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Fourier spectrum techniques for characterization
of spatial noise in imaging arrays

Glenn D. Boreman, MEMBER SPIE
University of Central Florida
Department of Electrical Engineering

and
Center for Research in Electro- Optics

and Lasers
Orlando, Florida 32816

Abstract. Noise performance in imaging arrays is often specified simply by the
variance of the pixel levels. In this paper a more complete characterization
technique is presented, based on the spatial- frequency power spectrum of the
noise data on the detectors. This is seen to provide additional information for
cases in which the noise spectrum is nonwhite. Experimental data demonstrate
the nonwhite nature of the spectrum under certain conditions, especially result-
ing from spatial correlation of detector nonuniformity and from sampling -
lattice- related artifacts in the data.

Subject terms: charge- coupled devices; charge- transfer devices; detector arrays; spatial -
frequency power spectrum; fixed -pattern noise; spatial white noise; Fourier transforms;
video signal processing.
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1. INTRODUCTION
Noise in imaging sensors usually is described simply as the
variance of the pixel levels across the array or as the variance
of the time record of a representative single pixel. Although
they provide a useful estimate of the noise performance of
such a device, these methods of characterization ignore the
fact that the noise has a particular spatial distribution. There
exist artifacts of array performance, either in the realm of

Invited Paper CH -104 received Nov. 24, 1986; revised manuscript received
Feb. 17, 1987; accepted for publication June 17, 1987; received by Managing
Editor July 6, 1987.
© 1987 Society of Photo -Optical Instrumentation Engineers.

fixed -pattern noise or occurring in the interaction between the
array and the signal acquisition electronics, that are most
conveniently displayed and recognized in the Fourier domain.

For systems that operate on the Fourier transform of data
acquired by an array sensor, a most important question in
describing the sensor's effect on the overall system perfor-
mance is, in what way does the noise of the sensor manifest
itself in the transform data? The quantification of noise arti-
facts arising in the detector array itself is conveniently
accomplished by considering the spatial- frequency power
spectrum of the noise.

Characterization of the response of a sensor array in the
Fourier domain can also point out spurious harmonic com-
ponents in the spectrum of the data, which likely would
remain unseen in the direct spatial domain. We present data to
show that such harmonic components (and their aliases) often
have appreciable magnitude compared with the value of the
image transform itself. Thus, these components must be
accounted for in any attempt to estimate the spectrum of the
image data from the Fourier transform of the actual pixel
values from the sensor.

The applications that motivated this characterization of
sensor noise artifacts by Fourier domain techniques are
related to the use of laser speckle patterns as objects for testing
optical and electro -optical systems. In these applications, the
quantity to be measured is the power spectrum of the speckle
pattern after it has passed through the system under test. The
sensor noise has been found to compete significantly with the
spectrum of the speckle pattern, especially in cases where the
speckle pattern is of low contrast. An example of this behavior
is presented in Sec. 5.7. Since both the speckle pattern and the
sensor noise are random waveforms, they are difficult to
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subtract directly in the spatial domain. A characterization of
sensor noise artifacts in the transform domain was deemed
necessary so that a subtraction might be performed on the
power spectra. A power spectrum of the speckle field alone
could then be calculated, under the assumption that the sensor
noise is additive and signal- independent. The following sec-
tions concentrate on the characterization of spatial noise in
imaging arrays by means of the spatial- frequency power
spectrum.

2. EXPERIMENTAL SETUP
The data reported in this paper were collected with a video
digitization system, seen in block diagram form in Fig. 1. The
system is based on an Imaging Technology IP -512 frame
buffer and an 8 bit analog -to- digital converter. The sensor
under test produces a standard RS -170 video signal. This
analog waveform is sampled and placed into the frame buffer.
The buffer size is 512X512 pixels, into which 512 sampled
values are placed horizontally and 480 sampled values are
placed vertically. The remaining 32 lines of the buffer were not
used in this configuration.

A General Electric TN2505 charge- injection device (CID)
camera was tested in this study. The manufacturer's specifica-
tion of the array is 376 pixels horizontally and 576 pixels
vertically. This specification is the result of vertical and hori-
zontal interlacing. Each video frame contains two fields of 288
lines. The pixel sites on successive fields are staggered, so that
an effective resolution of 376 is obtained by combining two
lines of 188 pixels each.

The focal plane was illuminated with a diffuse, uniform
white -light source of variable irradiance. An option to com-
pletely block light reaching the array was also available. The
host computer allowed the display of any particular row or
column of the data set, and in addition performed a one -
dimensional fast Fourier transform (FFT) on any selected
row or column. The squared magnitude of this transform then
was displayed on the video monitor.

3. DESCRIPTORS OF SPATIAL NOISE
To show how the Fourier domain point of view of sensor noise
relates to the more usual specification of pixel variance, this
section presents the analytical framework for the interpreta-
tion of sensor noise by means of the spatial- frequency power
spectrum. For present purposes, we need assume only a rec-
tangular data array of L by M digitized values. Let i be the
counting parameter in the L coordinate and j be the counting
parameter in the M coordinate. The specifics of how this array
of digital data values corresponds to the actual photosite data
will be taken up in Sec. 5.4. A typical observation of the array
response at the (i,j) position may be denoted

d(i,J) = s(i ,J) + n(i,J) , (I)

where s(i , j) is a digitized version of the spatial input scene and
n(i , j) is one observation of the two -dimensional noise process.

3.1. Variance

If the noise of the sensor is the quantity of primary interest, we
assume that the signal input s(i , j) can be made sufficiently
uniform that it can be replaced by a constant, which for
simplicity we take to be zero. In this case, the variance of the
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Fig. 1. Diagram of the video digitization system used in the sensor
noise experiments.

pixel levels can be expressed as
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If we define the mean of the array data as
Eq. (2) more compactly as
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LM
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we can write

(3)

3.2. Spatial- frequency power spectrum

Starting with the same digitized array of observed noise
values, the discrete Fourier transform (DFT) of the sensor
noise data can be expressed as2

L M
jj'

N(p,q) = I n(i.j)exp L r21r L i
M
j

i=1 j=1

(4)

where p and q are the discrete spatial- frequency components
corresponding to the L and M dimensions of the original data
array. The transform operation can be carried out con-
veniently by means of an FFT algorithm, with the region of
validity restricted to within the Nyquist limits,

L M
pNN = 2 , gNY = 2 (5)
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FOURIER SPECTRUM TECHNIQUES FOR CHARACTERIZATION OF SPATIAL NOISE IN IMAGING ARRAYS

Performing an absolute value and a squaring operation on
one observation of the DFT of the noise data produces an
estimate of W (p , q), the spatial- frequency power spectrum.
We obtain a convergent (stable) estimate of the power spec-
trum only by averaging several individual I N(p, q) 12 spectral
estimates over an ensemble of observations of the measured
noise datai:

W(p,q) = <IN(P,q)12> (6)

Ideally, we would like to have the true power spectrum of the
noise process available, representing the variability of the
array data. In practice, however, we can obtain a good
approximation by averaging a number of independently
observed spectra since the estimation error decreases as the
square root of the number of independent observations.3 In
Sec. 5.1, we note the effect of such ensemble averaging on
typical noise spectra.

The spatial -frequency power spectrum W (p , q) has the
interpretation of characterizing the fractional contribution to
the total noise "power" of each spatial frequency component
of the noise process. It is of particular importance when the
noise of the sensor array is spatial- frequency dependent
(nonwhite).

4. RELATIONSHIP OF POWER SPECTRUM
TO VARIANCE

This section shows how W(p , q) relates to the more common
specification of sensor noise, the variance of the data values.
To show the analytical relationship between the spatial -
frequency power spectrum and the variance, it is necessary
first to consider the spatial autocorrelation of the array noise:

R(i',j') _

I 4 n(i,j)n(i - i',j -j')
=1 j=1

LM
(7)

With reference to Eq. (3), it is seen that variance and auto-
correlation are related as follows:

02 = R(i' = 0, j' = 0) - µ2 (8)

By the Wiener- Khintchine theorem, autocorrelation and
power spectrum are a Fourier transform pair:

,47

j') --> W(P,g)

Applying the central ordinate theorem to the DFT,

R(0,0) =
L/2 M/2

p=-L12 q=-M/2

(9)

W(P,q) (10)

Finally, combining results from Eqs. (7), (8), and (10), we
obtain the desired relationship between the spatial- frequency
power spectrum and the variance:

L/2 M/2

a2 = 2 W(P,q)-µ2
p=o q=o

The interpretation of Eq. (11) is chiefly to relate the vari-
ance of the array data, the usual specification of noise perfor-
mance, to a more general means of description, the
spatial- frequency power spectrum. While the variance has the
advantage of simplicity in such a specification, the power
spectrum allows an interpretation of the spatial- frequency
content of the array noise. That is, if the noise is spatially
correlated, certain spatial frequencies in the image have less
competition from noise than do others. The variance, as a
system descriptor, ignores this since the spatial- frequency
dependence of the noise power spectrum has been integrated
out if the variance is used. A specification of variance alone
for the noise performance of the array essentially forces the
interpretation of "white noise," that is, noise power that is
independent of spatial frequency. As can be seen from Eq. (9),
white noise would result only if there were no spatial correla-
tion (a purely random distribution) of array noise data values.

Data are presented in Sec. 5 to show that this often is not
the case and that the specification of noise from the point of
view of its spatial- frequency power spectrum is indeed a useful
generalization to the concept of variance. Also, certain arti-
facts in the data are clearly pointed out from the Fourier
domain point of view, which otherwise might be difficult to
detect in the direct array data.

The spatial- frequency power spectrum is the means by
which we can characterize the effect of the sensor noise on the
various spatial frequencies of the image. The variance of the
pixel levels has been seen to be easily related to the spatial -
frequency power spectrum. The variance is proportional to
the area under the power spectrum curve (in the discrete case,
the sum of the extended frequency components).

5. EXPERIMENTAL RESULTS
In this section we consider data that demonstrate the utility of
the Fourier domain description of sensor noise. The power
spectra that are shown demonstrate that the spatial noise in an
imaging array sensor can be nonwhite, that is, spatial -
frequency dependent. It also is seen that the Fourier domain
point of view facilitates detection and identification of har-
monic sampling artifacts that are difficult to discern in the
direct array data.

5.1. Effect of ensemble averaging on the noise spectrum
To obtain some intuitive feel for Eq. (11), it is instructive at
this point to consider briefly a typical observation of the
spatial noise seen on a sensor. Figure 2 shows n(i), the dig-
itized noise values (one video line of 512 points), obtained
with a zero value of incident irradiance. The ordinate of the
plot was expanded so that the pixel -to -pixel variation may be
seen more clearly. The waveform shown can be considered as
a single observation of a random process. The value of each
pixel varies with time, producing other data records for the
same line of pixels that are statistically similar but different in
detail. This is seen in Fig. 3, which shows another observation
of the noise data along the same video line.

The proper means of displaying such statistical similarity is
provided by the power spectrum. By taking the absolute value
squared of the DFT of an observation record, we obtain an
estimate of the true power spectrum of the random process. In
this context, the power spectrum W (p , q) provides informa-
tion regarding the spatial- frequency content of a statistical
ensemble of such observations.
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Fig. 2. One typical observation of n(i), the digitized values of sensor
noise, for a single video line (512 points). These data were obtained
with a zero value of incident irradiance on the sensor. The range of pixel
values displayed is between 10 and 25 units, with the total possible
range of digitized data values between O and 255.

25

10

t n(i)

1 512
Fig. 3. Another observation of digitized noise values n(i) for the same
video line as in Fig. 2. By comparison of the data from the two observa-
tions, evidence is seen of both a random variation and a statistically
similar structure in the spatial noise.

The advantage of ensemble averaging is seen by comparing
Figs. 4 and 5. Figure 4 shown N(p) 2, the squared modulus of
the DFT of a single individual noise record such as was seen in
Figs. 2 and 3. It has an excess variability introduced by the fact
that it is the spectrum of a single observation of a random
process. The observations seen in Figs. 2 and 3 will have
different DFTs due to the differences in the direct data. If one
takes many individual spectra and averages them, the random
variation in the spectrum decreases, converging as the square
root of the number of independent observations to the true
value of the power spectrum for that process as a whole.
Figure 5 shows W(p), the power spectrum estimate resulting
from averaging the squared modulus of the DFTs obtained
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Fig. 4. Estimate of spatial- frequency power spectrum of sensor
noise resulting from a single observation. IN (p)12 is the squared
modulus of the DFT of a single noise observation n(i), such as was
seen in Figs. 2 and 3. The spatial Nyquistfrequency is at p = 256. The
spectrum exhibits pronounced harmonic content at p = 188.

Fig. 5. Estimate of spatial- frequency power spectrum resulting from
an ensemble of 100 observations. W(p) is an average of 1001 N (p) 12

spectral estimates obtained from a single video line. One such esti-
matel N (p) 12 was seen in Fig. 4. One can observe some smoothing of
the random variations in the spectrum, while the structure character-
istic of the true spatial- frequency power spectrum has remained.

from 100 independent observations of the noise on a single
line of video data.

The emergence of the true shape of the spatial- frequency
power spectrum can be seen by comparing Figs. 4 and 5,
although the difference is quite subtle. The ensemble averag-
ing operation has introduced a smoothing effect, most visible
in the distribution of low amplitude components in the spec-
trum. The structure that remains after ensemble averaging is a
characteristic of the power spectrum of the sensor noise and
cannot be averaged out. Its characterization is necessary for
an accurate estimate to be made of an image spectrum.
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Fig. 2. One typical observation of n{i), the digitized values of sensor 
noise, for a single video line (512 points). These data were obtained 
with a zero value of incident irradiance on the sensor. The range of pixel 
values displayed is between 10 and 25 units, with the total possible 
range of digitized data values between 0 and 255.
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Fig. 3. Another observation of digitized noise values n{i) for the same 
video line as in Fig. 2. By comparison of the data from the two observa 
tions, evidence is seen of both a random variation and a statistically 
similar structure in the spatial noise.
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variation in the spectrum decreases, converging as the square 
root of the number of independent observations to the true 
value of the power spectrum for that process as a whole. 
Figure 5 shows W(p), the power spectrum estimate resulting 
from averaging the squared modulus of the DFTs obtained
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noise resulting from a single observation. ll\l{p)l 2 is the squared 
modulus of the OFT of a single noise observation n(i), such as was 
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istic of the true spatial-frequency power spectrum has remained.
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line of video data.

The emergence of the true shape of the spatial-frequency 
power spectrum can be seen by comparing Figs. 4 and 5, 
although the difference is quite subtle. The ensemble averag 
ing operation has introduced a smoothing effect, most visible 
in the distribution of low amplitude components in the spec 
trum. The structure that remains after ensemble averaging is a 
characteristic of the power spectrum of the sensor noise and 
cannot be averaged out. Its characterization is necessary for 
an accurate estimate to be made of an image spectrum.
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FOURIER SPECTRUM TECHNIQUES FOR CHARACTERIZATION OF SPATIAL NOISE IN IMAGING ARRAYS

5.2. Interpretation of the overall nonwhite nature of the
spatial- frequency power spectrum

From the ensemble -averaged power spectrum in Fig. 5, it is
readily seen that the sensor noise waveform has a power
spectrum that is spatial- frequency dependent. The noise data
exhibit a spatial correlation across the array, which deter-
mines the overall shape of the spectrum, in agreement with
Eq. (9). The Fourier domain point of view is useful in this case
since a specification of variance alone to characterize the
array would ignore the fact that the sensor has relatively more
noise at certain spatial frequencies than at others. This fact
could be important in the choice of the spatial- frequency
range of data to be presented to the sensor if an optimum
signal -to -noise ratio is to be achieved.

5.3. Presence of a spike in the spectrum

Another example of the nonwhite nature of the sensor noise
can be seen as a spike in the power spectrum data of Fig. 5.
The power spectrum shows a major spike at p = 188 (and
higher harmonics aliased into lower frequencies), correspond-
ing to a pronounced harmonic content in the array data. The
Fourier domain point of view is of particular utility in this
case since this aspect of the nonwhite nature of the spectrum is
quite difficult to notice in the direct data waveforms of Figs. 2
and 3. The existence of this harmonic would be completely
masked by the use of variance to describe the noise perfor-
mance of the sensor array.

The Fourier domain viewpoint also is useful in leading to
the identification of the source of this spatial harmonic. In Eq.
(4), we assumed implicitly that the number of photosites is the
same as the number of digitized values in the data array. In the
actual system used, 512 samples were taken along each hori-
zontal line of analog video data from the sensor array. There
were, however, only 188 actual photosites along a horizontal
row of the sensor array. This mismatch between the size of the
digital data array and the size of the array of photogenerated
data values will be shown to be the source of the spatial
harmonic seen in Fig. 5.

5.4. Origin of the spike in the horizontal spectrum
To investigate the origin of the spike seen in the noise power
spectrum, let us first consider Fig. 6, which describes the
actual processes the image data undergo in their conversion to
an array of digitized values. Even though the analog video
waveform is strictly a function of time, for the purposes of this
discussion we consider it to be properly formatted into a
rectangular raster format.

The first stage, describable by the operator e1, performs
the conversion of continuous scene data s(x , y) into photosite
pixel values f(1, m). This can be thought of as a local averaging
of s(x,y) over the photosite areas and an assignment of a
single data value associated with the average scene energy
falling upon each individual photosite:

G,

s(x,y) -> f(l,m) . (12)

The process of local averaging is describable4 as a convolution
of the scene s(x,y) with a function describing the spatial
responsivity of the photosite. We model this spatial responsiv-
ity as rect(xp , yp), a two -dimensional rectangle of widths xp

CONTINUOUS SCENE
s(x,y)

- LOCAL AVERAGING & SAMPLING

PHOTOSITE PIXEL VALUES
f(l,m)

OZ SAMPLE AND HOLD

TIME -DOMAIN ANALOG VIDEO WAVEFORM
RASTERED INTO SPATIAL FUNCTION

w(x,y)

- COMB FUNCTION SAMPLING

DIGITIZED DATA VALUES
d(i,j)

Fig. 6. Processes undergone by the data upon conversion from a
continuous spatial scene s(x,y) to an array of digitized values d(i, j).
In general, the number of actual photosite data values differs from
the number of digitized values in the final data array. This is seen to
lead to the spurious harmonic content in the data.

and yp. The assignment of a value to each pixel is modeled as a
comb -function sampling of the result of the convolution pro-
cess. If the photosites are spaced at distances of xo and yo, we
can write the following expression for the action of operator

1:

f(1,m) = s(x, y) * rect (-
Xp

comb
x

> (13)
Yp C xA Ya

where the * denotes convolution. The data values produced
by each photosite are converted in the sensor electronics to an
analog video signal by means of a sample- and -hold operation.
Figure 6 denotes this operation by 02. Considering the time
waveform describing the video signal to be rastered into an
equivalent two -dimensional spatial function, we can write
operationally

f(l,m) --> w(x,y) .

This can be written explicitly as

(14)

\
w(x,y) = f(l,m) * rect -x

J (15)
xa Ya /

The sampled- and -held analog video signal was described in
the coordinates of the sensor plane. The array of pixel values,
located at photosite locations, was convolved with a rectangle
function equal to the photosite spacing in order to model the
sampled- and -held rastered video waveform in the two- dimen-
sional coordinates of the sensor array surface.

At this point, we are ready to consider the conversion of
this analog waveform into an array of digitized values. We can
write operationally

6,
w(x,y) -> d(i,J) (16)
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readily seen that the sensor noise waveform has a power 
spectrum that is spatial-frequency dependent. The noise data 
exhibit a spatial correlation across the array, which deter 
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Eq. (9). The Fourier domain point of view is useful in this case 
since a specification of variance alone to characterize the 
array would ignore the fact that the sensor has relatively more 
noise at certain spatial frequencies than at others. This fact 
could be important in the choice of the spatial-frequency 
range of data to be presented to the sensor if an optimum 
signal-to-noise ratio is to be achieved.
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Another example of the nonwhite nature of the sensor noise 
can be seen as a spike in the power spectrum data of Fig. 5. 
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higher harmonics aliased into lower frequencies), correspond 
ing to a pronounced harmonic content in the array data. The 
Fourier domain point of view is of particular utility in this 
case since this aspect of the nonwhite nature of the spectrum is 
quite difficult to notice in the direct data waveforms of Figs. 2 
and 3. The existence of this harmonic would be completely 
masked by the use of variance to describe the noise perfor 
mance of the sensor array.

The Fourier domain viewpoint also is useful in leading to 
the identification of the source of this spatial harmonic. In Eq. 
(4), we assumed implicitly that the number of photosites is the 
same as the number of digitized values in the data array. In the 
actual system used, 512 samples were taken along each hori 
zontal line of analog video data from the sensor array. There 
were, however, only 188 actual photosites along a horizontal 
row of the sensor array. This mismatch between the size of the 
digital data array and the size of the array of photogenerated 
data values will be shown to be the source of the spatial 
harmonic seen in Fig. 5.

5.4. Origin of the spike in the horizontal spectrum
To investigate the origin of the spike seen in the noise power 
spectrum, let us first consider Fig. 6, which describes the 
actual processes the image data undergo in their conversion to 
an array of digitized values. Even though the analog video 
waveform is strictly a function of time, for the purposes of this 
discussion we consider it to be properly formatted into a 
rectangular raster format.

The first stage, describable by the operator 0^ performs 
the conversion of continuous scene data s(x, y) into photosite 
pixel values f (1, m). This can be thought of as a local averaging 
of s(x,y) over the photosite areas and an assignment of a 
single data value associated with the average scene energy 
falling upon each individual photosite:

s(x,y) (12)

The process of local averaging is describable 4 as a convolution 
of the scene s(x,y) with a function describing the spatial 
responsivity of the photosite. We model this spatial responsiv- 
ity as rect(xp ,yp), a two-dimensional rectangle of widths xp
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PHOTOSITE PIXEL VALUES 
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RASTERED INTO SPATIAL FUNCTION
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Fig. 6. Processes undergone by the data upon conversion from a 
continuous spatial scene s(x,y) to an array of digitized values d(i,j). 
In general, the number of actual photosite data values differs from 
the number of digitized values in the final data array. This is seen to 
lead to the spurious harmonic content in the data.

and yp . The assignment of a value to each pixel is modeled as a 
comb-function sampling of the result of the convolution pro 
cess. If the photosites are spaced at distances of XA and yA , we 
can write the following expression for the action of operator

, y) * rect
/ x y \1 / x — , —) comb —— •
\ Y V / I \ Y\XP yp/j VXA (13)

where the * denotes convolution. The data values produced 
by each photosite are converted in the sensor electronics to an 
analog video signal by means of a sample-and-hold operation. 
Figure 6 denotes this operation by 02 . Considering the time 
waveform describing the video signal to be rastered into an 
equivalent two-dimensional spatial function, we can write 
operationally

f(l,m)  > w(x,y) .

This can be written explicitly as

x y 
w(x,y) = f(l,m) * rect    •> ——

(14)

(15)

The sampled-and-held analog video signal was described in 
the coordinates of the sensor plane. The array of pixel values, 
located at photosite locations, was convolved with a rectangle 
function equal to the photosite spacing in order to model the 
sampled-and-held rastered video waveform in the two-dimen 
sional coordinates of the sensor array surface.

At this point, we are ready to consider the conversion of 
this analog waveform into an array of digitized values. We can 
write operationally

w(x,y) (16)
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A comb -function sampling is used to model the A/ D conver-
sion of the sampled- and -held analog video waveform into the
array of digitized values d(i, j), seen previously in Eq. (1):

x
d(i,j) = w(x,y)comb

X
' (17)

The spacings X and Y are the effective spatial sampling inter-
val, in sensor array coordinates, of the frame buffer data
array.

The noise power spectrum of Fig. 5 indicates that the spike
occurs at spatial frequency component p = 188. At this point,
we note the existence of two different sampling intervals
involved in the acquisition of digitized data from an array
sensor. This aspect of the nonwhite nature of the spectrum can
be explained as a beat frequency between the sampling lattice
on the original detector array and the sampling lattice of the
frame buffer.

The nature of this beat frequency can be clarified by com-
bining Eqs. (13), (15), and (17). For compactness, we consider
the one -dimensional version of these equations:

d(i) =C rs(x) * rectl(2-1comb l X I * rect l X, Ilcomb X I
I LL A/ v/ v //

/(18)

The array of digitized values has an effective spacing on the
sensor array surface of X. The sampled- and -held video wave-
form exhibits level changes only at a spacing of xa, the spatial
sampling interval of the actual photosite locations. The final
sampled array of values exhibits harmonic content corre-
sponding to the fundamental spatial frequency of the detector
spacing.

In the length of one line of sensors, there are 188 photosites.
Thus, the fundamental spatial frequency of the photosite
locations is exhibited at frequency component p = 188 of the
power spectrum, which is what was observed in the data seen
in Fig. 5.

5.5. Origin of the spike in the vertical spectrum
Power spectra of typical vertical data sets show behavior
similar to that seen in Fig. 5 except that the spike occurs at a
different frequency, q = 192. The origin of this harmonic
content again is a beat phenomenon between sampling fre-
quencies. The sensor produces 288 rows of data per video
frame time. The frame buffer stores the entire video image on
480 lines, leaving the last 32 unused, so the effective sampling
lattice of the frame buffer in this case is only 480 elements
long. From Eq. (5), the spatial Nyquist limit in the vertical
direction is

M

gNy
-

2
= 240 . (19)

The fundamental frequency of the vertical photosite spacing is
beyond the Nyquist at q = 288. This frequency has an alias at

qatias - gphotosite - 2(gphotosite gNy) - 192 ' (20)

which is the frequency at which a spike is seen in vertical
spectra analogous to Fig. 5.
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5.6. Discussion of spike artifacts

This type of artifact also can be considered a manifestation of
a nonwhite power spectrum of the sensor response. While not
strictly a noise effect per se, artifacts of this type often are
termed "fixed- pattern noise." This is another case in which a
specification of array performance by means of the variance
alone would ignore the harmonic content inherent in the
response of the sensor system. This also must be taken into
account before an accurate estimate is made of the power
spectrum of an image being acquired by such a sensor. This
artifact could be alleviated with the proper sampling electron-
ics, which would sample the output of each photosite only
once, at the center of the individual response waveform for
each pixel. However, for electronics that sample the analog
video waveform from the sensor at some other periodicity
than that of the sensor itself, this type of artifact is likely to
corrupt the image spectrum.

5.7. Example from speckle experiments

One example of the use of Fourier domain techniques to
characterize sensor noise performance is in the estimation of
the spatial- frequency power spectrum of a laser speckle field.
Figure 7 shows a line of direct array data for a speckle pattern
having low contrast and low overall flux level. By comparison
with Figs. 2 and 3, it is seen that the signal due to the speckle is
masked almost completely by the spatial noise of the sensor.
Averaging an unchanging speckle pattern over several obser-
vations would decrease the contribution from purely random
noise in the sensors but would not alleviate the spatially
structured nature of the noise spectrum. Figure 8 shows
D(p)12, the squared modulus of the DFT of a single observa-
tion of speckle data. By comparison with Fig. 5, it can be seen
that there is a noticeable difference in the power spectra,
corresponding to the spectrum of the received speckle pattern.
The spatially structured noise of the sensor is seen to be
characterized more easily in the Fourier domain than in the
spatial domain. After suitable ensemble averaging is per-
formed on both noise and speckle spectra,5 an estimate of the
spectrum of the speckle alone can be made by subtraction.

6. CONCLUSIONS

The spatial- frequency power spectrum of the noise seen on an
imaging sensor is an important system descriptor. It con-
veniently characterizes the variance per unit spatial frequency
interval, the total variance being proportional to the integral
of the power spectrum. A measurement of variance alone for
an imaging sensor does not take into account how the noise
artifacts are distributed spatially and essentially assumes a
random distribution. The more realistic model of spatial noise
provided by the spatial- frequency power spectrum is of inter-
est particularly for applications involving Foúrier trans-
formed data sets from imaging sensor arrays. Quantitative
characterization of spatial noise artifacts in the Fourier
domain is essential if accurate estimates of scene spectra are to
be made.
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spectrum of the speckle alone can be made by subtraction.
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imaging sensor is an important system descriptor. It con 
veniently characterizes the variance per unit spatial frequency 
interval, the total variance being proportional to the integral 
of the power spectrum. A measurement of variance alone for 
an imaging sensor does not take into account how the noise 
artifacts are distributed spatially and essentially assumes a 
random distribution. The more realistic model of spatial noise 
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est particularly for applications involving Fourier trans 
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be made.

7. ACKNOWLEDGMENTS
This work was supported by the Center for Research in 
Electro-Optics and Lasers, University of Central Florida. 
Thanks also are due to Patrick Heron and Christopher Chiles,

990 / OPTICAL ENGINEERING / October 1987 / Vol. 26 No. 10

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 14 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



30

10

FOURIER SPECTRUM TECHNIQUES FOR CHARACTERIZATION OF SPATIAL NOISE IN IMAGING ARRAYS

Fig. 7. Data from one video line, showing digitized values for a low
contrast speckle pattern. Plotted is d (i), the sum of the signal and the
sensor noise. By comparison to Figs. 2 and 3, it is seen that the sensor
noise almost completely masks the speckle signal in this case.
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Fig. 8. Plotted is I D (p)12, the squared modulus of the DFT of the line
of data d(i) seen in Fig. 7. Note that the scale in this spectrum plot is 0
to 2, which upon comparison with the spectrum of Fig. 5 (scale 0 to
1) shows clear evidence of the presence of the speckle signal. The
presence of the speckle signal is seen much more clearly in the
Fourier domain than in the direct spatial domain data of Fig. 7.
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1) shows clear evidence of the presence of the speckle signal. The 
presence of the speckle signal is seen much more clearly in the 
Fourier domain than in the direct spatial domain data of Fig. 7.
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