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Abstract. The maximum entropy principle (MEP) is applied to the problem of
reconstructing an image from knowledge of a finite set of its moments. This
new approach is compared to the existing method of moments approach and is
shown to have a clear edge in performance in all of the applications attempted.
Compression ratios more than twice as high as those previously achieved are
possible with the new MEP method.
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coding.

Optical Engineering 26(10), 1077 -1083 (October 1987).

1. INTRODUCTION
The general problem of reconstructing data from a retained
finite number of its moments is considered here from the point
of view of the maximum entropy principle (MEP). The prob-
lem itself is quite old, but it has come to the forefront recently
owing to its application to images, where moments can be
calculated by using video -digital processors. Although the
methods discussed here apply to both one- and two -
dimensional data, we address mainly the problem of images.

The first important paper in the area is by Hu,' who used
image moment invariants in two -dimensional pattern recog-
nition problems. Later, Dudani et al., used the approach in
algorithms for automatic identification of aircraft. More

Paper 2339 received Sept. 22, 1986; revised manuscript received April 27,
1987; accepted for publication April 27, 1987; received by Managing Editor
May 4, 1987. This paper is a revision of a paper presented at the
SOUTHEASTCON '86 conference, March 1986, Richmond, Va.
© 1987 Society, of Photo -Optical Instrumentation Engineers.

recently, Teague3 defined moment invariants with respect to
Zernike polynomials and applied them to problems of image
recognition, contrasting his results with the usual method of
moments.

The basic notion behind all such problems is that a finite set
of the image moments may contain enough information about
the image to satisfy the problem at hand. It is, of course,
known that all of the moments contain as much information
about the image as the image itself since the coefficients of the
power series of its characteristic function are uniquely related
to them. The key question in each application is how small the
set can be, i.e., how much the image data can be compressed
by moment coding and still retain some key characteristic of
the image pertinent to the application. In image transmission
or storage, the moments can be used to compress the image in
the same way as is done with various types of transform
coding (Karhunen -Loeve, discrete cosine, slant, etc.). A few of
them can be calculated and then transmitted or stored. Upon
reception or retrieval, the moments can be used to reconstruct
an approximation to the original image by an inverse proce-
dure referred to as the method of moments. It is this inverse
problem of reconstructing an approximation to an image by
using a finite set of its moments that is of interest in the present
work. More specifically, the work presented here proposes a
new approach to reconstructing moment -compressed images
that appears to have the edge over the method of moments in
all of the cases we tried experimentally.

Section 2 briefly reviews the definition of the moments and
the method of moments for the inverse problem. Section 3
discusses the proposed method of inversion by use of the
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MEP. Section 4 gives some examples to illustrate the superi-
ority of the proposed MEP method.

2. METHOD OF MOMENTS
What follows in this section can be found in detail in Ref. 3.
We review it here to set the stage for the proposed entropy
method presented in Sec. 3.

Let us start by denoting a given image by the two- dimen-
sional function f(x,y), with x,y in bounded domains (the
dimensions of the image). In defining the moments here, we
assumed the image to be a continuous (or piecewise continu-
ous) function of x , y and this is the reason for the integrals. In
practical problems the image is spatially sampled and the
integrals must be replaced by sums.

The zero -order moment of the image is given by

M(0,0) = J J f(x,y)dxdy , (1)

which represents the normalization factor of the image. The
first -order moments are given by

M(1,0) = J J xf(x,y)dxdy , (2)

M(0,1) = J J yf(x,y)dxdy , (3)

which locate the centroid off (x , y). The third -order moments
are given

¡
M(2,0) = J J x2f(x,y)dxdy , (4)

M(I,1) = J J xyf(x,y)dxdy , (5)

M(0,2) = $$Y2f(x,Y)dxdY , (6)

which characterize the size and orientation of the image. The
general expression for the moments is given by

lV1(j,k)
= SSxiydf(x,y)dxdy . (7)

We note, however, that when we speak of having all of the
moments up to the second moment, we actually mean that we
have 3 +2 +1 numbers, and when we speak of having all of the
moments up to the sixth one, we mean that we have
7 +6 +5 +4 +3 +2 +1 numbers, etc. Thus, if an NXN image is
compressed by keeping six of its moments, the compression
ratio would be NXN/ 28 and not NXN / 6. In general, the
compression ratio is given by 2N2 / (n + 1) (n + 2), where n is
the number of moments retained.

Let us next consider the inverse problem of reconstructing
an approximation of the image from a few of its moments by
using the so- called method of moments. If the first two
moments are known, the method of moments asserts that
f(x , y) can be reconstructed by the expression

g(x,y) = g(0,0) + g(1,0)x + g(0,1)y + g(2,0)x2

+ g(1,1)xy + g(0,2)y2 , (8)

1078 / OPTICAL ENGINEERING / October 1987 / Vol. 26 No. 10

where the coefficients g(j , k) are picked so that the moments
of the function g(x , y) match those of f(x , y). The general case
of knowing the first N moments is an easy generalization of
the above.

The method of moments is quite easy to apply, and it leads
to a system of linear algebraic equations whose number is
equal to the number of known moments as well as to the
number of unknown coefficients.

Instead of the regular moments, one may use the central
moments for either the compression or the decompression
(reconstruction) of the image f(x , y). In fact, one may view the
problem in the realm of expansion theory and realize that
although the set of functions xi yk forms a complete set
(Weierstrass' approximation theorem), it does not form an
orthogonal one. To remedy this, Teague3 reformulated the
method of moments using Legendre polynomials. We briefly
review this reformulation since it is to this approach that we
compare the proposed method.

Since f(x , y) is piecewise continuous, it can be expanded on
Legendre polynomials as

f(x,y) = XE M'(m,n)Pm(x)Pn(Y) , (9)

where Pm(x) are the known Legendre polynomials obeying

5Pm(X)Pn(X
2

2m + 1
Smn , (10)

i.e., they are orthogonal with the normalization factor as
given by Eq. (10). The coefficients of the expansion M'(m, n)
are given by

M'(m n) =
(2m + 1) + 1) (`¡`f(x,y)Pm(x)Pn(Y)dxdy

. (11)

Teague calls them "orthogonal (Legendre) moments" and
shows that they are related to the regular noncentral moments
by simple expressions. They are often called "modified
moments" since moments are scalars and the term "orthogo-
nal" is usually reserved for vectors.

With this formulation, given a finite set of moments, one
calculates the Legendre moments and then uses Eq. (9) to
arrive at an approximation of the original f(x , y), setting all
the unknown Legendre moments equal to zero. Quite
obviously, what Teague proposes is a Legendre polynomial
version of the usual transform coding approaches, with the
advantage that the coefficients are moments that are calcula-
ble by video processors. Furthermore, moments have symme-
try properties that allow an efficient encoding of the image,
which is important in data transmission and storage and in the
development of automated pattern recognition schemes.

To demonstrate the usefulness of the approach, Teague
applied it to coding and decoding letters of the alphabet.
Some of his results are reviewed and compared to the pro-
posed method in Sec. 4.

3. MAXIMUM ENTROPY PRINCIPLE
RECONSTRUCTION

According to the maximum entropy principle proposed by
Jaynes,4 an unknown probability density function (PDF) f(x)
can be estimated by maximizing its entropy with respect to
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ble by video processors. Furthermore, moments have symme 
try properties that allow an efficient encoding of the image, 
which is important in data transmission and storage and in the 
development of automated pattern recognition schemes.
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Some of his results are reviewed and compared to the pro 
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MAXIMUM ENTROPY RECONSTRUCTION OF MOMENT -CODED IMAGES

f(x), using any prior knowledge about the underlying random
variable as constraints in the maximization. Phrased in terms
of a two -dimensional PDF f(x, y), which is useful for the
sequel, one estimates the unknown f(x, y) by minimizing the
negentropy

H(x,y) = 55f(x,y)log[f(x,y)]dxdy , (12)

subject too

K(i) = $ff(x,Y)h(xY)dxdY , (13)

i = 0, 1, 2, ... , N, which represents knowledge of the averages
of the functions h(x,y) over the PDF f(x,y). When i = 0,
h(x,y) = 1, so the constraint demanding that f(x,y) be inte-
grated out to unity is always included in the formulation. The
MEP was formulated for probability mass functions (PMFs),
and it is somewhat controversial when applied to PDFs, but
we ignore such problems here since the eventual application
will be discrete. The above constraints are usually moments of
the underlying random variable (X , Y), but they need not be;
there is nothing in the original formulation of the principle
that demands it.

The general solution to the above maximization (minimi-
zation) problem is easily obtained using Lagrangian multipli-
ers for the constraints. It is

f(x,y) = exp[-`o - Xihi(x,y) - Xzhz(x,y) - ...

- NhN(x,y)] , (14)

with the Lagrangian multipliers calculable by inserting the
solution into the constraints and solving them simultane-
ously. The ensuing equations are not linear, and Newton -
Raphson methods are used for these calculations. When the
formulation involves a one -dimensional PDF f(x), all of the
above double integrals become single ones, and the prior
averages concern the one -dimensional h(x). And when the
unknown probability function is a PMF, all of the integrals
must be replaced by summation signs.

The MEP method has enjoyed success in PMF estimation
as well as in the problem of spectral estimation; the key paper
here is that of Burg.5 In all of these applications, the success is
attributed to the fact that it is intuitively sound (maximizing
the entropy makes sense) and that it utilizes all of the values of
known constraints while remaining noncommittal about
unknown ones. The MEP also has been used in image process-
ing, albeit for a different problem, that of enhancing an image
in the presence of noise.6, 7 It is actually surprising that no one
has yet used it in moment decoding of images, where it would
seem to have its most natural setting, as is obvious from what
follows.

To apply the MEP method to the reconstruction of
moment -coded images, all that is needed is to assume that the
image f(x,y) is a PDF of an underlying random variable
(X , Y) whose nature is of no consequence to the problem.
There is no mathematical difficulty with this assumption since
images are everywhere positive and can be easily normalized
to integrate to unity. In fact, there are even physical argu-
ments for such an assumption,8 but we do not concern our-
selves with them here. Actually, any function that is
everywhere positive can be thought of as a PDF, and thus if

the setting is right, it is subject to the MEP approach, as one of
the applications in Sec. 4 illustrates.

Let us see how one applies it to the problem of reconstruct-
ing an image whose first two regular moments have been
retained, and let us contrast it to the solution to the method of
moments reflected in Eq. (8). The MEP solution has the form

g(x,y) = exp( -X- X,x- Xy- X3x- X4xy -X5y) , (15)

where g(x,y) is the reconstructed image and the X are
Lagrangian multipliers calculated by inserting the above into
Eqs. (1) through (3) and solving them simultaneously for the
constraints.

The MEP also can be applied to the orthogonal (Legendre)
moment type of coding directly, without the need to calculate
the regular moments. The coefficients M'(m , n) given by Eq.
(11) are viewed simply as averages of the functions Pm (x) Pn(y)
over the PDF f(x, y), and they are the constraints of the
extremization. The solution in this case is given by

f(x,y) = exp EX IX. Pm(x)Pn(y)] , (16)

with the Lagrangian multipliers calculable from the con-
straints.

In closing, we point out that the MEP method does not lead
to only a reconstruction whose moments are equal to the
retained moments of the original image, as the method of
moments does. Such reconstructions are many, and the method
of moments solution is not unique unless all moments are
retained. The MEP approach picks the solution that maximizes
the entropy, and this solution is unique. Furthermore, the MEP
solution utilizes all of the information known a priori, without
assuming anything about what is not known, i.e., about the
unretained moments (regular or Legendre), whereas the method
of moments assumes them to be equal to zero.

4. APPLICATIONS AND EXAMPLES
The proposed MEP solution to the decoding of moment -
coded data was applied to various cases of practical data, and
the solution was compared to that obtained by using the
"orthogonal" method of moments outlined in Sec. 2. In all
cases the data were discrete. The reconstructions in the two -
dimensional examples were quantized to two values (one and
zero, shown in the figures as a dot and a blank, respectively)
using the average value as a threshold to facilitate viewing.
The mean squared errors, however, were computed using the
actual values. The maximization problem was numerically
solved by using simple Newton -Raphson algorithms, and the
initial guesses for the Lagrangian multipliers were all zeroes.
Since the original images were known, one could actually
calculate initial guesses for the Lagrangian multipliers by
solving Eq. (14) for the X values, but no such effort was made.
The solution converges without much difficulty since, as is
known,9 entropy is a convex function with only a single
maximum.

4.1. One -dimensional letter E

As indicated in Sec. 3, the MEP method is also applicable to
one -dimensional data, particularly if it is everywhere nonneg-
ative (if not, a bias must be added whose effect must be
removed at the outset). This first example pertains to a one-
dimensional version of the letter E. The original letter E,
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moment-coded images, all that is needed is to assume that the 
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extremization. The solution in this case is given by

(16)

with the Lagrangian multipliers calculable from the con 
straints.

In closing, we point out that the MEP method does not lead 
to only a reconstruction whose moments are equal to the 
retained moments of the original image, as the method of 
moments does. Such reconstructions are many, and the method 
of moments solution is not unique unless all moments are 
retained. The MEP approach picks the solution that maximizes 
the entropy, and this solution is unique. Furthermore, the MEP 
solution utilizes all of the information known a priori, without 
assuming anything about what is not known, i.e., about the 
unretained moments (regular or Legendre), whereas the method 
of moments assumes them to be equal to zero.

4. APPLICATIONS AND EXAMPLES

The proposed MEP solution to the decoding of moment- 
coded data was applied to various cases of practical data, and 
the solution was compared to that obtained by using the 
"orthogonal" method of moments outlined in Sec. 2. In all 
cases the data were discrete. The reconstructions in the two- 
dimensional examples were quantized to two values (one and 
zero, shown in the figures as a dot and a blank, respectively) 
using the average value as a threshold to facilitate viewing. 
The mean squared errors, however, were computed using the 
actual values. The maximization problem was numerically 
solved by using simple Newton-Raphson algorithms, and the 
initial guesses for the Lagrangian multipliers were all zeroes. 
Since the original images were known, one could actually 
calculate initial guesses for the Lagrangian multipliers by 
solving Eq. (14) for the X values, but no such effort was made. 
The solution converges without much difficulty since, as is 
known,9 entropy is a convex function with only a single 
maximum.

4.1. One-dimensional letter E

As indicated in Sec. 3, the MEP method is also applicable to 
one-dimensional data, particularly if it is everywhere nonneg- 
ative (if not, a bias must be added whose effect must be 
removed at the outset). This first example pertains to a one- 
dimensional version of the letter E. The original letter E,
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Fig. 1. One dimensional letter E.
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Fig. 2. One -dimensional MEP reconstruction of the letter E. First
row (left to right): reconstructions using zeroth through second
moments. Second row: third through fifth. Third row: sixth and
seventh.

facing upward, is shown in Fig. 1. Moments of this letter were
calculated and then used to reconstruct it by the two methods
described in this paper. Figure 2 shows the evolution of the
reconstruction of the letter E as each moment is utilized in the
MEP approach, while Fig. 3 shows the same for the method of
moments (MoM) approach. The MEP approach evolved to a
reasonable approximation of the original letter with the use of
six moments (a compression ratio of 21/ 6). The method of
moments was nowhere near a reasonable facsimile of the letter
at that point and required 16 moments before something
resembling the letter E began to appear. Table I summarizes
the mean squared errors (MSEs) of the evolutions of the two
methods and illustrates the significant difference between the
two approaches.

4.2. One -dimensional letter F

Example 2 is the same as example 1 except that it is for the
letter F, shown in Fig. 4. The results are shown in Figs. 5 and 6
and in Table I. Although the beginnings of the letter appeared
using six moments in the MEP approach, the results are
obviously not as good as in the first example owing to the
letter's lack of symmetry. The method of moments was unable
to produce an F- looking figure even after 16 moments were
used.

4.3. Two -dimensional letter E

The letter E is now viewed as a two -dimensional 21 X21 pixel
image of ones and zeroes, and the moments are spatial. The
original E and the evolving reconstructions using the MEP
method are shown in Figs. 7 and 8, respectively. The results
using the MoM approach are shown in Fig. 9. Recall that
when we talk about using seven moments we actually mean
8 +7 +6 +... +2 +1 = 36 numbers. The MEP approach pro-
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Fig. 3. One- dimensional MoM reconstruction of the letter E. First
row (left to right): reconstructions using zeroth through third
moments. Second row: fourth through seventh. Third row: eighth
through eleventh. Fourth row: twelfth through fifteenth. Fifth row:
sixteenth.

TABLE I. Mean squared errors for one -dimensional letters E and F.

Order of
moments Letter E Letter F

used MoM

0 0.32
1 0.38
2 0.36
3 0.35
4 0.36
5 0.36
6 0.33
7 0.33
8 0.35
9 0.34
10 0.34
11 0.35

MEP MoM MEP

0.32 0.35 0.35
0.32 0.51 0.32
0.32 0.35 0.28
0.32 0.30 0.28
0.29 0.32 0.27
0.29 0.31 0.23
0.063 0.31 0.065
0.063 0.31 0.066
0.063 0.31 0.070
0.067 0.29 0.070
0.067 0.29 0.070
0.067 0.29

12 0.26 0.23
13 0.26
14 0.27
15 0.21
16 0.22

duced a very acceptable reconstruction with the use of seven
moments (a compression ratio of 441/ 36), whereas for the
same number of moments the MoM approach resulted in the
blob shown in Fig. 9. Even after 12 moments the MoM
approach had not resulted in a reasonable looking E, as
shown in the figure. It took 15 moments, i.e., 136 numbers
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Fig. 1. One-dimensional letter E.

it
?!

Fig. 2. One-dimensional MEP reconstruction of the letter E. First 
row (left to right): reconstructions using zeroth through second 
moments. Second row: third through fifth. Third row: sixth and 
seventh.

facing upward, is shown in Fig. 1. Moments of this letter were 
calculated and then used to reconstruct it by the two methods 
described in this paper. Figure 2 shows the evolution of the 
reconstruction of the letter E as each moment is utilized in the 
MEP approach, while Fig. 3 shows the same for the method of 
moments (MoM) approach. The MEP approach evolved to a 
reasonable approximation of the original letter with the use of 
six moments (a compression ratio of 21/6). The method of 
moments was nowhere near a reasonable facsimile of the letter 
at that point and required 16 moments before something 
resembling the letter E began to appear. Table I summarizes 
the mean squared errors (MSEs) of the evolutions of the two 
methods and illustrates the significant difference between the 
two approaches.

4.2. One-dimensional letter F
Example 2 is the same as example 1 except that it is for the 
letter F, shown in Fig. 4. The results are shown in Figs. 5 and 6 
and in Table I. Although the beginnings of the letter appeared 
using six moments in the MEP approach, the results are 
obviously not as good as in the first example owing to the 
letter's lack of symmetry. The method of moments was unable 
to produce an F-looking figure even after 16 moments were 
used.

4.3. Two-dimensional letter £
The letter E is now viewed as a two-dimensional 21 X21 pixel 
image of ones and zeroes, and the moments are spatial. The 
original E and the evolving reconstructions using the MEP 
method are shown in Figs. 7 and 8, respectively. The results 
using the MoM approach are shown in Fig. 9. Recall that 
when we talk about using seven moments we actually mean 
8+7+6+...+2+1 = 36 numbers. The MEP approach pro-
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Fig. 3. One-dimensional MoM reconstruction of the letter E. First 
row (left to right): reconstructions using zeroth through third 
moments. Second row: fourth through seventh. Third row: eighth 
through eleventh. Fourth row: twelfth through fifteenth. Fifth row: 
sixteenth.

TABLE I. Mean squared errors for one-dimensional letters E and F.

Order of 
moments

used

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

MoM

0.32
0.38
0.36
0.35
0.36
0.36
0.33
0.33
0.35
0.34
0.34
0.35
0.26
0.26
0.27
0.21
0.22

Letter E

MEP

0.32
0.32
0.32
0.32
0.29
0.29
0.063
0.063
0.063
0.067
0.067
0.067

MoM

0.35
0.51
0.35
0.30
0.32
0.31
0.31
0.31
0.31
0.29
0.29
0.29
0.23

Letter F

MEP

0.35
0.32
0.28
0.28
0.27
0.23
0.065
0.066
0.070
0.070
0.070

duced a very acceptable reconstruction with the use of seven 
moments (a compression ratio of 441/36), whereas for the 
same number of moments the MoM approach resulted in the 
blob shown in Fig. 9. Even after 12 moments the MoM 
approach had not resulted in a reasonable looking E, as 
shown in the figure. It took 15 moments, i.e., 136 numbers
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Fig. 4. One-dimensional letter F.

It

Fig. 7. Two-dimensional letter E (21 X21 pixels).

1111 huh.
Fig. 5. One-dimensional MEP reconstruction of the letter F. First
row (left to right): reconstructions using zeroth through second
moments. Second row: third through fifth. Third row: sixth and
seventh.
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Fig. 6. One-dimensional MoM reconstruction of the letter F. First
row (left to right): reconstructions using zeroth through third
moments. Second row: fourth through seventh. Third row: eighth through
eleventh. Fourth row: twelfth through fifteenth. Fifth row: sixteenth.
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Fig. 8. Two-dimensional MEP reconstruction of the letter E. First
row (left to right): reconstructions using zeroth through third
moments. Second row: fourth through seventh.

..........

_

Fig. 9. Two-dimensional MoM reconstruction of the letter E. First
row (left to right): reconstructions using zeroth through third
moments. Second row: fourth through seventh. Third row: eighth
through eleventh. Fourth row: twelfth.

(not shown), to produce the same quality E. The results check
favorably with those reported by Teague.3 The MSEs for both
methods are given in Table II.

4.4. Two-dimensional letter F

Example 4 is the same as example 3 except that it is for the
two-dimensional letter F (21 X21 pixels), shown in Fig. 10.
The results are shown in Figs. 1 I and 12 and Table II, and the
superiority of the proposed method is evident. Again, the
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Fig. 4. One-dimensional letter F.

in!!!

Fig. 7. Two-dimensional letter E (21 X21 pixels).

Fig. 5. One-dimensional MEP reconstruction of the letter F. First 
row (left to right): reconstructions using zeroth through second 
moments. Second row: third through fifth. Third row: sixth and 
seventh.

Fig. 8. Two-dimensional MEP reconstruction of the letter E. First 
row (left to right): reconstructions using zeroth through third 
moments. Second row: fourth through seventh.

Fig. 6. One-dimensional MoM reconstruction of the letter F. First 
row (left to right): reconstructions using zeroth through third 
moments. Second row: fourth through seventh. Third row: eighth through 
eleventh. Fourth row: twelfth through fifteenth. Fifth row: sixteenth.

Fig. 9. Two-dimensional MoM reconstruction of the letter E. First 
row (left to right): reconstructions using zeroth through third 
moments. Second row: fourth through seventh. Third row: eighth 
through eleventh. Fourth row: twelfth.

(not shown), to produce the same quality E. The results check 
favorably with those reported by Teague. 3 The MSEs for both 
methods are given in Table II.

4.4. Two-dimensional letter F
Example 4 is the same as example 3 except that it is for the 
two-dimensional letter F (21 X21 pixels), shown in Fig. 10. 
The results are shown in Figs. Hand 12 and Table II, and the 
superiority of the proposed method is evident. Again, the
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Fig. 10. Two -dimensional letter F (21 X21 pixels).

TZANNES, JONNARD

Fig. 11. Two -dimensional MEP reconstruction of the letter F. First
row (left to right): reconstructions using zeroth through third
moments. Second row: fourth through seventh.

TABLE II. Mean squared errors for two -dimensional letters E and F.

Order of
moments

used

Letter E Letter F

MoM MEP MoM MEP

0 0.91 0.91 1.3 1.3
1 1.10 0.84 1.6 1.1
2 0.94 0.82 1.4 0.97
3 0.94 0.76 1.1 0.90
4 0.93 0.62 1.2 0.71
5 0.90 0.62 1.0 0.62
6 0.88 0.43 1.0 0.40
7 0.75 0.33 0.91 0.37
8 0.71 0.90
9 0.65 0.84
10 0.57 0.77
11 0.58 0.71
12 0.61

results obtained using the method of moments agree reason-
ably well with those reported by Teague.3

4.5. Two -dimensional letter O

This last example pertains to the letter O, shown in Fig. 13,
which cannot be treated in a one -dimensional manner. The
results are shown in Figs. 14 and 15. The MEP approach
produced a perfect O using only the first four spatial
moments, i.e., with a data compression ratio of 441/ 15, a truly
remarkable result. The method of moments was used up
through the twelfth moment, and still the result was quite
unacceptable, even though it resembled an O. The MSEs of
the two methods are given in Table III. It is interesting that the
MEP method produced a perfect O with four moments even
though its MSE was larger than that of the MoM with 12
moments, but one must recall that the MSE is based on actual
values and not quantized ones.

1082 / OPTICAL ENGINEERING / October 1987 / Vol. 26 No. 10

Fig. 12. Two -dimensional MoM reconstruction of the letter F. First
row (left to right): reconstructions using zeroth through third
moments. Second row: fourth through seventh. Third row: eighth
through eleventh. Fourth row: twelfth.

5. CONCLUSION
On the basis of the examples reported here, it appears that the
MEP approach is substantially better at reconstructing
moment -coded data than the other available method, the
method of moments. Its superiority was both visual and
mathematical (MSE). The next step would be to try the
method on photographic image data, and if it proves success-
ful there as well for the same compression ratios reported
here, then moment -coding could be established as a practica-
ble alternative to all of the existing types of transform coding.

The MEP method requires more computations for the
reconstruction, and its complexity increases rapidly with the
inclusion of additional moments. The computer time needed
for a reconstruction is dependent on the initial guesses for the
values of the Lagrangian multipliers in the Newton -Raphson
method and thus is difficult to compare with the method of
moments. Its effectiveness, however, more than makes up for
these disadvantages, particularly in applications of transmis-
sion of images over low rate channels, or in storage of images
with a requirement of high compression ratios. Furthermore,
research into efficient algorithms can alleviate this problem in
two dimensions as it has already done in one- dimensional
problems.

Before closing this work, we report that a recent paper by
Kavehrad and Joseph 10 compared the method of moments to
the MEP approach in the problem of estimating one -
dimensional PDFs whose moments are known up to a finite
number. Their conclusions on the performance of the two
methods are much the same as reported here.
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Fig. 10. Two-dimensional letter F (21 X21 pixels).

Fig. 11. Two-dimensional MEP reconstruction of the letter F. First 
row (left to right): reconstructions using zeroth through third 
moments. Second row: fourth through seventh.

TABLE II. Mean squared errors for two-dimensional letters E and F.

Order of
moments

used

Letter E Letter F

MoM MEP MoM MEP

0
1
2
3
4
5
6
7
8
9
10
11
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0.91
1.10
0.94
0.94
0.93
0.90
0.88
0.75
0.71
0.65
0.57
0.58
0.61
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0.71
0.62
0.40
0.37

results obtained using the method of moments agree reason 
ably well with those reported by Teague. 3

4.5. Two-dimensional letter O
This last example pertains to the letter O, shown in Fig. 13, 
which cannot be treated in a one-dimensional manner. The 
results are shown in Figs. 14 and 15. The MEP approach 
produced a perfect O using only the first four spatial 
moments, i.e., with a data compression ratio of 441 /15, a truly 
remarkable result. The method of moments was used up 
through the twelfth moment, and still the result was quite 
unacceptable, even though it resembled an O. The MSEs of 
the two methods are given in Table III. It is interesting that the 
MEP method produced a perfect O with four moments even 
though its MSE was larger than that of the MoM with 12 
moments, but one must recall that the MSE is based on actual 
values and not quantized ones.

Fig. 12. Two-dimensional MoM reconstruction of the letter F. First 
row (left to right): reconstructions using zeroth through third 
moments. Second row: fourth through seventh. Third row: eighth 
through eleventh. Fourth row: twelfth.

5. CONCLUSION
On the basis of the examples reported here, it appears that the 
MEP approach is substantially better at reconstructing 
moment-coded data than the other available method, the 
method of moments. Its superiority was both visual and 
mathematical (MSE). The next step would be to try the 
method on photographic image data, and if it proves success 
ful there as well for the same compression ratios reported 
here, then moment-coding could be established as a practica 
ble alternative to all of the existing types of transform coding.

The MEP method requires more computations for the 
reconstruction, and its complexity increases rapidly with the 
inclusion of additional moments. The computer time needed 
for a reconstruction is dependent on the initial guesses for the 
values of the Lagrangian multipliers in the Newton-Raphson 
method and thus is difficult to compare with the method of 
moments. Its effectiveness, however, more than makes up for 
these disadvantages, particularly in applications of transmis 
sion of images over low rate channels, or in storage of images 
with a requirement of high compression ratios. Furthermore, 
research into efficient algorithms can alleviate this problem in 
two dimensions as it has already done in one-dimensional 
problems.

Before closing this work, we report that a recent paper by 
Kavehrad and Joseph 10 compared the method of moments to 
the MEP approach in the problem of estimating one- 
dimensional PDFs whose moments are known up to a finite 
number. Their conclusions on the performance of the two 
methods are much the same as reported here.

1082 / OPTICAL ENGINEERING / October 1987 / Vol. 26 No. 10

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 14 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



MAXIMUM ENTROPY RECONSTRUCTION OF MOMENT -CODED IMAGES

TABLE III. Mean squared errors for two- dimensional letter O.

Order of
moments

used MoM MEP

Fig. 13. Two -dimensional letter 0 (21 X21 pixels). 0
1

0.31
0.31

0.31
0.31

2 0.32 0.31
3 0.31 0.31
4 0.31 0.60
5 0.31 0.60
6 0.30
7 0.27
8 0.27
9 0.25

Fig. 14. Two -dimensional MEP reconstruction of the letter 0. Left to
right: reconstructions using zeroth through fifth moments.

10
11
12

0.22
0.23
0.22

Fig. 15. Two -dimensional MoM reconstruction of the letter O. First
row (left to right): reconstructions using the zeroth through sixth
moments. Second row: seventh through twelfth.
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TABLE III. Mean squared errors for two-dimensional letter O.

Fig. 13. Two-dimensional letter O (21 X21 pixels).

Fig. 14. Two-dimensional MEP reconstruction of the letter O. Left to
right: reconstructions using zeroth through fifth moments.

Order of
moments

used

0
1
2
3
4
5
6
7
8
9
10
11
12

MoM

0.31
0.31
0.32
0.31
0.31
0.31
0.30
0.27
0.27
0.25
0.22
0.23
0.22

MEP

0.31
0.31
0.31
0.31
0.60
0.60

Fig. 15. Two-dimensional MoM reconstruction of the letter O. First 
row (left to right): reconstructions using the zeroth through sixth 
moments. Second row: seventh through twelfth.
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