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ABSTRACT 

With the use of machine vision systems in the manufacturing cycle of a 

product, the lead time for producing the final product has been substantially 

reduced. Efforts in the past have aimed at automating the tasks right from the 

drawing board stage to final production of the product. Such technologies 

include CAD, CAM and CAPP. However the task of tool path (NC code) 

generation has not yet been fully automated. In the current techniques, the user 

plays a crucial role in the NC code generation process. 

There is an increasing trend for using machine vision systems in the 

fabrication of a part. Most machine vision( surface mapping) techniques generate 

a huge amount of data. Ideally, a CAM system should be capable of accepting 

data in any format for tool path generation with minimum intervention from the 

user. This thesis proposes a four step, computer based method for tool path(NC 

Code) generation from X,Y,Z data, aimed at minimizing if not eliminating the 

users role. The different techniques of surface mapping and curve fitting are 

also presented. These four steps extract relevant information needed for the 

generation of NC code, thereby automating the process traditionally handled by 

a user a interface. 
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CHAPTER 1 

INTRODUCTION 

With the advent of machine vision systems the lead time for producing 

the final product has been substantially reduced. A typical manufacturing cycle 

consists of three phases : design, production process planning and fabrication. 

In each of these phases, computers have widely been used. Efforts in the past 

have been directed at automating the tasks right from the drawing board stage 

to the final production of the product. Such technologies include computer -aided 

design (CAD), computer-aided process planning (CAPP), and computer-aided 

manufacturing (CAM). The current trend in the manufacturing arena is the use 

of machine vision. Machine vision is now becoming an integral part of advanced 

manufacturing systems. 

Machine vision and computer vision are synonymous. The purpose of 

machine vision is to make computer capable of understanding environments 

from visual information. Machine vision involves a variety of intelligent 

information processing: both pattern processing for extraction of meaningful 

symbols from visual information and symbol processing for determining what 

the symbols represent. The term 3D computer vision is used if visual 

information has to be interpreted as three dimensional scenes. 

There is an increasing demand for 3D computer vision. In factories, for 

example, automated assembly and inspection can be realized with fewer 
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constraints than conventional one which employ two-dimensional computer 

vision. 3D vision is being developed for mobile robots capable of passing 

through co~sJQ_rs and stairs, avoiding obstacles. 3D vision systems can also be 

used to capture geometric information of an object which could then be used 

to manufacture the object. There are number of techniques that could be used 

to capture geometric information depending on the application. 

This data could also be used in the creation of geometric CAD databases. 

For objects with geometric regularity, it is practical to generate them 

analytically, using one of the several geometric modelling schemes. However, 

there are many areas in which there is a need to create a database by 

extracting an object definition from a complex real life object, i.e., one that 

already exist and which does not have regular geometric properties. Examples 

of such objects are found in the field of medicine (prosthesis, plastic surgery, 

replication of ancient artifacts in museums, etc.).In short the acquisition of 3D 

data of objects opens up the following possibilities: 

producing a copy of the object. 

producing a modified version of the object. 

producing a negative of the object, for example, to produce a mold or die 

for the object (reverse engineering). 

for inspection of parts. 
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Application at Kennedy Space CenterCKSC) 

This thesis topic resulted from a research component in a project 

between NASA- KSC and the Department of Industrial Engineering and 

Management Systems at the University of Central Florida(UCF). The project 

entitled .. Productivity Techniques .. deals with applying high technology methods 

and techniques in support of operations at KSC. The focus of this component is 

to digitize (surface map) the cavity formed by a missing thermal tile on the 

space shuttle, and link this with a computer controlled milling machine to cut 

a replacement tile, thereby automating the process of replacement of the tile. 

The three dimensional information of the tile cavities on the orbiters surface 

could be obtained by digitizing the cavity with one of the techniques discussed 

in chapter 2 of this thesis report. 

The current method of obtaining the 3D data of the cavity involves: 

11Splashing11 the cavity with a substance that takes the form of the 

cavity thereby capturing the geometric representation of the 

cavity. This is then used to prepare a pattern which is used to 

manufacture the tile on the gunstock milling machine. 

This process of tile replacement has the following drawbacks: 

the process is very laborious. 

the replica or pattern created after $plashing the cavity is not an 

accurate representation of the cavity which may result in a tile 

that does not meet design specifications. 
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The movement of the cutting tool (of the gunstock milling 

machine) is controlled by the stylus, that follows the patterns 

_ _ surface. This movement depends on the skill of the operator. 

A lot of time spent in rework of the newly manufactured tile. This adds to the 

cost of manufacture per tile and increases the orbiter's stay in the Orbiter 

Processing Facility (OPF). 

By selecting the proper digitizing process (thereby eliminating the 

splashing process), 3D data of the cavity can be obtained. This data can then 

be used to define the surfaces of the cavity. After defining the cavity, the 

information could be loaded to CAM system and finally to a numerically 

controlled machine to manufacture the new tile. 

Thesis Outline 

The issue of manufacturing a part from its drawings has not been fully 

automated. The designer or programmer after generating the drawings of an 

object needs to write the necessary code (Numerical Control Code) or interact 

with a CAM package in order to generate the necessary numerical code. Ideally, 

a CAM package system should be capable of accepting geometric data in any 

form in order to generate NC code. In cases where the part data is in the form 

of a CAD drawing, this process would be easy. But in cases where three 

dimensional data of the object exist (after surface mapping an object by the use 

of machine vision tect:.niques), generation of NC code could be laborious. This 
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is so, since the programmer wouldn't be in a position to tell what kind of 

surfaces these represent. In such cases the need for a system that deciphers 

this enom~01l_s__three dimensional data without making the process cumbersome 

to the programmer is warranted. 

This thesis addresses the issue of tool path generation after surface 

mapping of an object has been conducted. It is basically an 11Reverse 

Engineering11 application. The thesis will be dealing problem of defining surfaces 

from X-Y-Z data for tool path generation with minimum human intervention. In 

most CAM packages the user plays a crucial role in the manufacturing process: 

defining the boundaries of the object, defining surfaces to be machined, the 

machining sequence, etc .. This thesis attempts to relieve the programmer of 

these cumbersome tasks. The thesis proposes a four step procedure for the 

generation of tool path: 1) Data Reduction stage, 2) Geometric Data(shape 

definition) Extraction Stage, 3) Surface Recognition Stage, and 4) NC Code 

Generation Stage. 

The related issues of surface mapping techniques will be covered in 

chapter 2. The different methods currently used for obtaining topographical and 

geometrical information of the objects surface will be dealt in detail. Chapter 

3 will cover the principle, operational mechanism and components of laser 

scanners, which is the target surface mapping technique to be used in the KSC 

project. The four step procedure proposed for tool path generation and logic for 

each of the four stages will be explained in chapter 4. Results of these stages 
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will be presented in chapter 5. The computer programs for the stages can be 

found in the Appendices. 



CHAPTER 2 

SURF ACE MAPPING TECHNIQUES 

Many ways exist for capturing the geometric information of a surface. An 

obvious way of finding the coordinates of some random points on a surface is 

to use a Coordinate-Measuring Machine (CMM). The object could be placed on 

the table and by the use of a probe the coordinates of the surface can be 

obtained. The limitations of a CMM are : 

1) The size of the object that can be measured is restricted by the 

size of the CMM table. 

2) The accuracy of CMM's limits its use where dimensions have to 

be measured within close tolerances. 

3) The measurement of complex profiles may be impossible. This is 

due to the fact that the probe may not be in a position to reach 

sharp comers, grooves, peaks etc. Thus the CMM cannot measure 

a surface to its minutest detail. 

Most modem measuring systems are essentially optical. These techniques 

include: 

1) capturing a picture of the object. The image of the objects surface 

is then analyzed through the use of image processing algorithms 

to extract pertinent data. The output of such a process would be 

7 
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geometric information of the objects surface. 

2) projecting fringes on the objects surface. A picture of the distorted 

_fringes on the objects surface is captured and stored as a frame on 

a computer. Analysis of the fringe pattern results in the 

topological information of the surface. 

3) scanning a laser beam across the objects surface. The output is an 

X-Y-Z representation of the object scanned. 

Extraction of tridemsional information from images have proven to be useful in 

medicine, geology, cartography, and military activities. The sciences invol_ved 

are photograrnmetry and artificial intelligence. The former involves the 

extraction of 3-D coordinates from images, the latter involves the automatic 

interpretation of 3-D images. 

This chapter gives an overview of methods for collecting surface-point 

coordinate data with an aim to replicate these surfaces by machining. 

Stereo-photoarammetry 

The determination of surface geometries by measurements of central 

perspective photographic projection is called photogrametry. This is one of the 

earliest methods of recording the topography of both large areas of terrain 

photograph from an aircraft or buildings and small objects viewed at close 

range. In this technique two photographs of the terrain or object are taken by 

cameras at nearby positions. The depth Z of points in the scene at position X,Y 
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in the plane of the photographs can be deduced from the photographs by 

measuring the parallax of identifiable points in them. Three methods are 

described }?~low: 

1) Two photographs may be taken from different viewpoints giving 

projected points r1, r2 in a plane which are sufficient to fully 

determine the coordinates of real spatial points such as r. By 

forcing the human eyes to receive simultaneously the 

photographic image appropriate to each eye in real observation, 

a mental perception of depth( z) dimension of a surface is forced 

upon the brain. The procedure of observing and recording two 

projections and their subsequent quantitative analysis is called 

stereo-photogrammetry. 

2) By a dEtvice in which shadows of a grating of alternate 

dark(opaque) and light(transparent) "lines .. or bars are optically 

projected onto the object and subsequently mapped directly and 

seen as shadow fringes(Moire Technique- will be discussed later) 

in one photograph. The need for double photography and 

stereoscopic perception is eliminated. 

3) For certain barrel-like objects, the ancient Grecian silhouetting 

method of Dibutades can be effective, particularly when coupled 

with modem video techniques. This technique will be described 

in detail later on in this section. 
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Photographs are .. read.. by a skilled, specially trained operators of special 

analyzing machines which are now obsolete. The output may be Z values at 

orthogonal .rows and columns in X and Y (plan view coordinates) recorded on 

computer compatible storage media. 

This technique of stereo-photogrammetry is highly specialized and 

requires the special machines to decipher information contained in these 

photographs. However, the advent of charge-coupled diode (CCD) and other 

form of light sensing arrays have replaced conventional photographs as 

recording media. These new techniques of detecting light intensities enable 

data to be fed directly to computer storage media. 

Shadow Moire Contourography 

This is a method that deduces depth of surface from one rather than two 

photographs. Essentially it senses parallax, computes and plots contours of 

equal elevation as fringes superimposed on the single photograph. When an 

· optical grating of alternatively opaque and transparent bars is illuminated by 

either a divergent or collimated beam of light, shadows of the opaque bars will 

be cast onto a surface beyond the grating. If such shadows and the grating form 

which they are projected are viewed simultaneously from a point not coinciding 

with the source of illumination, so-called shadow moire fringes are seen. There 

are many approaches to shadow moire contourography or moire topography. 

The major applications of the moire method is in the measure deformation in 
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stress analysis. 

UGtn' SOURCE 

Figure 2.1 Moire Contourography using only one grating. 

The Moire method has been successfully used to visualize surface 

contours of large objects like airplane models or mannequins. In this set up, a 

light source illuminates an object through a large equispaced plane grating in 

front of the object and observes its shadow on the object through the same 

grating (refer figure 2.1). Later, another practical technique was developed that 

· did not use a large grating, instead, a shadow grating produced by projecting 

a grating onto an object is observed through another grating (refer figure 2.2). 

The 3D shape of a known object is found by the contour lines in the moire 

image. 

The Takasaki-Terada technique is used for tracing the changes in body . 

shape following surgical operation and for anthropological research. Figure 2.3 

shows the apparatus used in this technique. A screen of specially blackened 
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Figure 2.2 Moire Contourography using two gratings. 

strings is tensioned within a strong frame. These strings are positioned by a 

second frame providing a 11bridge11 for the strings. The strings form a grating of 

uniformly spaced opaque bars. The frame of strings is mounted vertically in a 

slightly inclined track in which it travels under gravity in a horizontal direction 

normal to the vertical direction of the strings during photography. Alternatively 

the frame may be driven by electric motors from side to side between limits as 

·indicated in figure 2.3 . The subject or object is placed behind the screen and 

illuminated by a high intensity point source lamp sited at an angle to the 

normal to the plane of the screen. The lamp casts shadows of the strings upon 

the human subject or inanimate object. Two lamps are used to give shadow 

free projection on the surfaces. A centrally located 35mm format camera 

photographs the screen and its shadows on the subject or object while the 

screen is moving. 
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To summarize this technique- the X-Y-Z representation of an object is 

obtained by projecting equally spaced fringes onto the object. A 2D picture is 

captured by a_ charge couple device (CCD) and consequently digitized and 

stored as a frame in a computer. The phase shift of the light fringes on this 

image leads to the calculation of depth values for every point. 

Figure 2.4 shows a schematic representation of the Moire technique. 

Grating 
frame 

Subject 

Grating casing 

Translating 
llllk=:d.-motor (for filtering) 

(8) 

Grating frame 

(b) 

Crossrail 

Figure 2.3 Schematic diagram for the Takasaki-Terada technique. 
(a) Side view of apparatus (b) Front view of apparatus 
(Duncan and Mair 1983) 

Silhouettes 

The technique of silhouettes was used by Dibutades to carve the human 

form from shadows of the model projected from a range of angular directions. 

Provided the object is free from concave geometry, the rays form a shadow as 
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Figure 2.4 Schematic representation of the Moire technique. 
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an orthographic projection form a cylindrical envelope of the surface for that 

particular direction. Figure 2.5 shows a typical application for Silhouettes using 

video recording systems. The shadow for a given angle of projection of light 

may be digitized (by hand or automatically) and converted to virtual computer 

stored image. The object can be rotated for a series of angular positions, each 

of which will yield a silhouette for that position. This may be followed or traced 

by a cylindrical cutting tool directed by computer-prepared instructions, to 

produce the desired tubular shape at a specified angle of projection as 

illustrated in figure 2.6. 

A system has been devised for obtaining silhouettes of limbs, limb 

remnants and the feet of real patients under clinical conditions. This system has 

been demonstrated and proved using models and simulated arrangements. 



Figure 2.5 Silhouetting by casting a shadow of a 
surface-bound object in collimated light. 
(Duncan and Law 1989) 

Figure 2.6 The tracing of a silhouette for one 
angular position by a cylindrical milling 
cutter. (Duncan and Law 1989) 

15 
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Beam-Scanning Methods 

The latest modern methods of surface mapping employ lasers. The 

methods that follow use lasers, X-Rays, etc. to capture geometric information . - .. 

of the surface. 

Laser Beam Scanning 

In this technique the geometric representation of the object is obtained by a 

scanning laser beam across a surface to be measured. The basic configuration 

of a 3D laser scanning device consists of a laser light source which produces 

a narrow light beam which is scanned across the object to be measured 

through the use of a two dimensional mirror. 

ylL 
z 

LASER 

EiJ 

X, Y, Z 
COMPUTATION 

Figure 2. 7 Basic configuration of a 3D laser scanner. 

A lens collects the reflected beam and displays it on an Electro-Optical (E/0) 

position sensor. The linear position of the reflected light along with the different 
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angles of deflection of the scanner are used to calculate the 3-D coordinates of 

a point on the objects surface. Figure 2.7 depicts the basic configuration of a 3D 

laser scanner d_evice. Chapter 3 describes in detail the components and 
~ - .. 

operational mechanism of laser scanners. 

Computed tomography and CAT scanning 

The methods introduced above may be described as "superficial", i.e. measured 

from observing points above the surface or from outside of any solid enclosed 

by a surface. Such methods may encounter difficulties such as the shadow 

effect due to the configuration of the object. 

A new principle of surface definition which overcomes some of the 

difficulties is the Computer Tomography method which was invented by Sir 

Godfrey Hounsfield, a l'J abel Prize winner. This method employs the geometrical 

idea of sectioning a closed surface by imaginary parallel, closely spaced "cuts" 

through the surface with the aid of X-ray scanning and large scale matrix 

inversion in a mainframe or mini-computer. Most large hospitals now have such 

systems for reconstructing and thus inspecting internal organs and bones of the 

human bodies of live patients without operation as formerly required. The 

numerical data used for this pictorial reconstruction can also be used for 

machining replicas of those organs and bones. 

Figure 2.8 shovvs a typical hospital Computed Axial Tomography (CAT) 

apparatus. The patient lies on a couch with his or her head inside an annular 
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CRT !ERMINAL 

COWPUTER 

WEMORY 

CA~ SCANNER 

Figure 2.8 A CAT scanner in hospital use. (Duncan and Law 1989) 

aperture as illustrated in the diagram. A X-ray gun propagates pencils of X-rays 

through the skull and through the axis of the aperture to a diametrically 

opposite receptor which detects the strength of each pencil after some of it has 

been absorbed by all the various body tissues which it has traversed. The beam 

is arranged to traverse systematically in many incremental angular directions 

in a plane normal to the axis. When a full rotation of beam direction has been 

completed, the rotating beam is moved axially to the next, neighboring plane, 

usually lmrn or so away. Hounsfield discovered that different tissues absorb 

different amounts of X-ray energy. The measure of that capacity for absorption 
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is now the Hounsfield Number. 

When Hounsfield Numbers are known the boundaries of bones, for 

instance, beipg_dense and strong absorbers compared with surrounding tissue, 

can be deduced in a coordinate frame of reference. This detection of Hounsfield 

Number differences is so sensitive that boundaries between two soft tissues of 

only slightly different Hounsfield Number can be detected; and so a kidney, for 

instance can be "extracted" and imaged for examination. The coordinates 

involved in image reconstruction can also be used for replication by machining 

of bones and organs for bone replacement prosthesis. 

illtrasonic time of flight technique. 

When a short ultrasonic pulse is transmitted towards the object, some of its 

energy is reflected back to the transmitter. If the time interval between the 

transmitted and received pulses is measured, the distance (d) between the 

source and object is obtained from 

2d = v. tc 

where v. is the speed of sound under given pressure conditions and tr is the 

time of flight of the pulse. 

In order to avoid signal attenuation in a practical system, it is not a 

single pulse, but rather a set of pulses at different frequencies that is 

transmitted. Commercial systems also provide a correction factor for speed-of

sound fluctuation under varying pressure conditions. An interesting property of 
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ultrasonic rangefinders is that the baseline separation between emission and 

reception is null since they are performed by the same unit. This eliminates the 

shadow effe.cts - encountered in all the systems with nonzero baseline 

separation, for example the laser beam scanning technique. 

However, it is difficult to obtain a well focused ultrasonic beam pattern. 

Another drawback of ultrasonic ranging is that for some incidence angle of the 

pulse on the objects surface, very little energy is reflected and the return pulse 

is lost in detector noise. This phenomenon is similar to specular reflection of 

light on a mirror-like surface. 

From the above discussion it is clear that the technology of using 

machine vision systems for manufacturing does exist. However the choice of 

technique depends on the application and the environment in which it has to 

be used. These techniques of surface mapping were studied and evaluated for 

the cavity digitization study for the NASA-UCF Project. The Fringe Moire and 

the Laser scanning techniques were the two techniques studied in depth. The 

Moire technique had limitations such as: bulky equipment, lot of time needed 

for setup and processing the image and as well as the accuracy with which the 

object could be measured. The laser beam scanning technique has the 

characteristics that make it the most promising technique for an industrial 

environment despite some limitations in its use. This technique will be 

discussed in detail in Chapter 3 that follows. 



CHAPTER 3 

LASER BEAM SCANNING 

The industrial environment adds constraints and limitations, such as 

difficult environment, cost, compactness, etc. to the applicability of usual 

techniques for surface mapping. On the other hand, the proximity of objects 

allow active methods to be used in order to get 3-D data much more easily than 

passive techniques, which involves bringing the object to the device or moving 

the light source by a stationary object. 

Active methods where a beam of light, such as a laser beam is 

superimposed to the naturally lightened scene simplify a lot of signal 

processing to be done in order to recover distance information. Besides this 

advantage, the use of a laser beam for surface mapping provides a number of 

unique advantages. The brightness of the source ensures a good signal-to-noise 

r<;l.tio in most applications. If needed, the ambient light can be filtered out 

without any significant reduction of the laser light itself. This is because the 

laser light is emitted over a very narrow bandwidth. The most significant 

advantage is that most laser sources can be adjusted to emit in a low order 

Gaussian mode. This property gives maximum light power and minimum 

divergence. This is the basic advantage of lasers for surface mapping. This 

means that all the power available at the propagation remains in focus for an 
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extended length along the range axis. This is not the case for conventional light 

sources, where for an extended depth of focus along the range of axis, the 

aperture of t~e . incoherent light projection system must be reduced, which 

considerably lowers the amount of light available. 

The use of the laser scanning technique for surface mapping of a cavity 

on the orbiters body has been proved to be one of the most promising. This 

technique has been described briefly in chapter 2, however it is addressed in 

detail in this chapter. This chapter will cover principle, operational mechanism, 

types of polygonal mirror scanners, mechanisms of rotating polygonal mirr_ors, 

and configuration of polygon/motor assembly. 

Active Triangulation 

Figure 3.1 shows the basic elements of a system using active triangulation for 

surface mapping(scanning).It consists of a light source(S), a scanning 

mechanism(M) to project the light spot onto the object surface and a position 

sensor(D) with a collecting lens(L) looking off-axis for the light spot. Distance 

measurement is done by trigonometric algebra applied to the projection 

direction (scanner angular position) and the detection direction made by the 

light spot position on the sensor with the principal point of the collecting lens. 
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Figure 3.1 Basic laser scanning arrangement by triangulation. 

Synchronized Scanning. 
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One property of the arrangement shown in figure 3.1 is that the 

measurement resolution can be increased by increasing the off-axis angle(9) but 

this is done at the expense of compactness and field of view. Another drawback 

is a shadow effect that increases with the angle. This is related to the fact that 

some part seen by the projection mechanism is not seen by the position sensor. 

The shadow effect (refer figure 3.2) prevents continuous profile recording and 

is more serious as the off axis angle increases. 

Synchronized scanning eliminates the above drawbacks. The basic idea 

is to synchronize the projection and detection in a way that the detected light 

spot on the position sensor keeps it spatial position stable when the projected 

beam is scanning a flat surface (scanning being parallel to the surface). The 
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OBJECT 

Figure 3.2 Shadow effects. 

implementation of a synchronized scanning mechanism can be done 

electronically or geometrically. 

Figure 3.3 shows an arrangement to electrically synchronize two 

galvanometer driven motors G1, G2. In this case the source signal is a ramp, 

then the output signal from a position sensor seen on the oscilloscope provides 

a direct profile reading for which the time axis is proportional to displacement 

along the X axis. Amplitude of the deflection is proportional to departure of the 

object surface from the reference plane. One interesting feature of that 

arrangement is that the position of the reference plane can be set electronically 

by modifying the phase relationship of the two excitation signals. In order to 

get a surface profile measurement a third galvanometer driven motor(indicated 

by G3 on figure 3.3) is used to deflect perpendicularly to the page both the 

projected and received beams. 
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Figure 3.3 An example of an electrically synchronized scanner.(Rioux 1989) 

Figure 3.4 shows an arrangement that is geometrically synchronized. Both 

mirrors F 1 and F2 are fixed when the device is an operation. Angular 

adjustment of those mirrors sets the position of the reference plane in space. 

Synchronization is realized using a pyramidal rotating mirror(P). By geometrical 

analysis, synchronization can be achieved by using two opposite facets of the 

scanner. The arrangement is simpler to implement than electrical 

synchronization and is also more precise and stable. Another feature is the 

ability of rotating mirror scanners to rotate at very high speed ( approx 10,000 

lines/s ) compared to galvanometers (approx 100 lines/s). 
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Figure 3.4 An example of a geometrically synchronized scanner.(Rioux 
1989) 

As seen from figure 3.4, the major components of the scanning 

arrangement are: polygonal scanner(mirror), motor for rotating this mirror, light 

source and a position sensor. A three dimensional setup of the arrangement is 

shown in figure 3.5. 

Light Source 

Although any light source can be used, a laser beam has many 

advantages over conventional ones: 

interferometric filter can be used to improve signal to noise ratio 

at detection. 

brightneBs is orders of magnitude higher than an incoherent 
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Figure 3.5 11Skeleton11 of a laser scanner showing components.(Sanz 1988) 

compact devices (specially diode lasers). 

cheaper. 

very large depth of field due to spatial coherence. 

Position Sensors 

There are basically two types of position sensors, these are uni

dimensional (or linear devices) and bi-dimensional sensors. A synchronized 

approach to scanning can allow the use of a linear device for both, line profile 

and surface profile measurements. There are three main types of such sensors. 

The first one is an analog device referred to as lateral effect photodiode 

(LEP). It is made of a photodiode on top of a resistive layer. Interesting features 



of the device includes: 

the response time that can be as low as 500ns for small devices. 

low co~ sensor. 

insensitivity to large amounts of defocussing. 
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the signal output amplitude is proportional to the centroid of the spot. 

The second type is the linear array of discrete photoreceptors (photodiode 

arrays, CCD, CID, etc).The major advantages of these devices are: 

high sensitivity. 

very high spatial resolution. 

very good geometrical precision. 

such a device is required for mapping large volume scenes or distant 

objects. For example, a typical arrangement using a low power laser to 

map 3-D coordinates of a scene using a LEP sensor will be limited to 

objects no more distant than about one meter from the camera. In 

contrast a CCD linear array can map objects as distant as 10 meters. 

The disadvantages of these devices are: 

more expensive than lateral effect diodes(LEP). 

a full line scan is needed to get position information. 

much more signal processing than LEP is needed to extract position 

signals. 

they are limited in dynamic range due to sensitivity to defocussing. 

A third type is the dual element photodiode. This device is useless with 
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usual triangulation geometry, but can be used advantageously with 

synchronized approaches. It consists of two photodetectors located side by 

side. It has the_ ~d.'Lantage of having a bandwidth of more than 30 MHz. Signal 

processing circuitry required to cope with such a speed is the limiting factor for 

this device. It is also sensitive to geometric distortion of the spot and has a very 

small displacement range. Nevertheless, its low cost makes it attractive for the 

development of a 3-D camera. 

Scanners 

Choice of scanners to be used is application dependent. Parameters to be taken 

into consideration are: scanning speed, resolution, random access operation, no 

moving parts requirement and cost. Scanners can be grouped into three types: 

-galvanometer driven. 

-rotating polygon mirrors. 

- acousto-optic devices. 

Galvanometer driven and acousto-optic devices can be addresses at 

random with a typical response time of 1ms and 10 J.LS. Acousto-optic devices 

have the advantage of no moving parts. However, they are more expensive and 

limited in resolution. Another drawback of acousto-optic devices is the difficulty 

to get large scan angles. 

Polygon mirrors are a good choice for very high speed requirements, but 

they cannot be addressed randomly. Typical speeds are 2 to 10 thousand lines 
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per second with 2 to 5 thousand resolved spots per line. Scan angles cover 

typically 20 degrees to 120 degrees. Polygonal scanners will be dealt in the next 

section. 

Polygonal Mirrors 

Most laser scanning systems designed to date use a polygonal mirror to scan 

the laser beam on the objects surface. The polygonal mirror is the heart of the 

laser scanning system. The primary advantages of polygonal mirrors are speed, 

the availability of wide scan angles, and velocity stability. These scanners are 

usually rotated continuously in one direction at a fixed speed to provide 

repetitive unidirectional scans which are superimposed in the scan field. 

A common method of producing rotation is to fasten the polygonal mirror 

directly to an electric motor shaft. The combined inertia of the polygon and 

motor rotor assembly contribute to the rotational stability. The relatively high 

inertia of polygons and drive motors on the other hand render them impractical 

for application requiring rapid changes in scan velocity or start/stop formats. 

Rotational speeds upto 120,000 rpm are practical for altemating

current(AC) motors. For applications where rotational rates exceed the 

capability of electrical motors, gas turbines provide an alternative. Rotational 

speeds in the range of 90,000 - 1,000,000 rpm can be obtained using 

compressed-air. 

There are basically four types of polygonal scan mirrors which have been 
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There are basically four types of polygonal scan mirrors which have been 

developed and used over the years. These are classified based on their 

shape: regular ??.~~~ons, irregular polygons, inverted polygons and pyramidal 

polygons. 

' YAXIS \ --__,. 

X AXIS 

Figure 3.6 Synchronized scanning arrangement 
using a pyramidal polygonal mirror. 
(Boulanger 1986) 

Mounting of Polygonal Scanners(Mirrors). 

A typical mounting method is to fasten the polygon mirror to the shaft of 

the motor which is used to rotate it. In this case the datum surface of the 
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quality surfaces so that when the two are firmly held together, distortions do 

not occur. There are two basic configurations of polygon/motor assembly. These 

are: (1) Cantilevered-and (2) Captured designs. These terms refer to the location 

of the polygon on the motor shaft relative to the bearings. 

The .. Cantilevered Desjgn ... 

The cantilevered approach (refer figure 3. 7) is commonly used for low speeds 

(10,000 rpm or less) and/relaxed tracking tolerances (1 arc minute or greater). 

The primary advantage of this design is its adaptability to the use of standard 

commercial motors. 

The main disadvantages of this design type are: 

1) Limited stiffness. The output shaft must be small enough to go 

through the bearing. 

2) Difficult hearing replacement. The polygon mounting hub is 

usually interference fitted and must removed to replace the 

bearing behind it. 

3) Limited dynamic balancing capability. The motor end of rotor is 

inaccessible after the polygon is installed. 

The .. Captured Design .. . 

The captured approa.ch (refer figure 3.9) is recommended for application 

requiring high speed and/or high tracking accuracy. In this approach the center-
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Figure 3. 7 Cross-section of 11Cantilevered11 polygon/motor construction. 

to-center distance between bearings is increased, thereby reducing' the 

contribution of bearing runout due to shaft angular runout. A major benefit of 

the captured design is that the entire rotor assembly and bearings may be 

assembled outside the housing and two-plane dynamically balanced. 

Additionally, bearings may be replaced without having to remove the polygon 

mounting hub. 

The disadvantages of the captured design are : 

1 Lack of adaptability to standard commercial motors. 

2 Rotor must be removed to install or remove polygon. 

The technology of laser beam scanning has long being used in the 

welding industry and in the field of robotics. In welding, the laser beam guides 
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Figure 3.8 Cross-section showing .. captured .. polygon/motor construction. 

the welding torch along the center line of the weld line. In the field of robotics, 

the laser scanner has been used for guiding the robot to carry out tasks after 

identifying parts in the scene. Besides these applications, the technology has 

great potential especially in manufacturing, conservation of artifacts, and 

inspection. The output after scanning or surface mapping is an X-Y-Z 

representation of the object. The next section of this thesis deals with the issue 

of generating the NC code for the manufacture of the object scanned. The 

proposed four step procedure is discussed in detail in the chapters to follow. 



CHAPTER4 

TOOL PATH GENERATION 

From the previous chapters, it is evident that most surface mapping techniques 

generate a huge amount of point data. Typically an application in manufacturing 

is to fabricate a 11replica11 of a mapped object. This may be accomplished by 

generating a tool path for material removal by a tool, for example a milling 

cutter. For the generation of tool path or NC code, only a few points are needed. 

For the case of a plane, only four points are needed. We propose here a four 

step procedure for the generation of tool path. In the case of complex objects 

where surfaces may take any shape an extension of the method proposed is 

warranted. More complex routines for curve fitting or surface fitting may be 

employed. However the flow of the process would be the same. This algorithm 

described for the proposed stages is only limited to objects of planer surfaces 

and ~raight edges, however it could be modified to handle a variety of objects 

of complex shapes and configurations. 

To test this four step procedure a sample part (refer figure 4.1) was 

considered. A point data file was generated for this part which provided for the 

necessary scan data and the systems algorithms were used to validate the 

proposed technique. This section introduces the four steps and gives a 

description of each step. 

35 
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The procedure includes four consecutive: 1) Data Reduction, 2) Geometric 

Data Extraction I Shape Definition, 3) Surface Recognition, and 4) NC Code 

Generation. The .d~:tg reduction stage manipulates the data into a manageable 

number of points. A geometric data extraction module identifies what these 

points represent. This serves as an input to the surface recognition module that 

identifies what kind of surface it is, i.e. planer, taper, or edge. A Numerical 

control (NC) program for the tool path is then generated for either the 

fabrication of the object or its die for its mold. The algorithm could be modified 

to handle a wider range of geometric entities. 

TOOL PATH GENERATION SYSTEM 

A prime purpose for surface mapping of an object is to use the data for 

manufacturing the object or a die for its fabrication. Scanning may be done 

using any one of the methods described in chapter 2. The data generated after 

scanning is an X, Y, Z representation of the surface or object. The next stage 

could be to use this data for generating a NC program for machining the object 

or its die. Translating data points resulting from scanning into a NC program is 

not an easy task. Data has to go through several algorithms/routines before its 

geometric configuration is identified. The algorithm presented here is an 

attempt to automate a process traditionally handled through user interface. The 

human identifies surfaces, planes, etc. and critical dimensions. The algorithm 

described in this section is for planer surfaces, where a minimum of three or 
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more points are needed to define a plane. These planes are then used to define 

boundaries and edges. The algorithm developed and an explanation of the code 

(C Language) for ~~ch of these stages follows. The expanded version to handle 

a variety of configurations has being studied and is proposed in the chapter 6. 

Complex cases where surfaces with varying curvatures require previous 

knowledge about the surface characteristics, so that the proper algorithm will 

control the tool motion. A major benefit of the surface mapping to tool path 

algorithm is its elimination of human labor in generating NC code. 

The surface mapping to tool path algorithm developed is for a simple 

rectangular object with planer surfaces and straight line grooves. The object in 

figure 4.1 is used for demonstration of the algorithm. The following assumptions 

need to be considered: 

1) Surfaces do not have a gradient in the any direction. 

2) The variation of surface depth is only in the Z direction. 

3) The scanning intervals in the X andY are predefined. 

4) The number of scanning points per line is known. 

The data obtained after surface mapping has to be analyzed and presented in 

a format which is acceptable for a CNC machine. This involves the following 

stages: 

1) Data reduction. 

2) Geometric data extraction(shape definition). 

3) Surface recognition. 
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4) NC code generation. 

Figure 4.1 Sample part. 

Figure 4.2 is a schematic representation of the four stages. The data reduction 

stage reduces the vast amount of data generated to a manageable amount 

which will suffice for NC code generation. This forms the input to the geometric 

data extraction module. The purpose of this stage is to determine what these 

points represent, that is whether these points represent a line, arc, circle, or 

edge: The output of this stage serves as an input to the surface recognition 

module. This module determines the relationship between the geometric 

entities identified in the previous stage. In the NC code generation module the 

NC code is generated based on the type of the surface feature that have been 

identified. These stages are described in detail in the following sections. 
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Figure 4.2 Four step procedure for NC code generation. 

DATA REDUCTION STAGE 

An enormous amount of data is generated after scanning. Analysis of this 

data (obtained after sending a test panel to one of the promising vendors) 

revealed that the object was scanned at intervals relatively close to each other. 

This generated an amount of data in excess of that needed for the tool path 

generation. The folloWing options are available : 

1) Digitize only at critical points. Thereby limiting the points 

necessary for the generation of tool path statements. 

2) Reducing the data to a reasonable amount. This would mean that 

points in the data file would be analyzed to determine if they were 

a part of a line, curve, etc. 
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This would include analysis of the X, Y, Z points contained in the data file. A 

description of the proposed algorithm for data reduction and stages leading to 

generation of NC cqgaare described in the following sections. Figure 4.3 shows 

the flowchart for this stage. The steps involved in the data reduction algorithm 

include: 

1) Create a record for each scanned line, 

2) Consider the first point- P[i], from the data file. This point will be used 

as a reference point. 

3) Take the second point- P[i+1]. 

4) Compare X[i] with X[i + 1] or Y[i] with 

Y[i+1]. 

5) If X[i] = X[i + 1] 

or 

Y[i] = Y[i+1] 

Then 

·compare Z[i] and Z[i+1]. 

6) If 

Z[i] not = Z[i + 1] 

retain P[i]. 

If not go to the next point. 

7) Consider P[i + 1] ( if P[i] has been retained), and compare it with the next 

point. Repeat steps 5, 6, and 7. 
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A record is created for each scanned line. The result of this data 

reduction stage is a reduced data file of a manageable size. This file then serves 

as an input forth~ _ge__pmetric data extraction module. 

REDUCED 
DATA FILE 

HOUSEKEEPING : 

* OPEN OUTPUT (REDUCED DATA) FILE 

* OPEN INPUT FILE (AFTER SCANNING) 

* CREATE RECORDS FOR EACH LINE 

.--------, 
J-J+1 

OUTPUT 

NEW INT 
P[i+1] OF SCANNED 

LINE L{j] 

y *N•TOTAL NO. 
OF PTS/LINE 

..,._ ____ --i P[l] 

Figure 4.3 Flow chart of the data reduction stage. 
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GEOMETRIC DATA EXTRACTION I SHAPE DEFINITION STAGE 

As seen in figure 4.1, the sample part selected for testing the validity of 

this four step pro~~~we has a simple configuration. All the surfaces are planer 

in nature. For this sample part this stage does not have a significant role to 

play. However, if at all the four step procedure has to be tested for other parts 

having complex geometry, this stage will play a crucial role in defining a 

surface from the humongous amount of data generated after surface mapping. 

For complex shapes, the data reduction stage would not result in a file of 

noticeable reduction in amount of raw data. For complex shapes, the surfaces 

would have to be defined through the use of curves and surface fitting 

techniques. Presented in this section are some of the theories that could be 

employed for defining surfaces of complex geometry. These theories will form 

the backbone of algorithms for modifying the four step procedure to handle 

complex shapes in the future. 

Curves and Surface Fitting Techniques. 

This section discusses the various methods and theories for defining 

surfaces with the ultimate goal of defining the object and using this information 

in any CAM system. Normally it is the part programmer who determines the 

cutting conditions - cutting speed, feed, coolant, etc. by means of tables and 

charts, and by making the necessary assumptions on the machinability of the 

material to be used. The curves and surfaces produced by means of numerical 
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control may be classified in three categories: 

(a) Curves and surfaces made up from the juxtaposition of segments 

belongipg to mathematical curves and surfaces. . - . 

(b) Non-mathematical curves and surfaces obtained by fitting them to 

experimental points, and which must be reproduced within strict 

tolerance limits. 

(c) Non-mathematical curves and surfaces, the production of which 

requires adherence to very strict tolerances. 

The majority of shapes of mechanical parts are found in the first categ?ry. 

Surfaces consists of the plane, the cylinder and cone of revolution, the sphere, 

the torus, the quadratic surfaces and some ruled surfaces. 

The second category comprises of all the surfaces obtained by fitting 

after experimentation. They are for example the shapes of ship hulls, the 

fuselages and wings of aircraft, blades of turbines, etc. are a few of the shapes 

that belong to this category. These surfaces are purely experimental, and 

cannot be interpreted a priori except by measuring coordinates on a close grid 

formation. 

The last category is made up of surfaces, such as automobile-body 

shapes which are created in a purely intuitive manner to satisfy aesthetic 

notions. Their reproduction is not liable to such strict tolerances as the surfaces 

of the preceding category. 

The general problem divides into two: according to whether a curve or 
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a surface is to be produced. A curve segment is a point-bounded collection of 

points whose coordinates are given by continuous, one-parameter, single-valued 

mathematical funC?tJons of the form: 

x = x(u) Y = y(u) z = z(u). 

The parametric variable u is constrained to the interval u e [0, 1], and the 

positive sense on a curve is the sense in which u increases. The curve is point

bounded because it has two definite end points, one at u=O and the other at 

u=l. 

Bezier identified the fundamental property of parametric curves: their 

shape depends on only the relative position of the points defining their 

characteristic vectors and is independent of the position of the total set of 

points with respect to the coordinate system in use. This is an essential 

characteristic for many applications, such as CAD/CAM. modelling. In general, 

to transform an axis dependent curve, one must compute the coordinates of 

every point required in the original system, then transform each into the new 

system. For axis-independent curves, it is sufficient to transform the points 

defining the characteristic vectors from one system to another. A few important 

curve and surface defining methods are presented below. 

Spline Curves 

The spline curve is perhaps the single most important curve in both the 

aircraft and shipbuilding industries. A drafting tool called a spline is a strip of 
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plastic or other material that is flexed to pass through a series of key design 

points (control points) already established on a drawing. Weights called ducks 

hold the spline in p~~ce while the draftsman uses the spline as a guide to draw 

a smooth curve formed by it through the design points. A spline curve can be 

drawn through any set of n points that imply a smooth curve. 

A spline behaves structurally exactly like a beam, with bending 

deflections forming into a smooth curve. As long as the distribution of control 

points the material and the stiffness of the spline allow the spline to deform 

elastically, any spline will from the same curve for the same set of control 

points. This curve is often called an elastic curve, or minimum energy curve. 

Bezier Curves 

Some curve defining techniques interpolate a given set of points, which 

means that the curve produced passes exactly through the points. An 

alternative approach defines a curve that only approximates or approaches the 

given · points. Interpolation techniques have certain disadvantages when 

incorporated into an interactive CAD program. Specifically, this is so because 

one does not get a strong intuitive feel for how to change or control the shape 

of a curve. For example, if we try to change the shape of a spline interpolated 

curve by moving one or more of the interpolated points, we may produce the 

unexpected. It is much easier if we can control curve shape in a predictable 

way by changing only a few parameters. Bezier's curve partially satisfies this 
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need. 

Bezier curves were formulated by P. Bezier of the French automobile 

company- Renaul~. _The result of Bezier's work was the UNISURF system, used 

by Renault since 1972 to design the sculptured surfaces of many of their 

automobile bodies. At the heart of the UNISURF system are the curves and 

surfaces that bear his name. Bezier formulated the curve with the principle that 

any point on a curve segment must be given by a parametric function of the 

following form: 

p(u) = :E P1 ~(u) u € (0, 1] (1) 

where the vectors p 1 represent the n + 1 vertices of a characteristic polygon 

(refer figure 4.4). These vertices are also called control points. 

Bezier laid down certain properties that the ~(u) blending functions must have. 

1) The functions must interpolate the first and la~ vertex points, that 

is, the curve segment must start on Po and end on Pn· It is upto 

the user to control the starting and ending points of a Bezier 

curve. 

2) The tangent at Po must be given by p 1-p0 , and the tangent at Pn by 

Pn-Pn-l· This gives the user direct control of the tangent of the 

curve at each end. 

3) This requirement is generalized for higher derivatives at the 

curve's end points. Thus, the second derivatives at Po must be 

determined by p 0 , p 1, and p 2 . In general, the rth derivative at an end 
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P2 

point must be determined by its r neighboring vertices. This 

allows the user unlimited control of the continuity at the points 

between curve segments of a composite Bezier curve. 

4) The functions ~(u) must be symmetrical with respect to u and (1-

u). This means that one can reverse the sequence of the vertex 

points defining the curve without changing the shape of the curve. 

In effect, this reverses the direction of parametrization. 

Bezier chose a family of function called Bernstein polynomial to satisfy these 

conditions mentioned above. He originally chose a form of vector representation 

that used the sides of the characteristic polygon. The function Bezier selected 

depends on the number of vertices used to specify a particular curve. 



Equation 1 becomes 

p(u) = :E Pt B1n(u) 

where B1n(u) :-. C(n,i) u1 (1-u)n-t 

and C(n,i) = n! I i! (n-i)!. 
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U€ (0,1) (2) 

The Bezier curve is widely used as a modeling technique in a CAD system. The 

properties of the Bezier curve that make it an unusually effective interactive 

design tool are listed as follows: 

1) The curve has end points in common with the polygon (the other 

vertices are usually not on the curve). 

2) The slope of the tangent vectors at the end points equals the 

slope of the first and last segments of the polygon. 

3) The curve lies entirely within the convex figure defined by the 

extreme points of the polygon (often called the convex hull). 

4) Bezier curves are variation diminishing. This means that they 

never oscillate wildly away from their defining control points. 

5) When compared to conventional polynomials or splines, all that is 

needed for a Bezier curve is the data points. 

6) The parametric formulation allows a curve to represent multiple

valued shapes. 
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B-Spline Curves 

Most curve defining techniques do not provide for local control of shape. 

Consequently locB:I _c:)langes (for example, a small change in the position of a 

point on a spline curve or of a vertex of a characteristic polygon of a Bezier 

polygon) tend to be strongly propagated throughout the entire curve. This is 

sometimes described as a global propagation of change. The B-spline curve 

avoids this problem by using a special set of blending functions that has only 

local influence and depends on only a few neighboring control points. 

B-spline curves are similar to Bezier curves in that a set of blending 

functions combines the effects of n + 1 control points p 1 given by 

n 

p(u) = L Pi Ni,k(u) 
i=O 

The equation of a bezier curve is 
n 

P(u) = ~ p B L..J i i,n(u) 
i=O 

(3) 

(4) 

By comparing the equation of the Bezier curve and the B-spline curve, the most 

important difference is the way the blending function N1,k<u> are formulated. For 

Bezier curves, the number of control points determine the degree of the 

blending function polynomials. For the B-spline curves, the degree of these 

polynomials is specially controlled by a parameter k and usually independent 

of the number of control points. The B-spline blending functions are defined 

recursively by the following expressions: 

(5) 
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and 

(6) 

where k controls the degree (k-1) of the resulting polynomial in u and thus also 

controls the continuity of the curv~. The t 1 are called knot values. They relate 

the parametric variable u to p 1 control points. The range of the parametric 

variable u is 

0 ~ u ~ n-k+2 

B-spline curves and Bezier curves have many advantages in common: Coi_ltrol 

points influence the curve shape in a predictable, natural way, making them 

good candidates for use in an interactive environment. Both types of curves are 

variation diminishing, axis independent, and multivalued and both exhibit the 

convex hull property. However, it is the local control of curve shape possible 

with B-splines that gives the techniques an advantage over the Bezier 

technique, as does the ability to add control points without increasing the 

degree of the curve. 

Surfaces 

The simplest mathematical element to model a surface is a patch. A patch is 

a curve bounded collection of points whose coordinates are given by 

continuous, two-parameter, single valued mathematical function of the form 

x = x(u, w) y=y(u, w) z=z(u,w) 
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The parametric variables u and w are constrained to the intervals u,w e (0,1]. 

Fixing the values of one of the parametric variables results in a curve on the 

patch in terms of _tl,le_other variable, which remains free. By continuing this 

process first for one variable and then the other for any number of arbitrary 

values in the allowed interval, the result is a parametric net of two one 

parametric families of curves on the patch such that just one curve of each point 

p(u,w). 

Associated with every patch is a set of boundary conditions (refer figure 

4.5). There are the four comer points and four curves defining its edges, the 

tangent and twist vectors. For any ordinary patch, there are always four and 

only four comer points and edge curves. This is due to possible combination of 

the two parametric variables. The comer points are found by substituting these 

four combinations of 0 and 1 into p(u,w) to obtain p(O,O), p(O,l), p(l,O), and 

p(l,l). The edge or boundary curves are functions of one of the two parametric 

variation. These can be obtained by allowing any of the variables to remain free, 

while fixing the other to its limiting values. This procedure results in four and 

only four possible combinations yielding the functions of the four parametric 

boundary curves p(u,O), p(u,l), p(O,w), and p(l,w). 

A major advantage of the parametric representation of surfaces is the 

complete control one has over the domain of a surface modeling operation 

simply by an appropriate choice of the parametrization scheme. By carefully 

specifying subsets of a particular domain lllmtn• llmaxl x [wmtn• WmaxL one can 



w-o -=1 

Figure 4.5 A parametric surface patch. 

pU( u., w.) 
I J 
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readily define certain sections of a surface. This feature is useful when a surface 

is composed of several patches. Considerable amount of work in the area of 

surface description has been done over the past decade. To date there have 

been over 106 different methods of surface representation methods developed 

so far. The section to follow will describe in brief some of the systems that have 

been developed. It may be noted that most of the systems of surface 

representation to date use some of the above mentioned theories. 

Bezier Surfaces 

Just as the Bezier curve has a characteristic polygon the Bezier surface has a 

characteristic polyhedron. Points on the Bezier surface are given by a simple 
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extension of the general equation for points on a Bezier curve. 

m n 

P(u,w)=~~pB B _£.J L- ij i,m(u) j,n(w) 
- i=O j..O 

u,w €[0,1] (7) 

where p 1i are the vertices of the characteristic polyhedron that form an (m + 1) 

x (n+1) rectangular array of points, and B1,m(u) and BJ,n(w) are defined as curves. 

The matrix P contains the position vectors for points that define the 

characteristic polyhedron and thereby the Bezier surface patch. Figure 4.6 

illustrates these points, the polyhedron, and the resulting patch. In the Bezier 

formulation, only the four comer points P11 , P41 , P14, and p44 actually lie on the 

patch. The points P21 , P31 , P12, P12, P13, p42, p43, P24, and P34 control the slope of the 

boundary curves. The remaining four points p22, p32, p23, and p33 control the 

slopes along the boundary curves. 

p34 

Figure 4.6 A bezier surface. (Bezier 1973) 
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B-Spline Surface 

The formulation of a B-spline surface follows directly from that of B-spline 

curves. This . r~~c;_tionship is analogous to that between Bezier curves and 

surfaces. Further more, the B-spline surface, like the Bezier surface, is defined 

in terms of a characteristic polyhedron. The approximation is weaker the higher 

values of k and 1. Thus, 

m n 

P(u,w) = "" "- p N N LJ LJ ij i)(u) j,l(w) 
(8) 

i=O j=O 

The p 1i are the vertices of the defining the polyhedron, and the N1,k(u) and Ni.1(w) 

are the blending functions of the same from as those for B-spline curves (refer 

equation 3) The degree of each of the blending function polynomials N1,k(u) and 

Nj,k(w) is controlled by k and 1 respectively. 

SURFACE RECOGNITION STAGE 

Three pieces of information are important for NC part programming 

application: 

(1) the location of each surface feature, 

(2) the type of each surface feature, and 

(3) the relationship between each pair of surface features. 

The next step after determining which geometric shape the points 

represent is to determine the relationship between these shapes. These lines 

represent an edge or are a part of a surface which might be represented by 
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three or more points. Figure 4. 7 shows the flowchart for this stage. 

The structure of the algorithm for determining the relationships between the 

entities is described below: -. -

1) Consider the first set of points contained in the first record - P, (that 

represent the first segment of the first scanned line ). Compare it with 

the first set of points of second record- P+1, of the second scanned line. 

2) The slopes between these points are then computed. If the slopes are 

equal, then this could be taken to be a planer surface. If the slopes are not 

equal, then a change in surface orientation is recorded, i.e. taper, convex, etc.( 

not yet considered ). 

3) If the slopes of the two lines are equal then a surface is recorded which 

can be represented by these four points. 

4) Steps 1- 3 are repeated for each segment within every scanned line. 

5) The relationship between surfaces should be stored in the order in which 

they are recognized. These will be called in the same order for NC code 

generation. 

6) Each stored surface is given a code as an identification, i.e. 1 -for planer, 

2 - for taper, etc .. This data forms an input for the NC part program 

generation algorithm which is described below. This data file is referred 

to as the surface feature file. 
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I START I 

--
I REDUCED DATA FILE l 

roy 

IINITIAUZE P-O,TN,1 l 

" I NEW RECORD : P+1l 

IF y 
P+1-TN ,. 

N 
~ 

COMPUTE SLOPE OF LINES 
IN RECORD : P & P+1 

N IF REFINE 
- DATA SLOPE AR 

MODULE EQUAL 

y 

" 
DEFINE A SURFACE WITH 
POINTS CONTAINED IN 
RECORDS : P & P+1 

ASSIGN VALUES (K) TO SURFACE 
1 ·PLANER, 2 ·TAPER ETC. 

!SAVE IN SURFACE FEATURE FILE I -- • 
I STOP I 

Figure 4.7 "Flowchart of the surface recognition stage. 
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NC CODE GENERATION STAGE 

Surface orientation and locations of both the start and end points of each 

feature are available from the surface feature file.The routine of the NC code 

generation algorithm is described below and the flowchart of the algorithm is 

shown in figure 4.8. 

1) Read the surface code (k) of each surface (which was identified in the 

previous stage). 

2) Set depth of cut (d) and feed rate (f). 

3) Based on the value of K, call the appropriate sub-routine for mac~g 

that surface. That is, the surface could be planer, circular, convex or 

concave. Depending on this value of K, the routine from the main 

program jumps to the sub-routine for generating NC code for the 

appropriate surface. 

4) Repeat this procedure for all the surface features contained in the surface 

feature file. 

5) . After all the surface features have been processed, select an appropriate 

depth of cut for the finish cut. 

6) Move the tool to the appropriate position and finish cut to generate the 

shape desired. 

The output of this stage is a numerical control program that can be used 

to machine the part. 
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READ VALUE (K) 

4 3 

1 2 
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SURFACE ROUTIN 

SURF•SURF+1 ~--~--------4 

N 

NC CODE TO MACHINE PAR 
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Figure 4.8 Flowchart of the NC code generation stage. 
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The results of each of the stages describe in this chapter are presented 

in the next chapter. 



CHAPTER 6 

ANALYSIS OF THE RESULTS 

The results of the proposed algorithm are presented in this section. The 

code for each of these stages can be found in the Appendix. 

Data Reduction Stage. 

The data file for the sample part is not enclosed due to its size - 1640 

points. The data file for the sample part was created for two directions - parallel 

to the X axis and parallel to theY axis. The data file for the X axis had data for 

31 lines of scanning and that for the Y axis had 19 lines. The data file for the X 

axis resulted in the reduced data file REDF, portion of which is listed in this 

section. The code for this stage can be found in Appendix A and the full listing 

of the REDF file in Appendix B. The number 6 in the REDF file stands for the 

number of segments per line detected. The data file for the Y axis resulted in 

the reduced data file REDL (sample listed in this section. The code for this file 

can be found in Appendix C and the listing of the REDL file in Appendix D. 

REDF - Reduced data file for parallel to X-axis. 
6 
25.012 0.000 0.065 
25.309 0.000 25.053 
30.097 0.000 25.053 
75.067 0.000 25.053 
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REDL- Reduced data file for parallel toY-axis. 

3 
25.077 0.000 0.087 
25.131 0.000 25:697 
25.109 5.096 25.191 
25.138 90.018 25.130 
25.195 90.099 20.154 
25.182 90.028 0.020 

Surface Recognition Stage 
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These two reduced data files form the input to the surface recognition 

stage. In the surface recognition stage, the algorithm defines a surface with four 

points. The output for the REDF file (parallel to the X-axis) is the SURF1 file 

listed in this section. It shows the total number of surfaces and a number for 

each of the surfaces identified. The code for this stage can be found in 

Appendix E. Similarly the output for the REDL file (parallel to the Y-axis) is 

SURF2, which is listed in this section. The code for this stage can be found in 

Appendix F. 

SURF1 - Surface feature file for parallel to X axis. 

6 
1 
25.012 0.000 0.065 
25.309 0.000 25.053 
25.014 90.000 0.019 
25.351 90.000 25.021 
2 
30.097 0.000 25.053 
75.067 0.000 25.053 
30.008 90.000 25.021 



75.090 90.000 25.021 
3 
80.082 0.000 15.087 
125.133 0.000 15.087 
80.106 90.000 15.071 
125.142 90.000 i5:071 
4 
125.133 0.000 20.110 
125.133 0.000 25.133 
125.142 90.000 20.143 
125.142 90.000 25.139 
5 
130.146 0.000 25.133 
175.171 0.000 25.133 
130.220 90.000 25.139 
175.213 90.000 25.139 
6 
175.171 0.000 20.222 
175.171 0.000 0.174 
175.213 90.000 20.199 
175.213 90.000 0.204 

SURF2 - Surface feature file for parallel to Y axis. 

5 
1 
25.077 0.000 0.087 
25 .. 131 0.000 25.097 
175.111 0.000 0.085 
175.112 0.000 25.081 
2 
25.109 5.096 25.191 
25.138 90.018 25.130 
75.113 5.030 25.025 
75.127 90.049 25.036 
3 
80.171 5.092 15.118 
80.206 90.068 15.040 
120.097 5.037 15.032 
120.188 90.072 15.106 
4 
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125.183 5.076 25.045 
125.156 90.021 25.007 
175.098 5.025 25.110 
175.224 90.091 25.163 
5 
25.195 90.099 26. i54 
25.182 90.028 0.020 
175.294 90.108 20.218 
175.237 90.180 0.042 
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NC Code Generation Stage. 

The next step is to use this data form the surface feature file for 

generation of NC code. The data in each of the surface feature file forms the 

necessary data for the geometry definition needed in the writing of APT 

statements. The NC code for this stage is listed below. The program (C 

Language) for this stage can be found in Appendix G. 

PART NAlVIE - SAMPLE PART 
P1 = POINT/25.012,0.000,0.065 
P2 = POINT/25.309,0.000,25.053 
P3 = POINT/25.014,90.000,0.019 
PL1 = PLANE/P1,P2,P3 
P4 = POINT/25.077,0.000,0.087 
P5 = POINT/25.131,0.000,25.097 
P6 = POINT/175.111,0.000,0.085 
PL2 = PLANE/P4,P5,P6 
P7 = POINT/25.109,0.000,25.053 
P8 = POINT/25.138,90.018,25.053 
P9 = POINT/75.113,5.030,25.021 
PL3 = PLANE/P7,P8,P9 
P10 = POINT/80.082,0.000,15.087 
P11 = POINT/80.206,90.068,15.087 
P12 = POINT/120.097,5.037, 15.071 
PL4 = PLANE/P10,P1'1,P12 
P13 = POINT/125.133,0.000,20.110 
P14 = POINT/125.133,0.000,25.133 
P15 = POINT/125.142,90.000,20.143 
PL5 = PLANE/P13,P14,P15 



P17 = POINT/125.156,90.021,25.133 
P18 = POINT/175.098,5.025,25.139 
PL6 = PLANE/P16,P17,P18 
P19 = POINT/175.171,0.000,20.222 
P20 = POINT(17.~!-171,0.000,0.174 

P21 = POINT/175.213,:30.000,20.199 
PL7 = PLANE/P19,P20,P21 
P22 = POINT/25.195,90.099,20.154 
P23 = POINT/25.182,90.028,0.020 
P24 = POINT/175.294,90.108,20.218 
PL8 = PLANE/P22,P23,P24 
SP = POINT/0,0,0 

$$ 
FEDRAT/120 
SPINDL/1200,CCW 
INTOL/0.005 
OUTOL/0.005 
CU'ITER/20 
COOLNT/ON 

$$ 
FROM/SF 
THICK/0.02 
GO!I'O,PL1 
GOFWD,PL 1,P AST,25.014,90.000,0.019 
GO!I'O,PL2 
GOFWD,PL2,P AST, 175.111,0.000,0.085 
GO!I'O,PL3 
GOFWD,PL3,P AST, 75.113,5.030,25.021 
GO!I'O,PL4 
GOFWD,PL4,P AST,120.097,5.037,15.071 
GO!I'O,PL5 
GOFWD,PL5,P AST, 125.142,90.000,20.143 
GO!I'O,PL6 
GOFWD,PL6,P AST, 175.098,5.025,25.139 
GO!I'O,PL7 
GOFWD,PL 7 ,P AST,175.213,90.000,20.199 
GO!I'O,PL8 
GOFWD,PL8,P AST, 175.294,90.108,20.218 
GO!I'O,SP 
THICK/0.00 
GO!I'O,PL1 
GOFWD,PL 1,P AST,25.014,90.000,0.019 
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GO/TO,PL2 
GOFWD,PL2,PAST, 175.111,0.000,0.085 
GO/TO,PL3 
GOFWD,PL3,PAST,75.113,5.030,25.021 
GO/TO,PL4 . 
GOFWD,PL4,P AST, 120.097,5.037,15.071 
GO/TO,PL5 
GOFWD,PL5,P AST, 125.142,90.000,20.143 
GO/TO,PL6 
GOFWD,PL6,P AST, 175.098,5.025,25.139 
GO/TO,PL7 
GOFWD,PL 7 ,PAST, 175.213,90.000,20.199 
GO/TO,PL8 
GOFWD,PLB,P AST, 175.294,90.108,20.218 
GO/TO,SP 
COOLNT/OFF 
SPINDL/OFF 
FIN! 

CONCLUSION 
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The proposed procedure of generation of NC code seems feasible. 

However, the second stage- Geometric Data I Shape definition stage didn't play 

a role at all due to the configuration of the part. This stage and its theories 

were studied and discussed in detail in chapter 4. This stage will play an 

important role in the event of the modification of this four step procedure to 

handle complex shapes. 
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CHAPTER 6 

CONCLUSIONS AND POTENTIAL RESEARCH TOPICS 

Techniques for surface mapping are promising. The technique of laser 

beam scanning seems to be most suitable for capturing data in real time, while 

the Moire and image processing based techniques is equally promising for off

line data capturing. Generation of tool path automatically is also feasible, 

especially for geometrically simple objects. This was proven through the 

application of the proposed four steps. These four steps for tool path generation 

from surface mapping are: 1)Data Reduction Stage- a stage in which the size 

of the data file is reduced, 2) Geometric Data Extraction I Shape Definition Stage 

- the points resulting from the first are analyzed and geometric entities are 

defined, 3) Surface Recognition Stage - this stage defines a label for each 

surface, and 4) NC Code Generation Stage - the NC code is generated for 

surfaces identified in the surface recognition stage. The code for these stages 

for a simple object were developed and applied to test the validity of the 

proposed four step procedure. The results demonstrates the feasibility of 

e3:utomating the process of NC code generation after surface mapping. 

The method by no means implies that the methodology used here can be 

used generically. Other methods, such as polygon or mesh overlap could be 

much more promising in other applications. However if enough routines can be 

66 



67 

developed and integrated in a library guided by some kind of intelligence to 

select the best routines which may be applied to define the object before the 

generation of -toel path statements. It is equally important to develop a 

translator, so that the NC code generated (for the tool path) is compatible with 

any machine. The generation of surfaces or curves from point data has not yet 

been perfected and it should be considered in future research. The user still has 

to specify the number of control points and the degree of accuracy required. If 

this task can be fully automated, then even the complex CAM systems available 

can be handled by a novice, and we may one day achieve the .. concept to a 

reality .. automatically. 

A number of potential research topics were identified in this research. 

These include the following: 

1) Selecting optimal angles for scanning to avoid the shadow effect. 

2) Resolve the problems associated with the integration of different scans 

of the same object. 

3) The possible use of intelligence in the generation of curves and surfaces. 

4) The need for additional algorithms for surface fitting from three 

dimensional data. 
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APPENDIX A 

DATA REDUCTION STAGE- PARALLEL TO X-AXIS 



DATA REDUCTION STAGE- PARALLEL TO X-AXIS 

/*DATA REDUCTION STAGE- PARALLEL TO X-AXIS*/ 
/* Function Prototype *******I 

#include < stdio.h> 
#include <math.h> 
#include < stdlib.h> 
#include <alloc.h> 
#define X limit 0.5 
#define X max limit 2.5 - -
#define Y limit 0.5 
#define Z _limit 0.5 I* TO DETECT CHANGE IN Z* I 

/* Global Variable Declaration *I 
int In_Rec_n=l,Rec_n=l,Seg_n=l,n_pts_bet=l,check_z,store=O,pt=O; 

float prev _ X,prev _ Y,prev _ Z; 
float X,Y,Z; 
float temp_X,temp_Y,temp_Z; 

FILE *flptr, *f2ptr; 

struct XYZ 
{ 

float X; 
float Y; 
float Z; 

}; 

struct Segment 
{ 

}; 

struct XYZ start _pt; 
struct XYZ end _pt; 
int n _pts _bet; 
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/*structure for each line parallel to X *I 

struct RecordY 
{ 
struct Segment segment[lO}; 
int SEG_N; - -- -

}parallel_X[19]; 

main() 
{ 
int j,k,p,q; 
char name1[35], name2[35]; 

printf(11Enter filename( data file) \n11
); 

scanf(11%S11
, name1); 

printf(11Enter number of lines Scanned on the object (parallel to X axis)\n11
); 

scanf(11%d11 ,&In_ Rec _ n); 
printf(11Enter name of reduced data file \n11

); 

scanf(11%S11 ,name2); 

if((flptr = fopen(name1, 11r11
)) ==NULL) 

{ 
printf(11Can't open %s to read \n11

, namel); 
exit(1); 

} 

if((f2ptr = fopen(name2, 11W+ 11
)) ==NULL) 

{ 
printf(11Can't write to file %s \n11

, name2); 
exit(1); 
} 

I* READS IN FIRST POINT IN THE FILE *I 
fscanf(f1ptr, 11%f %f %f',&prev_X,&prev_Y,&prev_Z); 
parallel_X[Rec_n].segment[Seg_n].start_pt.X=prev_X; 
parallel_ X[Rec _n]. segment[Seg_ n]. start _pt. Y =prev _ Y; 
parallel X[Rec n].segment[Seg n].start_pt.Z=prev_Z; - - -

I* For scanning parallel to X axis *I 
do{ 
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fscanf(flptr,"%f %f %f•, &X,&Y,&Z); pt++; 

if( prev_Y!=Y) { 

parallel .... ~[Rec _ n] .segment[Seg_ n] .end _pt.X=temp _X; 
parallel_X[Rec_n].segment[Seg_n].end_pt.Y=temp_Y; 
parallel_X[Rec_n].segment[Seg_n].end_pt.Z=temp_Z; 
parallel_ X[Rec _ n] .SEG _ N = Seg_ n; 
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if(pt>1) parallel_X[Rec_n].segment[Seg_n].n_pts_bet=pt-2; 

} 

Rec_n++; Seg_n=1; 

prev_X=X; 
prev_Y=Y; 
prev_Z=Z; 

store=O; pt=O; 

parallel_X[Rec_n].segment[Seg_n].start_pt.X=prev_X; 
parallel_X[Rec_n].segment[Seg_n].start_pt.Y=prev_Y; 
parallel_X[Rec_n].segment[Seg_n].start_pt.Z=prev_Z; 
fscanf(flptr, .. %f %f %f•, &X,&Y,&Z);pt++; 

if( fabs(prev X-X) < X limit ){ - -

} 

temp_X=X; 
temp_Y=Y; 
temp_Z=Z; 

if( (fabs(prev_X-X)> X_max_lirnit) && ( fabs( prev_Z-Z) < Z_lirnit) ){ 

I* since z values are not exceeding the limit we will scan till *I 
I* we find values of x not changing and z changes *I 

do{ 
temp_X=X;temp_Y=Y;temp_Z=Z; 
fscanf(flptr, 11%f %f %f.,&X,&Y,&Z); pt++; 

if ( fabs( temp_Z-Z) > Z_lirnit) store=1; 
if (fabs( temp_X-X) < X_max_limit) store=1; 

} while( store= =0); 

if (store== 1){ 
I* storing end-points *I 



parallel_X[Rec_n].segment[Seg_n].end_pt.X=temp X; 
parallel_X[Rec_n].segment[Seg_n].end pt.Y=temp -Y; 
parallel_X[Rec_n].segment[Seg_n].endyt.Z=temp-Z; 
if(pt> 1) -

parallel_X[Rec_:£?.1.s_egment[Seg_n].n_pts_bet=pt-2; 
pt=O; 
Seg_n++; 
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/* assigning previous points as starting point of next 
segment*/ 

} 

else { 

} 
} 

prev_X=X; 
prev_Y=Y; 
prev_Z=Z; 

parallel_X[Rec_n].segment[Seg_n].start_pt.X=prev_X; 
parallel X[Rec n].segment[Seg n].start pt.Y=prev Y; - - - - -
parallel_ X[Rec _ n] . segment[Seg_ n]. start _pt.Z =prev _ Z; 

store=O; 

temp_X=X; 
ternp_Y=Y; 
ternp_Z=Z; 

if( (fabs(prev_X-X)> X_max_limit) && ( fabs( prev_Z-Z) > Z_limit )){ 

*I 

parallel_X[Rec_n].segment[Seg_n].end_pt.X=temp_X; 
parallel_X[Rec_n].segment[Seg_n].end_pt.Y=temp_Y; 
parallel_X[Rec_n].segment[Seg_n].end_pt.Z=temp_Z; 
if(pt> 1) parallel_ X[Rec _ n] .segment[Seg_ n] .n _pts _ bet=pt-2; 
pt=O; 
Seg_n++; 
/* assigning previous points as starting point of next segment 
prev_X=X; 
prev_Y=Y; 
prev_Z=Z; 

parallel_X[Rec_n].segment[Seg_n].start_pt.X=prev_X; 
parallel_X[Rec_n].segment[Seg_n] .start_pt.Y=prev_Y; 
parallel X[Rec n].segment[Seg n].start_pt.Z=prev_Z; - - -



} 

temp_X=X; 
temp_Y=Y; 
temp_Z=Z; . 
printf(11 Rec_n %d \n .. ,Rec_n); 
}while(Rec n < = In Rec n); - - -

fclose(flptr); 

for ( j=1; j<=In_Rec_n; j++) 
for (k=1; k<=parallel_X[j].SEG_N; k++) 
{ 
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printf(11 \nFor Record_%d Segment_%d \nSt_pt X %2.3f Z %2.3f 
\nEnd_pt X %2.3f Z %2.3f \n pts %d\n11 ,j,k, 

parallel X[j].segment[k].start pt.X,parallel X[j].segment[k].start pt.Z, - - - -

parallel_X[j].segment[k].end_pt.X,parallel_X[j).segment[k].end_pt.Z,parallel_X[ 
j ]. segment[k].n _pts _bet); 

} 
for ( p=1; p<=In_Rec_n; p++) 

{ 
fprintf(f2ptr, 11%d\n .. ,parallel_ X[p ].SEG _N); 
. for (q=1; q<=parallel_X[p].SEG_N; q++) 

{ 
fprintf(f2ptr, 11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. , 

parallel_ X[p]. segment [ q]. start _pt.X,parallel_ X[p ]. segment[ q]. start _pt. Y ,parallel 
_X[p].segment[q].start_pt.Z, 

parallel X[p]. segment[ q]. end pt.X,parallel X[p]. segment[ q] .end _pt.Y,parallel_ - - -
X[p]. segment[ q]. end _pt.Z); 

} . } 
fclose(f2ptr); 

} 
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6 
25.012 0.000 0.065 
25.309 0.000 25.053 
30.097 0.000 25.053 
75.067 0.000 25.053 
80.082 0.000 15.087 
125.133 0.000 15.087 
125.133 0.000 20.110 
125.133 0.000 25.133 
130.146 0.000 25.133 
175.171 0.000 25.133 
175.171 0.000 20.222 
175.171 0.000 0.174 
6 
25.042 5.000 0.073 
25.286 5.000 25.014 
30.048 5.000 25.014 
75.007 5.000 25.014 
80.060 5.000 15.085 
125.099 5.000 15.085 
125.099 5.000 20.130 
125.099 5.004 25.104 
130.181 5.000 25.104 
175.137 5.000 25.104 
175.137 5.000 20.127 
175.137 5.000 0.163 
6 
25.010 10.000 0.017 
25.237 10.000 25.093 
30.037 10.000 25.093 
75.086 10.000 25.093 
80.146 10.000 15.166 
125.150 10.000 15.166 
125.150 10.000 20.247 
125.150 10.000 25.172 

76 

REDF 



130.219 10.000 25.172 
175.234 10.000 25.172 
175.234 10.000 20.219 
175.234 10.000 0.180 
6 
25.070 15.000 0.047 
25.203 15.000 25.013 
30.060 15.000 25.013 
75.100 15.000 25.013 
80.187 15.000 15.105 
125.145 15.000 15.105 
125.145 15.000 20.129 
125.145 15.000 25.201 
130.244 15.000 25.201 
175.202 15.000 25.201 
175.202 15.000 20.260 
175.202 15.000 0.204 
6 
25.029 20.000 0.090 
25.222 20.000 25.096 
30.092 20.000 25.096 
75.042 20.000 25.096 
80.134 20.000 15.164 
125.139 20.000 15.164 
125.139 20.000 20.170 
125.139 20.000 25.218 
130.238 20.000 25.218 
175.230 20.000 25.218 
175.230 20.000 20.275 
175.230 20.000 0.289 
6 . 
25.076 25.000 0.078 
25.378 25.000 25.056 
30.005 25.000 25.056 
75.073 25.000 25.056 
80.084 25.000 15.070 
125.149 25.000 15.070 
125.149 25.000 20.125 
125.149 25.000 25.140 
130.212 25.000 25.140 
175.222 25.000 25.140 
175.222 25.000 20.211 
175.222 25.000 0.216 
6 

77 



25.023 30.000 0.055 
25.262 30.000 25.052 
30.087 30.000 25.052 
75.048 30.000 25.052 
80.142 30.000 15.083 . -. 
125.106 30.000 15.083 
125.106 30.000 20.177 
125.106 30.000 25.141 
130.126 30.000 25.141 
175.175 30.000 25.141 
175.175 30.000 20.229 
175.175 30.000 0.175 
6 
25.059 35.000 0.046 
25.241 35.000 25.055 
30.021 35.000 25.055 
75.079 35.000 25.055 
80.109 35.000 15.067 
125.171 35.000 15.067 
125.171 35.000 20.158 
125.171 35.000 25.118 
130.211 35.000 25.118 
175.204 35.000 25.118 
175.204 35.000 20.176 
175.204 35.000 0.201 
6 
25.096 40.000 0.050 
25.279 40.000 25.031 
30.048 40.000 25.031 
75.053 40.000 25.031 
80.106 40.000 15.042 
125.091 40.000 15.042 
125.091 40.000 20.080 
125.091 40.000 25.096 
130.175 40.000 25.096 
175.141 40.000 25.096 
175.141 40.000 20.112 
175.141 40.000 0.184 
6 
25.014 45.000 0.073 
25.295 45.000 25.092 
30.089 45.000 25.092 
75.008 45.000 25.092 
80.064 45.000 15.171 
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125.036 45.000 15.171 
125.036 45.000 20.181 
125.036 45.000 25.224 
130.079 45.000 25.224 
175.037 45.000 2_5_.424 
175.037 45.000 20.302 
175.037 45.000 0.236 
6 
25.077 50.000 0.092 
25.343 50.000 25.064 
30.093 50.000 25.064 
75.017 50.000 25.064 
80.026 50.000 15.135 
125.077 50.000 15.135 
125.077 50.000 20.203 
125.077 50.000 25.212 
130.096 50.000 25.212 
175.153 50.000 25.212 
175.153 50.000 20.228 
175.153 50.000 0.230 
6 
25.053 55.000 0.006 
25.378 55.000 25.026 
30.066 55.000 25.026 
75.030 55.000 25.026 
80.056 55.000 15.093 
125.054 55.000 15.093 
125.054 55.000 20.121 
125.054 55.000 25.103 
130.083 55.000 25.103 
175:066 55.000 25.103 
175.066 55.000 20.127 
175.066 55.000 0.114 
6 
25.055 60.000 0.018 
25.231 60.000 25.026 
30.033 60.000 25.026 
75.089 60.000 25.026 
80.136 60.000 15.095 
125.172 60.000 15.095 
125.172 60.000 20.165 
125.172 60.000 25.133 
130.233 60.000 25.133 
175.202 60.000 25.133 
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175.202 60.000 20.163 
175.202 60.000 0.162 
6 
25.090 65.000 0.024 
25.354 65.000 25.0Q7 .... ·-
30.091 65.000 25.007 
75.049 65.000 25.007 
80.077 65.000 15.040 
125.125 65.000 15.040 
125.125 65.000 20.052 
125.125 65.000 25.123 
130.154 65.000 25.123 
175.170 65.000 25.123 
175.170 65.000 20.190 
175.170 65.000 0.204 
6 
25.039 70.000 0.070 
25.497 70.000 25.024 
30.082 70.000 25.024 
75.052 70.000 25.024 
80.056 70.000 15.026 
125.063 70.000 15.026 
125.063 70.000 20.070 
125.063 70.000 25.058 
130.141 70.000 25.058 
175.137 70.000 25.058 
175.137 70.000 20.151 
175.137 70.000 0.071 
6 
25.080 75.000 0.059 
25.337 75.000 25.080 
30.022 75.000 25.080 
75.054 75.000 25.080 
80.065 75.000 15.093 
125.101 75.000 15.093 
125.101 75.000 20.160 
125.101 75.000 25.141 
130.133 75.000 25.141 
175.160 75.000 25.141 
175.160 75.000 20.240 
175.160 75.000 0.216 
6 
25.013 80.000 0.063 
25.281 80.000 25.084 
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30.009 80.000 25.084 
75.048 80.000 25.084 
80.105 80.000 15.087 
125.077 80.000 15.087 
125.077 80.000 20.109 
125.077 8o.ooo _2_5 .. 18o 
130.117 80.000 25.180 
175.168 80.000 25.180 
175.168 80.000 20.228 
175.168 80.000 0.209 
6 
25.041 85.000 0.089 
25.304 85.000 25.094 
30.071 85.000 25.094 
75.016 85.000 25.094 
80.044 85.000 15.187 
125.024 85.000 15.187 
125.024 85.000 20.281 
125.024 85.000 25.263 
130.030 85.000 25.263 
175.107 85.000 25.263 
175.107 85.000 20.265 
175.107 85.000 0.352 
6 
25.014 90.000 0.019 
25.351 90.000 25.021 
30.008 90.000 25.021 
75.090 90.000 25.021 
80.106 90.000 15.071 
125.142 90.000 15.071 
125·.142 90.000 20.143 
125.142 90.000 25.139 
130.220 90.000 25.139 
175.213 90.000 25.139 
175.213 90.000 20.199 
175.213 90.000 0.204 
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DATA REDUCTION STAGE- PARALLEL TOY-AXIS 

!* DATA REDUCTION STAGE *I 
I* PARALLEL TOY AXIS *I 
/* Function Prototype * * * * * **I 

#include <stdio.h> 
#include <math.h> 
#include < stdlib.h> 
#include <alloc.h> 
#define Y limit 0.5 
#define Y max limit 2.5 - -
#define X max limit 2.5 - -
#define Z_limit 1.0 I* TO DETECT CHANGE IN Z* I 

I* Global Variable Declaration *I 
int In_Rec_n= l,Rec_n= l,Seg_n= l,n_pts_bet= l,check_z=O,store=O,pt=O; 

float prev _ X,prev _ Y,prev _ Z; 
float X,Y,Z,int_X, int_Y,int_Z; 
float temp_X,temp_Y,temp_Z; 

FILE *flptr, *f2ptr; 

struct XYZ 
{ 

float X; 
float Y; 
float Z; 

}; 

struct Segment 
{ 

}; 

struct XYZ start _pt; 
struct XYZ end _pt; 
~t n _pts _bet; 
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/*structure for each line parallel to Y *I 
struct RecordY 
{ 
struct Segment segment[lO]; 
int SEG_N,TS~G:....N; 

}parallel Y[31]; 

main() 
{ 
int j,k,p,q; 
char name1[35], name2[35]; 

printf("Enter filename( data file) \n11
); 

scanf("%s11
, namel); 

printf("Enter name of reduced data file \n11
); 

scanf("%s" ,name2); 

printf("Enter number of Lines Scanned on the object (parallel toY axis)\n11
); 

scanf( 11%d11 ,&In_ Rec _ n); 

if((flptr = fopen(namel, 11r 11
)) ==NULL) 

{ 
printtc•can't open %s to read \n11

, namel); 
exit(1); 

} 

if((f2ptr = fopen(name2, "w+ 11
)) ==NULL) 

{ 
printf( 11Can't write to file %s \n11

, name2); 
exit(1); 
} 

I* READS IN FIRST POINT IN THE FILE *I 
fscanf(f1ptr, 11%f %f %f'1,&prev_X,&prev_Y,&prev_Z); 

parallel Y[Rec n].segment[Seg n].start_pt.X=prev_X; 
parallel-Y[Rec-n].segment[Seg-n].start_pt.Y=prev_Y; 
parallel Y[Rec=n].segment[Seg=n].start_pt.Z=prev_Z; 



I* For scanning parallel to Y axis *I 

do{ 
fscanf(f1ptr, 11%f %f %f', &X,&Y,&Z); pt+ +; 

if( fabs(prev _X - X ) > X_ max _limit ){ 

parallel_ Y[Rec _ n]. segment[Seg_ n]. end _pt.X=temp _X; 
parallel Y[Rec n].segment[Seg n].end pt.Y=temp Y; - - - - -
parallel Y[Rec n].segment[Seg n].end pt.Z=temp Z; - - - - -
parallel_Y[Rec_n].SEG_N=Seg_n; 
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if(pt>l) parallel_Y[Rec_n].segment[Seg_n].n_pts_bet=pt-2; 

} 

Rec_n++; Seg_n=l; store=O; pt=O; 
check_z=O; 
prev_X=X; 
prev_Y=Y; 
prev_Z=Z; 

parallel_ Y[Rec _ n] .segment[Seg_ n] .start _pt.X=prev _X; 
parallel_Y[Rec_n].segment[Seg_n].start_pt.Y=prev_Y; 
parallel_Y[Rec_n].segment[Seg_n].start_pt.Z=prev_Z; 

fscanf(f1ptr, .. %f %f %f', &X,&Y,&Z);pt++; 

if( fabs(prev Y-Y) < Y limit ){ - -

} 

temp_X=X; 
temp_Y=Y; 
temp_Z=Z; 

if (fabs (prev Y- Y) > Y max limit) - - -
{ 

parallel Y[Rec n].segment[Seg n].end_pt.X=temp_X; 
parallel-Y[Rec-n].segment[Seg=n].end_pt.Y=temp_Y; 
parallel =Y[Rec = n]. segrnent[Seg_ n]. end _pt.Z =temp _Z; 
if(pt> 1) 
parallel Y[Rec n].segment[Seg_n].n_pts_bet=pt-2; - -
pt=O; 
Seg_n++; 
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l*fscanf(flptr, 11%f %f %f', &prev_X, &prev_Y, &prev_Z); pt++;*l 
prev_X =X; 
prev_Y =Y; 
prev_Z =Z; 

parallel_Y[Rec_n].segment[Seg_n].start_pt.X=prev_X; 
parallel_Y[Rec_n].segment[Seg_n].start_pt.Y=prev Y; 
parallel_Y[Rec_n].segment[Seg_n].start_pt.Z=prev Z; 

I* since z values are not exceeding the limit we will scan till * 1 
I* Find values of x not changing and z changes * 1 

do{ 
temp_X = X; temp_Y = Y; temp_Z =Z; 

fscanf(f1ptr, 11%f %f %f',&X,&Y,&Z); pt++; 

if ( fabs( prev_Z- Z) > Z_limit) store=1; 
if ( fabs(prev _ Y - Y) < Y _limit) store = 1; 

} while( store= =0); 

if (store== 1){ 
I* storing end-points *I 

parallel_ Y[Rec _n].segment[Seg_ n].end _pt.X=temp _X; 
parallel_Y[Rec_n].segment[Seg_n].end_pt.Y=temp_Y; 
parallel_Y[Rec_n].segment[Seg_n].end_pt.Z=temp_Z; 
if(pt> 1) 

parallel_ Y[Rec _ n]. segment[Seg_ n] .n _pts _ bet=pt-2; 
pt=O; 

segment *I 

Seg_n++; 
I* assigning previous points as starting point of next 

l*fscanf(f1ptr, 11 %f %f %f', &prev_X, &prev_Y, 
&prev_Z);pt++;* I 

prev_X=X; 
prev_Y=Y; 
prev Z=Z; 
parallel_Y[Rec_n].segment[Seg_n].start_pt.X=prev_X; 
parallel_Y[Rec_n].segment[Seg_n].start_pt.Y=prev_Y; 
parallel Y[Rec n].segment[Seg_n].start_pt.Z=prev_Z; - -



} 

store=O· I 
} 

else { 

} 

__ _ temp_X=X; 
temp_Y=Y; 
temp_Z=Z; 

/*if ((fabs(prev_Y-Y) < Y_limit)&&(check_z = = 1))* 1 { 
/* 

*I 
} 

temp_X =X; 
temp_Y =Y; 
temp_Z =Z; 

/*else*/ 

/* 
parallel_Y[Rec_n].segment[Seg_n].end_pt.X=temp_X; 
parallel_Y[Rec_n].segment[Seg_n].end_pt.Y=temp_Y; 
parallel_~~[Rec_n].segment[Seg_n].end_pt.Z=temp_Z; 

if(pt>l) parallel_Y[Rec_n].segment[Seg_n].n_pts_bet=pt-2; 
pt=O; 
Seg_n++; 
*I 
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/* assigning previous points as starting point of next segment* I 

temp_X=X; 
temp_Y=Y; 
temp_Z=Z; 

/* 
prev_X=X; 
prev_Y=Y; 
prev_Z=Z; 
*I 

printf(11 Rec_n %d \n .. ,Hec_n); 
}while(Rec n < = In Rec n); - - -

fclose(flptr); 



for ( j = 1; j < =In_ Rec _ n.; j + +) 
for (k=l; k<=parallel_Y[j].SEG_N; k++) 
{ 
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printf(!: \nFor Record_%d Segment_%d \nSt_pt X %2.3f Y %2.3f z 
%2.3f \nEnd_pt X %2.3f Y %2.3f Z %2.3f \n pts %d\n11 ,j,k, 

paralle j).segment[k].start_pt.X,parallel_Y[j].segment[k].start_pt.Y,parallel y 
[j]. segment[k]. start _pt. Z, 

parallel_ Y[j].segment[k] .end _pt.X,parallel_ Y[j] .segment[k].end _pt.Y,parallel_ Y[j 
].segment[k].end pt.Z,parallel Y[j].segment[k].n pts bet); - - - -

} 
for ( p=l; p<=In_Rec_n; p++) 

{ 
fprintf(f2ptr ,11%d\n .. ,parallel_ Y[p] .SEG _N); 

for (q=l; q< =parallel_Y[p].SEG_N; q+ +) 
{ 

fprintf(f2ptr, .. %2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n11
, 

parallel_ Y[p 1 .segment[ q]. start _pt.X,parallel_ Y[p]. segment[ q]. start _pt.Y,parallel 
_ Y[p 1. segment[ q]. start _pt.Z, 

parallel_Y[p].segment[q].end_pt.X,parallel_Y[p].segment[q].end_pt.Y,parallel_ 
Y[p1.segment[q].end_pt.Z); 

} } 
fclose(f2ptr); 

} 
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3 
25.077 0.000 0.087 
25.131 0.000 25.097 
25.109 5.096 25.191 
25.138 90.018 25.130 
25.195 90.099 20.154 
25.182 90.028 0.020 
3 
30.118 0.000 0.091 
30.141 0.000 25.069 
30.165 5.038 25.092 
30.118 90.084 25.116 
30.157 90.178 20.125 
30.127 90.151 0.012 
3 
35.072 0.000 0.042 
35.161 0.000 25.092 
35.184 5.032 25.192 
35.188 90.077 25.117 
35.199 90.099 20.182 
35.201 90.119 0.012 
3 
40.127 0.000 0.048 
40.152 0.000 25.009 
40.154 5.031 25.083 
40.183 90.044 25.026 
40.243 90.077 20.097 
40.241 90.092 0.038 
3 
45.048 0.000 0.094 
45.159 0.000 25.094 
45.160 5.019 25.158 
45.153 90.040 25.124 
45.218 90.073 20.209 
45.249 90.091 0.021 
3 
50.126 0.000 0.081 

90 

REDL 



50.146 0.000 25.035 
50.169 5.074 25.051 
50.218 90.078 25.068 
50.228 90.141 20.160 
50.282 90.102 0.092 
3 
55.038 0.000 0.054 
55.048 0.000 25.001 
55.105 5.063 25.057 
55.121 90.012 25.048 
55.139 90.065 20.121 
55.147 90.077 0.013 
3 
60.081 0.000 0.076 
60.064 0.000 25.069 
60.111 5.082 25.106 
60.115 90.076 25.151 
60.197 90.157 20.196 
60.175 90.158 0.015 
3 
65.072 0.000 0.030 
65.079 0.000 25.012 
65.125 5.054 25.091 
65.219 90.017 25.110 
65.318 90.041 20.146 
65.261 90.020 0.016 
3 
70.043 0.000 0.033 
70.035 0.000 25.078 
70.006 5.056 25.139 
70.166 90.081 25.167 
70.190 90.112 20.249 
70.257 90.148 0.023 
3 
75.143 0.000 0.017 
75.178 0.000 25.018 
75.113 5.030 25.025 
75.127 90.049 25.036 
75.144 90.098 20.094 
75.135 90.143 0.047 
3 
80.081 0.009 0.058 
80.164 0.003 15.028 
80.171 5.092 15.118 
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80.206 90.068 15.040 
80.208 90.108 10.112 
80.294 90.118 0.063 
3 
85.696 0.030 0.030 
85.785 0.041 15.082 
85.848 5.093 15.094 
85.847 90.075 15.108 
85.831 90.115 10.135 
85.856 90.141 0.042 
3 
90.901 0.014 0.023 
90.107 0.083 15.036 
90.172 5.059 15.006 
90.216 90.142 15.077 
90.223 90.135 10.133 
90.252 90.202 0.016 
3 
95.604 0.076 0.048 
95.611 0.014 15.051 
95.628 5.110 15.092 
95.642 90.110 15.137 
95.702 90.184 10.209 
95.655 90.195 0.018 
3 
100.132 0.020 0.020 
100.076 0.041 15.021 
100.165 5.153 15.091 
100.117 90.171 15.086 
100.150 90.260 10.087 
100.177 90.203 0.052 
3 
105.598 0.031 0.030 
105.600 0.030 10.065 
105.556 5.045 15.003 
105.624 90.118 15.018 
105.562 90.096 10.039 
105.612 90.104 0.050 
3 
110.658 0.031 0.031 
110.097 0.071 15.098 
110.075 5.085 15.031 
110.093 90.139 15.068 
110.128 90.117 10.100 
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110.146 90.216 0.042 
3 
115.165 0.032 0.032 
115.642 0.030 15.040 
115.609 5.015 15.071 
115.657 90.026 15.-134 
115.632 90.019 10.105 
115.707 90.108 0.032 
3 
120.692 0.031 0.031 
120.081 0.040 15.003 
120.097 5.037 15.032 
120.188 90.072 15.106 
120.104 90.090 10.113 
120.134 90.142 0.193 
3 
125.104 0.000 0.013 
125.200 0.000 25.002 
125.183 5.076 25.045 
125.156 90.021 25.007 
125.253 90.090 20.036 
125.251 90.094 0.067 
3 
130.076 0.000 0.050 
130.050 0.000 25.040 
130.048 5.031 25.095 
130.121 90.018 25.047 
130.145 90.078 20.054 
130.155 90.018 0.107 
3 
135.173 0.000 0.017 
135.121 0.000 25.019 
135.129 5.084 25.042 
135.187 90.003 25.087 
135.210 90.095 20.121 
135.206 90.077 0.155 
3 
140.078 0.000 0.054 
140.125 0.000 25.086 
140.118 5.082 25.162 
140.134 90.021 25.114 
140.182 90.058 20.189 
140.188 90.040 0.041 
3 
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145.058 0.000 0.083 
145.143 0.000 25.061 
145.205 5.094 25.147 
145.202 90.085 25.112 
145.244 90.143 20.139 
145.266 90.115 o:631-
3 
150.102 0.000 0.003 
150.156 0.000 25.024 
150.230 5.074 25.042 
150.215 90.006 25.111 
150.310 90.101 20.194 
150.291 90.036 0.031 
3 
155.062 0.000 0.085 
155.049 0.000 25.007 
155.100 5.021 25.027 
155.176 90.026 25.034 
155.207 90.051 20.053 
155.232 90.076 0.086 
3 
160.105 0.000 0.037 
160.077 0.000 25.003 
160.123 5.043 25.059 
160.202 90.091 25.038 
160.273 90.142 20.090 
160.227 90.177 0.031 
3 
165.068 0.000 0.045 
165.059 0.000 25.015 
165.121 5.003 25.056 
165.125 90.030 25.061 
165.178 90.109 20.151 
165.195 90.115 0.032 
3 
170.130 0.000 0.017 
170.157 0.000 25.099 
170.119 5.004 25.123 
170.101 90.044 25.176 
170.198 90.119 20.233 
170.193 90.092 0.042 
3 
175.111 0.000 0.085 
175.112 0.000 25.081 
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175.098 5.025 25.110 
175.224 90.091 25.163 
175.294 90.108 20.218 
175.237 90.180 0.042 
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SURFACE -RECOGNITION STAGE- PARALLEL TO X-AXIS 

/*SURFACE RECOGNITION STAGE *I 

I*P ARALLEL TO X AXIS *I 

I* Function Prototype *I 

#include < stclio.h> 
#include <math.h> 
#include <stdlib.h> 
#include < alloc.h> 
#define Z _limit 0.5 /* TO DETECT CHANGE IN Z* I 

I* Global Variable Declaration *I 
int In_Rec_n=1,Rec_n=1,Seg_n=1,n_pts_bet=1,pt=O; 
float prev _ X,prev _ Y,prev _ Z; 

float X,Y,Z,X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4; 

float temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2; 
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f 1 o a t 
SLOPE_X1,SLOPE_Y1,SLOPE_Z1,SLOPE_Z2,SLOPE_X2,SLOPE_Y2,SLOPE_1,SL 
OPE..:_2; 

FILE *flptr, *f2ptr; 

struct XYZ 
{ 

float X; 
float Y; 
float Z; 

}; 



struct Segment 
{ 

struct XYZ start _pt; 
struct XYZ end _pt; 
int n pts bet; - - . ~ .. -

}; 

I* structure for each line *I 

struct Record.X 
{ 
struct Segment segment[10]; 
int SEG_N; 
int SURF_N; 

} parallel_ X[ 21]; 

struct POINT 
{ 
float X; 
float Y; 
float Z; 
}; 

I* Structure for each surface *I 

struct SURFY XYZ 
{ 
float X; 
float Y; 
float Z; 

}; 

struct SURF ACE X 
{ 
struct SURFY _ XYZ point_l; 
struct SURFY_XYZ point_2; 
struct SURFY_XYZ point_3; 
struct SURFY_XYZ point_4; 
int SURF _N; 

}SURF X[15]; 

main() 
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{ 
int j = llklplq; 
char name1[35]1 name2[35]; 
int surf n= 1· 

- I 

printfC'Enter filename (reduced data file for parallel to X axis) \n .. ); 
scanf(11%S11

1 namel); 
printf( .. Enter number of lines Scanned on the object (parallel to X ax:i.s)\n11

); 

scanf(11%d"1&In _ Rec _ n); 
In_Rec_n++; 

printf( .. Enter name of surface feature file \n"); 
scanf("%s"1name2); 

if((flptr = fopen(name11 
11!")) ==NULL) 

{ 
printf("Canlt open %s to read \n11

1 namel); 
exit(l); 

} 
if((f2ptr = fopen(name21 "w+")) ==NULL) 

{ 
printf("Can1t write to file %s \n"l name2); 
exit(l); 
} 

/* READS POINTS IN REDUCED DATA FILE TO STRUCTURES *I 
for(p= l;p<In_Rec_n;p+ +) 

{ 
fscanf(flptr~"%d" 1&parallel_X[p].SEG_N); 

for (q=l; q<=parallel_X[p].SEG_N;q++) 
{ 
fscanf(flptr1"%f %f %f %f %f %f'1 
&prev _ X1&prev _ Y1&prev _ ZI&XI& YI&Z); 
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parallel_X[p].segment[q].start_pt.X=prev_X;parallel_X[p].segment[q].start_pt. 
Y=prev_Y; 

parallel_X[p].segment[q].start_pt.Z=prev_Z;parallel_X[p].segment[q].end_pt.X 
=X· I 



parallel_ X[p 1. segment[ q1. end _pt. Y = Y ;parallel_ X[p 1. segment[ q1. end pt.Z = Z; 
} -

} 
fclose(f1ptr); 

- - -

/* PRINTS DATA JUST READ IN ON THE SCREEN *I 

/* 

for(p= l;p<In_Rec_n;p+ +) 
{ 

printf("%d\n" ,parallel_ X[p 1 .SEG _ N); 
for (q= 1; q< =parallel_X[p].SEG_N;q+ +) 

{ 
printfC'%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n", 

parallel_X[p].segment[q].start_pt.X,parallel_X[p].segment[q].start_pt.Y, 

parallel_X[p].segment[q1.start_pt.Z,parallel_X[p].segment[q].end_pt.X, 

parallel_X[p1.segment[q1.end_pt.Y,parallel_X[p].segment[q].end_pt.Z); 
} 

} 
*I 
printf("%d\n" ,parallel_ X[p-1] .SEG _ N); 

q=l; 
{ 
p=l; 
Xl = parallel X[p1.segment[q].start pt.X; - -
Yl = parallel X[p].segment[q].start pt.Y; - -
Zl = parallel_X[p].segment[q).start_pt.Z; 
X2 = parallel_X[p].segment[q].end_pt.X; 
Y2 = parallel_X[p].segment[q].end_pt.Y; 
Z2 = parallel_X[p].segment[q].end_pt.Z; 

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n",X1,Y1,Z1,X2,Y2,Z2); 

SURF _X[j].point_l.X = X1; 
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SURF _X[j].point_1.Y = Y1; 
SURF _XU).point_1.Z = Z1; 
SURF _XU).point_2.X = X2; 
SURF _X[j].point_2.Y = Y2; 
SURF _XU].point_2.Z = Z2; 

for(p=2;p<In_Rec_n;p+ +) 
{ 
q=1; 

SLOPE_Y1 = fabs(Y2-Y1); 
SLOPE_Z1 = fabs(Z2-Z1); 

/* Comparing points of q segment of the p + 1 record *I 

X3 = parallel_ X[p 1. segment[ q1. start _pt.X; 
Y3 = parallel_X[p1.segment[q1.start_pt.Y; 
Z3 = parallel_X[p1.segment[q1.start_pt.Z; 
X4 = parallel_ X[p 1. segment[ q1. end _pt.X; 
Y 4 = parallel_ X[p]. segment[ q]. end _pt. Y; 
Z4 = parallel_X[p].segment[q].end_pt.Z; 

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n'',X3,Y3,Z3,X4,Y4,Z4); 

SLOPE_Y2 = fabs(Y4-Y3); 
SLOPE_Z2 = fabs(Z4-Z3); 

if (SLOPE_Z1==0) 
{ 
SLOPE 1=0· - ' 
} 

else 
{ 
SLOPE 1 = SLOPE_Y1/SLOPE_Z1; 
} 

if (SLOPE_Z2= =0) 
{ 
SLOPE_2=0; 
} 
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else 
{ 
SLOPE 2 = SLOPE Y2/SLOPE Z2; - - -
} 

if (SLOPE_Y1==0) 
{ 
SLOPE_1=0; 
} 

else 
{ 
SLOPE_1 = SLOPE_Y1/SLOPE_Z1; 
} 

if (SLOPE_Y2==0) 
{ 
SLOPE 2=0· - ' 
} 

else 
{ 
SLOPE 2 = SLOPE Y2/SLOPE Z2; - - -
} 

if (fabs(SLOPE_1-SLOPE_2) <= 0.5) 
{ 
temp_X1 = X3; 
temp_Y1 = Y3; 
temp_Z1 = Z3; 
temp_X2 = X4; 
temp_Y2 = Y4; 
temp_Z2 = Z4; 
} 

printf( 11%2.3f %2.3f %2.3f\n%2.3f 
%2.3r'..b2.3f\n\n'\temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2); 

printf(11p is %d In rec is %d\n\n .. ,p,In_Rec_n); 

if ( p == (In_Rec_n)-1) 

{ 
SURF _XU].point_3.X = temp_X1; 
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SURF _X[j].point_3.Y = temp_Y1; 
SURF _X[j].point_3.Z = temp_Z1; 
SURF _X[j].point_4.X = temp_X2; 
SURF _X[j].point_4.Y = temp_Y2; 
SURF _X[j].point_4.Z = temp_Z2; 

·SURF _X[j].SURF _N=surf_n; 
j++; 
surf_n ++; 
} 

if ((fabs(SLOPE_1-SLOPE_2)) > 5) 
{ 

} 

SURF _X[j].point __ 3.X = temp_X1; 
SURF _X[j].point_3.Y = temp_Y1; 
SURF _X[j].point_3.Z = temp_Z1; 
SURF _X[j].point_4.X = temp_X2; 
SURF _X[j].point_4.Y = temp_Y2; 
SURF _X[j].point_4.Z =temp_Z2; 
SURF _X[j].SURF _N=surf_n; 
j++; 
surf_n ++; 
} 
} 

/*printf(11 End of q=1 \n11 );*/ 

q=2; 
{ 
p=1; 
X1 = parallel_X[p].segment[q].start_pt.X; 
Y1 = parallel_X[p].segment[q].start_pt.Y; 
Z 1 = parallel_ X[p]. segment[ q]. start _pt.Z; 
X2 = parallel_ X[p]. segment[ q]. end _pt.X; 
Y2 = parallel_X[p].segment[q].end_pt.Y; 
Z2 = parallel_X[p].segment[q].end_pt.Z; 

print£(11%2.3£ %2.3£ %2.3f\n%2.3f %2.3£ %2.3f\n",X1,Y1,Z1,X2,Y2,Z2); 
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SURF _X[j].SURF _N=surf_n; 
SURF _X[j].point_1.X = X1; 
SURF _X[j].point_1.Y = Y1; 
SURF _X[j].point_1.Z = Z1; 
SURF _X[j].point_2.X = X2; 
S1JRF'X[j].point_2.Y = Y2; 
SURF _X[j].point_2.Z = Z2; 

for(p=2;p<In_Rec_n;p+ +) 
{ 
q=2; 
SLOPE_X1 = ~abs(X2-X1); 
SLOPE_Y1 = fabs(Y2-Y1); 

I* Comparing points of q segment of the p + 1 record * 1 

I* 

X3 = parallel_ X[p ]. segment[ q]. start _pt.X; 
Y3 = parallel_X[p].segment[q].start_pt.Y; 
Z3 = parallel_X[p].segment[q].start_pt.Z; 
X4 = parallel_X[p].segment[q].end_pt.X; 
Y4 = parallel_X[p].segment[q].end_pt.Y; 
Z4 = parallel_X[p].segment[q].end_pt.Z; 

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n.',X3,Y3,Z3,X4,Y4,Z4); 

SLOPE_ X2 = fabs(X4-X3); 
SLOPE_Y2 = fabs(Y4-Y3); 

if (SLOPE_Y1==0) 
{ 
SLOPE_1=0; 
} 

else 
{ 
SLOPE 1 = SLOPE XliSLOPE Y1; - - -
} 

if ((SLOPE_Xl==O) 
{ 
SLOPE_l=O; 
} 
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else 

*I 

{ 
SLOPE 1 = SLOPE X1/SLOPE Y1· 
} - - - I 

if (SLOPE_Y2==0) 
{ 

/* 

*I 

SLOPE 2=0· 
- I 

} 
else 

{ 
SLOPE 2 = SLOPE X2/SLOPE Y2· 
} - - - ' 

if (SLOPE_X2= =0) 
{ 
SLOPE 2=0· 

- I 

} 
else 

{ 
SLOPE 2 = SLOPE X2/SLOPE Y2; } - - -

if (fabs(SLOPE_1-SLOPE_2)< = 0.5) 
{ 
temp_X1 = X3; 
temp_ Y1 = Y3; 
temp_Z1 = Z3; 
temp_X2 = X4; 
temp_Y2 = Y4; 
temp_Z2 = Z4; 
} 
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printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f 
%2.3f\n\n"1temp_X1,temp_Y1 1temp_Z1,temp_X2,temp_Y2,temp_Z2); 

printf("p is %d In rec is %d\n\n11
1p,In_Rec_n); 



if ( p == (In_Rec_n)-1) 

{ 
SURF _X[j].point_3.X = temp_X1; 
SURF _X[j].point_3.Y = temp_Y1; 

· SuRF _X[j].point_3.Z = temp_Z1; 
SURF _X[j].point_4.X = temp_X2; 
SURF _X[j].point._4.Y = temp_Y2; 
SURF _X[j].point_4.Z = temp_Z2; 
SURF_ X[j] .SURF_ N =surf_ n; 
j++; 
surf_n ++; 
} 

if (fabs(SLOPE_1-SLOPE_2)> 5) 

} 
} 

{ 
SURF _X[j].point_3.X = temp_X1; 
SURF _X[j].point_3.Y = temp_Y1; 
SURF _X[j].point_3.Z = temp_Z1; 
SURF _X[j].point_4.X = temp_X2; 
SURF _X[j].point_4.Y = temp_Y2; 
SURF _X[j].point_4.Z =temp_Z2; 
SURF _X[j].SURF _N=surf_n; 
j++; 
surf_n ++; 
SURF _X[j].point_1.X = X3; 
SURF _X[j].point_1.Y = Y3; 
SURF _X[j].point_1.Z = Z3; 
SURF _X[j].point_2.X = X4; 
SURF _X[j].point_2.Y = Y4; 
SURF _X[j].point_2.Z = Z4; 
SURF _X[j].SURF _N=surf_n; 
} 

/*printf(11 End of q=2 \n .. );* I 
q=3; 
{ 
p=1; 
X1 = parallel_X[pl.segment[q].start_pt.X; 
Y1 = parallel_X[p).segment[q].start_pt.Y; 
Z1 = parallel_X[p].segment[q].start_pt.Z; 
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X2 = parallel_X[p].segment[q].end_pt.X; 
Y2 = parallel_X[pj.segment[q].end_pt.Y; 
Z2 = parallel_ X[p 1. segment[ q}. end _pt. Z; 

priiitiC.%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. ,X1,Y1,Z1,X2,Y2,Z2); 

SURF_ X[j 1 .SURF_ N =surf_ n; 
SURF _X[j1.point_1.X = X1; 
SURF _X[j1.point_1.Y = Y1; 
SURF _X[j1.point_1.Z = Z1; 
SURF _X[j].point_2.X = X2; 
SURF _X[j1.point_2.Y = Y2; 
SURF _X[j1.point_2.Z = Z2; 

for(p=2;p<In_Rec_n;p+ +) 
{ 
q=3; 
SLOPE_X1 = fabs(X2-X1); 
SLOPE_Y1 = fabs(Y2-Y1); 

/* Comparing points of q segment of the p + 1 record *I 

X3 = parallel_X[p1.segment[q].start_pt.X; 
Y3 = parallel_X[p1.segment[q].start_pt.Y; 
Z3 = parallel_ X[p 1. segment[ qJ . start _pt. Z; 
X4 = parallel_X[p].segment[q].end_pt.X; 
Y4 = parallel_X[p].segment[q} .end_pt.Y; 
Z4 = parallel X[p].segment[q1.end pt.Z; - -

printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n \n11 ,X3,Y3,Z3,X4,Y4,Z4); 

SLOPE_ X2 = fabs(X4-X3); 
SLOPE_Y2 = fabs(Y4-Y3); 

if (SLOPE_Y1= =0) 
{ 
SLOPE_1=0; 
} 
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else 
{ 
SLOPE_l = SLOPE_X1/SLOPE_Yl; 
} 

if (SL6PE_Y2==0) 
{ 
SLOPE_2=0; 
} 

else 

/* 

{ 
SLOPE_2 = SLOPE_X2/SLOPE_Y2; 
} 

if (SLOPE_Xl==O) 
{ 
SLOPE_l=O; 
} 

else 

*I 
/* 

{ 
SLOPE_1 = SLOPE_Xl/SLOPE_Y1; 
} 

if (SLOPE_X2==0) 
{ 
SLOPE 2=0· - ' 
} 

else 

*I 

{ 
SLOPE_2 = SLOPE_X2/SLOPE_Y2; 
} 

if (fabs(SLOPE_1-SLOPE_2) < = 0.5) 
{ 
temp_X1 = X3; 
temp_Y1 = Y3; 
temp_Z1 = Z3; 
temp_X2 = X4; 
temp_Y2 = Y4; 
temp_Z2 = Z4; 
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} 

printf( 11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n, 
temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2); 

printf( 11p is %d In rec is %d\n\n .. ,pJn_Rec_n); 
. - · 

if ( p == (In_Rec_n)-1) 

{ 
SURF _X(j].point_3.X = temp_X1; 
SURF _X(j].point_3.Y = temp_Y1; 
SURF _X[j].point_3.Z = temp_Z1; 
SURF _X(j].point_4.X = temp_X2; 
SURF _X[j].point_4.Y = temp_Y2; 
SURF _X(j].point_4.Z = temp_Z2; 
SURF _X(j].SURF _N=surf_n; 
j++; 
surf_n ++; 
} 

if ((fabs(SLOPE_1-SLOPE_2)) > 1) 
{ 
SURF _X(j].point_3.X = temp_X1; 
SURF _X[j].point_3.Y = temp_Y1; 
SURF _X(j].point_3.Z = temp_Z1; 
SURF _X(j].point_4.X = temp_X2; 
SURF _X(j].point_4.Y = temp_Y2; 
SURF _X(j].point_4.Z =temp_Z2; 
SURF _X(j].SURF _N=surf_n; 
j++; 
surf_n ++; 
SURF _X(j].point_1.X = X3; 
SURF _X(j].point_1.Y = Y3; 
SURF _X(j].point_1.Z = Z3; 
SURF _X[j].point_2.X = X4; 
SURF _X(j].point_2.Y = Y4; 
SURF _X(j].point_2.Z = Z4; 
SURF X(j].SURF N=surf n; - - -
} 
} 

} 
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l*printf(11 End of q=3 \n .. );* I 

q=4; 
{ 
P =1· - .. _, 
X1 = parallel_X[p].segment[q].start_pt.X; 
Y1 = parallel_X[p].segment[q] .start_pt.Y; 
Z 1 = parallel_ X[p]. segment [ q] . start _pt. Z; 
X2 = parallel_X[p].segment[q].end_pt.X; 
Y2 = parallel_X[p].segment[q].end_pt.Y; 
Z2 = parallel_X[p].segment[q].end_pt.Z; 

printf( .. %2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n.',Xl,Y1,Z1,X2,Y2,Z2); 

SURF _X[j).point_l.X = Xl; 
SURF _X[j].point_1.Y = Yl; 
SURF _X[j].point_l.Z = Z1; 
SURF _X[j].point_2.X = X2; 
SURF _X[j].point_2.Y = Y2; 
SURF _X[j].point_2.Z = Z2; 

for(p=2;p<In_Rec_n;p+ +) 
{ 
q=4; 
SLOPE_Yl = fabs(Y2-Y1); 
SLOPE_Z1 = fabs(Z2-Z1); 

I* Comparing points of q segment of the p + 1 record *I 

X3 = parallel_ X[p) . segment [ q]. start _pt.X; 
Y3 = parallel_X[p).segment[q].start_pt.Y; 
Z3 = parallel_X[p).segment[q].start_pt.Z; 
X4 = parallel_X[p).segme~t[q].end_pt.X; 

Y4 = parallel_X[p).segment[q].end_pt.Y; 
Z4 = parallel_X[p].segment[q].end_pt.Z; 

printfC.%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n \n .. ,X3,Y3,Z3,X4,Y4,Z4); 
SLOPE_Y2 = fabs(Y4-Y3); 
SLOPE_Z2 = fabs(Z4-Z3); 
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if (SLOPE_Z1==0) 
{ 
SLOPE_1=0; 
} 

else 
· { · -

SLOPE_1 = SLOPE_Y1/SLOPE_Z1; 
} 

if (SLOPE_Z2= =0) 
{ 
SLOPE_2=0; 
} 

else 

I* 

{ 
SLOPE_2 = SLOPE_Y2/SLOPE_Z2; 
} 

if (SLOPE_Y1==0) 
{ 
SLOPE_1=0; 
} 

else 
{ 
SLOPE_1 = SLOPE_Y1/SLOPE_Z1; 
} 

if (SLOPE_Y2==0) 
{ 
SLOPE_2=0; 
} 

else 

*I 

{ 
SLOPE_ 2 = SLOPE_ Y2/SLOPE _ Z2; 
} 

if (fabs(SLOPE 1-SLOPE 2) < = 0.5) - -
{ 
temp_X1 = X3; 
temp_Y1 = Y3; 
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temp_Z1 = Z3; 
temp_X2 = X4; 
temp_Y2 = Y4; 
temp_ Z2 = Z4; 
} 
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printf( 11 %2.3f %2.3f %2.3f\n%2.3f %2.3f 
%2.3f\n \n .. ,temp _ X1,temp _ Y1,temp _ Z 1,temp _ X2,temp _ Y2,temp _ Z2); 

printf(11p is %d In rec is %d\n\n11 ,p,In_Rec_n); 

if ( p == (In_Rec_n)-1) 

{ 
SURF _X[j].point_3.X = temp_X1; 
SURF _X[j].point_3.Y = temp_Y1; 
SURF _X[j].point_3.Z = temp_Z1; 
SURF _X[j].point_4.X = temp_X2; 
SURF _X[j].point_4.Y = temp_Y2; 
SURF _X[j].point_4.Z = temp_Z2; 
SURF_ X[j] .SURF_ N =surf_ n; 
j++; 
surf_n++; 
} 

if ((fabs(SLOPE_1-SLOPE_2)) > 5) 

• 

{ 
SURF _X[j].point_3.X = temp_X1; 
SURF _X[j].point_3.Y = temp_Y1; 
SURF _X[j].point_3.Z = temp_Z1; 
SURF _X[j].point_4.X = temp_X2; 
SURF X[j].point 4.Y =temp Y2; - - -
SURF X[j].point 4.Z =temp Z2; - - -
SURF_ X[j] .SURF_ N =surf_ n; 
j++; 
surf_n ++; 
SURF _X[j].point_3.X = X3; 
SURF _X[j].point_3.Y = Y3; 
SURF _X[j].point_3.Z = Z3; 
SURF _X[j].point_4.X = X4; 
SURF _X[j].point_4.Y = Y4; 
SURF _X[j].point_4.Z = Z4; 
SURF X[j].SURF N=surf n; - - -



} 

} 
} 

/*printfC' End of q=4 \n .. );* I 
q =5· :::..r. { - .. 

p=1; 
X1 = parallel_X[p].segment[q].start_pt.X; 
Y1 = parallel_X[p).segment[q].start_pt.Y; 
Z1 = parallel_X[pj.segment[q].start_pt.2; 
X2 = parallel_ X[p] .segment[ q] .end _pt.X; 
Y2 = parallel_X[p].segment[q].end_pt.Y; 
Z2 = parallel_X[p].segment[q].end_pt.2; 

printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n11 ,X1,Y1,21,X2,Y2,22); 

SURF _X[j].SURF _N=surf_n; 
SURF _X[j].point_1.X = X1; 
SURF _X[j].point_l.Y = Y1; 
SURF _X[j].point_1.Z = 21; 
SURF _X[j].point_2.X = X2; 
SURF _X[j].point_2.Y = Y2; 
SURF _X[j].point_2.2 = 22; 

for{p=2;p<In_Rec_n;p+ +) 
{ 
q=5; 
SLOPE_X1 = fabs(X2-X1); 
SLOPE_Y1 = fabs(Y2-Y1); 

/* Comparing points of q segment of the p + 1 record *I 

X3 = parallel_X[p].segment[q].start_pt.X; 
Y3 = parallel_X[p].segment[q].start_pt.Y; 
Z3 = parallel_X[p].segment[q].start_pt.2; 
X4 = parallel X[p].segment[q].end pt.X; - -
Y4 = parallel X[p].segment[q].end pt.Y; - -
Z4 = parallel_X[p].segment[q].end_pt.2; 

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n .. ,X3,Y3,23,X4,Y4,24); 
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SLOPE_X2 = fabs(X4-X3); 
SLOPE_Y2 = fabs(Y4-Y3); 

if (SLOPE_Y1==0) 
{ 
SLOPE 1=0· 

- I 

} 
else 

{ 
SLOPE_1 = SLOPE_X1/SLOPE_Y1; 
} 

if (SLOPE_Y2==0) 
{ 
SLOPE_2=0; 
} 

else 

/* 

{ 
SLOPE_2 = SLOPE_X2/SLOPE_Y2; 
} 

if (SLOPE_X1= =0) 
{ 
SLOPE 1=0· 

- I 

} 
else 

{ 
SLOPE 1 = SLOPE_X1/SLOPE_Y1; 
} 

if (SLOPE_X2= =0) 
{ 
SLOPE_2=0; 
} 

else 
{ 
SLOPE 2 = SLOPE X2/SLOPE Y2; - - -
} 

*I 

if (fabs(SLOPE_1-SLOPE_2) < = 0.5) 
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{ 
temp_X1 = X3; 
temp_Y1 = Y3; 
temp_Z1 = Z3; 
temp X2 = X4; 

· - ·temp Y2 = Y4; 
temp_Z2 = Z4; 
} 
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printf( 11 %2.3f %2.3f %2.3f\n%2.3f %2.3f 
%2.3f\n \n .. ,temp _Xl,temp _ Yl,temp _ Z1,temp _ X2,temp _ Y2,temp _ Z2); 

printf( 11p is %d In rec is %d\n\n .. ,p,In_Rec_n); 

if ( p == (In_Rec_n)-1) 

{ 
SURF_X[j] .point_3.X = temp_X1; 
SURF_X[j].point_3.Y = temp_Y1; 
SURF _X[j].point_3.Z = temp_Z1; 
SURF_X[j].point_4.X = temp_X2; 
SURF_X[j].point_4.Y = temp_Y2; 
SURF _X[j].point_4.Z = temp_Z2; 
SURF _X[j].SURF _N=surf_n; 
j++; 
surf_n ++; 
} 

if ((fabs(SLOPE_1-SLOPE_2)) > 0.5) 
{ 
SURF _X[j].point_3.X = temp_X1; 
SURF _X[j].point_3.Y = temp_Y1; 
SURF _X[j).point_3.Z = temp_Z1; 
SURF X[j].point 4.X =temp X2; - - -
SURF X[j].point 4.Y = temp Y2; - - -
SURF X[j].point 4.Z =temp Z2; - - -
SURF X[j].SURF N=swf n; - - -
j++; 
surf_n ++; 
SURF _X[j].point_l.X = X3; 
SURF _X[j].point_1.Y = Y3; 
SURF _X[j].point_l.Z = Z3; 
SURF _X[j].point_2.X = X4; 
SURF _X[j].point __ 2.Y = Y4; 



SURF _XU].point_2.Z = Z4; 
SURF _XU}.SURF _N=surf_n; 
} 
} 

} 
/*"pr1ntf(11 End of q=5 \n .. );* 1 

q=6; 
{ 
p=1; 
X1 = parallel_X[p}.segment[q].start_pt.X; 
Y1 = parallel_X[p}.segment[q].start_pt.Y; 
Z1 = parallel X[p}.segment[q].start pt.Z; - -
X2 = parallel_X[p}.segment[q}.end_pt.X; 
Y2 = parallel_X[p].segment[q].end_pt.Y; 
Z2 = parallel_X[p].segment[q].end_pt.Z; 

printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n'\X1,Y1,Z1,X2,Y2,Z2); 

SURF _XU].point_1.X = X1; 
SURF _XU].point_1.Y = Y1; 
SURF _XU].point_1.Z = Z1; 
SURF _XU].point_2.X = X2; 
SURF _X[j].point_2.Y = Y2; 
SURF _XU].point_2.Z = Z2; 

for(p=2;p<In_Rec_n;p+ +) 
{ 
q=6; 

SLOPE_Y1 = fabs(Y2-Y1); 
SLOPE_Z1 = fabs(Z2-Z1); 

/* Comparing points of q segment of the p + 1 record *I 

X3 = parallel_X[p].segment[q}.start_pt.X; 
Y3 = parallel_X[p} :segment[q].start_pt.Y; 
Z3 = parallel_X[p].segment[q].start_pt.Z; 
X4 = parallel X[p].segment[q] .end pt.X; - -
Y4 = parallel_X[p].segment[q].end_pt.Y; 
Z4 = parallel X[p].segment[q}.end pt.Z; - -
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n \n'\X3,Y3,Z3,X4,Y4,Z4); 
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SLOPE_Y2 = fabs(Y4-Y3); 
SLOPE_Z2 = fabs(Z4-Z3); 

if (SLOPE_Z1==0) 
{ 
SLOPE_1=0; 
} 

else 
{ 
SLOPE_! = SLOPE_Y1/SLOPE_Z1; 
} 

if (SLOPE_Z2==0) 
{ 
SLOPE_2=0; 
} 

else 
{ 
SLOPE_ 2 = SLOPE_ Y2/SLOPE _ Z2; 
} 

if (SLOPE_Y1==0) 
{ 
SLOPE_1=0; 
} 

else 
{ 
SLOPE 1 = SLOPE_Y1/SLOPE_Z1; 
} 

if (SLOPE_Y2==0) 
{ 
SLOPE_2=0; 
} 

else 
{ 
SLOPE 2 = SLOPE Y2/SLOPE Z2; - - -
} 

if (fabs(SLOPE_1-SLOPE_2) < = 0.5) 
{ 
temp_X1 = X3; 
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temp_Y1 = Y3; 
temp_Z1 = Z3; 
temp_X2 = X4; 
temp_Y2 = Y4; 
temp Z2 = Z4; 

. - } - -
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printf( .. %2.3f %2.3f %2 . 3f\n%2.3f %2.3f 
%2.3f\n\n .. ,temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2); 

printf(11p is %d In rec is %d\n\n .. ,p,In_Rec_n); 

if ( p == (In_Rec_n)-1) 
{ 
SURF _XU].point_3.X = temp_X1; 
SURF_XU].point_3.Y = temp_Y1; 
SURF _XU].point_3.Z = temp_Z1; 
SURF _XU].point_4.X = temp_X2; 
SURF_XU].point_4.Y = temp_Y2; 
SURF _XU].point_4.Z = temp_Z2; 
SURF _XU].SURF _N=surf_n; 
} 

if ((fabs(SLOPE_1-SLOPE_2)) > 5) 

} 

{ 
SURF _XU].point_3.X = temp_X1; 
SURF _XU].point_3.Y = temp_Y1; 
SURF _XU].point_3.Z = temp_Z1; 
SURF _XU].point_4.X = temp_X2; 
SURF_XU].point_4.Y = temp_Y2; 
SURF _XU].point_4.Z =temp_Z2; 
SURF _XU].SURF _N=surf_n; 
} 
} 

/*printf(11 End of q=6 \n .. );* I 
for ( j = 1 ;j < = surf_ n;j + +) 
{ 
printf(11\nSURFACE_%d\n .. ,j); 

printf("P1 X %2.3f Y %2.3f Z %2.3f\n11
, 

SURF _XU].point_1.X,SURF _X[j].point_1.Y,SURF _X[j).point_1.Z); 

printf("P2 X %2.3f Y %2.3f Z %2.3f\n
11

, 



} 

SURF _X(j].point_2.X,SURF _X(j].point_2.Y,SURF _X(j].point_2.Z); 

printf(11P3 X %2.3f Y %2.3f Z %2.3f\n11
, 

SURF _X(j].point_3.X,SURF _X[j].point_3.Y,SURF _X[j].point 3.Z); 

printf(11P4 X %2.3f Y %2.3f Z %2.3f\n11
, 

SURF_ X(j] .point_ 4.X,SURF _ X[j] .point_ 4.Y,SURF _ X(j] .point 4.Z); 
} 

fprintf(f2ptr, 11%d\n .. ,surf_n); 
for ( j = 1;j < = surf_ n;j + +) 
{ 
fprintf(f2ptr, 11%d\n11 ,j); 
fprintf(f2ptr, 11%2.3f %2.3f %2.3f\n11

, 

SURF _X(j].point_1.X,SURF _X(j].point_1.Y,SURF _XU].point_1.Z); 

fprintf(f2ptr:•%2.3f %2.3f %2.3f\n11
, 

SURF _X(j].point_2.X,SURF _X(j] .point_2.Y,SURF _XU].point_2.Z); 

fprintf(f2ptr, 11%2.3f %2.3f %2.3f\n11
, 

SURF _X(j].point_3.X,SURF _X(j].point_3.Y,SURF _XU].point_3.Z); 

fprintf(f2ptr, .. %2.3f %2.3f %2.3f\n .. , 
SURF _X[j].point_4.X,SURF _X[j].point_4.Y,SURF _xU].point_4.Z); 

} 

fclose(f2ptr); 
/* 
for ( j = 1 ;j < = surf_ n;j + +) 
{ 
printf C\nSURFACE_%d POINT_1 X %2.3f Y %2.3f Z %2.3f\n .. , 
j,SURF X(j].point 1.X,SURF X(j].point 1.Y,SURF X(j].point 1.Z); - - - - - -

printf C\nSURFACE_%d POINT_2 X %2.3fY %2.3f Z %2.3f\n .. , 
j,SURF X(j].point 2.X,SURF X[j].point 2.Y,SURF _X[j] .point_2.Z); - - - -

printf C\nSURFACE_%d POINT_3 X %2.3f Y %2.3f Z %2.3f\n .. , 
j,SURF _X(j].point_3.X,SURF _X[j].point_3.Y,SURF _X[j].point_3.Z); 

printf C\nSURF ACE_ %d POINT_ 4 X %2.3f Y %2.3f Z %2.3f\n .. , 
j,SURF _X(j].point_ 4.X,SURF _X[j].point_ 4.Y,SURF _X[j].point_ 4.Z); 
} 
*I 
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APPENDIX F 

SURFACE RECOGNITION STAGE- PARALLEL TOY-AXIS 



SURFACE RECOGNITION STAGE- PARALLEL TOY-AXIS 

/* SURFACE RECOGNITION STAGE* I 

/*PARALLEL TOY AXIS *I 

/* Function Prototype *I 

#include <stdio.h> 
#include <math.h> 
#include < stdlib.h> 
#include <alloc.h> 
#define Z _limit 0.5 I* TO DETECT CHANGE IN Z* I 

I* Global Variable Declaration *I 
int In_Rec_n= 1,Rec_n= 1,Seg_n= 1,n_pts_bet= 1,pt=O; 

float prev _ X,prev _ Y,prev _ Z; 

float X,Y,Z,X1,Y1,Z 1 ,X2,Y2,Z2,X3,Y3,Z3,X4,Y 4,Z4; 

float temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2; 
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f 1 o a t 
SLOPE X1,SLOPE Y1,SLOPE Z1,SLOPE Z2,SLOPE X2,SLOPE Y2,SLOPE_1,SL - - - - - -
OPE_2; 

FILE * f1ptr, * f2ptr; 

struct XYZ 
{ 

float X; 
float Y; 
float Z; 

}; 



struct Segment 
{ 

}; 

struct XYZ start_pt; 
struct XYZ end _pt; 
int n _pts _bet; 

/*structure for each line *I 

struct RecordY 
{ 
struct Segment segment[lO]; 
int SEG_N; 
int SURF_N; 

}parallel Y[31]; 

struct POINT 
{ 
float X; 
float Y; 
float Z; 
}; 

/* Structure for each surface *I 

struct SURFY XYZ 
{ 
float X; 
float Y; 
float Z; 

}; 

struct SURF ACE Y 
{ 
struct SURFY _ XYZ point _1; 
struct SURFY _ XYZ point_ 2; 
struct SURFY_XYZ point_3; 
struct SURFY_XYZ point_ 4; 
int SURF _N; 

}SURF Y[15]; 
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main() 
{ 
int j = 1,k,p,q; 
char name1[35], name~[35]; 
int surf_n= 1; 

- . -

printfC'Enter filename (reduced data file) \n"); 
scanf("%s", name1); 
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printf("Enter number of lines Scanned on the object (parallel to y axis)\n"); 
scanf("%d" ,&In_ Rec _ n); 
In_Rec_n++; 

printf("Enter name of surface feature file \n"); 
scanf("%s" ,name2); 

if((f1ptr = fopen(name1, "r")) ==NULL) 
{ 
printfC'Can't open %s to read \n", name1); 
exit(1); 

} 

if((f2ptr = fopen(name2, "w+")) ==NULL) 
{ 
printf("Can't write to file %s \n", name2); 
exit(1); 
} 

I* READS POINTS IN REDUCED DATA FILE TO STRUCTURES *I 

for(p= 1;p<In_Rec_n;p+ +) 
{ 
fscanf(f1ptr,"%d",&parallel_Y[p].SEG_N); 

for (q=1; q<=parallel_Y[p].SEG_N;q++) 
{ 
fscanf(f1ptr,"%f %f %f %f %f %f', 
&prev _X,&prev _ Y,&prev _ Z,&X,& Y,&Z); 

parallel_ Y[p]. segment[ q]. start _pt.X = prev _ X;parallel_ Y[p]. segment[ q]. start _pt. 
Y=prev_Y; 
parallel_Y[p].segment[q].start_pt.Z=prev_Z;parallel_Y[p).segment[q].end_pt.X 
=X; 

parallel_Y[p).segment[q].end_pt.Y=Y;parallel_Y[p].segment[q].end_pt.Z=Z; 
} 



} 
fclose(flptr); 

!* P~~ DATA JUST READ IN ON THE SCREEN *I 

for(p= 1;p<In_Rec_n;p+ +) 
{ 
printf(11%d\n11 ,parallel_Y[p1.SEG_N); 

for (q=l; q<=parallel_Y[p1.SEG_N;q++) 
{ 
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. , 
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parallel_ Y[p 1. segment[ q]. start _pt.X,parallel_ Y[p 1. segment[ q1. start _pt.Y, 
parallel_Y[p].segment[q].start_pt.Z,parallel_Y[p1.segment[q1.end_pt.X, 
parallel_Y[p1.segment[q1.end_pt.Y,parallel_Y[p].segment[q1.end_pt.Z); 

} 

} 

q=1; 
{ 
p=1; 
X1 = parallel_Y[p].segment[q1.start_pt.X; 
Y1 = parallel_Y[p1.segment[q1.start_pt.Y; 
Z 1 = parallel_ Y[p 1. segment[ q1. start _pt. Z; 
X2 = parallel_ Y[p 1. segment[ q1. end _pt.X; 
Y2 = parallel_ Y[p 1. segment[ q1. end _pt. Y; 
Z2 = parallel_Y[p].segment[q1.end_pt.Z; 

/* 
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n11 ,X1,Y1,Z1,X2,Y2,Z2); 

*I 

SURF _Y[j].point_1.X = X1; 
SURF _Y[j].point_1.Y = Yl; 
SURF _Y[j].point_1.Z = Z1; 
SURF _Y[j].point_2.X = X2; 
SURF _Y[j].point_2.Y = Y2; 
SURF _Y[j].point_2.Z = Z2; 

for(p=2;p<In_Rec_n;p+ +) 
{ 
q=1; 



SLOPE_X1 = fabs(X2-X1); 
SLOPE_Z1 = fabs(Z2-Z1); 

/* Comparing points of q segment of the p + 1 record * J 

X3 = parallel_Y[p).segment[q].start_pt.X; 
Y3 = parallel_Y[p] .segment[q].start_pt.Y; 
Z3 = parallel_Y[p].segment[q].start_pt.Z; 
X4 = parallel_Y[p].segment[q].end_pt.X; 
Y4 = parallel_Y[p] .segment[q].end_pt.Y; 
Z4 = parallel_ Y[p]. segment [ q]. end _pt.Z; 

/* 
printfC'%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n11 ,X3,Y3,Z3,X4,Y4,Z4); 
*I 

SLOPE_ X2 = fabs(X4-X3); 
SLOPE_Z2 = fabs(Z4-Z3); 

if (SLOPE_Z1= =0) 
{ 
SLOPE_1=0; 
} 

else 
{ 
SLOPE 1 = SLOPE_X1/SLOPE_Z1; 
} 

if (SLOPE_Z2==0) 
{ 
SLOPE_2=0; 
} 

else 
{ 
SLOPE 2 = SLOPE X2/SLOPE Z2; - - -
} 

if (SLOPE_X1==0) 
{ 
SLOPE_1=0; 
} 
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else 
{ 
SLOPE_1 = SLOPE_X1/SLOPE_Z1; 
} 

if (SLOPE_X2==0) 
{ 
SLOPE 2=0· - ' 
} 

else 
{ 
SLOPE_2 = SLOPE_X2/SLOPE_Z2; 
} 

if (fabs(SLOPE_1-SLOPE_2) < = 0.5) 
{ 

/* 

temp_X1 = X3; 
temp_Y1 = Y3; 
temp_Z1 = Z3; 
temp_X2 = X4; 
temp_Y2 = Y4; 
temp_Z2 = Z4; 
} 
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printf( 11 %2.3f %2.3! %2.3f\n%2.3f %2.3f 
%2.3f\n\n .. ,temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2); 

printfC•p is %d In rec is %d\n\n11,p,In_Rec_n); 
*I 

if ( p == (In_Rec_n)-1) 

{ 
SURF _Y[j].point_3.X = temp_X1; 
SURF _Y[j].point_3.Y = temp_Y1; 
SURF _Y[j].point_3.Z = temp_Z1; 
SURF _Y[j].point_4.X = temp_X2; 
SURF _Y[j].point_4.Y = temp_Y2; 
SURF _Y[j].point_4.Z = temp_Z2; 
SURF _Y[j].SURF _N=surf_n; 
j++; 
surf_n ++; 
} 

if ((fabs(SLOPE_1-SLOPE_2)) > 5) 



{ 

} 

SURF _Y[j1.point_3.X = temp_X1; 
SURF _Y[j1.point_3.Y = temp_Y1; 
SURF _Y[j1.point_3.Z = temp_Z1; 
SURF Y[j].point 4.X = temp X2; 
~ ·· - - - -
SURF _Y[j1.point __ 4.Y = temp_Y2; 
SURF _Y[j1.point_4.Z =temp_Z2; 
SURF _Y[j1.SURF _N=surf_n; 
j++; 
surf_n ++; 
} 
} 

q=2; 
{ 
p=1; 
X1 = parallel_ Y[p 1. segment[ q1. start _pt.X; 
Y1 = parallel_Y[p1.segment[q1.start_pt.Y; 
Z1 = parallel_Y[p].segment[q].start_pt.Z; 
X2 = parallel_Y[p].segment[q1.end_pt.X; 
Y2 = parallel_ Y[p 1. segment[ q1. end _pt. Y; 
Z2 = parallel_Y[p].segment[q1.end_pt.Z; 

I* 
printf(11%2.3f %2.3! %2.3f\n%2.3f %2.3! %2.3f\n' .. X1,Y1,Z1,X2,Y2,Z2); 
*I 

SURF_ Y[j 1 .SURF_ N =surf_ n; 
SURF _Y[j].point_l.X = X1; 
SURF _Y[j].point_l.Y = Y1; 
SURF _Y[j].point_l.Z = Z1; 
SURF _Y[j].point_2.X = X2; 
SURF _Y[j1.point_2.Y = Y2; 
SURF _Y[j].point_2.Z = Z2; 

for(p=2;p<In_Rec_n;p+ +) 
{ 
q=2; 
SLOPE_X1 = fabs(X2-X1); 
SLOPE_Y1 = fabs(Y2-Y1); 

I* Comparing points of q segment of the p + 1 record *I 
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X3 = parallel_ Y[p]. segment[ q]. start _pt.X; 
Y3 = parallel_ Y[p ]. segment[ q]. start _pt. Y; 
Z3 = parallel_Y[p].segment[q].start_pt.Z; 
X4 = parallel_ Y[p]. segment[ q]. end _pt.X; 
Y-:t _ .. _parallel_Y[p].segment[q].end_pt.Y; 
Z4 = parallel_Y[p].segment[q].end_pt.Z; 

/* 
printfC1%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n11 ,X3,Y3,Z3,X4,Y4,Z4); 
*I 

SLOPE_X2 = fabs(X4-X3); 
SLOPE_Y2 = fabs(Y4-Y3); 

if (SLOPE_Yl==O) 
{ 
SLOPE_l=O; 
} 

else 
{ 
SLOPE_l = SLOPE_X1/SLOPE_Y1; 
} 

if (SLOPE_Y2==0) 
{ 
SLOPE_2=0; 
} 

else 
{ 
SLOPE_2 = SLOPE_X2/SLOPE_Y2; 
} 

if (SLOPE_X1= =0) 
{ 
SLOPE_l=O; 
} 

else 
{ 
SLOPE 1 = SLOPE_X1/SLOPE_Y1; 
} 

if (SLOPE_X2==0) 
{ 
SLOPE_2=0; 
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} 
else 

{ 
SLOPE_2 = SLOPE_X2/SLOPE_Y2; 
} 

if ((fabs(SLOPE_1-SLOPE_2) < = 0.5) && (fabs(Z3-Z2)< =3)) 
{ 

/* 

temp_X1 = X3; 
temp_Y1 = Y3; 
temp_Z1 = Z3; 
temp_X2 = X4; 
temp_Y2 = Y4; 
temp_ Z2 = Z4; 
} 
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printf( 11 %2.3f %2.3f %2.3f\n%2.3f %2.3f 
%2.3f\n\n11 ,temp_X1,temp_Y1,temp_Z1,temp_X2,temp_Y2,temp_Z2); 

printf(11p is %d In rec is %d\n\n",p,In_Rec_n); 
*I 

else 
{ 
SURF _Y[j].point_3.X = temp_X1; 
SURF _Y[j].point_3.Y = temp_Y1; 
SURF _Y[j].point_3.Z = temp_Z1; 
SURF _Y[j].point_4.X = temp_X2; 
SURF _Y[j].point_4.Y = temp_Y2; 
SURF _Y[j].point_4.Z = temp_Z2; 
SURF _Y[j].SURF _N=surf_n; 
j++; 
surf_n ++; 

X1 = X3; 
Y1 = Y3; 
Z1 = Z3; 
X2 = X4; 
Y2 = Y4; 
Z2 = Z4; 
SURF _Y[j].point_1.X = X1; 
SURF _Y[j].point_1.Y = Y1; 
SURF _Y[j].point_1.Z = Z1; 
SURF _Y[j].point_2.X = X2; 
SURF _Y[j].point_2.Y = Y2; 
SURF _Y[j].point_2.Z = Z2; 



} 

if ( p == (In_Rec_n)-1) 

{ 
-SURF _Y[j].point_3.X = temp_X1; 
SURF _Y[j] .point_3.Y = temp_Y1; 
SURF _Y[j].point_3.Z = temp_Z1; 
SURF _Y[j].point_4.X = temp_X2; 
SURF _Y[j].point_4.Y = temp_Y2; 
SURF _Y[j].point_4.Z = temp_Z2; 
SURF _Y[j].SURF _N=surf_n; 
j++; 
surf_n ++; 
} 

if ((fabs(SLOPE_1-SLOPE_2)) > 0.5) 

} 

{ 
SURF _Y[j].point_3.X = temp_X1; 
SURF _Y[j].point_3.Y = temp_Y1; 
SURF _Y[j].point_3.Z = temp_Z1; 
SURF _Y[j].point_4.X = temp_X2; 
SURF _Y[j].point_4.Y = temp_Y2; 
SURF _Y[j].point_4.Z =temp_Z2; 
SURF _Y[j].SURF _N=surf_n; 
j++; 
surf_n ++; 
SURF _Y[j].point_1.X = X3; 
SURF _Y[j].point_1.Y = Y3; 
SURF _Y[j].point_1.Z = Z3; 
SURF _Y[j].point_2.X = X4; 
SURF _Y[j].point_2.Y = Y4; 
SURF _Y[j].point_2.Z = Z4; 
SURF_ Y[j] .SURF'_ N =surf_ n; 
} 
} 

q=3; 
{ 
p=1; 
X1 = parallel_Y[p].segrnent[q].start_pt.X; 
Y1 = parallel_Y[p].segrnent[q].start_pt.Y; 
Z1 = parallel_Y[p].segrnent[q].start_pt.Z; 
X2 = parallel_Y[p].segrnent[q] .end_pt.X; 
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Y2 = parallel Y[p].segment[q].end pt.Y; - -
Z2 = parallel_ Y[p]. segment[ q]. end _pt. Z; 

I* 
P~!f( .. %2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. ,Xl,Y1,Zl,X2,Y2,Z2); 
*I 
SURF _Y[j].point_1.X = X1; 
SURF _Y[j].point_1.Y = Yl; 
SURF _Y[j].point_1.Z = Z1; 
SURF _Y[j].point_2.X = X2; 
SURF _Y[j].point_2.Y = Y2; 
SURF _Y[j].point_2.Z = Z2; 

for(p=2;p<In_Rec_n;p+ +) 
{ 
SLOPE_X1 = fabs(X2-X1); 
SLOPE_Z1 = fabs(Z2-Zl); 

I* Comparing points of q segment of the p + 1 record *I 

X3 = parallel_ Y[p]. segment[ q]. start _pt.X; 
Y3 = parallel_Y[p].segment[q].start_pt.Y; 
Z3 = parallel_Y[p].segment[q].start_pt.Z; 
X4 = parallel_ Y[p ]. segment[ q]. end _pt.X; 
Y4 = parallel_Y[p].segment[q].end_pt.Y; 
Z4 = parallel_ Y[p] . .segment[ q] .end _pt.Z; 

I* 
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n\n•',X3,Y3,Z3,X4,Y4,Z4); 
*I 

SLOPE_X2 = fabs(X4-X3); 
SLOPE_Z2 = fabs(Z4-Z3); 

if (SLOPE_Z1= =0) 
{ 
SLOPE_1=0; 
} 

else 
{ 
SLOPE 1 = SLOPE_X1ISLOPE_Z1; 
} 
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if (SLOPE_Z2==0) 
{ 
SLOPE_2=0; 
} 

else 
. - { 

SLOPE 2 = SLOPE X2/SLOPE Z2· 
} - - - I 

if (SLOPE X1= =0) 
{ 
SLOPE_1=0; 
} 

else 
{ 
SLOPE 1 = SLOPE X1/SLOPE Z1· 
} - - - I 

if (SLOPE X2= =0) 
{ 
SLOPE 2=0· 

- I 

} 
else 

{ 
SLOPE 2 = SLOPE X2/SLOPE 22· 
} - - - I 

if (fabs(SLOPE_1-SLOPE_2) <= 0.5) 
{ 

I* 

temp_X1 = X3; 
temp_ Y1 = Y3; 
temp_Z1 = Z3; 
temp_X2 = X4; 
temp_Y2 = Y4; 
temp_Z2 = Z4; 
} 
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printf( 11 %2.3f %2.3f %2.3f\n%2.3f %2.3f 
%2.3f\n \n11

1temp _ X1 1temp _ Y1 1temp _ Z1,temp _ X2,temp _ Y2,temp _ Z2); 
printf(11p is %d In rec is %d\n\n .. ,p,In_Rec_n); 
*I 

if ( p == (In_Rec_n)-1) 



{ 
SURF YU].point 3.X = temp X1; - - -
SURF _Yti].point_3.Y = temp_Y1; 
SURF _YU].point_3.Z = temp_Z1; 
SpRF_Yti].point_4.X = temp_X2; 

--SURF _Yti].point_4.Y = temp_Y2; 
SURF _YU].point_4.Z = temp_Z2; 
SURF _Yti].SURF _N=surf_n; 

} 

if ((fabs(SLOPE_1-SLOPE_2)) > 5) 
{ 

} 

SURF YU].point 3.X = temp X1; - ··- -
SURF _YU].point_3.Y = temp_Y1; 
SURF YU].point 3.Z = temp Z1; - - -
SURF Yti].point 4.X = temp X2; - - -
SURF Yti].point 4.Y = temp Y2; - - -
SURF _YU].point_4.Z =temp_Z2; 
SURF _YU].SURF _N=surf_n; 
j++; 
surf_n ++: 

SURF _YU].point_3.X = X3; 
SURF _YU].point_3.Y = Y3; 
SURF _YU].point_3.Z = Z3; 
SURF _Yti].point_4.X = X4; 
SURF _YU].point_4.Y = Y4; 
SURF _YU].point_4.Z = Z4; 
SURF _YU].SURF _N=surf_n; 
} 
} 

for ( j = 1 ;j < = surf_ n;j + +) 
{ 
printf(11\nSURF ACE_ %d\n11 ,j ); 

printf(11P1 X %2.3f Y %2.3f Z %2.3f\n11
, 

SURF _YU].point_1.X,SURF _Yti].point_1.Y,SURF _Yti].point_1.Z); 

printf(11P2 X %2.3f Y %2.3f Z %2.3f\n11
, 

SURF _YU].point_2.X,SURF _YU].point_2.Y,SURF _Yti].point_2.Z); 

printf(11P3 X %2.3f Y %2.3f Z %2.3f\n .. , 
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SURF _Y[j].point_3.X,SURF _YU].point_3.Y,SURF _YU].point_3.Z); 

printf("P4 X %2.3f Y %2.3f Z %2.3f\n", 
SURF _Y[j].point_4.X,SURF _Y[j].point_4.Y,SURF _Y[j].point_4.Z); 

} 

fprintf(f2ptr,"%d\n",surf_n); 
for ( j = l;j < = surf_ n;j + +) 
{ 
fprintf(f2ptr, "%d\n",j ); 
fprintf(f2ptr,"%2.3f %2.3f %2.3f\n", 

SURF _Y[j].point_l.X,SURF _Y[j] .point_l.Y,SURF _Y[j].point_l.Z); 

fprintf(f2ptr, 11%2.3f %2.3f %2.3f\n", 
SURF _Y[j].point_2.X,SURF _Y[j].point_2.Y,SURF _Y[j].point_2.Z); 

fprintf(f2ptr,"%2.3f %2.3f %2.3f\n", 
SURF _Y[j] .point_3.X,SURF _Y[j].point_3.Y,SURF _Y[j].point_3.Z); 

fprintf(f2ptr, 11%2.3f %2.3f %2.3f\n", 
SURF Y[j].point 4.X,SURF Y[j].point 4.Y,SURF Y[j].point 4.Z); - - - - - -

} 

fclose(f2ptr); 
/* 
for ( j= l;j< = surf_n;j+ +) 
{ 
printf C\nSURFACE_%d Pl X %2.3fY %2.3f Z %2.3f\n", 

j,SURF _Y[j].point_l.X,SURF _Y[j].point_l.Y,SURF _Y[j].point_l .Z); 

printf C\nSURFACE_%d POINT_2 X %2.3f Y %2.3f Z %2.3f\n", 
j,SURF Y[j].point 2.X,SURF Y[j].point 2.Y,SURF Y[j].point 2.Z); - - - - - -

printf C\nSURFACE_%d POINT_3 X %2.3f Y %2.3f Z %2.3f\n", 
j,SURF _YU].point_3 .X,SURF _Y[j].point_3.Y,SURF _YU].point_3.Z); 

printf ('\nSURFACE_%d POINT_4 X %2.3fY %2.3f Z %2.3f\n", 
j,SURF _YU].point_4.X,SURF _YU].point_4.Y,SURF _Y[j].point_4.Z); 

} /*} 
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APPENDIX G 

NC CODE GENERATION STAGE 



NC CODE GENERATION STAGE 

I* NUMERICAL CODE GENERATION STAGE *I 

I* Function Prototype *I 

#include < stdio.h> 
#include <math.h> 
#include < stdlib.h> 
#include < alloc.h> 

I* Global Variable Declaration *I 

int In_Rec_n=l,Rec_n=l,Seg_n=l,n_pts_bet=l,pt=O; 

float prev_X,prev_Y,prev_Z,PTl; 

float X,Y,Z,Xl,Yl,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4; 

float XX1,XY1,XZ1,XX2,XY2,XZ2,XX3,XY3,XZ3,XX4,XY4,XZ4; 

float YX1,YY1,Y21,YX2,YY2,Y22,YX3,YY3,YZ3,YX4,YY4,Y24; 

float temp_X1,temp_Y1,temp_Zl,temp_X2,temp_Y2,temp_Z2; 

FILE *flptr, *f2ptr, *f3ptr; 

struct XYZ 
{ 

float X; 
float Y; 
float Z; 
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}; 

struct Segment 
{ 

struct XYZ start pt; 
. - -
struct XYZ end _pt; 
int n _pts _bet; 

}; 

I* structure for each line *I 

struct RecordY 
{ 
struct Segment segment[10]; 
int SEG_N; 
int SURF_N; 

}parallel_Y[31]; 

struct POINT 
{ 
float X; 
float Y; 
float Z; 
}; 

I* Structure for each surface *I 

struct SURFY XYZ 
{ 
float X; 
float Y; 
float Z; 

}; 

struct SURF ACE Y 
{ 
struct SURFY _xyz point _1; 
struct SURFY_XYZ point_2; 
struct SURFY_XYZ point_3; 
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struct SURFY _ XYZ point_ 4; 
int SURF _N,surf_nY; 

}SURF _Y[15]; 

stnict -SURF ACE X 
{ 
struct SURFY _ XYZ point _1; 
struct SURFY_XYZ point_2; 
struct SURFY_XYZ point_3; 
struct SURFY_XYZ point_4; 
int SURF _N,surf_nX; 

}SURF _X[15]; 

/* STRUCTURE FOR FINAL SURFACE DEFINITION*/ 

struct SURF ACE FINAL 
{ 
struct SURFY _ XYZ point_1; 
struct SURFY_XYZ point_2; 
struct SURFY_XYZ point_3; 
struct SURFY_XYZ point_4; 
int FSURF _N; 

} FIN_ SURF[ 15]; 

main() 
{ 

int j=1,k=1,p,q,surf_n,FSURF _n=1,p1,p2,p3; 
char name1[35], name2[35], name3[35]; 

printf("Enter filename - surface feature file for parallel to X-axis \n"); 
scanf("%s", name1); 

printf("Enter filename- surface feature file for parallel toY-axis \n,.); 
scanf("%s", name2); 

printf("Enter name of NC code file to write the APT statements\n"): 
scanf("%s",name3); 
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if((f1ptr = fopen(name1, .. r .. )) ==NULL) 
{ 
printf( .. Can't open %s to read \n11

, name1); 
exit(1); 

} 

if((f2ptr = fopen(name2, 11
!

11
)) ==NULL) 

{ 
printf(11Can't open %s to read \n11

, name1); 
exit(1); 

} 

if((f3ptr = fopen(name3, 11W+ 11
)) ==NULL) 

{ 
printfC'Can't write to file %s \n .. , name2); 
exit(1); 
} 

I* READS POINTS IN SURFACE DATA FILE TO STRUCTURES *I 

fscanf(f1ptr ,11%d11 ,&surf _ n); 
l*printf(11Surf_n %d\n .. ,surf_n);* I 
l*surf_nX = SURF _X(j].SURF _N.surf_nX;* I 
for ( j = 1;j < = surf_ n;j + +) 
{ 
fscanf(f1ptr, 11%d11 ,&k); 
l*printf(11k %d\n11 ,k);* I 

fscanf(f1ptr, 11%f %f %f', 
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&SURF _X[j].point_1.X,&SURF _X[j].point_1.Y,&SURF _X[j].point_1.Z); 
l*printf( .. %2.3f %2.::;f %2.3f\n11

, 

SURF _X[j].point_1.X,SURF _X(j].point_1.Y,SURF _X[j].point_1.Z); 

*I 

fscanf(f1ptr, .. %f %f %f', 
&SURF X(j].point 2.X,&SURF X[j].point 2.Y,&SURF _X[j].point_2.Z); - - - -

l*printf(11%2.3f %2.3f %2.3f\n .. , 
SURF _X(j].point_2.X,SURF _X[j].point_2.Y,SURF _X[j].point_2.Z); 



*I 
fscanf(f1ptr, 11%f %f %f1

, 

&SURF _X[j].point_3.X,&SURF _X[j].point_3.Y,&SURF _X(j}.point 3.2); 
l*printf(11%2.3f %2.3f %2.3f\n11

, -

__ SURF _X(j].point_3.X,SURF _X[j].point_3.Y,SURF _X[j].point_3.2); 
*I 
fscanf(f1ptr, 11%f %f %f•, 
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&SURF _X[j].point_4.X,&SURF _X[j].point_4.Y,&SURF _X(j}.point_4.2); 
l*printf(11%2.3f %2.3f %2.3f\n .. , 

SURF _X[j].point_4.X,SURF _XU].point_4.Y,SURF _X[j].point 4.2); 
*I 
} 

fclose(f1ptr); 

fscanf(f2ptr, 11%d .. ,&surf_n); 
l*printf("Surf_n %d\n .. , surf_n);* I 
for ( j=l;j<= surf_n;j++) 
{ 
fscanf(f2ptr, 11%d11 ,&k); 
l*printf(11k %d\n11,k);* I 

fscanf(f2ptr, 11%f %f %f•, 
&SURF _Y(j].point_l.X,&SURF _Y[j] .point_1.Y,&SURF _Y(j}.point_1.2); 

l*printf( .. %2.3f %2.3f %2.3f\n11
, 

SURF _Y(j].point_l.X,SURF _Y(j].point_1.Y,SURF _Y[j].point_1.2); 
*I 
fscanf(f2ptr, 11%f %f %f•, 

&SURF _Y(j].point_2.X,&SURF _Y[j].point_2.Y,&SURF _Y(j].point_2.2); 
l*printf(11%2.3f %2.3f %2.3f\n .. , 

SURF Y(j].point 2.X,SURF Y[j] .point 2.Y,SURF Y[j].point 2.2); - - - - - -
*I 
fscanf(f2ptr, .. %f %f %f•, 

&SURF _Y(j].point_3.X,&SURF _Y[j].point_3.Y,&SURF _Y(j] .point_3.2); 
l*printf(11%2.3f %2.3f %2.3f\n11

, 

SURF Y[j].point 3.X,SURF Y[j].point 3.Y,SURF _Y[j].point_3.2); - - - -
*I 
fscanf(f2ptr, 11%f %f %f•, 

&SURF Y(j].point 4.X,&SURF YU].point_4.Y,&SURF _Y[j].point_4.2); - - -
l*printf(11%2.3f %2.3f %2.3f\n .. , 

SURF Y(j].point 4.X,SURF YU].point 4.Y,SURF _Y[j].point_4.2); - - - -
*I 
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} 

fclose(f2ptr); 

]'=1· -' . { -

I* READING DATA FROM STRUCTURES OF SURFACES- PARALLEL TO 
X-AXIS *I 

:XX1 = SURF _X[j].point_1.X; 
XY1 = SURF _X[j].point_1.Y; 
XZ1 = SURF _X[j].point_1.Z; 
XX2 = SURF _XU].point_2.X; 
XY2 =SURF _X[j].point_2.Y; 
XZ2 = SURF _XU].point_2.Z; 
:XX3 = SURF _X[j].point_3.X; 
XY3 = SURF _X[j].point_3.Y; 
XZ3 =SURF _XU].point_3.Z; 
:XX4 =SURF _X[j].point_4.X; 
XY4 = SURF _XU].point_ 4.Y; 
XZ4 = SURF _X[j].point_4.Z; 
I* 
printfC'%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. ,XX1,XY1,XZ1,XX2,XY2,XZ2); 
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n11 ,XX3,XY3,XZ3,XX4,XY4,XZ4); 
*I 

I* READING DATA FROM STRUCTURES OF SURFACES- PARALLEL TO 
Y-AXIS *I 

YX1 =SURF _YU].point_1.X; 
YY1 = SURF _YU].point_1.Y; 
yz1 = SURF _Y[j].point_1.Z; 
YX2 = SURF _YU].point_2.X; 
YY2 = SURF _YU].point_2.Y; 
yz2 = SURF _Y[j].point_2.Z; 
YX3 = SURF _Y[j).point_3.X; 
YY3 = SURF _Y[j].point_3.Y; 
yz3 = SURF _Y[j).point_3.Z; 
YX4 = SURF _Y[j].point_4.X; 
YY4 = SURF _YU].point_4.Y; 
yz4 = SURF _Y[j].point_4.Z; 

I* 
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n .. ,YX1,YY1,yz1,YX2,YY2,yz2); 
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printf( .. %2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n' .. YX3,YY3,Y23,YX4,YY4,Y24); 
*I 
if(fabs(XZ1-YZ4) < 5) 
{ 
k = 1; 
FI~SURF[k].point_1.X = XX1; 
FIN_SURF[k].point_1.Y = XY1; 
FIN_SURF[k].point_1.Z = XZ1; 
FIN_SURF[k].point_2.X = XX2; 
FIN_SURF[k].point_2.Y = XY2; 
FIN_SURF[k].point_2.Z = XZ2; 
FIN_SURF[k].point_3.X = XX3; 
FIN_SURF[k].point_3.Y = XY3; 
FIN_SURF[k].point_3.Z = XZ3; 
FIN_SURF[k].poin~_4.X = XX4; 
FIN_SURF[k].point_4.Y = XY4; 
FIN_SURF[k].point_4.Z = XZ4; 
FIN_SURF[k].FSURF _N = FSURF _n; 
k++· I 
FSURF_n ++; 
} 
else 
{ 
k=1; 
FIN_SURF[k].point_1.X = XX1; 
FIN_SURF[k].point_1.Y = XY1; 
FIN_SURF[k].point_1.Z = XZ1; 
FIN_SURF[k].point_2.X = XX2; 
FIN_SURF[k].point_2.Y = XY2; 
FIN_SURF[k].point_2.Z = XZ2; 
FIN_SURF[k].point_3.X = XX3; 
FIN_SURF[k].point_3.Y = XY3; 
FIN_SURF[k].point_3.Z = XZ3; 
FIN_SURF[k].point_4.X = XX4; 
FIN_SURF[k].point_4.Y = XY4; 
FIN_SURF[k].point_ 4.Z = XZ4; 
FIN SURF[k].FSURF _N = FSURF _n; 

k++; 
FSURF_n ++; 

FIN_SURF[k].point_1.X = YX1; 
FIN SURF[k}.point 1.Y = YY1; - -
FIN SURF[k].point 1.Z = YZ1; - -



FIN_SURF[k].point_2.X = YX2; 
FIN_SURF[k].point_2.Y = YY2; 
FIN_SURF[k].point_2.Z = YZ2; 
FIN_SURF[k].point_3.X = YX3; 
FIN SURF[k].point 3.Y = YY3; -. - -
FIN_SURF[k].point_3.Z = YZ3; 
FIN SURF[k].point 4.X = YX4; - -
FIN_SURF[k].point_4.Y = YY4; 
FIN_SURF[k].point_4.Z = Y24; 
FIN SURF[k].FSUHF N = FSURF n· - - _, 
k++· I 
FSURF_n ++; 
} 
} 

j=2; 
{ 
XX1 = SURF _X[j].point_l.X; 
XY1 = SURF _X[j).point_l.Y; 
XZ1 = SURF _X[j].point_l.Z; 
XX2 = SURF _X[j].point_2.X; 
XY2 = SURF _X[j].point_2.Y; 
XZ2 = SURF _X[j].point_2.Z; 
XX3 = SURF _X[j].point_3.X; 
XY3 = SURF _X[j].point_3.Y; 
XZ3 = SURF _X[j).point_3.Z; 
XX4 = SURF _X[j] .point_4.X; 
XY4 = SURF _X[j).point_ 4.Y; 
XZ4 = SURF _X[j].point_4.Z; 
/* 
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printf(11%2.3f %2.3! %2.3f\n%2.3f %2.3! %2.3f\n'\XX1,XY1,XZ1,XX2,XY2,XZ2); 
printf(11%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n11,XX3,XY3,XZ3,XX4,XY4,XZ4); 
*I 
YX1 = SURF _Y[j].point_l.X; 
YY1 = SURF _Y[j].point_l.Y; 
Y21 = SURF _Y[j].point_l.Z; 
YX2 = SURF _Y[j].point_2.X; 
YY2 = SURF _Y[j].point_2.Y; 
Y22 =SURF _Y[j].point_2.Z; 
YX3 = SURF _Y[j].point_3.X; 
YY3 = SURF _Y[j].point_3.Y; 
Y23 =SURF _Y[j].point_3.Z; 
YX4 = SURF _Y[j].point_4.X; 
YY4 = SURF _Y[j].point_4.Y; 
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Y24 =SURF _Y[j].point_4.2; 

/* 
printfC'%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n",YX1,YY1,Y21,YX2,YY2,Y22); 
J?~tf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n",YX3,YY3,Y23,YX4,YY4,Y24); 
*I 
if(fabs(XZ1-Y24) < 5 ) 
{ 

} 

if ((XX1 > YX1) && (XY1 < YY1)) 
FIN_SURF[k].point_1.X = YX1; 
FIN_SURF[k].point_1.Y = XY1; 
FIN_SURF[k].point_1.2 = X21; 

if ((XX2 > YX2) && (XY2 < YY2)) 
FIN_SURF[k].point_2.X = YX2; 
FIN_SURF[k].point_2.Y = YY2; 
FIN_SURF[k].point_2.2 = XZ2; 

if((XX3 < YX3) && (XY3 > YY3)) 
FIN_SURF[k].point_3.X = YX3; 
FIN_SURF[k].point_3.Y = YY3; 
FIN_SURF[k].point_3.2 = X23; 

if((XX4 < YX4) && (XY4 < YY4)) 
FIN_SURF[k].point_4.X = YX4; 
FIN_SURF[k].point_4.Y = XY4; 
FIN_SURF[k].point_4.2 = XZ4; 
FIN_SURF[k].FSURF_N = FSURF_n; 
k++; 
FSURF_n ++; 

else 
{ 
FIN SURF[k].point 1.X = XX1; - -
FIN_SURF[k].point_1.Y = XY1; 
FIN SURF[k].point 1.2 = XZ1; - -
FIN SURF[k].point 2.X = XX2; - -
FIN SURF[k].point 2.Y = XY2; - -
FIN SURF[k] .point 2.2 = XZ2; - -
FIN SURF[k].point 3.X = XX3; - -
FIN SURF[k).point 3.Y = XY3; 
FIN-SURF[k].point-3.Z = X23; - -
FIN SURF[k].point 4.X = XX4; - -



FIN_SURF[k].point_4.Y = XY4; 
FIN_SURF[k].point_4.Z = XZ4; 
FIN_SURF[k].FSURF _N = FSURF _n; 

k++· 
-- - ' 

FSURF_n ++; 

FIN_SURF[k].point_l.X = YX1; 
FIN_SURF[k].point_l.Y = YY1; 
FIN_SURF[k].point_l.Z = YZ1; 
FIN_SURF[k].point_2.X = YX2; 
FIN_SURF[k].point._2.Y = YY2; 
FIN_SURF[k].poin·:_2.Z = YZ2; 
FIN_SURF[k].poin·;_3.X = YX3; 
FIN_SURF[k].point_3.Y = YY3; 
FIN_SURF[k].point_3.Z = YZ3; 
FIN_SURF[k].point_ 4.X = YX4; 
FIN_SURF[k].point_4.Y = YY4; 
FIN_SURF[k].point_4.Z = YZ4; 
FIN_SURF[k].FSURF _N = FSURF _n; 
k++· ' 
FSURF_n ++; 
} 
} 

j = 3; 
{ 
XX1 = SURF _XU].point_l.X; 
XY1 = SURF _XU].point_l.Y; 
XZ1 = SURF _X[j}.point_l.Z; 
XX2 = SURF _X[j}.point_2.X; 
XY2 = SURF _X[j}.point_2.Y; 
XZ2 = SURF _X[j}.point_2.Z; 
XX3 = SURF _X[j].point_3.X; 
XY3 = SURF _XU].point_3.Y; 
XZ3 =SURF _XU].point_3.Z; 
XX4 = SURF_XU].point_4.X; 
XY4 = SURF _XU).point_ 4.Y; 
XZ4 = SURF _XU).point_ 4.Z; 

YX1 = SURF_ Y[j].point_l.X; 
YY1 = SURF _Y[j].point_l.Y; 
Y21 = SURF _Y[j].point_l.Z; 
YX2 = SURF _Y[j].point_2.X; 
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YY2 = SURF _Y[j].point_2.Y; 
Y22 = SURF _Y[j].point_2.Z; 
YX3 = SURF _Y[j].point_3.X; 
YY3 = SURF _Y[j].point_3.Y; 
_'Y.Z-3 = SURF _Y[j].point_3.Z; 
YX4 = SURF _Y[j] .:;:>oint_4.X; 
YY4 = SURF _Y[j].point_4.Y; 
Y24 = SURF _Y[j].point_4.Z; 

if(fabs(XZ1-Y24) < 5 ) 
{ 
if ((YX1 > XX1) && (YY1 > XY1)) 
FIN_SURF[k].point_l.X = XX1; 
FIN_SURF[k].point_l.Y = XY1; 
FIN_SURF[k].point_l.Z = XZ1; 

if (( YX2 < XX2 ) && ( YY2 > XY2 )) 
FIN_SURF[k].point_2.X = YX2; 
FIN_SURF[k].point_2.Y = YY2; 
FIN_SURF[k}.point_2.Z = XZ2; 

if (( YX3 > XX3) && (YY3 < XY3)) 
FIN_SURF[k}.point_3.X = YX3; 
FIN_SURF[k].point_3.Y = YY3; 
FIN_SURF[k}.point_3.Z = XZ3; 

if (( XX4 > YX4) && ( YY4 > XY4)) 
FIN_SURF[k}.point_4.X = XX4; 
FIN_SURF[k}.point_4.Y = YY4; 
FIN_SURF[k].poin~_4.Z = XZ4; 
FIN_SURF[k}.FSURF _N = FSURF _n; 
k++; 
FSURF_n ++; 
} 
else 
{ 
FIN_SURF[k).point_l.X = XX1; 
FIN_SURF[k}.point_l.Y = XY1; 
FIN_SURF[k).point_l.Z = XZ1; 
FIN SURF[k).point 2.X = XX2; - -
FIN SURF[k].point 2.Y = XY2; - -
FIN SURF[k] .point 2.Z = XZ2; - -
FIN SURF[k].point 3.X = XX3; - -
FIN SURF[k].point 3.Y = XY3; - -
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FIN_SURF[k].point_3.Z = XZ3; 
FIN_SURF[k].point_4.X = XX4; 
FIN_SURF[k].point_4.Y = XY4; 
FIN_SURF[k].point_4.Z = XZ4; 
FI_N SURF[k].FSURF N = FSURF n; 
-- - - -
k++; 
FSURF_n ++; 

FIN_SURF[k].point_l.X = YX1; 
FIN_SURF[k].point_l.Y = YY1; 
FIN_SURF[k].point_l.Z = YZ1; 
FIN_SURF[k].point_2.X = YX2; 
FIN_SURF[k].point_2.Y = YY2; 
FIN_SURF[k).point_2.Z = YZ2; 
FIN_SURF[k].point_3.X = YX3; 
FIN_SURF[k].point_3.Y = YY3; 
FIN_SURF[k].point_3.Z = Y23; 
FIN_SURF[k].point_4.X = YX4; 
FIN_SURF[k).point_4.Y = YY4; 
FIN_SURF[k].point_ 4.2 = Y24; 
FIN_SURF[k].FSURF _N = FSURF _n; 
k++; 
FSURF_n ++; 
} 
} 

j = 4; 
{ 
XX:l = SURF _X[j).point_l.X; 
XY1 = SURF _X[j].point_l.Y; 
XZ1 = SURF _X[j].point_l.Z; 
XX2 = SURF _X[j).point_2.X; 
XY2 = SURF _X[j).point_2.Y; 
XZ2 = SURF _X[j).point_2.Z; 
XX3 = SURF _X[j).point_3.X; 
XY3 = SURF _X[j].point_3.Y; 
XZ3 = SURF _X[j].point_3.Z; 
XX4 = SURF _X[j].point_4.X; 
XY4 = SURF X[j].point 4.Y; - -
XZ4 = SURF X[j).point 4.Z; - -

YX1 = SURF Y[j).point l.X; - -
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YYl =SURF _Y[j].point_l.Y; 
Y21 = SURF _Y[j].point_l.Z; 
YX2 = SURF _Y[j].point_2.X; 
YY2 = SURF _Y[j].point_2.Y; 

_ ¥Z:2 = SURF _Y[j].point_2.Z; 
YX3 = SURF _Y[j].point_3.X; 
YY3 = SURF _Y[j].point_3.Y; 
Y23 = SURF _Y[j].point_3.Z; 
YX4 = SURF _Y[j].point_4.X; 
YY4 = SURF _Y[j].point_4.Y; 
Y24 = SURF _Y[j].point_4.Z; 

if(fabs(XZ1-Y24) < 5) 
{ 
if ((YXl > XXl) && (YYl > XYl)) 
FIN_SURF[k].point_l.X = XXl; 
FIN_SURF[k].point_l.Y = XYl; 
FIN_SURF[k].point_l.Z = XZl; 

if (( YX2 < XX2) && ( YY2 > XY2 )) 
FIN_SURF[k].point_2.X = YX2; 
FIN_SURF[k].point_2.Y = YY2; 
FIN_SURF[k].point_2.Z = XZ2; 

if (( YX3 > XX3) && (YY3 < XY3)) 
FIN_SURF(k].point_3.X = YX3; 
FIN_SURF[k].point_3.Y = YY3; 
FIN_SURF[k].point_3.Z = XZ3; 

if (( XX4 > YX4) && ( YY4 > XY4)) 
FIN_SURF[k].point_4.X = XX4; 
FIN_SURF[k].point_4.Y = YY4; 
FIN_SURF[k].point_4.Z = XZ4; 
FIN SURF[k].FSURF N = FSURF n; - - -
k++; 
FSURF_n ++; 
} 
else 
{ 

if(fabs(XZl-yzl) > 4) 
FIN SURF[k] .point l.X = XXl; - -
FIN SURF[k].point l.Y = XYl; - -
FIN SURF[k].point l.Z = XZ1; - -
FIN SURF[k].point 2.X = XX2; - -
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FIN_SURF[k].point_2.Y = XY2; 
FIN_SURF[k].po.mt_2.Z = XZ2; 
FIN_SURF[k].point_3.X = XX3; 
FIN_SURF[k].point_3.Y = XY3; 

_ EIN SURF[k].point 3.Z = XZ3; 
~ ~ - -

FIN_SURF[k].point_4.X = XX4; 
FIN_SURF[k].point_4.Y = XY4; 
FIN_SURF[k].point_4.Z = XZ4; 
FIN_SURF[k].FSURF _N = FSURF _n; 

k++; 
FSURF_n ++; 

j = 5; 
XXl = SURF _X[j].point_l.X; 
XYl = SURF _X[j].point_l.Y; 
XZl = SURF _X[j].point_l.Z; 
XX2 = SURF _X[j].point_2.X; 
XY2 = SURF _X[j].point_2.Y; 
XZ2 =SURF _XU].point_2.Z; 
XX3 = SURF _XU].point_3.X; 
XY3 = SURF _XU].point_3.Y; 
XZ3 = SURF _X[j].point_3.Z; 
XX4 = SURF_XU].point_4.X; 
XY4 = SURF _X[j].point_4.Y; 
XZ4 = SURF _X[j].point_ 4.Z; 

if(fabs(XZ1-YZ4) < 5 ) 
{ 
if((XXl > YXl ) && (YYl > XYl)) 
FIN_SURF[k].point_l.X = YXl; 
FIN_SURF[k].point_l.Y = XYl; 
FIN_SURF[k].point_l.Z = XZ1; 

if((XX2 > YX2) && (YY2 > XY2)) 
FIN_SURF[k].point_2.X = YX2; 
FIN_SURF[k].point_2.Y = YY2; 
FIN SURF(k].point 2.Z = XZ2; - -

if((YX3 > XX3) && (XY3 > YY3)) 
FIN SURF(k).point 3.X = YX3; - -
FIN SURF(k].point 3.Y = YY3; - -
FIN SURF[k].point 3.Z = XZ3; - -
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if((YX4 > XX4) && (YY4 > XY4 )) 
FIN_SURF[k].point_4.X = YX4; 
FIN_SURF[k].point_4.Y = YY4; 
FIN_SURF[k].point_4.Z = XZ4; 

__ FIN_SURF[k].FSURF _N = FSURF _n; 

} 

k++; 
FSURF_n ++; 
} 
} 

j = 6; 
{ 
XX1 = SURF _X[j].point_l.X; 
XY1 = SURF _X[j].point_l.Y; 
XZ1 = SURF _X[j].point_l.Z; 
XX2 = SURF _X[j] .point_2.X; 
XY2 = SURF _X[j].point_2.Y; 
XZ2 = SURF _X[j] .point_2.Z; 
XX3 = SURF _X[j].point_3.X; 
XY3 =SURF _X[j] .point_3.Y; 
XZ3 = SURF _X[j].point_3.Z; 
XX4 =SURF _x[j].point_4.X; 
XY4 = SURF _X[j].point_4.Y; 
XZ4 = SURF _X[j].point_4.Z; 
j = 5; 
YX1 = SURF _Y[j].point_l.X; 
YY1 = SURF _Y[j].point_l .Y; 
Y21 = SURF _Y[j].point_l .Z; 
YX2 = SURF _Y[j].point_2.X; 
YY2 = SURF _Y[j].point_2.Y; 
Y22 = SURF _Y[j].point_2.Z; 
YX3 = SURF _Y[j).point_3.X; 
YY3 = SURF _Y[j].point_3.Y; 
Y23 = SURF _Y[j].point_3.Z; 
YX4 = SURF _Y[j].point_4.X; 
YY4 = SURF _Y[j).point_4.Y; 
Y24 = SURF _Y[j].point_4.Z; 

if(fabs(XZ1-YZ4) ~ 5) 
{ 
FIN SURF[k].pJint l .X = XX1; - -
FIN SURF[k].point l.Y = XY1; - -
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FIN_SURF[k].point_1.Z = XZ1; 
FIN_SURF[k].point_2.X = XX2; 
FIN_SURF[k].point_2.Y = XY2; 
FIN_SURF[k].point_2.Z = XZ2; 

___ _FIN_SURF[k].point_3.X = XX3; 
FIN_SURF[k].point_3.Y = XY3; 
FIN_SURF[k].point_3.Z = XZ3; 
FIN SURF[k].point 4.X = XX4· 

- - I 

FIN SURF[k].point 4.Y = XY4· 
- - I 

FIN SURF[k].point 4.Z = XZ4· 
- - I 

FIN_SURF[k].FSURF N = FSURF n; - -

k++; 
FSURF_n ++; 

FIN SURF[k].point 1.X = YX1· 
- - I 

FIN SURF[k].point 1.Y = YY1· 
- - I 

FIN_SURF[k].point_l.Z = YZ1; 
FIN_SURF[k].point_2.X = YX2; 
FIN SURF[k].point 2.Y = YY2· 

- - I 

FIN SURF[k].point 2.Z = Y22· 
- - I 

FIN SURF[k].point 3.X = YX3· 
- - I 

FIN SURF[k].point 3.Y = YY3· 
- - I 

FIN SURF[k].point 3.Z = YZ3· 
- - I 

FIN_SURF[k].point_ 4.X = YX4; 
FIN SURF[k].point 4.Y = YY4· 

- - I 

FIN SURF[k].point 4.Z = YZ4· 
- - I 

FIN_SURF[k].FSURF_N = FSURF_n; 
k++· ' 

} 

for (k=l;k<=FSURF_n;k++) 
{ 
printfC'%d\n"~FIN_SURF[k].FSURF _N); 
printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n"~ 
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FIN_SURF[k].point_l.X, FIN_SURF[k] .point_l.YI FIN_SURF[k].point_1.ZI 
FIN_SURF[k].point_2.X1 FIN_SURF[k) .point_2.Y1 FIN_SURF[k].point_2.Z); 

printf("%2.3f %2.3f %2.3f\n%2.3f %2.3f %2.3f\n"~ 
FIN SURF[k].point 3.X

1 
FIN SURF[k].point 3.YI FIN SURF[k] .point 3.ZI - - - - - -

FIN SURF[k].point 4.X
1 

FIN SURF[k] .point 4.YI FIN SURF[k].point 4.Z); - - - - - -
} 



printf("\n \n"); 
printf("PART NAME- SAMPLE PART\n"); 
q =1; 
for (k=1;k<=FSURF _n;k++) 
_{_ 
l*printf("q_is %d\n",q);* I 
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printf("P%1d = POINTI%2.3f,%2.3f,%2.3f\n", 
q,FIN_SURF[k].point_1.X,FIN_SURF[k].point_1.Y,FIN_SURF[k].point 1.Z); 
pl=q; 
q++; 
printf("P%1d - POINTI%2.3f,%2.3f,%2.3f\n",q,FIN_SURF[k].point_2.X, 

FIN_SURF[k].point_2.Y, FIN_SURF[k].point_2.Z); 
p2 =q; 
q++; 
printf("P%1d - POINTI%2.3f,%2.3f,%2.3f\n",q,FIN_SURF[k].point_3.X, 

FIN_ SURF[k].point_ 3.Y, FIN_ SURF[k].point_ 3.Z); 
p3 =q; 
q++; 
l*printf("PL%d = PLANE/%2.3f,%2.3f,%2.3f\n",FIN_SURF[k}.FSURF _N, 

FIN_ SURF[k] .point_l.X, FIN_ SURF[k] .point_l.Y, FIN_ SURF[k] .point_l.Z);* I 
printf(''PL%d = PLANE/P%d,P%d,P%d\n",FIN_SURF[k] .FSURF _N,p1,p2,p3); 
} 
printf("SP = POINTIO,O,O\n"); 
printf("\n"); 
printf("$$\n"); 
printf("FEDRAT1120\n"); 
printf("SPINDLI1200,CCW\n"); 
printf("INTOLI0.005\n"); 
printf("OUTOLI0.005\n"); 
printf("CUTI'ERI20 \n"); 
printf("COOLNTION\n"); 
printf("\n"); 
printf("$$\n"); 
printf("FROMISP\n"); 
printf("TIITCK/0.02\n"); 
for (k=l;k<=FSURF _n;k++) 
{ 

printf(''GO/TO,PL %d\n",k); 

printf("GOFWD,PL%d,PAST,%2.3f,%2.3f,%2.3f\n",k,FIN_SURF[k].point_3.X,FIN_S 
URF[k].point_3.Y,FIN_SURF[k].point_3.Z); 

} 
printf("GO/TO,SP\n"); 
printf("TIITCKIO.OCI\n"); 
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for (k=1;k<=FSURF _n;k++) 
{ 

printf(11GO/TO,PL %d\n11 ,k); 

pri~t!CGOFWD,PL %d,P AST, %2.3f, %2.3f, %2.3f\n11,k,FIN SURF[k}.point 3.X,FIN S 
URF[k].point_3.Y,FIN_SURF[k].point_3.Z); - - -

} 
printf(11GO/TO,SP\n11

); 

printf(''COOLNTIOFF\n11
); 

printf(11SPINDLIOFF\n11
); 

printf(11FINI\n11
); 

fprintf(f3ptr, 11PART NAME - SAMPLE PART\n11
); 

q =1; 
for (k=1;k<=FSURF _n;k++) 
{ 
/*printf(11q_is %d\n11 ,q);* I 
fprintf(f3ptr, 11P%1d = POINTI%2.3f,%2.3f,%2.3f\n11

, 

q,FIN_SURF[k].point_1.X,FIN_SURF[k].point_1.Y,FIN_SURF[k}.point_1.Z); 
p1=q; 
q++; 
fprintf(f3ptr, 11P%1d = POINTI%2.3f,%2.3f,%2.3f\n11,q,FIN_SURF[k}.point_2.X, 

FIN_SURF[k].point_2.Y, FIN_SURF[k}.point_2.Z); 
p2 =q; 
q++; 
fprintf(f3ptr, 11P% 1d = POINTI%2.3f, %2.3f, %2.3f\n11 ,q,FIN _ SURF[k}.point_ 3.X, 

FIN_SURF[k].point_3.Y, FIN_SURF[k] .point_3.Z); 
p3 =q; 
q++; 
l*printf(11PL%d = PLANEI%2.3f,%2.3f,%2.3f\n11 ,FIN_SURF[k].FSURF _N, 

FIN_SURF[k].point_1.X, FIN_SURF[k].point_1.Y, FIN_SURF[k].point_1.Z);* I 
fp rintf( f3 ptr , 11 PL %d 

PLANE/P%d,P%d,P%d\n11 ,FIN_SURF[k] .FSURF _N,p1,p2,p3); 
} 
fprintf(f3ptr, 11SP = POINTIO,O,O\n11

); 

fprintf( f3ptr, 11\n11
); 

fprintf(f3ptr, 11$$\n11
); 

fprintf(f3ptr, 11FEDRATI120\n11
); 

fprintf(f3ptr, 11SPINDLI1200,CCW\n11
); 

fprintf(f3ptr, 11INTOLI0.005\n
11

); 

fprintf(f3ptr, 110UTOLI0.005\n
11
); 

fprintf(f3ptr, 11CDTI'ERI20\n11
); 

fprintf(f3ptr, 11COOLNT ION\n
11
); 

fprintf(f3ptr, 11\ll11
); 



fprintf(f3ptr, 11$$\n .. ); 
fprintf(f3ptr, 11FROM/SP\n11

); 

fprintf(f3ptr, 11TIITCK/0.02\n11
); 

for (k=l;k<=FSURF _n;k++) 

- -{_ 
fprintf(f3ptr, .. GO/TO,PL%d\n11 ,k); 
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fprintf(f3ptr, .. GOFWD,PL%d,PAST,%2.3f,%2.3f,%2.3f\n .. ,k,FIN_SURF[k].point_3.X, 
FIN _SURF[k] .point_ 3.Y,FIN _ SURF[k] .point_ 3.Z); 

} 
fprintf(f3ptr, 11GO/TO ,SP\n .. ); 
fprintf(f3ptr, 11THICK/0.00\n11

); 

for (k=l;k<=FSURF n;k++) 
{ 

fprintf(f3ptr, .. GO/TO,PL%d\n",k); 

fprintf(f3ptr,"GOFWD,PL%d,PAST,%2.3f,%2.3f,%2.3f\n",k,FIN_SURF[k) .point_3.X, 
FIN_SURF[k].point_3.Y,FIN_SURF[k].point_3.Z); 

} 
} 

} 
fprintf(f3ptr,"GO/TO,SP\n .. ); 
fprintf(f3ptr, "COOLNT /OFF\n"); 
fprintf(f3ptr, 11SPINDL/OFF\n11

); 

fprintf(f3ptr ,"FINI\n .. ); 



REFERENCES 

Bezier, P., "UNISURF System: Principles, Program Language." Proceedings of the 
Second IFIP /IF AC International Conference on Programming Languages 
for Machine Tools. PROLOMAT '73. Budapest. Aprill0-13 1973 : 417-426. 

Boulanger, P., Evans, K. B., Rioux, M., and Ruhlmann, L. "Interface between a 3-
D Laser Scanner and a CAD/CAM System." Proceedings of the 5th 
CAD/CAM and Robotics Conference June 1986, Toronto. Canada: 731.1-
731.7 

Boulanger, P., Rioux, M., Taylor, J ., Livingstone, F., "Automatic Replication.and 
Recording of Museum Artifacts." Proceedings of the 12th International 
Symposium on the Conservation and Restoration of Cultural Property, 
Tokyo. Japan 1988: 131-147. 

Chang, Chao-Hwa and Melkanoff, A.Michael. NC Programming and 
Software Design, Prentice Hall 1989. 

Dorney, J ., Rioux, M., and Blais, F. "3-D Sensing for Robot Vision:•, NATO ASI 
Series. Vol F64. Sensory Robotics for the Handling of limp materials: 159-
192. 

Duncan, J. P.,_ Law, K. K., Computer-Aided Sculpture, Cambridge University 
Press 1989. 

Duncan, J. P., Mair, S. G., "The Anti-Interference features of Polyhedral 
Machining." Proceedings of the 3rd International IFIP /IF AC Conference 
on Programming Languages for Machine Tools. PROLOMAT '76, Stirling, 
Scotland. 15-18 June 1976 : 181-195. 

Duncan, J., and Mair, S. Sculptured Surfaces in Engineering and Medicine. 
Cambridge University Press, 1983. 

Encarnacao, J ., Schuster, R., Voge, E., Product Data Interfaces in CAD/CAM 
Applications. Design Implementation and Experiences, Springer Verlag 
1986. 

155 



156 

Flutter, A., .. The POL1SURF System ... Proceedings of the Second IFIP/IFAC 
International Conference on Programming Languages for Machine Tools. 
PROLOMAT '73. Budapest. April 10-13 1973 : 403-416. 

Kal)ade, Takeo. Three Dimensional Machine Vision, Kluwer Academic Publishers 
1987. 

Livingstone, F . R., and Rioux, M ... Development of a Large Field of View 3-D 
Vision System ... SPIE Proceedings 665 June 1986: 188-194. 

Marshall, F. Gerald, Laser Beam Scanning, Marcel Dekker Inc 1985. 

Mortenson, Michael. Geometric Modelling, John Wiley and Sons 1985. 

Nasser., Daniel. .. Non-Contact, Three Dimensional Object Digitizing Systems ... 
Thesis. Univers1tv of Cent ral Florida. Fall 1989. 

Nicolo, V., and Piccini M., 11lnteractive Curve Fitting ... Proceedings of the Second 
IFIP /IF AC International Conference on Programming Languages for 
Machine Tools. PROLOMAT '73, Budapest, April 10-13 1973 : 427-438. 

Rioux, M. , Blais, F., Beraldin, J. A., Boulan ger, P., 11Range Imaging Sensors 
Development at NRC Laboratories ... Proceedings of the Workshop on 
Int erpretation of 3D Scenes. Austin. Texas Nov 27-29 1989: 154-160. 

Sanz, L. C., Advances in Machine Vision, Springer Verlag 1988. 

Taylor, J. M. , et al., 11Application of a Laser Scanner to Recording and Replication 
of Museum Objects ... 8th Triennial Meeting of the ICOM Committe for 
Conservation. Sydney. Australia. September 6-11 1987 : 93-97. 

osni.,Yasser, Hwang. ,Jueng-Shing, and Ferreira, Labiche. ''Tool Path 
Generation from Surface Mapping of an Object ... Proceedings ofPROCIEM 
'90. Tampa. Florida. November 11-13 1990: 23-27. 

Yoshiaki Shirai, Three Dimensional Computer Vision, Springer Verlag 1987. 


	Improving the analytical recovery of radiostrontium from environmental samples
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	TABLE OF CONTENTS
	iii
	iv

	LIST OF FIGURES
	v
	vi

	CHAPTER 1
	001
	002
	003
	004
	005
	006

	CHAPTER 2
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020

	CHAPTER 3
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034

	CHAPTER 4
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054 
	055
	056
	057
	058
	059

	CHAPTER 6
	060
	061
	062
	063
	064 
	065

	CHAPTER 6
	066
	067

	APPENDICES
	068

	APPENDIX A
	069
	070
	071
	072
	073
	074

	APPENDIX B
	075
	076
	077
	078
	079
	080
	081

	APPENDIX C
	082
	083
	084
	085
	086
	087
	088

	APPENDIX D
	089
	090
	091
	092
	093
	094
	095

	APPENDIX E
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119

	APPENDIX F
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134

	APPENDIX G
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154

	REFERENCES
	155
	156


