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  ABSTRACT 

The magnitude of damage caused to the United States (US) coast due to hurricanes has 

increased significantly in the last decade. During the period 2004-2005, the US experienced 

seven of the costliest hurricanes in the country’s history (NWS TPC-5, 2007) leading to an 

estimated loss of ~ $158 billion. The present method for predicting hurricane losses, HAZUS 

(HAZard US), is solely based on hurricane hazard and damage caused to building envelopes only 

and not to structural systems (Vickery et al., 2006). This method does not take into account an 

intermediate step that allows for better damage estimates, which is structural response to the 

hazards that in turn can be mapped to the damage. The focus of this study was to quantify the 

uncertainty in response of structures to the hurricane hazards associated with hurricanes from 

performance based engineering perspective. 

The study enumerates hazards associated with hurricanes events. The hazards considered 

can be quantified using a variety of measures, such as wind speed intensities, wave and surge 

heights. These hazards are quantified in terms of structural loads and are then applied to a 

structural system. Following that, structural analysis was performed to estimate the response 

from the structural system for given loads. All the possible responses are measured and they are 

fitted with suitable probability distribution to estimate the probability of a response. The 

response measured then can be used to understand the performance of a given structure under the 

various hurricane loads. Dynamic vs. static analysis was performed and results were compared. 

This will answer a few questions like, if there is any need to do both static and dynamic analysis 

and how hurricane loads affect the structural material models.  

This being an exploratory study, available resources, research, and models were used. For 

generation of annual or extreme values of hazard, various available wind speed, storm surge, and 
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wave height models were studied and evaluated. The wind field model by Batts et al. (1980) was 

selected for generation of annual wind speed data. For calculation of maximum storm surge 

height, the Sea, Lake Overland Surges from Hurricane (SLOSH, Jelesnianski et al., 1992) 

program was used. Wave data was acquired from a National Oceanic and Atmospheric 

Administration (NOAA) database. The (extreme or annual) wind speed, surge height, and wave 

height generated were then fitted by suitable probability distributions to find the realizations of 

hazards and their probabilities. The distribution properties were calculated, correlations between 

the data were established, and a joint probability distribution function (PDF) of the parameters 

(wind speed, wave height, and storm surge) was generated. 

Once the joint distribution of extreme loads was established, the next step was to measure 

the dynamic response of the structural system to these hazards. To measure the structural 

response, a finite element model of three-story concrete frame were constructed. Time histories 

of wind load were generated from wind net pressure coefficients recorded in a wind tunnel test 

(Main and Fritz, 2006). Wave load time histories were generated using laboratory basin test 

(Hawke’s et al., 1993) wave height time history data and were converted into wave loads using 

Bernoulli’s equation. Surge height was treated as a hydrostatic load in this analysis. These load 

time histories were then applied to the finite element model and response was measured. 

Response of the structural system was measured in terms of the mean and maximum 

displacements recorded at specific nodes of model. Response was calculated for loads having 

constant mean wind speed and surge/wave and different time histories. 

The dominant frequency in the wind load time histories was closer to the natural 

frequency of the structural model used than the dominant frequency in the wave height time 

histories. Trends in the response for various combinations of mean wind speed, wave height, and 
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surge heights were analyzed.  It was observed that responses are amplified with increase in the 

mean wind speed. Less response was measured for change in mean surge/wave height as the 

tributary area for wave forces was less compared to wind force. No increase in dynamic 

amplification factor was observed for increase in force time histories case.  
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CHAPTER ONE:  

INTRODUCTION 

Tropical cyclones having a maximum wind speed greater than or equal to 74mph are 

termed hurricanes. Available data show that every year, hurricanes make a landfall along the 

Atlantic and Gulf of Mexico coastline of the United States. Out of the ten costliest natural 

disasters in the history of United States, six were caused by hurricanes (NWS TPC-5, 2007), 

Hurricane Katrina itself cost ~$84 billion (see Table 1 Costliest United States Hurricanes, 1900-

2006 (Blake et al. 2007)worth of damage. The wind speed associated with hurricanes is not by 

itself the greatest cause of damage. However, when coupled with storm surge and flooding, the 

potential of damage is greatly amplified. The United States has been hit by 279 hurricanes along 

its coastlines between the years 1851-2006. Of the total, 96 were major hurricanes (NWS TPC-5, 

2007), and every year the number keeps rising due to the changing environmental conditions.  

In addition, according to a NOAA report (NWS TPC-5, 2007), it has been observed that 

the population has grown along the United States coastlines. Fifty million residents have moved 

to coastal area in past twenty-five years, consequently creating difficulties for emergency 

managers. The number of deaths due to hurricanes may have gone down with improved 

technology, emergency response, and modern infrastructure, but economic losses have increased 

significantly. Despite having state-of-the-art forecasting systems, it is still difficult to fully 

measure the impact of hurricanes. Almost every structure; major buildings, levees, floodwalls, 

bridges, railroads, airports, seaports, utilities, residential structures, etc., are affected by 

hurricanes. In reconnaissance reports after hurricane Katrina (NIST-TS-1476, pp180), experts 

commented that present codes and design methodologies were not able to predict the hazards and 

damage caused by hurricane Katrina. Hence there is need to revise the present design 
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methodology. The idea of performance-based engineering presented here could be one such 

solution to the above problem where by the direct and indirect losses of infrastructure due to 

hurricane event could be estimated with certain probability. This methodology might be able to 

fill the present gap between the hazards and losses during a hurricane event 

 Table 1 Costliest United States Hurricanes, 1900-2006 (Blake et al. 2007) 

Rank Hurricane  Category  States effected Year of occurrence Damage 

1 Katrina  3 FL, LA, MS 2005 $81,000,000,000 

2 Andrew 5 FL, LA 1992 $26,500,000,000 

3 Wilma 3 FL 2005 $20,600,000,000 

4 Charley  4 FL 2004 $15,000,000,000 

5 Ivan 3 AL, FL 2004 $14,200,000,000 

 

The objective of this study is to quantify the uncertain response of structures to the 

predominant hazards associated with hurricanes. A performance-based approach currently used 

in assessment of other hazards, particularly earthquakes, is used as a basis for conducting this 

study. In current codes of practice, load and resistance factor design (LRFD) and allowable stress 

design (ASD), structural components are designed in a manner that they are never exposed to the 

load that may cause it to fail. Whereas in performance-based design, all the possible responses 

are calculated for all the potential loads for a given design. These responses are then mapped to a 

damage level, which sequentially could to be mapped to losses. Hence, knowing the hazard, 

response, damage, and loss, a choice can be made based on acceptable losses that may be 

incurred or to redesign the structure. The drawback of performance-based engineering is that it 

needs multiple steps of design and analysis before achieving satisfactory level of losses. Hence, 
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structural designers are not willing to switch to PBD from LRFD/ASD as it may be more 

computational and time consuming. However, the integration of present computation technology 

and PBD has great possibilities in the future. 

The performance-based methodology was developed in two parts in this study. In the first 

part, all the possible hazards associated with the hurricane were identified. The hurricane hazards 

causing maximum damage to structure, namely wind speed, surge height, and wave height, were 

then chosen. The marginal distributions defining each hazard were identified. These marginal 

distributions were then used to find the joint probability of the occurrence of hazards. In the 

second part, the three critical hurricane hazards identified above were then used to perform 

structural analysis. A three-story three-bay model of a concrete frame was created in OpenSEES 

and hazards were converted into loads before applying them to the structure for analysis. Four 

alternative methods of structural analysis, namely linear static, linear dynamic, nonlinear static, 

and nonlinear dynamic were performed. Linear static analysis was performed to create an 

envelope of possible response whereas nonlinear static analysis was performed to validate the 

model and identify probable failure locations. Depending upon the mean wind speed and 

wave/surge height, 250 load cases for dynamic analysis were created. Linear and nonlinear 

dynamic analyses were performed and responses were compared. It was found that for wind 

speed below category 3 the linear and nonlinear responses were almost equal. For higher wind 

speeds, nonlinear analysis gave higher response values than linear analysis. 
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CHAPTER TWO:  

LITERATURE REVIEW 

Earthquakes and hurricanes are two different kinds of extreme events. Hurricanes and 

earthquake have multiple hazards associated with them that impact the performance of 

structures. The most common hazards associated with earthquake are earthquake intensity, 

liquefaction, landslide, etc., whereas hazards associated hurricane are wind speed, surge height, 

wave height, and water/air borne debris. Prior to the analysis of hurricane loads on the structure, 

it is important to understand all the possible hazards associated with hurricane events. 

Table 2 Statistics of global disaster from 1950 to 1999, adapted from Munich Re (1999) and 

Wang et al. (2000) 

Disaster Type Earthquake Hurricane Flood Others Total 

Number of Occurrences 68 89 63 14 234 

Casualties (million people) 0.66 0.63 0.1 0.01 1.4 

Economic Losses (billion US$) 336 268.8 288 67.2 960 

Insurance Losses (billion US$) 25.4 68.7 8.5 8.4 111 

 

Hurricane Associated Hazards 

1. Maximum Wind Speed 

Hurricanes are tropical cyclones with a maximum wind speed of 74 mph or more. They 

occur in latitude 5° and above on both sides of the equator, and are most powerful between 

latitude 20° - 30°. The structure of the hurricane is shown below in Figure 1 Cross section of 

hurricane structure with eye of hurricane at center (Holmes, 2001). The meteorological 

parameters commonly used in defining hurricane are maximum wind speed (𝑉𝑚 ), central 

pressure difference (ΔP), translational wind speed (𝑉𝑡), storm direction (θ), and maximum wind 
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speed radius (𝑅𝑚𝑎𝑥 ).  Hurricanes consist of a circulating wind field with low pressure and 

slowest wind speed area known as the eye of hurricane in the center. As one moves away from 

center of eye, the wind speed increases and is maximum just outside the eye. The velocity of 

hurricane wind decreases as it go further away from eye and is slowest at end of hurricane radius, 

hurricane wind speed changes with height and are slowest near ground.  

 

Figure 1 Cross section of hurricane structure with eye of hurricane at center (Holmes, 

2001)   



23 

 

 

Figure 2 Recorded maximum wind speed near Miami Dade during hurricane Andrew 

1992 (Jelesnianski, 2005) 

 

 

Figure 3 Recorded storm surge near Miami Dade during hurricane Andrew, 1992 

(Jelesnianski, 2005) 
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2. Storm Surge Height  

Storm surge is an unusual rising of water above the normal mean sea level due to an 

imminent hurricane near the coast Figure 3 Recorded storm surge near Miami Dade during 

hurricane Andrew, 1992. Surge height starts just before the hurricane making a landfall and is 

greatest when the storm center reaches the coast. Until the last quarter of last century, it was 

assumed that the surge heights were the product of high wind speeds, but recent hurricane events 

have forced researchers to think alternatively (Durham et al, 2007). Surge heights are caused by 

a combination of various astronomical conditions, meteorological condition, and topology of the 

oceanic basin. Meteorological parameters that affect the storm surge are the central pressure 

difference (ΔP), maximum wind speed (𝑉𝑚 ) at the eye of storm, translational (forward) wind 

speed, and size of storm (𝑅𝑚𝑎𝑥 ). Hurricanes have lower central pressures, but high pressures 

around the storm center. This pressure difference causes the rise of water at the storm center. 

This meteorological phenomenon is called the inverted barometer effect. When a storm 

circulates over the sea surface, it generates currents in the sea water. As soon as this storm makes 

a landfall, the currents generated by high-speed wind are impeded leading to the abnormal rise of 

water level.  

The other key factor that causes storm surge rise is astronomical tides. A surge height is 

amplified when a hurricane makes a landfall during high tide and deamplified during low tide. 

Storm surge height also depends on the continental shelf slope. If the slope is steep, there is less 

chance that the surge height will reach an inland location and vice versa.  

3. Wave Height 

Wave height is the difference in elevation between adjacent crests and troughs of a sea 

wave. When the water surface is disturbed, it produces waves. These waves propagate further 
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due to the disturbance of adjacent water surfaces. This disturbance in the sea is caused by wind 

blowing over a vast stretch of sea surface. For the period of hurricane, the disturbance in sea is 

extremely high leading to increased surface oscillation consequently resulting into high storm 

waves. During hurricane Ivan, the wave height reached up to 27.7 m in the sea. When a 

hurricane makes landfall it leads to the breaking of hurricane waves on shore producing set-up 

and set-down waves. Wave set-ups and set-downs are the increase and decrease in water level in 

shallow water area (surf zones and coastal areas) due to transfer of energy of water momentum to 

water level due to wave breaking phenomenon. The sizes of set-up/set-down waves or infra-

gravity waves are approximately 10-25% of incident significant waves. Hurricane induced storm 

surge and waves cause maximum damage to US coasts (Wu et al., 2003)  

4. Scour 

Once a hurricane has passed, scour is the primary reason for damage caused to bridge and 

building foundations. Two kinds of scour phenomena can occur, namely shear-induced scour and 

liquefaction-induced scour. Amongst them, the liquefaction-induced scour is more widespread 

during the hurricane event (Robertson et al, 2008). The liquefaction scour can be explained by 

the periodic formation of crest and trough of waves over the soil matrix. Subsequently, this leads 

to changes in pore pressure, causing disturbance of soil matrix resulting in flow of soil particles 

below the foundation. Eventually, this results in uneven settlement of structures. Liquefaction-

induced scour is amplified by the fast drawdown of water in inundated area.  
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Figure 4 Scour occurring below Ground floor during hurricane Katrina (NIST-1476, 

2006) 

 

 

Figure 5 Windborne debris puncturing concrete wall (Holmes, 2001) 
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5. Hurricane Flooding 

Flooding is the main reason for fatalities during hurricane events (NOAA/PA 20052, 

2000). Two kinds of flooding occur during hurricane events. They are known as rainfall-induced 

flooding and surge-induced flooding. One or both can occur during hurricanes. Surge-induced 

flooding affects areas where a hurricane has made landfall, but rainfall-induced flooding can 

occur at the place of landfall as well as areas miles away from the landfall location. Rainfall-

induced flooding is not directly related to the intensity of hurricane alone, rather it depends on 

other meteorological factors. The effect of flooding on structures during hurricanes is amplified 

due to other hazards like wave and surge as it elevate the mean water level. 

6. Wind/Water Borne Debris and Other Secondary Hazards  

Windborne debris is the primary cause behind the failure of the building envelope in low 

and high-rise structures (Holmes, 2001 and Vickery, 2006). Waterborne debris flowing at a 

speed may cause damage to columns and footings of structures. When flowing debris accumulate 

between columns or near foundations, it can lead to obstruction in the flow of water resulting in 

water damming. There are some secondary hazards associated with hurricanes that may also 

affect structures during hurricane. Some of the common secondary hazards include fire, 

landslide, and other environmental hazards. 

Previous attempts have been made to quantify hurricane associated hazards, among them, 

the Saffir-Simpsons scale (see Table 3 Saffir-Simpson scale  is most common and readily used. 

The Saffir-Simpson scale was formulated by Herbert Saffir, a consulting engineer, and Dr. Bob 

Simpson, director of the National Hurricane Center. This scale was developed for helping 

forecasters and disaster management experts to predict possible damage due to hurricane events. 
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However, this scale is largely subjective and is not useful for quantitative hazards for 

probabilistic analysis.  

Table 3 Saffir-Simpson scale (NOAA, 2009) 

Category Wind speed  Storm surge Example 

Category I (weak) < 95 mph 4-5 ft Hurricane Lili (2002), 

Category II (Moderate) 96-110 mph 6-8 ft Hurricane Frances (2004), 

Category III (Significant) 111-130 mph 9-12 ft Hurricane Ivan (2004) 

Category IV (severe) 131-155mph 13-18 ft Hurricane Charley (2004) 

Category V > 155 mph > 18 ft Hurricane Andrew (1992) 
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Performance-Based Engineering 

Performance-based engineering entails prediction of the structural response with a certain 

probability for a given structure under a given extreme loading condition. Prior to the 

development of performance-based earthquake engineering, the concept of performance-based 

engineering was already in use in the nuclear industry.  Recent documents on PBE in the field of 

earthquake engineering include those from the Structural Engineering Association of California 

(SEAOC), Vision 2000 (Hamburger, 1995). As per SEAOC, PBEE is defined as a method for 

designing, maintaining, and constructing a building such that they are capable of providing 

predictable performance when affected by earthquake. The framework of PBE was later 

extended to various engineering research fields involving extreme loads like wind, fire, waves 

and blast loads (Whittaker et al 2005). 

Performance Based Earthquake Engineering 

The concept of PBE was employed in the field of earthquake engineering even before the 

development of PBEE (FEMA 273 (1996), SEAOC (1995), ATC-40 (1996)., etc). Almost all the 

past earthquake codes and designs were somehow using the theory of PBE (Krawinkler & 

Miranda, 2004). LRFD is the most common example of use of PBE in design codes. The 

difference between LRFD and PBEE is that LRFD considers only two levels of responses, safe 

and collapse, while in PBEE a whole spectrum of responses (like safe, partially safe, unsafe etc.) 

is developed. Some of the most recognized efforts to outline and standardize the concept PBE 

were Vision 2000 (SEAOC, 1995), FEMA 273 (1996), FEMA 274 (1997), ATC-40 (1996) and 

FEMA 356 (2000). All the methods follow the same theory, which is to define some 

performance objectives and quantify them with a level of performance and hazard (Krawinkler 

and Miranda, 2004). 
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Performance based methodology is a four-step process. The initial step is to identify the 

seismic hazard called Hazard Analysis. Next, given the hazard inputs, Structural Analysis is 

performed to determine various engineering demand parameters like drift velocity and 

acceleration. Thereafter, based on the structural responses to hazard, Damage caused is assessed. 

Finally, these damages are quantified as Losses measured in terms of death, dollar and 

downtime. 

 

Figure 6 Performance Based Methodology Chart Developed by Pacific Earthquake 

Engineering Research (PEER) 
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Performance-Based Hurricane Engineering 

Performance based hurricane engineering is a new method of analyzing structures 

subjected to hurricane hazards. There is little available research that looks at hurricane from 

performance-based perspective. This study will try to develop the idea during the course of this 

paper.  

Data Assisted Design (wind time history analysis)  

Data Assisted Design DAD presents a method in which a database of the directional 

pressure coefficient time history data is used directly for analysis and design of structural 

systems (Main and Fritz 2006). The database of the pressure tab for the analysis was developed 

in a series of wind tunnel tests (Ho et al., 2005). The data was generated using wind tunnel tests 

carried out at the boundary layer wind tunnel laboratory at UWO. This database was generated 

for two different terrain conditions, open and suburban with 1:100 scale models. The data in the 

wind tunnel was recorded at the frequency of 500 Hz for 100 seconds, which is equivalent to 22 

Hz for 2304 seconds for full-scale open exposure. The structural model used in the test was a 

gable roof with variable eave heights. These time histories of pressure coefficient are used in the 

structural analysis in this study. To use them for structural analysis, the pressure coefficient time 

histories are multiplied by the square of mean wind speed (Main and Fritz, 2006). The mean 

wind speeds for the analysis were assumed 80, 100, 120, 140, and 160 mph representing each 

category of hurricane. 

Wind Field model   

Most of the early attempts in the field of engineering science to predict hurricane winds 

were based on probabilistic models. Batts et al. (1985) came up with the first mathematical 

model with probabilistic meteorological input. The Batts model consisted of two parts (1) 
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meteorological characters of hurricane and (2) mathematical model of hurricane wind. The 

meteorological characters included rate of occurrence, central pressure difference, translational 

wind speed, storm direction, maximum wind speed radius and crossing point coordinates. Batts 

mathematical model describes the relation between these meteorological characters to find 

surface wind speed using following relation.  

𝑉 𝑧 = 10, 𝑅 = 0.865𝑉𝑔𝑥 + 0.5𝑉𝑡   

 𝑉𝑔𝑥 = 𝐾 ∆𝑝𝑚𝑎𝑥 − (
𝑅𝑓

2
)  

𝐾 =   
𝑅 ∗ 𝛼

𝜌
  

.5

 

Where 𝑉𝑔𝑥  is maximum gradient wind speed, 𝑧 = height above ground level, 𝑉 = maximum wind 

speed, 𝑓 = Coriolis parameter, 𝑅 = radius of maximum wind, 𝑉𝑡= transitional wind speed, 𝜌 = 

air density, 𝛼 = parametric constant and ∆𝑝𝑚𝑎𝑥 = central pressure difference. Batts generated 

1000-year synthetic hurricane wind speed data using Monte Carlo simulation along the coast of 

the United States and Mexico. The statistical data input for Batts model came from HURricane 

DATabase (HURDAT, Jarvinen et al., 1984). Batts model was one of the preliminary models 

which was further improved by various others researchers like Georgious (1985), Neumann et al. 

(1991) and Vickery et al. (1995, 2000). The Vickery et al. (2000) procedure is the presently 

followed by ASCE 7-05 to produce design wind speeds.  

Storm Surge Model  

Several researchers have come up with different models for storm surge prediction. Some 

of the common surge models are Federal Emergency Management Agency (FEMA) surge model 



33 

 

by Tetra Tech Inc. (1984), SLOSH by the National Weather Service (NWS) and ADvanced 

CIRculation model for oceanic, coastal and estuarine waters (ADCIRC) by Luettich et al., 

(2002). ADCIRC is the most frequently used commercial storm surge model. The Sea, Lake 

Overland Surges from Hurricane (SLOSH) model is used in this study for generating storm surge 

data required for the analysis. 

SLOSH has been developed as a model for emergency managers and local authorities to 

utilize in predicting maximum possible storm surge in specific basins. SLOSH is a numerical, 

dynamic, two-dimensional storm surge model developed by NWS. It is used for the real time 

forecasting of storm surge due to hurricanes in the Atlantic and Mexican coast of the US. Unlike 

Wind field model, SLOSH is a diagnosis model and not a predictive model. SLOSH divides the 

US coast into 41 basins and each basin is further divided into smaller curvilinear polar 

coordinate grids that allow for greater resolution within the basin. Basic transport equations of a 

water mass were developed by Platzman (1963) and modified by Jelesnianski (1967) and were 

used in SLOSH for calculation of storm surge.  

Open System for Earthquake Engineering Simulation (OpenSEES) 

OpenSEES is an open source finite element software developed by PEER at the 

University of California Berkeley for simulating response of structural and geotechnical 

component under earthquake loads. OpenSEES has a library of elements, solvers, and materials 

to perform almost any kind of structural and geotechnical analysis. OpenSEES does not have a 

user interface for input, rather it uses Tool Command Language (TCL) as the input format. 

OpenSEES also has an advanced tool to perform reliability analysis used in performance-based 

engineering. This program has been used in the field of earthquake as well as performance-based 
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engineering. OpenSEES was used as primary computation tool for dynamic analysis of the 

structure considered in this study.  
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CHAPTER THREE:  

METHODOLOGY 

As mentioned earlier, this study is an extension of performance-based engineering in the 

field of hurricane engineering. The methodology followed here is similar to that in Vision 2000. 

The process of PBHE is divided into four steps (1) Hazard analysis (2) Structural Analysis (3) 

Damage Analysis and (4) Loss Analysis. Hazard Analysis can be further sub divided into (a) 

identifying hazard and (b) quantifying hazard. Identifying hazard is a different process in 

performance based hurricane engineering compared to performance based earthquake 

engineering.  

Research Structures & Location 

An important aspect of performance-based analysis is that it is done for a specific 

structure and location. Miami-Dade in southern Florida has already faced many hurricanes and 

has a large amount of recorded hurricane data. Hence, it was chosen as location for this study.  

For this preliminary analysis, a generic structural model of three story three bay concrete frame 

is used as it represents most low-rise residential or office buildings. The height of each floor is 

12 feet. Basic modeling parameters of the building are enumerated in Table 4 Basic Modeling 

Parameters of Structure, Table 5 Concrete material Properties (concrete02) and Table 6 Steel 

Material Properties (steel02). The floor and walls were not modeled in this analysis, but the floor 

weight was taken into consideration in this analysis.  
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Table 4 Basic Modeling Parameters of Structure 

Property  Beam  Column Girder 

Width (inch) 6  12  6  

Total length (feet) 60’ 36’ 60’ 

Depth (inch) 12  12  12  

Total Reinforcement (in^2) 3.52 4.4 3.52 

No of patch per section 10x10 10x10 10x10 

 

Table 5 Concrete material Properties (concrete02) 

Property Value 

Compressive Strength of Concrete (psi) 4000 

Module of Elasticity of Concrete (ksi) 3604 

Poisson’s ratio 0.2 

Strain at Compressive strength 0.0022 

Concrete crushing Strength (ksi) 0.8  

Strain at crushing strength  .044 

Ratio between unloading slope at crushing and initial slope 1 

Concrete Tensile Strength (ksi) .56  

 

Table 6 Steel Material Properties (steel02) 

Property Value 

Yield stress of steel (ksi) 66.8 

Modules of Elasticity of steel (ksi) 29000 

Strain Hardening ratio 0.01 
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Finite Element Model 

Finite element model of three stories by three bay concrete frame was created in the 

OpenSEES for analysis. Mass is lumped at the nodes connected by two-node force beam-column 

elements. They were used to model the beam, columns and girder of the structure. Two different 

material models of concrete were used in the analysis. An elastic uniaxial material model of 

concrete was used in the linear dynamic analysis, whereas a nonlinear uniaxial material model 

was used for push over and nonlinear dynamic analysis. The bottom end of the first floor 

columns were assumed to be restrained for all six degrees of freedom. No floors or walls were 

modeled in the FEM, but the loads due to floors were added to the model. A damping ratio of 

0.02 was applied in the model.  

 

Figure 7 Three story three bay concrete frame model created in OpenSEES 

 



38 

 

Identifying Hazards   

After conducting a sufficient amount of research, six primary and various secondary 

hazards were identified that were associated with the hurricane event. It was observed that out of 

these six hazards, storm surge with waves causes maximum damage to the structure. In the 

present study, three hazards (wind speed, storm surge and hurricane waves) are investigated 

further. 

Quantifying Hazards 

In the process of PBE, there are two parts of to every hazard analysis. The first part defines the 

general characteristics like mean wind speed, while the other is the uncertainty attached to the 

dynamic or time-variant characteristics, such as the turbulence in wind. In this study, two 

varieties of quantification were performed. Firstly, the annual data or mean data was quantified 

to perform probability distribution analysis. These probability distributions were then used to 

find a correlation between these hazards. This was followed by quantification of hourly data or 

time history data, which was used to carry out structural analysis. For these two types of 

quantification two different sets of data were required, namely the annual data and the hourly 

time histories. In order to create annual data, various meteorological models, simulation results 

and recorded data were used. While, in order to generate hourly time histories various recorded 

time histories were employed. The methods of generating and analyzing data are discussed 

below. 
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Figure 8 Hazards Quantification Methodology in this study 
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Probability Distribution Analysis 

Hurricane wind is not the primary reason for structural damage, but they could be 

catastrophic when partnered with other hazards. Probability distribution analysis was carried out 

to find the magnitude and probability of occurrence of a hazard and its correlation with other 

hazards. To find the best probability distribution that can define hazard, a histogram of the 

annual and extreme recorded data was plotted. Subsequently, a curve was fitted to this 

histogram. Lastly, various existing distributions were compared with the fitted curve to find the 

most suitable probability distribution defining hazards for the given location. The process 

probability distribution analysis explained in following figures. First, the histogram of the 1000 

year recorded data was plotted as shown in Figure 9, thereafter the histogram bars are fitted with 

curve using.   

Once the marginal distributions defining the hazards are identified, the distribution 

properties of the marginal distribution are estimated. These distribution properties are then used 

for joint probability analysis. A joint probability distribution analysis was done to find the 

correlation between various hazards and how they act with each other. These joint probability 

distributions were then used to find the most suitable combination of load sets for the structural 

analysis. For example, if category 3 hurricane is going to make a landfall what are the possible 

surge and wave heights that can occur?  
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Figure 9 Histogram of 1000 year simulated maximum non-directional wind speed at 10 

meter above ground over open terrain 

 

Spectral Analysis  

Spectral analysis was conducted to the find the prominent frequency in load time 

histories as shown in Figure 10 and Figure 11. These frequencies were then compared with the 

natural frequency of the structural system to find the possibility of resonance in structural 

system. The time histories of wind and wave are compared to earthquake time histories in terms 

of the prominent frequencies and their time periods. This comparison will help in understanding 

the response from structure with respect to earthquake Auto and Cross-correlation of the time 

histories were investigated to find the randomness in the time histories. Auto correlation function 

informs about the correlation between two data points in same time history. Whereas, the cross-
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correlation coefficient defines the degree of correlation between two different time histories. The 

outcome of this analysis is discussed in the result section. 

 

Figure 10 Time history of displacement recorded at node 52 in FEM model for nonlinear 

dynamic analysis case NL1200805 

 

Figure 11 Power spectrum of displacement time history recorded at node 52 in FEM 

model for nonlinear dynamic analysis case NL1200805 
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Generating Data 

Each hazard data used in this analysis were defined by two components. The first being 

the mean, which defines the general properties of the hazards and the second is the fluctuation 

superimposed on mean defining the uncertainty in hazards. Generation of the data was the most 

important and prolonged part of this study. Mainly due to this being, the exploratory study and 

unavailability of sufficient data source to be readily used. Various existing resources and studies 

were investigated for data collection. The process of data generation is discussed below  

 Wind Speed Data 

Wind is a random and dynamic both in time and in space. This randomness in data can be 

defined by a mean and superimposed fluctuation on it. The mean factor is called mean wind 

speed. In this analysis, the mean data was created by methodology created by Batts et al. (1980). 

Batts performed the Monte Carlo simulation to generate 1000-year synthetic wind speed data for 

entire east coast of United States and Mexico (Figure 12). The results of Batts Monte Carlo 

simulation were extracted from NIST. The results of simulation included maximum wind speed 

at a mile marker for sixteen directions. The maximum of sixteen directions were recorded for 

probability distribution analysis. It is important to understand that the probability distribution of 

maximum wind speed will be different for different locations. 

. 
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Figure 12. 1000 year simulated 1-minute wind speed data at 10m above ground Miami-

Dade (Batts, 1985) 

The randomness in mean wind was created by overlaying the mean with fluctuation 

created from recorded wind tunnel test time histories. These wind tunnel time histories were 

generated using NIST data source by Ho et al. (2005). The time histories created were in terms 

of net pressure coefficient on the surface and roof of gable roof structure. Three sets of time 

histories were generated based on the orientation of the building with respect to the wind tunnel 

axis. Before applying these time histories to the structure, pressure coefficients were converted 

into wind speed and Spectral Analysis was carried out. Results of the spectral Analysis were 

compared with Yu et al. (2008) and are discussed in the result section. 
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Figure 13 Wind tunnel pitched roof model with Pressure tab location on the pitched roof 

glass model (Main and Fritz 2006) 

 

 Storm Surge Data 

Storm surge data for the analysis was generated from SLOSH. For this study, the 

Biscayne basin (near Dade County Miami) on the Atlantic coast of Florida was chosen. The 

SLOSH grid for Biscayne basin is shown in Figure 14 Grid model from SLOSH representing 

Miami- Dade. The Biscayne basin contains 162 curved lines and 88 radial lines making a grid 

mesh of 14256 regions.  
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Figure 14 Grid model from SLOSH representing Miami- Dade (Jelesnianski, 1992)  

The size of the grid increases with the distance from the pole, with an average size of the 

grid of approximately 0.3 square miles. This grid system provides greater resolution in the focus 

area because the surge value changes with the topography of the area.  The user interface of the 

model has three inputs for calculation of storm surge. These inputs are (i) category of hurricane, 

(ii) direction of wind speed and (iii) forward wind speed with tide condition (high, medium and 

low). For the Biscayne basin, 32 regions along 21.1 miles of coast were earmarked and each 

region along the coastline was analyzed. The SLOSH results are usually in the form of maximum 

storm surge for a given category (1 to 5), direction (16 directions) and forward wind speed (5, 

15, and 25 mph) for each region. However, for the purpose of this study direction was 
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disregarded and only storm surge for given category and forward wind speeds were recorded. 

The surge data were then fitted by a suitable distribution. The Gumbel distribution best fitted the 

surge data. Time histories for the surge were not generated, as they were treated as static load in 

the study. 

Wave Height data 

Similar to hurricane wind speeds, hurricane waves also consists of two components, 

namely Significant Wave Height (SWH) and wave fluctuation. SWH and fluctuating waves are 

comparable and similar to mean wind speed and turbulence in wind respectively. SWH is 

approximately equal to the average height of the highest of one- third of the waves during a 

sampling period. For generating SWH data, twenty-five years recorded NOAA’s historical wave 

records for Virginia Key, FL were utilized. Thereafter SWH data was analyzed to fit suitable 

Probability distribution (Figure 15).  
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Figure 15 Histogram of 25-year Significant Wave height generated at Virginia Key, Fl 

(NOAA)   

 

 It is important to emphasis that during the event of a hurricane making a landfall, the set-ups and 

set-downs waves reach the inland structure and not the SWH. In this study, it has been assumed 

that the incident waves are the only source of setup waves. Hence, they have properties similar to 

the SWH. 

For generating the fluctuation in the water level of set-up/set-down waves, the 

multidirectional wave data created by International Association for Hydro Environmental 

Engineering and Research (IAHR) were used. The test (A, B, C & D) was performed in 

laboratory basin at Canadian Hydraulic Center. The input wave for the test had significant wave 
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terms of velocity and the wave height. The test ran for 1500 seconds at the sampling rate of 20 

Hz, and the data was recorded at the middle of a pentagon shaped Moore. Spectral Analysis of 

the recorded time history was performed before applying them to the structure. Thereafter, 

recorded wave heights were magnified by the wave water level for dynamic structural analysis. 

Load Calculation 

Structural analysis was performed for five categories of hurricane. A mean wind speed 

representing each category of response was selected. In order to convert pressure coefficient time 

histories recorded from wind tunnel to force histories, they were scaled using equation (1). 

𝐹 𝑊𝑆 = .5 ∗ 𝜌𝑎 ∗ 𝑉𝑚
2 ∗ 𝐶𝑝 ∗ 𝐴  -------------------------------------------------------------------------(1) 

Where 𝜌𝑎  =.002377lbf.s²/ft⁴ at standard atmospheric condition, 𝑉𝑚= maximum wind speed, 

𝐶𝑝 = pressure coefficient and A= tributary area. Subsequently the tributary area was calculated 

from the plan of structure and node location at which the force time histories were applied. 

To convert wave and storm surge into structural load Bernoulli equation for irrotational flow was 

used, 

𝐹(𝑤𝑤 ,𝑠𝑠) =  𝜌𝑔𝑧 + .5𝜌𝑔𝐻  
cosh k 𝑑+𝑧 

cosh 𝑘𝑑
 cos 𝑘𝑥 − 𝜎𝑡  𝐴 -------------------------------------------- (2) 

Where 𝐹(𝑤𝑤 ,𝑠𝑠)= force due to hydrostatic surge and hydrodynamic wave loads, 𝜌 = density of 

water, g = acceleration due to gravity, z = variation in water level, H = wave height, k= wave 

number h = surge level and cos 𝑘𝑥 − 𝜎𝑡  is phase angle.  In the abovementioned equation, the 

first term calculates the normal surge (hydrostatic) load while the second term computes the 

wave (dynamic) load due to wave induced particle acceleration. Since we were using the time 

histories, the phase angle was assumed as one. It was assumed that during hurricane the walls on 
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the first floor of the building would collapse. Hence, the tributary area for wave and surge load 

was the area of columns only. As there was no proper reference or source on how to apply load 

to an inland structure, it was assumed that the effective force on structure will be only 25% of 

calculated wave and surge force. 

Loads Cases 

Two loading scenarios were analyzed. In the first scenario, five realizations of each 

hazard were identified. For wind speed the realizations were 80, 100, 120, 140 and 160 mph 

whereas, for surge height the realizations were 2, 4, 6, 8 and 10 ft. Finally, the realizations for the 

wave height were 0.5, 1, 1.5, 2 and 2.5 ft. 125-load combinations of these hazard realizations 

were made and applied to structure for analysis. These 125 cases were applied to both linear and 

nonlinear material models resulting into total 250 load cases for parametric analysis. In the 

second scenario, different load time histories of same mean wind speed and wave /surge height 

were created. For a mean wind speed of 100mph, surge height of 4ft and maximum wave height 

of 1.5 ft 72 load cases were created for response probability analysis. Total of 322 time histories 

analysis were performed. 

Structural Analysis 

Four alternative methods were used to perform structural analysis of the structure 

(FEMA-350 2000). These were Linear Static, Linear Dynamic, Push Over and Nonlinear 

Dynamic Analysis. In a linear static analysis, an elastic material model of the concrete frame was 

created in Visual Analysis software. Furthermore, two set of loads were created for analysis. In 

first set of loads the maximum of all the force time histories were applied to the structure. While, 

in the second set the mean of all the force time histories is calculated and applied to structure. 
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Response to these load sets is measured in terms of drift at top corner (node 52). The results of 

the linear static analysis are to be used as a benchmark for response from dynamic analysis. 

Pushover analysis or Nonlinear Static analysis is a procedure in which a monotonically 

increasing load is applied to structure until it fails. In this study, loads were applied at the nodes 

on one face of the structure and responses were measured. This pushover analysis was performed 

to obtain the load at which material will begin to yield. 

As discussed earlier, all 322 load time histories combinations were applied to the model. 

Dynamic analysis was performed using the model created in OpenSEES.  The elastic material 

model of concrete was used in Linear Dynamic analysis and nonlinear material model was used 

in nonlinear dynamic analysis. Force time histories were applied to respective nodes in the 

model.  The responses to dynamic analysis are measured in terms of displacement at node 52. 

Results of the analysis are further discussed in result section. 

Before proceeding to structural analysis results, it is should be noted that, this is a 

parametric study and thus certain parameters are assumed in the study. The wind loads were 

applied to structure at the sampling rate of 22 data per second. While the wave data was applied 

at the rate of one data per second. The wind forces calculated in the equation 1 was applied to the 

structure as calculated. According to Wu et al, (2006) after wave break at shore, the maximum 

setup wave that reaches inland structures is only 10-20%. Hence, it was assumed that only 20% 

of the wave force generated at the shore would reach the structure.   
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CHAPTER FOUR: 

 RESULTS 

Probability Distribution Analysis 

Probability distribution analysis was performed for all the hazards chosen for this study, 

namely Wind Speed, Surge Height, and Significant Wave Height. In this study, wind and wave 

height were treated as an independent event and surge height was dependent on 𝑉𝑡   Batts 1000 

year simulated maximum non-directional wind speed data was fitted with various distributions to 

estimate the most suitable distribution. For Miami-Dade, the location selected for this study, 

Rayleigh distribution best describes the distribution of data. The CDF of the data distribution is 

plotted below (Figure 16). The maximum wind speeds for 20 and 50-years return period were 

99.4mph and 116mph respectively.   

 

Figure 16 CDF of 1000 year simulated maximum non-directional wind speed data 
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Once aware of the mean wind speed distribution, the probability distribution of surge data was 

computed. In this study, surge data was generated using category of hurricane and translational 

wind speed using SLOSH. The surge values for each category of hurricane at Miami Dade were 

estimated. All these surge heights were then fitted with suitable distribution for each category. 

Gumbel distribution was discovered to be the most suitable for the probability distribution of 

surge height for all categories of responses for Miami Dade. The CDF of surge height for 

category 3 hurricane is plotted below (Figure 17).   

 

Figure 17 CDF of Cat-3 Storm Surge 
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Figure 18 Joint probability plot for Mean wind speed and surge height 

 

This joint probability plot (Figure 18) will be used to select the right combination of wind 

and surge loads for the structural analysis. For 50-year return period a maximum mean wind 

speed of 116 mph, a surge height of 8ft was found to have a maximum probability of 0.2. This 

combination of maximum wind and surge will be used in response probability analysis. Similar 

to surge height, probability analysis of wave height was performed. It was ascertained that the 

log normal distribution was the best fit for the significant wave height data. Joint probability 

distribution analysis was performed and result is presented below (Figure 19) 
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Figure 19. Joint probability plot for mean wind speed and wave height 

 

Spectral Analysis 

To create the frequency spectrum of the hurricane wind time histories, Welch method 

with hamming windows was employed. The spectrum response was compared with other 

researchers (Yu et al., 2008) and Schroeder et al., 2002) for correctness of the wind time histories 

data.  The wind tunnel test had a sampling frequency of 500 samples per second, which was 

converted into equivalent full model sampling rate of 22 samples per second. The power axis of 

the spectrum was normalized by the frequency and variance of data. While, the frequency axis 

was normalized by the mean of data. The frequency spectrum is shown below in figure 20. It was 

observed that the dominant frequency were lower than that recorded during hurricane event (Yu 

et al., 2008) 
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Figure 20 Power spectrum of recorded wind speed data at edge column 

After comparing the spectral response to Yu et al (2008), it was established that the shape 

of normalized spectra of wind tunnel time histories was same as hurricane wind spectra. The 

dominant frequency of the wind tunnel spectra were slightly higher but less energy than that of 

hurricane wind spectra. The variation in spectral properties could be attributed to the difference 
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Figure 21 Variation of auto and cross correlation with time lag of 0.045sec on windward 

side  

 

Figure 22 Variation of auto and cross correlation with time lag of 0.045sec on windward 

and leeward side  
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Furthermore, it was observed that time histories on windward and leeward sides of the structure 

were negatively correlated (Figure 22), whereas time histories of wind on windward side were 

positively correlated. The magnitude of cross correlation was same in both cases. 

There were four wave time histories (A, B, C and D) available for spectral analysis. 

Wave time histories A and B were generated by simulation and C and D were generated in the 

Lab basin test. The key parameters of the seed wave were same for both simulation and basin 

test. The input to the seed wave of simulation consisted of JONSWAP spectrum with a wave 

height of .12m and period of 1.8 sec. Before using these time histories for structural analysis, 

spectral analysis of wave time history was carried out. The dominant frequencies and their 

energy were compared with the sea wave spectrum for worse sea scenario (Fernandes et al, 

2008). It was determined that the frequency (Figure 23 and Figure 24) and power of the spectrum 

were same as worse case scenario of sea wave. 
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Figure 23 Wave spectra for wave generated from simulation and laboratory test using 

input wave height 0.12m and peak period 1.8 seconds  

 

Figure 24 Wave spectra for wave generated laboratory test at CHL using input wave 

height 0.12m and peak period 1.8 seconds  
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Auto and cross correlation analysis results of the wave time histories were significantly 

different from that of the wind. The wave data was highly correlated in the time domain as 

expected. The correlation coefficient between the two different wave time histories (C& D) were 

positive in time domain (Figure 25), but was very low compared to the auto correlation 

coefficient   

 

Figure 25 Variation of auto and cross correlation of wave data with time lag of 0.75sec 

for lab test C and D 
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In the push over analysis, the structure was pushed laterally up to 10% of drift and 

response was measured. The moment curvature plot of response for three levels of floor columns 

is shown below. Push over analysis showed that the bottom column begins to yield first as 

expected. No yielding happened at the second and third floor for 10% drift. This plot was used in 

the nonlinear dynamic analysis for determining the yielding point.  

  

Figure 26 Moment Curvature at the bottom of column for three directional coordinates of 

building on windward side 
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Figure 27 Total base Shear Vs Displacement at node 52 in X direction 
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The entire dynamic analysis results are identified by a case numbers. Each case number 

has seven digits preceded by the material model label LN or NL, which stands for linear and 

nonlinear model respectively. The first three digits of case number indicate the mean wind speed. 

The following two digits specify surge height and the last two digits denote wave height. For 

example, LN1000805 means linear model with mean wind speed of 100 mph, surge height of 8 ft 

and wave height of 0.5 ft. Due to the presence of steel reinforcement the nonlinear model is 

slightly stiffer then linear model. Hence, as long as nonlinear model section is not yielding, the 

response from it will be less than linear model. All the results presented have their nonlinear 

material model yielded.  

Table 7 Load case used in the analysis 

Case Number Legend Explanation 

NL1000805 LN(linear dynamic), NL(nonlinear dynamic), LS(linear 

static),NS(nonlinear static)  

Material model 

NL1000805 080, 100, 120, 140, and 160 mph Wind speed 

NL1000805 02, 04, 06, 08, and 10(ft)  Surge height 

NL1000805 05, 10, 15, 20, and 25 (ft/10) Wave height 

 

Before investigating the responses, comparison of linear vs. static was done to see 

evidence of amplification in dynamic analysis. Two cases NL0800805 and NL1600805 are 

presented as Figure 28 Nonlinear Dynamic response Vs linear static response case 

NL0800805and Figure 29. It appears the there is no major dynamic amplification measured due 

to increasing the magnitude of force time history. The average dynamic difference factor of 

approximately 0.3-1.4 was observed in all the cases of linear and nonlinear dynamic analysis 
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(Figure 30 and Figure 31). The increase in the displacement response value was attributed to the 

yielding of structure and not because of dynamic amplification. Comparison between linear static 

and nonlinear dynamic was done to see the change in response due to the material model. It was 

observed that most of increase in response was due to material model yielding (figure 28 and 

Figure 29). Cases were the material model did not yielded the static responses was grater then 

dynamic response and vice versa. 

 

Figure 28 Nonlinear Dynamic response Vs linear static response case NL0800805 
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Figure 29 Nonlinear Dynamic response Vs linear static response case NL16000805 

 

Figure 30 Dynamic amplification factor for load case NL0800805 
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Figure 31 Dynamic amplification factor for load case NL1600805 
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Figure 32 Displacement trend for variable mean wind speeds and constant surge and 

wave height  

 

Figure 33 Base shear Vs Displacement for load case LN0800805 
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Figure 34 Base shear Vs Displacement for load case NL0800805 

 

Figure 35 Base shear Vs Displacement for load case LN1600805 
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Figure 36 Base shear Vs Displacement for load case NL1600805 
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structure is close to 1 Hz, hence it is behaving like a flexible building. Usually the dominant 

frequency of wind is less than the lowest natural frequency of structure. However, in this study 

the dominant frequency of wind and natural frequency of structure are very close. In the response 

spectrum (Figure 37, Figure 38 and Figure 39), it was observed that structure is responding only 

at its first natural frequency  

 

 

Figure 37 Power spectrum of linear material model response for variable wind speed and 

constant surge and wave height 
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Figure 38 Power spectrum of nonlinear material model response for variable wind speed 

and constant surge and wave height 

 

Figure 39 Power spectrum of linear and nonlinear material model response for constant 

wind speed and surge and wave height 
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As can be noted in Figure 37, the there is a direct relationship between wind speed and 

frequency response. Hence, increase in one leads to other. For the two different material models, 

it is observed that the frequency response of linear model is higher than nonlinear model 

response. This could be explained by change in the stiffness of structure, which furthers leads to 

a change in the natural frequency of the model. The peak response frequency of nonlinear 

spectrum appears to occur slightly lower than the natural frequency of structure. This could be 

attributed to a decrease in stiffness of structure, resulting into lowering of natural frequency of 

structure. 

 In the second subset the wind speed of 120mph, wave height of 1.5ft and surge height of 

2, 4, 6, 8 and 10 ft are applied. The displacement responses from the nonlinear model are 

relatively higher than that of linear model (Figure 40). In this subset, it is observed that the mean 

of nonlinear model response is not varying linearly as in first subset. No change was observed in 

the spectrum of linear analysis compared to the first subset (Figure 41). The dominant frequency 

in the spectrum was reducing with increase surge height (Figure 42). This could be attributed to 

the fact that the structure is yielding that leads to change in natural frequency of structural 

system. 
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Figure 40 Displacement trend for variable mean surge height and constant wind speed 

and wave height 

 

Figure 41 Power spectrum of linear material model response for variable mean surge 

height and constant mean wins speed and wave height 
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Figure 42 Power spectrum of nonlinear material model response for variable surge height 

and constant mean wind and wave height 

 

 

Figure 43 Power spectrum of linear and nonlinear material model for constant mean wind 

speed, surge height, and wave height 
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Figure 44 Displacement trend for variable wave height and constant wind speed and 

surge height 

 

Figure 45 Power spectrum of linear material model response for variable wave height and 

constant mean wind speed and surge height 
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Figure 46 Power spectrum of nonlinear material model response for variable wave height 

and constant mean wind speed and surge height 

 

 

Figure 47 Power spectrum of linear material model response for constant wave height, 

mean wind speed and surge height 
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In the last subset the wind speed of 120mph, surge height of 8 ft and  wave height of 0.5, 1.0, 1.5 

2.0, and 2.5ft and are applied. The displacement responses from the nonlinear model are 

relatively higher than that of linear model (Figure 44). In this subset, it is observed that the mean 

of nonlinear model response was varying linearly. No major change was observed in the 

spectrum of linear analysis. Change in the dominant was observed with the increase in the wave 

height  

Response Probability Analysis 

The above-mentioned three subsets illustrate the variation in the trend of structural 

response conditioned on various hazard parameters. All three scenarios have just two realizations 

for any given load combination. However, those are insufficient to predict the uncertainty in 

response. Therefore, to generate more realizations for a given mean wind speed and surge/wave 

height, it is essential to create several time histories and consequently, these will produce 

different responses to same load scenario. Also, as mentioned in the Methodology section, 72 

load cases with wind speed of 100mph, surge height of 4ft, and maximum wave height of 1.5 ft 

were applied and responses was recorded. 
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Figure 48 Histogram of response probability analysis for additional 72 load cases. 

 

Due to the lack of sufficient time histories, there were not enough data points in the histogram to 

fit any distribution to it as seen in Figure 48. Owing to the inconsistencies in histogram data, it 

was assumed that the response was following a normal distribution with a mean of 4.85 ft and 

standard deviation of 1ft. from this probability plot. It is important to reiterate here that the 

response PDF plotted above was generated for one load combination, out of 125-load 

combination discussed above. If this process was done for all 125, cases there would have be 125 

responses PDF’s. Hence each load case would have it own set of responses and each response 

will have certain probability. This knowledge of responses and there probability of occurrence 

can then be mapped to damage and subsequently to losses. This awareness of hazards, responses, 

damage and losses will empower the owner and designer to make discussion regarding the 

structure in a most efficient way  
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CHAPTER FIVE  

CONCLUSION  

This focus of the study was to quantify the uncertain response of structures to the 

predominant hazards associated with hurricanes using a performance-based engineering 

methodology.  Various hazards associated with hurricanes were identified. The three most 

critical hazards, namely wind speed, wave, and surge height were selected for study. The most 

challenging part of this study was generating hurricane hazard data and finding a correlation 

between them. Two sets of data namely annual (extreme value) data and time history data were 

required for the analysis. Annual hazard data of wind speed, surge height, and wave height were 

generated using NIST, SLOSH, and NOAA data sources respectively. These hazards were 

quantified in a probabilistic manner. The Rayleigh distribution best described 1000 year 

simulated data of wind speed, whereas the Gumbel distribution and lognormal distribution were 

an appropriate fit for all surge responses for each category of hurricane and wave height data 

respectively. After probability distribution analysis, the joint probability of hurricane hazards 

was plotted to find the joint probability of occurrence of various hazards. It was established from 

the joint probability plot that for the fifty-year return period, wind speed of 116 mph, the surge 

height of 8 ft and wave height of 1.5 ft had maximum probability. This information could be 

used in the design of structures in the coastal region. It is important to reiterate that the above 

information is based on available resources and only valid for a specific location. This method of 

hazard probability analysis could be implemented for any other locations, given availability of 

marginal distribution of hazards for that location. 

 Generating wind and wave time histories was a difficult task as there were no recorded 

time histories of hurricane winds and waves available in the public domain. Therefore, wind 
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tunnel time histories were used for hurricane time histories of wind load, while laboratory basin 

wave time histories were used as hurricane wave time histories. There is a distinct difference 

between the dominant frequencies of time histories, turbulence characteristics, and physical 

structure of wind generated during real hurricane events and wind generated during wind tunnel 

tests. Additionally the dominant frequencies in wind generated from real hurricane events were 

lower than that of wind generated from wind tunnel tests.  

No records of the time histories of hurricane waves could be found during the research. 

Hence, laboratory basin time histories were used without any modification. Prior to applying 

these wave height time histories for structural analysis, auto and cross correlation analysis were 

carried out to see how these time histories are correlated in space and time. The wave time 

histories have a very high auto correlation compared to the auto correlation in wind time 

histories. The cross correlation in wind time histories was also small compared to that of waves. 

As there was no significant correlation in wind time histories, hence real time histories from 

wind tunnel test were used for each node in finite element model. Since wave had a high 

correlation then same wave time history was used for all the nodes where wave was acting.  

The structure used for this study was a common three-story concrete frame building. The 

first natural frequency of the structure was low (near 1.4 Hz) as no floor was modeled and frame 

sections were small. This resulted into a flexible building instead of a stiff low-rise building 

typical of masonry or concrete construction. Wind, wave, and surge loads in this analysis were 

applied both as static and dynamic forces to investigate the necessity of performing dynamic 

time history analysis. From the results it was concluded that the response from dynamic analysis 

vary from static response for mean wind speeds higher than 120 mph. Hence, dynamic analysis 

for wind loads is necessary where dynamic analysis results are not significantly affected by wave 
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loads as the tributary area is smaller compared to that of wind forces. Wind forces being closer to 

the natural frequency of the structure were able to generate dynamic response from the structural 

model as expected. If the natural frequency of the system would have been increased, less 

response will be measured but higher dynamic amplification will occur. 

Time history analysis of the three-story concrete frame structure was performed using 

two different material models, namely elastic concrete material model and nonlinear concrete 

material model. Both, linear and nonlinear analysis of the structure was conducted to compare 

results and determine if it is useful to perform a nonlinear analysis for a given amplitude of 

loading or not. After performing the structural analysis, it was observed that the nonlinear 

analysis total responses were higher in comparison to the ones from the linear model for given 

hurricane hazard loads. This confirms that both linear and nonlinear analyses are essential for 

hurricane analysis. The responses in the structural analysis were mostly depending upon the 

material and section properties. The increase in the magnitude of wind load time histories did not 

caused any significant increase dynamic amplification of response. Thus, it could be concluded 

for hurricane hazards loads nonlinear dynamic analysis can get us best estimate of response. 

This study was not a complete application of performance-based engineering but an 

attempt to create a methodology to answer the complex problem of multiple hazards from a 

hurricane perspective. It was learned from the study that no hurricane loads could be quantified 

in a prescriptive way as it depends on many factors. It was proved from a sample response 

probability analysis that for a given mean wind speed of 100 mph, surge height of 4 ft and wave 

height of 1.5 ft the response can vary from 1.5 to 8 inches. Each mean force could have multiple 

realizations of response time history. This makes it imperative to analyze hurricanes from a 
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performance-based perspective to answer the complex problem of multi hazards in field of 

hurricanes engineering.  
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CHAPTER SIX 

 FUTURE STUDIES AND RECOMMENDATIONS 

This being an exploratory study, basic meteorological model such as Batts wind field 

model and mathematical SLOSH program were used. Throughout the course of this research, 

various advanced models of wind surge and wave were studied but due to lack of availability in 

public domain, they were not used. In future studies it is recommended to use the below 

mentioned advanced models. Vickery wind field model, ADCIRC and SWAN models are 

recommended for wind speed, surge height and wave height for inland location respectively. For 

the dynamic analysis, wind tunnel time histories with identical wind speed spectrum were used 

in this study. In future studies, it is suggested to use real time histories of hurricane wind. For 

generation of wave time histories it is suggested to do more laboratory basin tests with wide 

range of wave heights and periods. As explained previously in this study that the data used for 

structural analysis were not real hurricane recorded data but data generated from different 

sources. It is not necessary using a real hurricane data will change the results but it will definitely 

enhance the quality of results.   

In this study, only three hazards associated with the hurricane are discussed. Other 

hazards like scour, wind/water debris, and flooding may also directly affect the response 

measured. It is expected that wind/water debris will affect the structure by damaging the building 

envelope that will create an internal pressure, which may affect the response of structure. 

Flooding will exaggerate the hydrostatic load on structure that in turn will increase the total 

global response of structure.  
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APPENDIX 

ADDITIONAL RESULTS AND PLOTS  
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Figure 49 Trends of maximum and mean response of linear and nonlinear model for 

Mean wind speed of 80 mph 

 

Figure 50 Trends of maximum and mean response of linear and nonlinear model for 

Mean wind speed of 100 mph 
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Figure 51 Trends of maximum and mean response of linear and nonlinear model for 

Mean wind speed of 120 mph 

 

Figure 52 Trends of maximum and mean response of linear and nonlinear model for 

Mean wind speed of 140 mph 
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Figure 53 Trends of maximum and mean response of linear and nonlinear model for 

Mean wind speed of 160 mph 
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Table 8 Maximum and mean response of linear and nonlinear model for Mean wind 

speed of 80 mph 

Case NLMAX NLMEAN LNMAX LNMEAN 

800205 2.269 0.6872 2.462 0.7825 

800210 2.267 0.6838 2.462 0.7302 

800215 2.265 0.6854 2.461 0.731 

800220 2.264 0.6877 2.46 0.732 

800225 2.263 0.691 2.263 0.691 

800405 2.278 0.7023 2.478 0.7474 

800410 2.287 0.707 2.474 0.7478 

800415 2.272 0.7147 2.479 0.749 

800420 2.266 0.7229 2.55 0.7511 

800425 2.32 0.7337 2.629 0.7454 

800605 2.317 0.7373 2.503 0.7765 

800610 2.309 0.7592 2.619 0.7767 

800615 2.553 0.7687 2.708 0.778 

800620 2.766 0.7792 2.954 0.7805 

800625 2.999 0.7969 3.123 0.7845 

800805 2.35 0.7792 2.588 0.8084 

800810 2.645 0.8008 2.856 0.8081 

800815 3.004 0.817 3.126 0.8091 

800820 3.349 0.7602 3.416 0.8115 

800825 3.729 0.9085 4.02 0.8155 

801005 2.639 0.859 2.845 0.8695 

801010 3.279 0.907 3.308 0.8683 

801015 3.979 0.985 4.229 0.8689 

801020 5.351 1.214 5.266 0.8713 

801025 7.069 1.58 6.307 0.8759 
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Case NLMAX NLMEAN LNMAX LNMEAN 

1000205 3.778 1.176 3.856896 1.201 
1000210 3.773 1.177 3.851791 1.202 
1000215 3.768 1.178 3.846687 1.203 
1000220 3.763 1.18 3.841582 1.205 
1000225 3.766 1.183 3.844645 1.208 
1000405 3.783 1.197 3.862 1.157 
1000410 3.797 1.2 3.859 1.157 
1000415 3.81 1.204 3.856 1.159 
1000420 3.817 1.211 3.853 1.161 
1000425 3.857 1.22 3.889 1.164 
1000605 3.835 1.233 3.888 1.186 

1000610 3.854 1.243 3.88 1.186 
1000615 4.061 1.26 4.406 1.187 
1000620 4.301 1.283 4.214 1.19 
1000625 4.517 1.312 4.383 1.194 
1000805 3.892 1.275 3.916 1.128 
1000810 4.179 1.3 4.116 1.218 
1000815 4.537 1.34 4.386 1.219 
1000820 4.962 1.401 4.659 1.221 
1000825 5.63 1.509 4.93 1.225 
1001005 4.184 1.365 4.105 1.127 
1001010 4.841 1.44 4.568 1.278 
1001015 5.947 1.616 5.035 1.278 

1001020 7.224 1.775 5.554 1.289 
1001025 8.218 2.084 6.649 1.29 
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Table 9 Maximum and mean response of linear and nonlinear model for Mean wind 

speed of 120 mph 

Case NLMAX NLMEAN LNMAX LNMEAN 

1200205 6.427 2.044 5.539 1.64 

1200210 6.425 2.047 5.538 1.64 

1200215 6.423 2.052 5.537 1.641 

1200220 6.421 2.058 5.537 1.643 

1200225 6.419 2.064 5.536 1.645 

1200405 6.439 2.084 5.554 1.657 

1200410 6.433 2.1 5.551 1.658 

1200415 6.478 2.117 5.548 1.659 

1200420 6.599 2.135 5.545 1.661 

1200425 7.634 2.216 5.542 1.664 

1200605 6.476 2.152 5.58 1.687 

1200610 6.705 2.188 5.572 1.687 

1200615 6.854 2.255 5.586 1.688 

1200620 7.257 2.268 5.754 1.691 

1200625 6.772 2.1 5.923 1.695 

1200805 6.669 2.22 5.608 1.718 

1200810 7.039 2.287 5.656 1.718 

1200815 7.666 2.366 5.926 1.719 

1200820 8.305 2.86 6.197 1.722 

1200825 9.025 2.666 6.47 1.726 

1201005 7.025 2.374 5.661 1.778 

1201010 8.086 2.525 6.108 1.778 

1201015 9.349 2.834 6.575 1.779 

1201020 11.47 3.192 7.044 1.781 

1201025 8.997 3.519 7.514 1.786 
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Table 10 Maximum and mean response of linear and nonlinear model for Mean wind 

speed of 140 mph 

Case NLMAX NLMEAN LNMAX LNMEAN 

1400205 9.485 3.596 7.539 2.231 
1400210 11.63 4.238 7.538 2.232 
1400215 11.63 4.245 7.537 2.233 
1400220 9.562 3.609 7.537 2.234 
1400225 11.64 4.265 7.563 2.236 
1400405 9.592 3.64 7.554 2.249 

1400410 11.7 4.323 7.551 2.249 
1400415 10.96 4.02 7.548 2.251 
1400420 11.75 4.383 7.545 2.253 
1400425 11.79 4.42 7.542 2.256 
1400605 9.016 3.706 7.58 2.278 
1400610 11.86 4.472 7.572 2.278 
1400615 11.96 4.557 7.565 2.28 
1400620 11.97 3.713 7.574 2.282 
1400625 12.35 3.705 7.743 2.286 
1400805 11.94 4.538 7.608 2.31 
1400810 8.892 3.76 7.596 2.31 
1400815 12.36 3.756 7.745 2.311 

1400820 4.962 1.404 8.106 2.313 
1400825 5.63 1.505 8.29 2.317 
1401005 12.29 4.813 7.661 2.371 
1401010 11.14 3.835 7.928 2.37 
1401015 10.99 3.963 8.395 2.37 

1401020 10.98 4.665 8.791 2.374 
1401025 12.59 4.007 10.34 2.382 

 

*Censored data 
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Table 11 Maximum and mean response of linear and nonlinear model for Mean wind 

speed of 160 mph 

Case NLMAX NLMEAN LNMAX LNMEAN 

1600205 14.99 7.04 9.846 2.914 
1600210 13.54 6.318 9.845 2.914 
1600215 13.54 5.249 9.845 2.915 
1600220 13.54 5.25 9.844 2.917 
1600225 14.96 7.908 9.843 2.919 
1600405 15.13 8.317 9.862 2.931 
1600410 15.16 8.317 9.858 2.932 
1600415 15.04 8.299 9.855 2.933 
1600420 25.74 11.67 9.852 2.935 

1600425 13.79 6.411 9.849 2.939 
1600605 13.77 5.321 9.887 2.961 
1600610 14.59 7.177 9.88 2.961 
1600615 28.24 12.24 9.872 2.962 
1600620 14.05 5.427 9.867 2.965 
1600625 14.63 5.576 9.858 2.969 
1600805 27.77 12.7 9.915 2.993 
1600810 28.98 13.42 9.903 2.992 
1600815 16.27 9.391 9.891 2.993 
1600820 15.97 7.469 10.12 2.996 
1600825 17.31 9.037 10.39 3 

1601005 15 7.038 9.969 3.054 
1601010 32.68 13.71 10.03 3.052 
1601015 41.21 20.27 10.49 3.053 
1601020 11.62 4.85 11.07 3.056 
1601025 83.49 38.58 12.65 3.065 

 

*Censored data 
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