagonalizations.6 ~We refer to Refs. 1–3 for an explanation
of our ensemble DFT-LDA scheme and results for larger
spin-polarized quantum Hall systems.! One of the things
considered is the reconstruction of the so-called maximum
density droplet~MDD!, which is the most compact droplet
~minimum angular momentum! droplet that can be formed in
the lowest Landau level.

We have calculated the expectation value of the total an-
gular momentum^M &5(mnm fmn as a function of the
magnetic-field strengthB for N56 spin-polarized electrons
in the lowest Landau level and a parabolic confining poten-

tial Vext5
1
2 m* V2r 2, with \V52.0 meV. The results are

shown in Fig. 1 for two different versions of the exchange-
correlation energyexc . The diamonds~L! were generated
using the Levesque-Weiss-MacDonald exchange-correlation
energy,24 while the pluses~1! were generated using an
exchange-correlation energy due to Fano and Ortolani.25

This latter usesexc at n<1/2 and the particle-hole symmetry
of the lowest Landau level to give a good interpolation for-
mula on the entire interval 0<n<1. Both exchange-
correlation energies give clear plateaus or plateaulike struc-
tures in angular momentum vs magnetic field. However, the
Levesque-Weiss-MacDonald is a rather poor approximation
nearn51 ~a region for which it was not constructed!, and
furthermore, overestimates the magnitude of the exchange-
correlation potential at aboutn51/2. As a consequence, the
initial maximum density droplet instability is smeared out
and starts at a too low a value of magnetic field, and the
formation of a 1/3 droplet~as is evidenced by studies of the
density profile! occurs at a too high value of magnetic field.
Also, the values of the angular momentum at the plateaulike
regions tend to be too low. For example, the formation of the
1/3 droplet occurs atM'40, while the exact value is
M545. In contrast, the results obtained using Fano-Ortolani
exchange-correlation energy tend to be very accurate. For
example, the maximum density droplet instability occurs at
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B'2.8 T in our calculations, compared toB52.75 T in the
numerical diagonalizations, and the 1/3-droplet formation
occurs at B'5.3 T in our calculations, compared to
B55.29 T in the numerical diagonalizations~see Fig. 2!. In
addition, the plateaulike regions are more developed and flat-
ter in angular momentum. Still, though, the ensemble DFT
tends to underestimate the angular momentum at the pla-
teaus. We want to emphasize here that we have not used any
adjusting parameters in our calculations. Furthermore, the
ensemble DFT is not constructed only to give integer angular
momenta. Finally, only the energy gaps atn51/3 and
n52/5, along with their particle-hole conjugates atn52/3
andn53/5 were included, while the numerical diagonaliza-

tions used the full Coulomb interaction. Despite these ob-
stacles, the agreement between our ensemble DFT results for
small systems and the numerical diagonalizations6 are quite
good. We also did these calculations at a finite temperature
of 100 mK @kBT;131023e2/(e0l B)#, which improves the
convergence of these small particle systems. We are pres-
ently working on extending the Fano-Ortolani interpolation
to includen>1 and several Landau levels.

IV. SPIN-TEXTURED EDGE RECONSTRUCTION
OF THE MAXIMUM DENSITY DROPLET

It was once widely thought that thatn51 is a Fermi liq-
uid in the sense that the elementary excitations are well de-
scribed by single-particle excitations and only renormalized
by the interactions. However, recent experiments on high-
mobility GaAs quantum wells26 have provided evidence for
the existence of topological charge-spin textures, so-called
Skyrmions, nearn51. These are nontrivial many-body exci-
tations due to electron-electron interactions first predicted to
be the low-energy excitations nearn51 by Sondhiet al.,27

with the energies about half of those of single-particle spin-
flip excitations. The fact that Skyrmions are the low-energy
excitations nearn51 ~and also possibly nearn51/3! raises
the possibility of spin-textured edge reconstruction of the
maximum density droplet. Therefore, inclusion of the spin
degree of freedom may be essential in the study of inhomo-
geneous systems. Indeed, Hartree-Fock and effective-field
theoretical calculations have shown that for a soft confining
potential, the edge of an infinite Hall bar atn51 becomes
unstable to spin-textured reconstruction for weak Zeeman
coupling, while stronger Zeeman coupling yields a spin-
polarized reconstruction.28,29

Motivated by these ideas, we have generalized our en-
semble DFT approach to include spin degrees of freedom
within the local spin-density approximation~LSDA!. The
Hohenberg-Kohn theorem formally ensures thateveryprop-
erty, including the spin density or polarization, can be ob-
tained from the ground-state density. However, practical
LDA calculations of systems with spontaneously broken
symmetries, such as spin rotation symmetry, typically are
much improved if the order parameter of the broken symme-
try, e.g., spin density or polarization, is explicitly included
by construction. In particular, the broken symmetry may not
otherwise be obtained accurately from the LDA.

A. Ensemble spin-density-functional theory

An exact treatment of the spins, in general, requires30 the
replacement of the charge densityn(r ) by the single-particle
density matrixrss8(r )5^0uĉs

1(r )ĉs8(r )u0&. Here, ĉs
1(r )

and ĉs(r ) are the usual field operators corresponding to the
annihilation and creation of an electron with spins at r , and
u0& is the ground state of the system. With a constant mag-
netic field applied in thez direction, theẑ component of the
total spin angular momentum is a constant of the motion and
it is convenient to assume that the magnetization density
only has aẑ component. Under this assumption, the single-
particle density matrix can be taken to be diagonal,
rss8(r )5rss8(r )dss8 . In this case the energy functional of
Eqs.~1! and ~2! is modified to32

FIG. 1. Expectation value of the total angular momentum
^M &5(mnm fmn as a function of the magnetic-field strengthB in-
dicated by solid line for a spin-polarized six-electron droplet in a
parabolic confinement using the Levesque-Weiss-MacDonald~Ref.
24! ~L! and Fano-Ortolani~Ref. 25! ~1! exchange-correlation en-
ergies. The solid shows the exact diagonalization studies result from
Ref. 6.

FIG. 2. Local filling factor as a function of radial coordinate for
a six-particle system in a parabolic external potential with
\V52.0 meV. Here, the Fano-Ortolani exchange-correlation en-
ergy ~Ref. 25! was used. The transition to a 1/3 droplet occurs
betweenB55.3 T andB55.4 T. The bump in electron charge at
the edge of the system is characteristic of systems with a not too
soft confining potential.
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E@n↑ ,n↓#5F@n↑ ,n↓#1E drn~r !Vext~r !, ~11!

whereF@n↑ ,n↓#5 infC→n↑ ,n↓^CuT̂1ÊZ1V̂eeuC& and ÊZ is
the Zeeman energy. The infimum is overC yielding fixed
densitiesns(r ). The LSDA is then given by

Exc
LSDA@n↑ ,n↓#5E drn~r !exc@n↑~r !,n↓~r !#, ~12!

whereexc@n↑ ,n↓# is the exchange-correlation energy per par-
ticle in a homogeneous system with up- and down-spin den-
sities n↑ and n↓ , respectively. In spite of the LSDA being
justified only in the limit of small spatial variations of the
electron density, this approximation has been surprisingly
successful in describing the properties of inhomogeneous
atomic, molecular, and solid-state systems.33 This scheme
correctly predicted, for example, ferromagnetism in Fe, Co,
and Ni among the transition metals.33 Moreover, the self-
interaction-corrected LSDA was successfully applied to
some strongly correlated systems such as the transition-metal
oxides and a Hubbard model representing a CuO2 layer in
the cuprate superconductors.34

For a parabolic dot, the variational principle applied to the
KS functional@Eq. ~11!# yields two sets of KS equations for
spin-up and spin-down electrons,

@T1Vs,s~r ,B!#wmn,s~r !5«mn,swmn,s~r !, ~13!

where

Vs,s~r ,B!5sg!m0B1Vext~r !1VH~r !1Vxc,s~r ,B!
~14!

is an effective potential for the auxiliary noninteracting sys-
tem. In the LSDA the exchange-correlation potentials are

Vxc,s~r ,B!5
]

]ns
~nexc@n↑ ,n↓ ,B# !U

ns5ns~r !

. ~15!

The parametric dependence on the magnetic fieldB can be
incorporated by using spin filling factorsns52p l B

2ns as
variables instead of spin densitiesns . To make connection
with the spin-polarized case we first transform the spin filling
factorsns to total filling factorn and spin polarizationj:

n5n↑1n↓ ,

j5~n↑2n↓!/~n↑1n↓!. ~16!

The exchange-correlation potentials@Eq. ~15!# then become

Vxc,↑5
]

]n
~nexc!1~12j!

]

]j
exc ,

Vxc,↓5
]

]n
~nexc!2~11j!

]

]j
exc , ~17!

where the exchange-correlation energy per particle in a ho-
mogeneous system with a filling factorn and polarizationj,
i.e., exc[exc(n,j), has to be approximated.

B. Constructing Vxc„n,j…

Our approach in constructing the exchange-correlation
potentials Vxc(n,j) is to first construct the exchange-
correlation energy per particle for a spin-polarized homoge-
neous systemexc , and then to add interpolation functions to
obtain the exchange-correlation energy at arbitrary polariza-
tion j. We choose as exchange-correlation energy per par-
ticle in a homogeneous spin-polarized system,

exc~n!5exc
LWM~n!1exc

C ~n!. ~18!

The first term is a smooth interpolation formula of Levesque,
Weis, and MacDonald24

exc
LWM~n!5E

0

`

drr S e2

r e0l B
D @gn~r !21#

.20.782133An~120.211n0.7410.012n1.7!

3~e2/e0l B!, ~19!

for the ground-state energy obtained by evaluating the pair
correlation functionsgn(r ) at certain fillingsn, 1

2 for about
256 particles using very accurate Monte Carlo methods. The
second term in Eq.~18!, exc

C (n), contains the cusps in the
ground-state energy that cause the FQHE. The discontinuity
in the slope ofexc

C (n) near certain ‘‘magic’’ filling factors
n!5p/q is related to the chemical potential gap
Dm5q(uDpu1uDhu). HereDp,h are the quasiparticle~hole!
creation energies31 at n5n!. In our calculations, we restrict
ourselves to include only the cusps atn51/3, 2/5, 3/5, and
n52/3, which are the strongest fractions.~See the Appendix
for a detailed description of our expression forexc

C .! Substi-
tuting Eq. ~18! into Eq. ~6! gives the exchange-correlation
potential as a function of filling factorVxc(n) for a spin-
polarized system. This potential is depicted in Fig. 3 as
Vxc,↑(n,j51).

The question is then how to obtain a reasonable interpo-
lation formula for exc between spin-polarized (j51) and
spin-unpolarized (j50) two-dimensional~2D! electron liq-
uids for a fixedn in a strong magnetic field. We have con-
structed a first approximation, as we will now explain. The
result is fairly complicated~a piecewise interpolation in two
variables among various numerically and analytically ob-
tained results! and is not well represented as a single for-
mula. A subroutine calculatingVxc(n,j) can be obtained
from the authors.

In what follows x~c! as a subscript denotes exchange~cor-
relation! respectively. We decompose the exchange-
correlation energyExc into exchangeEx and correlationEc
energies. Since the exchange interaction only acts between
parallel spins, we have

Ex@n↑ ,n↓#5
1

2
Ex@n↑ ,n↑#1

1

2
Ex@n↓ ,n↓#. ~20!

Moreover, it follows from dimensional analysis that the ex-
change energy must scale as density~filling factor! to the 3/2
power in a 2D electron gas. Following Oliver and Perdew,35

we can then write
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Ex;E d2r @n↑
3/2~r !1n↓

3/2~r !#. ~21!

We also have from Eqs.~16! n↑5
1
2 n(12j), n↓5

1
2 n(11j).

Equation~21! can then be rewritten as

Ex;E d2rn3/2@~11j!3/21~12j!3/2#. ~22!

Since in the local-density approximation for the exchange
energyEx5*d2rnex(n,j) we are then led to the form

ex~n,j!5ex~n,j51!1„ex~n,j50!2ex~n,j51!…f ~j!

[ex~n,j51!1Dex~n,j!, ~23!

where the function

f ~j!5
~11j!3/21~12j!3/222&

222&
~24!

is an interpolation function between the two extreme cases
j50 and j51 with f (0)51 and f (1)50. Although the
analogous simple closed form for the correlation energy
ec(n,j) is not available, it can be always be written as
ec(n,j)5ec(n,j51)1Dec(n,j). So, as a first approxima-
tion we will use the form of Eq.~23! for the smooth part of
the correlation energyec , too ~leaving the cusps aside for the
moment!, with the sameinterpolation functionf (j), as was
suggested first by von Barth and Hedin.30 Denoting the
smooth part of the exchange-correlation energy per particle
by exc

s we can then write

exc
s ~n,j!5exc

s ~n,j51!1@exc
s ~n,j50!2exc

s ~n,j51!# f ~j!

[exc
s ~n,j51!1dexc~n! f ~j!. ~25!

So far, we have constructed a functionexc
s (n,j) that gives a

smooth interpolation for the exchange-correlation energy for
any value ofn andj. What is left is to add the cusps to this
function. We already have a good approximation for these at
j51. We now need to extend this approximation to arbitrary
values ofj. Very little is known about the cusps, i.e., the
energy gaps, for arbitrary polarizations. It is known that there
is a gap for unpolarized systems at fillingsn52/5, n53/5,
andn52/3. The gap, and thus the cusps, occur at very spe-
cial ‘‘magic’’ configurations at which the system can take
advantage of a particularly low correlation energy. There-
fore, it seems plausible that for a given value ofn, say,
n52/5, there cannot be an energy gap for any value ofj
between 0 and 1. In order to incorporate this assumption into
a usable approximation, we interpolate our cusp energy con-
structed for polarized systems,exc

C (n), to arbitrary polariza-
tions by multiplying it by a functiong(j) that is unity at
j50 andj51 with zero derivative at these points, vanishes
away from these values of polarization, and is symmetric
aboutj51/2. All together, then, we have

exc~n,j!5exc
LWM~n!1dexc~n! f ~j!1exc

C ~n!g~j!. ~26!

Specifically, we chose

g~j!5@4j221#2@272j2~40216j2!#/27, ~27!

which is the only polynomial inj satisfying the above con-
straints. Nearn51 ~where there is no cusp in the total
exchange-correlation energy!, the sign of the function
dexc(n) will then determine the spin-polarized~ferromagnet-
ic! or spin-unpolarized~paramagnetic! ground state of the
infinite electron liquid~neglecting the Zeeman splitting!. In-
deed, substitution of Eq.~26! into Eq. ~17! gives

DVxc[Vxc,↑2Vxc,↓52
]

]j
exc52dexc~n! f 8~j!

12exc
C ~n!g8~j!. ~28!

The last term in this expression may be ignored nearn51.
We would thus expect a spin-polarized ground state if
dexc(n).0 becausef 8(j),0 for all 0<j<1, so in this case
the inequalityVxc,↑,Vxc,↓ holds. Otherwise we would ex-
pect a spin-unpolarized state. In contrast, numerical diago-
nalizations suggest that, at some fillings, the homogeneous
ground state is partially polarized. This cannot be obtained
by our simple model of the exchange-correlation energy with
a monotonic interpolation functionf (j). Nevertheless, the
simple model of Eq.~25! allows us to capture the essential
physics of the spin-unpolarized edge reconstruction of the
quantum dot in reasonable agreement with other methods, as
we will show.

In order to obtain the functiondexc(n) in Eq. ~26! we start
by calculating the energy differences between spin-polarized
and -unpolarized states using small-system numerical diago-
nalization data for some filling fractions obtained from
Chakraborty and Zhang.36 The value for the ground-state en-
ergy of a n51 unpolarized system is not available, but a
reasonable approximation is to takeexc(n51, j50)5
exc(n51/2, j51)520.469(e2/e0l B), implying that the
spin-up and spin-down components are uncorrelated.~This
most likely overestimates the energy.! The ground-state en-
ergy of a n51 polarized system exc(n51, j51)
520.6265(e2/e0l B). Therefore we have dexc(n51)
50.1575(e2/e0l B). To complete the numerical parameter-
ization of the exchange-correlation functional, we then per-
form a spline fit to obtain the functiondexc(n). We have
plotted the exchange-correlation potentialsVxc,s as a func-
tion of a filling factorn at j51 andj50 in Fig. 3. We see
that atj51 the difference between exchange-correlation po-
tentials for spin-up and spin-down electronsDVxc @Eq. ~28!#
is changing sign from negative to positive while the filling
factor n is decreasing fromn51 to n52/3. Ignoring the
Zeeman splitting and the cusps, the ground state of an infi-
nite electron liquid would change from spin polarized to spin
unpolarized. To estimate the possibility of having a spin-
unpolarized state above filling 2/3 with the inclusion of the
Zeeman splitting, we have to compare the dimensionless
Zeeman energyg̃5g* mBB/@e2/(e0l B)# with the difference
DVxc @Eq. ~28!# at this filling DVxc(n52/3, j51)'
0.05(e2/e0l B). This value is larger then the Zeeman splitting
for GaAs g̃'0.02. Therefore, the ground state of a GaAs-
based homogeneous system is a spin-unpolarized state at and
just above filling factor 2/3. In an inhomogeneous system, in
addition to exchange-correlation potential and Zeeman en-
ergy, there are also the Hartree interaction of the 2D elec-
trons and the external potential that confines them. Hence,
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even in our simple approximation, it is possible to have not
only polarized and unpolarized states, but also a partially
polarized state in an inhomogeneous system such as a quan-
tum dot.

C. Spin textures on edges

We have reinvestigated the stability of the MDD using
our LSDA ensemble DFT. Early numerical diagonalizations
of small systems6 indicated that the initial reconstruction of
the MDD was to spin-polarized states only for unphysically
large Zeeman energies. Withg* in the range of physical
values, the reconstruction of the polarized MDD was found
to be to a partially polarized state. More recent work by
Karlhedeet al.,28 and by Franco and Brey29 has also inves-
tigated the edge reconstruction of a Hall bar using the
Hartree-Fock approximation. Karlhedeet al. found that, for
physical values ofg* , the reconstruction of a spin-polarized
Hall bar atn51 ~the analogy in a rectangular geometry of an
MDD! was to a spin-textured edge. These works then sug-
gest that in order to obtain a correct picture of edge recon-
struction, the spin degree of freedom has to be included. This
is an important point, especially in view of the fact that there
are now very sensitive experimental probes of QHE edges.
However, until now the interpretations of experimental re-
sults have relied on the picture by Chklovskii, Shklovskii,
and Glazman9 for fully spin-polarized edges, which then may
have to be modified to take the electron spins into account.
Our motivation to reinvestigate the stability of the MDD is to
demonstrate that our DFT approach yields results in agree-
ment with previous work using different methods that are
limited in their applicability, and thus that our DFT approach
can be used to study spin structures in general inhomoge-
neous QHE systems. We expect this latter point to be an
important area of future research.

As a model system, we chose a parabolic dot with the
same parameters in Sec. III. The focus of the investigation
was the nature of the initial instability of the MDD as the
effective confinement strength

g̃5
m* V2l B

2

~e2/e0l B!
~29!

is decreased~by increasing the magnetic-field strength! as a
function of the Zeeman coupling. The Zeeman coupling is
most conveniently expressed in a dimensionless form as the
ratio of the Zeeman energy to the Coulomb energy,

g̃5
g* mBB

~e2/e0l B!
. ~30!

We find that for large enough values ofg̃, the instability is to
the fully spin-polarized ‘‘exchange hole,’’ in which a lump
of charge is expelled at the edge to decrease the Hartree
repulsion while still taking advantage of the short-range at-
tractive exchange interaction. However, asg̃ is decreased
below a certain valueg̃c , the instability is from the spin-
polarized MDD to a state in which the edge is partially po-
larized. The valueg̃c at which minority spins first appear at
the edge, is for this systemg̃c'0.055. We can then plot a
phase diagram for the parabolic dot near the MDD region in
the g̃-g̃ plane.6,28 This phase diagram is depicted in Fig. 4.
For values ofg̃ less than approximately 0.076, the system
forms an MDD ~for g̃*0.076 there is appreciable occupa-
tion of states in the higher Landau levels!. At g̃'0.065 an
instability to higher total angular momentum occurs and the
MDD reconstructs. Forg.g̃'0.055 the reconstruction is to
the totally polarized exchange hole~this region is marked
‘‘ x hole’’ in Fig. 4!. For fixedg̃ such thatg̃c<g̃&0.085 the
system undergoes an additional instability asg̃ is increased,
in which minority-spin population appears at the edge. For
g̃,g̃c the initial instability of the MDD is always to a state
with a partially polarized edge. Finally, asg̃ is decreased
below approximately 0.058, the system will undergo further
reconstructions, the nature of which depends on the value of
g̃. We have not here studied in detail the state reached after
these reconstructions. The value ofg̃c'0.055 separating the

FIG. 3. The exchange-correlation potentialsVxc,s as a function
of a filling factor n at j51 andj50 in units of e2/(e0l B). The
solid line indicatesVxc,↑ and short-dashed line corresponds toVxc,↓
at j51. According to Eqs.~28! and ~24!, the exchange-correlation
potentialsVxc,s coincide atj50 @since f 8(0)50# and are shown
by the long-dashed line. The increase inVxc as functions ofn at a
FQHE filling factors occurs over a range of a filling factor of 0.002.

FIG. 4. Phase diagram of the edge reconstruction of a parabolic
quantum dot in the (g̃,g̃) plane for N538 electrons. Here, the
confining potential has a strength given by\V51.6 meV. For
g̃.0.065, the system forms a maximum density droplet for all
values of the Zeeman couplingg̃. For values of the Zeeman cou-
pling g̃ larger than a critical valueg̃c , the maximum density droplet
undergoes an initial reconstruction to a spin-polarized exchange
hole as the confinement strengthg̃ is decreased, while forg̃,g̃c the
maximum density droplet has a spin-structured instability with de-
creasingg̃. In these calculations,g̃c'0.055.
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spin-polarized and spin-structured instabilities is in reason-
able agreement with the valueg̃c'0.03 found ~for much
smaller systems! using numerical diagonalization.6 A phase
diagram analogous to ours was obtained by Hartree-Fock
calculations by Karlhedeet al.28 Their value of the critical
Zeeman splittingg̃c50.169 is about three times larger then
g̃c'0.055 from our phase diagram. In contrast, Franco and
Brey29 obtained for a Hall bar geometry a value ofg̃c'0.008
below which the edge is unstable with respect to spin-
textured edge reconstruction. Note that for the value of the
confinement strength used in our calculations,
\V51.6 meV, we haveg̃'0.01 at a magnetic field strength
of 2.8 T, at which the instability of the MDD occurs. This
means that for physical values ofg* , the instability will in
these calculations always occur to a state with a partially
polarized edge. Future work will be extended to include
charge modulations along the direction of the edge.29

Within the LSDA it is easy to understand why the edge’s
spin state changes as the Zeeman couplingg̃ changes. As is
seen in Fig. 3,Vxc,↓,Vxc,↑ for n&0.8 andj51, so for small
filling factors (n&0.8) the exchange-correlation energy de-
stabilizes polarized densities in favor of unpolarized densi-
ties. The Zeeman coupling, conversely, favors polarized den-
sities ~majority spins!. At the edge as the density decreases
there is then a competition between exchange-correlation and
Zeeman energies. For large enough Zeeman coupling
(g̃.g̃c), it is energetically favorable for the edge to remain
spin polarized. For small Zeeman coupling (g̃,g̃c), the
exchange-correlation effects dominate the Zeeman coupling,
and a minority-spin population appears at the edge. This is
depicted in Fig. 5, which shows an example withg̃50.014
andg̃50.063. These are values such that the system has just
undergone a reconstruction to a partially polarized edge. In
the following the majority-spin direction is ‘‘up’’ and the
minority ‘‘down.’’ Figure 5~a! shows a lump of charge that
has been expelled in the reconstruction~solid line!, but this
expelled charge is partially polarized~dashed line!. This is
clearly depicted in Fig. 5~b!, which depicts up- and down-
spin occupancies. In the region where the expelled charge
resides, there are partially occupied down-spin states~L!
together with almost fully occupied up-spin states~1!. This
implies that these up- and down-spin states all have to be
degenerate at the Fermi level, as is indeed shown in Fig.
5~c!. The behavior of the KS eigenvalues depicted in Fig.
5~c! is generic: for a fixed value ofg̃ in the region of the
initial MDD instability, the KS eigenvalues of the down-spin
states are higher than those for the up-spins states at large
values of g̃. As g̃ is reduced, the difference between the
up-spin and down-spin KS eigenvalues decreases in the edge
region as the strength of exchange correlation effects in-
creases relative to the Zeeman coupling. At someg̃5g̃c , the
difference vanishes and both up- and down-spin states be-
come occupied at the edge. We would also like to point out
that because many KS orbitals are degenerate at the Fermi
energy, an ensemble DFT approach has to be used.

V. SUMMARY AND CONCLUSIONS

We have developed a spin-ensemble density-functional
approach and used it to study inhomogeneous quantum Hall
systems in the integer and fractional Hall regimes. For spin-

FIG. 5. Spin structured instability at the edge of a quantum dot
for a Zeeman splittingg̃50.014, magnetic fieldB53.05 T, and
N538. The external potential is characterized by\V51.6 meV
~so that the dimensionless strength of the confinement isg̃50.063!.
~a! The solid line depicts the total local filling factorn(r ) vs radial
coordinater , and the dashed line depicts the polarization.~b! The
occupancies of the KS statescm0,s(r ) are depicted vs orbital center
coordinater m5A2mlB with 1 for majority ~↑! spin occupancies,
and L for minority ~↓! spin occupancies. At the instability of the
maximum density droplet for this value ofg̃, there is a minority-
spin population at the edge of the system.~c! Eigenvalues of the
two lowest-Landau-level KS orbitals, with1 depicting eigenvalues
of the majority-spin orbitals, andL depicting the eigenvalues of
the minority-spin orbitals. The chemical potential is indicated by
the solid line. At the edge the filling factor takes fractional values,
and the KS eigenvalues are here degenerate and equal to the Fermi
energy«F , in agreement with the general theory of Sec. II.
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polarized systems, our approach gives results in excellent
agreement with numerical diagonalizations, Hartree-Fock
calculations, and semiclassical calculations. Note that while
all of these latter approaches have limited regions of appli-
cability, such as small systems, systems nearn51, or the
semiclassical limit, we have here demonstrated that our en-
semble density-functional approach spans all these regions,
which makes it a useful approach to general inhomogeneous
quantum Hall systems.

We have generalized the ensemble DFT to include spin
degrees of freedom within a simple local-spin-density ap-
proximation, and applied this generalization to a quantum
dot. Our results show that for small, but physical, Zeeman
energies,g̃,g̃c , the maximum density droplet is unstable
with respect to spin-textured edge reconstructions as the
magnetic field increased. At larger Zeeman splittings,
g̃.g̃c , the maximum density droplet is unstable with respect
to spin-polarized edge reconstructions. Our value ofg̃c is in
good agreement with that obtained from numerical diagonal-
ization studies.6 Hartree-Fock calculations for an infinite
Hall bar by Karlhedeet al.28 give a phase diagram qualita-
tively analogous to ours. However, Hartree-Fock calcula-
tions are limited ton'1, while our ensemble DFT is, in
principle, applicable to general fractional quantum Hall sys-

tems, e.g. droplets atn5 1
3 . The accuracy of our approach

depends on obtaining good estimates of the exchange-
correlation energy as a function of both electron density and
spin polarization for homogeneous fractional quantum Hall
systems. Work is currently in progress to improve these es-
timates. Finally, the spin ensemble DFT used here cannot be
used to study spin-charge textures~Skyrmions!, in which the
spin polarization rotates smoothly in space. Work is cur-
rently under way to generalize our spin DFT to include such
charge-spin textures.
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APPENDIX

We will construct the cusp part of the exchange-
correlation energy,exc

C (n) for a spin-polarized system by first
consideringn,1/2, and then use electron-hole symmetry to
obtain the form for 1/2,n,1. Finally, for n.1 we assume
exc

C (n)5exc
C (12n).

For spin-polarized systems in the lowest Landau level, we
write exc(n)5exc

s (n)1exc
C (n), where exc

s (n) is given by a
smooth interpolation, such as the Levesque-Weiss-
MacDonald formula24 ~although this one does not obey strict
particle-hole symmetry in the lowest Landau level!, or the
Fano-Ortolani formula.25 Particle-hole symmetry yields for
the total exchange-correlation energy

n@exc~n!2exc~1!#5@12n#@exc~12n!2exc~1!#,
~A1!

from which we obtain

nexc
s ~n!5n* exc

s ~n* !1~122n* !exc~1!, ~A2!

with n* [12n. This means that

nexc
C ~n!5n* exc

C ~n* !. ~A3!

We define

g~n![nexc
C ~n!. ~A4!

Since the discontinuities in the chemical potential at frac-
tional QHE fillingsp/q is a relation ford@nexc(n)#/dn, it is
easier to work withg(n) than with exc

C (n). Then particle-
hole symmetry implies that

dg

dn
52

dg~n* !

dn*
. ~A5!

At fractional QHE fillingsp/q, we must have

d

dn
g~n!Un5~p/q!12

d

dn
g~n!U

n5~p/q!2

5q~m11m2!,

~A6!

wherem1 and m2 are the quasiparticle and quasihole cre-
ation energies~defined to be positive!, respectively. We con-
struct g(n) for 0<n<1/2 to be piecewise smooth, with
g(p/q)50 for p/q a fractional QHE filling, and a disconti-
nuity in the derivative given by Eq.~A6!.

We only included the cusps atn51/3, 2/5, their particle-
hole conjugates, and the corresponding values at fillings in-
creased by unity. Forn,1/3, we make the ansatz

g~n!5anqm2~p/q!~n2p/q!@e~n2p/q!2g0#, ~A7!

with p/q51/3 and

a5
q

p~12g0!
~A8!

andg05exp(2p/q).
For 2/5,n<1/2 we take

g~n!5
5

a
m1~2/5!@12e2a0~n22/5!#, ~A9!

with a0580.
Next, for 1/3,n,2/5 we used a cubic interpolation,

g~n!5a~n21/3!~n22/5!~n2n3!. ~A10!

Fixing the slope ofg(n) at (1/3)1 and (2/5)2 then yields

a5
3m1~1/3!

~1/322/5!~1/32n3!
, ~A11!

and

n35
5m2~2/5!/316m1~1/3!/5

m1~1/3!15m2~2/5!
. ~A12!
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Finally, we smooth out the resulting discontinuities inVxc
over an interval 2d about the fractional QHE fillingsn5p/q.
To do this, we interpolate linearlyg(n) between its values at
n5p/q6d, so thatdg(n)/dn5A1B(n2p/q1d), where
A5g(p/q2d) and B5@g(p/q1d)2g(p/q2d)#/(2d).

Simple integration then yields g(n)5An1 1
2 Bn22

Bn(p/q2d)1C, whereC is an integration constant given
by

C5g~p/q2d!2A~p/q2d!1 1
2 B~p/q2d!2. ~A13!
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