
University of Central Florida University of Central Florida 

STARS STARS 

Faculty Bibliography 1990s Faculty Bibliography 

1-1-1994 

Dynamics Of 2-Level Systems In Glasses Dynamics Of 2-Level Systems In Glasses 

Moorad Alexanian 

Subir Bose 
University of Central Florida 

Find similar works at: https://stars.library.ucf.edu/facultybib1990 

University of Central Florida Libraries http://library.ucf.edu 

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for 

inclusion in Faculty Bibliography 1990s by an authorized administrator of STARS. For more information, please 

contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Alexanian, Moorad and Bose, Subir, "Dynamics Of 2-Level Systems In Glasses" (1994). Faculty 
Bibliography 1990s. 972. 
https://stars.library.ucf.edu/facultybib1990/972 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236265262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib1990
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib1990
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib1990/972?utm_source=stars.library.ucf.edu%2Ffacultybib1990%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


PHYSICAL REVIEW B VOLUME 50, NUMBER 21 1 DECEMBER 1994-I

Dynamics of two-level systems in glasses

Moorad Alexanian
Department ofPhysics, Universityof North Carolina at Wilmington, Wilmington, North Carolina 28403

Subir Bose
Department ofPhysics, University of CentralFlorida, Orlando, Florida 3281?

(Received 16 May 1994; revised manuscript received 20 July 1994)

We investigate the relaxation of a two-level system (TLS) in the golden-rule approximation by taking
into account phonon-mediated interactions between TLS's.

INTRODUCTION TWO-LEVEL SYSTEM

Amorphous solids, particularly inorganic glasses, ex-
hibit strikingly anomalous behavior in low-temperature
heat-capacity, thermal-conductivity, and optical proper-
ties of doped ions or molecules. ' The unique properties
of glass are believed to arise out of low-energy excitations
or two-level systems (TLS's). In recent work two-level
or tunneling systems have been found from numerical
simulations of Lennard-Jones-type glass. ' A glass is de-
scribed by an ensemble of TLS's, each being coupled to
phonons of the heat bath. Exchange of virtual phonons
produces an effective interaction between the TLS's.

Sometime back, Kassner and Silbey (KS) derived an
effective TLS-TLS interaction mediated by the exchange
of virtual phonons by using a polaron-type unitary trans-
formation. The work of KS is an extension of earlier
work with single TLS systems A multi-TLS system
must be considered to take into account TLS-TLS in-
teractions in the dynamics of a TLS.

A TLS Hamiltonian can be written as

HTLs=&ill &&ll+E. lu &&uI+ (ll &&ul+Iu &&ll),

where the localized basis of the TLS is denoted by

I l &, ~u &}, representing, respectively, the lower and
upper states of the asymmetric double well; the asym-
metry parameter is 6=E„—E&, while 8'/2 is the tunnel-

ing matrix element.
The work of KS, as well other theoretical work on the

TLS, proceeds by carrying out a diagonalization of HT„s.
In this basis the eigenstates are given by a linear com-
bination of the localized states ~l & and ~u &. In this paper
we show that a polaronic transformation produces a
simpler interaction between the "dressed" TLS and
"dressed" phonons if one works in the localized basis
rather than the basis of the diagonalized HTLS. It may be
noted that the localized basis was also used in Ref. 4 to
estimate the deformation potential that arises from TLS-
strain interactions. Using the localized basis, we calcu-
late the relaxation rate of a TLS using golden-rule pertur-
bation theory and compare our result with that of KS.

It is convenient to use the pseudo-spin- —,
' notation to

describe the TLS system. The two spin configurations
correspond to the upper or lower occupied states of a
TLS. HTLs for an N-TLS system is given by

N (E+gk)
HTLS X

k=] -
2 z 2 x

the o's being Pauli matrices.
The phonon and TLS-phonon Hamiltonians are

H „,„,„=+co bqbq,
q

HT„sph „,„=g g(S"+D"o,")(bq+bt ),
k q

(4)

(gk+Ek) gk

2
o," ++co btb

hark+g (S"+D"cr,")(b +bt )+ cr„"

q, k 2

The polaronic transformation is now performed by a uni-

tary transformation U given by

U=exp g (D sr+Sq)(bq b q)
k, q

Denoting the transformed(dressed) operators by

where q denotes both wave vector and polarization in-

dices. The coupling constants Sq and D are given in

terms ofh t and h „,the latter being proportional to the
deformation potential. We have

S"=(h"t+h"„)/2 and D"=(h "t —h"„)I2.
We note once again that the structure of the TLS-

phonon Hamiltonian is different from that obtained by
using the diagonal basis of HTLs. The total Hamiltonian
is now given by

HTLS+Hphonon+HTLS-phonon
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X =U 'cr U B~=U 'b~Uz z s q q

B =U 'bqU, X~=U 'ogU,

we have,

(gk+Dk k)1

k q

r"„,= ,'-(W')' I'"dt exp(~iE",„,t)

Xexp —g (D") [n (1—e ' )
q COq

+(n~+1)(1—e ' )]

B =b +g (S ~+D ~o,") .1

Wq

The Hamiltonian in terms of dressed variables is

(Et +E") 1

k l, q

1
Dk g)1

2glDk gk y & s alkyl
2 Iqmq

' ' '
lq Nq

where

Ek =4+ S D+61
In I

—
q q

l, q

+4g D "D' (1—
Bkt )( —1) '

l, q

(13)

(14a)

++co BtB +g (1t,X++1(2X"), (10)

RELAXATION RATE

The details of the calculation follows KS and will not
be repeated here. We obtain

where

2a,'
g„(n =1,2) =exp (

—1)"g (B B)—
q

The last term of the Hamiltonian representing phonon-
mediated TLS flipping is considerably simpler in form
than that obtained by KS. This simplicity is a result of
the choice of the localized states of HT~s. We now calcu-
late the flip rate of a TLS by using golden-rule perturba-
tion theory using as perturbation the expression

~lhp y (y yk +y yk ) (12}
k

In the above expression, n&=0 if the 1th TLS is in the
upper state and nl = 1 if it is in the lower state; nq is the
average number of phonons in the mode q. It should be
noted that EI„~ given above is not quite the same as EI„I
of KS even if one sets Sq" equal to zero; 5" occurring in

Eq. (14a) is the difference in energies of the u and l states
in the absence of tunneling. The total relaxation rate I
is the sum of I

&
and I &.

The flip rate obtained by us has the same mathematical
form as that obtained by Leggett et al. However, in
that work many-TLS effects were not considered. KS
have discussed the approximation of neglecting the last
term of Eq. (14a), which makes the need to thermal aver-
age over all TLS's except the kth unnecessary. We also
make the same approximation. Nevertheless, spin-spin
effects are still contained in Eq. (14a).

The integral (13) does not converge according to the
usual definition of convergence. However, by taking the
mean value of the oscillations, the integral converges in
the same sense as Cesaro's method of summation for
infinite series. The integral in Eq. (13) can be written as

I &/&= —($V"}I dt cos E(„}the ~D
~

sinto t exp —g (D
~

(2n +1)(1—cosco t)
0 COq COq

(14b)

The improper integral (14b) is not defined in the usual
sense, viz. ,

l

E(„}defined by (14a). This is in direct contrast to KS
where these parameters appear in the combinations

lim I I(t)dt,R~ re 0

since, for large R, (14b} is of the form

Rf I(t)dt -a+P sin(E(„}R),
and

[(gk)2+( hark)2]1/2

gk/[(gk)2+( hark)2]1/2

~k/[(gk)2+( ~k)2]1/2

where a and P are constants. Accordingly, a represents
the value of the integral when averaging over the oscilla-
tions. The parameter W appears as an overall factor in
(13), and 4" appears only in (13) through the variable

The interesting region of small [(b") +( W") ]' is deli-
cate to integrate in the work of KS. Their integral repre-
sentations for the relaxation rates are governed by in-
tegrands which are slowly decaying oscillating functions
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at low temperatures. Our result (13} is easy to analyze
for small b, and W". The first term in (14a} makes the
integral (13) convergent in the symmetric TLS (b,"=0)
case and when the third term in (14a) is set equal to zero.

Therefore, in our case, the first term in Eq. (14a) is all im-
portant for symmetric TLS's.

We now discuss some useful limiting cases. Consider
first the limit ID~"I ~0. To first order in ID "I,we havehark

I ~-— dwexp i&E 1 —
2 Dq l —e

q Ct)q

' )n +(1—e ' )(n +1)

where

Ek= /k+4 y gi D"1

q
q, l

The first term gives a 5 function which does not contrib-
ute since E" cannot vanish. We note that only the term

ltd 7

containing e ' will make a contribution. Hence

harkI i —— g ID "I (n +1)2m5(b, "—a) ) .
q Nq

Similarly,
'2

8' 4
D "I n 2~5(b co ) . —

q COq

The total relaxation rate of the kth TLS I" (=I'~&+I ki)

is given by

( hark)2 4
, ID,"I'2~(2n, +1)5(t"—, ) . (18)
q

Using the Debye approximation, the above expression
can be further evaluated to give (suppressing the index k)

/ID"I = '(g~ ) G,

where

2 2cia
~ fr

4c'

I k

'2

f drexp i E" g ID—"I
2 00 COq

L

Xexp —
+2ID "I (2n +1)r

q

(20)

Therefore the limit (19b}is valid for all values of the tem-
perature provided 6))8. Typically, G is =350. For
small values of G, (19b) would still be valid at high tem-
peratures, kT »AcoD, provided also kT »3AcoD IG. In
the limit (19b), the region close to t =0 determines the
value of the integral (see the Appendix). Therefore we
calculate the integral in I'i by keeping terms up to r and
we have

.4c.' 2npR4
(19a)

This can be integrated to give

kW' &m
exp

jp 2

4A
(21)

where f =
If ' f"

I
and the vario—us quantities occur-

ring in Eq. (19a) are defined in Ref. 1. This result has
been obtained earlier with the difference that I depends
on E ( =+6 + W ) instead of b, as in our result. In the
limit of weak tunneling, i.e., small W, the two results be-
come the same. KS obtain Eq. (19a), albeit with b, re-
placed by I b, + W ]'~, for symmetric TLS's. However,
to second order in D", the result of KS also reduces to
the analog of (19a) just as in our case. This weak TLS-
phonon interaction limit was not discussed by KS.

We next consider the limit

Simi. larly, we find

kW' &m.

2
exp

C2

4A
(23)

where

where

=2+ ID "I (2n +1) and B =E" g ID~I—4

q

(A'a)D )

2 y ID,"I'(2n, +1)
(19b)

ID "I2
COq

(24)

We have

2
ID~" I (2n~+1) &

2 g 4ID~"I (2n +1) .
q COq COD q

Note that

A calculation of the relaxation rate using a Hamiltonian
with undressed TLS's but dressed phonon variables, given

by Eq. (10) with 4, =%2=—1 and X+=o+, produces iden-
tical results to those in Eqs. (21) and (23). We get, as ex-
pected, I

&
) I ~. The ratio of the downward to upward

Rip ratios becomes
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I k/I k 4Eky (Dk(2k 1

q

(25)
1 i

pEkNote that Eq. (25) reduces to the result e ~ and
lnI I qt

=
2
—ln(kT/AcoD ) for kT » fico~ I. t is interesting

that the latter behavior is in agreement with the graphi-
cal results of KS, given in Figs. 1 and 2 of Ref. 5.

temperature behavior agrees with the numerical results of
KS.

Finally, as discussed by Leggett et al. , the eigenstates
of the HTIs are approximately eigenstates of o.z when
8'/5 is small. In this case it is more appropriate to use
localized states to describe the system. Otherwise, the
eigenstates are delocalized and appropriate linear com-
binations should be considered.

CONCLUSION

In conclusion, we would like to point out some impor-
tant difFerences between the results obtained by us and
those obtained earlier by KS and others. The use of lo-
calized states of a TLS has produced a relaxation rate
which is significantly difFerent from that obtained by KS
using the basis which diagonalizes Hr„s, viz. , linearly su-

perposed states of localized states. All calculations use
first-order perturbation theory to calculate a constant
rate of transition, i.e., the golden rule.

First, we have shown that in both our work and that of
KS the familiar coth(E/2k' T) behavior of the total re-
laxation rate I is obtained in the limit of weak TLS-
phonon interactions, i.e., to second order in ~D "~ . This
behavior of I is termed I &„, by KS, the relaxation rate
of an unrenormalized TLS. Of course, in our case E is
replaced by 6 as expected. However, KS obtained I &„,
also for a symmetric TLS (6"=0) for all values of ~Dq ~

.
Our result [Eq. (13)] for I does not reduce to I &,„„with
E replaced by 6, for a symmetric TLS. Note that in the
work of Leggett et al. their integral representation for 1"

diverges for the symmetric TLS owing to the absence of
the S" coupling to the phonon field. Such terms are in-
cluded in our work and thus lead to convergent integrals
for symmetric TLS's. The absence of the S" coupling
may be the cause also for the tricky nature of the numeri-
cal computation in the work of KS for small values of E.

Second, we obtain simple analytical expressions for the
relaxation rates [Eq. (13)] in the limit (19b}. These ex-
pressions are given by Eqs. (21} and (23), which assume
simple forms for large T. In fact,

—C, /I~TC

where CL and C2 are positive constants and
E /k&TI ~

=I ~e with Cz & E . The T '/ high-

APPENDIX

Xexp i g— ~D "~ sincoqt
q Nq

Xexp —g ~D ~
(2n +1}(1 costo —t)

q Cgq

(Al)

The first and second exponentials are oscillatory, while
the third is less than or equal to zero and vanishes in the
limit considered except in a region of small values of t,
that is, co ~t~ &coarct~ &a&&1, owing to the (1 cosco t)—
factor.

Therefore

aidte el~ —— a (A2)

where A and 8 have been defined in Eq. (22).
Now introduce a change of variable x = At. We obtain

dx (axe~ -x'
e e

4 —c A /co&
(A3)

If s A /coD »1, that is, coD /A «e, then the region of in-

tegration may be extended to Zoo without altering the
value of the integral, and so

lk (lI")' r+" dx a.~~- ''=
4 J". A'

(~')' ~~, a&zq~2-
4 A' (A4}

In this appendix we show how Eq. (21) is obtained
from Eq. (13) in the limit of (19b).

Equation (13) can be written as

( peak )2
I

&

= f dt exp(iE "t)
4 00
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