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PHYSICAL REVIEW B VOLUME 56, NUMBER 16 15 OCTOBER 1997-I

Spin-ensemble density-functional theory for inhomogeneous quantum Hall systems

M. 1. Lubin, O. Heinonen, and M. D. Johnson
Department of Physics, University of Central Florida, Orlando, Florida 32816-2385
(Received 10 January 1997; revised manuscript received 14 July 1997

We have developed an ensemble density-functional theory that includes spin degrees of freedom for non-
uniform quantum Hall systems. We have applied this theory using a local-spin-density approximation to study
the edge reconstruction of parabolically confined quantum dots. For a Zeeman splitting below a certain critical
value, the edge of a completely polarized maximum density droplet reconstructs into a spin-unpolarized
structure. For larger Zeeman splittings, the edge remains polarized and develops an exchange hole.
[S0163-18207)07240-9

I. INTRODUCTION tree approximation! However, in this approach, the singular
Chern-Simons gauge field is replaced by its smooth spatial
In this paper we develop a spin-ensemble densityaverage, and the composite fermion mass has to be put into
functional approach for the study of inhomogeneous quanthe calculations by hand. Furthermore, interpretation of the
tum Hall systems. This permits the study of properties, suchesults is sometimes difficult and ambiguous. On the other
as edge structures, of systems with many electr@®eme  hand, density-functional theopFT) is known as a general
results for spin-polarized systems were reported edrifgr. quantitative method to include exchange-correlation effects
We show here that fractional Hall systems cannot be deln inhomogeneous systems without any fitting parameters. In
scribed using conventional density-functional approachedliS Paper we show thansemblé®FT can be used for quan-

but that the generalization known ansembledensity- turrE)I;?II systems V\’I'Ithfh'gm); ?cgut;att;risulgs. 4 Koh
functional theory is a very suitable tool. For spin-polarized was originally formulated by Honhenberg and Bonn

systems our implementation of ensemble density-functiona?foaegtrizgt'gﬁlmrgﬁﬂjgg dfO; astde ?}sfg-?ﬁgc}guonf dt;[ieor?rg]fj BOIIZ'_IS_tate
theory gives results in excellent agreement with other ap!-3 b 4 y sy :

hes in limits wh . be m h is the Hohenberg-Kohn theorem, which states that the
proaches In imits where comparisons can be @dﬂl'_ € ground-state density uniquely determines the Hamiltonian of
semiclassical limit, and the limit of small system 3giz&

o ) . a system(to within a constant Furthermore, a variational
generalization to include the spin degree of freedom lets Ugyjnciple states that the ground-state density minimizes the

study the interplay of density and spin during edge recongnergy of the system. We will use the constrained search
structions in realistically large systems. . formulation of Levy?® for the Hohenberg-Kohn theorem and
The quantum Hall effect§QHE’S) occuf in a two- s associated variational principle. In this elegant approach

dimensional electron gas in a magnetic fiéletBZ perpen-  the ground-state enerdy can be written as a functional of
dicular to the electron syste?nA quantum treatment of the the density,

motion of an infinite, homogeneous system shows that the

kinetic energy takes discrete valuesH1/2)h w., wheren _ J'

is the Landau-level indexn(=0,1,2,..) andw.=eB/m*c is Eln]=F[n]+ [ drn(r)Vedr). @
the cyclotron frequencym* is the effective mass of an elec- Here

tron). Each Landau level contaings=B/® states per unit

area, or one state for each r_nagnetlc-flux quantyyw hcle, F[n]= inf <‘I’|'A|'+\A/e4\1’>, @)
giving rise to a macroscopic Landau-level degeneracy. The ¥on

ratio of the electron areal density(r) to ng defines the o R
filling factor »(r)=n(r)/ng. The filling factor also can be with T, V., andV,, kinetic energy, electron-electron inter-
expressed as=2712n, wherel ;= \%c/eB is the magnetic actions, and external potential, respectivElythe infimum
length. is taken over all many-body statds that yield a fixed den-
For an explanation of experimental studies it is highlysity n(r). F[n] so defined is then a universal functional of
desirable to have a computational approach that accuratetpe densityn(r). For a given external potenti&l,, the true
treats systems with of the order of-110° electrons, and that ground-state density is the functiar{r), which minimizes
can include effects such as accurate confinements, spin d&f{n] in Eq. (1).
grees of freedom, and finite layer thickness. Exact numerical Practical computations using DFT are typically done by
diagonalizations are limited to very small systemsintroducing an auxiliary noninteracting system with a
(N=10).57 Semiclassical metho®& do not accurately treat ground-state densitys(r), and by asserting that there exists
electron-electron interactions, and effective field thedfies an effective potentialVy(r) for this system such that
cannot give accurate quantitative information about manyg(r)=n(r), with n(r) the ground-state density of the real,
system properties. A method that can deal with a larger numinteracting system. The density is then obtained from a Slater
ber of electrons is the composite fermion theory in the Hardeterminant of the Kohn-ShamKS) orbitals ,(r),
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nd(r)==N_ ()2, which are obtained by self- general be obtained fromsingle Slater determinant of KS

consistently solving the KS equatidfis orbitals, so an ensemble DFT has to be used.
In Sec. Ill we present a test of the accuracy of our en-
Netlr (N =[THVo(r) (1) =g 41,(r). 3 semble DFT scheme by applying it to spin-polarized quan-

) ) ) i i i . tum Hall dots and comparing with numerical diagonaliza-

The self-consistency is achieved in practice by iteratively;ions In GaAs samples, where most of QHE experiments
obtaining the eigenstates and occupying Mieeigenstates 5ye heen done, the spin degree of freedom is important, and
with the Iowest_ eigenvalues,. The effective potential may lead to inhomogeneous spin densities. The small mag-
V(r) can be derived from the Hohenberg-Kohn theorem andyiyde of the Landdactor g* (about 0.44 in GaAsmakes
its associated variational principle. The result is the existence of partly polarized states energetically
_ possiblé’'®even atv<1. In Sec. IV we use our scheme to

V(1) =Veud 1)+ Vi(1) + V() “ describe the spin-textured edge reconstruction-efl quan-
Here, Vy(r) is the classical Hartree potential, aNig(r) is ~ tum Hall dots. Finally, conclusions are given in Sec. V.
the exchange-correlation potential. In practical calculations,

the local-density approximatiofLDA) is often used? In ||, v REPRESENTABILITY AND THE QUANTUM HALL
this approximation, one writes EFFECT

LDA In practical ensemble DFT calculations one introduces as

Exc :f drn(r) exc(n(r)), (5)  in the KS scheme an auxiliary noninteracting system that

provides the basis for the density matrix and has a ground-

wheree,(n) is the exchange-correlation energy per particlestate density identical to the interacting system at hand. The
of an infinite, homogeneous system of density The variational principle again yield8the KS equations, Eq3).

exchange-correlation potential is then obtained as However, the density foN electrons is now given by
dnex(n)]
Vieh(n=—4— (6) =3 flu O D f=N, ®)
n=n(r) a a

Systems for which the ground-state density can be reprewith the occupation numbert, in the interval O<f, <1.
sented by a single ground-state wave functistnether the  One obtains fractional occupancigs only when the corre-
ground state is degenerate or nate called pure-state sponding KS eigenvalues, are degenerate and equal to the
representable. There are systems that are known not to b&ermi energyer. (If ¢ ,<eg, thenf,=1)
pure-statev representable, as shown first by Léwnand Let us show briefly why applying DFT to the fractional
Lieb.!® However, there exists a generalization of thequantum Hall effectFQHE) inevitably requires ensemble
Hohenberg-Kohn theorem that provides a one-to-one corrddFT. Consider a circularly symmetri-particle FQHE sys-
spondence between a ground-state densify) and the tem with a uniform density corresponding te=1/3 out to
Hamiltonian even for systems that are not pure-statep-  some radiug o~+/6Nlg. (At the edge the density falls to
resentable, but whose density can be obtained from an eero within a distance of orddg. We will ignore details
semble of degenerate ground states. The functibhal in near the edge, which are irrelevant for our discusidhat
Eq. (2) is extended to include ensembles over degeneratsuch systems exist is well demonstrated by the excellent
ground stategW¥;), D=3 ,d;|¥;}(¥;|, with dj=d*=0, agreement between the Laughlin wave function and experi-

39 ,d;=1. This then yields the generalization ments, and by many numerical calculatiéfé! We wish to
model this interacting system with an auxiliary noninteract-
Feln]= inf TE{D(T+ V.o, (7)  ing system using DFT. To do so we must establish that there

exists a unique effective single-particle potenti& that

. gives a(possibly degenerakground statél with the desired
with the infimum taken over alD yielding a fixed density density. We can readily establish that the desigds sim-
n(r). There is then a generalized variational principle thatply a constant by using the generalization of the Hohenberg-
states thaFg[n] is minimized by the ground-state density, Kohn theorem to degenerate ground states, as follows. We
which can now be represented by an ensemble of wave fundirst chooseV(r) = const, and we will show that this choice
tions, even if it cannot be represented by a single groundf V¢ will yield a ground state with the correct density. Due
state. This generalization is calleeénsemble density- to the circular symmetry the KS orbitals are the usual sym-
functional theory. The key question for a practical calcula-metric gauge eigenstateg,(r), with n the Landau-level
tion is whether the conventional KS scheme can be appliedndex andm angular momentum. For a giventhese orbitals

In fact, this requires a stronger criterion than noninteractingare degenerate im. Consequently everi-particle Slater
pure-statev representability, which guarantees only thatdeterminant made up of anly lowest-Landau-level{=0)
some superposition of noninteracting ground states yield therbitals is a ground state—the noninteracting ground state is
desired density. But to use the conventional KS scheme it ibugely degenerate. We now explicitly demonstrate that we
necessary that the density be noninteractingpresentable can construct a ground state with the desired density. For
by a single Slater determinams we shall see below in Sec. example, we may choose the particular superposition of de-
Il, fractional QHE systems are systems in which there is derminants that yields the Laughlin wave function. Or, more
huge degeneracy in the KS orbitals, and the density cannot isimply,  choose V¥ =(1NV3)(V,+W¥,+T¥;), where

D—n
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¥, ¥, ¥, are the Slater determinants made up ofcompute the fractional occupancishas not existed and
lowest-Landau-level orbitals with, respectively{m}  one major advance in our work is that we have found a
={0,3,6,.. },{1,4,7,.. },{2,5,8,.. }. Both choices yield simple way to generate the occupancies, at least for the
N-particle wave functions with the desired density corre-FQHE. (The procedure is explained in our earlier work.
sponding tor=1/3 in the bulk. Applying ensemble DFT to the FQHE, we have found that
Thus there exists a potentid(r)=const for which a fractionally occupied KS orbitals are indeed degenerate at
noninteracting ground state yields the correct density. Théhe Fermi energy, consistent with our demonstration above
generalized Hohenberg-Kohn theorem then ensures that thibat the ground-state density of an FQHE cannot in general
potential is uniguéto within a constant Since we must use be obtained from a single ground-state Slater determinant of
this V5, we must construct the density in the noninteractingKS orbitals.
system from the orbitalg/,,,. But to get the right density
requires fractional occupancy of these orbital§For ex-
ample, consider the origin: all lowest-Landau-level orbitals
with m#0 vanish at the origin, anglyy has a local filling
factor of unity atr =0. Hence to get a filling factor=1/3 at Quantum dots can contain from one to several thousand
r=0 requires that/q, have occupancy 1/BThis example electrons, typically with very inhomogeneous density distri-
leads to the key result of this section: it is impossible tobutions. Moreover, quantum dots are believed to have highly
construct the FQHE ground-state density frosirgleSlater ~ correlated ground states in strong magnetic fiéfdsence
determinant of KS orbitals. Hence the conventional KS apihese are ideal systems to examine the usefulness of our en-
proach cannot be used, and we must turn to ensembfemble DFT approach, including the important question of
density-functional theory. how well the strong correlation effects are included com-
It is evident from this example that the FQHE may in Pared, say, with exact diagonalization studiésn this sec-
general be noninteracting pure-stateepresentable, i.e., the tion we will use a small-system spin-polarized quantum dot
ground-state density can be extracted from a single noninte@s @ test case to study our ensemble DFT approach and to
acting ground state consisting of a sum over degeneratgompare our results with those obtained by numerical
Slater determinants. However, this is not a very useful statediagonalization§.(We refer to Refs. 13 for an explanation
ment for practical purposes, where the important considerof our ensemble DFT-LDA scheme and results for larger
ation is whether or not the ground-state density can be corPin-polarized quantum Hall systemsOne of the things
structed from asingle ground-stat&later determinant of KS considered is the reconstruction of the so-called maximum
orbitals. Whenever the KS orbitals have degeneracies th&ensity droplefMDD), which is the most compact droplet
lead to degenerate ground states of the noninteracting sy§ninimum angular momentunaroplet that can be formed in
tem, the conventional KS scheme cannot be used and orige lowest Landau level.
needs to try ensemble density-functional theory. We have calculated the expectation value of the total an-
In inhomogeneous QHE systems, which may include regular momentum(M)==,mf,, as a function of the
gions with locally fractional and integer fillings, not all KS magnetic-field strengtB for N=6 spin-polarized electrons
orbitals are degenerate, but there does exist a set of degeif-the lowest Landau level and a parabolic confining poten-
erate orbitals at the Fermi energy. By a simple extension ofial V,=31m*Q2%r2, with #0=2.0 meV. The results are
the above argument, ensemble DFT must be used for thesgown in Fig. 1 for two different versions of the exchange-
systems, too. For inhomogeneous systems one fhdgbit-  correlation energye,.. The diamonds ¢) were generated

Ill. SPIN-POLARIZED QUANTUM DOT
IN A FQHE REGIME

als with ¢ ,<er and D degenerate orbitals witk,=¢f.
One constructs determinantal wavefunctidnsin which all
M low-energy orbitals are occupied; thg differ by which
N—M of the D degenerate orbitals are occupied. With,
denoting the occupancy of orbital in the determinantV; ,
the total density of the ensemble can then be written

q
n(r)=>, El d; 61l ¥a(1)]?, (9)

a 1=

using the Levesque-Weiss-MacDonald exchange-correlation
energy?* while the pluses(+) were generated using an
exchange-correlation energy due to Fano and Ortéfani.
This latter useg,. at v<<1/2 and the particle-hole symmetry
of the lowest Landau level to give a good interpolation for-
mula on the entire interval ®v<1. Both exchange-
correlation energies give clear plateaus or plateaulike struc-
tures in angular momentum vs magnetic field. However, the
Levesque-Weiss-MacDonald is a rather poor approximation
nearv=1 (a region for which it was not constructedand

whered; is the weight of¥; in the ensemble. Comparing the furthermore, overestimates the magnitude of the exchange-
result with Eq.(8), one can see how the fractional occupa-correlation potential at about=1/2. As a consequence, the
tional numberd , of the degenerate KS orbitals follow from initial maximum density droplet instability is smeared out

the weightsd; in the expansion of density matrix:

q
fazz diaia' (10)
i=1

and starts at a too low a value of magnetic field, and the
formation of a 1/3 dropletas is evidenced by studies of the
density profil¢ occurs at a too high value of magnetic field.
Also, the values of the angular momentum at the plateaulike
regions tend to be too low. For example, the formation of the

If the ground-state density can be written in this form, thenl/3 droplet occurs atM~40, while the exact value is

one can appeal to the ensemble generalization of th& =45. In contrast, the results obtained using Fano-Ortolani
Hohenberg-Kohn theorem and its generalized variationaéxchange-correlation energy tend to be very accurate. For
principle, as explained in Sec. |. However, a procedure t@xample, the maximum density droplet instability occurs at
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50.0 : tions used the full Coulomb interaction. Despite these ob-
stacles, the agreement between our ensemble DFT results for
small systems and the numerical diagonalizafiare quite
good. We also did these calculations at a finite temperature
of 100 mK[kgT~1X10 3e?/(€ylg)], which improves the
convergence of these small particle systems. We are pres-
ently working on extending the Fano-Ortolani interpolation

»

o

(=)
T

Angular momentum
W
o
o

e to includer=1 and several Landau levels.
.
L 17°
20.0 + o | IV. SPIN-TEXTURED EDGE RECONSTRUCTION
R i OF THE MAXIMUM DENSITY DROPLET
It was once widely thought that that=1 is a Fermi lig-
100,75 20 5.0 uid in the sense that the elementary excitations are well de-

Magnetic Field [T] scribed by single-particle excitations and only renormalized
by the interactions. However, recent experiments on high-
FIG. 1. Expectation value of the total angular momentummobility GaAs quantum welf§ have provided evidence for
(M)=Z,ymfn, as a function of the magnetic-field strendghin-  the existence of topological charge-spin textures, so-called
dicated by solid line for a spin-polarized six-electron droplet in askyrmions, neav=1. These are nontrivial many-body exci-
parabolic confinement using the Levesque-Weiss-MacDofiRéd.  tations due to electron-electron interactions first predicted to
24) (¢) and Fano-OrtolaniRef. 23 (+) exchange-correlation en- pe the low-energy excitations near1 by Sondhiet al,?’
ergies. The solid shows the exact diagonalization studies result froRgith the energies about half of those of single-particle spin-
Ref. 6. flip excitations. The fact that Skyrmions are the low-energy
excitations neav=1 (and also possibly near=1/3) raises

B~2.8 T in our calculations, compared B=2.75 T in the  the possibility of spin-textured edge reconstruction of the
numerical diagonalizations, and the 1/3-droplet formationmaximum density droplet. Therefore, inclusion of the spin
occurs at B~5.3 T in our calculations, compared to degree of freedom may be essential in the study of inhomo-
B=5.29 T in the numerical diagonalizatiofsee Fig. 2 In  geneous systems. Indeed, Hartree-Fock and effective-field
addition, the p|ateau|ike regions are more deve|0ped and f|afheoretica| calculations have shown that for a soft Conﬁning
ter in angular momentum. Still, though, the ensemble DFTPOtential, the edge of an infinite Hall bar at=1 becomes
tends to underestimate the angular momentum at the plalnstable to spin-textured reconstruction for weak Zeeman
teaus. We want to emphasize here that we have not used af9upling, while stronger Zeeman coupling yields a spin-
adjusting parameters in our calculations. Furthermore, thgolarized reconstructioff.*°

ensemble DFT is not constructed only to give integer angular Motivated by these ideas, we have generalized our en-
momenta. Finally, only the energy gaps at1/3 and Semble DFT approach to include spin degrees of freedom
v=2/5, along with their particle-hole conjugatesat2/3 ~ Within the local spin-density approximatio.SDA). The

and v=23/5 were included, while the numerical diagonaliza- Hohenberg-Kohn theorem formally ensures teaéryprop-
erty, including the spin density or polarization, can be ob-

tained from the ground-state density. However, practical

10 — BBST LDA calculations of systems with spontaneously broken

e B=54T symmetries, such as spin rotation symmetry, typically are

08 | much improved if the order parameter of the broken symme-
try, e.g., spin density or polarization, is explicitly included

06 by construction. In particular, the broken symmetry may not

otherwise be obtained accurately from the LDA.

v(r)

0.4 A. Ensemble spin-density-functional theory

An exact treatment of the spins, in general, reqdftdse
replacement of the charge densitfr) by the single-particle
density matrixp,,,(r)=(0| &/} (1) #/,+(r)|0). Here, y;(r)

: and ¢,(r) are the usual field operators corresponding to the
0.0 2.0 4.0 6.0 8.0 annihilation and creation of an electron with spiratr, and
r ] |0y is the ground state of the system. With a constant mag-

FIG. 2. Local filling factor as a function of radial coordinate for netic f'e_ld applied in the dlrec_tlon, thez component Of_ the
a six-particle system in a parabolic external potential withtotal spin angular momentum is a constant of the motion and
%0=2.0 meV. Here, the Fano-Ortolani exchange-correlation enit iS convenient to assume that the magnetization density
ergy (Ref. 25 was used. The transition to a 1/3 droplet occursOnly has az component. Under this assumption, the single-
betweenB=5.3 T andB=5.4 T. The bump in electron charge at particle density matrix can be taken to be diagonal,

the edge of the system is characteristic of systems with a not t0p ;' (I') =pg4 () 8¢ - In this case the energy functional of
soft confining potential. Egs.(1) and(2) is modified t5?

0.2

0.0
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B. Constructing V,.(»,£)

E[nT’ni]:F[nT’niHJ drn(n)Vex(r), (19 Our approach in constructing the exchange-correlation

) A~ oA oA - potentials V,(v,£) is to first construct the exchange-
whereF[n;,nj]=infy_n o (¥|T+Ez+Ved W) andE; is  correlation energy per particle for a spin-polarized homoge-
the Zeeman energy. The infimum is owryielding fixed  neous systema,., and then to add interpolation functions to
densitiesn(r). The LSDA is then given by obtain the exchange-correlation energy at arbitrary polariza-

tion £& We choose as exchange-correlation energy per par-
EicSDA[nT ,ni]:f drn(nedn (Mn,0], (12 ticle in a homogeneous spin-polarized system,

—EWM Y4 (S 1
wheree, [ n; ,n|] is the exchange-correlation energy per par- V)= € (V)T 6lv) (18

ticle in a homogeneous system with up- and down-spin denry first term is a smooth interpolation formula of Levesque,
sitiesn; andn , respectively. In spite of the LSDA being Weis, and MacDonafd
justified only in the limit of small spatial variations of the
electron density, this approximation has been surprisingly . 2
successful in describing the properties of inhomogeneous ELWM(,,):f drr( € )[g (r—1]
atomic, molecular, and solid-state systeth&his scheme X 0 reglg) "
correctly predicted, for example, ferromagnetism in Fe, Co, 0.74 17
and Ni among the transition metafSMoreover, the self- =—0.782133/y(1-0.213,°7*+0.012")
interaction-corrected LSDA was successfully applied to X (€l €gl ) (19)
some strongly correlated systems such as the transition-metal ’
oxides and a Hubbard model representing a £l&9er in  for the ground-state energy obtained by evaluating the pair
the cuprate superconductdfs. o , correlation functionsy,(r) at certain fillingsy< for about

For a parabolic dot, the variational principle applied to theosg particles using very accurate Monte Carlo methods. The
KS functionaI[E_q.(ll)] yields two sets of KS equations for ¢o.ond term in Eq(18), S(v), contains the cusps in the
spin-up and spin-down electrons, ground-state energy that cause the FQHE. The discontinuity
in the slope Ofexcc( v) near certain “magic” filling factors
v*=p/q is related to the chemical potential gap

[T+Vs,(r(rvB)]‘Pmn,a(r):Smn,o‘Pmn,o(r)a (13

where Ap=q(|Ap|+]Ay)). HereA, , are the quasiparticlénhole)
creation energi€s$ at v=v*. In our calculations, we restrict
Vs o(1,B)=0g* B+ Vex(r) + V(1) + Vyeo(r,B) ourselves to include only the cuspsiat 1/3, 2/5, 3/5, and

(14 v=2/3, which are the strongest fractioriSee the Appendix
for a detailed description of our expression &55.) Substi-
tuting Eq. (18) into Eq. (6) gives the exchange-correlation
potential as a function of filling facto¥,.(v) for a spin-
P polarized system. This potential is depicted in Fig. 3 as
-2 Vi (v,6=1).
VicalrB) ﬁna(nEXC[nT n1Bl) n=n(r) (9 The question is then how to obtain a reasonable interpo-
7 lation formula for €., between spin-polarizedé&1) and

The parametric dependence on the magnetic felchn be  spin-unpolarized §=0) two-dimensional2D) electron lig-
incorporated by using spin filling factors,=2ml3n, as uids for a fixedv in a strong magnetic field. We have con-
variables instead of spin densitiag. To make connection structed a first approximation, as we will now explain. The
with the spin-polarized case we first transform the spin fillingresult is fairly complicateda piecewise interpolation in two

is an effective potential for the auxiliary noninteracting sys-
tem. In the LSDA the exchange-correlation potentials are

factorsv,, to total filling factor v and spin polarizatiof: variables among various numerically and analytically ob-
tained results and is not well represented as a single for-
v=v;+v, mula. A subroutine calculatiny,.(v,£) can be obtained
from the authors.
E=(vi—v)l(v;+v)). (16) In what follows Xc) as a subscript denotes exchariger-

relation respectively. We decompose the exchange-
The exchange-correlation potenti@sq. (15)] then become  correlation energyE,. into exchangeE, and correlationE,
energies. Since the exchange interaction only acts between

d d parallel spins, we have
ch,TZE(foc)'l'(l_f)é,_gexm

1 1
J 9 EX[VT,VL]ZEEX[VT,VT]‘I'EEX[Vl,Vl]. (20
ch,izg(l’exc)_(l"_g)a_gexc’ (17)
Moreover, it follows from dimensional analysis that the ex-
where the exchange-correlation energy per particle in a hashange energy must scale as den€itiing factor) to the 3/2
mogeneous system with a filling facterand polarizatior, power in a 2D electron gas. Following Oliver and Perdéw,
i.e., e,c=€4(v,£), has to be approximated. we can then write
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which is the only polynomial ir¢ satisfying the above con-
Ex“f d2r[v¥(r)+ 3], (21)  straints. Nearv=1 (where there is no cusp in the total
exchange-correlation energythe sign of the function
We also have from Eq$16) v;=3v(1—§&), v|=3v(1+§). dey(v) will then determine the spin-polarizéterromagnet-
Equation(21) can then be rewritten as ic) or spin-unpolarizedparamagneticground state of the
infinite electron liquid(neglecting the Zeeman splittingn-

EXNJ & 37 (14 £)%2+ (1— £)92). 22 deed, substitution of Eq26) into Eq. (17) gives

J
Since in the local-density approximation for the exchange AVXCEVXC,T_ch,lz2(9_§Exc:25fxc( v)f' (&)
energyE, = [d?rve,(v,&) we are then led to the form
+2eS(v)g' (). 28
6(1,8)= 61, E= 1)+ (e(1E=0) ~ ,(r,E= 1) (£) (19'(8) 29
= (v,E=1)+Ae(v,§), (23)  The last term in this expression may be ignored neard.
. We would thus expect a spin-polarized ground state if
where the function dex(v)>0 becausd’(£) <0 for all 0 ¢=<1, so in this case
the inequalityV,; ; <V, holds. Otherwise we would ex-
(1+&)%°+(1—¢)%°—2v2 pect a spin-unpolarized state. In contrast, numerical diago-
f(6)= 223 (24 nalizations suggest that, at some fillings, the homogeneous

ground state is partially polarized. This cannot be obtained
is an interpolation function between the two extreme caseby our simple model of the exchange-correlation energy with
£=0 and ¢é=1 with f(0)=1 and f(1)=0. Although the a monotonic interpolation functiofi(£). Nevertheless, the
analogous simple closed form for the correlation energysimple model of Eq(25) allows us to capture the essential
ev,&) is not available, it can be always be written asphysics of the spin-unpolarized edge reconstruction of the
v, &) =e(v,E=1)+Ae(v,£). So, as a first approxima- quantum dot in reasonable agreement with other methods, as
tion we will use the form of Eq(23) for the smooth part of we will show.
the correlation energy,, too (leaving the cusps aside for the  In order to obtain the functiofe, () in Eq.(26) we start
momeny, with the sameinterpolation functionf(¢), as was by calculating the energy differences between spin-polarized
suggested first by von Barth and HedthDenoting the and -unpolarized states using small-system numerical diago-
smooth part of the exchange-correlation energy per particlgalization data for some filling fractions obtained from
by €;. we can then write Chakraborty and Zhantj.The value for the ground-state en-

ergy of av=1 unpolarized system is not available, but a

61, E) =€V, =)+ (v, =0)—€;(v,E=1) (&) reasonable approximation is to takg.(v=1, £=0)=
e(v=1/2, é=1)=—0.469@%/ €ol), implying that the
=6 (v,E=1)+ e (V) T(€). (25 spin-up and spin-down components are uncorrelaf€bis

most likely overestimates the energyfhe ground-state en-

So far, we have constructed a functief)(v,¢) that gives a ergy of a w=1 polarized system e (v=1, £é=1)

smooth interpolation for the exchange-correlation energy for_ 2 _

) . . =—0.6265€/€ylg). Therefore we have fe,(v=1
any yalue ofv and & What is left is to add_the cusps to this :0_1575(32(/360';) '_3)1.0 complete the numerical Xg(aramgter-
function. We already have a goqd approx.|mat'|on for th(_ese aitZation of the exchange-correlation functional, we then per-
¢=1. We now nee_d to _extend this approximation to_arbltraryform a spline fit to obtain the functiode,(v). We have
values of¢. Very I'tt!e IS know_n about th_e cusps, i.e., the lotted the exchange-correlation potentigls , as a func-
energy gaps, for arbitrary polarizations. It is known that thert{?on of a filling factor at £=1 and£=0 in Fig]. 3 We see

's a gap for unpolarized systems at fillings=2/5, v=3/5, that at¢=1 the difference between exchange-correlation po-

e S S v BSentals for S and s lecohY £, 20

9 gut > SY is changing sign from negative to positive while the filling
advantage of a partl_cularly low corre'latlon energy. There—]cactor v is decreasing fromv=1 to v=2/3. Ignoring the
foie, it seems plausible that for a given value wfsay, Zeeman splitting and the cusps, the ground state of an infi-
v=2/5, there cannot be an energy gap for any value of

. : .~ = nite electron liquid would change from spin polarized to spin
between 0 and 1. In order to incorporate this assumption intQ ; : o ; :

Co . unpolarized. To estimate the possibility of having a spin-
a usable approximation, we interpolate our cusp energy con-

structed for polarized systemsfc(v), to arbitrary polariza- unpolarized state above filling 2/3 with the inclusion of the

. b ltinlving it b ¢ . hat i ) Zeeman splitting, we have to compare the dimensionless
tlo_n(')s ydmfi'p Y'Eg It )(;a_ unctlormg(hg) that 1S unity ath Zeeman energg=g* ugB/[e?/(&ylg)] with the difference
£=0 andé=1 with zero derivative at these points, vanis eSAVXC [Eq. (28] at this filing AV, (r=2/3, é=1)~

away from these values of polarization, and is Symm(':'m(b.05(e2/asol g)- This value is larger then the Zeeman splitting

about¢=1/2. All together, then, we have for GaAsg~0.02. Therefore, the ground state of a GaAs-
_ _Lwm c based homogeneous system is a spin-unpolarized state at and
€ V18) = € (1) F 061 T(O) + 6c(1)9(). (26 just above filling factor 2/3. In an inhomogeneous system, in
Specifically, we chose addition to exchange-correlation potential and Zeeman en-
ergy, there are also the Hartree interaction of the 2D elec-
g(&)=[4&2—11[ 27— £%(40—16£2)]/27, (27)  trons and the external potential that confines them. Hence,
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FIG. 4. Phase diagram of the edge reconstruction of a parabolic
FIG. 3. The exchange-correlation potentislg , as a function — quantum dot in thed,y) plane for N=38 electrons. Here, the
of a filling factor v at £&=1 and£=0 in units ofe?/(ylg). The  confining potential has a strength given Byf)=1.6 meV. For
solid line indicates/,. ; and short-dashed line corresponds/tg | y>0.065, the system forms a maximum density droplet for all
at £=1. According to Eqs(28) and(24), the exchange-correlation values of the Zeeman couplirgy For values of the Zeeman cou-
potentialsV,. , coincide até=0 [sincef’(0)=0] and are shown plingg larger than a critical valug, , the maximum density droplet
by the long-dashed line. The increaseMy. as functions ofv at a  undergoes an initial reconstruction to a spin-polarized exchange
FQHE filling factors occurs over a range of a filling factor of 0.002. hole as the confinement strengitis decreased, while f@<g, the
maximum density droplet has a spin-structured instability with de-

even in our simple approximation, it is possible to have no"€asingy- In these calculationg,~0.055.
only polarized and unpolarized states, but also a partially
. . . * ()22

polarized state in an inhomogeneous system such as a quan- ~  m*Og 29
tum dot. YT (e%eyln) (29
is decreasedby increasing the magnetic-field strengts a
function of the Zeeman coupling. The Zeeman coupling is

We have reinvestigated the stability of the MDD using most conveniently expressed in a dimensionless form as the
our LSDA ensemble DFT. Early numerical diagonalizationsratio of the Zeeman energy to the Coulomb energy,
of small systenfsindicated that the initial reconstruction of
the MDD was to spin-polarized states only for unphysically ~ g* usB
large Zeeman energies. WitJ* in the range of physical 9= (e’leglp)
values, the reconstruction of the polarized MDD was found _
to be to a partially polarized state. More recent work byWe find that for large enough values@fthe instability is to
Karlhedeet al,?® and by Franco and BréJhas also inves- the fully spin-polarized “exchange hole,” in which a lump
tigated the edge reconstruction of a Hall bar using theof charge is expelled at the edge to decrease the Hartree
Hartree-Fock approximation. Karlhea al. found that, for ~ repulsion while still taking advantage of the short-range at-
physical values off*, the reconstruction of a spin-polarized tractive exchange interaction. However, @ss decreased
Hall bar aty=1 (the analogy in a rectangular geometry of anbelow a certain valug, the instability is from the spin-
MDD) was to a spin-textured edge. These works then sugPolarized MDD to a state in which the edge is partially po-
gest that in order to obtain a correct picture of edge reconlarized. The valugy, at which minority spins first appear at
struction, the spin degree of freedom has to be included. Thithe edge, is for this systemg.~0.055. We can then plot a
is an important point, especially in view of the fact that therephase diagram for the parabolic dot near the MDD region in
are now very sensitive experimental probes of QHE edgeghe §-7 plane>?® This phase diagram is depicted in Fig. 4.
However, until now the interpretations of experimental re-For values ofy less than approximately 0.076, the system
sults have relied on the picture by Chklovskii, Shklovskii, forms an MDD (for y=0.076 there is appreciable occupa-
and Glazmahfor fully spin-polarized edges, which then may tion of states in the higher Landau levelét y~0.065 an
have to be modified to take the electron spins into accouninstability to higher total angular momentum occurs and the
Our motivation to reinvestigate the stability of the MDD is to MDD reconstructs. Fog>g~0.055 the reconstruction is to
demonstrate that our DFT approach yields results in agredhe totally polarized exchange holghis region is marked
ment with previous work using different methods that are x hole” in Fig. 4). For fixedg such thaij,<g=0.085 the
limited in their applicability, and thus that our DFT approach system undergoes an additional instabilityjais increased,
can be used to study spin structures in general inhomogeéA which minority-spin population appears at the edge. For
neous QHE systems. We expect this latter point to be ag<{g. the initial instability of the MDD is always to a state
important area of future research. with a partially polarized edge. Finally, ag is decreased

As a model system, we chose a parabolic dot with thebelow approximately 0.058, the system will undergo further
same parameters in Sec. lll. The focus of the investigatiomeconstructions, the nature of which depends on the value of
was the nature of the initial instability of the MDD as the g. We have not here studied in detail the state reached after
effective confinement strength these reconstructions. The valuegf~0.055 separating the

C. Spin textures on edges

(30
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spin-polarized and spin-structured instabilities is in reason- 1.0 —————
able agreement with the valug.~0.03 found (for much
smaller systemsusing numerical diagonalizatiéhA phase
diagram analogous to ours was obtained by Hartree-Fock
calculations by Karlhedet al?® Their value of the critical
Zeeman splittingg.=0.169 is about three times larger then
9.~0.055 from our phase diagram. In contrast, Franco and 05
Brey?° obtained for a Hall bar geometry a valuegf~0.008
below which the edge is unstable with respect to spin-
textured edge reconstruction. Note that for the value of the
confinement strength used in our calculations,
#Q=1.6 meV, we havg~0.01 at a magnetic field strength
of 2.8 T, at which the instability of the MDD occurs. This 00—
means that for physical values gf, the instability will in @

these calculations always occur to a state with a partially
polarized edge. Future work will be extended to include
charge modulations along the direction of the etfge.

Within the LSDA it is easy to understand why the edge’s
spin state changes as the Zeeman couggirgpanges. As is
seen in Fig. 3V,c | <V, for v=0.8 andé=1, so for small
filling factors (¥<0.8) the exchange-correlation energy de-
stabilizes polarized densities in favor of unpolarized densi-
ties. The Zeeman coupling, conversely, favors polarized den-
sities (majority sping. At the edge as the density decreases
there is then a competition between exchange-correlation and
Zeeman energies. For large enough Zeeman coupling
(9>70,), it is energetically favorable for the edge to remain
spin polarized. For small Zeeman coupling<(g.), the
exchange-correlation effects dominate the Zeeman coupling, (v
and a minority-spin population appears at the edge. This is
depicted in Fig. 5, which shows an example wgik 0.014
andy=0.063. These are values such that the system has just
undergone a reconstruction to a partially polarized edge. In
the following the majority-spin direction is “up” and the
minority “down.” Figure 5(a) shows a lump of charge that E‘
has been expelled in the reconstructigolid line), but this N

5
O.)b

Occupancies, f_

expelled charge is partially polarizédashed ling This is
clearly depicted in Fig. ®), which depicts up- and down- :
spin occupancies. In the region where the expelled charge A
resides, there are partially occupied down-spin states | et
together with almost fully occupied up-spin states). This
implies that these up- and down-spin states all have to be g L v . -
degenerate at the Fermi level, as is indeed shown in Fig. 0 2 4 6 8 10 12

5(c). The behavior of the KS eigenvalues depicted in Fig. © r ]

5(c) is generic: for a fixed value o¥ in the region of the

initial MDD instability, the KS eigenvalues of the down-spin ~ FIG. 5. Spin structured instability at the edge of a quantum dot
states are higher than those for the up-spins states at larf@f a Zeeman splittinggy=0.014, magnetic fiel=3.05 T, and
values ofg. As g is reduced, the difference between the N=38. The external potential is characterized Wf 1.6 meV
up-spin and down-spin KS eigenvalues decreases in the ed® that the dimensionless strength of the confinemeptig.063.
region as the strength of exchange correlation effects in a) Th_e solid line depicts the tqtal Ioca_l filling factayl(_r) vs radial
creases relative to the Zeeman coupling. At s@wdj, , the coordlnat(_ar, and the dashed line depicts the polanzatl_Ch).The
difference vanishes and both up- and down-spin states pgceupancies of the KS S’.tat%(’"’(r) are .dep'Cted.VS orbital center
come occupied at the edge. We would also like to point Ou{;oordlnaterm_= ‘/_z_mlB W'th + for majority (1 SpIn occupancies,
that because many KS orbitals are degenerate at the Ferl%ri'd ¢ for minority (]) spin occupancies. At the instability of the

maximum density droplet for this value @f there is a minority-
energy, an ensemble DFT approach has to be used. spin population at the edge of the syste(). Eigenvalues of the

two lowest-Landau-level KS orbitals, with depicting eigenvalues
V. SUMMARY AND CONCLUSIONS of the majority-spin orbitals, and> depicting the eigenvalues of
the minority-spin orbitals. The chemical potential is indicated by
We have developed a spin-ensemble density-functionahe solid line. At the edge the filling factor takes fractional values,
approach and used it to study inhomogeneous quantum Hadhd the KS eigenvalues are here degenerate and equal to the Fermi
systems in the integer and fractional Hall regimes. For spinenergyeg, in agreement with the general theory of Sec. II.
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polarized systems, our approach gives results in excellent Y exe(V)— 6(1)]=[1— V][ 4(1— v) — (1],
agreement with numerical diagonalizations, Hartree-Fock (A1)
calculations, and semiclassical calculations. Note that whil
all of these latter approaches have limited regions of appl
cability, such as small systems, systems nearl, or the s % S, % %
semiclassical limit, we have here demonstrated that our en- Ve (V)= v 6 (V) +(1-20%) (1), (A2)
semble density-functional approach spans all these regiongsith v*=1— ». This means that
which makes it a useful approach to general inhomogeneous
quantum Hall systems. ves(v)=v* es(v*). (A3)
We have generalized the ensemble DFT to include spin i
degrees of freedom within a simple local-spin-density ap-V& define
proximation, and applied this generalization to a quantum _
dot. Our results show that for small, but physical, Zeeman 9(V)=vel(v). (A4)

energies,g<gc, the maximum density droplet is unstable sSince the discontinuities in the chemical potential at frac-
with respect to spin-textured edge reconstructions as thgonal QHE fillingsp/q is a relation ford[ ve,(v)]/dv, it is

Lnagnetic field increased. At larger Zeeman splittings,easier to work withg(») than with ESC(V)- Then particle-
g>d., the maximum density droplet is unstable with respecigle symmetry implies that

to spin-polarized edge reconstructions. Our valugofs in
good agreement with that obtained from numerical diagonal- dg dg(v*)

ization studie$. Hartree-Fock calculations for an infinite o dr (AS)
Hall bar by Karlhedeet al?® give a phase diagram qualita-

tively analogous to ours. However, Hartree-Fock calcula-At fractional QHE fillingsp/q, we must have

tions are limited tov~1, while our ensemble DFT is, in q

principle, applicable to general fractional quantum Hall sys- _

tems, e.g. droplets at=3. The accuracy of our approach ay 90| r=pra g, 9(%) b= (pla) - g+ 1),
depends on obtaining good estimates of the exchange- (A6)
correlation energy as a function of both electron density an(evhere,u and 1 are the quasiparticle and quasihole cre-
spin polarization for homogeneous fractional quantum Ha"ation engrgiessde?ined to be positive respectively. We con-
ﬁystt?ms.FWolrlk ifhcurrgntly in prt())lgrgsFSTto imdpLove these fﬁétruct g(v) for O=v=<1/2 to be piecewise sm.ooth, with
imates. Finally, the spin ensemble used here canno T : o : :
used to study spin-charge textuf&kyrmions, in which the S(p/q)—o for p/q a fractional QHE filling, and a disconti-
spin polarization rotates smoothly in space. Work is cur-
rently under way to generalize our spin DFT to include suckho

charge-spin textures.

i?rom which we obtain

nuity in the derivative given by EqAB).

We only included the cusps at=1/3, 2/5, their particle-

le conjugates, and the corresponding values at fillings in-
creased by unity. For<<1/3, we make the ansatz
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APPENDIX with a,=80.
We will construct the cusp part of the exchange_ NeXt, for 1/3<v<<2/5 we used a cubic interpolation,
correlation energyeffc( v) for a spin-polarized system by first
consideringy<1/2, and then use electron-hole symmetry to 9(v)=a(v=13)(v=2/)(v=-v3). (A10)
o(k:Jtaln th% form for 1/Zv<<1. Finally, forv>1 we assume Fixing the slope ofj(») at (1/3)" and (2/5) then yields
& V)= e (1-v).
For spin-polarized systems in the lowest Landau level, we 3u (13
write €,(v) = ex(v) + ex(v), where e;(v) is given by a &= (13— 2/5) (13— v3)’ (AL1)
smooth interpolation, such as the Levesque-Weiss-
MacDonald formul® (although this one does not obey strict and
particle-hole symmetry in the lowest Landau leyeir the
Fano-Ortolani formul&® Particle-hole symmetry yields for v :5:“—(2/5)/3+ 6. (1/3)/5
the total exchange-correlation energy 8 m(U3)+5u_(2/5

(A12)
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Finally, we smooth out the resulting discontinuitiesM,  Simple integration then vyields g(v)=Av+ iBv2—

over an interval 2about the fractional QHE fillingg=p/q. By (p/q— 5)+C, whereC is an integration constant given
To do this, we interpolate linearly(v) between its values at py

v=p/q= 6, so thatdg(v)/dv=A+B(v—p/q+ ), where

A=g(p/q—5) and B=[g(p/q+)—g(p/q—9)1/(29). C=g(p/q—8)—A(p/q—5)+ ; B(p/g— )% (A13)
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