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ABSTRACT

We investigate some relations between number theory and spectral measures related to the
harmonic analysis of a Cantor set. Specifically, we explore ways to determine when an
odd natural number m generates a complete or incomplete Fourier basis for a Cantor-type

measure with scale g.
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1 INTRODUCTION

In [JP98], Jorgensen and Pedersen constructed the first example of a singular fractal measure
on a Cantor set, which has an orthonormal Fourier series. This Cantor set is obtained from
the interval [0, 1], dividing it into four equal intervals and keeping the first and the third,
[0,1/4] and [1/2,3/4], and repeating the procedure infinitely many times. The measure fiy
on this Cantor set associates measure 1 to [0, 1], measure £ to [0,1/4] and [2/4, 3/4], measure
}l to the four intervals in the next step of the construction, and so on. It is the Hausdorff
measure of dimension % on this Cantor set, and it is also the invariant measure of the iterated

function system m(x) = x/4, (z) = (x + 2)/4 (see [Hut81] or [JPI§] for details).

Jorgensen and Pedersen proved the surprising result that the Hilbert space L?(y4) has
an orthonormal basis formed with exponential functions, i.e., a Fourier basis, E(I'g) :=

{e?™* . X\ € Ty} where

Iy:= {Zn:zl’“lk € {0,1},n € N} . (1.1)

k=0

A set A in R is called a spectrum for a Borel probability measure 1 on R if the corre-

sponding exponential functions {e?** : \ € A} form an orthonormal basis for L?(u).

Jorgensen and Pedersen’s example opened up a new area of research and many other

examples of singular measures which admit orthonormal Fourier series have been constructed

since, see e.g., [Str00, LW02, DJ06, DJ07, DHL13, Li07].

In [DJ12], it was proved also that the set 5T is a spectrum for the measure py4, for

any k € N. This means that the operator on L2(u4) which maps 2™ into 275"\ g



actually unitary, for all k£, which means that there are some hidden symmetries, a certain
scaling by 5 in the geometry of this Cantor set. These operators were further investigated

in [JKS12, JKS14a, JKS14b].

Later, Dutkay and Haussermann [DH16] studied for what digits {0, m}, with m odd,

the set

['(m) :=mly = {i 45 1, € {0,m},n € N}

k=0
is a spectrum for L?*(uy). Among other things, they proved that, for any prime number
p > 3, the set p*Ty is a spectrum for 14, and there are some interesting number theoretic

considerations that are required to solve this problem.

This thesis generalizes the results of Dutkay and Haussermann in [DH16]. In the intro-
duction, we formulate the question that we wish to answer and provide some background to
present the question in context. We also show that this question is equivalent to a purely
number theoretical question. In the main results chapter, we first provide some preliminary
proofs to build the tools needed to analyze the question. In the remaining sections, we
answer the question for specific cases and discuss techniques to approach the question in

general.

Consider the iterated function system generated by a scale g, with g even, and the digits

B ={0,%},

T r+g/2
m(e) =, (o) = T/

Let p be the invariant measure for this iterated function system. This is the unique Borel

probability measure on R which satisfies the invariance equation

u(E) = (/J(TO_I(E)) + pu( @(E))) , for all Borel sets F,

Ty

N | —



(see [Hut81]).

The measure p is supported as the Cantor-type set Xp, which is the attractor of the

iterated function system (79, 74/2), i.e., the unique compact subset of R with the property
XB = To(XB) U Tg/Q(XB),

or, equivalently

Xp = {Zg_jbj 1 b; € {0,g/2} for all j}.

j=1
The measure p is also the Hausdorff measure on this Cantor set of dimension log, 2, which

means that

#(10(Xp)) = p(74/2(Xp)) = 1/2,
u(roro(Xp)) = 1/4
and so on.
We want to find the answer to the following question:

Question 1.1. For what digits {0, m} is the set

['(m) :=ml(1) = {nglk . €{0,m},n e N} (1.2)
k=0
a spectrum for L?(u)?

As in [DJ06], we look for Hadamard triples of the form (R, B, L) with L = {0, m}. That

means that the matrix
E ( 627ri%>
\/§ beB,leL



o (9/2)m , ,
is unitary, so €™ ¢ = —1. This means that m is odd.

It was shown [DJO06] that the numbers m that give spectra can be characterized in
terms of extreme cycles, i.e., we want to find the even integers ¢ for which there exist

lo, ..., l,—1 € {0,m}, not all equal to 0, such that
xo+ o 1+ Tp—g + 1o Tp—1 + 11

T, = , Ly = ———, Ly = ————————, g = ——, (1.3)
9 g g g

and
1 2midxy,
‘*eT =1, (kefo,...,r—1}) (1.4)
where the finite set {zo, x1,...,2,_1} is the extreme cycle for {0, m}, and z; are the extreme

cycle points. If such an extreme cycle exists, then the set of exponential functions corre-
sponding to I'(m) is incomplete but orthonormal. If no such extreme cycle exists, then the

set of exponential functions corresponding to I'(m) is an orthonormal basis, i.e., I'(m) is a

spectrum.
We note that points xo,...,z,_; have to be integers. Indeed, equation (1.4) implies
that x; = ngiz’ for some k € Z. Assume that kg is not divisible by g/2. We have
1
9/2 O_IEo—l-lo_x_k’l
= -7 = ——
g g 9/2

for some integer .

Then g’% = 2k; — Iy so k has to be divisible by ¢/2, contradiction. Thus, ¢ is in Z so

all the points in the extreme cycle have to be integers.

Hence, Question 1.1 becomes a purely number theoretical question:



Question 1.2. Given an even number g > 4, for what odd numbers m > 1, are there non-
trivial extreme cycles, i.e., finite sets C' = {xo,...,x,_1} of integers and digits ly,...,l,_1 €
{0, m} such that

. To + l() T+ ll Tp_o + lT72 Tp_1 + lT,

I y L2 = y e Lpl = T Lo =
9 9 9 g

The extreme cycle {0} corresponding to the digit 0, is called the trivial extreme cycle.

Definition 1.3. We say that m is complete if the only extreme cycle for the digit set {0, m}
is the trivial one {0}. Otherwise, m is incomplete. In the paper, when we refer to an extreme

cycle, we will assume it is not trivial.

As we mentioned above, if m is complete then the set I'(m) in (1.2) is a complete

orthonormal basis, and if m is incomplete then I'(m) is an incomplete orthonormal set in

L?(u) (see [DJO6]).



2 MAIN RESULTS

For the rest of the paper, g will be an even integer such that g > 4 and m will be an odd

integer such that m > 1.

Some preliminary lemmas

Definition 2.1. Let m € N be an odd number. We say that a finite set {zg,z1,...,2,_1}

is an extreme cycle (for the digits {0, m}) if there exist ly,...,l,_1 € {0, m} such that

Ty + lo r1 + ll Tr_2 + lT,Q Tr_1+ l,«,l
7 = | Ty = mpg =22 ot Pl (2.1)
9 9 g 9

and
1 2midxy,
‘—i%—i-:1,(kem,”¢—1p. (2.2)
Lemma 2.2. If xy € Z is an extreme cycle point with digits ly, ..., l,_1 as in (2.1), then xq
has a periodic base g € N expansion,
lr—l lr—2 ZO lr—l lO
A e e 2.3
g 92 gr gT+1 g2r ( )
and 0 < zg < %. We write this as xo = .l,_1l,_o ... l1ly, the underline indicates the infinite

repetition of the digits l._1 ...ly in the base g expansion of xg.

Hence
gr_llrfl + gr_21r72 + -+ gll + lO
g —1 '

o —



Moreover,

{zo : x¢ is an extreme cycle point } = X N7,
where X, is the attractor of the iterated function system

_93+m

SO

X1 = Ueqomyoi(X1),

XL:{i;—z:lne{o,m}fmallnel\l}. (2.4)

n=1

Proof. Let the finite set {xo,z1,...,2,_1} be an extreme cycle for digits {0, m}. Then there

exist ly,...,l.—1 € {0,m} such that

To + lo T+ ll Tp_o + lr,Q Tp_1 + l,_l
Ty = , Tg = g ey byl = ————————, o= ————————.
g g g g
Therefore,
Ty l_ Ty l_ l_ T l { l_
g g g g g g g g g

Iterating this equality to infinity, we obtain the base g decomposition of xg.

Also, since gik < 1 for all g and k, we have by the sum of a geometric series that

oom m
0<x0<§ — =
— k _
—9 g—1

From above, we know that xq € Z. Therefore, x( is contained in X NZ. Conversely, if



xo € Xy NZ then, if zy € 0o(X1), we have that there exists x_; € X such that zq = xg%l,
and we get that x_y = gxg € ZN X If 9 € 0,(X1) then there exists x_; € X such
that z¢g = %. Then x_y = grg — m = xg(modm). By induction, we obtain x_1,z_5...
in X; NZ and digits do, dy, ... in {0, m} such that z_; = Li*TM. Since the set X; N7Z is
finite it follows that there exists & and p, £ < p, such that z_; = x_,. That means that
{r_k,x_p_1,...,2_,} form a cycle. We will show that actually we can start the cycle with

Zo.

We have that %ﬁ’“‘l = 2_py1 € Z. Also x*’“zd”’l = m’pzdpfl = Z_py1 € Z. This

means that dy_; —d,_; is divisible by g, and since the only digits we use are 0 and m and m
(odd) is not divisible by g (even), it follows that dx_; = d,—1 and therefore z_j 11 = x_,4;.

By induction, we get that xy must be in the same cycle.

]

Lemma 2.3. Assume m is odd and x; is an extreme cycle point for the digit set {0, m}.

Then x; = 0(mod g) or z; = —m(mod g).

Proof. From the relation between cycle points, we have that z;;; = xj;lj where [; € {0, m}.
Then gz = x; +1;. If [; is 0, we get that gz;11 = x;. Otherwise, if [; is m, we get that
gxj11 = xj +m. Considering these modulo g, we have 0 = z; + m(mod g) or 0 = z;(mod g).

Thus z; = —m(mod g) or z; = 0(mod g). O

Lemma 2.4. Let m be an odd number not divisible by g — 1 and let x; be the largest extreme

cycle point in the extreme cycle X for the digit set {0,m}. Then x; is divisible by g.

Proof. Assume by contradiction that x; is not divisible by g. Then, we know that the next



cycle point is

Ty +m
Ti41 = .

Since z; is the largest cycle point in this cycle, we have that % < a. If % = x4,
then z; = ;_”—1. Therefore, m is divisible by ¢ — 1, a contradiction. Otherwise, if % < x4,

we get that z; > g—’fl, which contradicts Lemma 2.2. O]

Lemma 2.5. If m = g — 1, then the set {1} is an extreme cycle for the digits {0, m}.

Proof. Let m = g — 1 and xy = 1. We get that z; = W = H;%” = 1. Since z; = xg, {1}

is an extreme cycle for the digit g — 1. O

Lemma 2.6. If m is incomplete, then any odd multiple of m is also incomplete.

Proof. The number m is complete if and only if the only extreme cycle for the digit set

{0, m} is the trivial cycle {0}. Suppose that m is incomplete. Then m has the non-trivial

extreme cycle {zg, x1,...,x,_1} with ly,...,l,_1 € {0,m}, where
xo + Lo T+ 0 Tp_g + 1o Tp—1 +lq
'Tl = ) x2 = ) AR 7:'6,"71 - —7 xo -
g g g g

Consider the extreme cycles for the digit set {0, km}, where k is an odd number. Multiplying

the previous expression by k, we get that

k kl k kl kx, o+ kl,._ kx, 4+ kl,._
O e N e S PO T e O S
g g g
which is an extreme cycle for the digit km. O]

Lemma 2.7. All of the odd numbers between 1 and g — 2 are complete.



Proof. Let m be an odd number, 1 < m < g — 2. Suppose m is incomplete. By Lemma 2.2,
the set (0, g%] N7Z D X NZ contains a cycle point, so it is non-empty. But g—’fl < 1, so the

1
interval (0, T1] cannot contain any integers, a contradiction. L]

Q

Lemma 2.8. Let xy be a cycle point, i.e., it has the form in (2.1). Suppose xq is an integer.
Then xy is an extreme cycle point. In other words, all of the other points in the cycle are

also integers.

Proof. Suppose that {zg, x1, ..., z,, } is a cycle for {0, m}, l,, € {0, m}, and that z¢ € Z. Since
xo is a cycle point, we know that zy = %. Then x,, = x99 — [,,, so x,, € Z. By induction,

all points in the cycle are integers. Since all of the points are integers,

1+ 2miday
\% 1 (ke {0 1)),
so the conditions for an extreme cycle are satisfied. O

Definition 2.9. Let m be an odd natural number. We will denote by Z,, the finite ring of
integers modulo m. We denote by U(Z,,) the multiplicative group of elements in Z,, that
have a multiplicative inverse, i.e., the elements in Z,, which are relatively prime with m.
For a € U(Z,), we denote by o,(m) the order of the element a in the group U(Z,,). We
also say that m has order o,(m) (with respect to a). We denote by G, , (or G,,) the group
generated by ¢ in U(Z,,), that is G,y = {¢’(modm) : j =0,1,...}.

Proposition 2.10. Assume m > g—1 is odd. If a coset C for the subgroup G, 4 of U(Zy,)

has the property that for all v; € C, x; < 27’”, then C' is an extreme cycle for the digit set

{0,m}.

Proof. Let C be such a coset. Label the elements in C' such that z; = gz,+1(modm), and if a

is the number of elements in Gy, 4, then z,_1 = gzo(modm). Then, since 0 < z;41; < 27’”, we

10



have that 0 < gxj41 < 2m. Now, since z; = gz ;41 (modm), we have that z; = gz,;11 + km,

where k € Z. Consider the following possibilities for the value of k.
If £k >0, then z; = grj41 +km >m > 27"‘, a contradiction.
If k <=2, then z; < gxj11 —2m = x; <0, a contradiction.

So, k € {0,—1}, and it follows that, z; = gz;11 — km for k € {0,1}, and similarly for
xo and z,_1. Rearranging, we find that

C(Ij‘i‘lj

= X,
J+1
g

for [; € {0, m}, and similarly for zy and z,_1. Since C' contains only integers, C' is an extreme

cycle. O]

Some complete numbers

Theorem 2.11. Let m > g—1 be an odd number not divisible by g—1. If any of the numbers
—1(modm), —2(modm), ..., —g+2(modm) or2(modm),3(modm), ...,g—1(modm) are

in Gp,g, then m is complete.

Proof. Assume by contradiction that m is incomplete. Then there is a non-trivial extreme

cycle C = {xo,...,x,_1} for the digit set {0, m}. From the relation between the cycle points,

x;+ 1
T = L
9

11



where [; € {0,m}. We have that gz;11 = z;(modm). Thus,

9" "o = zr(modm), with k € {0,...,r}, 2, := 0.
So, for all k € N, the number ¢*x( is congruent modulo m with an element of the extreme
cycle C. If, as in the hypothesis, there is a number ¢ € {—1,-2,..., —¢g + 2} in G, 4 such
that the number cxq is congruent modulo m with an element in C, and since x is arbitrary

in the cycle, we get that cz; is congruent to an element in C for any j.

In the following arguments, we use the fact that since m is not divisible by g — 1, the

m

condition on cycle points 0 < z; < ng1 implies 0 < z; < g

Ifee{-1,-2,...,—g+ 2}, since0<x0<grf—1, we have 0 > cxyg > —m so

_m(g+c—1)>m
g—1  g-1 “g-1

cxo(modm) =m+ cxg > m+c

a contradiction with the fact that cxo(modm) is a cycle point.

For the second set {2,3,...,g — 1}, by a similar argument, we have that for some ¢ in
this set, cxj(modm) € C for all j. Let x) be the largest element of the extreme cycle. Since
0<zy < ﬁ, we get that 0 < cxy < m, so cxy(modm) = cxy > xy, a contradiction to

the maximality of x . O]

Theorem 2.12. Let m > g(g — 1) be an odd number not divisible by g — 1. If any of the

numbers g+1(modm), g+2(modm), ..., or g(¢—1)(modm) is in Gy, 4, then m is complete.

Proof. Assume by contradiction that m is incomplete. Then there is a non-trivial extreme
cycle C = {xq,...,z,_1} for the digit set {0,m}. As in the proof of Theorem 2.11, for all

k € N, the number ¢g¥z, is congruent modulo m with an element of the extreme cycle C.

12



But then, the hypothesis implies that there is a number ¢ € {g+ 1,9+ 2,...,9(¢g — 1)} in
Gm,g such that the number cz is congruent modulo m with an element in C, and since zg

is arbitrary in the cycle, we get that cz; is congruent to an element in C' for any j.

In the following arguments, we use the fact that since m is not divisible by g — 1, the

m

condition on the cycle points 0 < z; < gmj implies 0 < z; < 1 Let x; be the largest

element in the extreme cycle. We have

0<x < o
g—1
By Lemma 2.4, x; is divisible by ¢g. Therefore, dividing by ¢, we get the next element in the

extreme cycle, called xy, and we have

m

Ny < ———.
g(g—1)

Force {g+1,9+2,...,9(9g—1)}, we get that x; = gzry < cxy < m, so cxy(modm) = cxy

is a point in C bigger than x;, a contradiction to the maximality of x;. O]

Corollary 2.13. Forn > 1, the numbers ¢" +1,9" +3,...,9" + (9 — 1) are complete. For

n > 2, the numbers g" — 3,9" —5,...,9" — (g — 1) are complete. For n > 3, the numbers

g"—(g+1),9"=(g+3),....,9" — (9(g — 1) — 1) are complete.

Proof. Let n > 1 and m = g™ + 1. Since g = 1(mod(g — 1)) we have ¢" = 1(mod(g — 1)),
so ¢" + 1 = 2(mod(g — 1)) so m is not divisible by g — 1. Also ¢" = —1(modm). Since
g" € Gy, 4, we have that —1 € G,,,. By Theorem 2.11, m is complete. Similarly for

g"+3,9"+5,...,9"+ (g —1).

Let n > 2 and m = ¢" — 3. Then ¢" —3 = —2 = g — 3(mod(g — 1)) so m is not divisible

13



by g — 1. Also, ¢" = 3(modm). Since g" € G,, 4, we have that 3 € G,,, ,. By Theorem 2.11,

m is complete. Similarly for ¢" —5,¢" —7,...,9" — (g — 1).

Let n > 3and m = g"—(g+1). Then g"—(g+1) = —g(mod(g—1)) so m is not divisible
by g — 1. Also ¢" = (g + 1)(modm). Since g" € G, 4, we have that (¢ + 1) € G,, 4. By

Theorem 2.12, m is complete. Similarly for g" —(g+3), ¢"—(¢9+5),...,9"—(g9(¢g—1)—1). O

Theorem 2.14. Ifp is a prime number, p > g—1, and n € N, then p"™ is complete whenever

the order of g, 04(p) is even. Otherwise, p"™ is complete provided that g is a perfect square.

Proof. If o4(p) is even, then o4(p") is even for all n > 1, see Proposition 2.23 below. Since p
is prime and greater than g — 1, we have that p and g are relatively prime. It is well known

2 —

that the equation x (mod p™) has zero or two solutions. Let a := o0,(p™). If a is even,

then we have (g2)% = 1(mod p") so (g2) = £1(mod p"). Since (¢g2) # 1(mod p"), we get that
(92) = —1(mod p"). The result follows from Theorem 2.11. If g is a perfect square and a is
odd, then (¢“z )2 = g(mod p"). Therefore (¢°z ) = +,/g(mod p"). If g is a perfect square,

V9 or —/g is in G,, 4 and the result again follows from Theorem 2.11.

]

Remark 2.15. There are prime numbers which are not complete. Consider g = 6 and the
prime number p = 55987. Then 6" = 1(mod 55987), so the order of 6 in Z, 06(55987) = 7

is odd. An extreme cycle for this digit set is
{311,9383,10895,11147,11189, 11196, 1866},

so we see that p is incomplete.

14



Primitive numbers

Definition 2.16. We say that an odd number m is primitive if m is incomplete and, for all
proper divisors d of m, d is complete. In other words, there exist non-trivial extreme cycles
for the digits {0,m} and there are no non-trivial extreme cycles for the digits {0, d} for any

proper divisor d of m. We say that a primitive number m is non-trivial if m # g — 1.

Corollary 2.17. A number m is incomplete if and only if it is divisible by a primitive

number.

Proof. Suppose that m is incomplete. Then either m is primitive, and hence divisible by a
primitive number, or m is not primitive. If m is incomplete and not primitive, then a proper
divisor d of m must be incomplete. Similarly, either d is primitive, or a proper divisor of d
is incomplete. Continuing this process until we run out of proper divisors, we find that a

proper divisor of m must be primitive.

On the other hand, suppose that m is divisible by a primitive number p. Since p is

incomplete, by Lemma 2.6, all odd multiples of p are also incomplete, so m is incomplete. []

Lemma 2.18. If m is a primitive number for g, then m and g are relatively prime.

Proof. Suppose that m is a primitive number and that ged(m, g) = d, with d > 1. We know

rfllT_ r72lT_ 1 l .
g 1t+g gr_12+ +gli+ 0’ with

by Lemma 2.2 that there is an extreme cycle point in Z, ¢y =
Iy € {0,m}. Since each [ is either 0 or m, where m is divisible by d, and since ¢" — 1 is
not divisible by any of the prime factors of d, we have that z( is also divisible by d. Since
the other extreme cycle points in Z also have a periodic base g expansion as in Lemma 2.2,

we have that the entire cycle is divisible by d. Dividing the cycle by d, we get that zq/d

15



is an extreme cycle point for {0,m/d}. But m/d is complete, because m is primitive, a

contradiction. Thus m and g are relatively prime. O
Theorem 2.19. There are infinitely many primitive numbers for every g.
Proof. Suppose there are only finitely many primitive numbers and let mq, ..., ms be the

ones bigger than ¢ — 1. By Lemma 2.18, the numbers m, are relatively prime with g so the

order o4(m;) of g in U(Z,,,) is well defined. Let n be a common multiple of o,((g — 1)?),

0g(my),...,04(ms), larger than g — 1.

Then ¢g"™'—1 = g—1mod((g—1)%,my,...,ms). Let m = 9ng+j;1. This is an odd number.
We have that m is not divisible by ¢ — 1,m4,... or m,, otherwise ¢"*! — 1 is divisible by
(g —1)%, mq,... or m,. Consider the cycle point o with digits lo =m,... .l =m, 1,1 =

0,...,l, =0, as in Lemma 2.2. Then

. _m(l—}-g—{—---—i—gg*Q) _1_|_g+..._+_gg*2
" gt —1 B g—1

But g =1(mod(g—1))sol+g+---+¢*2=1+1+---+1=g—1=0(mod(g—1)). So
—_—

g — 1 times
ro € Z. With Lemma 2.8, it follows that m is incomplete, so it is divisible by a primitive

number, contradiction. O

Properties of the order of a number

Definition 2.20. For a prime number p > 3, we denote by ¢,(p) the largest number [ such

that o,(p') = o0,(p). We say that p is simple if 0,(p) < 0,(p?), i.e., t,(p) = 1.
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Proposition 2.21. Let m and n be relatively prime odd integers. Then

0, (mn) = lem(o,(m), 0,(n)).

Proof. We have that a = o,(mn) is the smallest integer such that ¢* = 1(modmn). So a is
the smallest integer such that ¢* = 1(modm) and ¢g* = 1(modn). This means that a is the
smallest integer that is divisible by o,(m) and o4(n), so it is the lowest common multiple of

these two numbers. O

Lemma 2.22. Let p be an odd prime number relatively prime with g. Then o,(p') < o,(p'*™).

Proof. Suppose to the contrary that o,(p') > 0,(p"™!). Let a = o,(p') and b = o,(p'*!), with
a > b. Then we have that ¢® = 1(mod p') and ¢* = 1(mod p'*™1), so p!|(g*—1) and p"*|(¢g"—1).
Since p'*1(g® — 1), we also have that p'|(¢° — 1). Thus g® = 1(mod p'), which means that a

divides b. This contradicts the fact that a > b, so we have that o,(p') < o,(p'*?). O

Proposition 2.23. Let p be an odd prime number relatively prime with g. Then og(p’“) =

o4(p) for k < 14(p) and og(pk) = pk’Lg(p)og(p) for all k > 1,4(p).

Proof. For k < 1,(p), the statement follows from Lemma 2.22. Assume by induction that
for k > 1,(p), a, = 0,(p*) = p*~9®Po,(p) and o,(p*) < 0,(p**1). Then there exists g not

divisible by p such that g% = 1 + ¢p*. Raise this to power p using the binomial formula:

g’ =1+p-qp*+¢p""?,

k—i—l)

for some integer ¢’. This implies that ayi1 = o,4(p divides paj, and also that pay is

k+2) k+1)

not o,4(p*"*?). Since g%+ = 1(modp we have also that g%+ = 1(mod p*) so a; divides

aps+1- Thus agyq is a number that divides pap and is divisible by aj, and by the induction
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hypothesis ag1 > ax. Thus a1 = pay = p**1=9Po,(p). Also, o,(p"1) = pay, # o, (p**?)

80 04 (pF*1) < 0,(p"?). Using induction we obtain the result. O

Proposition 2.24. Let py, ..., p, be distinct odd primes relatively prime with g and k1, ..., k, >
0. Fori € {1,...,7}, let j; > 0 be the largest integer such that pl divideslem(og(p1), . .., 04(py)).
Then

0g (P ... pkr) = (Hp?“{’“‘ﬁ"bg(p“’()}) lem(o,(p1), - - ., 0q(pr)). (2.5)

i=1

Proof. We have that o,(pf'...pfr) = lem(o,(p),...,04(p*)) by Proposition 2.21. By

Proposition 2.23,

max{k; —tq(p;),0 .
og(plf1 .. .pf’") = lcm (pl- {ki=to(pa) }Og(pi);l e{l,... ,r}).

If ki — v4(pi) < ji, then prthimta @0} lready divides lem(oy(p1), - .-, 04(pr)) so it does not

)

contribute to the right-hand side. If k; — ¢,(p;) > Ji, then praxlhi=ie(pi) 0}

; contributes with

prieP)=I ¢ the right-hand side. Then (2.5) follows. O
Proposition 2.25. Let m be a primitive number and let C' = {xg,...,xp_1} be an extreme
cycle. Then:

(i) Every element of the cycle z; is mutually prime with m.
(1) The length p of the cycle is equal to o,(m).
(i1i) The extreme cycle C is a coset of the group G, g in U(Zy,), C = 20Gp g

(iv) The number m is primitive if and only if it is incomplete and ged(C) = 1 for all

extreme cycles C'.
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Proof. For (i), suppose zp and m have a common divisor d > 1. Then, since z; = % we
have that gx; is divisible by d. From Lemma 2.18, we have that g and m are relatively prime

because m is primitive, so d must divide x;. By induction d divides all the elements of the

Zo Z1

cycle. But then {%,%,...,

“221} is an extreme cycle for the digits {0, %}. This contradicts

that m is primitive.

For (ii), we have ¢’z; = Z(i—j)moap)(modm) for all ¢,j € {0,...,p — 1}. Therefore
g’ro = xo(modm). Since z¢ is in U(Z,,), we get that ¢ = 1(modm), so p is divisible

by o4(m) =: a. Also, we have xg = ¢°Zo = T_g(modp)(modm) so, since all the elements

_m_

of the cycle are in [0, pam

] we get that &y = Z_q(modp)- Therefore a is divisible by p. Thus

p=a=o04m).

For (iii), since the length of the cycle is o,(m) which is the order of the group G, and

since g/xo(mod m) = &_;jmodp), we get that 29Gp, g = C.

For (iv), suppose that k = ged(C) > 1. Then, one of the digits for the cycle is m, we can
assume it is the first one, therefore we have xq + m = gxy, which implies that k£ divides m.
Thus {7 :4=0,1,...,p—1} is a cycle for 7!, contradicting that m is primitive. Conversely,
suppose that m is not primitive. Then there exists a primitive number p such that m = pk,
k € N. Then p has an extreme cycle C. So kC' is an extreme cycle for m, but ged(kC) > k,

a contradiction.
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The order and possible cycles

Theorem 2.26. The only primitive number of order 1 is g — 1. There are no primitive
numbers of order 2 or 3. If g— 1 is not divisible by 3, then there are no primitive numbers of

order 4 or of order 5. If g — 1 is divisible by 3, then there exists a unique primitive number

4_ . . L,
of order 4, namely m = ng, and there exists a unique primitive number of order 5, namely
g°—1
T

Proof. The first statement is clear from Lemma 2.5 and Lemma 2.7.

Suppose m is a primitive number of order 2. Then, by Proposition 2.25, there exists an
extreme cycle of length 2. The only possible digits lyl; as in Definition 2.1 that correspond
to a cycle of length 2, up to a cyclical permutation, are m0, since the other possibilities 00
and mm correspond to the trivial cycle {0} and the cycle {1} respectively, which both have
length 1. Then, by Lemma 2.2, the cycle point is z¢y = % € 7. This implies that m is

divisible by the primitive number g — 1, which has order 1, a contradiction.

Suppose now m is a primitive number of order 3. Then it has an extreme cycle of length
3. The digits corresponding to such a cycle can be 000, 00m, 0m0, m00, Omm, mm0, mOm,
and mmm. The digits 000 correspond to the trivial cycle {0}. The digits mmm correspond
to a cycle of length 1, not 3. The digits 00m, 0m0 and m00 correspond to three points in the
same extreme cycle, and if one sequence appears then the other two appear too, therefore
we can consider just one of them, e.g, m00. Same for Omm, mOm, mm0, we can consider

just mm0.

Thus, up to a cyclical permutation, the only possible digits for such a cycle are, m00

or mm0. In the first case, the cycle point is xg = and then m is divisible by g — 1, a

m
g3—17
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contradiction. In the second case, the cycle point is xg = %. But g—1and g+1

are mutually prime (since g is even), so m is divisible by g — 1, a contradiction.

Suppose m is a primitive number of order 4. Then it has an extreme cycle of length 4.
The digits for such a cycle up to a cyclical permutation, can only be m000, mm00 or mmmo0.

In the first case, the cycle point is zg = 947”—_1, so m is divisible by g — 1, a contradiction. In

the second case, the cycle point is xg = %. Since g — 1 and g 4+ 1 are mutually prime,

it follows that m is divisible by g — 1, a contradiction. In the last case, the cycle point is

— mltgte®) _ _ mll+gtg?) y- In the following arguments, we make use of that fact that

Lo g1 (=D (g+D)(g>+1

if a prime number divides a and b, then it divides any integral linear combinations of a and
b. If a prime number p divides both 1 + ¢ + g% and ¢ + 1, then it has to divide ¢?, so it
divides ¢ and g + 1, so it divides 1. Therefore 1 + g + ¢? and ¢g + 1 are mutually prime, so
m is divisible by g + 1. If a prime number divides both 1 + g + ¢ and ¢ + 1, then it must
divide g, so it divides 1, so 1 + g + ¢ and ¢ + 1 are mutually prime and therefore m is
divisible by ¢ + 1. If a prime number p divides both ¢ 4+ g + 1 and ¢ — 1, then it divides
g* —2g + 1, so it divides 3g. Then, either p = 3 or p divides g. If p divides g then it divides
1. Thus the only common divisor of g — 1 and g*>+ g+ 1 can be 3. If g — 1 is not divisible by
3, then 1+ g + ¢ and g — 1 are mutually prime, so m is divisible by g — 1, a contradiction.
If g — 1 is divisible by 3, then g = 3k + 1 for some k € Z, and so 1+ g+ ¢* = 3(1 + 3k + 3k?).
This means that 1+ g + ¢? is not divisible by 9, and therefore the greatest common divisor
41

of 1+g+g*and g—1is 3. Thenmhastobedivisibleby%X(g—i—l)x(gQ—l—l):gT.

Note that the number % is incomplete since it has an extreme cycle point with digits
mmm0. If it is not primitive, then there is a primitive number m which divides it. Then
m divides g* — 1, so g* = 1(modm) and therefore o,(m) divides 4, hence the order of m is

either 1,2 or 4. We ruled out the first two cases. If the the order of m is 4, then from the

g*-1

discussion above, it follows that m is divisible by 947_1. Som = %5
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Suppose now m is a primitive number of order 5. Then it has an extreme cycle of length
5. The digits for such a cycle, up to a cyclical permutation, can only be: m0000, mm000,

mO0mO00, mmmO00, mmO0mO0, mmmm0.

For m0000, the cycle point is zy = gg,”i 7, 0 m is divisible by g — 1, a contradiction.
For mm000, the cycle point is xg = ";(51—_*19). Since g — 1 and g + 1 are mutually prime,

it follows that m is divisible by g — 1, a contradiction.

7”;;—?2). If a prime number divides both 1+ ¢ and

For m0OmO00, the cycle point is xg =
g — 1, then it divides g — 2g + 1, so it divides 2g, so it divides g, so it divides 1. Therefore

g — 1 and 1+ ¢g? are mutually prime, so m is divisible by g — 1, a contradiction.

m(1+g+g%)

i If a prime number p divides both

For mmmO00, the cycle point is xy =
1+ g+ ¢? and g — 1, then as in the discussion for the case of order 4, we get that p = 3
and g — 1 has to be divisible by 3 and ged(1 + g + ¢, g — 1) = 3. Also, if a prime number
divides both 1 + g + ¢*> and 1 + g + ¢° + ¢* + ¢*, then it divides ¢*(g + 1) so it either
divides g or it divides g + 1. If it divides ¢ then it divides 1, and if it divides g + 1 then
it divides g2, so it divides g, so it divides 1. Thus, 1 +¢+ ¢*> and 1+ g + ¢> + ¢* + ¢* are
mutually prime, and therefore m is divisible by 1 + g + ¢? + ¢ + g*. Hence, m is divisible

_ 5__
by 8 x (14 g+ +¢%) = &

m(14+g+g°)

o If a prime number p divides both

For mmOm0, the cycle point is xy =
1+g+g°and g — 1, then it divides ¢> — ¢° so it divides 1+ g+ g2, then as before, p = 3 and
g — 1 is divisible by 3. We prove that ged(1 + g+ ¢3,9 — 1) = 3. As we saw, the only prime
number that divides both 1+ ¢+ ¢ and g — 1 is 3, so we only have to show that 9 does not
divide both numbers. Let g = 3k + 1 with k € Z. Then 1+ g + ¢° = 3(1 + 4k + 9k* + 9k3).

If 9 divides 1 + g + ¢3, then 3 divides 1 + k, so k = 3] + 2 for some [ € Z. But then
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g—1=23(3+2) =9k + 6 is not divisible by 9. Thus, ged(1 +g+ g%, g—1) = 3.

If a prime number divides both 1 4+ ¢ + ¢* and 1 + g + ¢®> + ¢> + ¢*, then it divides
g*(1 + g?), so it either divides g or it divides 1 + ¢*. If it divides g, then it divides 1, and if
it divides 1 + ¢? then it divides g + ¢° so it divides 1. Thus, 1 +g+g¢*and 1 4+ g+ ---+ ¢*

g°~1

are mutually prime. Therefore, m has to be divisible by % X(1+g+---+g" = .

%W. If a prime number divides 1 + g +

For mmmm0, the cycle point is g =
g> + ¢® and g — 1, then it divides ¢> — ¢2, so it divides 1 + ¢ + 2¢ and 2 — 4g + 2¢® so it
divides 5g — 1 and 5g — 5, so it divides 4, which is impossible because g — 1 is odd. Thus m

has to be divisible by g — 1, a contradiction.

In conclusion, if g —1 is not divisible by 3, then there are no primitive numbers of order

5. If g — 1 is divisible by 3, then a primitive number of order 5 must be divisible by gST_l.
This number is incomplete because it has at least two extreme cycles with digits mmmO00

and mmOmO0. If it is not primitive, then it is divisible by a primitive number m. Then m

divides ¢° — 1, so ¢° = 1(modm) so the order of m divides 5. We cannot have o,(m) =1 so
04(m) = 5. From the previous discussion, we obtain that m is divisible by f%, som = 95; L
[l

Theorem 2.27. Let g = p+ 1 where p is a prime number. Then there are no non-trivial

primitive numbers of order strictly less than g.

Proof. Let m be a non-trivial primitive number of order n. Then, by Proposition 2.25, it has
an extreme cycle of length n with some digits lo, ..., l,_1 € {0,m}. Let k; :=[;/m € {0, 1},

for i € {0,...,n — 1}. The cycle point is

- m(l{io + gkl + -+ g"_lk:n_l) . m(k'o + gk1 + -+ g"‘lkn_l)

To = = €.
’ g —1 p(l+g+--+g7)
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Since m is a non-trivial primitive number, it cannot be divisible by g—1 = p. Therefore,
ko+ gky+- - -+ g" 1k, 1 must be divisible by p. However, g = 1(mod p) so ¢* = 1(mod p) for
all k. Then ko+gk1+---+¢" Ykn 1 = ko+ki+---+k,_1(mod p), so ko+---+k,_; must be
divisible by p. Therefore, we must have a multiple of p ones among the digits ko, ..., k,_1,
so we have at least p ones. Also, not all the digits can be 1, because then xy = m/p, so m
is divisible by g — 1, a contradiction. Therefore, we must have at least p + 1 = ¢ digits, so

n>g. O

Theorem 2.28. Let m be a non-trivial primitive number, og(m) =: n and let xy be an
extreme cycle point with digits ly, ..., l,—1 as in (1.3). Let k; :== l;/m € {0,1} for i €

{0,...,n—1} and let d := ged(ko + gk1 + -+ - + ¢" 'kn_1,9" — 1). Then m = £+

Also, ifko, ..., kn_1 are some digits in {0,1} and if d := ged(ko+gki+- - +9" Thp_1,9"—

1), then the number m = % 15 incomplete and has an extreme cycle with digits

mko, mk‘l, c ,mk‘n_l.

Proof. First, note that we know that the length of the cycle is equal to n, from Proposition

2.25. With Lemma 2.2, we have that

n—1

~m(ko+gki+ -+ 9" ko) Aotk 29T Kny v
Lo = n_ 1 - gn—1 . ( . )
g d

ko+gk1+-+g" n_ : . . . .
But fetoht jg n—L and 4 L are mutually prime, and since z, is an integer, it follows

that m must be divisible by #;1. Let m’ := %. Then

,om(kot gkt 49" k) kot gkt 49" ke
To = gt —1 B d

is a cycle point for the digits {0, m'} and it is in Z, therefore, by Lemma 2.8, it is an extreme

cycle point for m’. This means that m’ is incomplete. Since m is divisible by m’ and it is
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also primitive, it follows that m = m/.

The last statement of the theorem follows from the previous computations. O]

Example 2.29. Recall from [DH16], that the first few primitive numbers for g = 4 are
{3, 85,341, 455, 1285, 4369, 5461}.

They can be obtained very nicely as:

44 —1 45 —1 4% —1

_~l _ _ _
3=4'—1, 8= , 341 = 455 = ——,

48 —1 48 —1 47 -1
1285 = ———, 4369 = 0461 = .
3-5-17 3-5"7 3

Corollary 2.30. All primitive numbers m are divisors of g" — 1, where o,(m) = n.

Example 2.31. We illustrate how we can use Theorem 2.28 to find some non-trivial primitive
numbers. Take for example g = 16. We want a non-trivial primitive number m, so m cannot
be divisible by g — 1 = 15. Also, it must have an extreme cycle, so for some choice of digits
ko, ..., kn_1 € {0,1}, we must have that

m(ko+ 16k + - + 16" k1)
o= 16" — 1

is an integer. Since 16" — 1 is divisible by 15, the numerator must be divisible by 15. But m
should not be divisible by 15. So the term ko + 16k; + --- 4+ 16" 'k, _; must contain some

factors of 15, i.e., 3 or 5.

Let’s pick 3 first. Since ko + 16k; + -+ + 16" 'k, = ko + ky + -+ + kp_1(mod 15)
(and (mod 3) and (mod 5)), we must have kg + - - - + k,,—1 divisible by 3. Therefore, we must

have a multiple of 3 number of ones among these digits. We cannot just pick 111, because
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that is actually the cycle with digit 1. So, instead we can pick 1110. Thus n = 4. Then

ko + 16k + -+ + 16" 'k,_; = 1 4+ 16 + 162 is divisible by 3. We take m = 162’1, and using

Theorem 2.28 or by a direct check, we can see that the number is primitive.

We can use a similar method for 5. We must have that kg+- - -+ £k, _1 is divisible by 5, so
we need at least 6 digits, such as 111110. Then we take m = 162—_1 = 3355443. A computer
check shows that the only extreme cycle is {13981, 210589, 222877, 223693, 223645, 223696 }

and these numbers are relatively prime. Therefore, with Proposition 2.25, we obtain that

this number is primitive too.

Now let’s take ¢ = 12. A non-trivial primitive number m cannot be divisible by
g — 1 = 11. Therefore, we must find digits so that ko + 12k; + --- + 12" k,_; is divis-
ible by 11. As before, this implies that ko + - -- + k,_1 is divisible by 11, so we must have

a multiple of 11 number of ones among these digits. We need some large numbers! We

can take 11...1 0. So n = 12. We pick m = 121121_1 = 810554586205. A computer check

11 times
shows that the only extreme cycle is {68057929271, 73217709623, 73647691319, 73686509111,
73683523127, 73686778679, 73686757943, 73686780563, 73686780564, 73686780407,
73686780551, 6140565047}. The numbers in this cycle are mutually prime, and by Proposi-

tion 2.25, it follows that this number m is primitive.

Lemma 2.32. The prime diwvisors of g" — 1 are precisely the prime numbers with order

dividing n.

Proof. Let p be a prime number with o,(p) = {, and [|n. Since o,(p) = [, we have that

g' = 1(mod p). Since [|n, we have that n = [, for some j € Z. Thus,

(¢") = V(modp) = ¢" =1(modp) = ¢" — 1 = 0(mod p).
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So, we have that p|(¢g" — 1).

Conversely, if p is a prime divisor of g" — 1 then ¢g" = 1(modp) so o,4(p) divides n. [

. . L gi—1 .
Theorem 2.33. Let ¢ > g — 1 be mutually prime with g — 1. Then m := gng 15 incomplete
and og(m) = q. All divisors e > 1 of m have o4(e) # 1 and o,(e)|q. If, in addition, q is
prime, then there exist primitive numbers of order q and all primitive numbers d that divide

m have o4(d) = q.

Proof. We know from Lemma 2.32 that, for all prime divisors d of g? — 1, 0,(d) divides g.
We have the factorization ¢ — 1 = (¢ — 1)m. We prove that g — 1 and m are mutually
prime. If a prime number p divides both g — 1 and m, then g = 1(modp) so ¢g" = 1(mod p)
foralneN. Som=1+¢g+--+¢g" =1+1+---+1=g(modp). But p divides m, so
0 = ¢(mod p) which means that p divides ¢, and this contradicts the hypothesis that g — 1

and ¢ are mutually prime.

We show that if e > 1 divides m, then o4(e) # 1. If not, then g = 1(mode) so e divides

g — 1. But e divides m, and g — 1 and m are mutually prime, a contradiction.

Clearly we have that m divides g¢ — 1, so ¢g? = 1(modm), so o4(m) divides ¢q. For
1 <1< g, we have that 0 < ¢' —1 <m, so g' — 1 # 0(modm). Thus o,(m) = q. Therefore,

any divisor of e > 1 of m has o,4(e)|q.

Next, we show that m is incomplete. Consider the cycle point xy with digits

m,m,...,m, 9,0,...,0 .

J/

-~ -~

g—1 times ¢—g+1 times
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Then, by Lemma 2.2, we have

. _m(1_|_g_|_+gg_2) _m(1+g+...+gg_2)_ 1+g+...+gg_2
o g7 —1 N (g—Dm N g—1 ’

We have g = 1(mod(g — 1)) so ¢! = 1(mod(g —1)). Then 1 +g+---+¢g? 2= (g—1) =

0(mod(g—1)). So xy is an integer and therefore an extreme cycle point. So m is incomplete.

Assume now that ¢ is prime. Since m is incomplete, there exists a divisor d of m which
is a primitive number. Then, d divides g? — 1 so, by Lemma 2.32, o,(d) divides ¢, so it is
1 or q. However, it cannot be 1, since that would imply that d divides ¢ — 1, and since d

divides m, this would contradict the fact that ¢ — 1 and m are mutually prime. Therefore

04(d) = q.
O

Remark 2.34. The condition that ¢ is prime cannot be removed if we want to find a
primitive number of order q. For example, there is no primitive number of order ¢ = 14
for ¢ = 6. We have that 14 and ¢ — 1 = 5 are mutually prime. Also, we have that
64 —1=5-7-7-29-197-55987. Since 5 and 55987 are primitive for this g, of order 1 and 7
respectively, a primitive number of order 14 would have to be a divisor of 7-7-29-197 = 279937.

However, this number is complete, so none of its divisors can be primitive.

Remark 2.35. Theorem 2.33 can be used in finding new primitive numbers. When g = 4, we
know that prime numbers cannot be primitive. The following numbers must all be primitive
because they are of prime order (hence incomplete by Theorem 2.33) and the product of
exactly two prime numbers (and all prime numbers are complete for ¢ = 4, by Theorem

2.14):
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4 1
— 22369621 = 2731 - 8191

471

= 5726623061 = 43691 - 131071

19

= 91625968981 = 174763 - 524287

However,

4%
— 23456248059221 = 47 - 178481 - 2796203

is merely incomplete. A computer check shows that 8388607 = 47- 178481 is complete, while
131421541 = 47 - 2796203 and 499069107643 = 178481 - 2796203 are primitive.

Remark 2.36. It is possible for g;%ll to be complete. Take g = 22 and n = 7. Then

22271_ L — 118778947 is complete. So the condition in Theorem 2.33 that ¢ > ¢ — 1 cannot be

removed.

Corollary 2.37. Let g = p + 1 where p is a prime number. Then there are no non-trivial
primitive numbers of order strictly less than g and, for every prime number q > g, there

exists a primitive number of order q.

Proof. The first part is contained in Theorem 2.27, and the second part follows immediately

from Theorem 2.33. O

Example 2.38. This example illustrates a method for determining whether there exists a
primitive number of order n. Let ¢ = 4. Since ¢ — 1 = 3 is prime, it has already been
shown by Theorem 2.33 that a primitive number exists for every prime ¢ > 4. We now
consider when n is a multiple of a prime number. Consider n = 22. There are no primitive

numbers of order 2, and the only primitive number of order 11 is 60787 = 89 - 683. Using
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the relationship between cycle points, and assuming, without loss of generality, that the last

two digits in the cycle are m0, we have that

4m(k0—|—k1-4+...—|—k19-419+420) 4m(k0—|—k1-4+...+k19-419+420)
Tn = =
0 42 3(5-23-89- 397 - 683 - 2113)

for some ky, ..., ko in {0, 1}.

The orders of the numbers in the denominator are 1,2, 11, 11,22, 11,22 respectively. In
order for a primitive number of order 22 to exist, we need to cancel either 89 or 683 (or both)
with the (ko + k1 -4 + ... + kig - 4! + 42°) in the numerator, because these are divisors of
the primitive number of order 11. Since (ko + ki -4+ ...+ kg - 419 420) in the numerator
must also be divisible by 3, we know we need exactly 3l — 1,1 € Z terms, in addition to the
4% term. Consider the multiplicative groups generated by 4 modulo 89 and 683, since our

primitive number m should not be divisible by 60787 = 89 - 683, which is primitive.
For 89, we have {4, 16, 64,78,45,2,8,32,39,67,1} and 4?° = 39(mod 89).
For 683, we have {4, 16, 64,256, 341,681,675,651,555,171,1} and 4* = 555(mod 683).

We need to pick exactly 2, 5, or 8 terms from these groups, add them together with 4%°,

and try to get a number equivalent to 0(mod 89 or 683).

Using a computer, we see that from the first set, 4 + 16 + 78 + 2+ 39 + 39 = 178 =
0(mod 89). From the second set, 256 + 555 + 555 = 1366 = (0mod683). So, for the

numerator, we get 4 + 42 + 44 + 46 4+ 4% 4+ 420 in the first case and 4* + 4% +4?° in the second.

Thus the number 5-23-89-397-2113 is incomplete. A computer check shows that 34;2.6_81:,)
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is primitive.

Also, the number 5 - 23 - 397 - 683 - 2113 is incomplete. A computer check shows that

4221
3.5-89

is primitive.

Both of these primitive numbers have order 22.

For the next theorem, when we say x = dyd; . ..d, in base g, we mean
v=dog" +dig" "+ +duor19 + dy.

Theorem 2.39. Let m = 11...1 in base g, so m = £=x. Then m is primitive with the base
— g—1

g-times

g extreme cycle point 12...(9 — 2)(g — 1) and m has cycle length g. Moreover, the cycle

generated by this cycle point is the only extreme cycle for m.

Proof. Note that all operations are taking place in base g. Let g = 123...(9—3)(g—2)(g—1).
Then

g-times

123, (g=3)(g—2)(g— 1) +T1.. 1
g = =2 I 7O . J 2193 (g —4)(g — 3)(g — 1)0

xe=123...(g—4)(g—3)(g—1)

g-times

b 123---(9—4)(9—93)(9—1>+11"'1 =1123.. . (9 —4)(g—3)(g— 1)
g-times

b 1123-~-(g—4)(9—g3)(9—1)“1"'1 =1223...(9—4)(g - 3)(g — 1)
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g-times

123...(n=3)(n—3)...(g—4)(g—3)(g—1)+11...1

e g
=123..(n—=2)(n—2)...(g—4)(g—3)(g—1)
mg:123...(9—4)(g—3)(g—3)(g—1)+11...1‘:123“.<g_3)(g_2>(g_1)

9

Since x4 = o, we have that this is indeed an extreme cycle of length g.

We prove that this is the only extreme cycle for m. Note that if xq has some decompo-
sition g = a,...ap = apg” + --- 4+ a19 + ap in base g, then the next element in the cycle is
either zo/g or (xg +m)/g. In the first case, the last digit ay has to be 0. In the second case

ap has to be g — 1.

In the case the last digit ag is 0, we simply divide by g. This means that in the base
g representation, the last 0 is removed, and we do so as many times this is possible, i.e., as
many zeros we have in the end of the base g representation. so we ignore the last zeros and,
for simplicity, we talk about the cycle points that have an expansion that ends in a non-zero

digit.

Assume now the last digit ag is ¢ — 1 and consider the next to last digit a;. The next

element in the cycle is x; = (zg +m)/g.

For a positive integer x we will write x = ... a,a,_1 ...a1a¢ to indicate that the base g

representation ends in a,a,_1 ...ajaq.

Since g = ...a1(g — 1) and m = ... 11, we get that 2o +m = ... ((a; + 2) mod ¢)0 and

therefore 1 = ... ((a; + 2) mod g). Since x; is also a cycle point, its last digit is 0 or g — 1
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therefore ay =g —2 or ay = g — 3.

We claim that every extreme cycle point for m has the form

ni-times no-times ng—o-times
A~~~ I -\ -~
1..12.2..09-2)...(9-2)(g—1) 2.7)

with ng,...,ng_3 > 1, ng_o > 0.

First, we will prove that zo = ...(¢ = 3)(¢9 —2)(g —2)...(¢9 —2)(g — 1) or zy =
...(g—3)(g—1). If the next to last digit is a; = g — 3, we are done. If the next to last digit
is g—2, we consider the digit immediately before it ay. Since xg = ...a32(g—2)(g—1), we have
zo+m=...((a2+2)modg)00sox; =...... ((ag+2)mod ¢g)0 and 25 = ... ((ag +2) mod g).
Since this is an extreme cycle point, the last digit is either 0 or g — 1. Thus as = g — 2 or
as = g — 3. By induction, if zg = ... q;(g —2)...(¢ —2)(g — 1) then zg +m = ... ((a; +
2)mod ¢g)0...00, so dividing by g as many times as needed we get an extreme cycle point
of the form ... ((a; + 2) mod g) and since the last digit has to be 0 or g — 1 it follows that

a=(g—2)ora = (g—3).

We show that we cannot have zo = (¢ —2)... (g —2)(g — 1), so the digit (¢ — 3) has to

appear.

Note first that by Lemma 2.2, 7 < o = 99_1;:;“‘7“ = (i’:)g < ¢g"1, so x( has at

most g — 1 digits, so it has a shorter expansion than m which has ¢ digits.

fzg=(9—2)...(¢9—2)(g— 1) then xy +m has the form 11...120...00, which would
imply that an extreme cycle point is of the form 11...12, a contradiction to the fact that

the last digit has to be 0 or g — 1.

Thus zg is of the form ...(¢g —3)(¢ —2)...(9g —2)(g — 1) and g — 2 does not have to
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appear. Assume by induction that all extreme cycle points g (which do not end in 0) are

of the form
ng_-times ng—2-times
cca(g—k)...(g—k)...(9—2)...(g—2)(g — 1),
with k >3, ng_p,...,ng_3 > land n,_o > 0. Thenzo+m=... (¢ +1)(g—k+1)...(9—

2)...(¢9 —2)(g —1)0...0. Dividing by g, we get that an extreme cycle point is of the form
(g +D)(g—k+1)...(¢g—2)...(¢9—2)(g— 1), and by the induction hypothesis we obtain

that qq +1=g—k+loraqy+1=g—ksoa=g—kora =9g—Fk—1.

Thus the digits in the base ¢ expansion of xy form an increasing sequence and two

consecutive digits differ by at most 1, with the exception of the last two which can be

(9—3)(g—1).

We show that the first digit has to be 1. Suppose g = a,_1 ... ag. We saw above that
xo has at most n — 1 digits, so then g +m = 1(ay—; +1)...0s0 1 = 1(ap_1 +1).... But

we know that two consecutive digits of z; differ by at most 1 so a,_; = 1.

Combining these results we get that every extreme cycle point must have the form in

(2.7).

Next we claim that either ny = --- = ny_o = 1 or ny_o = 0 and all but one of the

ni,...,Nng—3 are equal to 1, with possibly at most one exception which is equal to 2.

Suppose first ng_o = 0. We know that the first digit is 1 and the last digits are
(9 —3)(g—1). Also two consecutive digits before the (¢ — 3) differ by at most one and they
appear in increasing order in the expansion. This means that all digits 1,2,..., (g — 3) have

to appear in the expansion (otherwise there is a jump by at least 2). So ny,...,n,_3 > 1.

On the other hand, there are at most g — 1 digits, so g—1>n;+---+n,3+1>g—2.
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This implies that we cannot have two numbers n; bigger than 2. Moreover, at most one of

them is 2 and the rest are 1.

If ng_o > 1 then, with the previous argument, we get that all digits between 1 and g —2
must appear in the expansion and then, as before, we get o = 12...(g — 1). Going through
all the cases, we see that every possibility yields a point in the extreme cycle listed in the

first part of the proof.

We prove that d = ged(C) = 1. Since d divides 29 = 12...(9 —3)(g — 2)(g — 1) and
gre = 12...(g — 3)(g — 1)0, it follows that d will divide also gxe —x¢ = (¢ — 1)g — ((g —
2)9+(g—1) =1 O
Conjecture 2.40. Let m = 11...1 in base g, and let g = p+ 1 where p is a prime number.

g-times
Then m 1is the first non-trivial primitive number.

Remark 2.41. By Theorem 2.39, we have that m is primitive. It remains to be shown that

no primitive numbers can exist between p and m.

Example 2.42. Let us illustrate, with an example, an algorithm for finding primitive num-
bers. Let g = 6. Of course, the trivial primitive number is 5. Therefore, no other primitive

number has 5 in its prime decomposition.

By Corollary 2.30, the primitive numbers are divisors of 6" — 1, and since we can must
the 5 from the prime decomposition, they have to be divisors of Lgl. By Theorem 2.26, we
can start with n = 6. When n is not divisible by ¢ — 1 = 5, we can use Theorem 2.33 to

conclude that 6715—_1 is incomplete.

By Theorem 2.39, 66;1 =7-31-43 is primitive.

We used a computer program to check whether the following numbera are complete.
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For n =7, we have 675—_1 = 55987 is prime and incomplete, thus primitive.

For n = 8, a = 685’1 = 7371297 is incomplete. We checked that 2,2, &= are
complete, therefore &=L 5 is primitive.
Forn =9, a = 695* = 19 - 43 - 2467 is incomplete. We checked that {4, %, 5= are

complete, therefore ©=t is primitive.

5

For n = 10, a = % =5-7-11-101-311. We have to remove the extra 5 from the
6191

55 1S

3 143 a a a a
prime decomposition. We checked that %, =97, =157, =377 are complete, therefore

primitive.

For n =11, a = 67 -1 — 23.3154757. We checked that 23 is complete and 3154757 is

prime and incomplete, therefore primitive. So & is primitive.

3

For n = 12, a = 8221 = 5.7.13.31-37- 43 97. We know that 7 - 31 - 43 = &=

is primitive so at least on of these factors have to be removed. We checked that 2, 3% are

incomplete and ;% is complete. Thus we cannot remove the factor 43 to get a primitive

a a a a
13-317 13-977 31-377 31-97

_a_ _a_ _a
7137 7-377 7-97

number. Then are complete and =% is incomplete. Also

6121

T=37 is primitive, and this is the only divisor of a

are complete. This implies that =% =

(other than 7-31 - 43) which is primitive.

Forn =13, a = 6%-1 — 760891 - 3443. Both prime factors are complete, therefore 611’1

is primitive.

Forn =14, a 614_1 = 72.29-197 - 55987. The number 55987 = &=L is primitive, so

this factor has to be removed. We checked that is complete, therefore we do not get

55987

new primitive numbers. See also Remark 2.34.

For n = 15, a = 611’1 = 5-43-311-1171 - 1201. The factor 5 has to be removed.
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6151

We checked that £ is incomplete and %3, =577, =577 57557 are complete. Therefore *—== is
primitive.
Forn =16, a = %=1 = 7-17-37-1297-98801. The number 7-37-1297 = &=L is primitive,

so one of these factors has to be removed. We checked that £, &, —%- are incomplete. Then

77377 1297

a 3 3 a a a
we checked that =5 is incomplete and =%, =%5=, =5as01

are complete. This implies that

16 __ . . oy
= = 2-7-1; is primitive, because we cannot drop any more factors. Also we checked that
a a a

are incomplete and are complete. We see now

a a a
17-377 17-12977 17-98801 37-12977 37-988017 1297-98801

that —o_ — 61°-1 a__ _ _616-1 a__ _ _6%-1
17:37 — 5.17-37 17-1297 ~ 5-17-1297’ 17-98801 ~ 5.17-98801

are primitive.
We can go on like this for larger values of n.

Example 2.43. A nice example is for ¢ = 4 and n = 20. Then a = 42(;’1 =52.11-17-

31-41-61681. We discover a primitive number 52 - 41 - 61681 which is not square free, thus

disproving a conjecture formulated by the first author in [DH16].

Composite numbers

—a__2_ 144

Lemma 2.44. Let a,b > 1 be odd numbers. Assume that o,(ab) > <= 04(b). Then ab

[SIES) Y

18 not primitive.

Proof. Suppose that ab is primitive. Then a, b are relatively prime with g, because otherwise
ab is not relatively prime with g, so ab cannot be primitive, by Lemma 2.18. By Proposition
2.25, there exists an extreme cycle C' and it is equal to a coset z¢Gy, of the multiplicative
group generated by ¢ in U(Zy,). Consider the map h : Go, — Gy, h(z) = x(mod b). Then h
is a homomorphism and it is onto. Let |Gyl = o04(ab) = Moy(b) = M|Gy|, so that h is an

2

M-to-1 map, where M > M. Then the map 2" : 2¢Gap — (2o(mod b))Gy, B (o) =
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(xox)(modb), is also an M-to-1 map.

So there are exactly M elements in xoG,, which are mapped into zo(modb). These
elements can be written xo(modb) + kb(mod ab) for M different values of k, each in the set
{0,...,a — 1}. Since b is complete (because ab is primitive), using Proposition 2.10, the
coset (xo(mod b))G), contains an element greater than 2;”, and therefore we can assume that

- 2b
Yo := zo(mod b) > =.

From Lemma 2.3, we know that the cycle points are congruent to 0 or —ab modulo g.
So yo + kb = 0 or —ab modulo g for all M values of k such that yy 4+ kb is in the extreme
cycle. Since b is relatively prime with g, it has a multiplicative inverse ¢ in Z;, and we have
that k = —cyo(mod g) or ¢(—ab — yo)(mod g). Therefore, the values of k£ here belong to only
two equivalence classes modulo g, so in each set A, := {gn,gn+1,...,gn+ (¢ — 1)} there
are at most two values of k. So there are at most two values of k£ in Ay, then at most two
values of k in A;, and so on, and we must exhaust M values of k. If M is even, then we have
at most 2(& — 1) = M — 2 values of k in AgU---U A _, and there are still two values of &
left. Therefore, if we take the largest such k, k > g(% — 1)+ 1. If M is odd, then a similar

argument shows that k& > g(21). In both cases, k > g(& — 1) 4+ 1. Then

2b M
kb > — ——1+1)b>

and this contradicts the fact that an extreme cycle is contained in [0, g%bl], by Lemma 2.2. [

Theorem 2.45. Let py,...,p, be distinct odd primes. Fori € {1,...,r}, let j; > 0 be the

largest number such that p* divideslem(o,(py), . .., 04(p,)). Assume that py’ Pt pre(r) i

1s complete. Then p]fl ...pF s complete for any ki, ...k, > 0.

Proof. Suppose there are some numbers ki, ko, ..., k. > 0 such that m = p]fl ...pF is not
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complete. Therefore, a proper divisor of this number has to be primitive, relabeling the
powers k;, we can assume m is primitive. The hypothesis implies that for at least one 4,
ki > 14(pi) + ji + 1. Relabeling again, we can assume k; > ¢,(p1) + j1 + 1. We have, with

Proposition 2.24:

tg(p1)+1 ko

o »
1 ta(P) jlog(pl Po --‘pq]fr)‘

09(plfl . -p]:T) =p

As in Lemma 2.44, let a = pft—oP)=t j — plalp)tin

ph> ... pfr. We will show that ab is
_a__2_ 4
not primitive by showing that a > %ﬂ for all g. Also, since k; > t4(p;) + 7 + 1, let

l:=ky —t4(p1) — j1 > 1. So, we have

no2 1+ 1
1 g g P 2
P> . <:>§’1— 11>g———1
g _
! —1)—2 2 _g—-2 2(g — 1
nlglg-1) -2 g°—g s (9—1)
2(9 - 1) g
Since p; is an odd prime and [ > 1, pt > 2 so it is always true that p! > @. Thus,
o _2_
o4(ab) = aoy(b) > 9’1+1+gog(b), so ab is not primitive by Lemma 2.44. O
2

Lemma 2.46. Let m be incomplete and suppose that all extreme cycles for m have length
og(m). Additionally, suppose that o,(d) < o4(m) for all proper divisors d of m. Then m is

primaitive.

Proof. Suppose to the contrary that m is not primitive. Then m = nk, where n is a primitive
number and k € N. Then, with Proposition 2.25, n has an extreme cycle C of length o4(n).
So kC'is an extreme cycle for m of length o,(n), and since o4(n) < o4(m), this contradicts

that all cycles for m have length o,(m). Thus m is primitive. O
Lemma 2.47. The number of non-trivial cycle points for an odd number m not divisible by
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g — 1 is less than
m
min {2771
=g

[x] represents the ceiling of x, i.e., the smallest integer larger than or equal to x.

Proof. The phrasing in the statement of the lemma, ”"number of non-trivial cycle points,”

refers to the total number of points among all non-trivial cycles.

We know from Lemma 2.2 that the cycle points are contained in the intersection of the

attractor X with Z. Also, X C [0, g%] Therefore,

X, C

-

Gan s+~ Oao |0, %}

ap,a1,...,an—1€{0,m}

- U

a0,a1,...,an—1€{0,m}

g" "(g—1)gn q"

ap+gar + ...+ ¢ " ta,_1 m L +ga; + ...+ g”_lanll

The intervals in this union can be written as

(2.8)

m S kg m(L+ (9 — 1) 3020 leg")
gr (9—1)g"

with lo, ... 1,1 € {0,1}. Because m is not divisible by g — 1 and 1+ (g — 1) 37—, lug" is

prime with g — 1, the right endpoint is never an integer.

There are 2" intervals at each iteration, and each one contains at most [ﬁ} integers

in its interior, so we have at most 2" (ﬁ} in the union. The result follows from this. [

Lemma 2.48. Let a,b > 1 be odd numbers. Assume that o,(ab) > ooz gafl]og(b). Then ab

18 not primitive.
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Proof. Assume that ab is primitive. Take n = [log, ;%J Then ¢g" > -2, so —2

=10 50 Grogr = 0 %0

the length of the intervals in (2.8) is at most b. Since ab is primitive, there is an extreme

cycle C' which is a coset oGy, by Proposition 2.25.

Now, as in the proof of Lemma 2.44, define the map h : 2¢Gu — oGy, xoxr +—>
(zoz)(modb). We saw that this is an M-to-1 map. Note that M = o4(ab)/o,(b) > 2"
There are M cycle points in x¢Gy, = C' which are mapped by h into xg, i.e., there are M
values of k such that xo(mod b)+ kb is in the cycle C. However, the intervals in (2.8) contain
at most one such cycle point, since their length is less than b and the difference between
any two such points is at least . We have 2" < M such intervals, and this leads to a

contradiction. ]

Theorem 2.49. Let m be an odd number. Assume the following conditions are satisfied:

(i) For every proper divisors d|m,d < m, the number d is complete.

(ii) The following inequality holds:

04(m) > m7;1’n {2” (ﬁw }

Then m is complete. If only condition (ii) is satisfied, then m is not primitive.

Proof. Suppose (i) and (ii) hold. Then m is either complete or primitive. If m is primitive,

then by Proposition 2.25 there exists a cycle of length o,(m). Since o,(m) > min,cy {2” {(gf—”f)g"-‘ },

this contradicts Lemma 2.47. Thus m is complete.

Suppose only (ii) holds. By the same argument, m is not primitive. ]
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Corollary 2.50. Let m be an odd number. If
04(m) > oflogs 5751

or in particular, if

then m s not primitive.

Proof. Let n = [log, -*;]. Then g" > 7 so [ | = 1. Furthermore,

(g—1)g™

1

[ gn < glmy gttt g (M)

The rest follows from Theorem 2.49. O]

Corollary 2.51. Let py,...,p, be distinct simple prime numbers strictly larger than g — 1.

Assume the following conditions are satisfied:

(i) For any proper subset F' C {1,...,r} and any powers k; > 0,i € F, the number

[Lcr pfi is complete.
(i) None of the numbers o4(p1), ..., 04(py) is divisible by any of the numbers py,. .., p,.
(iii) The following equation is satisfied:

P1---Pr

lcm(og(pl), s 7Og(pr)) > 2“0gg 9t (29)

Then plfl ...pF s complete.
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Proof. Suppose there exists ki,..., k. such that p'fl ...pF is not complete. Then pick
ki, ..., k. such that >, k; is as small as possible, with this property. Clearly, by (i) we can
assume all k£; > 1. Then all proper divisors of p’fl ...pF are complete, because otherwise we
could have picked smaller Y k;. So m := p’fl ...pkr is primitive. By Propositions 2.21 and
2.23, we have

0g(m) = lem(oy(py"), ..., 0g(pf)) = lem(p}* o4(p1), ..., P o4(p;))

=pi T em(og(pr), - - -, 04(D1)).
From (iii), we get
_ - p1---Pr o -
Pt g em(og(pr)), - . 5 0g(pr)) > 211080 T kTt gt

As in Corollary 2.50, letting n = [log, Bt ], we have g" > Be=b= and [LP5] = 1.

1 (g—1)g™
Then
k k.
2f10gg P;:fr-‘plfl_l y 'pfr_l _ 2np]1€1_1 - 'pﬁr_l _ 2TL|' pl .. -pT‘ ki—1 - ‘pi}r—l 2 2’rL |'p11 .. -pr -|

(g— g 1 (g—1)g"

We used the fact that, for @ > 0 and N € N, [a]|N is an integer greater than or equal to

alN, so it is greater than or equal to [aN].

Thus, we obtain that

k1 Ky
by ---Dy
0g4(m) > 2" [———1.
! (g —1g"
Since m is primitive, this is a contradiction to Theorem 2.49. O]

Corollary 2.52. Let g be a perfect square. Let py,...,p, be distinct simple prime numbers
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strictly larger than g — 1. Assume the following conditions are satisfied:

(1) None of the numbers o4(p1), .. .,04(p,) is divisible by any of the numbers py, ..., p;.
(i1) For any subset {iy,... is} of {1,...,r}, with s > 2 the following inequality holds:

2 1
lem(og(piy ) - - -5 0(piy) > —————— (Piy - - - Py, ) o229 (2.10)
(9 — 1"

Then the number plfl ...pF is complete for any k1 > 0,..., k. > 0.

Proof. We proceed by induction on r. Theorem 2.14 shows that we have the result for
r = 1. Assume the result holds for » — 1 primes. Then, for r primes, by the inductive
hypothesis conditions (i) and (ii) in Corollary 2.51 are satisfied. We check condition (iii).

Let m:=p1...p,.

We have, using Proposition 2.21 in the last equality:

1

ollogy 251 < glogg 25+1 _ o (g%) P < o,(m) = lem(oy(p1), . 0,(pk)). (211

Thus condition (iii) is satisfied and Corollary 2.51 gives us the result. [

Remark 2.53. From Theorem 2.14 we also have that p™ is complete whenever o,(p™) is
even. However, as we saw in Remark 2.15, there are some primes which are not complete,
so condition (i) in Corollary 2.51 is not satisfied in general for an arbitrarily chosen g. This

is why we chose g to be a perfect square.

Corollary 2.54. Let g be a perfect square. Let py,...,p, be distinct simple prime numbers

strictly larger than g — 1. Assume the following conditions are satisfied:
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1) The numbers o,(p1),...,04(pr), D1, ...,pr are mutually prime.
(i) o(P1)s -5 0g(Dr), D1, - yp

(i) The following inequality holds

logg g

0g(p;) > | ——————
(g — 1)%ies

for all j
Then p]fl - pFris complete for any ky > 0,... k. > 0.

Proof. Note first that 2 > (g — 1)@ We use Corollary 2.52. For any subset {i1,...,is} of

{1,...,r} with s > 2, we have

lem(og(pi,), - -+, 04(i,)) = 0g(Diy) - - - 04(pi,) > < %) (Pil---Pis)@

qg— 1)10?;29
2 1
- W (Diy - - pi,) o229 .
g— 0g2 g

]

Corollary 2.55. Let a be a complete odd number. Let p > g — 1 be a simple prime number.

Assume that

(i) p does not divide a
(i1) o4(p) and o4(a) are mutually prime
fii) oy(p) > 2% 77

Then pFa is complete for all k > 0.
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Proof. Since p does not divide a, p* is mutually prime with a. Since p is simple, with

Propositions 2.21 and 2.23, we have

k—1

0g(p*a) = lem(oy(p"), 0y(a)) = p"~ 04(p)og(a).

So then p*~1o,(p) > pr—12M°8 5571 1y hypothesis. Taking the log, of both sides, with & > 2

and p > g+ 1 we get

_ —14[log, -2 - p
logy (p* " 0g(p)) > logy(p* 1210 371 1) = log, p*~* + [log, g1

k

p
11'

> log, p" ' + 1 + [log, g]’%l] > [log, p" '] + [log, g]’%l] > [log,
We used here the fact that
1
log, p*' > log, p" ! +1 = plg < (PF) R0,

which is true, because log, 2 < %, since g > 4 and p > g.

Therefore

k
pk_log(p) > 2118 %]a

for k > 2 and also for k¥ = 1 by hypothesis. By Lemma 2.48, p¥a cannot be primitive, for

k > 1 and because a is complete and p is prime, this means that p*a is complete. O

Example 2.56. Let ¢ = 16. We want to prove that 17% - 19! is complete for any k,l. We
have 016(17) = 2,016(17%) = 34,016(19) = 9, and 014(19%) = 171, so 17 and 19 are both

simple primes. Since g is a perfect square, by Theorem 2.14 , 17% and 19" are complete for
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any k,l. Also,

lem(016(17), 016(19)) = 18 > 210816 5571 — 4,
The result follows from Corollary 2.51.

Example 2.57. Let g = 36. We want to prove that 37% - 43! is complete for any k, . Since g
is a perfect square, 37% is complete for any k by Theorem 2.14. Also, 03(43) = 3, 034(43?) =

129, so 43 is a simple prime, and 034(37) = 2 is mutually prime with 036(43) = 3. In addition,
036(43) =3 > 2[10g36 %] = 27

so the result follows from Corollary 2.55.

The same argument applies to show that 37% - 47!, 37% . 53¢, 37% . 59!, 37% . 67!, 37% . 71!
are complete. We can use this argument also for 47% - 53! - 597, First, note that 47,53 and
59 are simple primes with 035(47) = 23, 036(53) = 13, and 036(59) = 29. Then 47% - 53’ is
complete by Corollary 2.55. By Propositions 2.21 and 2.23, 036(47" - 53%) is relatively prime

with 036(59), so 47% - 53! - 597 is also complete by Corollary 2.55.

Example 2.58. Let g be any even perfect square less than 1000. We will show 907* - 911!
is complete for any k,l. With a computer check, 907,911 are both simple primes for every
even perfect square less than 1000. Moreover, 0,(907) and 0,(911) are relatively prime for

each g. With another computer check, we also have that
0,(907) > 211°% 511 and 0,(911) > 2M1%s o1

for all g, so 907% - 911" is complete by Corollary 2.55.
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