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PHYSICAL REVIEW A

VOLUME 37, NUMBER 7

APRIL 1, 1988

Photoionization of gallium at 3d -4p and 4s-np (n =5,6) resonances

C. Denise Caldwell
University of Central Florida, Orlando, Florida 32816

Manfred O. Krause and José Jiménez-Mier
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
(Received 6 November 1987)

The simplest atoms having nonspherical symmetry are those with a single p electron in a valence
shell. Of these, the group IIIB elements are excellent examples. As such, they form test cases for
photoionization from open-shell systems. Through photoelectron-spectroscopy techniques, we have
examined both partial cross sections and angular-distribution parameters for autoionization corre-
sponding to promotion of a 3d electron to the 4p shell of gallium. The resulting dp? configuration
gives rise to a complicated multiplet structure across which the angular-distribution parameter
varies considerably. We have also looked at the simpler structure resulting from promotion of one s
electron to an np level, n =5,6. For these cases, the multiplet structure is simpler, but the influence
of the resonance on the cross section and the angular distribution is pronounced. For the
4s4p (3P)5p resonance we find a value of B= —1 at the cross-section minimum. No calculations
have been performed for this system, so we attempt a qualitative interpretation of our results based

on an angular-momentum-transfer analysis.

I. INTRODUCTION

The theoretical success in handling symmetric, closed-
shell systems in photoionization has been exemplary.!
However, these accomplishments have not been matched
for those atoms whose ground state contains one or more
unpaired electrons with orbital angular momentum not
equal to zero in an outer shell. The resultant couplings of
the electrons with the core and with the departing elec-
tron lead to the presence of many channels which con-
tribute to the ionization. The process of sorting them out
is not at all simple and has been attempted in only a few
cases.

Of those open-shell atoms which are accessible to mea-
surement, the halogens have been examined most exten-
sively.?~> These atoms contain a single vacancy in the
valence shell, and the resultant number of coupled chan-
nels is numerous. Interchannel couplings are so large
that they contribute heavily to the resultant cross sec-
tion.®> However, the difficulties of the calculation and
discrepancy with experiment in the case of chlorine,’
which is especially interesting because of its proximity to
argon in the Periodic Table, point out the problems asso-
ciated with calculations involving open-shell systems.

The nature of the vacancy in chlorine may have a ma-
jor influence on the resultant interchannel couplings. For
this reason, a simpler route to take in examining the
effects of the simplest nonspherical system, a lone p elec-
tron, should be the investigation of the group IIIB ele-
ments. Each of these has a configuration of the form
(n —1)d "°ns?np with a single unpaired p electron in the
valence shell. While the total number of states produced
by the couplings is the same as for the hole in the halo-
gens, the fact that the lone electron interacts with so few
electrons within its own shell should make the theoretical
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treatment simpler.

Experimentally, study of this series has been hampered
by the fact that, with the exception of Tl, the metals mak-
ing up this group require high temperature for vapor for-
mation. Before the development of high-temperature
metal-vapor effusive ovens as sources for photoelectron
spectrometry, a detailed analysis of photoionization of
these species in the gas phase was not feasible.

There are four elements making up the group IIIB
series, Al, Ga, In, and T1. All of these have been studied
in photoabsorption,”’ ~!® with particular attention having
been devoted to the resonances associated with the exci-
tation of a d electron or an s electron. Recently we re-
ported'""!? a series of measurements on the photoioniza-
tion of electrons from the d shells of gallium and indium
at the autoionizing resonance (n —1)d'%nsnp -
(n—1)d°ns*np?, n =4 for Ga and n =5 for In. In our
studies we measured the variation of the partial cross sec-
tion across the resonance for the production of a given
term of the excited-state multiplet. We did this using the
technique of constant-ionic-state (CIS) electron spec-
trometry. For a detailed analysis of the behavior of the
partial cross section through the resonance and the resul-
tant coupling with the final state of the ion, this tech-
nique is most useful. In addition to separating out the
multiplet structure, this method has the advantage that
coupling of the “bound” level into each of the final ionic
states is differentiated. Through this scheme we can also
obtain B values for the various terms of the multiplet.
These dynamic parameters are much more sensitive to
the individual couplings within the atom and provide ad-
ditional information beyond that available from absorp-
tion spectra.

An energy-level diagram for gallium is shown in Fig. 1.
The 3d-4p resonance decays by coupling into three ionic
states 3d %4s2'S, 3d'%s4p 'P, and 3d %4s4p 3P. At the
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FIG. 1. Energy-level diagram for Gal and Gall. The solid
lines for Gal indicate the principal excitations we observe in
this work. The lines for Ga II correspond to the three final ionic
states.

time of our first measurements we discovered that certain
general conclusions could be drawn with regard to the
mixing between the autoionizing state and the continu-
um. In particular, the coupling between the 4p? manifold
and the continuum was strongest when the final ionic
state had the same symmetry as the core state produced
by the p? coupling. While looking at the partial cross
sections, we also carried out a preliminary investigation
of the variation of the angular-distribution parameter as-
sociated with the 'S, final ionic state through the reso-
nance. As might be expected, this variation is consider-
able. However, no attempt was made to explain this vari-
ation in that early work or to extend the measurements to
the other ionic states.

In moving from the 3d shell of gallium to the n =4
shell, the system simplifies considerably. Autoionizing
resonances correspond to the promotion of one 4s elec-
tron to an np level, n >4. Assignments have been made
for the 4s4p? and the 4s4p5p configurations.®’® As a tar-
get for exploration of photoionization of open-shell
atoms, these states should be more amenable to theoreti-
cal analysis. Because the ionization does not involve an
excitation of the inner core, it would be necessary to treat
only the three outer electrons in the coupling scheme. If
this can be done without including virtual core excita-
tions, calculations should become more tractable.

In the work which follows we report measurements on
the gallium atom in two regions of the spectrum. Firstly,
we made angular distribution measurements of photo-
electrons corresponding to the formation of each of the
three possible final states of the ion for the 3d-4p excita-
tion. Together with our earlier work,'""!? this will round
out our analysis of that spectral regime. Secondly, in a
first experimental look at the region corresponding to the
4s-np (n >5) autoionizing resonances we report partial
cross-section and angular-distribution measurements for
three of these resonances. In all cases we find broad evi-
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dence for the influence of channel couplings on the re-
sults. In the absence of any theoretical calculations on
this system, we are unable to make quantitative
identifications of all the contributions. However, we will
attempt to make a qualitative interpretation of our re-
sults, which we hope will stimulate calculations on this
open-shell system.

II. EXPERIMENTAL

The apparatus which we use for all measurements has
been described in detail elsewhere.'® It will suffice to give
a limited description of those parameters appropriate to
the gallium experiment. Ionizing radiation from the Uni-
versity of Wisconsin storage ring Aladdin is dispersed in
a Seya monochromator at a resolution of 1.7 A. This ra-
diation falls onto a source of gallium vapor which has
been generated in a high-temperature effusive furnace
heated to 1100 K. Electrons from the gallium are energy
analyzed in a spherical sector plate electron analyzer hav-
ing a resolution of 1% and finally monitored with a chan-
neltron detector. The initial state of gallium is either the
2P, ,, or 2Py, state. Of these the 2P, state lies above
the 2P, ,, state in energy by 0.102 eV. Thus both states
will be populated at 1100 K, the *Py,, state by 68%.
With our monochromator bandpass of 1.7 A, 14 meV at
10 eV and 55 meV at 20 eV, it is possible for us to
discriminate between the 2P,,, and 2P;,, levels in the
CIS scan. The discrimination is more complete in the
10-12-eV region than at 20.33 eV. Nevertheless, separa-
tion is sufficient to warrant our interpreting the results
solely on the basis of a *P, ,, ground state.

CIS spectra are recorded by scanning simultaneously
the photon energy and the accelerating voltage of the
source cell so as to always observe electrons correspond-
ing to the same final ionic state. The spectra are normal-
ized with the aid of photoelectron spectra taken at con-
stant photon energy (PES). Partial-cross-section measure-
ments are made with two analyzers placed at 180° with
respect to each other, both being oriented at the magic
angle to remove influence of the angular distribution on
the cross section. Using both analyzers allows for correc-
tion for any possible asymmetry in the source volume.
The B measurements are taken simultaneously with two
analyzers at right angles to each other. The parameter
which is actually determined is the ratio R =I1(0%)/
I(90°), where I(0) is the intensity measured in the
analyzer at angle 6. This ratio is converted to the value
of B using the measured value of the polarization P of the
ionizing radiation and the relative response function y of
the two analyzers.!> We determine P and y by calibra-
tion with the known values of 8 for the rare gases'* at
21.22 eV.

III. THE 3d-4p RESONANCE

In Fig. 2 are shown the partial widths of the three exit
channels in the decay of the 3d-4p resonance. The num-
bers correspond to the line positions as they have been as-
signed by Connerade;’ they are listed in Table I. We note
once again that the system tends to decay in such a way
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FIG. 2. Partial cross sections for Gal photoionization at the
3d-4p resonance. Taken from Ref. 11.

TABLE I. Line positions in 20.33-eV resonance. Assign-

ments are from Ref. 7.

Assignment: Assignment:
Number hv (eV) ’pP,,, ionization 2p, ,, ionization

1 18.81 (P) *D,,,
2 18.88 (¢P) ‘D,

3 19.03 (P) D5,
4 19.40 ¢p) P,
5 19.485 ¢P) 2P, ),
6 19.51 GpP) P,

7 19.58 ¢P) *P; ),

8 19.61 ('D) S, ,,
9 19.74 ('D)%S,,,
10 19.92 (‘D) *P; ),
11 20.04 ('D) %Py,
12 20.10 (‘D) *Ds,,
13 20.21 (‘D) %P, ,
14 20.33 (‘D) P,
15 20.46 (‘D) *D,,,
16 20.62 (‘D) ’D;
17 21.20 ('S) D5,
18 21.59 ('S) D5,
19 21.70 ('S) 2D, ,,

0.0 + — 4
4p'S
-0.5+ J

3 4 9 111314 16 17 19
1

L1 0 I ! L
19.2 20.0 20.8 21.6

-1.0
18.4

Photon Energy (eV)

FIG. 3. Angular-distribution parameter 8 for 3d-4p reso-
nance decay into 'S,. The solid line is the CIS data; PES results
are indicated by circles. Line positions given at the bottom of
the graph are taken from Table I. The CIS distribution is nor-
malized at 20.33 eV to 5=0.68.
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FIG. 4. Angular-distribution parameter 3 for 3d-4p reso-
nance decay into 'P. The solid line is the CIS data; PES results
are indicated by circles. Line positions given at the bottom of
the graph are taken from Table I. The CIS distribution is nor-
malized at 20.33 eV to 8=0.58.
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FIG. 5. Angular-distribution parameter 3 for 3d-4p reso-
nance decay into *P. The solid line is the CIS data; PES results
are indicated by circles. Line positions given at the bottom of
the graph are taken from Table I. The CIS distribution is nor-
malized at 20.33 eV to B=0.43.
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that the symmetry of the final state remains the same as
that of the p? configuration.

In Figs. 3-5 are depicted the 3 values obtained by the
CIS technique in a scan through the resonance. These
have been normalized by traditional PES measurements
at various photon energies, as indicated by the circles in
the figures. The linear polarization of the synchrotron
radiation using the Seya monochromator is 0.96 at the
wavelengths of interest. In general, the agreement be-
tween two or more independent measurements is quite
good.

As can be expected, we see a strong variation in f3 as
we pass through the resonance. In the absence of de-
tailed calculations it is impossible to make any precise
statement about the dynamics which lead to the variation
in 5. We must be content with making some general ob-
servations about the behavior at various points on the
curve.

As a suitable reference point for our discussion we
choose the angular-momentum-transfer theory formulat-
ed by Fano and Dill.'* Dill'® has shown this to be a valu-
able tool for analysis of autoionizing resonance. The con-
tribution of the resonance can be explored in terms of its
effect on the various possible angular momentum
transfers. Manson and Starace!” have applied this
scheme to the angular distribution of electrons from s
subshells, and their results can be applied to part of our
analysis.

Ionization from the 4s%4p zPl/z state of neutral gallium
produces the 4s% 'S state of Ga 1l with an electron in ei-
ther an s wave or a d wave. lonization to the 4s4p P and
P state of Gall produces primarily an electron in a p
wave, although f waves can occur due to interchannel
correlation or ground-state configuration mixing.!” In
our analysis we will neglect possible contributions from
[ =3. The Fano profile of an autoionizing transition
remains symmetric if the transition is dominated by the
resonance route or, as Mies'® has noted, if a number of
overlapping transitions are present within the line profile.
The general character of the spectra produced in these
group IIIB elements and the reason for their interest to
us is due to the fact that many overlapping transitions are
present. Thus it is next to impossible to ascertain on the
basis of Fano profiles how much of the ionization
proceeds via the resonant and how much via the direct
process. However, as there is very little contribution
from the direct ionization in the 3d-4p transition, we will
interpret the angular-momentum-transfer contributions
as having come solely from the resonant portion.

An angular-momentum-transfer analysis of the ioniza-
tion of Gal to produce each of the final states is given in
Table II. For each final ionic state are given the values of
the angular momentum transfer j, associated with that
state. These are separated into parity-favored and
parity-unfavored contributions. Also listed are the ex-
pressions for 3. In these expressions the term S,(j,) is the
photoionization amplitude'® for angular momentum
transfer j,, resulting in the final value of the electron-
orbital angular momentum /. For parity unfavored j,,
B=—1.

From Figs. 3—-5 we see that the influence on the value
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TABLE 11. Angular-momentum-transfer analysis of 8. S,(j,)
is the reduced dipole matrix element corresponding to the pro-
duction of a partial wave of angular momentum / with an angu-
lar momentum transfer j,. o(j,) is the cross section for produc-
tion of that value of j,.

Final Parity Parity
ion favored unfavored
state Ji Ji B
(1B (1)—0a(0)
1S, 1 0 E_.-B_f_-o—
o(l)+0(0)
P, 0 1 20(0)—o(1)
o(0)+o(1)
p, 0, 2 1 20(0)+0.20(2)—0o(1)
o(0)+o(1)+0(2)
P, ) | 0.20(2)~a1)
a(1)40(2)
p, 0,2 ) 20(0)+0.20(2)—0o(1)
ag(0)+o(l)4+0(2)
[S,(1) | 2= V2[S,(DSE(D)+SF(1)S,(1)]

[S2(1) 24 | Se(1)]?

“In strict LS coupling this transfer would be forbidden.

of B is greater when the final ionic state is a P state, as op-
posed to an S state. (Compare the expressions for 3 in
Table II.) This is consistent with the 3d°4s24p?
configuration decaying via a route 4p%-3d,el with
minimal interference from the two s electrons. Produc-
tion of the P state must involve loss of one of the s elec-
trons, implying enhanced interaction with the core and
thus greater probability for transfer of angular momen-
tum to and from the core. A look at the average values
of B for the 3P and 'P final states from Figs. 4 and 5 indi-
cates that the variation for both is similar throughout the
resonance. This is to be expected from the formulas
given in Table II and indicates that the spin has little
effect on the final value of 3.

Direct ionization of the p electron of GaI should result
in the Cooper-Zare!® result for 3, a smoothly varying
function of energy. Without knowing the values for the
matrix elements in the Cooper-Zare formula it is impossi-
ble to ascertain where the curve would lie, although it is
likely that the d wave will dominate at this energy. This
would give rise to a value of 3 close to 1.00. Because of
the spherical symmetry of the s* core we expect no aniso-
tropic interactions between the outgoing electron and this
core. Thus the variation in 3 reflects the interference be-
tween the d and s partial waves, even at the resonances,
with no parity-unfavored contributions. This is con-
sistent with the recognition!” that, in strict LS coupling,
only one angular momentum transfer is allowed; the
parity-favored transition is the only one available. If we
follow the assignments of Connerade and Baig,” the P
states generally produce a lower value of 3 and the S and
D states a larger value of 3. The negative values observed
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below 19 eV are very uncertain due to low intensity and
poor statistics.

Interpretation of the production of the P states is
simpler. In this case the direct process, photoionization
from an s subshell, should produce a value of =2.0. As
we do not resolve the triplet components in the *P final
state, we can use the same expression for 8 for both sing-
let and triplet P. The Cooper-Zare model corresponds to
a transfer j, =0. That B differs from 2.0 throughout the
profile further indicates that, at least to our resolution, no
portion of the spectrum is free of the resonance. While
the B values for both the 3P and 'P final states are, on the
whole, roughly the same, the fact that both curves drop
below + 0.2 indicates considerable contribution from
parity-unfavored transfer, as well as a considerable di-
minution of the j, =0 contribution.

IV. THE 4s-np RESONANCES

For the lower-energy region we have examined three of
the possible 4s-np resonances in detail, both for the par-
tial cross section and for the angular distribution parame-
ter B. Our results are presented in Figs. 6-11. In all
cases we have recorded the CIS spectra by monitoring
the 'S, ground state of the ion, the only channel available
up to 12 eV. The intensity scales of the o curves are nor-
malized to the peak value for the (*P)Sp resonance
(hv=10.084 eV). The proportions, along with that for
the 3d-4p resonance, are listed in Table III. We note that
the 'P core resonance can decay into the P state as well.
Preliminary data indicate that the cross section is compa-
rable to that of decay into the 'S state. However, the low
energy of the electrons involved in this transition (~0.7
eV) makes a more reliable analysis difficult.

The first fact which strikes one upon examining these
spectra is the pronounced asymmetry of the lines. This is
most visible in the » =S5 transitions for both core
configurations, but is clearly evident in the (*P)6p reso-
nance as well. The deep minimum indicates a relative
isolation of the principal transition with strong coupling

3 T
16x10 T T T T T ]
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3
> 127 (°P)5p
2
2z
£ 8}
(%]
i
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4}
9.7 9.9 10.1 10.3 10.5
Photon Energy (eV)
FIG. 6. Cross section for photoionization across the

4s4p (*P)5p resonance. The solid line is the CIS data scan of the
Ga 4p photoline; PES results are indicated by circles. Line posi-
tions at the top of the graph are taken from Table IV. The CIS
distribution is normalized to the PES value at 10.074 eV.
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FIG. 7. Cross section for photoionization across the
4s4p(°P)6p resonance. The solid line is the CIS data scan of the
Ga 4p photoline; PES results are indicated by circles. Line posi-
tions at the top of the graph are taken from Table V. The CIS
distribution is normalized to the PES value at 10.996 eV. The
vertical scale is adjusted to give a ratio of the 6p maximum to
the 5p maximum of 14%.
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FIG. 8. Partial cross section for photoionization across the
4s4p('P)5p resonance as observed in the 4p 'S channel. Lines
1 and 2 are at 12.622 and 12.725 eV, respectively.
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FIG. 9. Angular-distribution parameter S for the 4s4p(3P)5p
resonance. The solid line is the CIS data for the Ga 4p photo-
electron; PES results are indicated by circles. Line positions are
taken from Table IV. The CIS distribution is normalized to
B=—0.05 at 10.074 eV.
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FIG. 10. Angular-distribution parameter [ for the

4s4p (3P )6p resonance. The solid line is the CIS data for the Ga
4p photoelectron; PES results are indicated by circles. Line po-
sitions are taken from Table V. The CIS distribution is normal-
ized to 8=0.97 at 10.966 eV.

to the direct process. The general shape of the resonance
structure is similar for both. This includes one dominant
peak, with most of the remaining oscillator strength con-
centrated in nearby-lying resonances at higher photon en-
ergy. The g values for the triplet core resonances are pos-
itive, while the ¢ value for the (!P)5p resonance (Fig. 8) is
negative. An overlay of the 8 curve with the o curve for
both n =5 resonances shows that the minimum values of
[ lie at the minima of the cross section. In the case of the
(3P)5p resonance, BB is very nearly equal to —1 at this
point. This is in agreement with a qualitative interpreta-
tion that 3 should be predominantly determined by the
weaker parity-unfavored contributions to the cross sec-
tion at the minimum. Direct transitions to produce the
452 'S, final state must be parity favored.

The n =5 resonance has been analyzed in detail by
Connerade and Baig,’ and assignments have been made
to the various coupling terms. These assignments are
listed in Table IV, corresponding to the numbers at the

0.5

0.0 +
('P)sp
—-0.5+ J

-1.0 : ' ;
12.3 12.5 12.7 12.9 13.1

Photon Energy (eV)

FIG. 11. Angular-distribution parameter B for the
4s4p('P)5p resonance. The solid line is the CIS data for the Ga
4p photoelectron; PES results are indicated by circles. Lines 1
and 2 are at 12.622 and 12.725 eV, respectively. The CIS distri-
bution is normalized to B=1.46 at 12.622 eV.
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TABLE III. Relative peak values of the resonances. Ener-
gies are based on calibration with the first three autoionizing
resonances in Xe 5p,,,. Values are taken from Moore’s tables.
The uncertainty of the calibration is 0.008 eV. Energies in
parentheses are from Refs. 7 and 9.

Relative

Energy (eV) Resonance intensity®
10.084 (10.075) 4s4p(’P)5p 100.0
10.966 (10.966) 4sdp (°P)6p 14.5
12.631 (12.622) 4s4p('P)5p 5.5
13.634 (13.625) 4s4p('P)6p 2.9
20.339 (20.33) 3d°4s%4p? 5.7

*Peak value.

TABLE IV. Energy levels and quantum defects of the terms
of the 4s4p(*P)5p multiplet. (See Figs. 6 and 9.) Quantum de-
fects are based on an average value of 11.984 for the *P ioniza-
tion limit.

Peak Energy (eV)
No. Ours? Ref. 9 ) Designation®

1 9.741 2.55 D\,

2 9.809 9.791 2.52 ‘D,

3 9.864 9.864 2.48 Py, )

4 9.966 9.973 2.41 Py,

5 9.982 9.992 2.40 (*S,,,)8

6 10.010 10.010 2.39 (D, )

7 10.069 10.074 2.33 P, )

8 10.085 10.095 2.33 Py,

9 10.113 10.115 2.32 D,
10 10.195 10.19 2.26 (*Ds,5)
11 10.301 10.288 2.17 S, ,,)
12 10.403 10.404 2.07 S,

*Accuracy = +0.008 eV.

°From Ref. 9.

‘Thermally populated terms inferred from spacing.

dWe have interchanged the *P,,, and *S;,, terms to correspond
more closely to the observed intensities. See text for further dis-
cussion.

TABLE V. Energy levels and quantum defects of the
454p(’P)6p multiplet. (See Figs. 7 and 10.) Energies are our ex-
perimental values.

Peak Tentative
No. Energy® (eV) ) designation

1 10.767 2.66 ‘D,

2 10.800 2.61 D,

3 10.853 2.53

4 10.898 2.46 *Py,s

5 10.906 245 S1

6 10.917 2.43

7 10.935 2.40 P n

8 10.944 2.38 P,

9 10.961 2.35 Dyp

10 11.021 2.24 *Ds,

2Accuracy = +0.008 eV.
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top of Fig. 6. In their discussions of the location of the
terms the authors are ambiguous in the designation of the
coupling in the principal peak. According to their Table
I this maximum has the designation *S,,. The ?P,,
term has a small intensity. This is inconsistent with re-
sults of earlier measurements on the 4p? resonance and
with the dominance of doublet states expected from even
partial LS coupling in gallium. In addition, Connerade
and Baig’ also point out a discrepancy, and the ordering
in their Fig. 2 corresponds to what we give here. When
this exchange is made, we notice a grouping of the multi-
plets into a weak set of quartet states and an intense set of
doublet states.

As yet no comparable analysis has been made of the
(P)6p resonance. Energy levels for the various terms of
the multiplet are listed in Table V. They correspond to
the peak numbering given in Fig. 7. A calculation of the
quantum defects for these levels and comparison with de-
fects calculated for the (*P)5p resonance allows an assign-
ment to be made. Thus we have tentatively given the
same designations to these terms in the (*P)6p resonance
having the same quantum defects as those assigned to the
(*P)5p resonance in Table IV. In doing this, however, we
note that those terms in Table IV, which are supposed by
Connerade and Baig’ to have originated from the
thermally populated P;,, ground state, no longer have
the proper separation from those originating from the
2P, ,, state. This implies that the designation in Table IV
is not complete. For the ('P)5p resonance, if we preserve
the dominance of the core coupling in the multiplet
determination then fewer components of the multiplet are
possible. This is borne out by the paucity of lines ob-
served in the transitions. Unfortunately, at our resolu-
tion, the multiplet splitting in this state is unresolvable.

While detailed calculations are necessary in order to
explain the behavior of both the partial cross section and
B throughout these resonances, a qualitative description
in the same sense as that applied to the 3d-4p resonance
is also possible. In the absence of a resonance transition,
direct ionization of the 4p electron should be a textbook
case for removal of a p electron. As the 4s2 core
possesses a 'S structure, there can be no interaction be-

tween the departing electron and the core which would
produce parity-unfavored transitions in the direct pro-
cess. The parity-favored asymmetry parameter 3 is given
at the bottom of Table II. The negative values of 3, espe-
cially for the (*P)5p resonance, indicate that at the cross-
section minimum, the departing electron is predominant-
ly s wave for 2P, , ionization based on a triplet core. On
the other hand, the large positive value of B for the sing-
let core indicates dominance of d waves.

V. CONCLUSIONS

A summary glance at the data presented in Figs. 3-11
ndicates that autoionization spectra from the open-shell
gallium atom are rich and varied. Oscillator strengths
are strong into practically all terms of the multiplets.
Angular distributions vary considerably for the different
terms and reflect, in some cases, strong parity-unfavored
contributions. Unfortunately our resolution does not
permit isolation of all terms, and in some cases the as-
signments of the terms are only tentative, making a de-
tailed analysis of the coupling of each term with the con-
tinuum impossible. It is clear that much theoretical
effort will be necessary in order to make a quantitative in-
terpretation of our results.
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