
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1990

Improving the analytical recovery of radiostrontium from Improving the analytical recovery of radiostrontium from

environmental samples environmental samples

Luz Selenia Acosta
University of Central Florida

 Part of the Chemistry Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Acosta, Luz Selenia, "Improving the analytical recovery of radiostrontium from environmental samples"
(1990). Retrospective Theses and Dissertations. 3945.
https://stars.library.ucf.edu/rtd/3945

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/131?utm_source=stars.library.ucf.edu%2Frtd%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/3945?utm_source=stars.library.ucf.edu%2Frtd%2F3945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

SURFACE MAPPING AND AUTOMATIC TOOL PATH GENERATION

BY

LABICHE FERREIRA
B.E., University of Bombay, 1988

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Industrial Engineering

in the Graduate Studies Program
of the College of Engineering
University of Central Florida

Orlando, Florida

Spring Term
1991

ABSTRACT

With the use of machine vision systems in the manufacturing cycle of a

product, the lead time for producing the final product has been substantially

reduced. Efforts in the past have aimed at automating the tasks right from the

drawing board stage to final production of the product. Such technologies

include CAD, CAM and CAPP. However the task of tool path (NC code)

generation has not yet been fully automated. In the current techniques, the user

plays a crucial role in the NC code generation process.

There is an increasing trend for using machine vision systems in the

fabrication of a part. Most machine vision(surface mapping) techniques generate

a huge amount of data. Ideally, a CAM system should be capable of accepting

data in any format for tool path generation with minimum intervention from the

user. This thesis proposes a four step, computer based method for tool path(NC

Code) generation from X,Y,Z data, aimed at minimizing if not eliminating the

users role. The different techniques of surface mapping and curve fitting are

also presented. These four steps extract relevant information needed for the

generation of NC code, thereby automating the process traditionally handled by

a user a interface.

TABLE OF CONTENTS

LIST OF FIGURES . v

I. INTRODUCTION .1
Application at Kennedy Space Center(KSC) 3
Thesis Outline 4

II. SURF ACE MAPPING TECHNIQUES 7
Stereo-photogrammetry . 8

Shadow-Moire Contourography 10
Silhouettes 13

Beam Scanning Methods . 16
Laser Beam Scanning . 16
Computed Axial Tomography (CAT) Scanning 17

illtrasonic Time of Flight (TOF) technique 19

III. LASER BEAM SCANNING 21
Active Triangulation 22
Synchronized Scanning 23

Light Source : 26
Position Sensors 27
Scanners 29

Polygonal Mirrors 30
Mounting of Polygonal Mirrors 31

The 11Cantilevered11 Design 32
The 11Captured11 Design 32

iii

IV. TOOL PATH GENERATION 35
TOOL PATH GENERATION SYSTEM 36
DATA REDUCTION STAGE 39
GEOMETRIC DATA EXTRACTION STAGE 42

Curves and surface fitting techniques 42
Spline Curves 44
Bezier Curves 45
B-Spline Curves . 49

Surfaces 50
Bezier Surface 52
B-Spline Surface 54

SURFACE RECOGNITION STAGE 54
NC CODE GENERATION STAGE 57

V. ANALYSIS OF THE RESULTS 60
Data Reduction Stage 60
Surface Recognition Stage . 61
NC Code Generation Stage 63
Conclusion . 65

VI. CONCLUSIONS AND POTENTIAL RESEARCH TOPICS 66

APPENDICES 68
Appendix A. Data Reduction Stage- Parallel To X-Axis 69
Appendix B. REDF: Reduced Data File- Parallel To X-Axis 75
Appendix C. Data Reduction Stage- Parallel ToY-Axis 82
Appendix D. REDL: Reduced Data File- Parallel ToY-Axis 89
Appendix E . Surface Recognition Stage- Parallel To X-Axis 96
Appendix F. Surface Recognition Stage- Parallel ToY-Axis 120
Appendix G. NC Code Generation Stage 135

REFERENCES 155

iv

LIST OF FIGURES

2.1 Moire Contourography using only one grating 11

2.2 Moire Contourograpghy using two gratings 12

2.3 Schematic diagram for the Takasaki-Terada Technique 13

2.4 Schematic representation of the Moire technique 14

2.5 Silhouetting by casting a shadow of surface bound object in
collimated light .15

2.6 The tracing of a silhouette for one angular position by a
cylindrical milling cutter . 15

2. 7 Basic configuration of a 3D laser scanner 16

2.8 A CAT scanner in hospital use 18

3.1 Basic laser scanning arrangement by triangulation 23

3.2 Shadow effects 24

3.3 An example of an electrically synchronized scanner 25

3.4 An example of a geometrically synchronized scanner 26

3.5 11SkeletOn11 of a laser scanner showing components 27

3.6 Synchronized scanning arrangement using a pyramidal
polygonal mirror 31

3. 7 Cross-section of the 11Cantilevered11 polygon/motor
configuration . 33

3.8 Cross-section showing 11Captured11 polygon/motor
construction . 34

v

4.1 Sample part ... 38

4.2 Four step procedure for NC code generation 39

4.3 Flow-chart of the data reduction stage 41

4.4 Bezier-curves .. 47

4.5 A parametric surface patch 52

4.6 A Bezier surface ... 53

4. 7 Flow-chart of the surface recognition stage 56

4.8 Flow-chart of the NC code generation stage 58

vi

CHAPTER 1

INTRODUCTION

With the advent of machine vision systems the lead time for producing

the final product has been substantially reduced. A typical manufacturing cycle

consists of three phases : design, production process planning and fabrication.

In each of these phases, computers have widely been used. Efforts in the past

have been directed at automating the tasks right from the drawing board stage

to the final production of the product. Such technologies include computer -aided

design (CAD), computer-aided process planning (CAPP), and computer-aided

manufacturing (CAM). The current trend in the manufacturing arena is the use

of machine vision. Machine vision is now becoming an integral part of advanced

manufacturing systems.

Machine vision and computer vision are synonymous. The purpose of

machine vision is to make computer capable of understanding environments

from visual information. Machine vision involves a variety of intelligent

information processing: both pattern processing for extraction of meaningful

symbols from visual information and symbol processing for determining what

the symbols represent. The term 3D computer vision is used if visual

information has to be interpreted as three dimensional scenes.

There is an increasing demand for 3D computer vision. In factories, for

example, automated assembly and inspection can be realized with fewer

2

constraints than conventional one which employ two-dimensional computer

vision. 3D vision is being developed for mobile robots capable of passing

through co~sJQ_rs and stairs, avoiding obstacles. 3D vision systems can also be

used to capture geometric information of an object which could then be used

to manufacture the object. There are number of techniques that could be used

to capture geometric information depending on the application.

This data could also be used in the creation of geometric CAD databases.

For objects with geometric regularity, it is practical to generate them

analytically, using one of the several geometric modelling schemes. However,

there are many areas in which there is a need to create a database by

extracting an object definition from a complex real life object, i.e., one that

already exist and which does not have regular geometric properties. Examples

of such objects are found in the field of medicine (prosthesis, plastic surgery,

replication of ancient artifacts in museums, etc.).In short the acquisition of 3D

data of objects opens up the following possibilities:

producing a copy of the object.

producing a modified version of the object.

producing a negative of the object, for example, to produce a mold or die

for the object (reverse engineering).

for inspection of parts.

3

Application at Kennedy Space CenterCKSC)

This thesis topic resulted from a research component in a project

between NASA- KSC and the Department of Industrial Engineering and

Management Systems at the University of Central Florida(UCF). The project

entitled .. Productivity Techniques .. deals with applying high technology methods

and techniques in support of operations at KSC. The focus of this component is

to digitize (surface map) the cavity formed by a missing thermal tile on the

space shuttle, and link this with a computer controlled milling machine to cut

a replacement tile, thereby automating the process of replacement of the tile.

The three dimensional information of the tile cavities on the orbiters surface

could be obtained by digitizing the cavity with one of the techniques discussed

in chapter 2 of this thesis report.

The current method of obtaining the 3D data of the cavity involves:

11Splashing11 the cavity with a substance that takes the form of the

cavity thereby capturing the geometric representation of the

cavity. This is then used to prepare a pattern which is used to

manufacture the tile on the gunstock milling machine.

This process of tile replacement has the following drawbacks:

the process is very laborious.

the replica or pattern created after $plashing the cavity is not an

accurate representation of the cavity which may result in a tile

that does not meet design specifications.

4

The movement of the cutting tool (of the gunstock milling

machine) is controlled by the stylus, that follows the patterns

_ _ surface. This movement depends on the skill of the operator.

A lot of time spent in rework of the newly manufactured tile. This adds to the

cost of manufacture per tile and increases the orbiter's stay in the Orbiter

Processing Facility (OPF).

By selecting the proper digitizing process (thereby eliminating the

splashing process), 3D data of the cavity can be obtained. This data can then

be used to define the surfaces of the cavity. After defining the cavity, the

information could be loaded to CAM system and finally to a numerically

controlled machine to manufacture the new tile.

Thesis Outline

The issue of manufacturing a part from its drawings has not been fully

automated. The designer or programmer after generating the drawings of an

object needs to write the necessary code (Numerical Control Code) or interact

with a CAM package in order to generate the necessary numerical code. Ideally,

a CAM package system should be capable of accepting geometric data in any

form in order to generate NC code. In cases where the part data is in the form

of a CAD drawing, this process would be easy. But in cases where three

dimensional data of the object exist (after surface mapping an object by the use

of machine vision tect:.niques), generation of NC code could be laborious. This

5

is so, since the programmer wouldn't be in a position to tell what kind of

surfaces these represent. In such cases the need for a system that deciphers

this enom~01l_s__three dimensional data without making the process cumbersome

to the programmer is warranted.

This thesis addresses the issue of tool path generation after surface

mapping of an object has been conducted. It is basically an 11Reverse

Engineering11 application. The thesis will be dealing problem of defining surfaces

from X-Y-Z data for tool path generation with minimum human intervention. In

most CAM packages the user plays a crucial role in the manufacturing process:

defining the boundaries of the object, defining surfaces to be machined, the

machining sequence, etc .. This thesis attempts to relieve the programmer of

these cumbersome tasks. The thesis proposes a four step procedure for the

generation of tool path: 1) Data Reduction stage, 2) Geometric Data(shape

definition) Extraction Stage, 3) Surface Recognition Stage, and 4) NC Code

Generation Stage.

The related issues of surface mapping techniques will be covered in

chapter 2. The different methods currently used for obtaining topographical and

geometrical information of the objects surface will be dealt in detail. Chapter

3 will cover the principle, operational mechanism and components of laser

scanners, which is the target surface mapping technique to be used in the KSC

project. The four step procedure proposed for tool path generation and logic for

each of the four stages will be explained in chapter 4. Results of these stages

6

will be presented in chapter 5. The computer programs for the stages can be

found in the Appendices.

CHAPTER 2

SURF ACE MAPPING TECHNIQUES

Many ways exist for capturing the geometric information of a surface. An

obvious way of finding the coordinates of some random points on a surface is

to use a Coordinate-Measuring Machine (CMM). The object could be placed on

the table and by the use of a probe the coordinates of the surface can be

obtained. The limitations of a CMM are :

1) The size of the object that can be measured is restricted by the

size of the CMM table.

2) The accuracy of CMM's limits its use where dimensions have to

be measured within close tolerances.

3) The measurement of complex profiles may be impossible. This is

due to the fact that the probe may not be in a position to reach

sharp comers, grooves, peaks etc. Thus the CMM cannot measure

a surface to its minutest detail.

Most modem measuring systems are essentially optical. These techniques

include:

1) capturing a picture of the object. The image of the objects surface

is then analyzed through the use of image processing algorithms

to extract pertinent data. The output of such a process would be

7

8

geometric information of the objects surface.

2) projecting fringes on the objects surface. A picture of the distorted

_fringes on the objects surface is captured and stored as a frame on

a computer. Analysis of the fringe pattern results in the

topological information of the surface.

3) scanning a laser beam across the objects surface. The output is an

X-Y-Z representation of the object scanned.

Extraction of tridemsional information from images have proven to be useful in

medicine, geology, cartography, and military activities. The sciences invol_ved

are photograrnmetry and artificial intelligence. The former involves the

extraction of 3-D coordinates from images, the latter involves the automatic

interpretation of 3-D images.

This chapter gives an overview of methods for collecting surface-point

coordinate data with an aim to replicate these surfaces by machining.

Stereo-photoarammetry

The determination of surface geometries by measurements of central

perspective photographic projection is called photogrametry. This is one of the

earliest methods of recording the topography of both large areas of terrain

photograph from an aircraft or buildings and small objects viewed at close

range. In this technique two photographs of the terrain or object are taken by

cameras at nearby positions. The depth Z of points in the scene at position X,Y

9

in the plane of the photographs can be deduced from the photographs by

measuring the parallax of identifiable points in them. Three methods are

described }?~low:

1) Two photographs may be taken from different viewpoints giving

projected points r1, r2 in a plane which are sufficient to fully

determine the coordinates of real spatial points such as r. By

forcing the human eyes to receive simultaneously the

photographic image appropriate to each eye in real observation,

a mental perception of depth(z) dimension of a surface is forced

upon the brain. The procedure of observing and recording two

projections and their subsequent quantitative analysis is called

stereo-photogrammetry.

2) By a dEtvice in which shadows of a grating of alternate

dark(opaque) and light(transparent) "lines .. or bars are optically

projected onto the object and subsequently mapped directly and

seen as shadow fringes(Moire Technique- will be discussed later)

in one photograph. The need for double photography and

stereoscopic perception is eliminated.

3) For certain barrel-like objects, the ancient Grecian silhouetting

method of Dibutades can be effective, particularly when coupled

with modem video techniques. This technique will be described

in detail later on in this section.

10

Photographs are .. read.. by a skilled, specially trained operators of special

analyzing machines which are now obsolete. The output may be Z values at

orthogonal .rows and columns in X and Y (plan view coordinates) recorded on

computer compatible storage media.

This technique of stereo-photogrammetry is highly specialized and

requires the special machines to decipher information contained in these

photographs. However, the advent of charge-coupled diode (CCD) and other

form of light sensing arrays have replaced conventional photographs as

recording media. These new techniques of detecting light intensities enable

data to be fed directly to computer storage media.

Shadow Moire Contourography

This is a method that deduces depth of surface from one rather than two

photographs. Essentially it senses parallax, computes and plots contours of

equal elevation as fringes superimposed on the single photograph. When an

· optical grating of alternatively opaque and transparent bars is illuminated by

either a divergent or collimated beam of light, shadows of the opaque bars will

be cast onto a surface beyond the grating. If such shadows and the grating form

which they are projected are viewed simultaneously from a point not coinciding

with the source of illumination, so-called shadow moire fringes are seen. There

are many approaches to shadow moire contourography or moire topography.

The major applications of the moire method is in the measure deformation in

11

stress analysis.

UGtn' SOURCE

Figure 2.1 Moire Contourography using only one grating.

The Moire method has been successfully used to visualize surface

contours of large objects like airplane models or mannequins. In this set up, a

light source illuminates an object through a large equispaced plane grating in

front of the object and observes its shadow on the object through the same

grating (refer figure 2.1). Later, another practical technique was developed that

· did not use a large grating, instead, a shadow grating produced by projecting

a grating onto an object is observed through another grating (refer figure 2.2).

The 3D shape of a known object is found by the contour lines in the moire

image.

The Takasaki-Terada technique is used for tracing the changes in body .

shape following surgical operation and for anthropological research. Figure 2.3

shows the apparatus used in this technique. A screen of specially blackened

12

Figure 2.2 Moire Contourography using two gratings.

strings is tensioned within a strong frame. These strings are positioned by a

second frame providing a 11bridge11 for the strings. The strings form a grating of

uniformly spaced opaque bars. The frame of strings is mounted vertically in a

slightly inclined track in which it travels under gravity in a horizontal direction

normal to the vertical direction of the strings during photography. Alternatively

the frame may be driven by electric motors from side to side between limits as

·indicated in figure 2.3 . The subject or object is placed behind the screen and

illuminated by a high intensity point source lamp sited at an angle to the

normal to the plane of the screen. The lamp casts shadows of the strings upon

the human subject or inanimate object. Two lamps are used to give shadow

free projection on the surfaces. A centrally located 35mm format camera

photographs the screen and its shadows on the subject or object while the

screen is moving.

13

To summarize this technique- the X-Y-Z representation of an object is

obtained by projecting equally spaced fringes onto the object. A 2D picture is

captured by a_ charge couple device (CCD) and consequently digitized and

stored as a frame in a computer. The phase shift of the light fringes on this

image leads to the calculation of depth values for every point.

Figure 2.4 shows a schematic representation of the Moire technique.

Grating
frame

Subject

Grating casing

Translating
llllk=:d.-motor (for filtering)

(8)

Grating frame

(b)

Crossrail

Figure 2.3 Schematic diagram for the Takasaki-Terada technique.
(a) Side view of apparatus (b) Front view of apparatus
(Duncan and Mair 1983)

Silhouettes

The technique of silhouettes was used by Dibutades to carve the human

form from shadows of the model projected from a range of angular directions.

Provided the object is free from concave geometry, the rays form a shadow as

FRINGE PROJECTOR

TV MONITOR

REFERENCE
PLANE

Figure 2.4 Schematic representation of the Moire technique.

14

an orthographic projection form a cylindrical envelope of the surface for that

particular direction. Figure 2.5 shows a typical application for Silhouettes using

video recording systems. The shadow for a given angle of projection of light

may be digitized (by hand or automatically) and converted to virtual computer

stored image. The object can be rotated for a series of angular positions, each

of which will yield a silhouette for that position. This may be followed or traced

by a cylindrical cutting tool directed by computer-prepared instructions, to

produce the desired tubular shape at a specified angle of projection as

illustrated in figure 2.6.

A system has been devised for obtaining silhouettes of limbs, limb

remnants and the feet of real patients under clinical conditions. This system has

been demonstrated and proved using models and simulated arrangements.

Figure 2.5 Silhouetting by casting a shadow of a
surface-bound object in collimated light.
(Duncan and Law 1989)

Figure 2.6 The tracing of a silhouette for one
angular position by a cylindrical milling
cutter. (Duncan and Law 1989)

15

16

Beam-Scanning Methods

The latest modern methods of surface mapping employ lasers. The

methods that follow use lasers, X-Rays, etc. to capture geometric information . - ..

of the surface.

Laser Beam Scanning

In this technique the geometric representation of the object is obtained by a

scanning laser beam across a surface to be measured. The basic configuration

of a 3D laser scanning device consists of a laser light source which produces

a narrow light beam which is scanned across the object to be measured

through the use of a two dimensional mirror.

ylL
z

LASER

EiJ

X, Y, Z
COMPUTATION

Figure 2. 7 Basic configuration of a 3D laser scanner.

A lens collects the reflected beam and displays it on an Electro-Optical (E/0)

position sensor. The linear position of the reflected light along with the different

17

angles of deflection of the scanner are used to calculate the 3-D coordinates of

a point on the objects surface. Figure 2.7 depicts the basic configuration of a 3D

laser scanner d_evice. Chapter 3 describes in detail the components and
~ - ..

operational mechanism of laser scanners.

Computed tomography and CAT scanning

The methods introduced above may be described as "superficial", i.e. measured

from observing points above the surface or from outside of any solid enclosed

by a surface. Such methods may encounter difficulties such as the shadow

effect due to the configuration of the object.

A new principle of surface definition which overcomes some of the

difficulties is the Computer Tomography method which was invented by Sir

Godfrey Hounsfield, a l'J abel Prize winner. This method employs the geometrical

idea of sectioning a closed surface by imaginary parallel, closely spaced "cuts"

through the surface with the aid of X-ray scanning and large scale matrix

inversion in a mainframe or mini-computer. Most large hospitals now have such

systems for reconstructing and thus inspecting internal organs and bones of the

human bodies of live patients without operation as formerly required. The

numerical data used for this pictorial reconstruction can also be used for

machining replicas of those organs and bones.

Figure 2.8 shovvs a typical hospital Computed Axial Tomography (CAT)

apparatus. The patient lies on a couch with his or her head inside an annular

18

CRT !ERMINAL

COWPUTER

WEMORY

CA~ SCANNER

Figure 2.8 A CAT scanner in hospital use. (Duncan and Law 1989)

aperture as illustrated in the diagram. A X-ray gun propagates pencils of X-rays

through the skull and through the axis of the aperture to a diametrically

opposite receptor which detects the strength of each pencil after some of it has

been absorbed by all the various body tissues which it has traversed. The beam

is arranged to traverse systematically in many incremental angular directions

in a plane normal to the axis. When a full rotation of beam direction has been

completed, the rotating beam is moved axially to the next, neighboring plane,

usually lmrn or so away. Hounsfield discovered that different tissues absorb

different amounts of X-ray energy. The measure of that capacity for absorption

19

is now the Hounsfield Number.

When Hounsfield Numbers are known the boundaries of bones, for

instance, beipg_dense and strong absorbers compared with surrounding tissue,

can be deduced in a coordinate frame of reference. This detection of Hounsfield

Number differences is so sensitive that boundaries between two soft tissues of

only slightly different Hounsfield Number can be detected; and so a kidney, for

instance can be "extracted" and imaged for examination. The coordinates

involved in image reconstruction can also be used for replication by machining

of bones and organs for bone replacement prosthesis.

illtrasonic time of flight technique.

When a short ultrasonic pulse is transmitted towards the object, some of its

energy is reflected back to the transmitter. If the time interval between the

transmitted and received pulses is measured, the distance (d) between the

source and object is obtained from

2d = v. tc

where v. is the speed of sound under given pressure conditions and tr is the

time of flight of the pulse.

In order to avoid signal attenuation in a practical system, it is not a

single pulse, but rather a set of pulses at different frequencies that is

transmitted. Commercial systems also provide a correction factor for speed-of

sound fluctuation under varying pressure conditions. An interesting property of

20

ultrasonic rangefinders is that the baseline separation between emission and

reception is null since they are performed by the same unit. This eliminates the

shadow effe.cts - encountered in all the systems with nonzero baseline

separation, for example the laser beam scanning technique.

However, it is difficult to obtain a well focused ultrasonic beam pattern.

Another drawback of ultrasonic ranging is that for some incidence angle of the

pulse on the objects surface, very little energy is reflected and the return pulse

is lost in detector noise. This phenomenon is similar to specular reflection of

light on a mirror-like surface.

From the above discussion it is clear that the technology of using

machine vision systems for manufacturing does exist. However the choice of

technique depends on the application and the environment in which it has to

be used. These techniques of surface mapping were studied and evaluated for

the cavity digitization study for the NASA-UCF Project. The Fringe Moire and

the Laser scanning techniques were the two techniques studied in depth. The

Moire technique had limitations such as: bulky equipment, lot of time needed

for setup and processing the image and as well as the accuracy with which the

object could be measured. The laser beam scanning technique has the

characteristics that make it the most promising technique for an industrial

environment despite some limitations in its use. This technique will be

discussed in detail in Chapter 3 that follows.

CHAPTER 3

LASER BEAM SCANNING

The industrial environment adds constraints and limitations, such as

difficult environment, cost, compactness, etc. to the applicability of usual

techniques for surface mapping. On the other hand, the proximity of objects

allow active methods to be used in order to get 3-D data much more easily than

passive techniques, which involves bringing the object to the device or moving

the light source by a stationary object.

Active methods where a beam of light, such as a laser beam is

superimposed to the naturally lightened scene simplify a lot of signal

processing to be done in order to recover distance information. Besides this

advantage, the use of a laser beam for surface mapping provides a number of

unique advantages. The brightness of the source ensures a good signal-to-noise

r<;l.tio in most applications. If needed, the ambient light can be filtered out

without any significant reduction of the laser light itself. This is because the

laser light is emitted over a very narrow bandwidth. The most significant

advantage is that most laser sources can be adjusted to emit in a low order

Gaussian mode. This property gives maximum light power and minimum

divergence. This is the basic advantage of lasers for surface mapping. This

means that all the power available at the propagation remains in focus for an

21

22

extended length along the range axis. This is not the case for conventional light

sources, where for an extended depth of focus along the range of axis, the

aperture of t~e . incoherent light projection system must be reduced, which

considerably lowers the amount of light available.

The use of the laser scanning technique for surface mapping of a cavity

on the orbiters body has been proved to be one of the most promising. This

technique has been described briefly in chapter 2, however it is addressed in

detail in this chapter. This chapter will cover principle, operational mechanism,

types of polygonal mirror scanners, mechanisms of rotating polygonal mirr_ors,

and configuration of polygon/motor assembly.

Active Triangulation

Figure 3.1 shows the basic elements of a system using active triangulation for

surface mapping(scanning).It consists of a light source(S), a scanning

mechanism(M) to project the light spot onto the object surface and a position

sensor(D) with a collecting lens(L) looking off-axis for the light spot. Distance

measurement is done by trigonometric algebra applied to the projection

direction (scanner angular position) and the detection direction made by the

light spot position on the sensor with the principal point of the collecting lens.

PROJECTION

~---
AXIS

. FIELD OF
i VIEW i
i-4 ,.....;

M ! !

r-:::t--+--..;_l_f__ bBJECT

AXIS

-

i
S • UGHT SOURCE
M ·SCANNING MECHANISM
0 • POSmON SENSOR
L • COUECTING LENS

Figure 3.1 Basic laser scanning arrangement by triangulation.

Synchronized Scanning.

23

One property of the arrangement shown in figure 3.1 is that the

measurement resolution can be increased by increasing the off-axis angle(9) but

this is done at the expense of compactness and field of view. Another drawback

is a shadow effect that increases with the angle. This is related to the fact that

some part seen by the projection mechanism is not seen by the position sensor.

The shadow effect (refer figure 3.2) prevents continuous profile recording and

is more serious as the off axis angle increases.

Synchronized scanning eliminates the above drawbacks. The basic idea

is to synchronize the projection and detection in a way that the detected light

spot on the position sensor keeps it spatial position stable when the projected

beam is scanning a flat surface (scanning being parallel to the surface). The

24

OBJECT

Figure 3.2 Shadow effects.

implementation of a synchronized scanning mechanism can be done

electronically or geometrically.

Figure 3.3 shows an arrangement to electrically synchronize two

galvanometer driven motors G1, G2. In this case the source signal is a ramp,

then the output signal from a position sensor seen on the oscilloscope provides

a direct profile reading for which the time axis is proportional to displacement

along the X axis. Amplitude of the deflection is proportional to departure of the

object surface from the reference plane. One interesting feature of that

arrangement is that the position of the reference plane can be set electronically

by modifying the phase relationship of the two excitation signals. In order to

get a surface profile measurement a third galvanometer driven motor(indicated

by G3 on figure 3.3) is used to deflect perpendicularly to the page both the

projected and received beams.

SIGNAL
SOURCE

CONTROLLER 1
G1

G1, G2, G3 • GALVANOMETER
DRIVEN MOTORS

S - LIGHT SOURCE
0- DETECTOR
L - LENS

25

lz
0 0
------;X

Figure 3.3 An example of an electrically synchronized scanner.(Rioux 1989)

Figure 3.4 shows an arrangement that is geometrically synchronized. Both

mirrors F 1 and F2 are fixed when the device is an operation. Angular

adjustment of those mirrors sets the position of the reference plane in space.

Synchronization is realized using a pyramidal rotating mirror(P). By geometrical

analysis, synchronization can be achieved by using two opposite facets of the

scanner. The arrangement is simpler to implement than electrical

synchronization and is also more precise and stable. Another feature is the

ability of rotating mirror scanners to rotate at very high speed (approx 10,000

lines/s) compared to galvanometers (approx 100 lines/s).

D· DETECTOR
S- SOURCE
L • LENS
F1, F2 • FIXED MIRRORS
P- PYRAMIDAL MIRROR
® - ROTATION OF ~

OBJECT SURFACE

REFERENCE PLANE

26

Figure 3.4 An example of a geometrically synchronized scanner.(Rioux
1989)

As seen from figure 3.4, the major components of the scanning

arrangement are: polygonal scanner(mirror), motor for rotating this mirror, light

source and a position sensor. A three dimensional setup of the arrangement is

shown in figure 3.5.

Light Source

Although any light source can be used, a laser beam has many

advantages over conventional ones:

interferometric filter can be used to improve signal to noise ratio

at detection.

brightneBs is orders of magnitude higher than an incoherent

MiTOf ---------'

Scannmg an~;le

A~.,_ _______ Focusing lens

~-- ceo Linear A/ray

.w.---- L..ens

-------- Mauuringrange

27

Figure 3.5 11Skeleton11 of a laser scanner showing components.(Sanz 1988)

compact devices (specially diode lasers).

cheaper.

very large depth of field due to spatial coherence.

Position Sensors

There are basically two types of position sensors, these are uni

dimensional (or linear devices) and bi-dimensional sensors. A synchronized

approach to scanning can allow the use of a linear device for both, line profile

and surface profile measurements. There are three main types of such sensors.

The first one is an analog device referred to as lateral effect photodiode

(LEP). It is made of a photodiode on top of a resistive layer. Interesting features

of the device includes:

the response time that can be as low as 500ns for small devices.

low co~ sensor.

insensitivity to large amounts of defocussing.

28

the signal output amplitude is proportional to the centroid of the spot.

The second type is the linear array of discrete photoreceptors (photodiode

arrays, CCD, CID, etc).The major advantages of these devices are:

high sensitivity.

very high spatial resolution.

very good geometrical precision.

such a device is required for mapping large volume scenes or distant

objects. For example, a typical arrangement using a low power laser to

map 3-D coordinates of a scene using a LEP sensor will be limited to

objects no more distant than about one meter from the camera. In

contrast a CCD linear array can map objects as distant as 10 meters.

The disadvantages of these devices are:

more expensive than lateral effect diodes(LEP).

a full line scan is needed to get position information.

much more signal processing than LEP is needed to extract position

signals.

they are limited in dynamic range due to sensitivity to defocussing.

A third type is the dual element photodiode. This device is useless with

29

usual triangulation geometry, but can be used advantageously with

synchronized approaches. It consists of two photodetectors located side by

side. It has the_ ~d.'Lantage of having a bandwidth of more than 30 MHz. Signal

processing circuitry required to cope with such a speed is the limiting factor for

this device. It is also sensitive to geometric distortion of the spot and has a very

small displacement range. Nevertheless, its low cost makes it attractive for the

development of a 3-D camera.

Scanners

Choice of scanners to be used is application dependent. Parameters to be taken

into consideration are: scanning speed, resolution, random access operation, no

moving parts requirement and cost. Scanners can be grouped into three types:

-galvanometer driven.

-rotating polygon mirrors.

- acousto-optic devices.

Galvanometer driven and acousto-optic devices can be addresses at

random with a typical response time of 1ms and 10 J.LS. Acousto-optic devices

have the advantage of no moving parts. However, they are more expensive and

limited in resolution. Another drawback of acousto-optic devices is the difficulty

to get large scan angles.

Polygon mirrors are a good choice for very high speed requirements, but

they cannot be addressed randomly. Typical speeds are 2 to 10 thousand lines

30

per second with 2 to 5 thousand resolved spots per line. Scan angles cover

typically 20 degrees to 120 degrees. Polygonal scanners will be dealt in the next

section.

Polygonal Mirrors

Most laser scanning systems designed to date use a polygonal mirror to scan

the laser beam on the objects surface. The polygonal mirror is the heart of the

laser scanning system. The primary advantages of polygonal mirrors are speed,

the availability of wide scan angles, and velocity stability. These scanners are

usually rotated continuously in one direction at a fixed speed to provide

repetitive unidirectional scans which are superimposed in the scan field.

A common method of producing rotation is to fasten the polygonal mirror

directly to an electric motor shaft. The combined inertia of the polygon and

motor rotor assembly contribute to the rotational stability. The relatively high

inertia of polygons and drive motors on the other hand render them impractical

for application requiring rapid changes in scan velocity or start/stop formats.

Rotational speeds upto 120,000 rpm are practical for altemating

current(AC) motors. For applications where rotational rates exceed the

capability of electrical motors, gas turbines provide an alternative. Rotational

speeds in the range of 90,000 - 1,000,000 rpm can be obtained using

compressed-air.

There are basically four types of polygonal scan mirrors which have been

31

There are basically four types of polygonal scan mirrors which have been

developed and used over the years. These are classified based on their

shape: regular ??.~~~ons, irregular polygons, inverted polygons and pyramidal

polygons.

' YAXIS \ --__,.

X AXIS

Figure 3.6 Synchronized scanning arrangement
using a pyramidal polygonal mirror.
(Boulanger 1986)

Mounting of Polygonal Scanners(Mirrors).

A typical mounting method is to fasten the polygon mirror to the shaft of

the motor which is used to rotate it. In this case the datum surface of the

32

quality surfaces so that when the two are firmly held together, distortions do

not occur. There are two basic configurations of polygon/motor assembly. These

are: (1) Cantilevered-and (2) Captured designs. These terms refer to the location

of the polygon on the motor shaft relative to the bearings.

The .. Cantilevered Desjgn ...

The cantilevered approach (refer figure 3. 7) is commonly used for low speeds

(10,000 rpm or less) and/relaxed tracking tolerances (1 arc minute or greater).

The primary advantage of this design is its adaptability to the use of standard

commercial motors.

The main disadvantages of this design type are:

1) Limited stiffness. The output shaft must be small enough to go

through the bearing.

2) Difficult hearing replacement. The polygon mounting hub is

usually interference fitted and must removed to replace the

bearing behind it.

3) Limited dynamic balancing capability. The motor end of rotor is

inaccessible after the polygon is installed.

The .. Captured Design .. .

The captured approa.ch (refer figure 3.9) is recommended for application

requiring high speed and/or high tracking accuracy. In this approach the center-

33

YGON MOTOR STATOR

HOUSING

MOTOR ROTOR

MOUNTING HUB

Figure 3. 7 Cross-section of 11Cantilevered11 polygon/motor construction.

to-center distance between bearings is increased, thereby reducing' the

contribution of bearing runout due to shaft angular runout. A major benefit of

the captured design is that the entire rotor assembly and bearings may be

assembled outside the housing and two-plane dynamically balanced.

Additionally, bearings may be replaced without having to remove the polygon

mounting hub.

The disadvantages of the captured design are :

1 Lack of adaptability to standard commercial motors.

2 Rotor must be removed to install or remove polygon.

The technology of laser beam scanning has long being used in the

welding industry and in the field of robotics. In welding, the laser beam guides

34

I
OPTICAL OPENING

MOTOR STATOR

HOUSING

MOTOR ROTOR

POLYGON UNTING HUB

Figure 3.8 Cross-section showing .. captured .. polygon/motor construction.

the welding torch along the center line of the weld line. In the field of robotics,

the laser scanner has been used for guiding the robot to carry out tasks after

identifying parts in the scene. Besides these applications, the technology has

great potential especially in manufacturing, conservation of artifacts, and

inspection. The output after scanning or surface mapping is an X-Y-Z

representation of the object. The next section of this thesis deals with the issue

of generating the NC code for the manufacture of the object scanned. The

proposed four step procedure is discussed in detail in the chapters to follow.

CHAPTER4

TOOL PATH GENERATION

From the previous chapters, it is evident that most surface mapping techniques

generate a huge amount of point data. Typically an application in manufacturing

is to fabricate a 11replica11 of a mapped object. This may be accomplished by

generating a tool path for material removal by a tool, for example a milling

cutter. For the generation of tool path or NC code, only a few points are needed.

For the case of a plane, only four points are needed. We propose here a four

step procedure for the generation of tool path. In the case of complex objects

where surfaces may take any shape an extension of the method proposed is

warranted. More complex routines for curve fitting or surface fitting may be

employed. However the flow of the process would be the same. This algorithm

described for the proposed stages is only limited to objects of planer surfaces

and ~raight edges, however it could be modified to handle a variety of objects

of complex shapes and configurations.

To test this four step procedure a sample part (refer figure 4.1) was

considered. A point data file was generated for this part which provided for the

necessary scan data and the systems algorithms were used to validate the

proposed technique. This section introduces the four steps and gives a

description of each step.

35

36

The procedure includes four consecutive: 1) Data Reduction, 2) Geometric

Data Extraction I Shape Definition, 3) Surface Recognition, and 4) NC Code

Generation. The .d~:tg reduction stage manipulates the data into a manageable

number of points. A geometric data extraction module identifies what these

points represent. This serves as an input to the surface recognition module that

identifies what kind of surface it is, i.e. planer, taper, or edge. A Numerical

control (NC) program for the tool path is then generated for either the

fabrication of the object or its die for its mold. The algorithm could be modified

to handle a wider range of geometric entities.

TOOL PATH GENERATION SYSTEM

A prime purpose for surface mapping of an object is to use the data for

manufacturing the object or a die for its fabrication. Scanning may be done

using any one of the methods described in chapter 2. The data generated after

scanning is an X, Y, Z representation of the surface or object. The next stage

could be to use this data for generating a NC program for machining the object

or its die. Translating data points resulting from scanning into a NC program is

not an easy task. Data has to go through several algorithms/routines before its

geometric configuration is identified. The algorithm presented here is an

attempt to automate a process traditionally handled through user interface. The

human identifies surfaces, planes, etc. and critical dimensions. The algorithm

described in this section is for planer surfaces, where a minimum of three or

37

more points are needed to define a plane. These planes are then used to define

boundaries and edges. The algorithm developed and an explanation of the code

(C Language) for ~~ch of these stages follows. The expanded version to handle

a variety of configurations has being studied and is proposed in the chapter 6.

Complex cases where surfaces with varying curvatures require previous

knowledge about the surface characteristics, so that the proper algorithm will

control the tool motion. A major benefit of the surface mapping to tool path

algorithm is its elimination of human labor in generating NC code.

The surface mapping to tool path algorithm developed is for a simple

rectangular object with planer surfaces and straight line grooves. The object in

figure 4.1 is used for demonstration of the algorithm. The following assumptions

need to be considered:

1) Surfaces do not have a gradient in the any direction.

2) The variation of surface depth is only in the Z direction.

3) The scanning intervals in the X andY are predefined.

4) The number of scanning points per line is known.

The data obtained after surface mapping has to be analyzed and presented in

a format which is acceptable for a CNC machine. This involves the following

stages:

1) Data reduction.

2) Geometric data extraction(shape definition).

3) Surface recognition.

38

4) NC code generation.

Figure 4.1 Sample part.

Figure 4.2 is a schematic representation of the four stages. The data reduction

stage reduces the vast amount of data generated to a manageable amount

which will suffice for NC code generation. This forms the input to the geometric

data extraction module. The purpose of this stage is to determine what these

points represent, that is whether these points represent a line, arc, circle, or

edge: The output of this stage serves as an input to the surface recognition

module. This module determines the relationship between the geometric

entities identified in the previous stage. In the NC code generation module the

NC code is generated based on the type of the surface feature that have been

identified. These stages are described in detail in the following sections.

39

! DATA FILS

' STAGE 1 I DATA REDUCTION!
MODULE ,.

- - I REDUCED DATA FILE l
t

STAGE 2 GEOMETRIC DATA
EXTRACTION MODULE

+
I GEOMETRIC DATA FILE I .,

STAGE s I SURFACE RECOGNITION
MODULE I

~
I SURFACE FEATURE FILE I

t
STAGE •

I NC CODE GENERATION I MODULE

1
[NC coDa

Figure 4.2 Four step procedure for NC code generation.

DATA REDUCTION STAGE

An enormous amount of data is generated after scanning. Analysis of this

data (obtained after sending a test panel to one of the promising vendors)

revealed that the object was scanned at intervals relatively close to each other.

This generated an amount of data in excess of that needed for the tool path

generation. The folloWing options are available :

1) Digitize only at critical points. Thereby limiting the points

necessary for the generation of tool path statements.

2) Reducing the data to a reasonable amount. This would mean that

points in the data file would be analyzed to determine if they were

a part of a line, curve, etc.

40

This would include analysis of the X, Y, Z points contained in the data file. A

description of the proposed algorithm for data reduction and stages leading to

generation of NC cqgaare described in the following sections. Figure 4.3 shows

the flowchart for this stage. The steps involved in the data reduction algorithm

include:

1) Create a record for each scanned line,

2) Consider the first point- P[i], from the data file. This point will be used

as a reference point.

3) Take the second point- P[i+1].

4) Compare X[i] with X[i + 1] or Y[i] with

Y[i+1].

5) If X[i] = X[i + 1]

or

Y[i] = Y[i+1]

Then

·compare Z[i] and Z[i+1].

6) If

Z[i] not = Z[i + 1]

retain P[i].

If not go to the next point.

7) Consider P[i + 1] (if P[i] has been retained), and compare it with the next

point. Repeat steps 5, 6, and 7.

41

A record is created for each scanned line. The result of this data

reduction stage is a reduced data file of a manageable size. This file then serves

as an input forth~ _ge__pmetric data extraction module.

REDUCED
DATA FILE

HOUSEKEEPING :

* OPEN OUTPUT (REDUCED DATA) FILE

* OPEN INPUT FILE (AFTER SCANNING)

* CREATE RECORDS FOR EACH LINE

.--------,
J-J+1

OUTPUT

NEW INT
P[i+1] OF SCANNED

LINE L{j]

y *N•TOTAL NO.
OF PTS/LINE

..,._ ____ --i P[l]

Figure 4.3 Flow chart of the data reduction stage.

42

GEOMETRIC DATA EXTRACTION I SHAPE DEFINITION STAGE

As seen in figure 4.1, the sample part selected for testing the validity of

this four step pro~~~we has a simple configuration. All the surfaces are planer

in nature. For this sample part this stage does not have a significant role to

play. However, if at all the four step procedure has to be tested for other parts

having complex geometry, this stage will play a crucial role in defining a

surface from the humongous amount of data generated after surface mapping.

For complex shapes, the data reduction stage would not result in a file of

noticeable reduction in amount of raw data. For complex shapes, the surfaces

would have to be defined through the use of curves and surface fitting

techniques. Presented in this section are some of the theories that could be

employed for defining surfaces of complex geometry. These theories will form

the backbone of algorithms for modifying the four step procedure to handle

complex shapes in the future.

Curves and Surface Fitting Techniques.

This section discusses the various methods and theories for defining

surfaces with the ultimate goal of defining the object and using this information

in any CAM system. Normally it is the part programmer who determines the

cutting conditions - cutting speed, feed, coolant, etc. by means of tables and

charts, and by making the necessary assumptions on the machinability of the

material to be used. The curves and surfaces produced by means of numerical

43

control may be classified in three categories:

(a) Curves and surfaces made up from the juxtaposition of segments

belongipg to mathematical curves and surfaces. . - .

(b) Non-mathematical curves and surfaces obtained by fitting them to

experimental points, and which must be reproduced within strict

tolerance limits.

(c) Non-mathematical curves and surfaces, the production of which

requires adherence to very strict tolerances.

The majority of shapes of mechanical parts are found in the first categ?ry.

Surfaces consists of the plane, the cylinder and cone of revolution, the sphere,

the torus, the quadratic surfaces and some ruled surfaces.

The second category comprises of all the surfaces obtained by fitting

after experimentation. They are for example the shapes of ship hulls, the

fuselages and wings of aircraft, blades of turbines, etc. are a few of the shapes

that belong to this category. These surfaces are purely experimental, and

cannot be interpreted a priori except by measuring coordinates on a close grid

formation.

The last category is made up of surfaces, such as automobile-body

shapes which are created in a purely intuitive manner to satisfy aesthetic

notions. Their reproduction is not liable to such strict tolerances as the surfaces

of the preceding category.

The general problem divides into two: according to whether a curve or

44

a surface is to be produced. A curve segment is a point-bounded collection of

points whose coordinates are given by continuous, one-parameter, single-valued

mathematical funC?tJons of the form:

x = x(u) Y = y(u) z = z(u).

The parametric variable u is constrained to the interval u e [0, 1], and the

positive sense on a curve is the sense in which u increases. The curve is point

bounded because it has two definite end points, one at u=O and the other at

u=l.

Bezier identified the fundamental property of parametric curves: their

shape depends on only the relative position of the points defining their

characteristic vectors and is independent of the position of the total set of

points with respect to the coordinate system in use. This is an essential

characteristic for many applications, such as CAD/CAM. modelling. In general,

to transform an axis dependent curve, one must compute the coordinates of

every point required in the original system, then transform each into the new

system. For axis-independent curves, it is sufficient to transform the points

defining the characteristic vectors from one system to another. A few important

curve and surface defining methods are presented below.

Spline Curves

The spline curve is perhaps the single most important curve in both the

aircraft and shipbuilding industries. A drafting tool called a spline is a strip of

45

plastic or other material that is flexed to pass through a series of key design

points (control points) already established on a drawing. Weights called ducks

hold the spline in p~~ce while the draftsman uses the spline as a guide to draw

a smooth curve formed by it through the design points. A spline curve can be

drawn through any set of n points that imply a smooth curve.

A spline behaves structurally exactly like a beam, with bending

deflections forming into a smooth curve. As long as the distribution of control

points the material and the stiffness of the spline allow the spline to deform

elastically, any spline will from the same curve for the same set of control

points. This curve is often called an elastic curve, or minimum energy curve.

Bezier Curves

Some curve defining techniques interpolate a given set of points, which

means that the curve produced passes exactly through the points. An

alternative approach defines a curve that only approximates or approaches the

given · points. Interpolation techniques have certain disadvantages when

incorporated into an interactive CAD program. Specifically, this is so because

one does not get a strong intuitive feel for how to change or control the shape

of a curve. For example, if we try to change the shape of a spline interpolated

curve by moving one or more of the interpolated points, we may produce the

unexpected. It is much easier if we can control curve shape in a predictable

way by changing only a few parameters. Bezier's curve partially satisfies this

46

need.

Bezier curves were formulated by P. Bezier of the French automobile

company- Renaul~. _The result of Bezier's work was the UNISURF system, used

by Renault since 1972 to design the sculptured surfaces of many of their

automobile bodies. At the heart of the UNISURF system are the curves and

surfaces that bear his name. Bezier formulated the curve with the principle that

any point on a curve segment must be given by a parametric function of the

following form:

p(u) = :E P1 ~(u) u € (0, 1] (1)

where the vectors p 1 represent the n + 1 vertices of a characteristic polygon

(refer figure 4.4). These vertices are also called control points.

Bezier laid down certain properties that the ~(u) blending functions must have.

1) The functions must interpolate the first and la~ vertex points, that

is, the curve segment must start on Po and end on Pn· It is upto

the user to control the starting and ending points of a Bezier

curve.

2) The tangent at Po must be given by p 1-p0 , and the tangent at Pn by

Pn-Pn-l· This gives the user direct control of the tangent of the

curve at each end.

3) This requirement is generalized for higher derivatives at the

curve's end points. Thus, the second derivatives at Po must be

determined by p 0 , p 1, and p 2 . In general, the rth derivative at an end

P1
__ o-___

---- ----------/ tr-- p3
- .. - /

/
/

I

Po

Figure 4.4 Bezier curves.

p1
/,q

/ \
/ I

/ \
/ I

/ I
// \

/ I
/ I

// \
/ I

/ \
/ I

h/. \

.......... II Pa ,
Po ' I

................ \
........... \

' -()

47

P2

point must be determined by its r neighboring vertices. This

allows the user unlimited control of the continuity at the points

between curve segments of a composite Bezier curve.

4) The functions ~(u) must be symmetrical with respect to u and (1-

u). This means that one can reverse the sequence of the vertex

points defining the curve without changing the shape of the curve.

In effect, this reverses the direction of parametrization.

Bezier chose a family of function called Bernstein polynomial to satisfy these

conditions mentioned above. He originally chose a form of vector representation

that used the sides of the characteristic polygon. The function Bezier selected

depends on the number of vertices used to specify a particular curve.

Equation 1 becomes

p(u) = :E Pt B1n(u)

where B1n(u) :-. C(n,i) u1 (1-u)n-t

and C(n,i) = n! I i! (n-i)!.

48

U€ (0,1) (2)

The Bezier curve is widely used as a modeling technique in a CAD system. The

properties of the Bezier curve that make it an unusually effective interactive

design tool are listed as follows:

1) The curve has end points in common with the polygon (the other

vertices are usually not on the curve).

2) The slope of the tangent vectors at the end points equals the

slope of the first and last segments of the polygon.

3) The curve lies entirely within the convex figure defined by the

extreme points of the polygon (often called the convex hull).

4) Bezier curves are variation diminishing. This means that they

never oscillate wildly away from their defining control points.

5) When compared to conventional polynomials or splines, all that is

needed for a Bezier curve is the data points.

6) The parametric formulation allows a curve to represent multiple

valued shapes.

49

B-Spline Curves

Most curve defining techniques do not provide for local control of shape.

Consequently locB:I _c:)langes (for example, a small change in the position of a

point on a spline curve or of a vertex of a characteristic polygon of a Bezier

polygon) tend to be strongly propagated throughout the entire curve. This is

sometimes described as a global propagation of change. The B-spline curve

avoids this problem by using a special set of blending functions that has only

local influence and depends on only a few neighboring control points.

B-spline curves are similar to Bezier curves in that a set of blending

functions combines the effects of n + 1 control points p 1 given by

n

p(u) = L Pi Ni,k(u)
i=O

The equation of a bezier curve is
n

P(u) = ~ p B L..J i i,n(u)
i=O

(3)

(4)

By comparing the equation of the Bezier curve and the B-spline curve, the most

important difference is the way the blending function N1,k<u> are formulated. For

Bezier curves, the number of control points determine the degree of the

blending function polynomials. For the B-spline curves, the degree of these

polynomials is specially controlled by a parameter k and usually independent

of the number of control points. The B-spline blending functions are defined

recursively by the following expressions:

(5)

50

and

(6)

where k controls the degree (k-1) of the resulting polynomial in u and thus also

controls the continuity of the curv~. The t 1 are called knot values. They relate

the parametric variable u to p 1 control points. The range of the parametric

variable u is

0 ~ u ~ n-k+2

B-spline curves and Bezier curves have many advantages in common: Coi_ltrol

points influence the curve shape in a predictable, natural way, making them

good candidates for use in an interactive environment. Both types of curves are

variation diminishing, axis independent, and multivalued and both exhibit the

convex hull property. However, it is the local control of curve shape possible

with B-splines that gives the techniques an advantage over the Bezier

technique, as does the ability to add control points without increasing the

degree of the curve.

Surfaces

The simplest mathematical element to model a surface is a patch. A patch is

a curve bounded collection of points whose coordinates are given by

continuous, two-parameter, single valued mathematical function of the form

x = x(u, w) y=y(u, w) z=z(u,w)

51

The parametric variables u and w are constrained to the intervals u,w e (0,1].

Fixing the values of one of the parametric variables results in a curve on the

patch in terms of _tl,le_other variable, which remains free. By continuing this

process first for one variable and then the other for any number of arbitrary

values in the allowed interval, the result is a parametric net of two one

parametric families of curves on the patch such that just one curve of each point

p(u,w).

Associated with every patch is a set of boundary conditions (refer figure

4.5). There are the four comer points and four curves defining its edges, the

tangent and twist vectors. For any ordinary patch, there are always four and

only four comer points and edge curves. This is due to possible combination of

the two parametric variables. The comer points are found by substituting these

four combinations of 0 and 1 into p(u,w) to obtain p(O,O), p(O,l), p(l,O), and

p(l,l). The edge or boundary curves are functions of one of the two parametric

variation. These can be obtained by allowing any of the variables to remain free,

while fixing the other to its limiting values. This procedure results in four and

only four possible combinations yielding the functions of the four parametric

boundary curves p(u,O), p(u,l), p(O,w), and p(l,w).

A major advantage of the parametric representation of surfaces is the

complete control one has over the domain of a surface modeling operation

simply by an appropriate choice of the parametrization scheme. By carefully

specifying subsets of a particular domain lllmtn• llmaxl x [wmtn• WmaxL one can

w-o -=1

Figure 4.5 A parametric surface patch.

pU(u., w.)
I J

52

readily define certain sections of a surface. This feature is useful when a surface

is composed of several patches. Considerable amount of work in the area of

surface description has been done over the past decade. To date there have

been over 106 different methods of surface representation methods developed

so far. The section to follow will describe in brief some of the systems that have

been developed. It may be noted that most of the systems of surface

representation to date use some of the above mentioned theories.

Bezier Surfaces

Just as the Bezier curve has a characteristic polygon the Bezier surface has a

characteristic polyhedron. Points on the Bezier surface are given by a simple

53

extension of the general equation for points on a Bezier curve.

m n

P(u,w)=~~pB B _£.J L- ij i,m(u) j,n(w)
- i=O j..O

u,w €[0,1] (7)

where p 1i are the vertices of the characteristic polyhedron that form an (m + 1)

x (n+1) rectangular array of points, and B1,m(u) and BJ,n(w) are defined as curves.

The matrix P contains the position vectors for points that define the

characteristic polyhedron and thereby the Bezier surface patch. Figure 4.6

illustrates these points, the polyhedron, and the resulting patch. In the Bezier

formulation, only the four comer points P11 , P41 , P14, and p44 actually lie on the

patch. The points P21 , P31 , P12, P12, P13, p42, p43, P24, and P34 control the slope of the

boundary curves. The remaining four points p22, p32, p23, and p33 control the

slopes along the boundary curves.

p34

Figure 4.6 A bezier surface. (Bezier 1973)

54

B-Spline Surface

The formulation of a B-spline surface follows directly from that of B-spline

curves. This . r~~c;_tionship is analogous to that between Bezier curves and

surfaces. Further more, the B-spline surface, like the Bezier surface, is defined

in terms of a characteristic polyhedron. The approximation is weaker the higher

values of k and 1. Thus,

m n

P(u,w) = "" "- p N N LJ LJ ij i)(u) j,l(w)
(8)

i=O j=O

The p 1i are the vertices of the defining the polyhedron, and the N1,k(u) and Ni.1(w)

are the blending functions of the same from as those for B-spline curves (refer

equation 3) The degree of each of the blending function polynomials N1,k(u) and

Nj,k(w) is controlled by k and 1 respectively.

SURFACE RECOGNITION STAGE

Three pieces of information are important for NC part programming

application:

(1) the location of each surface feature,

(2) the type of each surface feature, and

(3) the relationship between each pair of surface features.

The next step after determining which geometric shape the points

represent is to determine the relationship between these shapes. These lines

represent an edge or are a part of a surface which might be represented by

55

three or more points. Figure 4. 7 shows the flowchart for this stage.

The structure of the algorithm for determining the relationships between the

entities is described below: -. -

1) Consider the first set of points contained in the first record - P, (that

represent the first segment of the first scanned line). Compare it with

the first set of points of second record- P+1, of the second scanned line.

2) The slopes between these points are then computed. If the slopes are

equal, then this could be taken to be a planer surface. If the slopes are not

equal, then a change in surface orientation is recorded, i.e. taper, convex, etc.(

not yet considered).

3) If the slopes of the two lines are equal then a surface is recorded which

can be represented by these four points.

4) Steps 1- 3 are repeated for each segment within every scanned line.

5) The relationship between surfaces should be stored in the order in which

they are recognized. These will be called in the same order for NC code

generation.

6) Each stored surface is given a code as an identification, i.e. 1 -for planer,

2 - for taper, etc .. This data forms an input for the NC part program

generation algorithm which is described below. This data file is referred

to as the surface feature file.

56

I START I

--
I REDUCED DATA FILE l

roy

IINITIAUZE P-O,TN,1 l

" I NEW RECORD : P+1l

IF y
P+1-TN ,.

N
~

COMPUTE SLOPE OF LINES
IN RECORD : P & P+1

N IF REFINE
- DATA SLOPE AR

MODULE EQUAL

y

"
DEFINE A SURFACE WITH
POINTS CONTAINED IN
RECORDS : P & P+1

ASSIGN VALUES (K) TO SURFACE
1 ·PLANER, 2 ·TAPER ETC.

!SAVE IN SURFACE FEATURE FILE I -- •
I STOP I

Figure 4.7 "Flowchart of the surface recognition stage.

57

NC CODE GENERATION STAGE

Surface orientation and locations of both the start and end points of each

feature are available from the surface feature file.The routine of the NC code

generation algorithm is described below and the flowchart of the algorithm is

shown in figure 4.8.

1) Read the surface code (k) of each surface (which was identified in the

previous stage).

2) Set depth of cut (d) and feed rate (f).

3) Based on the value of K, call the appropriate sub-routine for mac~g

that surface. That is, the surface could be planer, circular, convex or

concave. Depending on this value of K, the routine from the main

program jumps to the sub-routine for generating NC code for the

appropriate surface.

4) Repeat this procedure for all the surface features contained in the surface

feature file.

5) . After all the surface features have been processed, select an appropriate

depth of cut for the finish cut.

6) Move the tool to the appropriate position and finish cut to generate the

shape desired.

The output of this stage is a numerical control program that can be used

to machine the part.

SURFACE FEATURE FILE

READ VALUE (K)

4 3

1 2

GO TO PLANE
SURFACE ROUTIN

GO TO TAPERED
SURFACE ROUTINE

REDUCED
DATA FILE

GO TO CONVEX
SURFACE ROUTIN

SURF•SURF+1 ~--~--------4

N

NC CODE TO MACHINE PAR

STOP

58

Figure 4.8 Flowchart of the NC code generation stage.

59

The results of each of the stages describe in this chapter are presented

in the next chapter.

CHAPTER 6

ANALYSIS OF THE RESULTS

The results of the proposed algorithm are presented in this section. The

code for each of these stages can be found in the Appendix.

Data Reduction Stage.

The data file for the sample part is not enclosed due to its size - 1640

points. The data file for the sample part was created for two directions - parallel

to the X axis and parallel to theY axis. The data file for the X axis had data for

31 lines of scanning and that for the Y axis had 19 lines. The data file for the X

axis resulted in the reduced data file REDF, portion of which is listed in this

section. The code for this stage can be found in Appendix A and the full listing

of the REDF file in Appendix B. The number 6 in the REDF file stands for the

number of segments per line detected. The data file for the Y axis resulted in

the reduced data file REDL (sample listed in this section. The code for this file

can be found in Appendix C and the listing of the REDL file in Appendix D.

REDF - Reduced data file for parallel to X-axis.
6
25.012 0.000 0.065
25.309 0.000 25.053
30.097 0.000 25.053
75.067 0.000 25.053

60

REDL- Reduced data file for parallel toY-axis.

3
25.077 0.000 0.087
25.131 0.000 25:697
25.109 5.096 25.191
25.138 90.018 25.130
25.195 90.099 20.154
25.182 90.028 0.020

Surface Recognition Stage

61

These two reduced data files form the input to the surface recognition

stage. In the surface recognition stage, the algorithm defines a surface with four

points. The output for the REDF file (parallel to the X-axis) is the SURF1 file

listed in this section. It shows the total number of surfaces and a number for

each of the surfaces identified. The code for this stage can be found in

Appendix E. Similarly the output for the REDL file (parallel to the Y-axis) is

SURF2, which is listed in this section. The code for this stage can be found in

Appendix F.

SURF1 - Surface feature file for parallel to X axis.

6
1
25.012 0.000 0.065
25.309 0.000 25.053
25.014 90.000 0.019
25.351 90.000 25.021
2
30.097 0.000 25.053
75.067 0.000 25.053
30.008 90.000 25.021

75.090 90.000 25.021
3
80.082 0.000 15.087
125.133 0.000 15.087
80.106 90.000 15.071
125.142 90.000 i5:071
4
125.133 0.000 20.110
125.133 0.000 25.133
125.142 90.000 20.143
125.142 90.000 25.139
5
130.146 0.000 25.133
175.171 0.000 25.133
130.220 90.000 25.139
175.213 90.000 25.139
6
175.171 0.000 20.222
175.171 0.000 0.174
175.213 90.000 20.199
175.213 90.000 0.204

SURF2 - Surface feature file for parallel to Y axis.

5
1
25.077 0.000 0.087
25 .. 131 0.000 25.097
175.111 0.000 0.085
175.112 0.000 25.081
2
25.109 5.096 25.191
25.138 90.018 25.130
75.113 5.030 25.025
75.127 90.049 25.036
3
80.171 5.092 15.118
80.206 90.068 15.040
120.097 5.037 15.032
120.188 90.072 15.106
4

62

125.183 5.076 25.045
125.156 90.021 25.007
175.098 5.025 25.110
175.224 90.091 25.163
5
25.195 90.099 26. i54
25.182 90.028 0.020
175.294 90.108 20.218
175.237 90.180 0.042

63

NC Code Generation Stage.

The next step is to use this data form the surface feature file for

generation of NC code. The data in each of the surface feature file forms the

necessary data for the geometry definition needed in the writing of APT

statements. The NC code for this stage is listed below. The program (C

Language) for this stage can be found in Appendix G.

PART NAlVIE - SAMPLE PART
P1 = POINT/25.012,0.000,0.065
P2 = POINT/25.309,0.000,25.053
P3 = POINT/25.014,90.000,0.019
PL1 = PLANE/P1,P2,P3
P4 = POINT/25.077,0.000,0.087
P5 = POINT/25.131,0.000,25.097
P6 = POINT/175.111,0.000,0.085
PL2 = PLANE/P4,P5,P6
P7 = POINT/25.109,0.000,25.053
P8 = POINT/25.138,90.018,25.053
P9 = POINT/75.113,5.030,25.021
PL3 = PLANE/P7,P8,P9
P10 = POINT/80.082,0.000,15.087
P11 = POINT/80.206,90.068,15.087
P12 = POINT/120.097,5.037, 15.071
PL4 = PLANE/P10,P1'1,P12
P13 = POINT/125.133,0.000,20.110
P14 = POINT/125.133,0.000,25.133
P15 = POINT/125.142,90.000,20.143
PL5 = PLANE/P13,P14,P15

P17 = POINT/125.156,90.021,25.133
P18 = POINT/175.098,5.025,25.139
PL6 = PLANE/P16,P17,P18
P19 = POINT/175.171,0.000,20.222
P20 = POINT(17.~!-171,0.000,0.174

P21 = POINT/175.213,:30.000,20.199
PL7 = PLANE/P19,P20,P21
P22 = POINT/25.195,90.099,20.154
P23 = POINT/25.182,90.028,0.020
P24 = POINT/175.294,90.108,20.218
PL8 = PLANE/P22,P23,P24
SP = POINT/0,0,0

$$
FEDRAT/120
SPINDL/1200,CCW
INTOL/0.005
OUTOL/0.005
CU'ITER/20
COOLNT/ON

$$
FROM/SF
THICK/0.02
GO!I'O,PL1
GOFWD,PL 1,P AST,25.014,90.000,0.019
GO!I'O,PL2
GOFWD,PL2,P AST, 175.111,0.000,0.085
GO!I'O,PL3
GOFWD,PL3,P AST, 75.113,5.030,25.021
GO!I'O,PL4
GOFWD,PL4,P AST,120.097,5.037,15.071
GO!I'O,PL5
GOFWD,PL5,P AST, 125.142,90.000,20.143
GO!I'O,PL6
GOFWD,PL6,P AST, 175.098,5.025,25.139
GO!I'O,PL7
GOFWD,PL 7 ,P AST,175.213,90.000,20.199
GO!I'O,PL8
GOFWD,PL8,P AST, 175.294,90.108,20.218
GO!I'O,SP
THICK/0.00
GO!I'O,PL1
GOFWD,PL 1,P AST,25.014,90.000,0.019

64

GO/TO,PL2
GOFWD,PL2,PAST, 175.111,0.000,0.085
GO/TO,PL3
GOFWD,PL3,PAST,75.113,5.030,25.021
GO/TO,PL4 .
GOFWD,PL4,P AST, 120.097,5.037,15.071
GO/TO,PL5
GOFWD,PL5,P AST, 125.142,90.000,20.143
GO/TO,PL6
GOFWD,PL6,P AST, 175.098,5.025,25.139
GO/TO,PL7
GOFWD,PL 7 ,PAST, 175.213,90.000,20.199
GO/TO,PL8
GOFWD,PLB,P AST, 175.294,90.108,20.218
GO/TO,SP
COOLNT/OFF
SPINDL/OFF
FIN!

CONCLUSION

65

The proposed procedure of generation of NC code seems feasible.

However, the second stage- Geometric Data I Shape definition stage didn't play

a role at all due to the configuration of the part. This stage and its theories

were studied and discussed in detail in chapter 4. This stage will play an

important role in the event of the modification of this four step procedure to

handle complex shapes.

(' r

CHAPTER 6

CONCLUSIONS AND POTENTIAL RESEARCH TOPICS

Techniques for surface mapping are promising. The technique of laser

beam scanning seems to be most suitable for capturing data in real time, while

the Moire and image processing based techniques is equally promising for off

line data capturing. Generation of tool path automatically is also feasible,

especially for geometrically simple objects. This was proven through the

application of the proposed four steps. These four steps for tool path generation

from surface mapping are: 1)Data Reduction Stage- a stage in which the size

of the data file is reduced, 2) Geometric Data Extraction I Shape Definition Stage

- the points resulting from the first are analyzed and geometric entities are

defined, 3) Surface Recognition Stage - this stage defines a label for each

surface, and 4) NC Code Generation Stage - the NC code is generated for

surfaces identified in the surface recognition stage. The code for these stages

for a simple object were developed and applied to test the validity of the

proposed four step procedure. The results demonstrates the feasibility of

e3:utomating the process of NC code generation after surface mapping.

The method by no means implies that the methodology used here can be

used generically. Other methods, such as polygon or mesh overlap could be

much more promising in other applications. However if enough routines can be

66

67

developed and integrated in a library guided by some kind of intelligence to

select the best routines which may be applied to define the object before the

generation of -toel path statements. It is equally important to develop a

translator, so that the NC code generated (for the tool path) is compatible with

any machine. The generation of surfaces or curves from point data has not yet

been perfected and it should be considered in future research. The user still has

to specify the number of control points and the degree of accuracy required. If

this task can be fully automated, then even the complex CAM systems available

can be handled by a novice, and we may one day achieve the .. concept to a

reality .. automatically.

A number of potential research topics were identified in this research.

These include the following:

1) Selecting optimal angles for scanning to avoid the shadow effect.

2) Resolve the problems associated with the integration of different scans

of the same object.

3) The possible use of intelligence in the generation of curves and surfaces.

4) The need for additional algorithms for surface fitting from three

dimensional data.

APPENDICES

APPENDIX A

DATA REDUCTION STAGE- PARALLEL TO X-AXIS

DATA REDUCTION STAGE- PARALLEL TO X-AXIS

/*DATA REDUCTION STAGE- PARALLEL TO X-AXIS*/
/* Function Prototype *******I

#include < stdio.h>
#include <math.h>
#include < stdlib.h>
#include <alloc.h>
#define X limit 0.5
#define X max limit 2.5 - -
#define Y limit 0.5
#define Z _limit 0.5 I* TO DETECT CHANGE IN Z* I

/* Global Variable Declaration *I
int In_Rec_n=l,Rec_n=l,Seg_n=l,n_pts_bet=l,check_z,store=O,pt=O;

float prev _ X,prev _ Y,prev _ Z;
float X,Y,Z;
float temp_X,temp_Y,temp_Z;

FILE *flptr, *f2ptr;

struct XYZ
{

float X;
float Y;
float Z;

};

struct Segment
{

};

struct XYZ start _pt;
struct XYZ end _pt;
int n _pts _bet;

70

/*structure for each line parallel to X *I

struct RecordY
{
struct Segment segment[lO};
int SEG_N; - -- -

}parallel_X[19];

main()
{
int j,k,p,q;
char name1[35], name2[35];

printf(11Enter filename(data file) \n11
);

scanf(11%S11
, name1);

printf(11Enter number of lines Scanned on the object (parallel to X axis)\n11
);

scanf(11%d11 ,&In_ Rec _ n);
printf(11Enter name of reduced data file \n11

);

scanf(11%S11 ,name2);

if((flptr = fopen(name1, 11r11
)) ==NULL)

{
printf(11Can't open %s to read \n11

, namel);
exit(1);

}

if((f2ptr = fopen(name2, 11W+ 11
)) ==NULL)

{
printf(11Can't write to file %s \n11

, name2);
exit(1);
}

I* READS IN FIRST POINT IN THE FILE *I
fscanf(f1ptr, 11%f %f %f',&prev_X,&prev_Y,&prev_Z);
parallel_X[Rec_n].segment[Seg_n].start_pt.X=prev_X;
parallel_ X[Rec _n]. segment[Seg_ n]. start _pt. Y =prev _ Y;
parallel X[Rec n].segment[Seg n].start_pt.Z=prev_Z; - - -

I* For scanning parallel to X axis *I
do{

71

fscanf(flptr,"%f %f %f•, &X,&Y,&Z); pt++;

if(prev_Y!=Y) {

parallel ~[Rec _ n] .segment[Seg_ n] .end _pt.X=temp _X;
parallel_X[Rec_n].segment[Seg_n].end_pt.Y=temp_Y;
parallel_X[Rec_n].segment[Seg_n].end_pt.Z=temp_Z;
parallel_ X[Rec _ n] .SEG _ N = Seg_ n;

72

if(pt>1) parallel_X[Rec_n].segment[Seg_n].n_pts_bet=pt-2;

}

Rec_n++; Seg_n=1;

prev_X=X;
prev_Y=Y;
prev_Z=Z;

store=O; pt=O;

parallel_X[Rec_n].segment[Seg_n].start_pt.X=prev_X;
parallel_X[Rec_n].segment[Seg_n].start_pt.Y=prev_Y;
parallel_X[Rec_n].segment[Seg_n].start_pt.Z=prev_Z;
fscanf(flptr, .. %f %f %f•, &X,&Y,&Z);pt++;

if(fabs(prev X-X) < X limit){ - -

}

temp_X=X;
temp_Y=Y;
temp_Z=Z;

if((fabs(prev_X-X)> X_max_lirnit) && (fabs(prev_Z-Z) < Z_lirnit)){

I* since z values are not exceeding the limit we will scan till *I
I* we find values of x not changing and z changes *I

do{
temp_X=X;temp_Y=Y;temp_Z=Z;
fscanf(flptr, 11%f %f %f.,&X,&Y,&Z); pt++;

if (fabs(temp_Z-Z) > Z_lirnit) store=1;
if (fabs(temp_X-X) < X_max_limit) store=1;

} while(store= =0);

if (store== 1){
I* storing end-points *I

parallel_X[Rec_n].segment[Seg_n].end_pt.X=temp X;
parallel_X[Rec_n].segment[Seg_n].end pt.Y=temp -Y;
parallel_X[Rec_n].segment[Seg_n].endyt.Z=temp-Z;
if(pt> 1) -

parallel_X[Rec_:£?.1.s_egment[Seg_n].n_pts_bet=pt-2;
pt=O;
Seg_n++;

73

/* assigning previous points as starting point of next
segment*/

}

else {

}
}

prev_X=X;
prev_Y=Y;
prev_Z=Z;

parallel_X[Rec_n].segment[Seg_n].start_pt.X=prev_X;
parallel X[Rec n].segment[Seg n].start pt.Y=prev Y; - - - - -
parallel_ X[Rec _ n] . segment[Seg_ n]. start _pt.Z =prev _ Z;

store=O;

temp_X=X;
ternp_Y=Y;
ternp_Z=Z;

if((fabs(prev_X-X)> X_max_limit) && (fabs(prev_Z-Z) > Z_limit)){

*I

parallel_X[Rec_n].segment[Seg_n].end_pt.X=temp_X;
parallel_X[Rec_n].segment[Seg_n].end_pt.Y=temp_Y;
parallel_X[Rec_n].segment[Seg_n].end_pt.Z=temp_Z;
if(pt> 1) parallel_ X[Rec _ n] .segment[Seg_ n] .n _pts _ bet=pt-2;
pt=O;
Seg_n++;
/* assigning previous points as starting point of next segment
prev_X=X;
prev_Y=Y;
prev_Z=Z;

parallel_X[Rec_n].segment[Seg_n].start_pt.X=prev_X;
parallel_X[Rec_n].segment[Seg_n] .start_pt.Y=prev_Y;
parallel X[Rec n].segment[Seg n].start_pt.Z=prev_Z; - - -

}

temp_X=X;
temp_Y=Y;
temp_Z=Z; .
printf(11 Rec_n %d \n .. ,Rec_n);
}while(Rec n < = In Rec n); - - -

fclose(flptr);

for (j=1; j<=In_Rec_n; j++)
for (k=1; k<=parallel_X[j].SEG_N; k++)
{

74

printf(11 \nFor Record_%d Segment_%d \nSt_pt X %2.3f Z %2.3f
\nEnd_pt X %2.3f Z %2.3f \n pts %d\n11 ,j,k,

parallel X[j].segment[k].start pt.X,parallel X[j].segment[k].start pt.Z, - - - -

parallel_X[j].segment[k].end_pt.X,parallel_X[j).segment[k].end_pt.Z,parallel_X[
j]. segment[k].n _pts _bet);

}
for (p=1; p<=In_Rec_n; p++)

{
fprintf(f2ptr, 11%d\n .. ,parallel_ X[p].SEG _N);
. for (q=1; q<=parallel_X[p].SEG_N; q++)

{
fprintf(f2ptr, 11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. ,

parallel_ X[p]. segment [q]. start _pt.X,parallel_ X[p]. segment[q]. start _pt. Y ,parallel
_X[p].segment[q].start_pt.Z,

parallel X[p]. segment[q]. end pt.X,parallel X[p]. segment[q] .end _pt.Y,parallel_ - - -
X[p]. segment[q]. end _pt.Z);

} . }
fclose(f2ptr);

}

APPENDIX B

REDF: REDUCED DATA FILE- PARALLEL TO X AXIS

6
25.012 0.000 0.065
25.309 0.000 25.053
30.097 0.000 25.053
75.067 0.000 25.053
80.082 0.000 15.087
125.133 0.000 15.087
125.133 0.000 20.110
125.133 0.000 25.133
130.146 0.000 25.133
175.171 0.000 25.133
175.171 0.000 20.222
175.171 0.000 0.174
6
25.042 5.000 0.073
25.286 5.000 25.014
30.048 5.000 25.014
75.007 5.000 25.014
80.060 5.000 15.085
125.099 5.000 15.085
125.099 5.000 20.130
125.099 5.004 25.104
130.181 5.000 25.104
175.137 5.000 25.104
175.137 5.000 20.127
175.137 5.000 0.163
6
25.010 10.000 0.017
25.237 10.000 25.093
30.037 10.000 25.093
75.086 10.000 25.093
80.146 10.000 15.166
125.150 10.000 15.166
125.150 10.000 20.247
125.150 10.000 25.172

76

REDF

130.219 10.000 25.172
175.234 10.000 25.172
175.234 10.000 20.219
175.234 10.000 0.180
6
25.070 15.000 0.047
25.203 15.000 25.013
30.060 15.000 25.013
75.100 15.000 25.013
80.187 15.000 15.105
125.145 15.000 15.105
125.145 15.000 20.129
125.145 15.000 25.201
130.244 15.000 25.201
175.202 15.000 25.201
175.202 15.000 20.260
175.202 15.000 0.204
6
25.029 20.000 0.090
25.222 20.000 25.096
30.092 20.000 25.096
75.042 20.000 25.096
80.134 20.000 15.164
125.139 20.000 15.164
125.139 20.000 20.170
125.139 20.000 25.218
130.238 20.000 25.218
175.230 20.000 25.218
175.230 20.000 20.275
175.230 20.000 0.289
6 .
25.076 25.000 0.078
25.378 25.000 25.056
30.005 25.000 25.056
75.073 25.000 25.056
80.084 25.000 15.070
125.149 25.000 15.070
125.149 25.000 20.125
125.149 25.000 25.140
130.212 25.000 25.140
175.222 25.000 25.140
175.222 25.000 20.211
175.222 25.000 0.216
6

77

25.023 30.000 0.055
25.262 30.000 25.052
30.087 30.000 25.052
75.048 30.000 25.052
80.142 30.000 15.083 . -.
125.106 30.000 15.083
125.106 30.000 20.177
125.106 30.000 25.141
130.126 30.000 25.141
175.175 30.000 25.141
175.175 30.000 20.229
175.175 30.000 0.175
6
25.059 35.000 0.046
25.241 35.000 25.055
30.021 35.000 25.055
75.079 35.000 25.055
80.109 35.000 15.067
125.171 35.000 15.067
125.171 35.000 20.158
125.171 35.000 25.118
130.211 35.000 25.118
175.204 35.000 25.118
175.204 35.000 20.176
175.204 35.000 0.201
6
25.096 40.000 0.050
25.279 40.000 25.031
30.048 40.000 25.031
75.053 40.000 25.031
80.106 40.000 15.042
125.091 40.000 15.042
125.091 40.000 20.080
125.091 40.000 25.096
130.175 40.000 25.096
175.141 40.000 25.096
175.141 40.000 20.112
175.141 40.000 0.184
6
25.014 45.000 0.073
25.295 45.000 25.092
30.089 45.000 25.092
75.008 45.000 25.092
80.064 45.000 15.171

78

125.036 45.000 15.171
125.036 45.000 20.181
125.036 45.000 25.224
130.079 45.000 25.224
175.037 45.000 2_5_.424
175.037 45.000 20.302
175.037 45.000 0.236
6
25.077 50.000 0.092
25.343 50.000 25.064
30.093 50.000 25.064
75.017 50.000 25.064
80.026 50.000 15.135
125.077 50.000 15.135
125.077 50.000 20.203
125.077 50.000 25.212
130.096 50.000 25.212
175.153 50.000 25.212
175.153 50.000 20.228
175.153 50.000 0.230
6
25.053 55.000 0.006
25.378 55.000 25.026
30.066 55.000 25.026
75.030 55.000 25.026
80.056 55.000 15.093
125.054 55.000 15.093
125.054 55.000 20.121
125.054 55.000 25.103
130.083 55.000 25.103
175:066 55.000 25.103
175.066 55.000 20.127
175.066 55.000 0.114
6
25.055 60.000 0.018
25.231 60.000 25.026
30.033 60.000 25.026
75.089 60.000 25.026
80.136 60.000 15.095
125.172 60.000 15.095
125.172 60.000 20.165
125.172 60.000 25.133
130.233 60.000 25.133
175.202 60.000 25.133

79

175.202 60.000 20.163
175.202 60.000 0.162
6
25.090 65.000 0.024
25.354 65.000 25.0Q7 ·-
30.091 65.000 25.007
75.049 65.000 25.007
80.077 65.000 15.040
125.125 65.000 15.040
125.125 65.000 20.052
125.125 65.000 25.123
130.154 65.000 25.123
175.170 65.000 25.123
175.170 65.000 20.190
175.170 65.000 0.204
6
25.039 70.000 0.070
25.497 70.000 25.024
30.082 70.000 25.024
75.052 70.000 25.024
80.056 70.000 15.026
125.063 70.000 15.026
125.063 70.000 20.070
125.063 70.000 25.058
130.141 70.000 25.058
175.137 70.000 25.058
175.137 70.000 20.151
175.137 70.000 0.071
6
25.080 75.000 0.059
25.337 75.000 25.080
30.022 75.000 25.080
75.054 75.000 25.080
80.065 75.000 15.093
125.101 75.000 15.093
125.101 75.000 20.160
125.101 75.000 25.141
130.133 75.000 25.141
175.160 75.000 25.141
175.160 75.000 20.240
175.160 75.000 0.216
6
25.013 80.000 0.063
25.281 80.000 25.084

80

30.009 80.000 25.084
75.048 80.000 25.084
80.105 80.000 15.087
125.077 80.000 15.087
125.077 80.000 20.109
125.077 8o.ooo _2_5 .. 18o
130.117 80.000 25.180
175.168 80.000 25.180
175.168 80.000 20.228
175.168 80.000 0.209
6
25.041 85.000 0.089
25.304 85.000 25.094
30.071 85.000 25.094
75.016 85.000 25.094
80.044 85.000 15.187
125.024 85.000 15.187
125.024 85.000 20.281
125.024 85.000 25.263
130.030 85.000 25.263
175.107 85.000 25.263
175.107 85.000 20.265
175.107 85.000 0.352
6
25.014 90.000 0.019
25.351 90.000 25.021
30.008 90.000 25.021
75.090 90.000 25.021
80.106 90.000 15.071
125.142 90.000 15.071
125·.142 90.000 20.143
125.142 90.000 25.139
130.220 90.000 25.139
175.213 90.000 25.139
175.213 90.000 20.199
175.213 90.000 0.204

81

APPENDIX C

DATA REDUCTION STAGE- PARALLEL TOY-AXIS

DATA REDUCTION STAGE- PARALLEL TOY-AXIS

!* DATA REDUCTION STAGE *I
I* PARALLEL TOY AXIS *I
/* Function Prototype * * * * * **I

#include <stdio.h>
#include <math.h>
#include < stdlib.h>
#include <alloc.h>
#define Y limit 0.5
#define Y max limit 2.5 - -
#define X max limit 2.5 - -
#define Z_limit 1.0 I* TO DETECT CHANGE IN Z* I

I* Global Variable Declaration *I
int In_Rec_n= l,Rec_n= l,Seg_n= l,n_pts_bet= l,check_z=O,store=O,pt=O;

float prev _ X,prev _ Y,prev _ Z;
float X,Y,Z,int_X, int_Y,int_Z;
float temp_X,temp_Y,temp_Z;

FILE *flptr, *f2ptr;

struct XYZ
{

float X;
float Y;
float Z;

};

struct Segment
{

};

struct XYZ start _pt;
struct XYZ end _pt;
~t n _pts _bet;

83

84

/*structure for each line parallel to Y *I
struct RecordY
{
struct Segment segment[lO];
int SEG_N,TS~G:....N;

}parallel Y[31];

main()
{
int j,k,p,q;
char name1[35], name2[35];

printf("Enter filename(data file) \n11
);

scanf("%s11
, namel);

printf("Enter name of reduced data file \n11
);

scanf("%s" ,name2);

printf("Enter number of Lines Scanned on the object (parallel toY axis)\n11
);

scanf(11%d11 ,&In_ Rec _ n);

if((flptr = fopen(namel, 11r 11
)) ==NULL)

{
printtc•can't open %s to read \n11

, namel);
exit(1);

}

if((f2ptr = fopen(name2, "w+ 11
)) ==NULL)

{
printf(11Can't write to file %s \n11

, name2);
exit(1);
}

I* READS IN FIRST POINT IN THE FILE *I
fscanf(f1ptr, 11%f %f %f'1,&prev_X,&prev_Y,&prev_Z);

parallel Y[Rec n].segment[Seg n].start_pt.X=prev_X;
parallel-Y[Rec-n].segment[Seg-n].start_pt.Y=prev_Y;
parallel Y[Rec=n].segment[Seg=n].start_pt.Z=prev_Z;

I* For scanning parallel to Y axis *I

do{
fscanf(f1ptr, 11%f %f %f', &X,&Y,&Z); pt+ +;

if(fabs(prev _X - X) > X_ max _limit){

parallel_ Y[Rec _ n]. segment[Seg_ n]. end _pt.X=temp _X;
parallel Y[Rec n].segment[Seg n].end pt.Y=temp Y; - - - - -
parallel Y[Rec n].segment[Seg n].end pt.Z=temp Z; - - - - -
parallel_Y[Rec_n].SEG_N=Seg_n;

85

if(pt>l) parallel_Y[Rec_n].segment[Seg_n].n_pts_bet=pt-2;

}

Rec_n++; Seg_n=l; store=O; pt=O;
check_z=O;
prev_X=X;
prev_Y=Y;
prev_Z=Z;

parallel_ Y[Rec _ n] .segment[Seg_ n] .start _pt.X=prev _X;
parallel_Y[Rec_n].segment[Seg_n].start_pt.Y=prev_Y;
parallel_Y[Rec_n].segment[Seg_n].start_pt.Z=prev_Z;

fscanf(f1ptr, .. %f %f %f', &X,&Y,&Z);pt++;

if(fabs(prev Y-Y) < Y limit){ - -

}

temp_X=X;
temp_Y=Y;
temp_Z=Z;

if (fabs (prev Y- Y) > Y max limit) - - -
{

parallel Y[Rec n].segment[Seg n].end_pt.X=temp_X;
parallel-Y[Rec-n].segment[Seg=n].end_pt.Y=temp_Y;
parallel =Y[Rec = n]. segrnent[Seg_ n]. end _pt.Z =temp _Z;
if(pt> 1)
parallel Y[Rec n].segment[Seg_n].n_pts_bet=pt-2; - -
pt=O;
Seg_n++;

86

l*fscanf(flptr, 11%f %f %f', &prev_X, &prev_Y, &prev_Z); pt++;*l
prev_X =X;
prev_Y =Y;
prev_Z =Z;

parallel_Y[Rec_n].segment[Seg_n].start_pt.X=prev_X;
parallel_Y[Rec_n].segment[Seg_n].start_pt.Y=prev Y;
parallel_Y[Rec_n].segment[Seg_n].start_pt.Z=prev Z;

I* since z values are not exceeding the limit we will scan till * 1
I* Find values of x not changing and z changes * 1

do{
temp_X = X; temp_Y = Y; temp_Z =Z;

fscanf(f1ptr, 11%f %f %f',&X,&Y,&Z); pt++;

if (fabs(prev_Z- Z) > Z_limit) store=1;
if (fabs(prev _ Y - Y) < Y _limit) store = 1;

} while(store= =0);

if (store== 1){
I* storing end-points *I

parallel_ Y[Rec _n].segment[Seg_ n].end _pt.X=temp _X;
parallel_Y[Rec_n].segment[Seg_n].end_pt.Y=temp_Y;
parallel_Y[Rec_n].segment[Seg_n].end_pt.Z=temp_Z;
if(pt> 1)

parallel_ Y[Rec _ n]. segment[Seg_ n] .n _pts _ bet=pt-2;
pt=O;

segment *I

Seg_n++;
I* assigning previous points as starting point of next

l*fscanf(f1ptr, 11 %f %f %f', &prev_X, &prev_Y,
&prev_Z);pt++;* I

prev_X=X;
prev_Y=Y;
prev Z=Z;
parallel_Y[Rec_n].segment[Seg_n].start_pt.X=prev_X;
parallel_Y[Rec_n].segment[Seg_n].start_pt.Y=prev_Y;
parallel Y[Rec n].segment[Seg_n].start_pt.Z=prev_Z; - -

}

store=O· I
}

else {

}

__ _ temp_X=X;
temp_Y=Y;
temp_Z=Z;

/*if ((fabs(prev_Y-Y) < Y_limit)&&(check_z = = 1))* 1 {
/*

*I
}

temp_X =X;
temp_Y =Y;
temp_Z =Z;

/*else*/

/*
parallel_Y[Rec_n].segment[Seg_n].end_pt.X=temp_X;
parallel_Y[Rec_n].segment[Seg_n].end_pt.Y=temp_Y;
parallel_~~[Rec_n].segment[Seg_n].end_pt.Z=temp_Z;

if(pt>l) parallel_Y[Rec_n].segment[Seg_n].n_pts_bet=pt-2;
pt=O;
Seg_n++;
*I

87

/* assigning previous points as starting point of next segment* I

temp_X=X;
temp_Y=Y;
temp_Z=Z;

/*
prev_X=X;
prev_Y=Y;
prev_Z=Z;
*I

printf(11 Rec_n %d \n .. ,Hec_n);
}while(Rec n < = In Rec n); - - -

fclose(flptr);

for (j = 1; j < =In_ Rec _ n.; j + +)
for (k=l; k<=parallel_Y[j].SEG_N; k++)
{

88

printf(!: \nFor Record_%d Segment_%d \nSt_pt X %2.3f Y %2.3f z
%2.3f \nEnd_pt X %2.3f Y %2.3f Z %2.3f \n pts %d\n11 ,j,k,

paralle j).segment[k].start_pt.X,parallel_Y[j].segment[k].start_pt.Y,parallel y
[j]. segment[k]. start _pt. Z,

parallel_ Y[j].segment[k] .end _pt.X,parallel_ Y[j] .segment[k].end _pt.Y,parallel_ Y[j
].segment[k].end pt.Z,parallel Y[j].segment[k].n pts bet); - - - -

}
for (p=l; p<=In_Rec_n; p++)

{
fprintf(f2ptr ,11%d\n .. ,parallel_ Y[p] .SEG _N);

for (q=l; q< =parallel_Y[p].SEG_N; q+ +)
{

fprintf(f2ptr, .. %2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n11
,

parallel_ Y[p 1 .segment[q]. start _pt.X,parallel_ Y[p]. segment[q]. start _pt.Y,parallel
_ Y[p 1. segment[q]. start _pt.Z,

parallel_Y[p].segment[q].end_pt.X,parallel_Y[p].segment[q].end_pt.Y,parallel_
Y[p1.segment[q].end_pt.Z);

} }
fclose(f2ptr);

}

APPENDIX D

REDL: REDUCED DATA FILE- PARALLEL TOY-AXIS

3
25.077 0.000 0.087
25.131 0.000 25.097
25.109 5.096 25.191
25.138 90.018 25.130
25.195 90.099 20.154
25.182 90.028 0.020
3
30.118 0.000 0.091
30.141 0.000 25.069
30.165 5.038 25.092
30.118 90.084 25.116
30.157 90.178 20.125
30.127 90.151 0.012
3
35.072 0.000 0.042
35.161 0.000 25.092
35.184 5.032 25.192
35.188 90.077 25.117
35.199 90.099 20.182
35.201 90.119 0.012
3
40.127 0.000 0.048
40.152 0.000 25.009
40.154 5.031 25.083
40.183 90.044 25.026
40.243 90.077 20.097
40.241 90.092 0.038
3
45.048 0.000 0.094
45.159 0.000 25.094
45.160 5.019 25.158
45.153 90.040 25.124
45.218 90.073 20.209
45.249 90.091 0.021
3
50.126 0.000 0.081

90

REDL

50.146 0.000 25.035
50.169 5.074 25.051
50.218 90.078 25.068
50.228 90.141 20.160
50.282 90.102 0.092
3
55.038 0.000 0.054
55.048 0.000 25.001
55.105 5.063 25.057
55.121 90.012 25.048
55.139 90.065 20.121
55.147 90.077 0.013
3
60.081 0.000 0.076
60.064 0.000 25.069
60.111 5.082 25.106
60.115 90.076 25.151
60.197 90.157 20.196
60.175 90.158 0.015
3
65.072 0.000 0.030
65.079 0.000 25.012
65.125 5.054 25.091
65.219 90.017 25.110
65.318 90.041 20.146
65.261 90.020 0.016
3
70.043 0.000 0.033
70.035 0.000 25.078
70.006 5.056 25.139
70.166 90.081 25.167
70.190 90.112 20.249
70.257 90.148 0.023
3
75.143 0.000 0.017
75.178 0.000 25.018
75.113 5.030 25.025
75.127 90.049 25.036
75.144 90.098 20.094
75.135 90.143 0.047
3
80.081 0.009 0.058
80.164 0.003 15.028
80.171 5.092 15.118

91

80.206 90.068 15.040
80.208 90.108 10.112
80.294 90.118 0.063
3
85.696 0.030 0.030
85.785 0.041 15.082
85.848 5.093 15.094
85.847 90.075 15.108
85.831 90.115 10.135
85.856 90.141 0.042
3
90.901 0.014 0.023
90.107 0.083 15.036
90.172 5.059 15.006
90.216 90.142 15.077
90.223 90.135 10.133
90.252 90.202 0.016
3
95.604 0.076 0.048
95.611 0.014 15.051
95.628 5.110 15.092
95.642 90.110 15.137
95.702 90.184 10.209
95.655 90.195 0.018
3
100.132 0.020 0.020
100.076 0.041 15.021
100.165 5.153 15.091
100.117 90.171 15.086
100.150 90.260 10.087
100.177 90.203 0.052
3
105.598 0.031 0.030
105.600 0.030 10.065
105.556 5.045 15.003
105.624 90.118 15.018
105.562 90.096 10.039
105.612 90.104 0.050
3
110.658 0.031 0.031
110.097 0.071 15.098
110.075 5.085 15.031
110.093 90.139 15.068
110.128 90.117 10.100

92

110.146 90.216 0.042
3
115.165 0.032 0.032
115.642 0.030 15.040
115.609 5.015 15.071
115.657 90.026 15.-134
115.632 90.019 10.105
115.707 90.108 0.032
3
120.692 0.031 0.031
120.081 0.040 15.003
120.097 5.037 15.032
120.188 90.072 15.106
120.104 90.090 10.113
120.134 90.142 0.193
3
125.104 0.000 0.013
125.200 0.000 25.002
125.183 5.076 25.045
125.156 90.021 25.007
125.253 90.090 20.036
125.251 90.094 0.067
3
130.076 0.000 0.050
130.050 0.000 25.040
130.048 5.031 25.095
130.121 90.018 25.047
130.145 90.078 20.054
130.155 90.018 0.107
3
135.173 0.000 0.017
135.121 0.000 25.019
135.129 5.084 25.042
135.187 90.003 25.087
135.210 90.095 20.121
135.206 90.077 0.155
3
140.078 0.000 0.054
140.125 0.000 25.086
140.118 5.082 25.162
140.134 90.021 25.114
140.182 90.058 20.189
140.188 90.040 0.041
3

93

145.058 0.000 0.083
145.143 0.000 25.061
145.205 5.094 25.147
145.202 90.085 25.112
145.244 90.143 20.139
145.266 90.115 o:631-
3
150.102 0.000 0.003
150.156 0.000 25.024
150.230 5.074 25.042
150.215 90.006 25.111
150.310 90.101 20.194
150.291 90.036 0.031
3
155.062 0.000 0.085
155.049 0.000 25.007
155.100 5.021 25.027
155.176 90.026 25.034
155.207 90.051 20.053
155.232 90.076 0.086
3
160.105 0.000 0.037
160.077 0.000 25.003
160.123 5.043 25.059
160.202 90.091 25.038
160.273 90.142 20.090
160.227 90.177 0.031
3
165.068 0.000 0.045
165.059 0.000 25.015
165.121 5.003 25.056
165.125 90.030 25.061
165.178 90.109 20.151
165.195 90.115 0.032
3
170.130 0.000 0.017
170.157 0.000 25.099
170.119 5.004 25.123
170.101 90.044 25.176
170.198 90.119 20.233
170.193 90.092 0.042
3
175.111 0.000 0.085
175.112 0.000 25.081

94

175.098 5.025 25.110
175.224 90.091 25.163
175.294 90.108 20.218
175.237 90.180 0.042

95

APPENDIX E

SURFACE RECOGNITION STAGE- PARALLEL TO X-AXIS

SURFACE -RECOGNITION STAGE- PARALLEL TO X-AXIS

/*SURFACE RECOGNITION STAGE *I

I*P ARALLEL TO X AXIS *I

I* Function Prototype *I

#include < stclio.h>
#include <math.h>
#include <stdlib.h>
#include < alloc.h>
#define Z _limit 0.5 /* TO DETECT CHANGE IN Z* I

I* Global Variable Declaration *I
int In_Rec_n=1,Rec_n=1,Seg_n=1,n_pts_bet=1,pt=O;
float prev _ X,prev _ Y,prev _ Z;

float X,Y,Z,X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4;

float temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2;

97

f 1 o a t
SLOPE_X1,SLOPE_Y1,SLOPE_Z1,SLOPE_Z2,SLOPE_X2,SLOPE_Y2,SLOPE_1,SL
OPE..:_2;

FILE *flptr, *f2ptr;

struct XYZ
{

float X;
float Y;
float Z;

};

struct Segment
{

struct XYZ start _pt;
struct XYZ end _pt;
int n pts bet; - - . ~ .. -

};

I* structure for each line *I

struct Record.X
{
struct Segment segment[10];
int SEG_N;
int SURF_N;

} parallel_ X[21];

struct POINT
{
float X;
float Y;
float Z;
};

I* Structure for each surface *I

struct SURFY XYZ
{
float X;
float Y;
float Z;

};

struct SURF ACE X
{
struct SURFY _ XYZ point_l;
struct SURFY_XYZ point_2;
struct SURFY_XYZ point_3;
struct SURFY_XYZ point_4;
int SURF _N;

}SURF X[15];

main()

98

{
int j = llklplq;
char name1[35]1 name2[35];
int surf n= 1·

- I

printfC'Enter filename (reduced data file for parallel to X axis) \n ..);
scanf(11%S11

1 namel);
printf(.. Enter number of lines Scanned on the object (parallel to X ax:i.s)\n11

);

scanf(11%d"1&In _ Rec _ n);
In_Rec_n++;

printf(.. Enter name of surface feature file \n");
scanf("%s"1name2);

if((flptr = fopen(name11
11!")) ==NULL)

{
printf("Canlt open %s to read \n11

1 namel);
exit(l);

}
if((f2ptr = fopen(name21 "w+")) ==NULL)

{
printf("Can1t write to file %s \n"l name2);
exit(l);
}

/* READS POINTS IN REDUCED DATA FILE TO STRUCTURES *I
for(p= l;p<In_Rec_n;p+ +)

{
fscanf(flptr~"%d" 1¶llel_X[p].SEG_N);

for (q=l; q<=parallel_X[p].SEG_N;q++)
{
fscanf(flptr1"%f %f %f %f %f %f'1
&prev _ X1&prev _ Y1&prev _ ZI&XI& YI&Z);

99

parallel_X[p].segment[q].start_pt.X=prev_X;parallel_X[p].segment[q].start_pt.
Y=prev_Y;

parallel_X[p].segment[q].start_pt.Z=prev_Z;parallel_X[p].segment[q].end_pt.X
=X· I

parallel_ X[p 1. segment[q1. end _pt. Y = Y ;parallel_ X[p 1. segment[q1. end pt.Z = Z;
} -

}
fclose(f1ptr);

- - -

/* PRINTS DATA JUST READ IN ON THE SCREEN *I

/*

for(p= l;p<In_Rec_n;p+ +)
{

printf("%d\n" ,parallel_ X[p 1 .SEG _ N);
for (q= 1; q< =parallel_X[p].SEG_N;q+ +)

{
printfC'%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n",

parallel_X[p].segment[q].start_pt.X,parallel_X[p].segment[q].start_pt.Y,

parallel_X[p].segment[q1.start_pt.Z,parallel_X[p].segment[q].end_pt.X,

parallel_X[p1.segment[q1.end_pt.Y,parallel_X[p].segment[q].end_pt.Z);
}

}
*I
printf("%d\n" ,parallel_ X[p-1] .SEG _ N);

q=l;
{
p=l;
Xl = parallel X[p1.segment[q].start pt.X; - -
Yl = parallel X[p].segment[q].start pt.Y; - -
Zl = parallel_X[p].segment[q).start_pt.Z;
X2 = parallel_X[p].segment[q].end_pt.X;
Y2 = parallel_X[p].segment[q].end_pt.Y;
Z2 = parallel_X[p].segment[q].end_pt.Z;

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n",X1,Y1,Z1,X2,Y2,Z2);

SURF _X[j].point_l.X = X1;

100

SURF _X[j].point_1.Y = Y1;
SURF _XU).point_1.Z = Z1;
SURF _XU).point_2.X = X2;
SURF _X[j].point_2.Y = Y2;
SURF _XU].point_2.Z = Z2;

for(p=2;p<In_Rec_n;p+ +)
{
q=1;

SLOPE_Y1 = fabs(Y2-Y1);
SLOPE_Z1 = fabs(Z2-Z1);

/* Comparing points of q segment of the p + 1 record *I

X3 = parallel_ X[p 1. segment[q1. start _pt.X;
Y3 = parallel_X[p1.segment[q1.start_pt.Y;
Z3 = parallel_X[p1.segment[q1.start_pt.Z;
X4 = parallel_ X[p 1. segment[q1. end _pt.X;
Y 4 = parallel_ X[p]. segment[q]. end _pt. Y;
Z4 = parallel_X[p].segment[q].end_pt.Z;

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n'',X3,Y3,Z3,X4,Y4,Z4);

SLOPE_Y2 = fabs(Y4-Y3);
SLOPE_Z2 = fabs(Z4-Z3);

if (SLOPE_Z1==0)
{
SLOPE 1=0· - '
}

else
{
SLOPE 1 = SLOPE_Y1/SLOPE_Z1;
}

if (SLOPE_Z2= =0)
{
SLOPE_2=0;
}

101

else
{
SLOPE 2 = SLOPE Y2/SLOPE Z2; - - -
}

if (SLOPE_Y1==0)
{
SLOPE_1=0;
}

else
{
SLOPE_1 = SLOPE_Y1/SLOPE_Z1;
}

if (SLOPE_Y2==0)
{
SLOPE 2=0· - '
}

else
{
SLOPE 2 = SLOPE Y2/SLOPE Z2; - - -
}

if (fabs(SLOPE_1-SLOPE_2) <= 0.5)
{
temp_X1 = X3;
temp_Y1 = Y3;
temp_Z1 = Z3;
temp_X2 = X4;
temp_Y2 = Y4;
temp_Z2 = Z4;
}

printf(11%2.3f %2.3f %2.3f\n%2.3f
%2.3r'..b2.3f\n\n'\temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2);

printf(11p is %d In rec is %d\n\n .. ,p,In_Rec_n);

if (p == (In_Rec_n)-1)

{
SURF _XU].point_3.X = temp_X1;

102

SURF _X[j].point_3.Y = temp_Y1;
SURF _X[j].point_3.Z = temp_Z1;
SURF _X[j].point_4.X = temp_X2;
SURF _X[j].point_4.Y = temp_Y2;
SURF _X[j].point_4.Z = temp_Z2;

·SURF _X[j].SURF _N=surf_n;
j++;
surf_n ++;
}

if ((fabs(SLOPE_1-SLOPE_2)) > 5)
{

}

SURF _X[j].point __ 3.X = temp_X1;
SURF _X[j].point_3.Y = temp_Y1;
SURF _X[j].point_3.Z = temp_Z1;
SURF _X[j].point_4.X = temp_X2;
SURF _X[j].point_4.Y = temp_Y2;
SURF _X[j].point_4.Z =temp_Z2;
SURF _X[j].SURF _N=surf_n;
j++;
surf_n ++;
}
}

/*printf(11 End of q=1 \n11);*/

q=2;
{
p=1;
X1 = parallel_X[p].segment[q].start_pt.X;
Y1 = parallel_X[p].segment[q].start_pt.Y;
Z 1 = parallel_ X[p]. segment[q]. start _pt.Z;
X2 = parallel_ X[p]. segment[q]. end _pt.X;
Y2 = parallel_X[p].segment[q].end_pt.Y;
Z2 = parallel_X[p].segment[q].end_pt.Z;

print£(11%2.3£ %2.3£ %2.3f\n%2.3f %2.3£ %2.3f\n",X1,Y1,Z1,X2,Y2,Z2);

103

SURF _X[j].SURF _N=surf_n;
SURF _X[j].point_1.X = X1;
SURF _X[j].point_1.Y = Y1;
SURF _X[j].point_1.Z = Z1;
SURF _X[j].point_2.X = X2;
S1JRF'X[j].point_2.Y = Y2;
SURF _X[j].point_2.Z = Z2;

for(p=2;p<In_Rec_n;p+ +)
{
q=2;
SLOPE_X1 = ~abs(X2-X1);
SLOPE_Y1 = fabs(Y2-Y1);

I* Comparing points of q segment of the p + 1 record * 1

I*

X3 = parallel_ X[p]. segment[q]. start _pt.X;
Y3 = parallel_X[p].segment[q].start_pt.Y;
Z3 = parallel_X[p].segment[q].start_pt.Z;
X4 = parallel_X[p].segment[q].end_pt.X;
Y4 = parallel_X[p].segment[q].end_pt.Y;
Z4 = parallel_X[p].segment[q].end_pt.Z;

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n.',X3,Y3,Z3,X4,Y4,Z4);

SLOPE_ X2 = fabs(X4-X3);
SLOPE_Y2 = fabs(Y4-Y3);

if (SLOPE_Y1==0)
{
SLOPE_1=0;
}

else
{
SLOPE 1 = SLOPE XliSLOPE Y1; - - -
}

if ((SLOPE_Xl==O)
{
SLOPE_l=O;
}

104

else

*I

{
SLOPE 1 = SLOPE X1/SLOPE Y1·
} - - - I

if (SLOPE_Y2==0)
{

/*

*I

SLOPE 2=0·
- I

}
else

{
SLOPE 2 = SLOPE X2/SLOPE Y2·
} - - - '

if (SLOPE_X2= =0)
{
SLOPE 2=0·

- I

}
else

{
SLOPE 2 = SLOPE X2/SLOPE Y2; } - - -

if (fabs(SLOPE_1-SLOPE_2)< = 0.5)
{
temp_X1 = X3;
temp_ Y1 = Y3;
temp_Z1 = Z3;
temp_X2 = X4;
temp_Y2 = Y4;
temp_Z2 = Z4;
}

105

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f
%2.3f\n\n"1temp_X1,temp_Y1 1temp_Z1,temp_X2,temp_Y2,temp_Z2);

printf("p is %d In rec is %d\n\n11
1p,In_Rec_n);

if (p == (In_Rec_n)-1)

{
SURF _X[j].point_3.X = temp_X1;
SURF _X[j].point_3.Y = temp_Y1;

· SuRF _X[j].point_3.Z = temp_Z1;
SURF _X[j].point_4.X = temp_X2;
SURF _X[j].point._4.Y = temp_Y2;
SURF _X[j].point_4.Z = temp_Z2;
SURF_ X[j] .SURF_ N =surf_ n;
j++;
surf_n ++;
}

if (fabs(SLOPE_1-SLOPE_2)> 5)

}
}

{
SURF _X[j].point_3.X = temp_X1;
SURF _X[j].point_3.Y = temp_Y1;
SURF _X[j].point_3.Z = temp_Z1;
SURF _X[j].point_4.X = temp_X2;
SURF _X[j].point_4.Y = temp_Y2;
SURF _X[j].point_4.Z =temp_Z2;
SURF _X[j].SURF _N=surf_n;
j++;
surf_n ++;
SURF _X[j].point_1.X = X3;
SURF _X[j].point_1.Y = Y3;
SURF _X[j].point_1.Z = Z3;
SURF _X[j].point_2.X = X4;
SURF _X[j].point_2.Y = Y4;
SURF _X[j].point_2.Z = Z4;
SURF _X[j].SURF _N=surf_n;
}

/*printf(11 End of q=2 \n ..);* I
q=3;
{
p=1;
X1 = parallel_X[pl.segment[q].start_pt.X;
Y1 = parallel_X[p).segment[q].start_pt.Y;
Z1 = parallel_X[p].segment[q].start_pt.Z;

106

X2 = parallel_X[p].segment[q].end_pt.X;
Y2 = parallel_X[pj.segment[q].end_pt.Y;
Z2 = parallel_ X[p 1. segment[q}. end _pt. Z;

priiitiC.%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. ,X1,Y1,Z1,X2,Y2,Z2);

SURF_ X[j 1 .SURF_ N =surf_ n;
SURF _X[j1.point_1.X = X1;
SURF _X[j1.point_1.Y = Y1;
SURF _X[j1.point_1.Z = Z1;
SURF _X[j].point_2.X = X2;
SURF _X[j1.point_2.Y = Y2;
SURF _X[j1.point_2.Z = Z2;

for(p=2;p<In_Rec_n;p+ +)
{
q=3;
SLOPE_X1 = fabs(X2-X1);
SLOPE_Y1 = fabs(Y2-Y1);

/* Comparing points of q segment of the p + 1 record *I

X3 = parallel_X[p1.segment[q].start_pt.X;
Y3 = parallel_X[p1.segment[q].start_pt.Y;
Z3 = parallel_ X[p 1. segment[qJ . start _pt. Z;
X4 = parallel_X[p].segment[q].end_pt.X;
Y4 = parallel_X[p].segment[q} .end_pt.Y;
Z4 = parallel X[p].segment[q1.end pt.Z; - -

printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n \n11 ,X3,Y3,Z3,X4,Y4,Z4);

SLOPE_ X2 = fabs(X4-X3);
SLOPE_Y2 = fabs(Y4-Y3);

if (SLOPE_Y1= =0)
{
SLOPE_1=0;
}

107

else
{
SLOPE_l = SLOPE_X1/SLOPE_Yl;
}

if (SL6PE_Y2==0)
{
SLOPE_2=0;
}

else

/*

{
SLOPE_2 = SLOPE_X2/SLOPE_Y2;
}

if (SLOPE_Xl==O)
{
SLOPE_l=O;
}

else

*I
/*

{
SLOPE_1 = SLOPE_Xl/SLOPE_Y1;
}

if (SLOPE_X2==0)
{
SLOPE 2=0· - '
}

else

*I

{
SLOPE_2 = SLOPE_X2/SLOPE_Y2;
}

if (fabs(SLOPE_1-SLOPE_2) < = 0.5)
{
temp_X1 = X3;
temp_Y1 = Y3;
temp_Z1 = Z3;
temp_X2 = X4;
temp_Y2 = Y4;
temp_Z2 = Z4;

108

}

printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n,
temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2);

printf(11p is %d In rec is %d\n\n .. ,pJn_Rec_n);
. - ·

if (p == (In_Rec_n)-1)

{
SURF _X(j].point_3.X = temp_X1;
SURF _X(j].point_3.Y = temp_Y1;
SURF _X[j].point_3.Z = temp_Z1;
SURF _X(j].point_4.X = temp_X2;
SURF _X[j].point_4.Y = temp_Y2;
SURF _X(j].point_4.Z = temp_Z2;
SURF _X(j].SURF _N=surf_n;
j++;
surf_n ++;
}

if ((fabs(SLOPE_1-SLOPE_2)) > 1)
{
SURF _X(j].point_3.X = temp_X1;
SURF _X[j].point_3.Y = temp_Y1;
SURF _X(j].point_3.Z = temp_Z1;
SURF _X(j].point_4.X = temp_X2;
SURF _X(j].point_4.Y = temp_Y2;
SURF _X(j].point_4.Z =temp_Z2;
SURF _X(j].SURF _N=surf_n;
j++;
surf_n ++;
SURF _X(j].point_1.X = X3;
SURF _X(j].point_1.Y = Y3;
SURF _X(j].point_1.Z = Z3;
SURF _X[j].point_2.X = X4;
SURF _X(j].point_2.Y = Y4;
SURF _X(j].point_2.Z = Z4;
SURF X(j].SURF N=surf n; - - -
}
}

}

109

l*printf(11 End of q=3 \n ..);* I

q=4;
{
P =1· - .. _,
X1 = parallel_X[p].segment[q].start_pt.X;
Y1 = parallel_X[p].segment[q] .start_pt.Y;
Z 1 = parallel_ X[p]. segment [q] . start _pt. Z;
X2 = parallel_X[p].segment[q].end_pt.X;
Y2 = parallel_X[p].segment[q].end_pt.Y;
Z2 = parallel_X[p].segment[q].end_pt.Z;

printf(.. %2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n.',Xl,Y1,Z1,X2,Y2,Z2);

SURF _X[j).point_l.X = Xl;
SURF _X[j].point_1.Y = Yl;
SURF _X[j].point_l.Z = Z1;
SURF _X[j].point_2.X = X2;
SURF _X[j].point_2.Y = Y2;
SURF _X[j].point_2.Z = Z2;

for(p=2;p<In_Rec_n;p+ +)
{
q=4;
SLOPE_Yl = fabs(Y2-Y1);
SLOPE_Z1 = fabs(Z2-Z1);

I* Comparing points of q segment of the p + 1 record *I

X3 = parallel_ X[p) . segment [q]. start _pt.X;
Y3 = parallel_X[p).segment[q].start_pt.Y;
Z3 = parallel_X[p).segment[q].start_pt.Z;
X4 = parallel_X[p).segme~t[q].end_pt.X;

Y4 = parallel_X[p).segment[q].end_pt.Y;
Z4 = parallel_X[p].segment[q].end_pt.Z;

printfC.%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n \n .. ,X3,Y3,Z3,X4,Y4,Z4);
SLOPE_Y2 = fabs(Y4-Y3);
SLOPE_Z2 = fabs(Z4-Z3);

110

if (SLOPE_Z1==0)
{
SLOPE_1=0;
}

else
· { · -

SLOPE_1 = SLOPE_Y1/SLOPE_Z1;
}

if (SLOPE_Z2= =0)
{
SLOPE_2=0;
}

else

I*

{
SLOPE_2 = SLOPE_Y2/SLOPE_Z2;
}

if (SLOPE_Y1==0)
{
SLOPE_1=0;
}

else
{
SLOPE_1 = SLOPE_Y1/SLOPE_Z1;
}

if (SLOPE_Y2==0)
{
SLOPE_2=0;
}

else

*I

{
SLOPE_ 2 = SLOPE_ Y2/SLOPE _ Z2;
}

if (fabs(SLOPE 1-SLOPE 2) < = 0.5) - -
{
temp_X1 = X3;
temp_Y1 = Y3;

111

temp_Z1 = Z3;
temp_X2 = X4;
temp_Y2 = Y4;
temp_ Z2 = Z4;
}

112

printf(11 %2.3f %2.3f %2.3f\n%2.3f %2.3f
%2.3f\n \n .. ,temp _ X1,temp _ Y1,temp _ Z 1,temp _ X2,temp _ Y2,temp _ Z2);

printf(11p is %d In rec is %d\n\n11 ,p,In_Rec_n);

if (p == (In_Rec_n)-1)

{
SURF _X[j].point_3.X = temp_X1;
SURF _X[j].point_3.Y = temp_Y1;
SURF _X[j].point_3.Z = temp_Z1;
SURF _X[j].point_4.X = temp_X2;
SURF _X[j].point_4.Y = temp_Y2;
SURF _X[j].point_4.Z = temp_Z2;
SURF_ X[j] .SURF_ N =surf_ n;
j++;
surf_n++;
}

if ((fabs(SLOPE_1-SLOPE_2)) > 5)

•

{
SURF _X[j].point_3.X = temp_X1;
SURF _X[j].point_3.Y = temp_Y1;
SURF _X[j].point_3.Z = temp_Z1;
SURF _X[j].point_4.X = temp_X2;
SURF X[j].point 4.Y =temp Y2; - - -
SURF X[j].point 4.Z =temp Z2; - - -
SURF_ X[j] .SURF_ N =surf_ n;
j++;
surf_n ++;
SURF _X[j].point_3.X = X3;
SURF _X[j].point_3.Y = Y3;
SURF _X[j].point_3.Z = Z3;
SURF _X[j].point_4.X = X4;
SURF _X[j].point_4.Y = Y4;
SURF _X[j].point_4.Z = Z4;
SURF X[j].SURF N=surf n; - - -

}

}
}

/*printfC' End of q=4 \n ..);* I
q =5· :::..r. { - ..

p=1;
X1 = parallel_X[p].segment[q].start_pt.X;
Y1 = parallel_X[p).segment[q].start_pt.Y;
Z1 = parallel_X[pj.segment[q].start_pt.2;
X2 = parallel_ X[p] .segment[q] .end _pt.X;
Y2 = parallel_X[p].segment[q].end_pt.Y;
Z2 = parallel_X[p].segment[q].end_pt.2;

printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n11 ,X1,Y1,21,X2,Y2,22);

SURF _X[j].SURF _N=surf_n;
SURF _X[j].point_1.X = X1;
SURF _X[j].point_l.Y = Y1;
SURF _X[j].point_1.Z = 21;
SURF _X[j].point_2.X = X2;
SURF _X[j].point_2.Y = Y2;
SURF _X[j].point_2.2 = 22;

for{p=2;p<In_Rec_n;p+ +)
{
q=5;
SLOPE_X1 = fabs(X2-X1);
SLOPE_Y1 = fabs(Y2-Y1);

/* Comparing points of q segment of the p + 1 record *I

X3 = parallel_X[p].segment[q].start_pt.X;
Y3 = parallel_X[p].segment[q].start_pt.Y;
Z3 = parallel_X[p].segment[q].start_pt.2;
X4 = parallel X[p].segment[q].end pt.X; - -
Y4 = parallel X[p].segment[q].end pt.Y; - -
Z4 = parallel_X[p].segment[q].end_pt.2;

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n .. ,X3,Y3,23,X4,Y4,24);

113

SLOPE_X2 = fabs(X4-X3);
SLOPE_Y2 = fabs(Y4-Y3);

if (SLOPE_Y1==0)
{
SLOPE 1=0·

- I

}
else

{
SLOPE_1 = SLOPE_X1/SLOPE_Y1;
}

if (SLOPE_Y2==0)
{
SLOPE_2=0;
}

else

/*

{
SLOPE_2 = SLOPE_X2/SLOPE_Y2;
}

if (SLOPE_X1= =0)
{
SLOPE 1=0·

- I

}
else

{
SLOPE 1 = SLOPE_X1/SLOPE_Y1;
}

if (SLOPE_X2= =0)
{
SLOPE_2=0;
}

else
{
SLOPE 2 = SLOPE X2/SLOPE Y2; - - -
}

*I

if (fabs(SLOPE_1-SLOPE_2) < = 0.5)

114

{
temp_X1 = X3;
temp_Y1 = Y3;
temp_Z1 = Z3;
temp X2 = X4;

· - ·temp Y2 = Y4;
temp_Z2 = Z4;
}

115

printf(11 %2.3f %2.3f %2.3f\n%2.3f %2.3f
%2.3f\n \n .. ,temp _Xl,temp _ Yl,temp _ Z1,temp _ X2,temp _ Y2,temp _ Z2);

printf(11p is %d In rec is %d\n\n .. ,p,In_Rec_n);

if (p == (In_Rec_n)-1)

{
SURF_X[j] .point_3.X = temp_X1;
SURF_X[j].point_3.Y = temp_Y1;
SURF _X[j].point_3.Z = temp_Z1;
SURF_X[j].point_4.X = temp_X2;
SURF_X[j].point_4.Y = temp_Y2;
SURF _X[j].point_4.Z = temp_Z2;
SURF _X[j].SURF _N=surf_n;
j++;
surf_n ++;
}

if ((fabs(SLOPE_1-SLOPE_2)) > 0.5)
{
SURF _X[j].point_3.X = temp_X1;
SURF _X[j].point_3.Y = temp_Y1;
SURF _X[j).point_3.Z = temp_Z1;
SURF X[j].point 4.X =temp X2; - - -
SURF X[j].point 4.Y = temp Y2; - - -
SURF X[j].point 4.Z =temp Z2; - - -
SURF X[j].SURF N=swf n; - - -
j++;
surf_n ++;
SURF _X[j].point_l.X = X3;
SURF _X[j].point_1.Y = Y3;
SURF _X[j].point_l.Z = Z3;
SURF _X[j].point_2.X = X4;
SURF _X[j].point __ 2.Y = Y4;

SURF _XU].point_2.Z = Z4;
SURF _XU}.SURF _N=surf_n;
}
}

}
/*"pr1ntf(11 End of q=5 \n ..);* 1

q=6;
{
p=1;
X1 = parallel_X[p}.segment[q].start_pt.X;
Y1 = parallel_X[p}.segment[q].start_pt.Y;
Z1 = parallel X[p}.segment[q].start pt.Z; - -
X2 = parallel_X[p}.segment[q}.end_pt.X;
Y2 = parallel_X[p].segment[q].end_pt.Y;
Z2 = parallel_X[p].segment[q].end_pt.Z;

printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n'\X1,Y1,Z1,X2,Y2,Z2);

SURF _XU].point_1.X = X1;
SURF _XU].point_1.Y = Y1;
SURF _XU].point_1.Z = Z1;
SURF _XU].point_2.X = X2;
SURF _X[j].point_2.Y = Y2;
SURF _XU].point_2.Z = Z2;

for(p=2;p<In_Rec_n;p+ +)
{
q=6;

SLOPE_Y1 = fabs(Y2-Y1);
SLOPE_Z1 = fabs(Z2-Z1);

/* Comparing points of q segment of the p + 1 record *I

X3 = parallel_X[p].segment[q}.start_pt.X;
Y3 = parallel_X[p} :segment[q].start_pt.Y;
Z3 = parallel_X[p].segment[q].start_pt.Z;
X4 = parallel X[p].segment[q] .end pt.X; - -
Y4 = parallel_X[p].segment[q].end_pt.Y;
Z4 = parallel X[p].segment[q}.end pt.Z; - -
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n \n'\X3,Y3,Z3,X4,Y4,Z4);

116

SLOPE_Y2 = fabs(Y4-Y3);
SLOPE_Z2 = fabs(Z4-Z3);

if (SLOPE_Z1==0)
{
SLOPE_1=0;
}

else
{
SLOPE_! = SLOPE_Y1/SLOPE_Z1;
}

if (SLOPE_Z2==0)
{
SLOPE_2=0;
}

else
{
SLOPE_ 2 = SLOPE_ Y2/SLOPE _ Z2;
}

if (SLOPE_Y1==0)
{
SLOPE_1=0;
}

else
{
SLOPE 1 = SLOPE_Y1/SLOPE_Z1;
}

if (SLOPE_Y2==0)
{
SLOPE_2=0;
}

else
{
SLOPE 2 = SLOPE Y2/SLOPE Z2; - - -
}

if (fabs(SLOPE_1-SLOPE_2) < = 0.5)
{
temp_X1 = X3;

117

temp_Y1 = Y3;
temp_Z1 = Z3;
temp_X2 = X4;
temp_Y2 = Y4;
temp Z2 = Z4;

. - } - -

118

printf(.. %2.3f %2.3f %2 . 3f\n%2.3f %2.3f
%2.3f\n\n .. ,temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2);

printf(11p is %d In rec is %d\n\n .. ,p,In_Rec_n);

if (p == (In_Rec_n)-1)
{
SURF _XU].point_3.X = temp_X1;
SURF_XU].point_3.Y = temp_Y1;
SURF _XU].point_3.Z = temp_Z1;
SURF _XU].point_4.X = temp_X2;
SURF_XU].point_4.Y = temp_Y2;
SURF _XU].point_4.Z = temp_Z2;
SURF _XU].SURF _N=surf_n;
}

if ((fabs(SLOPE_1-SLOPE_2)) > 5)

}

{
SURF _XU].point_3.X = temp_X1;
SURF _XU].point_3.Y = temp_Y1;
SURF _XU].point_3.Z = temp_Z1;
SURF _XU].point_4.X = temp_X2;
SURF_XU].point_4.Y = temp_Y2;
SURF _XU].point_4.Z =temp_Z2;
SURF _XU].SURF _N=surf_n;
}
}

/*printf(11 End of q=6 \n ..);* I
for (j = 1 ;j < = surf_ n;j + +)
{
printf(11\nSURFACE_%d\n .. ,j);

printf("P1 X %2.3f Y %2.3f Z %2.3f\n11
,

SURF _XU].point_1.X,SURF _X[j].point_1.Y,SURF _X[j).point_1.Z);

printf("P2 X %2.3f Y %2.3f Z %2.3f\n
11

,

}

SURF _X(j].point_2.X,SURF _X(j].point_2.Y,SURF _X(j].point_2.Z);

printf(11P3 X %2.3f Y %2.3f Z %2.3f\n11
,

SURF _X(j].point_3.X,SURF _X[j].point_3.Y,SURF _X[j].point 3.Z);

printf(11P4 X %2.3f Y %2.3f Z %2.3f\n11
,

SURF_ X(j] .point_ 4.X,SURF _ X[j] .point_ 4.Y,SURF _ X(j] .point 4.Z);
}

fprintf(f2ptr, 11%d\n .. ,surf_n);
for (j = 1;j < = surf_ n;j + +)
{
fprintf(f2ptr, 11%d\n11 ,j);
fprintf(f2ptr, 11%2.3f %2.3f %2.3f\n11

,

SURF _X(j].point_1.X,SURF _X(j].point_1.Y,SURF _XU].point_1.Z);

fprintf(f2ptr:•%2.3f %2.3f %2.3f\n11
,

SURF _X(j].point_2.X,SURF _X(j] .point_2.Y,SURF _XU].point_2.Z);

fprintf(f2ptr, 11%2.3f %2.3f %2.3f\n11
,

SURF _X(j].point_3.X,SURF _X(j].point_3.Y,SURF _XU].point_3.Z);

fprintf(f2ptr, .. %2.3f %2.3f %2.3f\n .. ,
SURF _X[j].point_4.X,SURF _X[j].point_4.Y,SURF _xU].point_4.Z);

}

fclose(f2ptr);
/*
for (j = 1 ;j < = surf_ n;j + +)
{
printf C\nSURFACE_%d POINT_1 X %2.3f Y %2.3f Z %2.3f\n .. ,
j,SURF X(j].point 1.X,SURF X(j].point 1.Y,SURF X(j].point 1.Z); - - - - - -

printf C\nSURFACE_%d POINT_2 X %2.3fY %2.3f Z %2.3f\n .. ,
j,SURF X(j].point 2.X,SURF X[j].point 2.Y,SURF _X[j] .point_2.Z); - - - -

printf C\nSURFACE_%d POINT_3 X %2.3f Y %2.3f Z %2.3f\n .. ,
j,SURF _X(j].point_3.X,SURF _X[j].point_3.Y,SURF _X[j].point_3.Z);

printf C\nSURF ACE_ %d POINT_ 4 X %2.3f Y %2.3f Z %2.3f\n .. ,
j,SURF _X(j].point_ 4.X,SURF _X[j].point_ 4.Y,SURF _X[j].point_ 4.Z);
}
*I

119

APPENDIX F

SURFACE RECOGNITION STAGE- PARALLEL TOY-AXIS

SURFACE RECOGNITION STAGE- PARALLEL TOY-AXIS

/* SURFACE RECOGNITION STAGE* I

/*PARALLEL TOY AXIS *I

/* Function Prototype *I

#include <stdio.h>
#include <math.h>
#include < stdlib.h>
#include <alloc.h>
#define Z _limit 0.5 I* TO DETECT CHANGE IN Z* I

I* Global Variable Declaration *I
int In_Rec_n= 1,Rec_n= 1,Seg_n= 1,n_pts_bet= 1,pt=O;

float prev _ X,prev _ Y,prev _ Z;

float X,Y,Z,X1,Y1,Z 1 ,X2,Y2,Z2,X3,Y3,Z3,X4,Y 4,Z4;

float temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2;

121

f 1 o a t
SLOPE X1,SLOPE Y1,SLOPE Z1,SLOPE Z2,SLOPE X2,SLOPE Y2,SLOPE_1,SL - - - - - -
OPE_2;

FILE * f1ptr, * f2ptr;

struct XYZ
{

float X;
float Y;
float Z;

};

struct Segment
{

};

struct XYZ start_pt;
struct XYZ end _pt;
int n _pts _bet;

/*structure for each line *I

struct RecordY
{
struct Segment segment[lO];
int SEG_N;
int SURF_N;

}parallel Y[31];

struct POINT
{
float X;
float Y;
float Z;
};

/* Structure for each surface *I

struct SURFY XYZ
{
float X;
float Y;
float Z;

};

struct SURF ACE Y
{
struct SURFY _ XYZ point _1;
struct SURFY _ XYZ point_ 2;
struct SURFY_XYZ point_3;
struct SURFY_XYZ point_ 4;
int SURF _N;

}SURF Y[15];

122

main()
{
int j = 1,k,p,q;
char name1[35], name~[35];
int surf_n= 1;

- . -

printfC'Enter filename (reduced data file) \n");
scanf("%s", name1);

123

printf("Enter number of lines Scanned on the object (parallel to y axis)\n");
scanf("%d" ,&In_ Rec _ n);
In_Rec_n++;

printf("Enter name of surface feature file \n");
scanf("%s" ,name2);

if((f1ptr = fopen(name1, "r")) ==NULL)
{
printfC'Can't open %s to read \n", name1);
exit(1);

}

if((f2ptr = fopen(name2, "w+")) ==NULL)
{
printf("Can't write to file %s \n", name2);
exit(1);
}

I* READS POINTS IN REDUCED DATA FILE TO STRUCTURES *I

for(p= 1;p<In_Rec_n;p+ +)
{
fscanf(f1ptr,"%d",¶llel_Y[p].SEG_N);

for (q=1; q<=parallel_Y[p].SEG_N;q++)
{
fscanf(f1ptr,"%f %f %f %f %f %f',
&prev _X,&prev _ Y,&prev _ Z,&X,& Y,&Z);

parallel_ Y[p]. segment[q]. start _pt.X = prev _ X;parallel_ Y[p]. segment[q]. start _pt.
Y=prev_Y;
parallel_Y[p].segment[q].start_pt.Z=prev_Z;parallel_Y[p).segment[q].end_pt.X
=X;

parallel_Y[p).segment[q].end_pt.Y=Y;parallel_Y[p].segment[q].end_pt.Z=Z;
}

}
fclose(flptr);

!* P~~ DATA JUST READ IN ON THE SCREEN *I

for(p= 1;p<In_Rec_n;p+ +)
{
printf(11%d\n11 ,parallel_Y[p1.SEG_N);

for (q=l; q<=parallel_Y[p1.SEG_N;q++)
{
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. ,

124

parallel_ Y[p 1. segment[q]. start _pt.X,parallel_ Y[p 1. segment[q1. start _pt.Y,
parallel_Y[p].segment[q].start_pt.Z,parallel_Y[p1.segment[q1.end_pt.X,
parallel_Y[p1.segment[q1.end_pt.Y,parallel_Y[p].segment[q1.end_pt.Z);

}

}

q=1;
{
p=1;
X1 = parallel_Y[p].segment[q1.start_pt.X;
Y1 = parallel_Y[p1.segment[q1.start_pt.Y;
Z 1 = parallel_ Y[p 1. segment[q1. start _pt. Z;
X2 = parallel_ Y[p 1. segment[q1. end _pt.X;
Y2 = parallel_ Y[p 1. segment[q1. end _pt. Y;
Z2 = parallel_Y[p].segment[q1.end_pt.Z;

/*
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n11 ,X1,Y1,Z1,X2,Y2,Z2);

*I

SURF _Y[j].point_1.X = X1;
SURF _Y[j].point_1.Y = Yl;
SURF _Y[j].point_1.Z = Z1;
SURF _Y[j].point_2.X = X2;
SURF _Y[j].point_2.Y = Y2;
SURF _Y[j].point_2.Z = Z2;

for(p=2;p<In_Rec_n;p+ +)
{
q=1;

SLOPE_X1 = fabs(X2-X1);
SLOPE_Z1 = fabs(Z2-Z1);

/* Comparing points of q segment of the p + 1 record * J

X3 = parallel_Y[p).segment[q].start_pt.X;
Y3 = parallel_Y[p] .segment[q].start_pt.Y;
Z3 = parallel_Y[p].segment[q].start_pt.Z;
X4 = parallel_Y[p].segment[q].end_pt.X;
Y4 = parallel_Y[p] .segment[q].end_pt.Y;
Z4 = parallel_ Y[p]. segment [q]. end _pt.Z;

/*
printfC'%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n11 ,X3,Y3,Z3,X4,Y4,Z4);
*I

SLOPE_ X2 = fabs(X4-X3);
SLOPE_Z2 = fabs(Z4-Z3);

if (SLOPE_Z1= =0)
{
SLOPE_1=0;
}

else
{
SLOPE 1 = SLOPE_X1/SLOPE_Z1;
}

if (SLOPE_Z2==0)
{
SLOPE_2=0;
}

else
{
SLOPE 2 = SLOPE X2/SLOPE Z2; - - -
}

if (SLOPE_X1==0)
{
SLOPE_1=0;
}

125

else
{
SLOPE_1 = SLOPE_X1/SLOPE_Z1;
}

if (SLOPE_X2==0)
{
SLOPE 2=0· - '
}

else
{
SLOPE_2 = SLOPE_X2/SLOPE_Z2;
}

if (fabs(SLOPE_1-SLOPE_2) < = 0.5)
{

/*

temp_X1 = X3;
temp_Y1 = Y3;
temp_Z1 = Z3;
temp_X2 = X4;
temp_Y2 = Y4;
temp_Z2 = Z4;
}

126

printf(11 %2.3f %2.3! %2.3f\n%2.3f %2.3f
%2.3f\n\n .. ,temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2);

printfC•p is %d In rec is %d\n\n11,p,In_Rec_n);
*I

if (p == (In_Rec_n)-1)

{
SURF _Y[j].point_3.X = temp_X1;
SURF _Y[j].point_3.Y = temp_Y1;
SURF _Y[j].point_3.Z = temp_Z1;
SURF _Y[j].point_4.X = temp_X2;
SURF _Y[j].point_4.Y = temp_Y2;
SURF _Y[j].point_4.Z = temp_Z2;
SURF _Y[j].SURF _N=surf_n;
j++;
surf_n ++;
}

if ((fabs(SLOPE_1-SLOPE_2)) > 5)

{

}

SURF _Y[j1.point_3.X = temp_X1;
SURF _Y[j1.point_3.Y = temp_Y1;
SURF _Y[j1.point_3.Z = temp_Z1;
SURF Y[j].point 4.X = temp X2;
~ ·· - - - -
SURF _Y[j1.point __ 4.Y = temp_Y2;
SURF _Y[j1.point_4.Z =temp_Z2;
SURF _Y[j1.SURF _N=surf_n;
j++;
surf_n ++;
}
}

q=2;
{
p=1;
X1 = parallel_ Y[p 1. segment[q1. start _pt.X;
Y1 = parallel_Y[p1.segment[q1.start_pt.Y;
Z1 = parallel_Y[p].segment[q].start_pt.Z;
X2 = parallel_Y[p].segment[q1.end_pt.X;
Y2 = parallel_ Y[p 1. segment[q1. end _pt. Y;
Z2 = parallel_Y[p].segment[q1.end_pt.Z;

I*
printf(11%2.3f %2.3! %2.3f\n%2.3f %2.3! %2.3f\n' .. X1,Y1,Z1,X2,Y2,Z2);
*I

SURF_ Y[j 1 .SURF_ N =surf_ n;
SURF _Y[j].point_l.X = X1;
SURF _Y[j].point_l.Y = Y1;
SURF _Y[j].point_l.Z = Z1;
SURF _Y[j].point_2.X = X2;
SURF _Y[j1.point_2.Y = Y2;
SURF _Y[j].point_2.Z = Z2;

for(p=2;p<In_Rec_n;p+ +)
{
q=2;
SLOPE_X1 = fabs(X2-X1);
SLOPE_Y1 = fabs(Y2-Y1);

I* Comparing points of q segment of the p + 1 record *I

127

X3 = parallel_ Y[p]. segment[q]. start _pt.X;
Y3 = parallel_ Y[p]. segment[q]. start _pt. Y;
Z3 = parallel_Y[p].segment[q].start_pt.Z;
X4 = parallel_ Y[p]. segment[q]. end _pt.X;
Y-:t _ .. _parallel_Y[p].segment[q].end_pt.Y;
Z4 = parallel_Y[p].segment[q].end_pt.Z;

/*
printfC1%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n11 ,X3,Y3,Z3,X4,Y4,Z4);
*I

SLOPE_X2 = fabs(X4-X3);
SLOPE_Y2 = fabs(Y4-Y3);

if (SLOPE_Yl==O)
{
SLOPE_l=O;
}

else
{
SLOPE_l = SLOPE_X1/SLOPE_Y1;
}

if (SLOPE_Y2==0)
{
SLOPE_2=0;
}

else
{
SLOPE_2 = SLOPE_X2/SLOPE_Y2;
}

if (SLOPE_X1= =0)
{
SLOPE_l=O;
}

else
{
SLOPE 1 = SLOPE_X1/SLOPE_Y1;
}

if (SLOPE_X2==0)
{
SLOPE_2=0;

128

}
else

{
SLOPE_2 = SLOPE_X2/SLOPE_Y2;
}

if ((fabs(SLOPE_1-SLOPE_2) < = 0.5) && (fabs(Z3-Z2)< =3))
{

/*

temp_X1 = X3;
temp_Y1 = Y3;
temp_Z1 = Z3;
temp_X2 = X4;
temp_Y2 = Y4;
temp_ Z2 = Z4;
}

129

printf(11 %2.3f %2.3f %2.3f\n%2.3f %2.3f
%2.3f\n\n11 ,temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2);

printf(11p is %d In rec is %d\n\n",p,In_Rec_n);
*I

else
{
SURF _Y[j].point_3.X = temp_X1;
SURF _Y[j].point_3.Y = temp_Y1;
SURF _Y[j].point_3.Z = temp_Z1;
SURF _Y[j].point_4.X = temp_X2;
SURF _Y[j].point_4.Y = temp_Y2;
SURF _Y[j].point_4.Z = temp_Z2;
SURF _Y[j].SURF _N=surf_n;
j++;
surf_n ++;

X1 = X3;
Y1 = Y3;
Z1 = Z3;
X2 = X4;
Y2 = Y4;
Z2 = Z4;
SURF _Y[j].point_1.X = X1;
SURF _Y[j].point_1.Y = Y1;
SURF _Y[j].point_1.Z = Z1;
SURF _Y[j].point_2.X = X2;
SURF _Y[j].point_2.Y = Y2;
SURF _Y[j].point_2.Z = Z2;

}

if (p == (In_Rec_n)-1)

{
-SURF _Y[j].point_3.X = temp_X1;
SURF _Y[j] .point_3.Y = temp_Y1;
SURF _Y[j].point_3.Z = temp_Z1;
SURF _Y[j].point_4.X = temp_X2;
SURF _Y[j].point_4.Y = temp_Y2;
SURF _Y[j].point_4.Z = temp_Z2;
SURF _Y[j].SURF _N=surf_n;
j++;
surf_n ++;
}

if ((fabs(SLOPE_1-SLOPE_2)) > 0.5)

}

{
SURF _Y[j].point_3.X = temp_X1;
SURF _Y[j].point_3.Y = temp_Y1;
SURF _Y[j].point_3.Z = temp_Z1;
SURF _Y[j].point_4.X = temp_X2;
SURF _Y[j].point_4.Y = temp_Y2;
SURF _Y[j].point_4.Z =temp_Z2;
SURF _Y[j].SURF _N=surf_n;
j++;
surf_n ++;
SURF _Y[j].point_1.X = X3;
SURF _Y[j].point_1.Y = Y3;
SURF _Y[j].point_1.Z = Z3;
SURF _Y[j].point_2.X = X4;
SURF _Y[j].point_2.Y = Y4;
SURF _Y[j].point_2.Z = Z4;
SURF_ Y[j] .SURF'_ N =surf_ n;
}
}

q=3;
{
p=1;
X1 = parallel_Y[p].segrnent[q].start_pt.X;
Y1 = parallel_Y[p].segrnent[q].start_pt.Y;
Z1 = parallel_Y[p].segrnent[q].start_pt.Z;
X2 = parallel_Y[p].segrnent[q] .end_pt.X;

130

Y2 = parallel Y[p].segment[q].end pt.Y; - -
Z2 = parallel_ Y[p]. segment[q]. end _pt. Z;

I*
P~!f(.. %2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. ,Xl,Y1,Zl,X2,Y2,Z2);
*I
SURF _Y[j].point_1.X = X1;
SURF _Y[j].point_1.Y = Yl;
SURF _Y[j].point_1.Z = Z1;
SURF _Y[j].point_2.X = X2;
SURF _Y[j].point_2.Y = Y2;
SURF _Y[j].point_2.Z = Z2;

for(p=2;p<In_Rec_n;p+ +)
{
SLOPE_X1 = fabs(X2-X1);
SLOPE_Z1 = fabs(Z2-Zl);

I* Comparing points of q segment of the p + 1 record *I

X3 = parallel_ Y[p]. segment[q]. start _pt.X;
Y3 = parallel_Y[p].segment[q].start_pt.Y;
Z3 = parallel_Y[p].segment[q].start_pt.Z;
X4 = parallel_ Y[p]. segment[q]. end _pt.X;
Y4 = parallel_Y[p].segment[q].end_pt.Y;
Z4 = parallel_ Y[p] . .segment[q] .end _pt.Z;

I*
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n•',X3,Y3,Z3,X4,Y4,Z4);
*I

SLOPE_X2 = fabs(X4-X3);
SLOPE_Z2 = fabs(Z4-Z3);

if (SLOPE_Z1= =0)
{
SLOPE_1=0;
}

else
{
SLOPE 1 = SLOPE_X1ISLOPE_Z1;
}

131

if (SLOPE_Z2==0)
{
SLOPE_2=0;
}

else
. - {

SLOPE 2 = SLOPE X2/SLOPE Z2·
} - - - I

if (SLOPE X1= =0)
{
SLOPE_1=0;
}

else
{
SLOPE 1 = SLOPE X1/SLOPE Z1·
} - - - I

if (SLOPE X2= =0)
{
SLOPE 2=0·

- I

}
else

{
SLOPE 2 = SLOPE X2/SLOPE 22·
} - - - I

if (fabs(SLOPE_1-SLOPE_2) <= 0.5)
{

I*

temp_X1 = X3;
temp_ Y1 = Y3;
temp_Z1 = Z3;
temp_X2 = X4;
temp_Y2 = Y4;
temp_Z2 = Z4;
}

132

printf(11 %2.3f %2.3f %2.3f\n%2.3f %2.3f
%2.3f\n \n11

1temp _ X1 1temp _ Y1 1temp _ Z1,temp _ X2,temp _ Y2,temp _ Z2);
printf(11p is %d In rec is %d\n\n .. ,p,In_Rec_n);
*I

if (p == (In_Rec_n)-1)

{
SURF YU].point 3.X = temp X1; - - -
SURF _Yti].point_3.Y = temp_Y1;
SURF _YU].point_3.Z = temp_Z1;
SpRF_Yti].point_4.X = temp_X2;

--SURF _Yti].point_4.Y = temp_Y2;
SURF _YU].point_4.Z = temp_Z2;
SURF _Yti].SURF _N=surf_n;

}

if ((fabs(SLOPE_1-SLOPE_2)) > 5)
{

}

SURF YU].point 3.X = temp X1; - ··- -
SURF _YU].point_3.Y = temp_Y1;
SURF YU].point 3.Z = temp Z1; - - -
SURF Yti].point 4.X = temp X2; - - -
SURF Yti].point 4.Y = temp Y2; - - -
SURF _YU].point_4.Z =temp_Z2;
SURF _YU].SURF _N=surf_n;
j++;
surf_n ++:

SURF _YU].point_3.X = X3;
SURF _YU].point_3.Y = Y3;
SURF _YU].point_3.Z = Z3;
SURF _Yti].point_4.X = X4;
SURF _YU].point_4.Y = Y4;
SURF _YU].point_4.Z = Z4;
SURF _YU].SURF _N=surf_n;
}
}

for (j = 1 ;j < = surf_ n;j + +)
{
printf(11\nSURF ACE_ %d\n11 ,j);

printf(11P1 X %2.3f Y %2.3f Z %2.3f\n11
,

SURF _YU].point_1.X,SURF _Yti].point_1.Y,SURF _Yti].point_1.Z);

printf(11P2 X %2.3f Y %2.3f Z %2.3f\n11
,

SURF _YU].point_2.X,SURF _YU].point_2.Y,SURF _Yti].point_2.Z);

printf(11P3 X %2.3f Y %2.3f Z %2.3f\n .. ,

133

SURF _Y[j].point_3.X,SURF _YU].point_3.Y,SURF _YU].point_3.Z);

printf("P4 X %2.3f Y %2.3f Z %2.3f\n",
SURF _Y[j].point_4.X,SURF _Y[j].point_4.Y,SURF _Y[j].point_4.Z);

}

fprintf(f2ptr,"%d\n",surf_n);
for (j = l;j < = surf_ n;j + +)
{
fprintf(f2ptr, "%d\n",j);
fprintf(f2ptr,"%2.3f %2.3f %2.3f\n",

SURF _Y[j].point_l.X,SURF _Y[j] .point_l.Y,SURF _Y[j].point_l.Z);

fprintf(f2ptr, 11%2.3f %2.3f %2.3f\n",
SURF _Y[j].point_2.X,SURF _Y[j].point_2.Y,SURF _Y[j].point_2.Z);

fprintf(f2ptr,"%2.3f %2.3f %2.3f\n",
SURF _Y[j] .point_3.X,SURF _Y[j].point_3.Y,SURF _Y[j].point_3.Z);

fprintf(f2ptr, 11%2.3f %2.3f %2.3f\n",
SURF Y[j].point 4.X,SURF Y[j].point 4.Y,SURF Y[j].point 4.Z); - - - - - -

}

fclose(f2ptr);
/*
for (j= l;j< = surf_n;j+ +)
{
printf C\nSURFACE_%d Pl X %2.3fY %2.3f Z %2.3f\n",

j,SURF _Y[j].point_l.X,SURF _Y[j].point_l.Y,SURF _Y[j].point_l .Z);

printf C\nSURFACE_%d POINT_2 X %2.3f Y %2.3f Z %2.3f\n",
j,SURF Y[j].point 2.X,SURF Y[j].point 2.Y,SURF Y[j].point 2.Z); - - - - - -

printf C\nSURFACE_%d POINT_3 X %2.3f Y %2.3f Z %2.3f\n",
j,SURF _YU].point_3 .X,SURF _Y[j].point_3.Y,SURF _YU].point_3.Z);

printf ('\nSURFACE_%d POINT_4 X %2.3fY %2.3f Z %2.3f\n",
j,SURF _YU].point_4.X,SURF _YU].point_4.Y,SURF _Y[j].point_4.Z);

} /*}

134

APPENDIX G

NC CODE GENERATION STAGE

NC CODE GENERATION STAGE

I* NUMERICAL CODE GENERATION STAGE *I

I* Function Prototype *I

#include < stdio.h>
#include <math.h>
#include < stdlib.h>
#include < alloc.h>

I* Global Variable Declaration *I

int In_Rec_n=l,Rec_n=l,Seg_n=l,n_pts_bet=l,pt=O;

float prev_X,prev_Y,prev_Z,PTl;

float X,Y,Z,Xl,Yl,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4;

float XX1,XY1,XZ1,XX2,XY2,XZ2,XX3,XY3,XZ3,XX4,XY4,XZ4;

float YX1,YY1,Y21,YX2,YY2,Y22,YX3,YY3,YZ3,YX4,YY4,Y24;

float temp_X1,temp_Y1,temp_Zl,temp_X2,temp_Y2,temp_Z2;

FILE *flptr, *f2ptr, *f3ptr;

struct XYZ
{

float X;
float Y;
float Z;

136

};

struct Segment
{

struct XYZ start pt;
. - -
struct XYZ end _pt;
int n _pts _bet;

};

I* structure for each line *I

struct RecordY
{
struct Segment segment[10];
int SEG_N;
int SURF_N;

}parallel_Y[31];

struct POINT
{
float X;
float Y;
float Z;
};

I* Structure for each surface *I

struct SURFY XYZ
{
float X;
float Y;
float Z;

};

struct SURF ACE Y
{
struct SURFY _xyz point _1;
struct SURFY_XYZ point_2;
struct SURFY_XYZ point_3;

137

struct SURFY _ XYZ point_ 4;
int SURF _N,surf_nY;

}SURF _Y[15];

stnict -SURF ACE X
{
struct SURFY _ XYZ point _1;
struct SURFY_XYZ point_2;
struct SURFY_XYZ point_3;
struct SURFY_XYZ point_4;
int SURF _N,surf_nX;

}SURF _X[15];

/* STRUCTURE FOR FINAL SURFACE DEFINITION*/

struct SURF ACE FINAL
{
struct SURFY _ XYZ point_1;
struct SURFY_XYZ point_2;
struct SURFY_XYZ point_3;
struct SURFY_XYZ point_4;
int FSURF _N;

} FIN_ SURF[15];

main()
{

int j=1,k=1,p,q,surf_n,FSURF _n=1,p1,p2,p3;
char name1[35], name2[35], name3[35];

printf("Enter filename - surface feature file for parallel to X-axis \n");
scanf("%s", name1);

printf("Enter filename- surface feature file for parallel toY-axis \n,.);
scanf("%s", name2);

printf("Enter name of NC code file to write the APT statements\n"):
scanf("%s",name3);

138

if((f1ptr = fopen(name1, .. r ..)) ==NULL)
{
printf(.. Can't open %s to read \n11

, name1);
exit(1);

}

if((f2ptr = fopen(name2, 11
!

11
)) ==NULL)

{
printf(11Can't open %s to read \n11

, name1);
exit(1);

}

if((f3ptr = fopen(name3, 11W+ 11
)) ==NULL)

{
printfC'Can't write to file %s \n .. , name2);
exit(1);
}

I* READS POINTS IN SURFACE DATA FILE TO STRUCTURES *I

fscanf(f1ptr ,11%d11 ,&surf _ n);
l*printf(11Surf_n %d\n .. ,surf_n);* I
l*surf_nX = SURF _X(j].SURF _N.surf_nX;* I
for (j = 1;j < = surf_ n;j + +)
{
fscanf(f1ptr, 11%d11 ,&k);
l*printf(11k %d\n11 ,k);* I

fscanf(f1ptr, 11%f %f %f',

139

&SURF _X[j].point_1.X,&SURF _X[j].point_1.Y,&SURF _X[j].point_1.Z);
l*printf(.. %2.3f %2.::;f %2.3f\n11

,

SURF _X[j].point_1.X,SURF _X(j].point_1.Y,SURF _X[j].point_1.Z);

*I

fscanf(f1ptr, .. %f %f %f',
&SURF X(j].point 2.X,&SURF X[j].point 2.Y,&SURF _X[j].point_2.Z); - - - -

l*printf(11%2.3f %2.3f %2.3f\n .. ,
SURF _X(j].point_2.X,SURF _X[j].point_2.Y,SURF _X[j].point_2.Z);

*I
fscanf(f1ptr, 11%f %f %f1

,

&SURF _X[j].point_3.X,&SURF _X[j].point_3.Y,&SURF _X(j}.point 3.2);
l*printf(11%2.3f %2.3f %2.3f\n11

, -

__ SURF _X(j].point_3.X,SURF _X[j].point_3.Y,SURF _X[j].point_3.2);
*I
fscanf(f1ptr, 11%f %f %f•,

140

&SURF _X[j].point_4.X,&SURF _X[j].point_4.Y,&SURF _X(j}.point_4.2);
l*printf(11%2.3f %2.3f %2.3f\n .. ,

SURF _X[j].point_4.X,SURF _XU].point_4.Y,SURF _X[j].point 4.2);
*I
}

fclose(f1ptr);

fscanf(f2ptr, 11%d .. ,&surf_n);
l*printf("Surf_n %d\n .. , surf_n);* I
for (j=l;j<= surf_n;j++)
{
fscanf(f2ptr, 11%d11 ,&k);
l*printf(11k %d\n11,k);* I

fscanf(f2ptr, 11%f %f %f•,
&SURF _Y(j].point_l.X,&SURF _Y[j] .point_1.Y,&SURF _Y(j}.point_1.2);

l*printf(.. %2.3f %2.3f %2.3f\n11
,

SURF _Y(j].point_l.X,SURF _Y(j].point_1.Y,SURF _Y[j].point_1.2);
*I
fscanf(f2ptr, 11%f %f %f•,

&SURF _Y(j].point_2.X,&SURF _Y[j].point_2.Y,&SURF _Y(j].point_2.2);
l*printf(11%2.3f %2.3f %2.3f\n .. ,

SURF Y(j].point 2.X,SURF Y[j] .point 2.Y,SURF Y[j].point 2.2); - - - - - -
*I
fscanf(f2ptr, .. %f %f %f•,

&SURF _Y(j].point_3.X,&SURF _Y[j].point_3.Y,&SURF _Y(j] .point_3.2);
l*printf(11%2.3f %2.3f %2.3f\n11

,

SURF Y[j].point 3.X,SURF Y[j].point 3.Y,SURF _Y[j].point_3.2); - - - -
*I
fscanf(f2ptr, 11%f %f %f•,

&SURF Y(j].point 4.X,&SURF YU].point_4.Y,&SURF _Y[j].point_4.2); - - -
l*printf(11%2.3f %2.3f %2.3f\n .. ,

SURF Y(j].point 4.X,SURF YU].point 4.Y,SURF _Y[j].point_4.2); - - - -
*I

141

}

fclose(f2ptr);

]'=1· -' . { -

I* READING DATA FROM STRUCTURES OF SURFACES- PARALLEL TO
X-AXIS *I

:XX1 = SURF _X[j].point_1.X;
XY1 = SURF _X[j].point_1.Y;
XZ1 = SURF _X[j].point_1.Z;
XX2 = SURF _XU].point_2.X;
XY2 =SURF _X[j].point_2.Y;
XZ2 = SURF _XU].point_2.Z;
:XX3 = SURF _X[j].point_3.X;
XY3 = SURF _X[j].point_3.Y;
XZ3 =SURF _XU].point_3.Z;
:XX4 =SURF _X[j].point_4.X;
XY4 = SURF _XU].point_ 4.Y;
XZ4 = SURF _X[j].point_4.Z;
I*
printfC'%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. ,XX1,XY1,XZ1,XX2,XY2,XZ2);
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n11 ,XX3,XY3,XZ3,XX4,XY4,XZ4);
*I

I* READING DATA FROM STRUCTURES OF SURFACES- PARALLEL TO
Y-AXIS *I

YX1 =SURF _YU].point_1.X;
YY1 = SURF _YU].point_1.Y;
yz1 = SURF _Y[j].point_1.Z;
YX2 = SURF _YU].point_2.X;
YY2 = SURF _YU].point_2.Y;
yz2 = SURF _Y[j].point_2.Z;
YX3 = SURF _Y[j).point_3.X;
YY3 = SURF _Y[j].point_3.Y;
yz3 = SURF _Y[j).point_3.Z;
YX4 = SURF _Y[j].point_4.X;
YY4 = SURF _YU].point_4.Y;
yz4 = SURF _Y[j].point_4.Z;

I*
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. ,YX1,YY1,yz1,YX2,YY2,yz2);

142

printf(.. %2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n' .. YX3,YY3,Y23,YX4,YY4,Y24);
*I
if(fabs(XZ1-YZ4) < 5)
{
k = 1;
FI~SURF[k].point_1.X = XX1;
FIN_SURF[k].point_1.Y = XY1;
FIN_SURF[k].point_1.Z = XZ1;
FIN_SURF[k].point_2.X = XX2;
FIN_SURF[k].point_2.Y = XY2;
FIN_SURF[k].point_2.Z = XZ2;
FIN_SURF[k].point_3.X = XX3;
FIN_SURF[k].point_3.Y = XY3;
FIN_SURF[k].point_3.Z = XZ3;
FIN_SURF[k].poin~_4.X = XX4;
FIN_SURF[k].point_4.Y = XY4;
FIN_SURF[k].point_4.Z = XZ4;
FIN_SURF[k].FSURF _N = FSURF _n;
k++· I
FSURF_n ++;
}
else
{
k=1;
FIN_SURF[k].point_1.X = XX1;
FIN_SURF[k].point_1.Y = XY1;
FIN_SURF[k].point_1.Z = XZ1;
FIN_SURF[k].point_2.X = XX2;
FIN_SURF[k].point_2.Y = XY2;
FIN_SURF[k].point_2.Z = XZ2;
FIN_SURF[k].point_3.X = XX3;
FIN_SURF[k].point_3.Y = XY3;
FIN_SURF[k].point_3.Z = XZ3;
FIN_SURF[k].point_4.X = XX4;
FIN_SURF[k].point_4.Y = XY4;
FIN_SURF[k].point_ 4.Z = XZ4;
FIN SURF[k].FSURF _N = FSURF _n;

k++;
FSURF_n ++;

FIN_SURF[k].point_1.X = YX1;
FIN SURF[k}.point 1.Y = YY1; - -
FIN SURF[k].point 1.Z = YZ1; - -

FIN_SURF[k].point_2.X = YX2;
FIN_SURF[k].point_2.Y = YY2;
FIN_SURF[k].point_2.Z = YZ2;
FIN_SURF[k].point_3.X = YX3;
FIN SURF[k].point 3.Y = YY3; -. - -
FIN_SURF[k].point_3.Z = YZ3;
FIN SURF[k].point 4.X = YX4; - -
FIN_SURF[k].point_4.Y = YY4;
FIN_SURF[k].point_4.Z = Y24;
FIN SURF[k].FSUHF N = FSURF n· - - _,
k++· I
FSURF_n ++;
}
}

j=2;
{
XX1 = SURF _X[j].point_l.X;
XY1 = SURF _X[j).point_l.Y;
XZ1 = SURF _X[j].point_l.Z;
XX2 = SURF _X[j].point_2.X;
XY2 = SURF _X[j].point_2.Y;
XZ2 = SURF _X[j].point_2.Z;
XX3 = SURF _X[j].point_3.X;
XY3 = SURF _X[j].point_3.Y;
XZ3 = SURF _X[j).point_3.Z;
XX4 = SURF _X[j] .point_4.X;
XY4 = SURF _X[j).point_ 4.Y;
XZ4 = SURF _X[j].point_4.Z;
/*

143

printf(11%2.3f %2.3! %2.3f\n%2.3f %2.3! %2.3f\n'\XX1,XY1,XZ1,XX2,XY2,XZ2);
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n11,XX3,XY3,XZ3,XX4,XY4,XZ4);
*I
YX1 = SURF _Y[j].point_l.X;
YY1 = SURF _Y[j].point_l.Y;
Y21 = SURF _Y[j].point_l.Z;
YX2 = SURF _Y[j].point_2.X;
YY2 = SURF _Y[j].point_2.Y;
Y22 =SURF _Y[j].point_2.Z;
YX3 = SURF _Y[j].point_3.X;
YY3 = SURF _Y[j].point_3.Y;
Y23 =SURF _Y[j].point_3.Z;
YX4 = SURF _Y[j].point_4.X;
YY4 = SURF _Y[j].point_4.Y;

144

Y24 =SURF _Y[j].point_4.2;

/*
printfC'%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n",YX1,YY1,Y21,YX2,YY2,Y22);
J?~tf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n",YX3,YY3,Y23,YX4,YY4,Y24);
*I
if(fabs(XZ1-Y24) < 5)
{

}

if ((XX1 > YX1) && (XY1 < YY1))
FIN_SURF[k].point_1.X = YX1;
FIN_SURF[k].point_1.Y = XY1;
FIN_SURF[k].point_1.2 = X21;

if ((XX2 > YX2) && (XY2 < YY2))
FIN_SURF[k].point_2.X = YX2;
FIN_SURF[k].point_2.Y = YY2;
FIN_SURF[k].point_2.2 = XZ2;

if((XX3 < YX3) && (XY3 > YY3))
FIN_SURF[k].point_3.X = YX3;
FIN_SURF[k].point_3.Y = YY3;
FIN_SURF[k].point_3.2 = X23;

if((XX4 < YX4) && (XY4 < YY4))
FIN_SURF[k].point_4.X = YX4;
FIN_SURF[k].point_4.Y = XY4;
FIN_SURF[k].point_4.2 = XZ4;
FIN_SURF[k].FSURF_N = FSURF_n;
k++;
FSURF_n ++;

else
{
FIN SURF[k].point 1.X = XX1; - -
FIN_SURF[k].point_1.Y = XY1;
FIN SURF[k].point 1.2 = XZ1; - -
FIN SURF[k].point 2.X = XX2; - -
FIN SURF[k].point 2.Y = XY2; - -
FIN SURF[k] .point 2.2 = XZ2; - -
FIN SURF[k].point 3.X = XX3; - -
FIN SURF[k).point 3.Y = XY3;
FIN-SURF[k].point-3.Z = X23; - -
FIN SURF[k].point 4.X = XX4; - -

FIN_SURF[k].point_4.Y = XY4;
FIN_SURF[k].point_4.Z = XZ4;
FIN_SURF[k].FSURF _N = FSURF _n;

k++·
-- - '

FSURF_n ++;

FIN_SURF[k].point_l.X = YX1;
FIN_SURF[k].point_l.Y = YY1;
FIN_SURF[k].point_l.Z = YZ1;
FIN_SURF[k].point_2.X = YX2;
FIN_SURF[k].point._2.Y = YY2;
FIN_SURF[k].poin·:_2.Z = YZ2;
FIN_SURF[k].poin·;_3.X = YX3;
FIN_SURF[k].point_3.Y = YY3;
FIN_SURF[k].point_3.Z = YZ3;
FIN_SURF[k].point_ 4.X = YX4;
FIN_SURF[k].point_4.Y = YY4;
FIN_SURF[k].point_4.Z = YZ4;
FIN_SURF[k].FSURF _N = FSURF _n;
k++· '
FSURF_n ++;
}
}

j = 3;
{
XX1 = SURF _XU].point_l.X;
XY1 = SURF _XU].point_l.Y;
XZ1 = SURF _X[j}.point_l.Z;
XX2 = SURF _X[j}.point_2.X;
XY2 = SURF _X[j}.point_2.Y;
XZ2 = SURF _X[j}.point_2.Z;
XX3 = SURF _X[j].point_3.X;
XY3 = SURF _XU].point_3.Y;
XZ3 =SURF _XU].point_3.Z;
XX4 = SURF_XU].point_4.X;
XY4 = SURF _XU).point_ 4.Y;
XZ4 = SURF _XU).point_ 4.Z;

YX1 = SURF_ Y[j].point_l.X;
YY1 = SURF _Y[j].point_l.Y;
Y21 = SURF _Y[j].point_l.Z;
YX2 = SURF _Y[j].point_2.X;

145

YY2 = SURF _Y[j].point_2.Y;
Y22 = SURF _Y[j].point_2.Z;
YX3 = SURF _Y[j].point_3.X;
YY3 = SURF _Y[j].point_3.Y;
_'Y.Z-3 = SURF _Y[j].point_3.Z;
YX4 = SURF _Y[j] .:;:>oint_4.X;
YY4 = SURF _Y[j].point_4.Y;
Y24 = SURF _Y[j].point_4.Z;

if(fabs(XZ1-Y24) < 5)
{
if ((YX1 > XX1) && (YY1 > XY1))
FIN_SURF[k].point_l.X = XX1;
FIN_SURF[k].point_l.Y = XY1;
FIN_SURF[k].point_l.Z = XZ1;

if ((YX2 < XX2) && (YY2 > XY2))
FIN_SURF[k].point_2.X = YX2;
FIN_SURF[k].point_2.Y = YY2;
FIN_SURF[k}.point_2.Z = XZ2;

if ((YX3 > XX3) && (YY3 < XY3))
FIN_SURF[k}.point_3.X = YX3;
FIN_SURF[k].point_3.Y = YY3;
FIN_SURF[k}.point_3.Z = XZ3;

if ((XX4 > YX4) && (YY4 > XY4))
FIN_SURF[k}.point_4.X = XX4;
FIN_SURF[k}.point_4.Y = YY4;
FIN_SURF[k].poin~_4.Z = XZ4;
FIN_SURF[k}.FSURF _N = FSURF _n;
k++;
FSURF_n ++;
}
else
{
FIN_SURF[k).point_l.X = XX1;
FIN_SURF[k}.point_l.Y = XY1;
FIN_SURF[k).point_l.Z = XZ1;
FIN SURF[k).point 2.X = XX2; - -
FIN SURF[k].point 2.Y = XY2; - -
FIN SURF[k] .point 2.Z = XZ2; - -
FIN SURF[k].point 3.X = XX3; - -
FIN SURF[k].point 3.Y = XY3; - -

146

FIN_SURF[k].point_3.Z = XZ3;
FIN_SURF[k].point_4.X = XX4;
FIN_SURF[k].point_4.Y = XY4;
FIN_SURF[k].point_4.Z = XZ4;
FI_N SURF[k].FSURF N = FSURF n;
-- - - -
k++;
FSURF_n ++;

FIN_SURF[k].point_l.X = YX1;
FIN_SURF[k].point_l.Y = YY1;
FIN_SURF[k].point_l.Z = YZ1;
FIN_SURF[k].point_2.X = YX2;
FIN_SURF[k].point_2.Y = YY2;
FIN_SURF[k).point_2.Z = YZ2;
FIN_SURF[k].point_3.X = YX3;
FIN_SURF[k].point_3.Y = YY3;
FIN_SURF[k].point_3.Z = Y23;
FIN_SURF[k].point_4.X = YX4;
FIN_SURF[k).point_4.Y = YY4;
FIN_SURF[k].point_ 4.2 = Y24;
FIN_SURF[k].FSURF _N = FSURF _n;
k++;
FSURF_n ++;
}
}

j = 4;
{
XX:l = SURF _X[j).point_l.X;
XY1 = SURF _X[j].point_l.Y;
XZ1 = SURF _X[j].point_l.Z;
XX2 = SURF _X[j).point_2.X;
XY2 = SURF _X[j).point_2.Y;
XZ2 = SURF _X[j).point_2.Z;
XX3 = SURF _X[j).point_3.X;
XY3 = SURF _X[j].point_3.Y;
XZ3 = SURF _X[j].point_3.Z;
XX4 = SURF _X[j].point_4.X;
XY4 = SURF X[j].point 4.Y; - -
XZ4 = SURF X[j).point 4.Z; - -

YX1 = SURF Y[j).point l.X; - -

147

YYl =SURF _Y[j].point_l.Y;
Y21 = SURF _Y[j].point_l.Z;
YX2 = SURF _Y[j].point_2.X;
YY2 = SURF _Y[j].point_2.Y;

_ ¥Z:2 = SURF _Y[j].point_2.Z;
YX3 = SURF _Y[j].point_3.X;
YY3 = SURF _Y[j].point_3.Y;
Y23 = SURF _Y[j].point_3.Z;
YX4 = SURF _Y[j].point_4.X;
YY4 = SURF _Y[j].point_4.Y;
Y24 = SURF _Y[j].point_4.Z;

if(fabs(XZ1-Y24) < 5)
{
if ((YXl > XXl) && (YYl > XYl))
FIN_SURF[k].point_l.X = XXl;
FIN_SURF[k].point_l.Y = XYl;
FIN_SURF[k].point_l.Z = XZl;

if ((YX2 < XX2) && (YY2 > XY2))
FIN_SURF[k].point_2.X = YX2;
FIN_SURF[k].point_2.Y = YY2;
FIN_SURF[k].point_2.Z = XZ2;

if ((YX3 > XX3) && (YY3 < XY3))
FIN_SURF(k].point_3.X = YX3;
FIN_SURF[k].point_3.Y = YY3;
FIN_SURF[k].point_3.Z = XZ3;

if ((XX4 > YX4) && (YY4 > XY4))
FIN_SURF[k].point_4.X = XX4;
FIN_SURF[k].point_4.Y = YY4;
FIN_SURF[k].point_4.Z = XZ4;
FIN SURF[k].FSURF N = FSURF n; - - -
k++;
FSURF_n ++;
}
else
{

if(fabs(XZl-yzl) > 4)
FIN SURF[k] .point l.X = XXl; - -
FIN SURF[k].point l.Y = XYl; - -
FIN SURF[k].point l.Z = XZ1; - -
FIN SURF[k].point 2.X = XX2; - -

148

FIN_SURF[k].point_2.Y = XY2;
FIN_SURF[k].po.mt_2.Z = XZ2;
FIN_SURF[k].point_3.X = XX3;
FIN_SURF[k].point_3.Y = XY3;

_ EIN SURF[k].point 3.Z = XZ3;
~ ~ - -

FIN_SURF[k].point_4.X = XX4;
FIN_SURF[k].point_4.Y = XY4;
FIN_SURF[k].point_4.Z = XZ4;
FIN_SURF[k].FSURF _N = FSURF _n;

k++;
FSURF_n ++;

j = 5;
XXl = SURF _X[j].point_l.X;
XYl = SURF _X[j].point_l.Y;
XZl = SURF _X[j].point_l.Z;
XX2 = SURF _X[j].point_2.X;
XY2 = SURF _X[j].point_2.Y;
XZ2 =SURF _XU].point_2.Z;
XX3 = SURF _XU].point_3.X;
XY3 = SURF _XU].point_3.Y;
XZ3 = SURF _X[j].point_3.Z;
XX4 = SURF_XU].point_4.X;
XY4 = SURF _X[j].point_4.Y;
XZ4 = SURF _X[j].point_ 4.Z;

if(fabs(XZ1-YZ4) < 5)
{
if((XXl > YXl) && (YYl > XYl))
FIN_SURF[k].point_l.X = YXl;
FIN_SURF[k].point_l.Y = XYl;
FIN_SURF[k].point_l.Z = XZ1;

if((XX2 > YX2) && (YY2 > XY2))
FIN_SURF[k].point_2.X = YX2;
FIN_SURF[k].point_2.Y = YY2;
FIN SURF(k].point 2.Z = XZ2; - -

if((YX3 > XX3) && (XY3 > YY3))
FIN SURF(k).point 3.X = YX3; - -
FIN SURF(k].point 3.Y = YY3; - -
FIN SURF[k].point 3.Z = XZ3; - -

149

if((YX4 > XX4) && (YY4 > XY4))
FIN_SURF[k].point_4.X = YX4;
FIN_SURF[k].point_4.Y = YY4;
FIN_SURF[k].point_4.Z = XZ4;

__ FIN_SURF[k].FSURF _N = FSURF _n;

}

k++;
FSURF_n ++;
}
}

j = 6;
{
XX1 = SURF _X[j].point_l.X;
XY1 = SURF _X[j].point_l.Y;
XZ1 = SURF _X[j].point_l.Z;
XX2 = SURF _X[j] .point_2.X;
XY2 = SURF _X[j].point_2.Y;
XZ2 = SURF _X[j] .point_2.Z;
XX3 = SURF _X[j].point_3.X;
XY3 =SURF _X[j] .point_3.Y;
XZ3 = SURF _X[j].point_3.Z;
XX4 =SURF _x[j].point_4.X;
XY4 = SURF _X[j].point_4.Y;
XZ4 = SURF _X[j].point_4.Z;
j = 5;
YX1 = SURF _Y[j].point_l.X;
YY1 = SURF _Y[j].point_l .Y;
Y21 = SURF _Y[j].point_l .Z;
YX2 = SURF _Y[j].point_2.X;
YY2 = SURF _Y[j].point_2.Y;
Y22 = SURF _Y[j].point_2.Z;
YX3 = SURF _Y[j).point_3.X;
YY3 = SURF _Y[j].point_3.Y;
Y23 = SURF _Y[j].point_3.Z;
YX4 = SURF _Y[j].point_4.X;
YY4 = SURF _Y[j).point_4.Y;
Y24 = SURF _Y[j].point_4.Z;

if(fabs(XZ1-YZ4) ~ 5)
{
FIN SURF[k].pJint l .X = XX1; - -
FIN SURF[k].point l.Y = XY1; - -

150

FIN_SURF[k].point_1.Z = XZ1;
FIN_SURF[k].point_2.X = XX2;
FIN_SURF[k].point_2.Y = XY2;
FIN_SURF[k].point_2.Z = XZ2;

___ _FIN_SURF[k].point_3.X = XX3;
FIN_SURF[k].point_3.Y = XY3;
FIN_SURF[k].point_3.Z = XZ3;
FIN SURF[k].point 4.X = XX4·

- - I

FIN SURF[k].point 4.Y = XY4·
- - I

FIN SURF[k].point 4.Z = XZ4·
- - I

FIN_SURF[k].FSURF N = FSURF n; - -

k++;
FSURF_n ++;

FIN SURF[k].point 1.X = YX1·
- - I

FIN SURF[k].point 1.Y = YY1·
- - I

FIN_SURF[k].point_l.Z = YZ1;
FIN_SURF[k].point_2.X = YX2;
FIN SURF[k].point 2.Y = YY2·

- - I

FIN SURF[k].point 2.Z = Y22·
- - I

FIN SURF[k].point 3.X = YX3·
- - I

FIN SURF[k].point 3.Y = YY3·
- - I

FIN SURF[k].point 3.Z = YZ3·
- - I

FIN_SURF[k].point_ 4.X = YX4;
FIN SURF[k].point 4.Y = YY4·

- - I

FIN SURF[k].point 4.Z = YZ4·
- - I

FIN_SURF[k].FSURF_N = FSURF_n;
k++· '

}

for (k=l;k<=FSURF_n;k++)
{
printfC'%d\n"~FIN_SURF[k].FSURF _N);
printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n"~

151

FIN_SURF[k].point_l.X, FIN_SURF[k] .point_l.YI FIN_SURF[k].point_1.ZI
FIN_SURF[k].point_2.X1 FIN_SURF[k) .point_2.Y1 FIN_SURF[k].point_2.Z);

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n"~
FIN SURF[k].point 3.X

1
FIN SURF[k].point 3.YI FIN SURF[k] .point 3.ZI - - - - - -

FIN SURF[k].point 4.X
1

FIN SURF[k] .point 4.YI FIN SURF[k].point 4.Z); - - - - - -
}

printf("\n \n");
printf("PART NAME- SAMPLE PART\n");
q =1;
for (k=1;k<=FSURF _n;k++)
{
l*printf("q_is %d\n",q);* I

152

printf("P%1d = POINTI%2.3f,%2.3f,%2.3f\n",
q,FIN_SURF[k].point_1.X,FIN_SURF[k].point_1.Y,FIN_SURF[k].point 1.Z);
pl=q;
q++;
printf("P%1d - POINTI%2.3f,%2.3f,%2.3f\n",q,FIN_SURF[k].point_2.X,

FIN_SURF[k].point_2.Y, FIN_SURF[k].point_2.Z);
p2 =q;
q++;
printf("P%1d - POINTI%2.3f,%2.3f,%2.3f\n",q,FIN_SURF[k].point_3.X,

FIN_ SURF[k].point_ 3.Y, FIN_ SURF[k].point_ 3.Z);
p3 =q;
q++;
l*printf("PL%d = PLANE/%2.3f,%2.3f,%2.3f\n",FIN_SURF[k}.FSURF _N,

FIN_ SURF[k] .point_l.X, FIN_ SURF[k] .point_l.Y, FIN_ SURF[k] .point_l.Z);* I
printf(''PL%d = PLANE/P%d,P%d,P%d\n",FIN_SURF[k] .FSURF _N,p1,p2,p3);
}
printf("SP = POINTIO,O,O\n");
printf("\n");
printf("$$\n");
printf("FEDRAT1120\n");
printf("SPINDLI1200,CCW\n");
printf("INTOLI0.005\n");
printf("OUTOLI0.005\n");
printf("CUTI'ERI20 \n");
printf("COOLNTION\n");
printf("\n");
printf("$$\n");
printf("FROMISP\n");
printf("TIITCK/0.02\n");
for (k=l;k<=FSURF _n;k++)
{

printf(''GO/TO,PL %d\n",k);

printf("GOFWD,PL%d,PAST,%2.3f,%2.3f,%2.3f\n",k,FIN_SURF[k].point_3.X,FIN_S
URF[k].point_3.Y,FIN_SURF[k].point_3.Z);

}
printf("GO/TO,SP\n");
printf("TIITCKIO.OCI\n");

153

for (k=1;k<=FSURF _n;k++)
{

printf(11GO/TO,PL %d\n11 ,k);

pri~t!CGOFWD,PL %d,P AST, %2.3f, %2.3f, %2.3f\n11,k,FIN SURF[k}.point 3.X,FIN S
URF[k].point_3.Y,FIN_SURF[k].point_3.Z); - - -

}
printf(11GO/TO,SP\n11

);

printf(''COOLNTIOFF\n11
);

printf(11SPINDLIOFF\n11
);

printf(11FINI\n11
);

fprintf(f3ptr, 11PART NAME - SAMPLE PART\n11
);

q =1;
for (k=1;k<=FSURF _n;k++)
{
/*printf(11q_is %d\n11 ,q);* I
fprintf(f3ptr, 11P%1d = POINTI%2.3f,%2.3f,%2.3f\n11

,

q,FIN_SURF[k].point_1.X,FIN_SURF[k].point_1.Y,FIN_SURF[k}.point_1.Z);
p1=q;
q++;
fprintf(f3ptr, 11P%1d = POINTI%2.3f,%2.3f,%2.3f\n11,q,FIN_SURF[k}.point_2.X,

FIN_SURF[k].point_2.Y, FIN_SURF[k}.point_2.Z);
p2 =q;
q++;
fprintf(f3ptr, 11P% 1d = POINTI%2.3f, %2.3f, %2.3f\n11 ,q,FIN _ SURF[k}.point_ 3.X,

FIN_SURF[k].point_3.Y, FIN_SURF[k] .point_3.Z);
p3 =q;
q++;
l*printf(11PL%d = PLANEI%2.3f,%2.3f,%2.3f\n11 ,FIN_SURF[k].FSURF _N,

FIN_SURF[k].point_1.X, FIN_SURF[k].point_1.Y, FIN_SURF[k].point_1.Z);* I
fp rintf(f3 ptr , 11 PL %d

PLANE/P%d,P%d,P%d\n11 ,FIN_SURF[k] .FSURF _N,p1,p2,p3);
}
fprintf(f3ptr, 11SP = POINTIO,O,O\n11

);

fprintf(f3ptr, 11\n11
);

fprintf(f3ptr, 11$$\n11
);

fprintf(f3ptr, 11FEDRATI120\n11
);

fprintf(f3ptr, 11SPINDLI1200,CCW\n11
);

fprintf(f3ptr, 11INTOLI0.005\n
11

);

fprintf(f3ptr, 110UTOLI0.005\n
11
);

fprintf(f3ptr, 11CDTI'ERI20\n11
);

fprintf(f3ptr, 11COOLNT ION\n
11
);

fprintf(f3ptr, 11\ll11
);

fprintf(f3ptr, 11$$\n ..);
fprintf(f3ptr, 11FROM/SP\n11

);

fprintf(f3ptr, 11TIITCK/0.02\n11
);

for (k=l;k<=FSURF _n;k++)

- -{_
fprintf(f3ptr, .. GO/TO,PL%d\n11 ,k);

154

fprintf(f3ptr, .. GOFWD,PL%d,PAST,%2.3f,%2.3f,%2.3f\n .. ,k,FIN_SURF[k].point_3.X,
FIN _SURF[k] .point_ 3.Y,FIN _ SURF[k] .point_ 3.Z);

}
fprintf(f3ptr, 11GO/TO ,SP\n ..);
fprintf(f3ptr, 11THICK/0.00\n11

);

for (k=l;k<=FSURF n;k++)
{

fprintf(f3ptr, .. GO/TO,PL%d\n",k);

fprintf(f3ptr,"GOFWD,PL%d,PAST,%2.3f,%2.3f,%2.3f\n",k,FIN_SURF[k) .point_3.X,
FIN_SURF[k].point_3.Y,FIN_SURF[k].point_3.Z);

}
}

}
fprintf(f3ptr,"GO/TO,SP\n ..);
fprintf(f3ptr, "COOLNT /OFF\n");
fprintf(f3ptr, 11SPINDL/OFF\n11

);

fprintf(f3ptr ,"FINI\n ..);

REFERENCES

Bezier, P., "UNISURF System: Principles, Program Language." Proceedings of the
Second IFIP /IF AC International Conference on Programming Languages
for Machine Tools. PROLOMAT '73. Budapest. Aprill0-13 1973 : 417-426.

Boulanger, P., Evans, K. B., Rioux, M., and Ruhlmann, L. "Interface between a 3-
D Laser Scanner and a CAD/CAM System." Proceedings of the 5th
CAD/CAM and Robotics Conference June 1986, Toronto. Canada: 731.1-
731.7

Boulanger, P., Rioux, M., Taylor, J ., Livingstone, F., "Automatic Replication.and
Recording of Museum Artifacts." Proceedings of the 12th International
Symposium on the Conservation and Restoration of Cultural Property,
Tokyo. Japan 1988: 131-147.

Chang, Chao-Hwa and Melkanoff, A.Michael. NC Programming and
Software Design, Prentice Hall 1989.

Dorney, J ., Rioux, M., and Blais, F. "3-D Sensing for Robot Vision:•, NATO ASI
Series. Vol F64. Sensory Robotics for the Handling of limp materials: 159-
192.

Duncan, J. P.,_ Law, K. K., Computer-Aided Sculpture, Cambridge University
Press 1989.

Duncan, J. P., Mair, S. G., "The Anti-Interference features of Polyhedral
Machining." Proceedings of the 3rd International IFIP /IF AC Conference
on Programming Languages for Machine Tools. PROLOMAT '76, Stirling,
Scotland. 15-18 June 1976 : 181-195.

Duncan, J., and Mair, S. Sculptured Surfaces in Engineering and Medicine.
Cambridge University Press, 1983.

Encarnacao, J ., Schuster, R., Voge, E., Product Data Interfaces in CAD/CAM
Applications. Design Implementation and Experiences, Springer Verlag
1986.

155

156

Flutter, A., .. The POL1SURF System ... Proceedings of the Second IFIP/IFAC
International Conference on Programming Languages for Machine Tools.
PROLOMAT '73. Budapest. April 10-13 1973 : 403-416.

Kal)ade, Takeo. Three Dimensional Machine Vision, Kluwer Academic Publishers
1987.

Livingstone, F . R., and Rioux, M ... Development of a Large Field of View 3-D
Vision System ... SPIE Proceedings 665 June 1986: 188-194.

Marshall, F. Gerald, Laser Beam Scanning, Marcel Dekker Inc 1985.

Mortenson, Michael. Geometric Modelling, John Wiley and Sons 1985.

Nasser., Daniel. .. Non-Contact, Three Dimensional Object Digitizing Systems ...
Thesis. Univers1tv of Cent ral Florida. Fall 1989.

Nicolo, V., and Piccini M., 11lnteractive Curve Fitting ... Proceedings of the Second
IFIP /IF AC International Conference on Programming Languages for
Machine Tools. PROLOMAT '73, Budapest, April 10-13 1973 : 427-438.

Rioux, M. , Blais, F., Beraldin, J. A., Boulan ger, P., 11Range Imaging Sensors
Development at NRC Laboratories ... Proceedings of the Workshop on
Int erpretation of 3D Scenes. Austin. Texas Nov 27-29 1989: 154-160.

Sanz, L. C., Advances in Machine Vision, Springer Verlag 1988.

Taylor, J. M. , et al., 11Application of a Laser Scanner to Recording and Replication
of Museum Objects ... 8th Triennial Meeting of the ICOM Committe for
Conservation. Sydney. Australia. September 6-11 1987 : 93-97.

osni.,Yasser, Hwang. ,Jueng-Shing, and Ferreira, Labiche. ''Tool Path
Generation from Surface Mapping of an Object ... Proceedings ofPROCIEM
'90. Tampa. Florida. November 11-13 1990: 23-27.

Yoshiaki Shirai, Three Dimensional Computer Vision, Springer Verlag 1987.

	Improving the analytical recovery of radiostrontium from environmental samples
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	TABLE OF CONTENTS
	iii
	iv

	LIST OF FIGURES
	v
	vi

	CHAPTER 1
	001
	002
	003
	004
	005
	006

	CHAPTER 2
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020

	CHAPTER 3
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034

	CHAPTER 4
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059

	CHAPTER 6
	060
	061
	062
	063
	064
	065

	CHAPTER 6
	066
	067

	APPENDICES
	068

	APPENDIX A
	069
	070
	071
	072
	073
	074

	APPENDIX B
	075
	076
	077
	078
	079
	080
	081

	APPENDIX C
	082
	083
	084
	085
	086
	087
	088

	APPENDIX D
	089
	090
	091
	092
	093
	094
	095

	APPENDIX E
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119

	APPENDIX F
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134

	APPENDIX G
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154

	REFERENCES
	155
	156

