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ABSTRACT

We investigate some relations between number theory and spectral measures related to the

harmonic analysis of a Cantor set. Specifically, we explore ways to determine when an

odd natural number m generates a complete or incomplete Fourier basis for a Cantor-type

measure with scale g.
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1 INTRODUCTION

In [JP98], Jorgensen and Pedersen constructed the first example of a singular fractal measure

on a Cantor set, which has an orthonormal Fourier series. This Cantor set is obtained from

the interval [0, 1], dividing it into four equal intervals and keeping the first and the third,

[0, 1/4] and [1/2, 3/4], and repeating the procedure infinitely many times. The measure µ4

on this Cantor set associates measure 1 to [0, 1], measure 1
2

to [0, 1/4] and [2/4, 3/4], measure

1
4

to the four intervals in the next step of the construction, and so on. It is the Hausdorff

measure of dimension 1
2

on this Cantor set, and it is also the invariant measure of the iterated

function system τ0(x) = x/4, τ2(x) = (x+ 2)/4 (see [Hut81] or [JP98] for details).

Jorgensen and Pedersen proved the surprising result that the Hilbert space L2(µ4) has

an orthonormal basis formed with exponential functions, i.e., a Fourier basis, E(Γ0) :=

{e2πiλx : λ ∈ Γ0} where

Γ0 :=

{
n∑
k=0

4klk : lk ∈ {0, 1}, n ∈ N

}
. (1.1)

A set Λ in R is called a spectrum for a Borel probability measure µ on R if the corre-

sponding exponential functions {e2πiλx : λ ∈ Λ} form an orthonormal basis for L2(µ).

Jorgensen and Pedersen’s example opened up a new area of research and many other

examples of singular measures which admit orthonormal Fourier series have been constructed

since, see e.g., [Str00,  LW02, DJ06, DJ07, DHL13, Li07].

In [DJ12], it was proved also that the set 5kΓ0 is a spectrum for the measure µ4, for

any k ∈ N. This means that the operator on L2(µ4) which maps e2πiλx into e2πi5
kλx is
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actually unitary, for all k, which means that there are some hidden symmetries, a certain

scaling by 5 in the geometry of this Cantor set. These operators were further investigated

in [JKS12, JKS14a, JKS14b].

Later, Dutkay and Haussermann [DH16] studied for what digits {0,m}, with m odd,

the set

Γ(m) := mΓ0 =

{
n∑
k=0

4klk : lk ∈ {0,m}, n ∈ N

}

is a spectrum for L2(µ4). Among other things, they proved that, for any prime number

p > 3, the set pkΓ0 is a spectrum for µ4, and there are some interesting number theoretic

considerations that are required to solve this problem.

This thesis generalizes the results of Dutkay and Haussermann in [DH16]. In the intro-

duction, we formulate the question that we wish to answer and provide some background to

present the question in context. We also show that this question is equivalent to a purely

number theoretical question. In the main results chapter, we first provide some preliminary

proofs to build the tools needed to analyze the question. In the remaining sections, we

answer the question for specific cases and discuss techniques to approach the question in

general.

Consider the iterated function system generated by a scale g, with g even, and the digits

B = {0, g
2
},

τ0(x) =
x

g
, τg/2(x) =

x+ g/2

g
.

Let µ be the invariant measure for this iterated function system. This is the unique Borel

probability measure on R which satisfies the invariance equation

µ(E) =
1

2

(
µ(τ−10 (E)) + µ(τ−1g/2(E))

)
, for all Borel sets E,
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(see [Hut81]).

The measure µ is supported as the Cantor-type set XB, which is the attractor of the

iterated function system (τ0, τg/2), i.e., the unique compact subset of R with the property

XB = τ0(XB) ∪ τg/2(XB),

or, equivalently

XB =

{
∞∑
j=1

g−jbj : bj ∈ {0, g/2} for all j

}
.

The measure µ is also the Hausdorff measure on this Cantor set of dimension logg 2, which

means that

µ(τ0(XB)) = µ(τg/2(XB)) = 1/2,

µ(τ0τ0(XB)) = 1/4

and so on.

We want to find the answer to the following question:

Question 1.1. For what digits {0,m} is the set

Γ(m) := mΓ(1) =

{
n∑
k=0

gklk : lk ∈ {0,m}, n ∈ N

}
(1.2)

a spectrum for L2(µ)?

As in [DJ06], we look for Hadamard triples of the form (R,B,L) with L = {0,m}. That

means that the matrix

1√
2

(
e2πi

bl
R

)
b∈B,l∈L
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is unitary, so e2πi
(g/2)·m

g = −1. This means that m is odd.

It was shown [DJ06] that the numbers m that give spectra can be characterized in

terms of extreme cycles, i.e., we want to find the even integers g for which there exist

l0, . . . , lr−1 ∈ {0,m}, not all equal to 0, such that

x1 =
x0 + l0
g

, x2 =
x1 + l1
g

, . . . , xr−1 =
xr−2 + lr−2

g
, x0 =

xr−1 + lr−1
g

, (1.3)

and ∣∣∣∣1 + e2πi
g
2
xk

2

∣∣∣∣ = 1, (k ∈ {0, . . . , r − 1}) (1.4)

where the finite set {x0, x1, . . . , xr−1} is the extreme cycle for {0,m}, and xi are the extreme

cycle points. If such an extreme cycle exists, then the set of exponential functions corre-

sponding to Γ(m) is incomplete but orthonormal. If no such extreme cycle exists, then the

set of exponential functions corresponding to Γ(m) is an orthonormal basis, i.e., Γ(m) is a

spectrum.

We note that points x0, . . . , xr−1 have to be integers. Indeed, equation (1.4) implies

that xi = ki
g/2

, for some k ∈ Z. Assume that k0 is not divisible by g/2. We have

k0
g/2

+ l0

g
=
x0 + l0
g

= x1 =
k1
g/2

for some integer l.

Then k0
g/2

= 2k1 − l0 so k has to be divisible by g/2, contradiction. Thus, x0 is in Z so

all the points in the extreme cycle have to be integers.

Hence, Question 1.1 becomes a purely number theoretical question:
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Question 1.2. Given an even number g ≥ 4, for what odd numbers m ≥ 1, are there non-

trivial extreme cycles, i.e., finite sets C = {x0, . . . , xr−1} of integers and digits l0, . . . , lr−1 ∈

{0,m} such that

x1 =
x0 + l0
g

, x2 =
x1 + l1
g

, . . . , xr−1 =
xr−2 + lr−2

g
, x0 =

xr−1 + lr−1
g

?

The extreme cycle {0} corresponding to the digit 0, is called the trivial extreme cycle.

Definition 1.3. We say that m is complete if the only extreme cycle for the digit set {0,m}

is the trivial one {0}. Otherwise, m is incomplete. In the paper, when we refer to an extreme

cycle, we will assume it is not trivial.

As we mentioned above, if m is complete then the set Γ(m) in (1.2) is a complete

orthonormal basis, and if m is incomplete then Γ(m) is an incomplete orthonormal set in

L2(µ) (see [DJ06]).
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2 MAIN RESULTS

For the rest of the paper, g will be an even integer such that g ≥ 4 and m will be an odd

integer such that m ≥ 1.

Some preliminary lemmas

Definition 2.1. Let m ∈ N be an odd number. We say that a finite set {x0, x1, . . . , xr−1}

is an extreme cycle (for the digits {0,m}) if there exist l0, . . . , lr−1 ∈ {0,m} such that

x1 =
x0 + l0
g

, x2 =
x1 + l1
g

, . . . xr−1 =
xr−2 + lr−2

g
, x0 =

xr−1 + lr−1
g

, (2.1)

and ∣∣∣∣1 + e2πi
g
2
xk

2

∣∣∣∣ = 1, (k ∈ {0, . . . , r − 1}). (2.2)

Lemma 2.2. If x0 ∈ Z is an extreme cycle point with digits l0, . . . , lr−1 as in (2.1), then x0

has a periodic base g ∈ N expansion,

x0 =
lr−1
g

+
lr−2
g2

+ · · ·+ l0
gr

+
lr−1
gr+1

+ · · ·+ l0
g2r

+ . . . , (2.3)

and 0 < x0 ≤ m
g−1 . We write this as x0 = .lr−1lr−2 . . . l1l0, the underline indicates the infinite

repetition of the digits lr−1 . . . l0 in the base g expansion of x0.

Hence

x0 =
gr−1lr−1 + gr−2lr−2 + · · ·+ gl1 + l0

gr − 1
.
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Moreover,

{x0 : x0 is an extreme cycle point } = XL ∩ Z,

where XL is the attractor of the iterated function system

σ0(x) =
x

g
, σm(x) =

x+m

g
,

so

XL = ∪l∈{0,m}σl(XL),

XL =

{
∞∑
n=1

ln
gn

: ln ∈ {0,m} for all n ∈ N

}
. (2.4)

Proof. Let the finite set {x0, x1, . . . , xr−1} be an extreme cycle for digits {0,m}. Then there

exist l0, . . . , lr−1 ∈ {0,m} such that

x1 =
x0 + l0
g

, x2 =
x1 + l1
g

, . . . , xr−1 =
xr−2 + lr−2

g
, x0 =

xr−1 + lr−1
g

.

Therefore,

x0 =
xr−1
g

+
lr−1
g

=
xr−2
g2

+
lr−2
g2

+
lr−1
g

= · · · = x0
gr

+
l0
gr

+
l1
gr−1

+ · · ·+ lr−1
g
.

Iterating this equality to infinity, we obtain the base g decomposition of x0.

Also, since 1
gk
< 1 for all g and k, we have by the sum of a geometric series that

0 < x0 ≤
∞∑
k=1

m

gk
=

m

g − 1
.

From above, we know that x0 ∈ Z. Therefore, x0 is contained in XL ∩Z. Conversely, if

7



x0 ∈ XL ∩ Z then, if x0 ∈ σ0(XL), we have that there exists x−1 ∈ XL such that x0 = x−1

g
,

and we get that x−1 = gx0 ∈ Z ∩ XL. If x0 ∈ σm(XL) then there exists x−1 ∈ XL such

that x0 = x−1+m
g

. Then x−1 = gx0 −m ≡ x0(modm). By induction, we obtain x−1, x−2 . . .

in XL ∩ Z and digits d0, d1, . . . in {0,m} such that x−i = x−i−1+di
g

. Since the set XL ∩ Z is

finite it follows that there exists k and p, k < p, such that x−k = x−p. That means that

{x−k, x−k−1, . . . , x−p} form a cycle. We will show that actually we can start the cycle with

x0.

We have that x−k+dk−1

g
= x−k+1 ∈ Z. Also x−k+dp−1

g
= x−p+dp−1

g
= x−p+1 ∈ Z. This

means that dk−1− dp−1 is divisible by g, and since the only digits we use are 0 and m and m

(odd) is not divisible by g (even), it follows that dk−1 = dp−1 and therefore x−k+1 = x−p+1.

By induction, we get that x0 must be in the same cycle.

Lemma 2.3. Assume m is odd and xj is an extreme cycle point for the digit set {0,m}.

Then xj ≡ 0(mod g) or xj ≡ −m(mod g).

Proof. From the relation between cycle points, we have that xj+1 =
xj+lj
g

where lj ∈ {0,m}.

Then gxj+1 = xj + lj. If lj is 0, we get that gxj+1 = xj. Otherwise, if lj is m, we get that

gxj+1 = xj +m. Considering these modulo g, we have 0 ≡ xj +m(mod g) or 0 ≡ xj(mod g).

Thus xj ≡ −m(mod g) or xj ≡ 0(mod g).

Lemma 2.4. Let m be an odd number not divisible by g−1 and let xt be the largest extreme

cycle point in the extreme cycle X for the digit set {0,m}. Then xt is divisible by g.

Proof. Assume by contradiction that xt is not divisible by g. Then, we know that the next
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cycle point is

xt+1 =
xt +m

g
.

Since xt is the largest cycle point in this cycle, we have that xt+m
g
≤ xt. If xt+m

g
= xt,

then xt = m
g−1 . Therefore, m is divisible by g − 1, a contradiction. Otherwise, if xt+m

g
< xt,

we get that xt >
m
g−1 , which contradicts Lemma 2.2.

Lemma 2.5. If m = g − 1, then the set {1} is an extreme cycle for the digits {0,m}.

Proof. Let m = g − 1 and x0 = 1. We get that x1 = x0+m
g

= 1+g−1
g

= 1. Since x1 = x0, {1}

is an extreme cycle for the digit g − 1.

Lemma 2.6. If m is incomplete, then any odd multiple of m is also incomplete.

Proof. The number m is complete if and only if the only extreme cycle for the digit set

{0,m} is the trivial cycle {0}. Suppose that m is incomplete. Then m has the non-trivial

extreme cycle {x0, x1, ..., xr−1} with l0, . . . , lr−1 ∈ {0,m}, where

x1 =
x0 + l0
g

, x2 =
x1 + l1
g

, . . . , xr−1 =
xr−2 + lr−2

g
, x0 =

xr−1 + lr−1
g

.

Consider the extreme cycles for the digit set {0, km}, where k is an odd number. Multiplying

the previous expression by k, we get that

kx1 =
kx0 + kl0

g
, kx2 =

kx1 + kl1
g

, . . . , kxr−1 =
kxr−2 + klr−2

g
, kx0 =

kxr−1 + klr−1
g

,

which is an extreme cycle for the digit km.

Lemma 2.7. All of the odd numbers between 1 and g − 2 are complete.
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Proof. Let m be an odd number, 1 ≤ m ≤ g − 2. Suppose m is incomplete. By Lemma 2.2,

the set (0, m
g−1 ]∩Z ⊃ XL ∩Z contains a cycle point, so it is non-empty. But m

g−1 < 1, so the

interval (0, m
g−1 ] cannot contain any integers, a contradiction.

Lemma 2.8. Let x0 be a cycle point, i.e., it has the form in (2.1). Suppose x0 is an integer.

Then x0 is an extreme cycle point. In other words, all of the other points in the cycle are

also integers.

Proof. Suppose that {x0, x1, ..., xn} is a cycle for {0,m}, ln ∈ {0,m}, and that x0 ∈ Z. Since

x0 is a cycle point, we know that x0 = xn+ln
g

. Then xn = x0g − ln, so xn ∈ Z. By induction,

all points in the cycle are integers. Since all of the points are integers,

∣∣∣∣1 + e2πi
g
2
xk

2

∣∣∣∣ = 1, (k ∈ {0, . . . , r − 1}),

so the conditions for an extreme cycle are satisfied.

Definition 2.9. Let m be an odd natural number. We will denote by Zm the finite ring of

integers modulo m. We denote by U(Zm) the multiplicative group of elements in Zm that

have a multiplicative inverse, i.e., the elements in Zm which are relatively prime with m.

For a ∈ U(Zm), we denote by oa(m) the order of the element a in the group U(Zm). We

also say that m has order oa(m) (with respect to a). We denote by Gm,g (or Gm) the group

generated by g in U(Zm), that is Gm,g = {gj(modm) : j = 0, 1, . . . }.

Proposition 2.10. Assume m > g− 1 is odd. If a coset C for the subgroup Gm,g of U(Zm)

has the property that for all xj ∈ C, xj <
2m
g

, then C is an extreme cycle for the digit set

{0,m}.

Proof. Let C be such a coset. Label the elements in C such that xj ≡ gxj+1(modm), and if a

is the number of elements in Gm,g, then xa−1 ≡ gx0(modm). Then, since 0 < xj+1 <
2m
g

, we
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have that 0 < gxj+1 < 2m. Now, since xj ≡ gxj+1(modm), we have that xj = gxj+1 + km,

where k ∈ Z. Consider the following possibilities for the value of k.

If k > 0, then xj = gxj+1 + km > m > 2m
g

, a contradiction.

If k ≤ −2, then xj ≤ gxj+1 − 2m =⇒ xj ≤ 0, a contradiction.

So, k ∈ {0,−1}, and it follows that, xj = gxj+1 − km for k ∈ {0, 1}, and similarly for

x0 and xa−1. Rearranging, we find that

xj + lj
g

= xj+1

for lj ∈ {0,m}, and similarly for x0 and xa−1. Since C contains only integers, C is an extreme

cycle.

Some complete numbers

Theorem 2.11. Let m > g−1 be an odd number not divisible by g−1. If any of the numbers

−1(modm),−2(modm), . . . ,−g+2(modm) or 2(modm), 3(modm), . . . , g−1(modm) are

in Gm,g, then m is complete.

Proof. Assume by contradiction that m is incomplete. Then there is a non-trivial extreme

cycle C = {x0, . . . , xr−1} for the digit set {0,m}. From the relation between the cycle points,

xj+1 =
xj + lj
g

,
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where lj ∈ {0,m}. We have that gxj+1 ≡ xj(modm). Thus,

gr−kx0 ≡ xk(modm), with k ∈ {0, . . . , r}, xr := x0.

So, for all k ∈ N, the number gkx0 is congruent modulo m with an element of the extreme

cycle C. If, as in the hypothesis, there is a number c ∈ {−1,−2, . . . ,−g + 2} in Gm,g such

that the number cx0 is congruent modulo m with an element in C, and since x0 is arbitrary

in the cycle, we get that cxj is congruent to an element in C for any j.

In the following arguments, we use the fact that since m is not divisible by g − 1, the

condition on cycle points 0 < xj ≤ m
g−1 implies 0 < xj <

m
g−1 .

If c ∈ {−1,−2, . . . ,−g + 2}, since 0 < x0 <
m
g−1 , we have 0 > cx0 > −m so

cx0(modm) = m+ cx0 > m+ c
m

g − 1
=
m(g + c− 1)

g − 1
≥ m

g − 1
,

a contradiction with the fact that cx0(modm) is a cycle point.

For the second set {2, 3, . . . , g − 1}, by a similar argument, we have that for some c in

this set, cxj(modm) ∈ C for all j. Let xN be the largest element of the extreme cycle. Since

0 < xN < m
g−1 , we get that 0 < cxN < m, so cxN(modm) = cxN > xN , a contradiction to

the maximality of xN .

Theorem 2.12. Let m > g(g − 1) be an odd number not divisible by g − 1. If any of the

numbers g+1(modm), g+2(modm), . . . , or g(g−1)(modm) is in Gm,g, then m is complete.

Proof. Assume by contradiction that m is incomplete. Then there is a non-trivial extreme

cycle C = {x0, . . . , xr−1} for the digit set {0,m}. As in the proof of Theorem 2.11, for all

k ∈ N, the number gkx0 is congruent modulo m with an element of the extreme cycle C.
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But then, the hypothesis implies that there is a number c ∈ {g + 1, g + 2, . . . , g(g − 1)} in

Gm,g such that the number cx0 is congruent modulo m with an element in C, and since x0

is arbitrary in the cycle, we get that cxj is congruent to an element in C for any j.

In the following arguments, we use the fact that since m is not divisible by g − 1, the

condition on the cycle points 0 < xj ≤ m
g−1 implies 0 < xj <

m
g−1 . Let xt be the largest

element in the extreme cycle. We have

0 < xt <
m

g − 1
.

By Lemma 2.4, xt is divisible by g. Therefore, dividing by g, we get the next element in the

extreme cycle, called xN , and we have

xN <
m

g(g − 1)
.

For c ∈ {g+ 1, g+ 2, . . . , g(g−1)}, we get that xt = gxN < cxN < m, so cxN(modm) = cxN

is a point in C bigger than xt, a contradiction to the maximality of xt.

Corollary 2.13. For n ≥ 1, the numbers gn + 1, gn + 3, . . . , gn + (g − 1) are complete. For

n ≥ 2, the numbers gn − 3, gn − 5, . . . , gn − (g − 1) are complete. For n ≥ 3, the numbers

gn − (g + 1), gn − (g + 3), . . . , gn − (g(g − 1)− 1) are complete.

Proof. Let n ≥ 1 and m = gn + 1. Since g ≡ 1(mod(g − 1)) we have gn ≡ 1(mod(g − 1)),

so gn + 1 ≡ 2(mod(g − 1)) so m is not divisible by g − 1. Also gn ≡ −1(modm). Since

gn ∈ Gm,g, we have that −1 ∈ Gm,g. By Theorem 2.11, m is complete. Similarly for

gn + 3, gn + 5, . . . , gn + (g − 1).

Let n ≥ 2 and m = gn− 3. Then gn− 3 ≡ −2 ≡ g− 3(mod(g− 1)) so m is not divisible
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by g − 1. Also, gn ≡ 3(modm). Since gn ∈ Gm,g, we have that 3 ∈ Gm,g. By Theorem 2.11,

m is complete. Similarly for gn − 5, gn − 7, . . . , gn − (g − 1).

Let n ≥ 3 and m = gn−(g+1). Then gn−(g+1) ≡ −g(mod(g−1)) so m is not divisible

by g − 1. Also gn ≡ (g + 1)(modm). Since gn ∈ Gm,g, we have that (g + 1) ∈ Gm,g. By

Theorem 2.12, m is complete. Similarly for gn−(g+3), gn−(g+5), . . . , gn−(g(g−1)−1).

Theorem 2.14. If p is a prime number, p > g−1, and n ∈ N, then pn is complete whenever

the order of g, og(p) is even. Otherwise, pn is complete provided that g is a perfect square.

Proof. If og(p) is even, then og(p
n) is even for all n ≥ 1, see Proposition 2.23 below. Since p

is prime and greater than g − 1, we have that p and g are relatively prime. It is well known

that the equation x2 ≡ b(mod pn) has zero or two solutions. Let a := og(p
n). If a is even,

then we have (g
a
2 )2 ≡ 1(mod pn) so (g

a
2 ) ≡ ±1(mod pn). Since (g

a
2 ) 6= 1(mod pn), we get that

(g
a
2 ) ≡ −1(mod pn). The result follows from Theorem 2.11. If g is a perfect square and a is

odd, then (g
a+1
2 )2 ≡ g(mod pn). Therefore (g

a+1
2 ) ≡ ±√g(mod pn). If g is a perfect square,

√
g or −√g is in Gm,g and the result again follows from Theorem 2.11.

Remark 2.15. There are prime numbers which are not complete. Consider g = 6 and the

prime number p = 55987. Then 67 ≡ 1(mod 55987), so the order of 6 in Z×p , o6(55987) = 7

is odd. An extreme cycle for this digit set is

{311, 9383, 10895, 11147, 11189, 11196, 1866},

so we see that p is incomplete.
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Primitive numbers

Definition 2.16. We say that an odd number m is primitive if m is incomplete and, for all

proper divisors d of m, d is complete. In other words, there exist non-trivial extreme cycles

for the digits {0,m} and there are no non-trivial extreme cycles for the digits {0, d} for any

proper divisor d of m. We say that a primitive number m is non-trivial if m 6= g − 1.

Corollary 2.17. A number m is incomplete if and only if it is divisible by a primitive

number.

Proof. Suppose that m is incomplete. Then either m is primitive, and hence divisible by a

primitive number, or m is not primitive. If m is incomplete and not primitive, then a proper

divisor d of m must be incomplete. Similarly, either d is primitive, or a proper divisor of d

is incomplete. Continuing this process until we run out of proper divisors, we find that a

proper divisor of m must be primitive.

On the other hand, suppose that m is divisible by a primitive number p. Since p is

incomplete, by Lemma 2.6, all odd multiples of p are also incomplete, so m is incomplete.

Lemma 2.18. If m is a primitive number for g, then m and g are relatively prime.

Proof. Suppose that m is a primitive number and that gcd(m, g) = d, with d > 1. We know

by Lemma 2.2 that there is an extreme cycle point in Z, x0 = gr−1lr−1+gr−2lr−2+···+gl1+l0
gr−1 , with

lk ∈ {0,m}. Since each lk is either 0 or m, where m is divisible by d, and since gr − 1 is

not divisible by any of the prime factors of d, we have that x0 is also divisible by d. Since

the other extreme cycle points in Z also have a periodic base g expansion as in Lemma 2.2,

we have that the entire cycle is divisible by d. Dividing the cycle by d, we get that x0/d
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is an extreme cycle point for {0,m/d}. But m/d is complete, because m is primitive, a

contradiction. Thus m and g are relatively prime.

Theorem 2.19. There are infinitely many primitive numbers for every g.

Proof. Suppose there are only finitely many primitive numbers and let m1, . . . ,ms be the

ones bigger than g − 1. By Lemma 2.18, the numbers mi are relatively prime with g so the

order og(mi) of g in U(Zmi
) is well defined. Let n be a common multiple of og((g − 1)2),

og(m1), . . . , og(ms), larger than g − 1.

Then gn+1−1 ≡ g−1 mod((g−1)2,m1, . . . ,ms). Let m = gn+1−1
g−1 . This is an odd number.

We have that m is not divisible by g − 1,m1, . . . or ms, otherwise gn+1 − 1 is divisible by

(g − 1)2, m1, . . . or ms. Consider the cycle point x0 with digits l0 = m, . . . , lg−2 = m, lg−1 =

0, . . . , ln = 0, as in Lemma 2.2. Then

x0 =
m(1 + g + · · ·+ gg−2)

gn+1 − 1
=

1 + g + · · ·+ gg−2

g − 1

But g ≡ 1(mod(g − 1)) so 1 + g + · · ·+ gg−2 ≡ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
g − 1 times

≡ g − 1 ≡ 0(mod(g − 1)). So

x0 ∈ Z. With Lemma 2.8, it follows that m is incomplete, so it is divisible by a primitive

number, contradiction.

Properties of the order of a number

Definition 2.20. For a prime number p ≥ 3, we denote by ιg(p) the largest number l such

that og(p
l) = og(p). We say that p is simple if og(p) < og(p

2), i.e., ιg(p) = 1.
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Proposition 2.21. Let m and n be relatively prime odd integers. Then

og(mn) = lcm(og(m), og(n)).

Proof. We have that a = og(mn) is the smallest integer such that ga ≡ 1(modmn). So a is

the smallest integer such that ga ≡ 1(modm) and ga ≡ 1(modn). This means that a is the

smallest integer that is divisible by og(m) and og(n), so it is the lowest common multiple of

these two numbers.

Lemma 2.22. Let p be an odd prime number relatively prime with g. Then og(p
l) ≤ og(p

l+1).

Proof. Suppose to the contrary that og(p
l) > og(p

l+1). Let a = og(p
l) and b = og(p

l+1), with

a > b. Then we have that ga ≡ 1(mod pl) and gb ≡ 1(mod pl+1), so pl|(ga−1) and pl+1|(gb−1).

Since pl+1|(gb − 1), we also have that pl|(gb − 1). Thus gb ≡ 1(mod pl), which means that a

divides b. This contradicts the fact that a > b, so we have that og(p
l) ≤ og(p

l+1).

Proposition 2.23. Let p be an odd prime number relatively prime with g. Then og(p
k) =

og(p) for k ≤ ιg(p) and og(p
k) = pk−ιg(p)og(p) for all k ≥ ιg(p).

Proof. For k ≤ ιg(p), the statement follows from Lemma 2.22. Assume by induction that

for k ≥ ιg(p), ak := og(p
k) = pk−ιg(p)og(p) and og(p

k) < og(p
k+1). Then there exists q not

divisible by p such that gak = 1 + qpk. Raise this to power p using the binomial formula:

gpak = 1 + p · qpk + q′pk+2,

for some integer q′. This implies that ak+1 = og(p
k+1) divides pak, and also that pak is

not og(p
k+2). Since gak+1 ≡ 1(mod pk+1) we have also that gak+1 ≡ 1(mod pk) so ak divides

ak+1. Thus ak+1 is a number that divides pak and is divisible by ak, and by the induction
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hypothesis ak+1 > ak. Thus ak+1 = pak = pk+1−ιg(p)og(p). Also, og(p
k+1) = pak 6= og(p

k+2)

so og(p
k+1) < og(p

k+2). Using induction we obtain the result.

Proposition 2.24. Let p1, . . . , pr be distinct odd primes relatively prime with g and k1, . . . , kr ≥

0. For i ∈ {1, . . . , r}, let ji ≥ 0 be the largest integer such that pjii divides lcm(og(p1), . . . , og(pr)).

Then

og(p
k1
1 . . . pkrr ) =

(
r∏
i=1

p
max{ki−ji−ιg(pi),0}
i

)
lcm(og(p1), . . . , og(pr)). (2.5)

Proof. We have that og(p
k1
1 . . . pkrr ) = lcm(og(p

k1
1 ), . . . , og(p

kr
r )) by Proposition 2.21. By

Proposition 2.23,

og(p
k1
1 . . . pkrr ) = lcm

(
p
max{ki−ιg(pi),0}
i og(pi); i ∈ {1, . . . , r}

)
.

If ki − ιg(pi) ≤ ji, then p
max{ki−ιg(pi),0}
i already divides lcm(og(p1), . . . , og(pr)) so it does not

contribute to the right-hand side. If ki − ιg(pi) > ji, then p
max{ki−ιg(pi),0}
i contributes with

p
ki−ιg(pi)−ji
i to the right-hand side. Then (2.5) follows.

Proposition 2.25. Let m be a primitive number and let C = {x0, . . . , xp−1} be an extreme

cycle. Then:

(i) Every element of the cycle xi is mutually prime with m.

(ii) The length p of the cycle is equal to og(m).

(iii) The extreme cycle C is a coset of the group Gm,g in U(Zm), C = x0Gm,g.

(iv) The number m is primitive if and only if it is incomplete and gcd(C) = 1 for all

extreme cycles C.
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Proof. For (i), suppose x0 and m have a common divisor d > 1. Then, since x1 = x0+l0
g

we

have that gx1 is divisible by d. From Lemma 2.18, we have that g and m are relatively prime

because m is primitive, so d must divide x1. By induction d divides all the elements of the

cycle. But then {x0
d
, x1
d
, . . . , xp−1

d
} is an extreme cycle for the digits {0, m

d
}. This contradicts

that m is primitive.

For (ii), we have gjxi ≡ x(i−j)(mod p)(modm) for all i, j ∈ {0, . . . , p − 1}. Therefore

gpx0 ≡ x0(modm). Since x0 is in U(Zm), we get that gp ≡ 1(modm), so p is divisible

by og(m) =: a. Also, we have x0 ≡ gax0 ≡ x−a(mod p)(modm) so, since all the elements

of the cycle are in [0, m
g−1 ] we get that x0 = x−a(mod p). Therefore a is divisible by p. Thus

p = a = og(m).

For (iii), since the length of the cycle is og(m) which is the order of the group G, and

since gjx0(modm) = x−j(mod p), we get that x0Gm,g = C.

For (iv), suppose that k = gcd(C) > 1. Then, one of the digits for the cycle is m, we can

assume it is the first one, therefore we have x0 + m = gx1, which implies that k divides m.

Thus {xi
k

: i = 0, 1, . . . , p−1} is a cycle for m
k

, contradicting that m is primitive. Conversely,

suppose that m is not primitive. Then there exists a primitive number p such that m = pk,

k ∈ N. Then p has an extreme cycle C. So kC is an extreme cycle for m, but gcd(kC) ≥ k,

a contradiction.
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The order and possible cycles

Theorem 2.26. The only primitive number of order 1 is g − 1. There are no primitive

numbers of order 2 or 3. If g−1 is not divisible by 3, then there are no primitive numbers of

order 4 or of order 5. If g − 1 is divisible by 3, then there exists a unique primitive number

of order 4, namely m = g4−1
3

, and there exists a unique primitive number of order 5, namely

g5−1
3

.

Proof. The first statement is clear from Lemma 2.5 and Lemma 2.7.

Suppose m is a primitive number of order 2. Then, by Proposition 2.25, there exists an

extreme cycle of length 2. The only possible digits l0l1 as in Definition 2.1 that correspond

to a cycle of length 2, up to a cyclical permutation, are m0, since the other possibilities 00

and mm correspond to the trivial cycle {0} and the cycle {1} respectively, which both have

length 1. Then, by Lemma 2.2, the cycle point is x0 = m
g2−1 ∈ Z. This implies that m is

divisible by the primitive number g − 1, which has order 1, a contradiction.

Suppose now m is a primitive number of order 3. Then it has an extreme cycle of length

3. The digits corresponding to such a cycle can be 000, 00m, 0m0, m00, 0mm, mm0, m0m,

and mmm. The digits 000 correspond to the trivial cycle {0}. The digits mmm correspond

to a cycle of length 1, not 3. The digits 00m, 0m0 and m00 correspond to three points in the

same extreme cycle, and if one sequence appears then the other two appear too, therefore

we can consider just one of them, e.g, m00. Same for 0mm, m0m, mm0, we can consider

just mm0.

Thus, up to a cyclical permutation, the only possible digits for such a cycle are, m00

or mm0. In the first case, the cycle point is x0 = m
g3−1 , and then m is divisible by g − 1, a
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contradiction. In the second case, the cycle point is x0 = m(g+1)
(g−1)(g2+g+1)

. But g − 1 and g + 1

are mutually prime (since g is even), so m is divisible by g − 1, a contradiction.

Suppose m is a primitive number of order 4. Then it has an extreme cycle of length 4.

The digits for such a cycle up to a cyclical permutation, can only be m000, mm00 or mmm0.

In the first case, the cycle point is x0 = m
g4−1 , so m is divisible by g − 1, a contradiction. In

the second case, the cycle point is x0 = m(g+1)
g4−1 . Since g − 1 and g + 1 are mutually prime,

it follows that m is divisible by g − 1, a contradiction. In the last case, the cycle point is

x0 = m(1+g+g2)
g4−1 = m(1+g+g2)

(g−1)(g+1)(g2+1)
. In the following arguments, we make use of that fact that

if a prime number divides a and b, then it divides any integral linear combinations of a and

b. If a prime number p divides both 1 + g + g2 and g + 1, then it has to divide g2, so it

divides g and g + 1, so it divides 1. Therefore 1 + g + g2 and g + 1 are mutually prime, so

m is divisible by g + 1. If a prime number divides both 1 + g + g2 and g2 + 1, then it must

divide g, so it divides 1, so 1 + g + g2 and g2 + 1 are mutually prime and therefore m is

divisible by g2 + 1. If a prime number p divides both g2 + g + 1 and g − 1, then it divides

g2 − 2g + 1, so it divides 3g. Then, either p = 3 or p divides g. If p divides g then it divides

1. Thus the only common divisor of g− 1 and g2 + g+ 1 can be 3. If g− 1 is not divisible by

3, then 1 + g + g2 and g − 1 are mutually prime, so m is divisible by g − 1, a contradiction.

If g− 1 is divisible by 3, then g = 3k+ 1 for some k ∈ Z, and so 1 + g+ g2 = 3(1 + 3k+ 3k2).

This means that 1 + g + g2 is not divisible by 9, and therefore the greatest common divisor

of 1 + g + g2 and g − 1 is 3. Then m has to be divisible by g−1
3
× (g + 1)× (g2 + 1) = g4−1

3
.

Note that the number g4−1
3

is incomplete since it has an extreme cycle point with digits

mmm0. If it is not primitive, then there is a primitive number m which divides it. Then

m divides g4 − 1, so g4 ≡ 1(modm) and therefore og(m) divides 4, hence the order of m is

either 1,2 or 4. We ruled out the first two cases. If the the order of m is 4, then from the

discussion above, it follows that m is divisible by g4−1
3

. So m = g4−1
3

.
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Suppose now m is a primitive number of order 5. Then it has an extreme cycle of length

5. The digits for such a cycle, up to a cyclical permutation, can only be: m0000, mm000,

m0m00, mmm00, mm0m0, mmmm0.

For m0000, the cycle point is x0 = m
g5−1 , so m is divisible by g − 1, a contradiction.

For mm000, the cycle point is x0 = m(1+g)
g5−1 . Since g − 1 and g + 1 are mutually prime,

it follows that m is divisible by g − 1, a contradiction.

For m0m00, the cycle point is x0 = m(1+g2)
g5−1 . If a prime number divides both 1 + g2 and

g − 1, then it divides g2 − 2g + 1, so it divides 2g, so it divides g, so it divides 1. Therefore

g − 1 and 1 + g2 are mutually prime, so m is divisible by g − 1, a contradiction.

For mmm00, the cycle point is x0 = m(1+g+g2)
g5−1 . If a prime number p divides both

1 + g + g2 and g − 1, then as in the discussion for the case of order 4, we get that p = 3

and g − 1 has to be divisible by 3 and gcd(1 + g + g2, g − 1) = 3. Also, if a prime number

divides both 1 + g + g2 and 1 + g + g2 + g3 + g4, then it divides g3(g + 1) so it either

divides g or it divides g + 1. If it divides g then it divides 1, and if it divides g + 1 then

it divides g2, so it divides g, so it divides 1. Thus, 1 + g + g2 and 1 + g + g2 + g3 + g4 are

mutually prime, and therefore m is divisible by 1 + g + g2 + g3 + g4. Hence, m is divisible

by g−1
3
× (1 + g + · · ·+ g4) = g5−1

3
.

For mm0m0, the cycle point is x0 = m(1+g+g3)
g5−1 . If a prime number p divides both

1 + g+ g3 and g− 1, then it divides g3− g2 so it divides 1 + g+ g2, then as before, p = 3 and

g − 1 is divisible by 3. We prove that gcd(1 + g + g3, g − 1) = 3. As we saw, the only prime

number that divides both 1 + g+ g3 and g− 1 is 3, so we only have to show that 9 does not

divide both numbers. Let g = 3k + 1 with k ∈ Z. Then 1 + g + g3 = 3(1 + 4k + 9k2 + 9k3).

If 9 divides 1 + g + g3, then 3 divides 1 + k, so k = 3l + 2 for some l ∈ Z. But then
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g − 1 = 3(3l + 2) = 9k + 6 is not divisible by 9. Thus, gcd(1 + g + g3, g − 1) = 3.

If a prime number divides both 1 + g + g3 and 1 + g + g2 + g3 + g4, then it divides

g2(1 + g2), so it either divides g or it divides 1 + g2. If it divides g, then it divides 1, and if

it divides 1 + g2 then it divides g + g3 so it divides 1. Thus, 1 + g + g3 and 1 + g + · · ·+ g4

are mutually prime. Therefore, m has to be divisible by g−1
3
× (1 + g + · · ·+ g4) = g5−1

3
.

For mmmm0, the cycle point is x0 = m(1+g+g2+g3)
g5−1 . If a prime number divides 1 + g +

g2 + g3 and g − 1, then it divides g3 − g2, so it divides 1 + g + 2g2 and 2 − 4g + 2g2 so it

divides 5g − 1 and 5g − 5, so it divides 4, which is impossible because g − 1 is odd. Thus m

has to be divisible by g − 1, a contradiction.

In conclusion, if g−1 is not divisible by 3, then there are no primitive numbers of order

5. If g − 1 is divisible by 3, then a primitive number of order 5 must be divisible by g5−1
3

.

This number is incomplete because it has at least two extreme cycles with digits mmm00

and mm0m0. If it is not primitive, then it is divisible by a primitive number m. Then m

divides g5 − 1, so g5 ≡ 1(modm) so the order of m divides 5. We cannot have og(m) = 1 so

og(m) = 5. From the previous discussion, we obtain that m is divisible by g5−1
3

, so m = g5−1
3

.

Theorem 2.27. Let g = p + 1 where p is a prime number. Then there are no non-trivial

primitive numbers of order strictly less than g.

Proof. Let m be a non-trivial primitive number of order n. Then, by Proposition 2.25, it has

an extreme cycle of length n with some digits l0, . . . , ln−1 ∈ {0,m}. Let ki := li/m ∈ {0, 1},

for i ∈ {0, . . . , n− 1}. The cycle point is

x0 =
m(k0 + gk1 + · · ·+ gn−1kn−1)

gn − 1
=
m(k0 + gk1 + · · ·+ gn−1kn−1)

p(1 + g + · · ·+ gn−1)
∈ Z.
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Since m is a non-trivial primitive number, it cannot be divisible by g−1 = p. Therefore,

k0 +gk1 + · · ·+gn−1kn−1 must be divisible by p. However, g ≡ 1(mod p) so gk ≡ 1(mod p) for

all k. Then k0 +gk1 + · · ·+gn−1kn−1 ≡ k0 +k1 + · · ·+kn−1(mod p), so k0 + · · ·+kn−1 must be

divisible by p. Therefore, we must have a multiple of p ones among the digits k0, . . . , kn−1,

so we have at least p ones. Also, not all the digits can be 1, because then x0 = m/p, so m

is divisible by g − 1, a contradiction. Therefore, we must have at least p + 1 = g digits, so

n ≥ g.

Theorem 2.28. Let m be a non-trivial primitive number, og(m) =: n and let x0 be an

extreme cycle point with digits l0, . . . , ln−1 as in (1.3). Let ki := li/m ∈ {0, 1} for i ∈

{0, . . . , n− 1} and let d := gcd(k0 + gk1 + · · ·+ gn−1kn−1, g
n − 1). Then m = gn−1

d
.

Also, if k0, . . . , kn−1 are some digits in {0, 1} and if d := gcd(k0+gk1+· · ·+gn−1kn−1, gn−

1), then the number m := gn−1
d

is incomplete and has an extreme cycle with digits

mk0,mk1, . . . ,mkn−1.

Proof. First, note that we know that the length of the cycle is equal to n, from Proposition

2.25. With Lemma 2.2, we have that

x0 =
m(k0 + gk1 + · · ·+ gn−1kn−1)

gn − 1
=
mk0+gk1+···+gn−1kn−1

d
gn−1
d

. (2.6)

But k0+gk1+···+gn−1kn−1

d
and gn−1

d
are mutually prime, and since x0 is an integer, it follows

that m must be divisible by gn−1
d

. Let m′ := gn−1
d

. Then

x′0 :=
m′(k0 + gk1 + · · ·+ gn−1kn−1)

gn − 1
=
k0 + gk1 + · · ·+ gn−1kn−1

d

is a cycle point for the digits {0,m′} and it is in Z, therefore, by Lemma 2.8, it is an extreme

cycle point for m′. This means that m′ is incomplete. Since m is divisible by m′ and it is
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also primitive, it follows that m = m′.

The last statement of the theorem follows from the previous computations.

Example 2.29. Recall from [DH16], that the first few primitive numbers for g = 4 are

{3, 85, 341, 455, 1285, 4369, 5461}.

They can be obtained very nicely as:

3 = 41 − 1, 85 =
44 − 1

3
, 341 =

45 − 1

3
, 455 =

46 − 1

32
,

1285 =
48 − 1

3 · 5 · 17
, 4369 =

48 − 1

3 · 5
, 5461 =

47 − 1

3
.

Corollary 2.30. All primitive numbers m are divisors of gn − 1, where og(m) = n.

Example 2.31. We illustrate how we can use Theorem 2.28 to find some non-trivial primitive

numbers. Take for example g = 16. We want a non-trivial primitive number m, so m cannot

be divisible by g − 1 = 15. Also, it must have an extreme cycle, so for some choice of digits

k0, . . . , kn−1 ∈ {0, 1}, we must have that

x0 :=
m(k0 + 16k1 + · · ·+ 16n−1kn−1)

16n − 1

is an integer. Since 16n− 1 is divisible by 15, the numerator must be divisible by 15. But m

should not be divisible by 15. So the term k0 + 16k1 + · · · + 16n−1kn−1 must contain some

factors of 15, i.e., 3 or 5.

Let’s pick 3 first. Since k0 + 16k1 + · · · + 16n−1kn−1 ≡ k0 + k1 + · · · + kn−1(mod 15)

(and (mod 3) and (mod 5)), we must have k0 + · · ·+ kn−1 divisible by 3. Therefore, we must

have a multiple of 3 number of ones among these digits. We cannot just pick 111, because
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that is actually the cycle with digit 1. So, instead we can pick 1110. Thus n = 4. Then

k0 + 16k1 + · · ·+ 16n−1kn−1 = 1 + 16 + 162 is divisible by 3. We take m = 164−1
3

, and using

Theorem 2.28 or by a direct check, we can see that the number is primitive.

We can use a similar method for 5. We must have that k0+ · · ·+kn−1 is divisible by 5, so

we need at least 6 digits, such as 111110. Then we take m = 166−1
5

= 3355443. A computer

check shows that the only extreme cycle is {13981, 210589, 222877, 223693, 223645, 223696}

and these numbers are relatively prime. Therefore, with Proposition 2.25, we obtain that

this number is primitive too.

Now let’s take g = 12. A non-trivial primitive number m cannot be divisible by

g − 1 = 11. Therefore, we must find digits so that k0 + 12k1 + · · · + 12n−1kn−1 is divis-

ible by 11. As before, this implies that k0 + · · · + kn−1 is divisible by 11, so we must have

a multiple of 11 number of ones among these digits. We need some large numbers! We

can take 11 . . . 1︸ ︷︷ ︸
11 times

0. So n = 12. We pick m = 1212−1
11

= 810554586205. A computer check

shows that the only extreme cycle is {68057929271, 73217709623, 73647691319, 73686509111,

73683523127, 73686778679, 73686757943, 73686780563, 73686780564, 73686780407,

73686780551, 6140565047}. The numbers in this cycle are mutually prime, and by Proposi-

tion 2.25, it follows that this number m is primitive.

Lemma 2.32. The prime divisors of gn − 1 are precisely the prime numbers with order

dividing n.

Proof. Let p be a prime number with og(p) = l, and l|n. Since og(p) = l, we have that

gl ≡ 1(mod p). Since l|n, we have that n = lj, for some j ∈ Z. Thus,

(gl)j ≡ 1j(mod p) =⇒ gn ≡ 1(mod p) =⇒ gn − 1 ≡ 0(mod p).
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So, we have that p|(gn − 1).

Conversely, if p is a prime divisor of gn − 1 then gn ≡ 1(mod p) so og(p) divides n.

Theorem 2.33. Let q > g− 1 be mutually prime with g− 1. Then m := gq−1
g−1 is incomplete

and og(m) = q. All divisors e > 1 of m have og(e) 6= 1 and og(e)|q. If, in addition, q is

prime, then there exist primitive numbers of order q and all primitive numbers d that divide

m have og(d) = q.

Proof. We know from Lemma 2.32 that, for all prime divisors d of gq − 1, og(d) divides q.

We have the factorization gq − 1 = (g − 1)m. We prove that g − 1 and m are mutually

prime. If a prime number p divides both g − 1 and m, then g ≡ 1(mod p) so gn ≡ 1(mod p)

for all n ∈ N. So m = 1 + g + · · ·+ gq−1 ≡ 1 + 1 + · · ·+ 1 = q(mod p). But p divides m, so

0 ≡ q(mod p) which means that p divides q, and this contradicts the hypothesis that g − 1

and q are mutually prime.

We show that if e > 1 divides m, then og(e) 6= 1. If not, then g ≡ 1(mod e) so e divides

g − 1. But e divides m, and g − 1 and m are mutually prime, a contradiction.

Clearly we have that m divides gq − 1, so gq ≡ 1(modm), so og(m) divides q. For

1 ≤ l < q, we have that 0 < gl − 1 < m, so gl − 1 6≡ 0(modm). Thus og(m) = q. Therefore,

any divisor of e > 1 of m has og(e)|q.

Next, we show that m is incomplete. Consider the cycle point x0 with digits

m,m, . . . ,m︸ ︷︷ ︸
g−1 times

, 0, 0, . . . , 0︸ ︷︷ ︸
q−g+1 times

.
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Then, by Lemma 2.2, we have

x0 =
m(1 + g + · · ·+ gg−2)

gq − 1
=
m(1 + g + · · ·+ gg−2)

(g − 1)m
=

1 + g + · · ·+ gg−2

g − 1
.

We have g ≡ 1(mod(g − 1)) so gl ≡ 1(mod(g − 1)). Then 1 + g + · · · + gg−2 ≡ (g − 1) ≡

0(mod(g−1)). So x0 is an integer and therefore an extreme cycle point. So m is incomplete.

Assume now that q is prime. Since m is incomplete, there exists a divisor d of m which

is a primitive number. Then, d divides gq − 1 so, by Lemma 2.32, og(d) divides q, so it is

1 or q. However, it cannot be 1, since that would imply that d divides g − 1, and since d

divides m, this would contradict the fact that g − 1 and m are mutually prime. Therefore

og(d) = q.

Remark 2.34. The condition that q is prime cannot be removed if we want to find a

primitive number of order q. For example, there is no primitive number of order q = 14

for g = 6. We have that 14 and g − 1 = 5 are mutually prime. Also, we have that

614− 1 = 5 · 7 · 7 · 29 · 197 · 55987. Since 5 and 55987 are primitive for this g, of order 1 and 7

respectively, a primitive number of order 14 would have to be a divisor of 7·7·29·197 = 279937.

However, this number is complete, so none of its divisors can be primitive.

Remark 2.35. Theorem 2.33 can be used in finding new primitive numbers. When g = 4, we

know that prime numbers cannot be primitive. The following numbers must all be primitive

because they are of prime order (hence incomplete by Theorem 2.33) and the product of

exactly two prime numbers (and all prime numbers are complete for g = 4, by Theorem

2.14):
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413 − 1

3
= 22369621 = 2731 · 8191

417 − 1

3
= 5726623061 = 43691 · 131071

419 − 1

3
= 91625968981 = 174763 · 524287

However,

423 − 1

3
= 23456248059221 = 47 · 178481 · 2796203

is merely incomplete. A computer check shows that 8388607 = 47 ·178481 is complete, while

131421541 = 47 · 2796203 and 499069107643 = 178481 · 2796203 are primitive.

Remark 2.36. It is possible for gn−1
g−1 to be complete. Take g = 22 and n = 7. Then

227−1
21

= 118778947 is complete. So the condition in Theorem 2.33 that q > g − 1 cannot be

removed.

Corollary 2.37. Let g = p + 1 where p is a prime number. Then there are no non-trivial

primitive numbers of order strictly less than g and, for every prime number q > g, there

exists a primitive number of order q.

Proof. The first part is contained in Theorem 2.27, and the second part follows immediately

from Theorem 2.33.

Example 2.38. This example illustrates a method for determining whether there exists a

primitive number of order n. Let g = 4. Since g − 1 = 3 is prime, it has already been

shown by Theorem 2.33 that a primitive number exists for every prime q > 4. We now

consider when n is a multiple of a prime number. Consider n = 22. There are no primitive

numbers of order 2, and the only primitive number of order 11 is 60787 = 89 · 683. Using
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the relationship between cycle points, and assuming, without loss of generality, that the last

two digits in the cycle are m0, we have that

x0 =
4m(k0 + k1 · 4 + . . .+ k19 · 419 + 420)

422 − 1
=

4m(k0 + k1 · 4 + . . .+ k19 · 419 + 420)

3(5 · 23 · 89 · 397 · 683 · 2113)

for some k0, . . . , k19 in {0, 1}.

The orders of the numbers in the denominator are 1, 2, 11, 11, 22, 11, 22 respectively. In

order for a primitive number of order 22 to exist, we need to cancel either 89 or 683 (or both)

with the (k0 + k1 · 4 + . . . + k19 · 419 + 420) in the numerator, because these are divisors of

the primitive number of order 11. Since (k0 + k1 · 4 + . . .+ k19 · 419 + 420) in the numerator

must also be divisible by 3, we know we need exactly 3l − 1, l ∈ Z terms, in addition to the

420 term. Consider the multiplicative groups generated by 4 modulo 89 and 683, since our

primitive number m should not be divisible by 60787 = 89 · 683, which is primitive.

For 89, we have {4, 16, 64, 78, 45, 2, 8, 32, 39, 67, 1} and 420 ≡ 39(mod 89).

For 683, we have {4, 16, 64, 256, 341, 681, 675, 651, 555, 171, 1} and 420 ≡ 555(mod 683).

We need to pick exactly 2, 5, or 8 terms from these groups, add them together with 420,

and try to get a number equivalent to 0(mod 89 or 683).

Using a computer, we see that from the first set, 4 + 16 + 78 + 2 + 39 + 39 = 178 ≡

0(mod 89). From the second set, 256 + 555 + 555 = 1366 ≡ (0 mod 683). So, for the

numerator, we get 4 + 42 + 44 + 46 + 49 + 420 in the first case and 44 + 49 + 420 in the second.

Thus the number 5 ·23 ·89 ·397 ·2113 is incomplete. A computer check shows that 422−1
3·5·683
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is primitive.

Also, the number 5 · 23 · 397 · 683 · 2113 is incomplete. A computer check shows that

422−1
3·5·89 is primitive.

Both of these primitive numbers have order 22.

For the next theorem, when we say x = d0d1 . . . dn in base g, we mean

x = d0g
n + d1g

n−1 + · · ·+ dn−1g + dn.

Theorem 2.39. Let m = 11 . . . 1︸ ︷︷ ︸
g-times

in base g, so m = gg−1
g−1 . Then m is primitive with the base

g extreme cycle point 12 . . . (g − 2)(g − 1) and m has cycle length g. Moreover, the cycle

generated by this cycle point is the only extreme cycle for m.

Proof. Note that all operations are taking place in base g. Let x0 = 123 . . . (g−3)(g−2)(g−1).

Then

x1 =
123 . . . (g − 3)(g − 2)(g − 1) +

g-times︷ ︸︸ ︷
11 . . . 1

g
= 123 . . . (g − 4)(g − 3)(g − 1)0

x2 = 123 . . . (g − 4)(g − 3)(g − 1)

x3 =
123 . . . (g − 4)(g − 3)(g − 1) +

g-times︷ ︸︸ ︷
11 . . . 1

g
= 1123 . . . (g − 4)(g − 3)(g − 1)

x4 =
1123 . . . (g − 4)(g − 3)(g − 1) +

g-times︷ ︸︸ ︷
11 . . . 1

g
= 1223 . . . (g − 4)(g − 3)(g − 1)

...
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xn =
123 . . . (n− 3)(n− 3) . . . (g − 4)(g − 3)(g − 1) +

g-times︷ ︸︸ ︷
11 . . . 1

g

= 123 . . . (n− 2)(n− 2) . . . (g − 4)(g − 3)(g − 1)

...

xg =
123 . . . (g − 4)(g − 3)(g − 3)(g − 1) +

g-times︷ ︸︸ ︷
11 . . . 1

g
= 123 . . . (g − 3)(g − 2)(g − 1)

Since xg = x0, we have that this is indeed an extreme cycle of length g.

We prove that this is the only extreme cycle for m. Note that if x0 has some decompo-

sition x0 = ap . . . a0 = apg
p + · · · + a1g + a0 in base g, then the next element in the cycle is

either x0/g or (x0 +m)/g. In the first case, the last digit a0 has to be 0. In the second case

a0 has to be g − 1.

In the case the last digit a0 is 0, we simply divide by g. This means that in the base

g representation, the last 0 is removed, and we do so as many times this is possible, i.e., as

many zeros we have in the end of the base g representation. so we ignore the last zeros and,

for simplicity, we talk about the cycle points that have an expansion that ends in a non-zero

digit.

Assume now the last digit a0 is g − 1 and consider the next to last digit a1. The next

element in the cycle is x1 = (x0 +m)/g.

For a positive integer x we will write x = . . . arar−1 . . . a1a0 to indicate that the base g

representation ends in arar−1 . . . a1a0.

Since x0 = . . . a1(g− 1) and m = . . . 11, we get that x0 +m = . . . ((a1 + 2) mod g)0 and

therefore x1 = . . . ((a1 + 2) mod g). Since x1 is also a cycle point, its last digit is 0 or g − 1
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therefore a1 = g − 2 or a1 = g − 3.

We claim that every extreme cycle point for m has the form

n1-times︷ ︸︸ ︷
1 . . . 1

n2-times︷ ︸︸ ︷
2 . . . 2 . . .

ng−2-times︷ ︸︸ ︷
(g − 2) . . . (g − 2)(g − 1) (2.7)

with n1, . . . , ng−3 ≥ 1, ng−2 ≥ 0.

First, we will prove that x0 = . . . (g − 3)(g − 2)(g − 2) . . . (g − 2)(g − 1) or x0 =

. . . (g− 3)(g− 1). If the next to last digit is a1 = g− 3, we are done. If the next to last digit

is g−2, we consider the digit immediately before it a2. Since x0 = . . . a2(g−2)(g−1), we have

x0 +m = . . . ((a2 +2) mod g)00 so x1 = . . . . . . ((a2 +2) mod g)0 and x2 = . . . ((a2 +2) mod g).

Since this is an extreme cycle point, the last digit is either 0 or g − 1. Thus a2 = g − 2 or

a2 = g − 3. By induction, if x0 = . . . al(g − 2) . . . (g − 2)(g − 1) then x0 + m = . . . ((al +

2) mod g)0 . . . 00, so dividing by g as many times as needed we get an extreme cycle point

of the form . . . ((al + 2) mod g) and since the last digit has to be 0 or g − 1 it follows that

al = (g − 2) or al = (g − 3).

We show that we cannot have x0 = (g− 2) . . . (g− 2)(g− 1), so the digit (g− 3) has to

appear.

Note first that by Lemma 2.2, x0 ≤ m
g−1 = gg−1+···+g+1

g−1 = gn−1
(g−1)2 < gn−1, so x0 has at

most g − 1 digits, so it has a shorter expansion than m which has g digits.

If x0 = (g− 2) . . . (g− 2)(g− 1) then x0 +m has the form 11 . . . 120 . . . 00, which would

imply that an extreme cycle point is of the form 11 . . . 12, a contradiction to the fact that

the last digit has to be 0 or g − 1.

Thus x0 is of the form . . . (g − 3)(g − 2) . . . (g − 2)(g − 1) and g − 2 does not have to
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appear. Assume by induction that all extreme cycle points x0 (which do not end in 0) are

of the form

. . . al

ng−k-times︷ ︸︸ ︷
(g − k) . . . (g − k) . . .

ng−2-times︷ ︸︸ ︷
(g − 2) . . . (g − 2)(g − 1),

with k ≥ 3, ng−k, . . . , ng−3 ≥ 1 and ng−2 ≥ 0. Then x0 +m = . . . (al + 1)(g − k + 1) . . . (g −

2) . . . (g − 2)(g − 1)0 . . . 0. Dividing by g, we get that an extreme cycle point is of the form

. . . (al + 1)(g− k+ 1) . . . (g− 2) . . . (g− 2)(g− 1), and by the induction hypothesis we obtain

that al + 1 = g − k + 1 or al + 1 = g − k so al = g − k or al = g − k − 1.

Thus the digits in the base g expansion of x0 form an increasing sequence and two

consecutive digits differ by at most 1, with the exception of the last two which can be

(g − 3)(g − 1).

We show that the first digit has to be 1. Suppose x0 = ap−1 . . . a0. We saw above that

x0 has at most n− 1 digits, so then x0 +m = 1(ap−1 + 1) . . . 0 so x1 = 1(ap−1 + 1) . . . . But

we know that two consecutive digits of x1 differ by at most 1 so ap−1 = 1.

Combining these results we get that every extreme cycle point must have the form in

(2.7).

Next we claim that either n1 = · · · = ng−2 = 1 or ng−2 = 0 and all but one of the

n1, . . . , ng−3 are equal to 1, with possibly at most one exception which is equal to 2.

Suppose first ng−2 = 0. We know that the first digit is 1 and the last digits are

(g− 3)(g− 1). Also two consecutive digits before the (g− 3) differ by at most one and they

appear in increasing order in the expansion. This means that all digits 1, 2, . . . , (g− 3) have

to appear in the expansion (otherwise there is a jump by at least 2). So n1, . . . , ng−3 ≥ 1.

On the other hand, there are at most g−1 digits, so g−1 ≥ n1 + · · ·+ng−3 + 1 ≥ g−2.
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This implies that we cannot have two numbers ni bigger than 2. Moreover, at most one of

them is 2 and the rest are 1.

If ng−2 ≥ 1 then, with the previous argument, we get that all digits between 1 and g−2

must appear in the expansion and then, as before, we get x0 = 12 . . . (g− 1). Going through

all the cases, we see that every possibility yields a point in the extreme cycle listed in the

first part of the proof.

We prove that d = gcd(C) = 1. Since d divides x0 = 12 . . . (g − 3)(g − 2)(g − 1) and

gx2 = 12 . . . (g − 3)(g − 1)0, it follows that d will divide also gx2 − x0 = (g − 1)g − ((g −

2)g + (g − 1)) = 1.

Conjecture 2.40. Let m = 11 . . . 1︸ ︷︷ ︸
g-times

in base g, and let g = p+ 1 where p is a prime number.

Then m is the first non-trivial primitive number.

Remark 2.41. By Theorem 2.39, we have that m is primitive. It remains to be shown that

no primitive numbers can exist between p and m.

Example 2.42. Let us illustrate, with an example, an algorithm for finding primitive num-

bers. Let g = 6. Of course, the trivial primitive number is 5. Therefore, no other primitive

number has 5 in its prime decomposition.

By Corollary 2.30, the primitive numbers are divisors of 6n − 1, and since we can must

the 5 from the prime decomposition, they have to be divisors of 6n−1
5

. By Theorem 2.26, we

can start with n = 6. When n is not divisible by g − 1 = 5, we can use Theorem 2.33 to

conclude that 6n−1
5

is incomplete.

By Theorem 2.39, 66−1
5

= 7 · 31 · 43 is primitive.

We used a computer program to check whether the following numbera are complete.
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For n = 7, we have 67−1
5

= 55987 is prime and incomplete, thus primitive.

For n = 8, a = 68−1
5

= 7 · 37 · 1297 is incomplete. We checked that a
7
, a
37
, a
1297

are

complete, therefore 68−1
5

is primitive.

For n = 9, a = 69−1
5

= 19 · 43 · 2467 is incomplete. We checked that a
19
, a
43
, a
2467

are

complete, therefore 69−1
5

is primitive.

For n = 10, a = 610−1
5

= 5 · 7 · 11 · 101 · 311. We have to remove the extra 5 from the

prime decomposition. We checked that a
5·7 ,

a
5·11 ,

a
5·101 ,

a
5·311 are complete, therefore 610−1

5·5 is

primitive.

For n = 11, a = 611−1
5

= 23 · 3154757. We checked that 23 is complete and 3154757 is

prime and incomplete, therefore primitive. So 611−1
5·23 is primitive.

For n = 12, a = 612−1
5

= 5 · 7 · 13 · 31 · 37 · 43 · 97. We know that 7 · 31 · 43 = 66−1
5

is primitive so at least on of these factors have to be removed. We checked that a
7
, a
31

are

incomplete and a
43

is complete. Thus we cannot remove the factor 43 to get a primitive

number. Then a
7·13 ,

a
7·37 ,

a
7·97 are complete and a

7·31 is incomplete. Also a
13·31 ,

a
13·97 ,

a
31·37 ,

a
31·97

are complete. This implies that a
7·31 = 612−1

5·7·31 is primitive, and this is the only divisor of a

(other than 7 · 31 · 43) which is primitive.

For n = 13, a = 613−1
5

= 760891 · 3443. Both prime factors are complete, therefore 613−1
5

is primitive.

For n = 14, a = 614−1
5

= 72 · 29 · 197 · 55987. The number 55987 = 67−1
5

is primitive, so

this factor has to be removed. We checked that a
55987

is complete, therefore we do not get

new primitive numbers. See also Remark 2.34.

For n = 15, a = 615−1
5

= 5 · 43 · 311 · 1171 · 1201. The factor 5 has to be removed.
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We checked that a
5

is incomplete and a
5·43 ,

a
5·311 ,

a
5·1171 ,

a
5·1201 are complete. Therefore 615−1

5·5 is

primitive.

For n = 16, a = 616−1
5

= 7·17·37·1297·98801. The number 7·37·1297 = 68−1
5

is primitive,

so one of these factors has to be removed. We checked that a
7
, a
37
, a
1297

are incomplete. Then

we checked that a
7·17 is incomplete and a

7·37 ,
a

7·1297 ,
a

7·98801 are complete. This implies that

a
7·17 = 616−1

5·7·17 is primitive, because we cannot drop any more factors. Also we checked that

a
17·37 ,

a
17·1297 ,

a
17·98801 are incomplete and a

37·1297 ,
a

37·98801 ,
a

1297·98801 are complete. We see now

that a
17·37 = 616−1

5·17·37 , a
17·1297 = 616−1

5·17·1297 ,
a

17·98801 = 616−1
5·17·98801 are primitive.

We can go on like this for larger values of n.

Example 2.43. A nice example is for g = 4 and n = 20. Then a = 420−1
3

= 52 · 11 · 17 ·

31 · 41 · 61681. We discover a primitive number 52 · 41 · 61681 which is not square free, thus

disproving a conjecture formulated by the first author in [DH16].

Composite numbers

Lemma 2.44. Let a, b > 1 be odd numbers. Assume that og(ab) ≥
a

g−1
− 2

g
−1+g

g
2

og(b). Then ab

is not primitive.

Proof. Suppose that ab is primitive. Then a, b are relatively prime with g, because otherwise

ab is not relatively prime with g, so ab cannot be primitive, by Lemma 2.18. By Proposition

2.25, there exists an extreme cycle C and it is equal to a coset x0Gab of the multiplicative

group generated by g in U(Zab). Consider the map h : Gab → Gb, h(x) = x(mod b). Then h

is a homomorphism and it is onto. Let |Gab| = og(ab) = Mog(b) = M |Gb|, so that h is an

M -to-1 map, where M ≥
a

g−1
− 2

g
−1+g

g
2

. Then the map h′ : x0Gab → (x0(mod b))Gb, h
′(x0x) =
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(x0x)(mod b), is also an M -to-1 map.

So there are exactly M elements in x0Gab which are mapped into x0(mod b). These

elements can be written x0(mod b) + kb(mod ab) for M different values of k, each in the set

{0, . . . , a − 1}. Since b is complete (because ab is primitive), using Proposition 2.10, the

coset (x0(mod b))Gb contains an element greater than 2b
g

, and therefore we can assume that

y0 := x0(mod b) > 2b
g
.

From Lemma 2.3, we know that the cycle points are congruent to 0 or −ab modulo g.

So y0 + kb ≡ 0 or −ab modulo g for all M values of k such that y0 + kb is in the extreme

cycle. Since b is relatively prime with g, it has a multiplicative inverse c in Z×g , and we have

that k ≡ −cy0(mod g) or c(−ab− y0)(mod g). Therefore, the values of k here belong to only

two equivalence classes modulo g, so in each set An := {gn, gn + 1, . . . , gn + (g − 1)} there

are at most two values of k. So there are at most two values of k in A0, then at most two

values of k in A1, and so on, and we must exhaust M values of k. If M is even, then we have

at most 2(M
2
− 1) = M − 2 values of k in A0 ∪ · · · ∪AM

2
−2 and there are still two values of k

left. Therefore, if we take the largest such k, k ≥ g(M
2
− 1) + 1. If M is odd, then a similar

argument shows that k ≥ g(M−1
2

). In both cases, k ≥ g(M
2
− 1) + 1. Then

y0 + kb >
2b

g
+ (g(

M

2
− 1) + 1)b ≥ ab

g − 1
,

and this contradicts the fact that an extreme cycle is contained in [0, ab
g−1 ], by Lemma 2.2.

Theorem 2.45. Let p1, . . . , pr be distinct odd primes. For i ∈ {1, . . . , r}, let ji ≥ 0 be the

largest number such that pjii divides lcm(og(p1), . . . , og(pr)). Assume that p
ιg(p1)+j1
1 . . . p

ιg(pr)+j1
r

is complete. Then pk11 . . . pkrr is complete for any k1, . . . kr ≥ 0.

Proof. Suppose there are some numbers k1, k2, . . . , kr ≥ 0 such that m = pk11 . . . pkrr is not
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complete. Therefore, a proper divisor of this number has to be primitive, relabeling the

powers ki, we can assume m is primitive. The hypothesis implies that for at least one i,

ki ≥ ιg(pi) + ji + 1. Relabeling again, we can assume k1 ≥ ιg(p1) + j1 + 1. We have, with

Proposition 2.24:

og(p
k1
1 . . . pkrr ) = p

k1−ιg(p1)−j1
1 og(p

ιg(p1)+j1
1 pk22 . . . pkrr ).

As in Lemma 2.44, let a = p
k1−ιg(p1)−j1
1 , b = p

ιg(p1)+j1
1 pk22 . . . pkrr . We will show that ab is

not primitive by showing that a >
a

g−1
− 2

g
−1+g

g
2

for all g. Also, since ki ≥ ιg(pi) + ji + 1, let

l := k1 − ιg(p1)− j1 ≥ 1. So, we have

pl1 >

pl1
g−1 −

2
g
− 1 + g
g
2

⇐⇒ g

2
pl1 −

pl1
g − 1

> g − 2

g
− 1

⇐⇒ pl1[g(g − 1)− 2]

2(g − 1)
>
g2 − g − 2

g
⇐⇒ pl1 >

2(g − 1)

g
.

Since p1 is an odd prime and l ≥ 1, pl1 > 2 so it is always true that pl1 >
2(g−1)
g

. Thus,

og(ab) = aog(b) >
a

g−1
− 2

g
−1+g

g
2

og(b), so ab is not primitive by Lemma 2.44.

Lemma 2.46. Let m be incomplete and suppose that all extreme cycles for m have length

og(m). Additionally, suppose that og(d) < og(m) for all proper divisors d of m. Then m is

primitive.

Proof. Suppose to the contrary that m is not primitive. Then m = nk, where n is a primitive

number and k ∈ N. Then, with Proposition 2.25, n has an extreme cycle C of length og(n).

So kC is an extreme cycle for m of length og(n), and since og(n) < og(m), this contradicts

that all cycles for m have length og(m). Thus m is primitive.

Lemma 2.47. The number of non-trivial cycle points for an odd number m not divisible by
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g − 1 is less than

min
n

{
2n
⌈ m

(g − 1)gn
⌉}
.

dxe represents the ceiling of x, i.e., the smallest integer larger than or equal to x.

Proof. The phrasing in the statement of the lemma, ”number of non-trivial cycle points,”

refers to the total number of points among all non-trivial cycles.

We know from Lemma 2.2 that the cycle points are contained in the intersection of the

attractor XL with Z. Also, XL ⊂ [0, m
g−1 ]. Therefore,

XL ⊂
⋃

a0,a1,...,an−1∈{0,m}

σan−1 . . . σa0
[
0,

m

g − 1

]

=
⋃

a0,a1,...,an−1∈{0,m}

[
a0 + ga1 + . . .+ gn−1an−1

gn
,

m

(g − 1)gn
+
a0 + ga1 + . . .+ gn−1an−1

gn

]
.

The intervals in this union can be written as

[
m
∑n−1

k=0 lkg
k

gn
,
m
(
1 + (g − 1)

∑n−1
k=0 lkg

k
)

(g − 1)gn

]
(2.8)

with l0, . . . ln−1 ∈ {0, 1}. Because m is not divisible by g − 1 and 1 + (g − 1)
∑n−1

k=0 lkg
k is

prime with g − 1, the right endpoint is never an integer.

There are 2n intervals at each iteration, and each one contains at most d m
(g−1)gn e integers

in its interior, so we have at most 2nd m
(g−1)gn e in the union. The result follows from this.

Lemma 2.48. Let a, b ≥ 1 be odd numbers. Assume that og(ab) > 2dlogg
a

g−1
eog(b). Then ab

is not primitive.
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Proof. Assume that ab is primitive. Take n = dlogg
a
g−1e. Then gn ≥ a

g−1 , so ab
(g−1)gn ≤ b, so

the length of the intervals in (2.8) is at most b. Since ab is primitive, there is an extreme

cycle C which is a coset x0Gab, by Proposition 2.25.

Now, as in the proof of Lemma 2.44, define the map h : x0Gab → x0Gb, x0x 7→

(x0x)(mod b). We saw that this is an M -to-1 map. Note that M = og(ab)/og(b) > 2n.

There are M cycle points in x0Gab = C which are mapped by h into x0, i.e., there are M

values of k such that x0(mod b)+kb is in the cycle C. However, the intervals in (2.8) contain

at most one such cycle point, since their length is less than b and the difference between

any two such points is at least b. We have 2n < M such intervals, and this leads to a

contradiction.

Theorem 2.49. Let m be an odd number. Assume the following conditions are satisfied:

(i) For every proper divisors d|m, d < m, the number d is complete.

(ii) The following inequality holds:

og(m) > min
n

{
2n
⌈ m

(g − 1)gn
⌉}
.

Then m is complete. If only condition (ii) is satisfied, then m is not primitive.

Proof. Suppose (i) and (ii) hold. Then m is either complete or primitive. If m is primitive,

then by Proposition 2.25 there exists a cycle of length og(m). Since og(m) > minn∈N

{
2n
⌈

m
(g−1)gn

⌉}
,

this contradicts Lemma 2.47. Thus m is complete.

Suppose only (ii) holds. By the same argument, m is not primitive.
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Corollary 2.50. Let m be an odd number. If

og(m) > 2dlogg
m

g−1
e

or in particular, if

og(m) > 2

(
m

g − 1

) 1
log2 g

then m is not primitive.

Proof. Let n = dlogg
m
g−1e. Then gn ≥ m

g−1 so d m
(g−1)gn e = 1. Furthermore,

2nd m

(g − 1)gn
e = 2n ≤ 2logg

m
g−1

+1 = 2

(
m

g − 1

) 1
log2 g

.

The rest follows from Theorem 2.49.

Corollary 2.51. Let p1, . . . , pr be distinct simple prime numbers strictly larger than g − 1.

Assume the following conditions are satisfied:

(i) For any proper subset F ⊂ {1, . . . , r} and any powers ki ≥ 0, i ∈ F , the number∏
i∈F p

ki
i is complete.

(ii) None of the numbers og(p1), . . . , og(pr) is divisible by any of the numbers p1, . . . , pr.

(iii) The following equation is satisfied:

lcm(og(p1), . . . , og(pr)) > 2dlogg
p1...pr
g−1

e (2.9)

Then pk11 . . . pkrr is complete.
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Proof. Suppose there exists k1, . . . , kr such that pk11 . . . pkrr is not complete. Then pick

k1, . . . , kr such that
∑r

i=1 ki is as small as possible, with this property. Clearly, by (i) we can

assume all ki ≥ 1. Then all proper divisors of pk11 . . . pkrr are complete, because otherwise we

could have picked smaller
∑
ki. So m := pk11 . . . pkrr is primitive. By Propositions 2.21 and

2.23, we have

og(m) = lcm(og(p
k1
1 ), . . . , og(p

kr
r )) = lcm(pk1−11 og(p1), . . . , p

kr−1
r og(pr))

= pk1−11 . . . pkr−1r lcm(og(p1), . . . , og(pr)).

From (iii), we get

pk1−11 . . . pkr−1r lcm(og(p1), . . . , og(pr)) > 2dlogg
p1...pr
g−1

epk1−11 . . . pkr−1r .

As in Corollary 2.50, letting n = dlogg
p1...pr
g−1 e, we have gn ≥ p1...pr

g−1 and d p1...pr
(g−1)gn e = 1.

Then

2dlogg
p1...pr
g−1

epk1−11 . . . pkr−1r = 2npk1−11 . . . pkr−1r = 2nd p1 . . . pr
(g − 1)gn

epk1−11 . . . pkr−1r ≥ 2ndp
k1
1 . . . pkrr

(g − 1)gn
e.

We used the fact that, for a > 0 and N ∈ N, daeN is an integer greater than or equal to

aN , so it is greater than or equal to daNe.

Thus, we obtain that

og(m) > 2ndp
k1
1 . . . pkrr

(g − 1)gn
e.

Since m is primitive, this is a contradiction to Theorem 2.49.

Corollary 2.52. Let g be a perfect square. Let p1, . . . , pr be distinct simple prime numbers
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strictly larger than g − 1. Assume the following conditions are satisfied:

(i) None of the numbers og(p1), . . . , og(pr) is divisible by any of the numbers p1, . . . , pr.

(ii) For any subset {i1, . . . , is} of {1, . . . , r}, with s ≥ 2 the following inequality holds:

lcm(og(pi1), . . . , og(pis)) >
2

(g − 1)
1

log2 g

(pi1 . . . pim)
1

log2 g (2.10)

Then the number pk11 . . . pkrr is complete for any k1 ≥ 0, . . . , kr ≥ 0.

Proof. We proceed by induction on r. Theorem 2.14 shows that we have the result for

r = 1. Assume the result holds for r − 1 primes. Then, for r primes, by the inductive

hypothesis conditions (i) and (ii) in Corollary 2.51 are satisfied. We check condition (iii).

Let m := p1 . . . pr.

We have, using Proposition 2.21 in the last equality:

2dlogg
m

g−1
e ≤ 2logg

m
g−1

+1 = 2

(
m

g − 1

) 1
log2 g

< og(m) = lcm(og(p1), . . . , og(pk)). (2.11)

Thus condition (iii) is satisfied and Corollary 2.51 gives us the result.

Remark 2.53. From Theorem 2.14 we also have that pn is complete whenever og(p
n) is

even. However, as we saw in Remark 2.15, there are some primes which are not complete,

so condition (i) in Corollary 2.51 is not satisfied in general for an arbitrarily chosen g. This

is why we chose g to be a perfect square.

Corollary 2.54. Let g be a perfect square. Let p1, . . . , pr be distinct simple prime numbers

strictly larger than g − 1. Assume the following conditions are satisfied:
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(i) The numbers og(p1), . . . , og(pr), p1, . . . , pr are mutually prime.

(ii) The following inequality holds

og(pj) >

√
2

(g − 1)
1

log2 g

· p
1

log2 g

j

for all j

Then pk11 · · · pkrr is complete for any k1 ≥ 0, . . . , kr ≥ 0.

Proof. Note first that 2 > (g− 1)
1

log2 g . We use Corollary 2.52. For any subset {i1, . . . , is} of

{1, . . . , r} with s ≥ 2, we have

lcm(og(pi1), . . . , og(pis)) = og(pi1) . . . og(pis) ≥

(√
2

(g − 1)
1

log2 g

)s

(pi1 . . . pis)
1

log2 g

≥ 2

(g − 1)
1

log2 g

(pi1 . . . pis)
1

log2 g .

Corollary 2.55. Let a be a complete odd number. Let p > g− 1 be a simple prime number.

Assume that

(i) p does not divide a

(ii) og(p) and og(a) are mutually prime

(iii) og(p) > 2dlogg
p

g−1
e

Then pka is complete for all k ≥ 0.
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Proof. Since p does not divide a, pk is mutually prime with a. Since p is simple, with

Propositions 2.21 and 2.23, we have

og(p
ka) = lcm(og(p

k), og(a)) = pk−1og(p)og(a).

So then pk−1og(p) > pk−12dlogg
p

g−1
e, by hypothesis. Taking the log2 of both sides, with k ≥ 2

and p ≥ g + 1 we get

log2(p
k−1og(p)) > log2(p

k−12dlogg
p

g−1
e) = log2 p

k−1 + dlogg
p

g − 1
e

≥ logg p
k−1 + 1 + dlogg

p

g − 1
e ≥ dlogg p

k−1e+ dlogg
p

g − 1
e ≥ dlogg

pk

g − 1
e.

We used here the fact that

log2 p
k−1 ≥ logg p

k−1 + 1⇐⇒ pk−1g ≤ (pk−1)
1

logg 2 ,

which is true, because logg 2 ≤ 1
2
, since g ≥ 4 and p > g.

Therefore

pk−1og(p) > 2dlogg
pk

g−1
e,

for k ≥ 2 and also for k = 1 by hypothesis. By Lemma 2.48, pka cannot be primitive, for

k ≥ 1 and because a is complete and p is prime, this means that pka is complete.

Example 2.56. Let g = 16. We want to prove that 17k · 19l is complete for any k, l. We

have o16(17) = 2, o16(172) = 34, o16(19) = 9, and o16(192) = 171, so 17 and 19 are both

simple primes. Since g is a perfect square, by Theorem 2.14 , 17k and 19l are complete for
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any k, l. Also,

lcm(o16(17), o16(19)) = 18 > 2dlog16
17·19
15
e = 4.

The result follows from Corollary 2.51.

Example 2.57. Let g = 36. We want to prove that 37k ·43l is complete for any k, l. Since g

is a perfect square, 37k is complete for any k by Theorem 2.14. Also, o36(43) = 3, o36(432) =

129, so 43 is a simple prime, and o36(37) = 2 is mutually prime with o36(43) = 3. In addition,

o36(43) = 3 > 2dlog36
43
35
e = 2,

so the result follows from Corollary 2.55.

The same argument applies to show that 37k · 47l, 37k · 53l, 37k · 59l, 37k · 67l, 37k · 71l

are complete. We can use this argument also for 47k · 53l · 59j. First, note that 47, 53 and

59 are simple primes with o36(47) = 23, o36(53) = 13, and o36(59) = 29. Then 47k · 53l is

complete by Corollary 2.55. By Propositions 2.21 and 2.23, o36(47l · 53k) is relatively prime

with o36(59), so 47k · 53l · 59j is also complete by Corollary 2.55.

Example 2.58. Let g be any even perfect square less than 1000. We will show 907k · 911l

is complete for any k, l. With a computer check, 907, 911 are both simple primes for every

even perfect square less than 1000. Moreover, og(907) and og(911) are relatively prime for

each g. With another computer check, we also have that

og(907) > 2dlogg
907
g−1
e and og(911) > 2dlogg

911
g−1
e

for all g, so 907k · 911l is complete by Corollary 2.55.
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