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ABSTRACT 

To create a realistic environment, many simulations require simulated agents with human 

behavior patterns. Manually creating such agents with realistic behavior is often a tedious and 

time-consuming task. This dissertation describes a new approach that automatically builds 

human behavior models for simulated agents by observing human performance. The research 

described in this dissertation synergistically combines Context-Based Reasoning, a paradigm 

especially developed to model tactical human performance within simulated agents, with Genetic 

Programming, a machine learning algorithm to construct the behavior knowledge in accordance 

to the paradigm. This synergistic combination of well-documented AI methodologies has 

resulted in a new algorithm that effectively and automatically builds simulated agents with 

human behavior. This algorithm was tested extensively with five different simulated agents 

created by observing the performance of five humans driving an automobile simulator. The 

agents show not only the ability/capability to automatically learn and generalize the behavior of 

the human observed, but they also capture some of the personal behavior patterns observed 

among the five humans. Furthermore, the agents exhibited a performance that was at least as 

good as agents developed manually by a knowledgeable engineer.  
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CHAPTER 1: INTRODUCTION 

Simulations have become an essential tool for training individuals and teams for tactical 

missions. In certain training tasks, it becomes necessary to incorporate virtual agents with 

human-like behavior to make the simulation realistic. Two types of simulations that often have 

this need are military training simulations and traffic simulations. The former are used to train 

soldiers in military tactics and the latter to analyze the traffic capacity of a new road before it is 

built. The Department of Defense [17] highlights several advantages of using simulators in 

training. Simulators: 

• increase the accessibility to practice sessions, 

• reduce the time and effort to produce after-action review material, and 

• provide more effective evaluation of new operational plans, doctrines and tactics.  

To exhibit realism, these simulations require virtual agents that can act as human players. 

Modeling intelligent agents that exhibit human behavior is a complex task. The process involves 

collecting knowledge about the domain to be modeled from subject matter experts (SMEs), or 

establishing a more formal mathematical description of the domain. In complex systems, the cost 

and effort to build realistic agents can be high. This is partly because in the real world, problem 
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domains often exist where human behavioral knowledge is incomplete, imprecise or even 

conflicting. Different experts could reach different conclusions when solving the same problem. 

In certain areas, the modeling becomes even more complex, such as in the modeling of tactical 

human behavior or skills. Here it is almost impossible to develop a mathematical formalism, and 

it can be quite difficult to extract the knowledge from SMEs. Often, the models are built on 

inflexible doctrines. This can cause the entities to behave “too perfectly” with little similarity to 

human performance [32]. It has also been shown that what is taught by the manuals is not 

necessarily what is used by the experts themselves.  Deutsch [16] gives an example of how Air 

Force instructor pilots do not scan their instruments themselves as they teach their trainees to do.  

Several approaches and techniques have been applied to develop human behavior 

representations. Most of those models are based on knowledge acquisition from experts through 

interviews or other manual methods. After the knowledge is collected, the next step is to 

interpret and analyze the knowledge for the design and implementation of the models. Getting an 

SME to express his knowledge in a suitable way, and to translate it into representable knowledge 

are interactive, difficult and time-consuming tasks. This knowledge acquisition problem has been 

referred to as the bottleneck of building expert systems [35]. If the issue is to model human 

behavior, the knowledge acquisition task is even more complicated because human behavior can 

be difficult to express and does not follow a particular set of rules. Alternatively, it would also be 

considerably easier for a SME to physically perform the tasks rather than explain them. The use 

of a learning system that could automatically extract knowledge and construct a model could 

reduce the problems mentioned above. An approach to learning and modeling behavior by 
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observing someone performing a task is called Learning by Observation.   

This research investigates learning human behavior by observation and applies it to simulated 

agents. The intent is to use the observations to learn the behavior of the observed entity. To 

construct a system that can model human behavior by observing a human in action presents 

several issues. If such a system should be feasible and applied to constructing simulated agents 

with human behavior patterns, two important prerequisites exist:  

1. There must be a suitable modeling structure to represent human behavior in 

simulated agents.  

2. Appropriate machine learning algorithms must be defined.  

The objective of this research is to show that the synergistic combination of Context-Based 

Reasoning (CxBR) and Genetic Programming (GP) fulfills these prerequisites. Furthermore, 

these have been integrated in a tool able to learn by observation. CxBR is a modeling paradigm 

developed especially to implement simulated agents with human behavior. GP is an offspring of 

Genetic Algorithms (GA) and is a learning algorithm that evolves computer programs (i.e. 

automatic programming).  

This dissertation begins by presenting problem definitions in Chapter 2. Also defined are the 

hypothesis and the contributions of this research. Chapter 3 discusses the necessary background 

to modeling human behavior, learning by observation and various machine learning approaches. 
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This background is needed to fully understand Chapter 4, which describes the new approach to 

learning by observation by integrating CxBR and GP. The configuration and execution of the 

experiments are described in Chapter 5, and Chapter 6 contains the results and conclusions from 

the experiments presented. Finally, Chapter 7 concludes this dissertation with conclusions, 

summary and future research that could be tangential to this work. 
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CHAPTER 2: PROBLEM DEFINITION 

2.1. Problem Statement 

The problem addressed in this research is how to efficiently and accurately create simulated 

agents exhibiting individual human behavior. Individual behavior means that each simulated 

agent should exhibit a behavior pattern that is specific to that agent, just as each human 

individual in the real world would have his or her own behavior pattern. The traditional way of 

creating simulated agents exhibiting human behavior includes interviews, observations from 

practice and other means to determine the behavior patterns of the human to be modeled. The 

knowledge is then analyzed, and the knowledge base is designed. The knowledge extracted is 

implemented in that knowledge base. Sometimes it becomes very difficult for us to describe our 

own behavior patterns because they are unknown even to ourselves. It could also be that some of 

our behavior is not commonly accepted or “by the book”. Therefore, even if we are aware of 

these behavioral patterns, we might not wish to express them. Furthermore, even if the behavior 

is well known and accepted, it could be very hard to describe in a way that is manageable to 

implement in a simulated agent. For example, trying to express how one slows down at a red 

traffic light could be very difficult to do. The answer would likely include fuzzy comments such 

as; “speed is rather high”, “visibility good” and “distance close”. Such statements can be difficult 
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to convert into computer code. 

To conclude this discussion, we can state that the general problem is how to more easily develop 

human-like agents with individual behavior patterns. To further concretize the problem 

statement, we will investigate how this could be done by implementing learning by observation. 

In order to implement learning by observation, a suitable machine learning algorithm capable of 

building human behavior models in a suitable manner needs to be identified. 

2.1.1. Criteria for Correct Personalized Behavior 

Agents with personalized behavior are not necessarily the best performing agents according to 

doctrine or to well-accepted rules and regulations. The interest here is to build agents that mimic 

as well as generalize the behavior of the humans being observed. This means that if the human is 

breaking the rules and regulations, the agent should also break rules and regulations. What 

constitutes a good performing agent is that its behavior is very close to the human model, even if 

the human is not performing optimally or according to common rules. 

2.2. Hypothesis 

The foundation of the research conducted here and described in this dissertation is based on this 

hypothesis: 
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A machine learning strategy can automatically build tactical agent 

knowledge by observed human performance. Additionally, these 

agents can approximate and generalize personalized human 

behavior.  

Tactical human knowledge affects the task performed by the human. Human behavior, as it 

pertains to emotions, psychology or human motor skills, is not of any interest in this research. 

The objective is to apply the automatically created tactical knowledge within simulated agents 

such as cars, aircrafts, submarines, troops, etc. Hence, activities inside such agents that are not 

observable from outside are not interesting. The only interesting aspect of human behavior is the 

effects of the human behavior - not what caused the effect. Furthermore, the information that 

forms the basis for learning emanates only from observing human performance. No additional 

data from doctrines, regulation or common rules are part of the learning process.  

2.3. Contributions 

This research strives to implement a new model of learning by observation that could contribute 

to the research community in the area of simulated entities with human behavior. The 

contributions of this research are: 

• Show that individualized human agents can be automatically built by observing 

human behavior in a simulation. 
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• The combination of CxBR and GP can, with synergistical advantages, be used as 

the basis for the system that learns from observation.  

• A learning methodology to support the automatic creation of those agents was 

created and tested using CxBR and GP. 

• A tool to accomplish the construction of agents through observation was built and 

will be made available to other researchers. 

• Data was collected to investigate automatic creation of human tactical behavior 

and is available for other researchers to use. 
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CHAPTER 3: BACKGROUND 

This chapter describes and discusses the background concepts necessary to understand the 

research conducted in this dissertation. We begin by first discussing the representation of human 

behavior. CxBR is our modeling paradigm of choice for this research and is described in detail in 

this chapter. Learning is a key topic here, as learning by observation is the basis of this research. 

The background and definition of learning by observation is described because it strongly affects 

the learning paradigm later chosen. Different learning approaches that could implement learning 

by observation are then discussed. The learning technique particularly relevant to this research is 

GP. Hence, the last part of this chapter is devoted to this topic. 

3.1. Representing Human Behavior 

One main objective of this research is to facilitate and enhance the creation of simulated agents 

that exhibit human behavior. Hence, human behavior representation is an important issue. 

The defense modeling and simulation community has defined the term human behavior 

representation to mean models of the human behavior or performance executed in military 

simulations [56].  These models exist to represent opponents or teammates in a mission 
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simulation. These are called Computer Generated Forces or CGFs.  More specifically, in CGFs, 

the main objective of human behavior representation is to model the tactical intent of the war 

fighter.  

Nevertheless, a wide range of other meanings has been associated with human behavior models. 

In the humanoid robotics area, mimicking human movement patterns could be the essence of 

modeling human behavior. The difference between the CGF and humanoid robotic approaches to 

human behavior lies in the generalization of the model. In modeling human movements, the best 

movement pattern might be the most general scheme that deviates least from the general 

population. In the case of CGFs, or in the area of traffic simulation, the human behavior in the 

different entities should be more personalized and must exhibit a degree of variability.  

Henninger [33] defines the term behavior as “any observable action or reaction of a living 

organism.” The objective of building entities with human behavior is to capture the action, 

reaction and conscious attributes of the subject of study in the model. The attributes that 

constitute human behavior could be expressed at many different levels. Banks and Stytz [5] 

observe two different components. The first component is the correct output modeling where the 

model produces the right output in a human-like manner. The second component is 

unpredictability where the model behaves in a manner such that it is hard to predict any 

preprogrammed behavior pattern. Sidani and Gonzalez [70] had a similar classification, but 

focused on the implicit and explicit knowledge involved in human behavior. Explicit knowledge 

is that which could easily be verbalized and represented in symbolic form. Conversely, implicit 
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knowledge is that which is hard to model and highly intuitive. Whitmore et al. [80] highlight 

three issues that improve the humanness of an autonomous agent: 1) response time, 2) fatigue 

level and 3) expertise level. To make the agent act human-like, the response time must be 

comparable with human response time. Humans also suffer from physical exhaustion and other 

factors that can lower their capacity and influence their performance - the fatigue level. The 

expertise level will have influences on the agent’s performance. As a human gains experience, 

his or her performance will improve. Tambe et al. [74] describe in detail the human behavior 

requirements for building simulated autonomous pilots in a virtual environment. They state the 

following possible requirements to agents with human behavior: 

• Goal-driven behavior 

• Knowledge-intensive behavior 

• Reactivity 

• Real-time performance 

• Conforming to human reaction times and limitations 

• Overlapping performance of multiple high-level tasks 

• Multi-agent coordination 

• Communication 

• Agent modeling (especially opponent modeling) 

• Temporal reasoning 

• Planning 
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• Maintaining episodic memory 

• Explanation 

Tambe et al. [74] provide a full explanation of the requirements. Depending on the application of 

interest, the level of humanness of the model can vary greatly. Many applications may only 

require simple behavior patterns while others may require the agents to be able to communicate 

with other agents or with real people. In some applications, the ability to explain its actions is 

also included in the model. As the number of human features increases, the model’s level of 

complexity also dramatically increases.  

On the issue of human behavior implementation, one approach would be to build a model of the 

biological brain. The complexity of such a task is enormous and the connection through which 

the biological model would reflect intelligence is not fully understood. Nevertheless, good results 

have been reported in modeling human behavior by simulating simplified neural brain 

connections, i.e. artificial neural networks. Another promising approach is to model human 

behavior at a level closer to human problem solving. When humans try to solve a problem, we 

often decompose them into a number of sub-problems that we can solve one by one, and which 

together solve the original problem. Humans do not think or solve problems in a mathematical or 

regression-like manner.  

In the area of modeling human behavior, the U.S. army sponsored a substantial amount of 

research to make more realistic simulators. Three types of simulations can be identified: live, 
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virtual and constructive. In live simulations there are no simulated agents present. The 

simulation is a training session where the actors act in the real world. In constructive simulations, 

all the actors are simulated agents and the only human interference is the initial configuration or 

when some limited parameters are adjusted during the simulation. All human behavior events in 

the simulation come from simulated agents with human behavior. Virtual simulation is when the 

simulator incorporates both real human players and simulated agents with human behavior. 

Because this research pertains to simulated agents with human behavior, the interest is in the two 

latter types of simulations (i.e. virtual and constructive). In constructive simulations, the human 

behavior models are fairly simple, based on doctrine knowledge and might have probabilistic 

elements. One such simulation is JANUS [57].  It provides simulation of battling forces. This 

simulation could be used to evaluate new doctrines or tactics and to train leaders and decision 

makers.  

More challenging are virtual simulations, where both real humans and simulated agents coexist 

and interact. Here, a well-performing agent should be difficult to distinguish from a human 

player. The requirements of the human behavior models are much higher and should incorporate 

more human features. Two commonly used simulations of this type are Modular Semi 

Automated Forces (ModSAF) and Close Combat Tactical Trainer - Semi Automated Forces 

(CCTT SAF) [57]. These two simulations can be used to train both individual combatants and 

decision makers. ModSAF is an open architecture for constructing advanced distributed 

simulations with CGF support. The paradigm used to model CGFs in ModSAF is finite-state 

machines. There is no fundamental model of human behavior in ModSAF, so the behavior must 

13 

 
  
 



be incorporated into the finite-state machines. This makes using ModSAF somewhat 

cumbersome to construct a general purpose behavioral or learning model. The human behavior 

model in CCTT SAF is based on rule-based knowledge. CCTT SAF contains no support for 

managing human behavior models, and the models are mostly based on doctrine knowledge. 

3.1.1. Frameworks for Human Behavioral Modeling 

Besides full working simulations, there have been a number of frameworks developed to support 

the modeling of human behavior. Most of these assume that a human can be described as an 

input/output system. A way of describing such a system is the modified stage model, shown in 

Figure 1. This model shown here is derived from Wickens’ [81] work.  

The modified stage model is a generic model of a simulated agent with human behavior features. 

The sensing and perception module transforms the external stimuli received from the 

environment into an internal information representation. Working memory holds the temporary 

data needed for the cognitive process at its current situation. Long-term memory holds a large 

amount of data to handle all possible situations in which the agent could operate. The cognition 

module is the engine that propels the agent’s behavior. The cognition process uses the 

knowledge stored in the memory, handles the situational awareness, scheduling, multitasking, 

makes the decision and manages the learning process of the agent. The motor behavior simply 

models the neuromuscular system to carry out the actions selected by the cognitive process. The 

focus of the research presented in this dissertation is to automatically build, by observation, the 

14 

 
  
 



knowledge residing in the cognition module, working memory and long term memory. Note that 

the learning in the cognition module (see Figure 1) regards the agent’s ability to learn from 

experience. This is not the same sort of learning as Learning by Observation used in this 

research, where the initial tactical human behavior is created by observing a human’s 

performance. 
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Figure 1: Modified stage model 

Some well-explored models of human cognition are Adaptive Control of Thought (ACT-R), 
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COGnition as NEtwork of Tasks (COGNET) and Soar.    

ACT-R was originally developed by Anderson [3] as a general model for problem solving and 

learning. ACT-R categorizes knowledge into two types: declarative and procedural. Declarative 

knowledge mainly retrieves information from the environment and describes the situation (i.e. 

situational awareness). Procedural knowledge is represented in production rules. These 

production rules are goal driven. Between the two knowledge modules, there is a pattern-

matching process where the different production rules compete to get executed. There are several 

learning mechanisms in ACT-R. Learning can take place in the declarative knowledge, the 

procedural knowledge or in the pattern-matching process between the knowledge modules.  

One hypothesis of cognition is that humans perform multiple tasks in parallel. These tasks 

compete for the human’s attention. However, even if these tasks are, as a whole, important for 

problem solving, the most important tasks are executed first. In a similar manner, COGNET [57] 

models these parallel tasks as problem-solving agents. Each task (i.e. problem-solving agent) has 

a set of trigger conditions, and when those are satisfied, it triggers its activation. Activation of 

the tasks relates to the priority of a task’s goal. The basis of COGNET is a blackboard model 

where communication between tasks takes place and information from the environment is 

posted. COGNET’s trigger evaluation process and attention focus manager monitor the 

blackboard to manage the task’s trigger conditions, activation and execution. COGNET does not 

have any learning capabilities. 
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Soar was, as ACT-R, developed as a general problem solving architecture. There are also some 

learning capabilities within Soar. The basis of Soar was inherited from Newell’s model of human 

cognition [53]. Soar is a goal seeking state machine where a state is the current problem-solving 

situation. By applying a rule to the current state, it will put the problem solving into a new state 

and Soar searches for and applies operators until a goal is reached. The Soar architecture is very 

similar to the modified stage model (see Figure 1), but all the processors, including the motor 

processors, work through the working memory and not the cognition module as in Figure 1. The 

working memory contains the current state of the problem solving process and the production 

rules on how to apply actions resides in long-term memory. Soar has a learning mechanism, 

called chunking, that is able to create new production rules.  

Another architecture developed for modeling human behavior in simulated agents is Context-

Based Reasoning (CxBR). This architecture is not as widely used as the other three described 

here, but requires special attention because it is inspired from a hierarchical model of human 

behavior based on a contextual approach, making this architecture very intuitive to use for 

modeling human behavior. Because this is essential to this investigation, it is described in detail 

in the next section.  

3.1.2. Context-Based Reasoning  

CxBR has been developed to build simulated agents with human behavior though the use of 

context-partitioned knowledge [26]. CxBR is based on the concept that humans think in terms of 
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contexts. A context is an abstraction of a specific situation, where only a limited number of 

things are expected to occur. Biking in the forest differs from biking in the city, and different 

types of changes in the environment are likely to occur. This implies that different actions and 

reactions are expected from the biker in the two different environments. While biking in the 

forest, you might expect something to obstruct the way around the next bend, but no traffic signs 

are likely to appear. By attaching the desired behavior of the agent to the contexts, a very 

suitable structure of hierarchical knowledge is developed. CxBR is based on the idea that: 

• A recognized situation calls for a set of actions and procedures that properly 

address the current situation.  

• As a mission evolves, a transition to another set of actions and procedures may be 

required to address the new situation. 

• Things that are likely to happen while under the current situation are limited by 

the current situation itself. 

CxBR encapsulates knowledge about appropriate actions and/or procedures as well as 

compatible new situations into hierarchically organized contexts. See Figure 2. By modeling the 

agent with different contexts, the scope of the knowledge in each context can be limited and the 

entire knowledge base becomes well-structured and easier to build and reuse. 

The top level of contexts, the Mission Context, describes an overall goal or objective of the 

mission (e.g. Drive-Car-Home). This top level of contexts is the most abstract one. Contexts 
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further down in the hierarchy become more concrete. A Mission Context does not control the 

agent per se. Instead, it defines the scope of the mission, its goals, the plan, and the constraints 

imposed (time, weather, rules of engagement, etc). The Mission Context describes an overall 

goal that can be the same or different for many agents in a multi-agent environment. On the other 

hand, the levels from the Major Context down are typically specific for a singular agent.  
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Figure 2: The CxBR hierarchical structure 

The Major Context is the primary control element for the agent. It contains functions, rules and a 

list of compatible next Major Contexts (i.e. possible context transitions). Identification of a new 

situation can now be simplified because only a limited number of all situations are possible 

under the currently active context. Sub-Contexts are abstractions of functions performed by the 

Major Context which may be too complex for one function, or that may be employed by other 
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Major Contexts. This encourages re-usability. Sub-Contexts can be applicable and reusable in 

several different Major Contexts. Context transitions are more probable in the lower levels, while 

the Mission Context seldom or never expires during a training mission. Only one context at the 

same level can be active at one time (i.e. same level contexts are mutually exclusive). 

When the situation changes, a transition to another Major Context may be required to properly 

address the emerging situation. For example, the automobile may enter an interstate highway, 

requiring a transition to an Interstate-Driving Major Context. Transitions between contexts are 

triggered by events in the environment – some planned others unplanned. CxBR is an intuitive, 

efficient and effective representation technique for human behavior representation. For one, 

CxBR was specifically designed to model tactical human behavior. As such, it provides the 

important hierarchical organization of contexts. 

Two major parts can be identified in the context-base that together constitutes the behavior of the 

agent. All the knowledge in the context base is stored in the action rules and the sentinel rules. 

Within the different contexts and Sub-Contexts, the action rules control the behavior of the agent 

in a specific context. The other part is the set of sentinel rules that determine when a new context 

should become active (i.e. context transition). Observe that the expression rules do not limit the 

knowledge to be stored in IF-THEN rules. In fact, the action rules and sentinel rules could be 

composed of production rules, various functions and operators and Sub-Context calls, or other 

more complex data and code structures. Even if the name of the behavioral knowledge containers 

are action rules and sentinel rules, these names now refer to the collection of rules, functions, 
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operators, Sub-Context calls or data structures that might constitute its behavior.  

When a context transition takes place, the collection of sentinel rules determine that the currently 

active context is no longer the most suitable one for the situation at hand, and will activate 

another context. Sentinel rules can be implemented in two different ways: direct transition or 

competing contexts transition. Within direct transition, each context is self-aware and its sentinel 

rules are fully contained within the context. If a context at a specific level in the hierarchy 

requests activation, either one of two prerequisites must be fulfilled for this context to be 

activated. Either no other context is active at the same level or the already activated context 

needs to release its activation. If two contexts request activation at the same time, the activation 

will go to the context first in line (i.e. contexts at the same level will be prioritized at the 

implementation stage). Contexts will always yield their activation to a requesting Sub-Context, if 

and only if the Sub-Context is a Sub-Context to the context currently active. In competing 

context transition [65], the context at the same level competes for activation. When a new 

situation occurs, each context evaluates the situation and comes up with some score on how well 

the context addresses the current situation. The context with the highest score will then be 

activated. So far, the competing context has not been thoroughly investigated or implemented, 

but it will probably be part of CxBR implementation in the future. 

3.1.2.1. The CxBR Framework 

A framework was developed by Norlander [55] to facilitate the execution of simulated agents 
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within a simulator. The framework provides tools for building a basic simulation engine with 

agents implemented in a CxBR structure. It provides the developer with structures and tools to 

connect the different contexts together. It also provides the functionality on how the context 

switching takes place and how the different agents’ sentinel rules are executed. Figure 3 

describes the parts of the framework.  

   

Inference 
Engine

Clock 

Global Fact-base

Local Fact-base 

Context-Base 

Objective 

Plan 

Universal Sentinel rules 

Context Context 

Transitions

Action rules
  

Sub-
Context 

Context 
Sentinel rules

Mission 

Tactical  
Agent 

Simulator 

Figure 3: Context-Based Reasoning in simulation 

The framework is implemented in C++ and gives the developer a set of base classes to easily 

derive and create agents within the CxBR paradigm. With the framework, the developer can 

concentrate on implementing the knowledge in the action rules and sentinel rules of the different 
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agents within the simulation. Direct transition context switching is implemented in the 

framework, but it does not yet support competing context transitions, although there are no 

restrictions within the framework prohibiting its extension into competing contexts. 

All the agent’s contexts in the hierarchy (i.e. mission Contexts, Major Contexts and Sub-

Contexts) are stored in a context-base. The mission context contains criteria (i.e. objectives) that 

determine when the mission has been completed. The mission also contains a plan that strives to 

complete the mission objective. Each context also has a transition list, which specifies to what 

other contexts this context could transition. 

This framework provides an inference engine as well as tools to create and manage the local and 

the global fact base. The local fact base in the framework stores the facts that are only to be 

known by the particular tactical agent (i.e. private knowledge), while the global fact base 

contains facts that are available to all agents. Hence, the global fact base describes the simulated 

world (i.e. the environment). The framework provides a tool for searching and retrieving facts 

from the local and global fact base and makes them available to the agent. By updating the fact 

bases, the knowledge stored in the context base can make the agent interact with the 

environment. Each agent in the simulation is stored in a list and in every simulation step all the 

agents in the list act. When an agent is acting in the environment, the local and global fact bases 

are updated so the agent and all other actors in the simulation can be aware of this agent’s prior 

actions. The agents in the list are all things in the simulation that could change state (i.e. traffic 

lights and human behavior agents). As an agent fulfills its mission goals, it will be removed from 
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the list and its existence in the simulated environment cease. 

The framework was further developed as part of the research described in this dissertation by 

adding a simple graphical interface. This graphical interface shows the traffic simulation with the 

streets, cars and traffic lights.  It was developed with the OpenGL standard library. The 

framework was further enhanced with recording capabilities that could trigger to capture the 

behavior of the simulated cars at specific instances. The recording feature is also able to include 

information in the recording from a reference car located in a separate database. This feature 

makes it easy to compare different agent’s and human’s performance. 

3.2. Learning by Observation 

Automatic model construction would certainly improve the development process for human 

behavior models. If the models could be created by merely automatically observing the human 

being modeled, it would dramatically ease the model development process. This would fall under 

Learning by Observation. 

The term Learning by Observation has its roots in biology. Infants of many species often learn 

things by observing the adults. Studies have shown that humans fully develop observational 

learning by the age of 24 months [1]. By that age, children can easily learn a simple task by 

observing another person performing the task. Inspired by how humans and other mammals seem 

to learn by observation, the machine learning community has developed several theories on 
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learning by observation, applied to different areas. Most of the AI literature refers to learning by 

observation as a method of learning the behavior of another agent or human by observing its 

action. Note that learning by observation is a direction on how the data for learning is to be 

collected - through observation. It does not mention what learning paradigms to use or what type 

of learning takes place. In this research, the definition of learning by observation is as follows:  

The agent shall adopt the behavior of the observed entity solely 

from interpretation of data collected by means of observation. 

A number of advantages could be gained by using learning by observation instead of the 

traditional knowledge acquisition and development methods: 

• Reduce time and cost of development, debugging and maintenance 

• More accurate, realistic and refined representation of human behavior 

• Potential to incorporate new features of human-like features, such as emotions 

• Relaxes the need for programming skills in the part of the operators 

• Reduction of problem domains 

• Develop simulated entities in real time 

• Ability to specifically model variations of the behavior (e.g., aggressive drivers) 

Several researchers have proposed learning by observation as a mean to overcome the 

knowledge acquisition bottleneck [29], [43], [68]. The use of a system that interacts directly with 
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the SME as he or she performs the task and automatically extracts the knowledge (i.e. learns by 

observation), would significantly reduce the time and effort in knowledge acquisition. If the 

process could be fully automated, learning by observation could conceivably be able to produce 

or update simulated entities in real time. As an example, while an expert uses a simulator, an 

automated learning by observation system could, at the same time, be developing a model that 

emulates his performance. It is much easier for an expert to perform a task than to describe its 

performance, or by other means try to evaluate someone’s performance, as in learning by 

instruction [44]. The use of learning by observation has additional advantages as it pertains to 

model behaviors where the knowledge is difficult to express.  

The time and cost of correcting, updating and customizing could also conceivably be reduced if 

learning by observation would be used in lieu of restructuring, adding or removing part of the 

model by hand. Milzner and Leifhelm  [51] propose learning by observation to relax the 

knowledge update problem in rapidly changing knowledge domains. 

3.2.1. Prior Work in the Field of Learning by Observation 

Some researchers have stated that certain knowledge could be very difficult to extract with 

traditional methods [28], [70]. Knowledge that is hard to model and highly intuitive is classified 

as implicit knowledge. Implicit knowledge is easier to extract by using learning by observation. 

In fact, it might not even be possible to formalize this knowledge with traditional methods.  
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Henninger et al. [32] show that by using learning by observation, the models generated are more 

accurate and comply more fully with human performance. The use of learning by observation 

will also open the possibility of easily developing many simulated entities with similar, but not 

identical, behaviors. Each entity could be tuned slightly differently to personalize its behavior. 

Schaal [68] states that in an enormously large search space, one approach is to use learning by 

observing and imitating the behavior to reduce the search space and make it usable. Restricting 

the learning algorithm to minimize the deviation between the observed entity and the learning 

agent dramatically reduces the search space. In some applications, learning by observation could 

be used to reduce or even diminish the need for time- consuming and complex programming. If 

the agent at hand can learn tasks automatically by observing the task performed by others, the 

need to program the new behavior by hand is no longer necessary.  

The time and cost of correcting, updating and customizing could be reduced if learning by 

observation were to be used instead of restructuring, adding or removing part of the model by 

hand. Milzner and Leifhelm [51] propose learning by observation to relax the knowledge update 

problem in rapidly changing knowledge domains.  

In artificial neural networks, the term learning by observation is often used to refer to the fact 

that the training data is a set of observations. This is not to what this dissertation refers to as 

learning by observation. Much of the data in the machine learning community is based on real 

observations, but do not include any behavior knowledge or demonstration on how to perform a 
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task. Even if many observations are used to learn (for example, recognizing handwritten 

characters), the observed entity might not teach us any behavioral skills. The intent of this 

research is not only to use the observations to learn, but also to learn the behavior of the 

observed entity. Thus, interest herein is to look at learning by observation with respect to 

gathering knowledge by observing a human in action in order to model his behavior. 

In the area of robotics, the use of learning by observation has been previously used to implement 

human behavior in humanoid robot movements [4] , [67], [73]. Many times, the core issue of 

learning by observation within the robotic area is dealing with image processing, as humanoid 

robots often use cameras to implement their vision. The learning system often tries to mimic the 

specific movement of the human, interpreted by the robotic vision system, and not to adopt a 

general behavior. This refers to the sensing and perception module in the modified stage model 

(see Figure 1) and is not the objective of the research presented in this dissertation. Schaal [68] 

makes a distinction between learning by observation and imitation learning. In most humanoid 

robotics, the objective of the movement pattern is to imitate the human as closely as possible.  

Bentivegna and Atkeson [8] used learning by observation to implement behavior skill in a 

humanoid robot. By observing a human, it learned to play air hockey using a set of action 

primitives, each describing a certain behavior (e.g. left hit). Prior work in modeling human 

behavior through learning from observation has also been conducted in the area of maneuvering 

a car [59] and flying an aircraft [44] [66]. However, the work in modeling human behavior has 

been done to create the best performing agent or to model low level motor skills. No results have 
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been found where the focus is on personalized behavior patterns and/or tactical decision making. 

Moukas and Hayes [52] used learning by observation to model social behavior in autonomous 

robots. The social behavior they modeled was the behavior of honeybees. The study of interest 

was that bees communicate with each other using dances that tell where food has been found. 

Moukas and Hayes’ reinforcement scheme showed the potential of learning by observation. The 

social behavior to learn even the things needed to teach others must be classified as a very hard 

problem that was still solved through observation alone. 

The learning algorithm must be able to collect the data from the environment and monitor the 

actions of the expert. A feasible way of collecting data and probing the action of the user is to 

use a simulator to implement learning by observation, as in the work of Gonzalez et al [28]. By 

using a simulator instead of the real world, data collection will likely be much easier, and some 

situations that are difficult or dangerous (e.g. hazardous situations) could emerge. In the 

simulator environment, there is no need for complex sensors or image recognition systems to be 

able to understand the environment. Gonzalez et al [29] argue that learning through observation 

is especially well suited to acquiring tactical knowledge, the knowledge used to apply the best 

action for a given situation. Tactical knowledge is often implicit knowledge. Hence, tactical 

knowledge can be very hard to express and extract from an expert by traditional knowledge 

acquisition methods. Several different learning strategies have been used to implement learning 

by observation. 
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3.3. Different Machine Learning Approaches 

In order to achieve learning by observation, a machine learning algorithm needs to be 

incorporated into the process.  

Machine learning algorithms can be applied in two different ways: on-line and off-line. In off-

line learning, the data are collected and possibly preprocessed prior to learning. On-line learning 

is performed while data are being collected. Machine learning can also be classified in three 

different classes: 

• Supervised learning. During supervised learning, the correct output is known and the 

learning algorithm can be supervised. For each input pattern, the corresponding output is 

distinct and using the correct output the learning can be directed towards its goal. 

• Reinforcement learning. In reinforcement learning, the correct output is not known but the 

results of action taken can be evaluated by the learning algorithm. During learning, actions 

or decisions that result in positive outcomes are reinforced, while those that result in 

negative outcomes are weakened.  

• Unsupervised learning. During unsupervised learning, the correct output is also unknown 

and can’t be evaluated as in reinforcement learning. Unsupervised learning algorithms self-

organize in some manner to compress or cluster the data.  

Since this research aims to model human behavior and the human’s performance is known, 

30 

 
  
 



unsupervised learning is not of any interest. Reinforcement learning might be an interesting 

approach.  This will be described in more detail next. The rest of this chapter briefly presents 

some supervised machine learning approaches of interest. 

3.3.1. Reinforcement Learning 

Sutton and Barto [72] make the following statement on Reinforcement Learning: “The learner is 

not told which actions to take but instead must discover which actions yield the most reward by 

trying them.” This learning by trial-and-error is a central issue in Reinforcement Learning. The 

correct output is not known, but the agent’s actions can be evaluated. 

They further state that reinforcement learning is different from supervised learning. In 

reinforcement learning the output pattern is not known, but there are known methods to evaluate 

the output. The performance could be measured based on the evaluation of the output. The 

output can’t be classified as correct or faulty, but it can distinguish if one output is better than 

another. The most important feature of reinforcement learning is the evaluation of the action 

taken as the exploration force. 

Sutton and Barto [72] identify four sub-elements of reinforcement learning: 1) a policy, 2) a 

reward function, 3) a value function and 4) a model (optional). The policy defines the behavior at 

a given time. The reward function rewards the learning algorithm for some action based on the 

desirability of the current policy. If a policy receives a bad reward, the learning algorithm lowers 

31 

 
  
 



the chance of selecting the same policy the next time the situation occurs. The value function 

estimates the long-time desirability of different state changes. The reward function gives an 

immediate response from the environment on how good the policy is, but the value function 

estimates the cumulative reward a certain policy could achieve taking in to account the states that 

are likely to follow. The reinforcement learning cycle could be described as follows: 

1.  Interpret the situation regarding inputs, internal state, etc. 

2.  Choose the most promising action. 

3.  Evaluate the new situation.  

4.  Possibly predict the future reward of this action.  

5.  Give the last action appropriate reward regarding both steps 3 and 4. 

6.  Adjust/update the part that determines the action. 

From this, we can conclude that Reinforcement Learning can be described as a goal-driven agent 

that learns from experience. The outcome of an action could not be determined to be correct or 

faulty, but it could be evaluated to be more or less appropriate. Contrary to unsupervised 

learning, where nothing about the output is known, we can distinguish good actions from bad 

ones. Furthermore, Reinforcement Learning is almost exclusively on-line learning. To be able to 

evaluate an action (i.e. experience) the action must be performed. Since the outcome or result of 

an action might not be deterministic, the action must be conducted or simulated. One might 

argue that learning can take place off-line if the outcome of each action is estimated and then 

evaluated. 
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3.3.2. Inductive Learning 

Inductive learning is the process of learning from examples. Hence, inductive learning is most 

suitable when implemented as an off-line and supervised learning approach. The learning is 

based on the theory that there exists a hypothesis h that can approximate the function f(x) that 

transforms the input x to the output y, where y=f(x). In other words, inductive learning tries to 

approximate the input-output transformation by the examples (x, y) presented to it. Inductive 

learning is, therefore, more of a collection of learning paradigms that learns by mapping the 

correct inputs to the correct outputs. The type of learning that falls under inductive learning is 

mostly related to pattern recognition or classification. To implement inductive learning, various 

statistical and machine learning algorithms can be used. Several evolutionary and artificial neural 

network approaches could be considered as inductive learning, but they will be presented in 

separate sections, since they can be used in a wider area than merely as inductive learners.  

Statistical methods, such as nearest neighbor [15], have been used in the area of inductive 

learning. Nearest neighbor techniques use a distance measure to determine the most similar 

example stored when a new pattern is presented. The classification is then determined by the 

class belonging of the closest example found. A far more interesting technique, and commonly 

correlated to induction learning, is the use of decision trees. 

3.3.2.1. Decision Trees 

Decision trees are, as the name suggests, trees built of internal decision nodes. Figure 4 shows an 
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example of a decision tree. Executing the tree is done by traversing the tree and choosing the 

various paths to eventually reach a leaf in the tree. Leafs describe the solutions (i.e. the classes in 

classifying problems). The paths describe rules used to reach the solutions. 

Body 
temperature?
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Figure 4: Decision tree example 

The problem with a decision tree arises when we need to cover all possible answers to all 

decision functions. If we look at the simple example in Figure 4, we see that we have no solution 

to the facts of low-fever and cough. If we want to construct a complete tree with only two 

different classes but with n attributes (i.e. different facts), the number of functions in the tree will 

be 2 [71]. 
n2  If we only have six attributes, it means that we will have 2*1019 different functions 

in the tree. That is a large tree.  

The learning strategies applied to these decision trees is to prune the trees to a usable size. There 

are a number of such learning algorithms as ID3 [62], C4.5 [63] and CART [13]. The basic idea 
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in finding a small, usable tree is to find the most important decision functions by looking at the 

training examples. The more the function affects the results, the earlier it should be tested in the 

decision process. If the tree is described as in Figure 4 the important functions are moved up in 

the tree, so the most important function is placed at the top and tested first. The more influence a 

function has on the result the more important the function is. If the answer to the problem can be 

found by only processing one function/question, this should reside at the top of the tree. In this 

manner, the size of the trees can be reduced and the average search steps minimized. 

When it comes to learning human behavior, decision trees are feasible since the knowledge 

stored is verbal and similar to human ways of reasoning.  

3.3.3. Connectionist Learning 

Connectionist learning is a group of learning algorithms whose theories are inspired by the 

smallest mechanisms that explain intellectual abilities in the human brain- the neuron. These 

algorithms are often referred to as Artificial Neural Networks (ANN).  Simplified models of the 

electro-chemical mechanism in the brain are the commonalities in this group of algorithms.  

In 1943, McCulloch and Pitts [48] presented the first simplified model of a human neuron. 

Rosenblatt [64] added a learning mechanism and called it perceptron. In the late 60s, the single 

layer network proved to have major limitations and the research was set back for a long time. At 

that time, computational power was very limited and no learning algorithm had been developed 
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for multi-layer networks. In the late 80s, the research accelerated again when the computational 

power improved, and the multi-layered network learning algorithms had been developed and 

refined. The use of neurons in a multilayer network resolved the limitations of single-layer 

networks. 

3.3.3.1. Artificial Neural Networks 

Common in all ANNs is that they are composed of a large number of artificial neurons, which 

are connected to each other in a network structure. Each connection is equipped with a weight 

that determines how important the connection is. As signals traverse the net, each single neuron 

asynchronously processes its local information. Learning in the network takes place as the 

strength of the connections (i.e. weights) are recalculated and iteratively updated during the 

training process. The neuron that is common to all ANN has very small variations in different 

ANNs. Figure 5 show a simple neuron model.  

The inputs, xn, could be binary or real-valued numbers that are multiplied by their corresponding 

weights, wnj , and those values are then summed in neuron j. This value is then applied to an 

activation function which “fires” the neuron if the value reaches above a threshold value defined 

by the activation function.  This firing produces an output value, yj. The activation function is 

typically a sigmoid or step function. The output of the neuron could be connected to other 

neurons in the next layer and serve as their input values. If the neuron is in the last layer, then its 

output contributes to the final output value. Most ANNs require the input values to be 

36 

 
  
 



standardized to some range (if they are real valued numbers). When learning takes place, the 

weight values change. When learning is over, the knowledge stored in an ANN is the different 

weight values in the network. 

x1

w1j

x2  w2j ∑ yj

wijxi  

Figure 5: The simple neuron model 

The neuron structure, and how they are connected, could be very different in different ANN 

architectures. Figure 6 shows three different network structures with different neuron 

connections. The number of neurons is different from case to case and is mostly defined by the 

ANN architecture. There are some networks that are able to self-adjust the number of neurons 

needed to solve the problem (e.g. ART architectures). Even if the network topologies look very 

different, the simple functionality of the neurons and the connections with the weights is very 

similar. The learning algorithm can also vary between different ANNs.  Even if the network 

topology is the same, the learning (i.e. updating the weights) could differ significantly.  If the 

network is a multi-layered feed forward network, the learning could be back propagation, 

cascade correlation, genetic algorithms or some other learning algorithm. The types of networks 
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can also be classified as supervised or unsupervised (see section 3.3) networks. In unsupervised 

learning ANNs, the correct answer is not known but the network organizes itself in some manner 

by the examples presented to it. In this manner, the problem space can be organized and modeled 

automatically in the way the net finds most appropriate. 

 

Figure 6: Neuron connections in Multi Layered Perceptron, Hopfield Net and ART 1 

3.3.4. Evolutionary Learning 

Another very interesting machine learning algorithm is Genetic Programming (GP). GP is part of 

the Evolutionary Algorithm (EA) branch of machine learning algorithms. GP is an offspring of 

GA, and has the same foundation but differ in some significant areas.  

Before getting into GP, it is worthwhile to look at the EA family. Figure 7 illustrates the different 

branches of the EAs. Evolutionary Strategies and Evolutionary Programming both started to 

develop during the early 1960’s. Both use real valued individuals and the evolutionary operators 

are based on statistical distributions. Evolutionary Programming looks at evolution at the species 

level and thus has no recombination operators available. Holland [34] presented Genetic 
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Algorithms (GAs) in the mid 1970’s, and that has become the most popular EA. Classifier 

Systems are an extension to GAs that Holland presented in the mid-80’s. This extension 

introduces a black box (i.e. autonomous agent) where the GA is the learning engine that receives 

reinforcement from the environment. Classifier Systems can be seen as an implementation of 

reinforcement learning. Genetic Programming was developed from GAs and Koza’s 

groundbreaking work [40] in the early 1990’s. 

Evolutionary Algorithms 

Evolutionary Strategies Evolutionary Programming Genetic Algorithms 

Classifier Systems Genetic Programming 

Figure 7: Evolutionary Algorithms  

The difference between GAs and GPs is that GPs evolve computer programs. Each individual in 

a basic GA usually represents a set of values, which in turn represents some solution to a 

problem. Otherwise, the two basic GA/GP algorithms are very similar. A complete description of 

the GP algorithm is described in the next section. In fact, the step-by-step procedure described on 

page 44 is the same for GAs. 

The individual’s representation within the GA or GP is often expressed as the genotype. The 
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phenotype is the result when the genotype is transformed and placed into context and will 

represent the complete solution. In GPs, the genotypes are computer programs usually 

represented in source code or machine code statements. The transformation from genotype to 

phenotype, in this case, is done by interpretation or compilation and execution of the program. 

The use of computer programs as individuals raises the problem solving to a higher abstraction 

level and opens the possibilities of more easily attacking complex problems from a high-level 

problem statement. As the GP evolves program (i.e. automatic programming), it states that all 

problems that could be solved by a computer could also theoretically be automatically created by 

the GP if sufficient computational power and adequate time is available. 

There is no claim that problems solved with GP could not be solved with a GA, but the use of 

GP sometimes provides a better tool than a GA. Still, many problems could be easily solved with 

a GA, such as classification and optimization problems with numerical values. When the 

problem’s complexity increases and the objective is to develop complex structures, such as 

building an amplifier, the use of  a GA adds extra customization to arrive at a useful 

representation scheme - adjust/invent genetic operators to work on the representation, etc. GPs 

have all those tools, and by representing the individuals as computer programs, more complex 

and intertwined problems can be tackled. 
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Figure 8:  Taxonomy of GA/GP applications 
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 Architecture 
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Behavior 
 Autonomous Agents [69] 

Classification 
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 Data Mining [11] 
 Feature  
Selection [78] 

 Prediction [58] 

Artificial Life [78]

Genetic Algorithms / Genetic Programming 

GAs and GP have been used in a vast variety of problem-solving domains. In Figure 8, the 

taxonomy of GA/GP applications is structured in four main categories: 1) classification, 2) 

optimization, 3) design and 4) artificial life. The classification category is rather self-

explanatory. Optimization, however, is more difficult to define. The argument could be made 

that all other categories are sub-elements of optimization problems. For example, when the 

problem is to classify handwritten characters, it could be viewed as an optimization problem 

where the number of misclassified letters is minimized. Instead, the optimization problems here 

are described as the existence of a structure, function or formula to be optimized. Multi-modal 

optimization is when the interest is not only to find the global optima, but also to find local 
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optimums under investigation.   

The third category is design. Here, the problem is one of a creative nature. The task is to create 

and build something that might have an artistic flavor, where the genetic process creates artistic 

pictures or learns to play jazz solos [10]. Here, the learning is no longer supervised in the 

traditional way. It is hard to tell if the output is correct or not. Rather, someone’s opinion is often 

used as the fitness evaluation in an interactive manner. 

A sub-category of design is innovative systems. Here, the objective is to create a machine that 

will invent new things. GP has been successful in presenting solutions that are equal or better 

than patented results [7], [41]. In engineering design, the genetic process replaces the engineer in 

designing for example antennas, amplifiers or filters [42]. Here, the GP starts with a blank piece 

of paper, a set of valid components, and a tool to evaluate the performance of the individual (e.g. 

a filter simulator). Now the GP chooses the components, does the wiring, tests the individuals 

and evolves (i.e. designs) the filters from scratch in a manner similar to what an electrical 

engineer does.  

The more traditional machine learning applications (e.g. robot navigation, learning behavior, 

automation process, etc) are located under modeling.  

The last category is artificial life, an area of application that does not fall under the other 

categories. Here, the EAs have their most natural application area. Artificial life forms are 
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created within an artificial environment, and the EAs simulate the evolution of the artificial 

species. 

From the discussion above, we can see that GP and GAs have been used in a variety of different 

machine learning applications. Because GP seems to have a better toolset that applies to many 

different applications, compared to GAs, we will next describe the the GP algorithm in detail. 

3.3.5. Genetic Programming 

The main characteristic of GP, and its major difference with GAs, is that each individual in the 

population is a computer program or something that can be interpreted in a syntactical context. 

The target system for GP could be a CPU, a compiler, a simulation or anything else that can 

execute the pre-defined instructions, from now on referred to as a program. 

GP is a directed stochastic search process that looks for the most suitable program that will solve 

the problem at hand. The search is an iterative process described in Figure 9. The search process 

searches for the best individual in a set of individuals (i.e. the population). The individuals in GP 

are a set of programs that represent different solutions to the problem.   
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Generation i Generation i+1 
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Figure 9: The iterative GA/GP search process 

The different individuals could be regarded as different search points in the problem space. 

Hence, the search process is a parallel process that investigates several possible solutions at the 

same time. Furthermore, all the individuals need to be evaluated in some manner as to what 

degree they are able to solve the problem. A fitness function is used to do this. The features of 

the individuals with better suitability would preferably be preserved through a selection process 

and carry on to breed the next generation of individuals. The selection process directs the search 

process to choose better performing individuals. The genetic operators (e.g. crossover and 

mutation) are stochastically applied and will explore new areas of the problem space and hence, 

support the development and evolution of the individuals. 

Evolving a program with GP can be described in five steps: 

1. Create an initial population (usually randomly generated). 

2. Evaluate the performance of each individual through a fitness function. 

3. Based on the evaluation, decide which individuals will survive, reproduce or be killed. 

Iterate until end condition 

Evaluation Selection 
 Genetic 
operations End 

  
 



4. Apply genetic operations (e.g. mutation or crossover) to the individuals selected for 

reproduction. 

5. If the criterion of stopping the process is not met, restart at step 2. 

The population might number in the hundreds or thousands, but eventually only one - the best of 

the individuals - will represent the solution. In some applications (e.g. multi modal optimization 

problems), several individuals might represent the complete solution, but it is most commonly 

used to select only the very best individual.  

The criteria for stopping the evolutionary process can be when 1) a maximum number of 

evaluations are made, 2) a maximum number of generations are evolved, 3) the fitness reaches a 

certain level, or 4) other measurable criteria are given. The GP will produce a program that will 

solve a predefined problem in almost any area when the genetic process is finished (see Figure 

8). 

3.3.5.1. GP Selection 

In each generation, every individual in the population is evaluated and its fitness value 

calculated. The fitness value affects the selection process so that the more fit individuals are 

more likely to be selected. Parents will repeatedly be selected during the generation shift until a 

new population has been created with the same size as the old population. When a parent is 

selected from the original population, it is not removed from the old population. A parent can be 
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selected to procreate many times during a generation shift. First, when the new population is 

complete, the old one is discharged. Many different selection methods can be used in GP. Some 

of the common methods are Fitness Proportionate Selection, Ranked Selection, Tournament 

Selection and Fitness Uniform Selection. 

In Fitness Proportionate Selection, the individual’s probability of being selected is proportional 

to the individual’s fitness value. First, the fitness value is normalized so that the sum of all 

individual’s fitness values in the population is equal to one. Then the probability  is 

calculated as: 
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Here, the function f(sx) is the normalized fitness value for individual x and N is the number of 

individuals in the population. Note that the formula calculates such a probability when a lower 

fitness value is considered better, as it is in this research, and Fmax is the highest normalized 

fitness in the population.  

Ranked selection first ranks the individuals according to their fitness. The probability is then 

calculated according to their rank and not their fitness value. The sum of the probability for all 

individuals is normalized to one. The population needs to be sorted prior to selection. The 
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probability of an individual in ranked selection (i.e. linear ranked selection) is then calculated as 
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where Ri is the individual’s ranked position in the population (the worst individual has position 

1) and N is the number of individuals.  

In Tournament Selection, a number of individuals are randomly selected from the population. 

The individual in this group with the best fitness will be selected as a parent in the next breeding 

session.  

In Fitness Uniform Selection, a random value is picked in the range between the lowest fitness 

and the highest fitness in the population. The individual with the fitness value closest to this 

random value is then selected as the parent. In Figure 10, the individuals are described as circles 

on the fitness range between the individual with the lowest fitness and the one with the highest 

fitness. The bold individual is then selected in the example because it is closest to the 

randomized value in the fitness range. 
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Figure 10: Fitness Uniform Selection 

3.3.5.2. Representation of the Individuals and Genetic Operators 

The individuals in GP could be described as an instruction tree [40]. Figure 11 shows an example 

of one individual. Describing source code as an instruction tree helps to understand the impact of 

the genetic operators, described later. The tree structure is also one way of implementing the GP 

algorithm.  

 

Figure 11: A possible GP individual’s instruction tree and its corresponding C-code 

The instruction tree consists of a function set and a terminal set. Each node in the instruction tree 

that expands the tree with new braches is part of the function set. Each leaf in the instruction tree 
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is part of the terminal set. Hence, the terminal set could be either constant values or variables. 

The function set is the set of operators/functions that are able to process the data. A function 

expands the tree one level and points to at least one other function or terminal. The terminal puts 

an end to a branch. All the leaves of the tree will be a terminal (i.e. a variable or a constant). 

Both the terminal set and the function set are problem-dependent and must be specified before 

the evolution process starts.  

Other implementations of the individuals, such as linear code representation, have also been 

used. The linear code representation is common when the individuals are represented in machine 

code [6]. Figure 12 shows two examples of GP individuals with linear representation. The top 

one describes an executable machine code individual while the lower one is an assembler 

language individual. To more easily understand the impact and results of genetic operators, the 

discussion continues with the tree structured individuals (also the representation chosen in this 

research).  

1001011001  1001001  100100110110010  1001011001

inc B  dec A  pop S  ret
 

Figure 12: Two examples of linear representations of GP individuals 

The genetic operators will combine the parent’s building blocks and/or slightly modify them to 
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create new individuals. When genetic operators are applied, the shape and structure of the trees 

are changed and altered with the influence of the parents’ trees. The most commonly used 

operators are crossover and mutation. Crossover simply alters two branches between the two 

parents to create new individuals (see Figure 13).  

 

Figure 13: Crossover creating one of the two possible offspring 
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Figure 14: Mutation example 

Mutation affects a single individual and changes a point of the tree, as shown in Figure 14 . The 

point can be either a function or a terminal. The mutation operator removes everything beneath 

the point and inserts a new randomly created sub-tree at this point. The location in the tree where 

a genetic operator is applied is randomly chosen, when an individual has been chosen to 
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crossover or mutate. 

The alternative type of mutation is here called node mutation. Instead of deleting the whole sub-

tree beneath the selected node and a new sub-tree randomly created, in node mutation the 

selected node is not deleted but the contents of the node are changed. If the node is a variable, an 

operator or a function, it is randomly changed to one of the other possible variables, an operator 

or function of the same type. As an example, if the selected node contained a sine function, it 

could be replaced with a log function. If the node contains a constant, this constant value is 

replaced with another value randomly generated within the valid range. 

When an individual has been selected by the selection mechanism, it will be exposed to the 

probability to be modified by the genetic operators. Hence, the operators described here, 

crossover and mutation, will be applied to the selected individual with certain probabilities: 

crossover rate and mutation rate. These rates are features of GP that need to be set prior to 

learning. For each selected individual, a random number is generated in the range 0 to 1. If this 

number is less than the operator’s rate, the operator will be applied to create a new individual. If 

none of the operators are applied to the selected individual, it will be copied unchanged to the 

next generation of individuals (i.e. cloning). Since an individual could be selected many times 

during a generation shift, it is also possible that one individual will be cloned several times into 

the new population (i.e. next generation). 
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3.3.5.3. Problem Space and Search Space 

To further explore the nature of GP learning, the search problem within GP will be more 

thoroughly discussed. The search space is limited by the function set, terminal set and 

restrictions on the instruction tree size. If we increase the function set and the terminal set, the 

search space will grow since the GP process will have more combinations of functions and 

terminals to explore. The size of the instruction tree will also affect the search space. To make 

GP useful, we must put a limit on the size of the tree; otherwise, the tree can grow infinitely 

large. Allowing larger trees will result in larger search space.  

Smaller search spaces make it easier for GP to find a solution, but the search space must be large 

enough to be able to cover the problem space. The problem space is the nature of the problem to 

be addressed by GP. If the problem space is large and complex, GP needs to be equipped to 

handle many different functions and terminals and might be allowed to build large trees (i.e. 

large search space). If the problem space is simple and we still permit GP to handle big trees 

with a large function set, we might make the search space too big and complicate the learning 

process.  

The search within GP could be described as a balance between exploitation and exploration. 

When GP selects the parents to breed the next generation of individuals, it uses a selection 

algorithm that selects the parents based on their fitness values. A parent could be selected several 

times during one generation shift, which could result in the existence of many copies of this 
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individual in the next generation. Hence, the probability of selecting this parent in the next 

generation shift will be even greater. This will imply that the algorithm tends to exploit the areas 

of the problem space that seem to be favorable to investigate, while neglecting those areas that 

are not promising. This tendency to exploit interesting areas of the problem space is called 

search or selection pressure. Different selection algorithms enforce different selection pressure 

on the search process. If this exploitation and selection pressure becomes overly dominant, the 

risk is that the GP search will get stuck in a local optimum that is far from the best solution.  

The exploration part of GP is managed by the genetic operators. The operators are applied to the 

selected parents with a probability rate. If the crossover and mutation rates are high, the new 

individual will explore new areas of the problem space. If this pressure of changing the 

individual is substantially higher than the search pressure, the influence of good parents is minor 

since the offspring will not look like the parents anyway, and the search will resemble more of a 

random walk than a directed search. 

3.4. Summary 

Chapter 3 has now described the necessary background in human behavior representation, 

learning by observation and some different machine learning algorithms. It is important to know 

the features of developing human behavior models and the approach to learning by observation 

when we next present and validate the methodologies that are the base for the new approach to 
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learning tactical human behavior by observation. 
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CHAPTER 4: LEARNING BY OBSERVATION – CONCEPTUAL 

APPROACH 

This chapter describes the new approach, Genetic Context Learning (GenCL), for building 

human behavioral models from observation. This new approach integrates CxBR and GP to 

implement the learning part of learning by observation. To complete learning by observation, an 

observation module needs to complement the learning module. The observer module is not 

investigated within this research and is posed as a subject for further research by others. This will 

be further explained in section 4.4. The GP evolves the behavioral knowledge in the context base 

of CxBR. During the learning process, the individuals within the GP module will be source code 

programs that represent knowledge in the context base. To be able to evaluate the performance of 

the GP individuals, a simulation will be run with the individual’s code for a period of time, and 

at specific evaluation points, the individual’s behavior will be compared to the recorded human’s 

behavior. This comparison will establish the fitness value for the individual that is essential for 

the GP learning process.  

Before describing details of this new approach to learning by observation, the justification for 

why CxBR and GP were chosen is presented.  
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4.1. Choosing an Appropriate Paradigm for Simulated Agents Exhibiting Human Behavior 

In order to build autonomous agents with human behavior (e.g. simulated agents) we must 

choose a paradigm that supports features of human behavior and provides an appropriately 

structured knowledge base that is appropriate for the task. One important feature of the agent is 

situational awareness. There exist many definitions of situational awareness. Often, the definition 

focuses on a specific research subject such as military simulations. In the military context, the 

definition can include one’s own troops, enemies, threats and task goals. In this research, where a 

generic approach to automatically creating human behavior models is in focus, the definition 

needs to cover a broader context. Furthermore, we need to distinguish between situational 

awareness and situational assessment. The assessment concerns the process of how the 

situational knowledge is achieved, while the awareness is the state of the situation. The 

assessment phase falls slightly outside the scope of the research covered by this dissertation. 

Endsley [19] gives a definition of situational awareness that suits this research: 

Situation awareness is the perception of the elements in the 

environment within a volume of time and space, the comprehension of 

their meaning, and the projection of their status in the near future. 

Here we can see that the situational awareness regards the current status of the situation and also 

what impact it has in the near future. This is essential in the decision of what action to apply. 

Note that the status of the situation is not only momentarily defined but also includes recent 
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events that may be important in evaluating the status of the situation.   

Situational awareness of the agent infers that the agent must be fully aware of its current 

situation to be able to choose appropriate actions. If it fails to interpret the environment and the 

situation at hand, the agent would probably not behave correctly. Turner [76] defines a context as 

“a distinguished (e.g., named) collection of possible world features that has predictive worth to 

the agent.” This means that the agent can recognize the current situation as an instance of a 

known context and then be able to reason about the situation at hand.  

Context-Based Reasoning (CxBR) is a modeling paradigm that is using contexts. It has been 

developed to build agents with human behavior though the use of contextual knowledge. CxBR 

provides a good hierarchical structure of the knowledge and facilitates situational awareness. The 

concept with CxBR is focused on situational awareness where the knowledge is structured in 

contexts applicable to the presently occurring situations. CxBR has proven advantages for 

modeling agents with human behavior [27]. CxBR shows many effective, positive and efficient 

features through its design to implement human behavior.  

CxBR structures the knowledge in contexts and reduces the search space by considering only the 

active context. Studying CxBR as an implementation of the modified stage model in Figure 1, 

the active context is placed in the working memory while the rest of the contexts reside in long- 

term memory. In this manner, the search space to find the correct knowledge is reduced and the 

algorithm can operate more efficiently. This structure of the knowledge will also help the 
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learning mechanism to be implemented, since it also will provide the chosen learning algorithm a 

structure in which to work. In a similar manner, the hierarchical structure of knowledge in 

contexts facilitates the simulated agent search for the most appropriate knowledge to apply in a 

specific situation.  Furthermore, it could also facilitate the learning process to learn the 

knowledge in smaller, more defined chunks of knowledge.  

Since the design of CxBR is inspired by how humans break down a problem into sub-problems, 

the use of CxBR is intuitive. This will ensure that the implementation of learning into CxBR will 

be flexible and applicable in many different ways. Suppose that the human modeling problem is 

very complex, which requires that some parts will be manually crafted and others captured by 

learning.  Additionally, in some cases, basic knowledge can be first incorporated within the 

model that the learning process later refines. In both situations, if the modeling framework is 

intuitive and easy to use, it will enhance the usability of expert knowledge within the learning 

process. 

Both ACT-R and Soar are structured around the problem-solving process and do not give the 

intuitive advantage that CxBR does when it comes to model human behavior in simulated agents. 

Those two algorithms are good general problem-solving architectures, but the clear distinction 

between human behavior knowledge and general problem- solving knowledge is lost. The 

learning procedure in ACT-R and Soar is designed to improve knowledge already implemented 

(i.e. learning through experience). To be able to perform learning by observation in either Soar or 

ACT-R, new learning mechanisms need to be incorporated. The structure of COGNET does not 
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include a learning mechanism, although the framework is based on human behavior modeling. 

None of these three paradigms supports human behavior modeling as intuitively (from a 

developer’s standpoint) as does CxBR, with its clean hierarchical structure that also reduces the 

search space. This clean hierarchical structure of CxBR might also serve as a suitable structure 

for a learning algorithm to work in. Where COGNET is structured around a blackboard model 

wherein all information is posted, CxBR divides the learning problem into smaller sub-problems 

that might enhance the capabilities of the learning algorithm. The advantages shown here, and 

the clean structure of CxBR, qualify it as the choice of paradigm. Now we’ll extend it with 

learning and aim to implement learning by observation. 

4.2. Learning by Observation with CxBR 

To be able to build models automatically, CxBR needs to be equipped with learning capabilities. 

As mentioned earlier, knowledge within CxBR is composed of action rules and sentinel rules. 

When incorporating learning into CxBR, the learning paradigm must be able to learn the 

applicable behavior in a specific context (i.e., action rules), and also the appropriate context 

switches (i.e., sentinel rules). At different Context levels, the collection of sentinel rules 

determines which context will be active for that specific level. The structures of the sentinel rules 

are similar at all context levels. An analysis of CxBR shows that learning sentinel rules are a 

classification or clustering issue. The objective for the sentinel rules is to classify the current 

situation and map it to an applicable context. When we look at the knowledge stored within the 

contexts, the objective is to match the actions within this specific context in the model to the 
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actions of the human. This tends to be more regression analysis, minimizing the discrepancies 

between the model and the human performance. This is especially true further down in the 

hierarchy where the Sub-Contexts or Sub-sub-Contexts approach low-level behaviors such as 

motor skills. If this is looked upon from a machine learning perspective, the learning tasks in 

CxBR would incorporate different types of learning strategies, both in classification and 

regression analysis.  

4.3. Choosing an appropriate learning algorithm for CxBR 

CxBR is chosen as the modeling infrastructure to construct the human behavior knowledge 

within the simulated agents. CxBR has to be complemented in some manner to incorporate 

learning, to automatically create the human behavior models. This section investigates various 

machine learning approaches and the one with the best prospects. 

4.3.1. Reinforcement Learning 

Reinforcement Learning is not a strict definition of a specific algorithm. Rather, it is the name of 

a family of algorithms that peruse learning in a specific manner. Even so, there are many 

similarities to the new algorithm presented later. From section 3.3.1, we can conclude that 

Learning by Observation and Reinforcement Learning are different groups of learning problems. 

Learning by Observation focuses on how the data is collected, while Reinforcement Learning 

focuses on how the learning is accomplished. Neither of them look at the implementation nor at 
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the learning techniques to be used for the problem. Learning by Observation covers the problems 

where the learning is conducted only by processing the observed behavior and adopting it. 

Reinforcement Learning, on the other hand, includes those problems where an agent can improve 

its own behavior by observing its own actions. The two different groups of problems are closely 

related to the fact that observing is a central part in both paradigms. However, since 

Reinforcement Learning does not comply with Learning by Observation, Reinforcement 

Learning will not be investigated any further as a method to implement Learning by Observation. 

4.3.2. Using Different Machine Learning Approaches 

In the current status of CxBR, there are no extensive research results where learning has been 

incorporated into all parts of the CxBR’s context base. Most of the learning within CxBR has so 

far been focused on low-level behavior, but no one has presented a generic approach to model 

tactical or unpredictable behavior at different hierarchical levels including context switching 

[33], [70]. In order to implement learning by observation, it is an objective to incorporate a 

learning paradigm into CxBR that could learn knowledge in all the different parts of the context 

base. As mentioned earlier, this means that the learning algorithm needs to be able to handle both 

classification and regression problems. One approach to learning is inductive learning based on 

the thesis of learning from examples. This places additional strain on the preprocessing of the 

learning data to create applicable examples prior to learning. This might be the same for other 

learning paradigms but not as obvious. If we look at decision trees, their knowledge 

representation would be suitable for implementing learning within CxBR. The drawback with 
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decision trees is that they focus on classification problems. They would probably not be suitable 

for the regression problem within the action rules of CxBR. GP implemented with an instruction 

tree has some commonalities with decision trees, even if the learning is different. GP has a more 

diverse function set and is not restricted to the production-like rules used in decision tree 

approaches. Hence, GP is a more generic learning algorithm applicable in a wider area, as 

regression problems. 

4.3.2.1. Transforming the Search Space 

Many machine learning algorithms enforce a transformation of the search space to enable 

learning. For example, artificial neural networks transform the search space to a set of weights 

whose values are optimized during learning. 

Wolpert and Macready [83], [84] conclude in the No Free Lunch theorem that all machine 

learning paradigms need to be tuned for the problem at hand to enhance their performance. In 

some way, the learning algorithm needs to incorporate problem-specific knowledge into the 

behavior of the algorithm. When the search space is transformed prior to learning, the knowledge 

to improve the learning also transforms. Instead of expert comprehension of the problem, the 

intellectual capacity is now focused on the learning paradigm instead of the problem at hand. A 

non-transforming learning paradigm supports the use of problem-specific knowledge to improve 

learning. In a non-transforming algorithm such as GP, the learning prerequisites are closer to the 

expert knowledge than in a transforming algorithm. Let’s look at GP and ANN as contrasting 
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examples. In GP, one major feature influencing the learning performance is the selection of an 

appropriate function set. Since GP is a non-transforming learning paradigm, there is a 

straightforward correlation between the function set and the search space. This implies that SME 

knowledge would be useful in determining appropriate function sets. In ANN, one thing that 

influences learning is the structure of the network, such as numbers of nodes and layers. This 

knowledge is not directly correlated to the problem to be solved, and the use of the SME would 

not help in this case.  

4.3.2.2. Transparency 

One issue for the learning paradigm is to preserve the features of the CxBR that make it 

appropriate for modeling simulated agents with human performance. One of those features of 

CxBR, when applied the traditional way, is that the knowledge stored in the context base is 

transparent - the knowledge will be stored in source code. Hence, the knowledge resulting in the 

agent’s action can be inspected and evaluated (i.e. the knowledge is transparent). This is 

important if human features such as episodic memory and communication are to be incorporated 

into the model. 

If the learning algorithm, used to build the knowledge automatically in the CxBR structure, is 

transforming the search space in any way, it will be more difficult to interpret the knowledge. 

ANNs are mostly regarded as an opaque algorithm where the knowledge stored is very difficult 

to interpret. In the case of GP, the learning algorithm is transparent because GP evolves source 
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code statements. As source code is easy to understand, and with a close resemblance to written 

language, it is rather easy to interpret. Notable about source code evolved with GP is that it is not 

structured as well as normal source code and might include non-coding regions. Non-coding 

regions are unexplored code that is never tested during training or does not affect the output 

when training input patterns are presented to the individual. Non-coding regions should not be 

correlated to the uncontrolled growth of the individuals (i.e. bloat) [47]. Even if the code is not 

affecting the results during training, it has been shown that information embedded in the non-

coding regions actually improves the learning process [24],[54],[82]. Analogies to this can be 

found in animals’ DNA structure. There exists chunks of information in our DNA that is not 

used for anything by the individual, but it can store valuable information used in individuals 

several generations later [45]. Even if the source code is unstructured and includes non-coding 

regions, it is interpretable and can be evaluated (automatically or manually) in a comprehensible 

manner.  

4.3.3. Using GP to Implement Learning in CxBR 

From the discussion, we can see that GP has advantages such as a transparent and non-

transforming algorithm. GP has also been used in a vide variety of machine learning areas and 

the choice in this research is to extend CxBR with learning using GP. The new approach to 

building human behavior models by observation is called Genetic Context Learning (GenCL). 

An advantage with GP is that if a-priori knowledge is available, it could be easily incorporated as 
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a starting point. This is an approach that ANN is not capable of accomplishing. The strategy used 

in this research, regarding a-priori knowledge, is further discussed in section 4.6.1. The GP-

device would then be allowed to refine the performance and behavior of the CxBR modules. If 

we have basic knowledge on the behavior of a car driver, we could let some of the individuals in 

the population start with those features and let them evolve to fit the behavior of the observed 

human better. Even a very small amount of knowledge would likely improve the performance 

and accelerate the learning. However, it could be more beneficial to begin with some rather 

detailed models of behavior, and let them personalize through learning by observation with this 

approach. Let’s assume that we would like to create several car agents with different types of 

human behavior in a simulated environment. We could begin with a generic car model that we 

would develop after different human observations to create a set of agents with different 

behavior. The ability to refine already existing knowledge also shows that the learning algorithm 

is capable of doing learning by experience. If the original creation of the simulated agent uses 

learning by observation to incorporate human behavior, the learning strategy could remain within 

the agent so it could later improve its performance. Hence, intelligent agent behavior could be 

enhanced by learning during operation in a simulation or in the real world.  

The integration of CxBR and GP also provides the opportunity to choose alternative 

representation of the function set. Several researchers have argued that the use of Fuzzy Set 

Theory and Fuzzy Logic would enhance the humanness in human behavior models [12], [39], 

[43]. Fuzzy Sets deal with real-world problems where instances have a degree of membership in 

sets, as opposed to normal crisp sets. Fuzzy Logic is then the logic operator that could be applied 
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to the Fussy Sets. A detailed description of Fuzzy Logic and Fuzzy Set Theory could be found in 

Zadeh [85]. If this was a feasible approach, the GP device could be set up to evolve rules built on 

Fuzzy Sets and Fuzzy Logic. The function set in GP will then consist of Fuzzy Logic and a 

Fuzzy Set will describe the terminal set. The possibility of incorporating Fuzzy Logic is an 

advantage of using GP as a learning approach. The implementation issues and function set used 

in this research is further discussed in section 5.3.1. 

4.4. Employing CxBR and GP towards Learning by Observation 

The choice of learning strategy to implement in CxBR is, of course, GP. The advantages 

described above indicate that GP would be a useful and flexible algorithm to evolve contextual 

human behavior knowledge within CxBR.  

Instead of creating the contexts manually in CxBR, the GP process can be used to build the 

contexts. The GP’s evolutionary process can provide and build or refine the CxBR’s context base 

with appropriate contexts, functionality and sentinel rules (see Figure 15). The individuals in the 

genetic population represent parts of the context base, and the simulation acts as the evaluator in 

the learning process. Since there is CxBR knowledge to be evolved by the GP, the Micro 

Simulator within GenCL is also designed according to the CxBR paradigm so that the 

individuals operate in the same environment during learning as in their final use. During the 

learning process, each individual within the GP module represents some behavior knowledge, 

and each individual is loaded into the Micro Simulator module to be executed. This execution 
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results in a simulation with the knowledge contained in the GP individual. The results of this 

simulation can then be compared to the performance of the human being modeled and a fitness 

value for this specific individual can be computed. In effect, the human performance observed 

serves as the fitness function against which to compare each individual’s performance. This 

procedure is conducted for all individuals in the GP population. When all individuals have 

received their fitness value, the GP can evolve a new generation. 

 Learning Module 
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Figure 15: Learning by Observation with GenCL 

An example of the learning process can be found in the automatic creation of CGFs. The GP 

individuals could represent a part of the CGF’s action within a specific context (e.g. attack). As 
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simulate the context within the same environment as the SME experienced. Hence, the 

discrepancies between the individuals in the GP population and the action taken by the SME will 

be reduced as GP evolves new generations of individuals. Note that the performing entity being 

observed need not always be an expert. If the objective is to create an application that predicts 

the force movements in different situations, the observed entities could be trainees, enemies or 

other entities with arbitrary skill levels.  

In short, the GP creates individuals that represent the behavior pattern for the context in focus. 

Each individual in the population is an implementation of the action or sentinel rules for this 

specific context, and is a candidate for the final solution. To incorporate each one in the 

simulation and compare them with the human performance, a ranking among the individuals 

could be established to the degree that they reflect the behavior of the observed human. Hence, 

better-fit individuals are more likely to evolve the next generation. 

The simulation part in Figure 15 is essential in order to ensure the correct functionality of the 

knowledge learned. The simulation restricts the new GenCL approach to learning knowledge that 

could be described and evaluated in a simulator. However, the well- defined simulator function 

makes it easy to customize the algorithm to model and build different simulated agents (e.g., 

ethnic or political groups, army troops, pedestrian, aircraft or submarine) that inhibit human 

behavior patterns. 

The observer module in Figure 15 is the sensing and perception interface of this new learning by 
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observation architecture. Here, the observations from the environment are processed to fit the 

learning strategy. This module must be configured for the specific learning environment. If the 

learning from observation task is performed in the real world, this module needs to process the 

different sensor readings and prepare the incoming data in an applicable way. The other option is 

that a human operates a simulator, and then the observation module needs to handle the data 

from the simulator. In the observation module, the data also need to be partitioned and filtered. 

The configuration of this module needs to be aligned with the configuration of the GP module. 

The terminal set of the GP module requires the observation module to feed the correct data set. 

All sensor values or available data might not be used in the learning process. All of the available 

data might not be used during the training process either. If the sampling rate, for example, is 10 

Hz, then the amount of data fed to the system will grow very fast. Hence, if the human to be 

modeled operates in hours, the problem space will be very large. This data needs to be filtered 

and partitioned in an applicable way.  

To achieve a complete learning by observation device, several learning modules could 

conceivably be operating in parallel to produce a complete context base for an agent. If the 

observer module partitions the data in an appropriate manner and feeds each of the learning 

modules with suitable data, it would be able to perform on-line learning. In on-line learning, 

learning is done at the same time as data collecting, so the filtering and partitioning of the data in 

the observer module must be done in real time. This is left for future research. 

The observer module has not yet been automated and instead relies on the specification from the 
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knowledge engineer. The objective in this research was to investigate the feasibility of 

integrating CxBR and GP to achieve our stated objectives. Since the computational task was too 

complex to employ the complete data set, the filtering and partitioning of the data has been done 

manually in this research. This research investigates the learning module to see if CxBR and GP 

have the ability to learn by observation when the learning module has fed it with the appropriate 

data. 

4.5. Empirical Studies – CxBR and GP 

Previous sections showed the basic ideas on how GP and CxBR could cooperate during the 

learning phase to implement learning by observation. Here we describe the merging of CxBR 

and GP in a more formal way so their cooperation is thoroughly presented.  

4.5.1. In Depth Study of CxBR  

The knowledge constituting the agent’s intelligent behavior in CxBR is stored in the different 

contexts. The format of the knowledge is not fixed in CxBR; only the knowledge structure is 

defined. When building human behavioral agents with CxBR, the most common knowledge 

representation paradigm consists of functions and IF-THEN rules (i.e. source code). These 

functions could be predefined in the programming language package or be user-defined 

command sequences. A special form of a command sequence is a context at a lower level (e.g., 

sub-context). Note that in this section the use of sub-context refers to a generic context at the 

70 

 
  
 



next lower hierarchical level in CxBR. This is not to be misunderstood as a specific Sub-Context 

that refers to a context at the level underneath the Major-Context. Hence, a sub-context (Major-

Context or Sub-Context or Sub-sub-Context, etc.) could also have a sub-context.  

If we do not distinguish between functions and operators, we could define a function set, 

F={f1, f2, …, fm}, that processes the information to deliver actions. The function set could consist 

of the following types (we use C/C++ notation for our examples): 

• Arithmetic operations: +,-,*,… 

• Relations: <,>,==,… 

• Mathematical functions: cos, sin, pow,… 

• Boolean operators: &&, ||,… 

• Command sequences: distance_to(),…  

• Conditionals: if, else,… 

• Iterations: do, while, for,… 

• sub-contexts: TrafficLightDrivingContext(),… 

The function set is only useful if it can process information. Information has value and is stored 

in variables or constants. These information storages are called terminals and the information 

available is then defined in a terminal set, T={t1, t2, …, tn}. Note that some of the values in the 

terminal set could originate from sensor reading and are therefore time or instance dependent. 
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The function and terminal set are defined to highlight the integration with the GP.  

The Mission Context, MC, mainly defines goals, G, and plans, P. Plans are realizations to reach 

the goals for one or many intelligent agents. The action specified in the Mission Context is 

mainly used to let the plans invoke Major Contexts in an appropriate sequence so the goals can 

be fulfilled. The active context is the context that controls the agent (i.e., the function set of the 

active context, Fac) and defines the agent’s action. At least one default Major Context is specified 

as a part of the sentinel rules in the Mission Context. With the sentinel rules, R, a specific 

mission, MCy, is now defined as:  

MCy={G, P, R} 

The contexts from the Major Context level down in the hierarchy all have the same structure. 

The knowledge contained in a Context could be described as a set of action rules, A, and a set of 

sentinel rules, R. The action set describes how the entity will behave within the present situation 

(i.e. active context). The sentinel rules determine whether the active context should remain active 

or if control is to transition to another context. Now a specific context, Cx, could be described as: 

   Cx={A, R};  A={F, T}, R={F, T} 

Both the action set, A, and the set of sentinel rules, R, contain a function set, F, and a terminal 

set, T. The set of sentinel rules, R, also contain a list of valid context transitions, which actually 
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could be viewed as a specific implementation of a terminal set (i.e. an array of context pointers).  

4.5.2. Formalizing GP 

The formal description of the GP functionality presented here is derived from Holland’s formal 

description of GAs [34]. An adaptive evolutionary system such as GP always operates in an 

environment, E. It is only through the interaction with the environment that we can measure the 

performance of the learning system. This is a key factor in GP, where the genetic process evolves 

new individuals based on their performance. GP represents its individuals as a finite set of 

structures, S={s1, s2, …, sn}, often referred to as genotypes, that are represented as programs (e.g. 

source code individuals) in GP. A structure, sx, consists of a function set, F={f1, f2, …,  fm}, and a 

terminal set T={t1, t2, …, tn}. Note that these could be the same terminal and function sets as in 

CxBR.  It is in this commonality of terminal and function sets that we find the integration of 

CxBR and GP so synergistic. The first step in each generation is to transform the genotypes into 

phenotypes, P={p1, p2, …, pm}. This is a requirement for interaction with the environment. This 

is done with a genotype-phenotype mapping function µ such that: 

px=µ(sx) 

In GP, the mapping function µ is the compilation or interpretation of the source code (i.e. the 

genotype individuals). The interaction of the phenotype with the environment is, in GP, the 

execution of the phenotype: 
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ϕE(px ) 

The next step in the GP process is to evaluate the performance of the individual through the 

fitness function µE: 

   µE(sx,ϕE(px ))  

Note that the fitness function µE could be a function of both the performance of the phenotype in 

the environment and the genotype, sx. This could, for example, encourage smaller individuals 

with unnecessary or less complicated source code. The fitness function returns a fitness measure 

based on how well this individual’s combined performance was. Depending on the fitness 

measure of the individual, the selection scheme, α, selects an operator, ω∈Ω. Ω is the set of all 

operators where:  

  Ω={ωx:Sm→Sn}  

An operator ω maps m structures into a set of n possible modified structures. Individuals with a 

better fitness measure have a greater chance of being selected. Each operator type is a stochastic 

operator that will be triggered with a predefined probability. If neither stochastic operator 

indicates applicability, the selected individual will survive (i.e. being cloned) to the next 

generation without any modifications. After the selection scheme has selected individuals to 

breed and appropriate operators have been applied, a new population now exists, partly with new 
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individuals and partly with individuals from the last population. The two most common operators 

in GP are crossover and mutation. The process will continue to map the genotypes into 

phenotypes, execute them and evaluate their fitness, and again apply operators to the selected 

individuals (see Figure 15). This continues until some stopping criterion is met. According to the 

Schema theory [34] or the Building Block Hypothesis [25], this procedure will evolve better and 

better individuals until a global or local optimum is reached. 

The only problem-specific function in the CxBR function set is the sub-context (i.e. any context 

at any level except the Mission Context level), but it is only a special form of a command 

sequence. GP has the ability to evolve and develop command sequences, also referred to as 

Automatically Defined Functions (ADFs) by Koza [40]. Hence, besides the ability to build the 

knowledge within the contexts, GP also has the ability to develop and destroy sub-contexts. This 

means that the GP possesses the ability to evolve appropriate sets of contexts within the context 

base. In other words, GP has the ability to create the context hierarchy and the knowledge within 

the contexts from scratch. As Contexts are more abstract than functions and inherits more 

features, that makes it a context and not only a function, the ADF functionality of GP needs to be 

customized to enable Context creation and destruction. 

Since GP uses the same function and terminal sets as CxBR, GP could be used to incorporate 

knowledge in any context level or in any instances within CxBR where human behavior is 

encoded. This means that we could choose to implement learning in any specific part of CxBR 

and construct the knowledge from scratch.  
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4.6. Integrating CxBR and GP 

The basic idea and the formal way to integrate CxBR and GP have been presented. So far, the 

generic approach has been described that could be applied in many different ways in different 

applications. We have not yet placed any restrictions on what function set to use (e.g. fuzzy or 

crisp logic) or if the GP module should create the knowledge base from scratch or refine some 

initial structure.  

In this research, the CxBR and GP integration was evaluated by applying it to automatically 

evolving simulated cars with human behavior. Five different drivers used a Driving Simulator.  

The task for our new approach was to evolve five different simulated car agents with behavior 

patterns that reflect each of the five drivers. The complete description of the experiments 

conduced are later described in CHAPTER 5: THE MODEL BUILDING PROCESS. From now 

on, the decision plans and strategies discussed are influenced by our research objectives as well 

as by the application we selected to verify the GenCL approach. 

4.6.1. Plan for the Integration 

When it comes to most machine learning algorithms, the learning could be classified to be 

somewhat of a refinement process or a construction process for the knowledge. One could view 

it as a continuous scale where one side is solely a refinement procedure and the other side is a 

constructive procedure.  
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Far out on the refinement side, the model’s processing elements have already been pre-

constructed and most of the knowledge and the learning procedure are merely an adjustment of 

the model to fit the problem at hand better. On the other side of the scale is the constructive end. 

Here, no knowledge or structure is available a-priori on how the knowledge is to be represented. 

The learning process then involves both creating the knowledge structure as well as the 

knowledge itself.  Note that the closer we get to the constructive side of the learning scale the 

more difficult the learning task becomes (i.e. larger problem space). However, a constructive 

process is more valuable than refinement, as it requires less manual effort to build the model. 

The flexibility of GP then allows many different approaches to learning. The learning could 

begin with known knowledge and refine the model to better suit the behavior of the observed 

human. If we take the example of a driver operating a car simulator, the learning system could 

already consist of a general human car-driving model. The GP could start off with this model and 

refine it during the observation of the human in the simulator to evolve a model more 

comparable to the current driver. On the other hand, GP could be set up only with an appropriate 

set of functions and terminals and it could construct the knowledge from scratch by observing 

the driver. The latter is more desirable when investigating learning by observation, since it would 

reduce the implementation effort even more. However, restrictions need to be enforced since the 

GP has to evolve knowledge according to the CxBR paradigm. The GP process could be allowed 

to evolve the context sets in all the hierarchy levels, the action rules in each context and all the 

appropriate sentinel rules in all the contexts.  
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The No Free Lunch theorem [83] and [84] state that if we apply any search or optimization 

algorithm over all possible problems we will not get a better average performance than a random 

search. The reason that certain algorithms perform better than other algorithms on some specific 

problems is because there are problem-specific features or knowledge incorporated in the 

algorithm that suit the problem. In other words, the more problem-specific knowledge 

incorporated in the algorithm, the better its chance for success. 

If GP is to be applied to build the context base in a constructive manner, some sort of organized 

structure needs to be enforced in the learning process to increase the probability of success. Even 

if this approach seems more complicated than a refinement procedure, it is the aim of this 

research to investigate these constructive features of GP since it would reduce the development 

effort more than a refinement strategy. One of the biggest advantages with a system that could 

learn only by observing someone’s performance would be the reduction of development cost in 

modeling the behavior. If a major part of the behavior still needs to be modeled before learning 

can take place (i.e. refinement), the advantage of introducing learning to CxBR would probably 

not be significant. Therefore, it is more desirable to investigate GP as a constructive learning 

paradigm.  

The research in this project does not investigate the GP’s ability to construct and delete contexts. 

Instead, the number of contexts and their position in the CxBR hierarchy will be pre-defined and 

fixed and will serve as a structural framework to support learning capabilities.  The contexts will 

initially be empty and will not contain any knowledge whatsoever. This represents a tolerable 
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compromise that provides a nearly constructive learning process without the computational 

complication of a fully constructive method. It will also give GP a structure to operate within 

that could improve the learning performance. Additionally, it will dramatically reduce the 

development cost and effort in creating intelligent agents with human behavior. Still, a strategy 

needs to be defined on how the learning procedure is to be conducted. The knowledge to be 

learned is still structured in different levels in the hierarchy and the different parts of the 

knowledge might be dependent on each other. 

4.6.2. Strategy for Learning within CxBR 

The task of implementing a learning strategy applicable at all levels of the CxBR hierarchy is 

very complex. The problem domain ranges from very low-level decision-making (e.g., how to 

apply brakes) to high-level tactical decision-making (e.g., cautious low fuel-consumption 

driving). Many of the parts constituting tactical human behavior are also correlated with each 

other. There is correlation with other aspects of tactical behavior when, for example, driving in 

city traffic and approaching an intersection with a red traffic light and there are cars already 

waiting at the light. If we have one sub-context that handles traffic lights and another that 

handles cars in the same lane, those two Sub-Contexts are interdependent in that situation. If 

direct transition between contexts is used, those two contexts are correlated (i.e. the learning of 

these two instances could not be performed mutually exclusively). Hence, we can identify two 

main problems concerning the learning implementation: 
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1.  Hierarchical complexity 

2.  Interdependency among contexts and context parts 

The first problem points to the need for some sort of structure for the implementation of learning 

in the different contexts. Evolving human behavior structure in all different hierarchical levels at 

the same time is complex. The search space would probably be large. Different approaches have 

been adopted to attack this problem. One approach is to reduce the search space by letting the GP 

evolve higher-level behavior by using a meta-language, where the function set is a set of low-

level behavior routines [46]. This restricts the problem solving in many ways but also contradicts 

the idea of learning by observation. If we used this technique, we would need to manually 

construct the behavior in the lower context levels that we do not try to learn. This means that 

there is a major part of the CxBR structure that must be manually created. Another approach 

would be to construct a very complex and sophisticated fitness function to control the learning in 

the different parts of the context base. This moves the complexity and manual design from the 

low-level behavior to the fitness function, and consequently, the learning task is considerably 

more complicated. Moreover, this still implies a significant amount of manual coding.  

Hsu and Gustafson [36] propose an alternative GP learning approach where the high-level 

behavior would be broken down into lower level behavior that is first learned and then used 

when higher-level behavior is being learned. The approach is called Layered Learning GP 

(LLGP) and breaks up the complex problem into a hierarchy of sub-problems. Hsu and 

Gustafson showed promising results that improved the learning capabilities using the LLGP 
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strategy. This is a type of bottom-up strategy and it suits our needs well because the problem 

domain in CxBR already has a hierarchical structure. To apply LLGP to implement learning by 

observation within CxBR, one simply starts the learning by considering the lowest context level. 

The learning problems at this level are relatively simple and well defined. When the learning 

system has been able to establish the contexts at the lowest level, the learning can continue with 

the next higher context level, and the already learned context could be used as building structures 

in the GP’s function set.  

The other problem is the issue of interdependency between the knowledge in the same level of 

contexts. The interdependency between different action rules in the contexts at the same level 

might not be that strong, since only one context could be active at the same time (i.e., mutually 

exclusive). Rather, the dependency is in the combined performance of the action and the context 

switching (i.e., sentinel rules). When the sentinel rules are implemented in a direct transition 

manner, the collection of sentinel rules at the same context level is interdependent. For a sentinel 

rule within a context to be able to activate the context, any other contexts at the same level need 

to release its activation. The joint performance of all sentinel rules, at the same level, needs to be 

evaluated in some way. This means that the sentinel rules in the different interdependent parts 

could not evolve separately. Since the performance in one part is dependent on the performance 

in the other part, these parts need to be evolved together simultaneously. An approach to this 

problem is to use the Cooperative Co-Evolutionary strategy [60]. In this strategy, it is possible to 

have different populations evolving solutions to sub-problems in parallel. When it comes to 

evaluation of the performance (i.e. calculation of the individual’s fitness) of their joint effort, the 
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best individuals from the other populations are included to produce and measure their 

performance. Mendes, et al. [49] used Cooperative Co-Evolution to successfully evolve fuzzy 

classification rules. They used GP to evolve the different classification rules and a simple EA to 

evolve the membership function definitions. In a similar way, we allow the different contexts’ 

sentinel rules to evolve in parallel, and evaluate their joint performance when the fitness value is 

calculated. We use LLGP and co-evolution as our basic GP strategy for learning human behavior 

in CxBR from observation. 

4.7. The GenCL Algorithm 

Figure 16 shows the GenCL algorithm. Here, the GP part of the algorithm is sparsely described, 

since the common GP algorithm was described in section 3.3.5. As in most GP applications, the 

first task is to create a random population of individuals from the function and terminal set 

specified. The algorithm needs to be able to calculate the fitness value for all the individuals. 

Each individual is now placed into the Micro Simulator and executed for a number of simulator 

clock cycles. The individual is first initialized in a position and speed at a predefined location of 

the human driver’s recording. Now the individual has the same initial condition that the human 

driver had when he or she was operating the Driving Simulator on which his or her actions were 

observed. The individual then experiences the same environment as the driver but controls the 

simulated car by itself. This continues for a few simulator cycles until the next evaluation point 

(e.g., 60 ms later). 
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evaluation point is problem dependent and differs from case to case along with issues of the 

observer module (see Figure 15). In this research, the evaluation points were selected manually. 

This is further described in section 5.1.1. 

Note that at each of the successive evaluation points, the deviation is probably larger than the 

prior ones, since no reset of the individual’s speed and position is done at each evaluation point 

(i.e., errors accumulates). This is actually preferable, since it will punish the algorithm if it 

collects accumulated deviations. When the individual has passed all evaluation points, the 

average deviation is calculated, representing an individual’s fitness value.  

When the fitness values are calculated for all the individuals in the population, the GP module 

steps in and selects individuals to breed the next generation of individuals to the next generation. 

An individual’s probability of being selected is greater the lower the fitness value is. Note that 

this is because the fitness value in our case is the average deviation. Hence, the lower fitness 

value is better. Then the algorithm applies genetic operators to the selected parents and new 

individuals are created. The newly created individuals and the ones surviving from the last 

generation now constitute the next generation of individuals. Individuals not selected will not 

contribute to the next generation and are discharged. The learning procedure continues to 

calculate fitness for all the individuals in this new population with the help of the Micro 

Simulator until the GP stopping criterion is met. 
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4.8. The Synergistic CxBR – GP Integration 

Using CxBR as a structure to store knowledge gives GP a sound framework in which to operate, 

and it gives GP the prerequisites to enhance it with the LLGP strategy. GP could be used without 

the CxBR structure, but to evolve complex behavior patterns would imply complex fitness 

functions, and the search space would be very large. CxBR limits the search space when 

searching for the stored knowledge in the context base, and it also reduces the search space 

during the creation of the knowledge (i.e. learning). The hierarchical nature of the contexts 

divides the problem into smaller sub-problems of a suitable size. By using the expert knowledge 

to pre-define the valid contexts and sub-contexts, a coarse knowledge framework is established 

for the GP to evolve more complex behavior. In this research, the only pre-defined structure used 

prior to learning was five valid contexts at three levels (further described in section 5.2). All the 

contexts were empty and contained no knowledge. Only the context frames were defined and 

their hierarchical relationship. This will provide a suitable framework for GP to operate in, but it 

will not restrict the behavior model in those situations. The GP-learning algorithm will still be 

able to map an unlimited number of different human behavior patterns within those situations. 

Remember that the objective here is not to model the best behavior or the average human 

behavior. The intent is to capture the specific behavior of the current human performance, no 

matter how good or bad his or her performance might be. The only restriction presented is the 

number of situations the model will be able to handle. 
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4.9. Summary 

In this chapter, the CxBR and GP were validated as advantageous approaches to merge into a 

learning engine for learning by observation. The basic structure of the new approach, called 

GenCL, was described with the extension of configuration-specific issues related to the 

objectives in this research. The GenCL algorithm was presented along with sufficient theoretical 

analysis made to continue with practical experiments. The next chapter will describe the 

configurations of the model building process used to validate the practical use of this new 

algorithm. 
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CHAPTER 5: THE MODEL BUILDING PROCESS 

This chapter describes the application, data collection and configuration of the experiments used 

to verify the new approach to learning by observation (i.e. the GenCL algorithm). As stated 

before, the objective was to prove the feasibility of combining CxBR and GP (i.e. the learning 

module in Figure 15). The application area was automobile driving behavior. A commercial 

driving simulator was used to collect the data. Since this simulator was only available for the 

data collection and the observer module has not been implemented yet, the learning was 

conducted off-line in these experiments.  

The final use of the knowledge evolved by the GP is the context base of a CxBR model. This 

model is used in a simple Traffic Simulator, developed with the CxBR framework [55]. Five 

different drivers were used to drive the commercial driving simulator in simulated city traffic. 

The experiments examined whether GenCL could model the drivers’ behavior during normal 

operating conditions merely from observation. 

Note that three different simulations are mentioned in this dissertation, which can be confusing. 

One “simulator” is the commercial driving simulator used to collect data. We refer to this as the 

Driving Simulator. Another “simulator” is the small simulator used within the GenCL artifact to 
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evaluate the individuals during the learning phase. This “simulator” is referred to as the Micro 

Simulator. The third “simulator” we discuss here is the final use of the fully evolved agents 

within a CxBR traffic simulation. This simulation is built from the CxBR Framework and it will 

be used later to evaluate the performance of the evolved agent’s performance. Hence, we refer to 

this as the Traffic Simulator. 

5.1. Data Collection 

The data for the experiments was collected in the Virtual Technologies’ driving simulator in 

Linköping, Sweden. The simulator is a full-scale driving simulator where the driver sits in a car 

cabin and the simulated environment is projected on three walls. See Figure 17. 

 

Figure 17: Virtual Technologies’ Driving Simulator in use 

This commercial Driving Simulator is used for simple driving simulations. It is not a “top of the 
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line” simulator, as it lacks motion capabilities. However, it provides a sufficiently realistic 

driving experience to permit adequate testing of our learning by observation approach. The use 

of a commercial simulator has an advantage in creating the realistic environment, but it suffers 

from some drawback on the training tasks. The simulator was only available during the data 

collection phase and not accessible to use as a test-bed for the fitness function. Hence, a small 

simulator module (i.e. the Micro Simulator) had to be created to emulate the commercial Driving 

Simulator’s car model. This introduces a small deviation in the learning module. See further 

discussion on this issue in section 5.3.1.3.  

The data collected consists of two sets. The first set was used as a base for training the five 

agents to be created (one agent for each driver). The second data set was used for validation and 

was not included in the training set. The validation set consists of new but similar situations used 

to evaluate the agents. The validation set was collected four months after the training set. The 

time between the collections of the two sets was purposely designed to give the drivers a lack of 

preparation when entering the Driving Simulator the second time, which was the case when they 

performed the training runs. The design of the scenarios included two types of driving, city 

driving and rural driving. The drivers spent approximately two thirds of their time in the city and 

the rest on a rural road. The collection of each training set took approximately 30 minutes, while 

the validation runs were a bit shorter - 20 minutes.  

The five drivers were randomly selected students from Linköping University, Sweden. Before 

doing the actual drive where the data were collected (the observed drive), the drivers were able 
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to take a short test drive (approximately 15 minutes) in the simulator to get used to the 

environment. After the observed drive, the drivers were asked to comment on their experience 

during the drive.  

The scenarios were designed to cover several interesting situations. When in a city, each driver 

was presented with traffic lights and intersections. Another scenario presented to the drivers was 

a set of hazardous situations of varying severity, both in city driving and on the rural roads. The 

least severe situation might not be recognized by the driver as a hazardous situation while the 

most severe one needs the driver’s reaction to prevent an accident. During the drive to collect 

training data the driver passed 11 traffic lights and experienced seven hazardous situations of 

varying severity. The rural part and the hazardous situations in the data sets were not used in this 

research and not further discussed here. The city driving data contained more personalized 

behavior and was chosen to be used for this first evaluation of the GenCL algorithm. A complete 

description of the entire data set is found in APPENDIX C: COMPLETE DESCRIPTION OF 

THE DATA SETS.  

The environment for the experiments was set up to ensure that the behavioral patterns of the 

drivers were neither predictable nor trivial. As Banks and Stytz [5] stated, one feature of human 

behavior is unpredictability. An example of how to trigger this behavior from the drivers is found 

in a traffic light changing from green to yellow and then to red. If this change takes place at an 

appropriate distance from the car, the drivers will make a decision on whether to slow down to a 

stop when the light turns yellow, or continue and pass through the light while yellow. The 
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distance to trigger this diverse behavior among people seemed to be when the car is 30 meters 

prior to the light when driving in Swedish city traffic. When the training data sets were collected, 

we were able to capture this difference in behavior patterns. Even if the lights always change 

from green to yellow (to red) at 30 meters ahead of the light, there was a significant difference in 

the experts’ behavior. Depending on the environment in the light’s proximity and the current 

speed of the car, the same driver would react differently at different lights. Also, a difference 

among the drivers could be detected in their behavior, as described in Table 1. S stands for stop 

and R for running the light while yellow. When the driver does not stop, his speed is usually so 

high that he would pass the light when it’s still yellow. One driver drove carefully and stopped at 

all yellow lights, while others stopped at some yellow lights and ran others. 

Table 1  

Behavior of the five drivers at the six traffic lights that changed from green to red.  

 Light 2 Light 3 Light 5 Light 6 Light 7 Light 9 
Driver A S R* S R R S 
Driver B S S S R R S 
Driver C S S S S S S 
Driver D S S S R R S 
Driver E R S S R R S 
* After the observation run, driver A explained that he became stressed and by accident ran the 
red light. This was not his normal behavior and this particular incident was regarded as an outlier 
and removed from the training set. 

Four of the 11 lights faced change from red to green; six from green to red and one is constantly 

green. All the changes initiate when the agent is at a distance of 30 meters before the light. 

Swedish traffic lights have a state of yellow both in the transition from green to red (3 seconds) 
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and in the transition from red to green (1.5 seconds). As a transition of the traffic lights, either 

from green to red or from red to green, is described in this dissertation, the state of yellow is 

always part of the transition even if it is not mentioned. 

Because the aim of these experiments was to show the validity of this new approach to 

automatically build individualized context knowledge, the success of the experiments is when 

the deviation between the agent and the driver whose observed performance was used to learn is 

small. 

Figure 18 shows the city driving part of the test-bed for the collection of the training data. Note 

that the rural part is not shown in the picture. The red line shows the major path through the city. 

Green circles represent traffic lights and blue circles mark where hazardous situations occur. 

Some of the traffic lights were passed several times in different directions. This is why the 

number of traffic light occurrences is eleven. The hazardous situations and rural driving are not 

described here because they were not used in this research. Normal city driving data had more 

individual behavior pattern and it gave enough results for the research objectives. A complete 

description of the collected data can be found in APPENDIX C: COMPLETE DESCRIPTION 

OF THE DATA SETS. 
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Figure 18: City driving training data. Green circles are traffic lights and blue circles are 
hazardous situations. 

While the human subject operates the car in the Driving Simulator, data from the simulation are 

captured at a rate of 10 Hz. Data points captured include position, heading, pitch, roll, steering 

wheel angle, throttle pedal pressure, break pedal pressure, speed and distance to closest “Hot 

Spot”. Hot Spots are non-visible objects at important locations in the simulated environment, 

such as traffic lights or road maintenance areas. The Hot Spots are implemented in the 

environment to assist the analysis of the simulator run. An example of the captured data can be 

found in APPENDIX C: COMPLETE DESCRIPTION OF THE DATA SETS. 
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Figure 19: The setup of the city driving during validation scenarios. Green circles are traffic 
lights and blue circles are hazardous situations. 

During the collection of the validation data that took place four months after the collection of the 

training data, the same drivers took another route and experienced new scenarios. Figure 19 

shows the city driving part of the validation scenarios. The validation drive was a bit shorter then 

the one used for collecting training data. Once again, the drive was partly conducted in city 

traffic and partly on rural roads. The black line shows the route through the city, green circles are 

traffic lights and blue indicates hazardous situations. 

Now in the collection of validation data, the driver was exposed to seven different traffic lights 

and seven hazardous situations. One light is changing from red to green as the driver approaches 

the traffic light while the rest change from green to red. The timing of the traffic light was now 
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set to change at different distances instead of only when the driver is 30 meters before the light to 

see whether the agents were able to generalize their behavior. The setup for the different traffic 

lights is shown in Table 2. 

Table 2  

Changes of traffic lights during the validation data collection 

 Activation Distance [m] Change 
Traffic light #1 30 Green > Red
Traffic light #2 35 Green > Red
Traffic light #3 30 Red > Green
Traffic light #4 40 Green > Red
Traffic light #5 35 Green > Red
Traffic light #6 30 Green > Red
Traffic light #7 35 Green > Red
 

Table 3 shows the behavior of the five drivers as they pass the six lights turning from green to 

red in the validation setup. If we compare their action in this simulator run with their first run 

(the training) four months earlier described in Table 1, we can see that driver E behaves 

inconsistently. In the training simulator run, his driving style was rather aggressive and he ran 

more yellow lights than anyone else. In the validation run he was rather careful and, together 

with driver C, was the one who stopped most frequently at lights turning red. 

The different behavior in the two runs is one of the drawbacks (in terms of machine learning) 

that could occur by having a gap in time between the two data collection occasions. If the 

machine learning algorithm is to capture the drivers’ “normal behavior” but the drivers do not 
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exhibit this, it will be difficult to capture. The driver might have been in different emotional 

states in the two runs and might have shown a behavior in one of the occasions that could not be 

regarded as his normal driving behavior. The objective of the time gap between the two runs was 

to ensure that the drivers were unprepared for the two simulator runs each time. Driving in a 

simulator differs a bit from driving a real car. As the driver gets used to it, anticipating the 

scenarios played, the driver might adjust his or her driving behavior. In the simulator, you know 

that the scenarios are directed and that something is being tested, but in the real world, you never 

know when or what is going to happen (e.g. hazardous situations). Those situations are not 

desirable to test in a real car, but in the simulator, they can be introduced rather frequently. 

However, test drivers notice if hazardous situations become too frequent and are more careful 

than normal. This problem with inconsistency in human behavior is anticipated but not desirable 

when it comes to capturing normal behavior patterns. Hence, this is the problem of designing and 

conducting accurate and desirable observational scenarios.   

Table 3 

Behavior of the five drivers at the lights in the validation set, changing from green to red 

 Light 1 Light 2 Light 4 Light 5 Light 6 Light 7 
Driver A R R S R R S 
Driver B R R S R R R 
Driver C S R S S S S 
Driver D R S S R S S 
Driver E R S S S S S 
S stands for stop and R for running the light while it’s still yellow. 
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5.1.1. Selecting and Partitioning Training Data 

The nature of learning by observation is to let the human subject perform his or her task as 

realistically as possible and to monitor and extract his or her true behavior. To examine the 

potential of learning by observation, no extra knowledge or information is added to the data. As 

an example, the agent will not be penalized extra during the learning process if it runs a red light. 

It should only compare its behavior to the human whose behavior was used to evolve it. The 

experimental test-bed was designed for the experts to drive a route combining city driving and 

rural driving. During these 30-minute drives, the expert did not experience two identical 

situations. Human behavior is not always consistent, and the human driver might react 

differently to similar situations. It might be tempting to present the same situation several times 

and base the learning upon some average measure of the performance. The risk in these 

repetitive situations is that the human bases his or her action on prior knowledge and might not 

behave naturally. Conversely, letting the human act in a realistic environment with similar, but 

not identical, situations introduces disorder to the training data. In the worst case, contradictory 

data might exist in the data set. If learning by observation is to be rigorously implemented, this is 

an important issue. The learning conducted in this research left any disorderly data within the 

data set to investigate how well the CxBR and GP approach handles this. 

The data used in these first experiments were restricted to city driving. During city driving, the 

most diverse and unpredictable behavior was noticed.  
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When it comes to observing tactical human behavior, the perspective of the behavior pattern is 

observed from outside the car. The car and the driver are looked upon as a single unit with some 

human behavior characteristics. The agents (i.e. simulated cars) to be automatically created are 

also only observable from the outside. The issue is not to model the human behavior in terms of 

emotions, stress, sickness and other reactions imposed from car driving that will not be 

observable from outside of the car.  

When we observe the driver and the car as one unit, there are three actions that affect the car’s 

behavior: steering, acceleration and braking. The first experiments conducted are limited to 

evolving basic city driving behavior. As long as the car is in city traffic, the steering is of minor 

importance since no differences in human behavior patterns are detectable with regards to 

steering. The driver always keeps the car close to the middle of the lane. Hence, the steering was 

not part of the learning task.  

In this research, the filtering and partitioning of the data were made manually. The amount of 

data was large because the Driving Simulator sampled the environment and the action of the 

driver at a rate of 10 Hz. This results in a data set close to 15,000 samples as the driver completes 

the drive. To get a reasonable response time from the learning system, this data set was reduced 

to less then 300 data samples to constitute the training data for each agent. The training data used 

is described in APPENDIX D: TRAINING DATA. In addition, inputs that were of no interest for 

the learning paradigm, such as pitch, roll and steering wheel angle were also removed from the 

data set. The data used during training were throttle pedal pressure, break pedal pressure, speed 
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and distance to intersection or traffic light. Additionally, two Boolean variables were derived 

from the simulator’s Hot Spot outputs. Those two variables indicate the presence of traffic lights 

or turning at intersections. Note that no preprocessing of the data was done in terms of 

computing the average behavior or other processing of the data in specific situations after data 

were selected.   

The data were partitioned to contain similar amounts of data from the different scenarios to be 

used in training. This was done to ensure that the search pressure would not favor any particular 

situation. The data points were selected randomly from typical scenarios (e.g. within 100 meters 

before a traffic light or an intersection). The scenarios are further selected to complete the 

behavior in the context to be learned. As an example, if Traffic-Light-Driving is to be learned, 

data from several different scenarios (e.g. stopping at light turning red, running yellow lights, 

passing traffic lights when making an intersection turn, etc.) need to be included in the training 

data. In some cases, the results from learning indicated that the selection pressure favored some 

specific scenario. This was why the data set had to be adjusted. Data were also partitioned to fit 

the CxBR structure. If the training, for example, was designed to learn normal city driving, no 

data were used from traffic lights or intersections. Note that before the agent is fully developed, 

data from each scenario has to be presented to ensure that the agent can determine the right 

context used in all possible situations. The data points for each scenario selected need to be 

picked with a constant time frame (e.g. 0.4 seconds), so GenCL knows when to stop the micro 

simulation and compare the individual’s performance with the human’s performance.  
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5.2. Configuring the Context Base Prior to Learning 

The frame of empty contexts, where GP evolves knowledge, is shown in Figure 20. This was the 

only data about the problem that was created manually during this research.  

 

Urban-Driving 

Intersection-
Turning 

Traffic-Light-
Driving 

Red-Light-
Driving 

Sub Contexts 

Major Context 

Green-Light-
Driving Sub-sub Contexts 

Figure 20: The context hierarchy of basic city driving. 

If the model is to cover the basic city driving, it must be able to handle traffic lights and 

intersections besides normal driving on a straight road segment. The predefined structure for 

learning is described in Figure 20. The actions (i.e. the knowledge in the action rules) within the 

context Urban-Driving, the Sub-Contexts Traffic-Light-Driving and Intersection-Turning 

and the Sub-Sub-Contexts Red-Light-Driving and Green-Light-Driving are evolved by the GP 

algorithm. Additionally, the system evolves the rules controlling the activation of contexts (i.e. 

sentinel rules).  

100 

 
  
 



5.3. Experimental Test-Bed – The GenCL Artifact 

The experimental test-bed consists of the GenCL artifact that works according to the GenCL 

algorithm described in section 4.7. The implementation and configuration of the GenCL artifact 

will be discussed in this section, especially the details of the GP module. 

5.3.1. GP Implementation 

Fuzzy Logic representation was not used in the experiments within this research. This was done 

because the integration was of primary interest and the function set was kept as simple as 

possible in this initial investigation. The use of Fuzzy Logic seems to have features advantageous 

to modeling human behavior and could be of interest for future research. 

The source code representation in the GP individuals is chosen to be implemented in a tree 

structure, earlier described in 3.3.5. The knowledge evolved by the GP module in the GenCL 

artifact is syntactically correct C code. The code evolved by the GP module makes it easy to 

incorporate the knowledge evolved into the Traffic Simulator, developed from the CxBR 

framework originally implemented in C++ by Norlander [55].  

In order to investigate the applicability of the GP to evolve knowledge in the context bases, 

different GP features were implemented in the GenCL artifact as various genetic operators and 

selection methods. The impact of adjusting these features will be investigated in 6.6. Two 

genetic operators were implemented: crossover and mutation. The crossover and the two types of 
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mutation were implemented in accordance to the description in section 3.3.5.  

5.3.1.1. Population Initialization 

When an individual in the GP population is created, an instruction tree is randomly generated. If 

the nodes are selected completely at random among both the function set and the terminal set 

(i.e., GROW initialization method), the risk is that many individuals will be rather small and 

only contain a few functions and operators or even only a single value or variable. If this is the 

case, the GP learning process has very little information upon which to base the evolution. One 

initialization method commonly used is called RAMPED initialization. Here the individual 

randomly picks either the initialization method GROW or FULL with equal probability. If the 

individual is initialized with the FULL method, the instruction tree is forced to grow to the 

maximum depth defined. The maximum depth needs to be defined so the instruction trees do not 

grow overly large during evolution. Using the RAMPED initialization method will then produce 

an initial population where approximately half of the individuals are of full depth and the other 

half are of different depth sizes. RAMPED initialization is used in this research for the initial 

creation of the individuals. Note that the GROW method is used when a new sub-tree is created 

during regular mutation.  

5.3.1.2. Selection Methods 

Four different selection methods were developed within the GP module: Fitness Proportionate, 

Ranked Fitness, Tournament Selection and Fitness Uniform Selection. These four different 
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selection methods were presented in section 3.3.5 and will put different selection pressure on the 

learning process. A higher selection pressure will favor exploitation of the interesting areas of 

the search space where individuals with high fitness reside. The selection method here with the 

highest selection pressure is Fitness Proportionate Selection. If one individual has an 

exceptionally good fitness value, the probability is that this individual will be chosen most 

frequently and the population will focus its search in this area. With Ranked Selection, the 

difference in fitness value is smoothed out when it comes to selection. Even if there is a great 

difference between the best and the second best individuals’ fitness value, their probability of 

being selected is minor. The selection method with the weakest selection pressure is the 

Tournament Selection, since the group size often is much smaller than the population size. The 

Fitness Uniform Selection presents another type of search pressure. Here, the very best 

individual, like the worst individual, has little chance of being selected (see Figure 10). Rather, 

the selection pressure is somewhere in the middle of the population with one important 

exception. This selection method penalizes individuals grouped together with  similar fitness 

values. If half of the population, for any reason, is grouped together around one value, all of the 

individuals in the group, except the two on the group border, will have a small probability of 

being selected. In this manner, this selection method has a built-in feature that withholds the 

diversity in the population.  

How the selection pressure affects the learning in GP is highly problem dependent and the 

optimal configuration can only be gained by testing. The complete configuration of the GP 

during the experiments is further discussed in selection 5.3.2. 
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5.3.1.3. The Model of a Car Model 

Since the Driving Simulator was not accessible during the learning phase, a car model was 

developed. The configuration was set to represent the output from the individuals to describe the 

accelerator and brake pedal pressure. To be able to perform a comparison to the actual drivers’ 

speed and position, the model of how pedal pressure affects the car’s change in speed was 

developed. The implementation of the Driving Simulator’s car was not accessible. The physics 

behind the model that connects the pedal pressure to the change in speed is a rather complicated 

system of differential equations. Furthermore, it is strongly dependent on the features of the 

actual car, such as air resistance, engine and transmission dynamics and wheel configuration. A 

model of a real car would probably be different from the model used in the Driving Simulator.  

Instead of looking at a correct vehicle model, an alternative engineering approach was taken. A 

rough model was established by inspecting the recorded data.  The rough model establishes a 

relation between the speed of the car and the pedal pressure. This model was then optimized with 

a simple GA. The basic GA is very easy to use for optimizing function features. The rough car 

model was placed in the fitness function. The fitness function compared the output from the 

model (i.e., speed) with the speed of the car the driver operated during the data collection drive. 

The average deviation was then the fitness value. The resulting model looks like this: 
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double calcSpeed(double acc, double prevSpeed, double deltaT) 
{ 
 double tmpSpeed; 
 
 tmpSpeed = (1.34319425020673/(acc+1.34319425020673)) 

    *63.435064487992*acc*deltaT+prevSpeed*0.97839448706081; 
 if(prevSpeed > 15.0) 
  tmpSpeed += 0.0934197333815892; 
 if(prevSpeed > 58.6784578243764) 
  tmpSpeed += 0.583733277998991; 
 if(prevSpeed > 94.0581146329115) 
  tmpSpeed += 0.63169388263119; 
 
 if(tmpSpeed < 0) 
  tmpSpeed = 0.0; 
    
 return tmpSpeed; 
} 
 

The highlighted numbers are those optimized by the GA in the model. 
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Figure 21: The model of a car model 

The average deviation between the rough model optimized by the GA and the original data over 

the entire test run was 4.2 %. Figure 21 shows a piece of the calculated deviation. Even if the 
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deviation is fairly small, it might be a concern when designing the fitness function.  

5.3.1.4. The Fitness Function – A Micro Simulation 

To be able to compare the individual’s performance with the observed human and to calculate 

the fitness value, the source code of the individual was executed. This is done in the Micro 

Simulator incorporated within the GenCL artifact. See Figure 15. 

The Micro Simulator in GenCL was reduced to minimal operational requirements to save 

computational effort. Evolving parts of the simulated agents in the GP part and running those in 

a simulator is computationally expensive. The Micro Simulator was stripped down only to be 

operable in a restricted environment. All the pattern matching and data retrieval from different 

fact bases were removed. The context base was kept from the original CxBR framework 

described in Figure 3 and incorporated in the GenCL artifact together with a minimal simulator 

engine. This is enough for the agent’s operational behavior to be compared to the human driver’s 

recorded behavior. 

Because of the time complexity of compiling, linking and loading the C code in the individuals, 

an interpreter was developed in the Micro Simulator module to interpret the C code. Each 

individual from the GP is fed to the Micro Simulator module to perform a micro-simulation from 

where the result can be compared to the human’s performance. In this micro-simulation, the C 

code that represents an individual in the GP population is interpreted and run for a number of 
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simulation cycles. Eventually, when the complete agent is evolved, the source code will be 

placed in the CxBR framework, compiled and executed in the Traffic Simulator (i.e. the final use 

of the agent). This Traffic Simulator is used during evaluation of the agents.  

The fitness value is the average combined speed, distance and throttle deviation. During the 

calculation of the fitness value, the Micro Simulator within the GenCL runs the individual for an 

appropriate number of time steps so that the speed, distance and throttle/brake pressure can be 

compared to the next training data sample. The Micro Simulator then continues to the next 

sample and new deviations are measured. This continues to cover all data samples within the 

current training sample set and the average deviations are then calculated as the fitness value. 

Figure 22 shows an example of one training scenario when an individual is compared to the 

actual driver’s behavior approaching a traffic light turning red. At the start of the micro-

simulation, the individual is initiated with the same position and speed as the real driver. 

As the micro-simulation is running, the deviation between the individual’s behavior and the 

driver’s behavior is measured at defined time steps. In this example, the time steps are 0.4 

seconds apart (i.e. each vertical line in the chart). Actually, the time steps for the actual driver are 

a set of data samples (18 in this example) to which the performance of the individual’s micro-

simulation is compared. In Figure 22, only the speed is given as an example, but the same 

comparison was also made with throttle/brake and distance. 
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Speed Deviation Driver B and GP-Individual at Light #3
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Figure 22: Comparison of individual’s micro-simulation and Driver B 

The fitness value is calculated as 
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where v is the speed, s is the distance, th is the throttle/brake pressure, M is the number of 

scenarios presented (e.g. four traffic lights) and Nk is the number of samples used in scenario k. 

The subscript d refers to the real driver and i to the individual whose fitness is calculated. This 

will give an average measure of the combined speed, distance and throttle/brake pressure 

deviations. Note that this fitness value is a summation of units and therefore the result is unit-
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less. As the speed part of the fitness function measures the momentary deviation, the distance 

serves to collect the accumulative deviation. This can be compared to the short and long term 

reward in reinforcement learning. 

At the end of the experimental phase, throttle comparison was removed from the fitness value. 

There are two factors that made the throttle comparison a bad measure on the performance. First, 

a car model does not react on high-frequent changes in the throttle pressure. The car model 

works as a low-pass filter between the throttle and the resulting speed of the car. In other words, 

if the driver makes a lot of rapid small changes to the throttle it will not affect the speed of the 

car, but it might affect the fitness value. Another problem was that the code from the Driving 

Simulator car was not available and a model of the car was created as described in section 

5.3.1.3. Even if this newly created model has a close resemblance to the Driving Simulator’s car, 

it is not perfect and will be an error source if the throttle/brake pressure is part of the fitness 

value. When there is a discrepancy between the two car models it might bring in a negative 

correlation between speed and throttle/brake pressure in the fitness function. If the GP evolves 

individuals that lower the discrepancies in speed, it might worsen the discrepancies in pedal 

pressure.  

5.3.2. GP Configuration 

Before starting the evolutionary process, the GP needs to know the function set F and the 
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terminal set T. The following terminal and function sets were used during evolution: 

• Variables/Input 

o double distance, speed;  

o enum Light; 

o bool intersection, LightPresent;  

• Variables/Output 

o double throttle; 

o bool activateContext; 

• Constants  

o double [-100, 100]  

o bool [false, true] 

• Operators 

o mathOperator: +, -, *, / 

o trigOperator: cos, sin, exp, log 

o polyOperator (degree 2 – 5): pow  

o compOperator (if–else statements): ==, !=, >, < 

• Functions (Sub-sub contexts) 

o lightFunc: redLight(), greenLight() 

Not all of those functions and terminals were used at all times. Rather, these were varied during 

the experiments to determine whether any function set would suit a specific problem better than 
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another and to investigate the learning algorithm’s sensitivity to different parameter settings.  

After initial testing, some of the parameters of the GP were kept consistent during the 

experiments while others were varied. The settings used in the experiments are shown in Table 4.  

The mutation rate was always set to 0.1 while the mutation type rate was varied. We define the 

mutation type rate as a probability of which type of mutation (i.e. sub-tree mutation or node 

mutation) will occur if an individual has been selected for mutation. The closer the value gets to 

0.0, the higher probability that the mutation type is sub-tree mutation. If the value gets closer to 

1.0, the higher the probability of a node-type mutation.  

Table 4  

GP configuration during the experiments 

Initialization method RAMPED 
Population size 2000 
Generations 2000 
Crossover rate 0.55, 0.65, 0.75, 0.85, 0.95 
Mutation rate 0.1 
Mutation type rate 0.2, 0.5, 0.8, 1.0 
Elitism 25 
Selection method Fitness Proportional, Ranked, Tournament, 

Fitness Uniform  
A single value indicates that this configuration was used for all experiments while  
multiple values indicate a variation between the different experimental runs. 

The population size and the number of generations were not varied during the different 

experiments. The elitism number refers to the number of best individuals preserved from one 
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generation to the next. This ensures that the best individuals are always kept in the population. 

Crossover rate and selection methods were varied during the experiments. Additional to the 

features described in this table, the function set was also varied during the different experiments. 

How these different configurations affect the outcome of the learning phase was investigated and 

the results are presented in section 6.6. 

5.3.3. Evolving the Models 

In accordance to Layered Learning GP (LLGP), the first modules to evolve were the Red-Light-

Driving and the Green-Light-Driving Sub-sub-Contexts shown in Figure 20. The next step was 

to evolve the Traffic-Light-Driving Sub-Context. During the evolution of this Sub-Context, the 

two Sub-sub-Contexts were available as part of the function set that the GP could use. In this 

manner, the Sub-sub-Context was accessed as part of a competing context transition scheme 

[65]. The Traffic-Light-Driving Sub-Context evolves an action rule consisting of operators, 

functions and Sub-sub-Context calls. The activation of the Sub-sub-Contexts then becomes part 

of this action as the action rules of the Sub-Context evolve.   

When the Traffic-Light-Driving context was completed, the action rules in Intersection-

Turning and Urban-Driving were evolved by the GP. The final part was to evolve the sentinel 

rules of Traffic-Light-Driving and Intersection-Turning. Those sentinel rules were evolved 

according to the direct transition methodology. Those two sets of rules were evolved 

simultaneously using the Co-Evolutionary approach. The set of sentinel rules within the two 
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Sub-Contexts Traffic-Light-Driving and Intersection-Turning actually evolved after the Major 

Context Urban-Driving. This is a necessary adjustment (or the set of sentinel rules can be 

viewed as another dimension in the hierarchy) in order to evolve the most complex task of this 

training process. The sentinel rules for these two Sub-Contexts use the direct transition approach. 

Direct transition makes the learning somewhat more complex for the GP. Now, the two sets of 

sentinel rules are interdependent. If one of the contexts makes an activation query and the other 

already is activated, the active context needs to release the activation before the other context can 

be activated. Hence, the evolution of the two sets of rules needs to be done in parallel so the 

fitness is also penalized if it prohibits the other more appropriate context to be activated. Also, 

note that all the prior evolved contexts need to be part of the evolution of these two sentinel rule 

sets. In order to determine if the Major Context Urban-Driving should be active or if any one of 

its two Sub-Contexts should be activated, the complete functionality of all those three contexts 

need to be operable to be able to compare the action with the human’s action. When a data 

sample is presented during training and the sentinel rules could activate one of the Sub-Contexts, 

then the action rules within this sub-context will be executed. If neither of the two sentinel rule 

sets is activated, the Urban-Driving context is executed. When the execution is done, the output 

is compared with the action performed by the real driver and a fitness value is calculated. When 

this is completed, the GenCL artifact has evolved an agent capable of handling basic city traffic, 

traffic lights and making turns in an intersection. 
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Intersection Turning - Sentinel rules  
 
(lightPresent? 

distance>35.319071? 
(lightPresent? 

(speed>35.319071? 
(distance<98.083437? 

(!intersection?0 
:(speed<distance?0:1)) 

: (!intersection? 
(speed<98.083437?0:1) 

: (speed>14.383373? 
(speed>57.991272? 

(!intersection? 
(!lightPresent?1:0) 

:0) 
:(!lightPresent?0:1)) 

:1))) 
: (lightPresent?0 

: (!intersection?0:1))) 
 : (speed>50.532548?0 

: (distance>50.215155?0 
: (intersection?1:0)))) 

: (lightPresent?0 
: (!intersection?0:1))) 

: (speed>50.532548?0 
: (distance>50.215155?0 

:(intersection?1:0)))); 
 

Intersection Turning - Action rules 
 
((sin(73.021637))<distance? 

pow((distance<speed? 
(pow(speed,5)>(33.744316>(distance<speed?speed:71.636097)? 

pow(pow(distance,3),3) 
     : pow(59.166234,2))? 
         (distance>speed?(cos(-52.122562)):(sin(pow(distance,5)))) 

    :13.791314) 
:speed),2) 

:(log(72.826319))); 

Figure 23: Example of evolved code – Intersection turning, agent C 

An example of the evolved code is presented in Figure 23. The code is here presented on several 

lines and in a somewhat structured way but the code is untouched. All the evolved code is 
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presented in APPENDIX E: EVOLVED CODE.  

5.4. Summary 

This chapter presented the application scenarios used in the experiments. Furthermore, the 

collection of data and the configuration of the learning algorithm and its prerequisites were 

described. This will then constitute a sufficient basis to validate the new GenCL algorithm. The 

next chapter describes how these experiments were conducted and also presents the results and 

conclusions. 
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CHAPTER 6: RESULTS AND CONCLUSIONS 

This chapter presents and discusses the results of the experimentation. The objective is to 

determine how well the learning strategy was able to learn and generalize the personalized 

human behavior. Note that all the behavior knowledge within the contexts is learned by the 

GenCL system. 

6.1. Evaluation Criteria 

A model’s performance when compared with training data is by itself not sufficient to determine 

the success of the new approach. The key objective is to facilitate the creation of simulated 

agents with human behavior and to open up the possibility to capture implicit knowledge. The 

knowledge learned should not only mimic the behavior, it should also generalize the behavior 

and create reliable agents. Our evaluation of the GenCL approach will consider the following 

criteria: 

• Learning capabilities 

• Generalization 

• Long-term Reliability 
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• Usefulness 

• Ease of use 

Learning capabilities experiments simply measure how well the system learns human 

performance. The model developed during training is simply compared with the training data 

collected from the human’s driving performance (i.e., same comparison data is used as for the 

training). Learning capabilities experiments compare the model output with the human’s action 

based on the observed data. Since the application of this research focuses on building 

autonomous agents able to operate in a simulated environment, this validation will not be 

sufficient. Even if these experiments show small deviations, the agent could, during operation, 

accumulate errors, so the agent might not work correctly as the simulation continues over an 

extended period. Except for the learning capabilities, all other validation experiments evaluate 

the agent continuously in a simulated environment, and make a long-term evaluation of its 

performance. The agent operates autonomously in the environment while presented with a 

number of situations that need to be acted upon, and its deviation from the expert’s actions are 

monitored.  

Generalization measures how well the agent can handle new situations not seen in the training 

data. The agent simply operates autonomously in the simulated environment and is compared to 

the recorded driver’s behavior. The first generalization experiment was done with the training 

data set. Not all the of the training data set was used during training, so by letting the agent 

operate in the entire training data set environment, it will be exposed to partly new situations and 
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partly semi-known situations. Even if the agent here passes a scenario environment used during 

training, it will not be exposed to the same data as during training. Now the agent is approaching 

this scenario with a different speed and location since it is autonomous and has been in the 

environment for a while. Hence, we call those situations semi-known. The performances of the 

agents are compared with the driver’s performance in these new situations to measure how well 

the agents were able to generalize the problem. 

The second generalization test was carried out in a new environment. This new environment is 

the same in which the real drivers were exposed during the collection of the validation data set. 

Now the environment is different and the behaviors of the traffic lights are also different from 

the training data.  

By letting the agent operate freely in the environment for an extensive period, the Long- term 

Reliability of the evolved model will be measured. The consistency of the agents’ behavior is 

tested here. 

To compare the Usefulness of the new approach, the model created of the CxBR and GP learning 

will be compared with models independently created in the traditional fashion by a knowledge 

engineer and a programmer interviewing and riding with the driver. If the results from the new 

approach are comparable to the results from agents developed with traditional means, this 

validates the feasibility of the new approach.  
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Finally, the Ease of use compares different settings of the GP-learning algorithm to evaluate how 

sensitive the learning algorithm is. This measure indicates how easy the learning algorithm is to 

use. If the learning algorithm needs much tweaking and fine-tuning, the knowledge engineer 

needs to be replaced with a machine learning expert and the workload of creating a simulated 

agent might remain the same. 

6.2. Test of Learning Capabilities 

When testing the learning capabilities, the objective is to get a measurement on how well the 

algorithm was able to conduct learning of human behavior. The fitness value is the measurement 

that tells the GP algorithm how well each individual performs against the human’s performance 

(i.e. the fitness function). The first determination on how well the algorithm conducted the 

learning phase could be to look at the fitness values of the best individuals. 

Table 5 shows the fitness values for each evolved agent in its different modules. Fitness for 

Traffic-Light-Driving is the combined fitness when the three contexts Red-Light-Driving, 

Green-Light-Driving and Traffic-Light-Driving are working together. This is simply a result 

of the CxBR structure, shown in Figure 20, where the Traffic-Light-Driving cannot yield a 

complete and accurate output without accessing its two Sub-Contexts. Similarly, the fitness 

values of the sentinel rules in Traffic-Light-Driving and Intersection-Turning are calculated 

when all the context parts are accessible. If an accurate output should be obtained during the 

micro-simulation, whether any of the two Sub-Contexts (Traffic-Light-Driving or Intersection-
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Turning) are activated or if the Major Context (Urban-Driving) is activated, then all those 

contexts’ actions need to be fully operational. 

Table 5  

Fitness values for the five evolved agents 

 Urban 
Driving 

Red 
Light 

Green 
Light 

Traffic 
Light 

TLD 
sentinel 
rules 

Inter-
section 

ID 
sentinel 
rules 

Agent A 2.03 1.32 1.67 4.37 2.32 2.33 1.98 
Agent B 3.22 1.23 1.29 2.15 3.04 1.58 3.55 
Agent C 0.824 6.04 2.07 5.61 3.34 1.63 2.96 
Agent D 1.18 5.40 3.18 2.24 2.93 1.17 2.44 
Agent E 1.76 6.08 3.57 6.08 4.32 3.35 6.04 
 

The fitness value is not a totally meaningful measure of learning effectiveness, but it is the key 

factor in the GP algorithm to distinguish a better individual from a worse one (i.e. low value is 

less deviation - better fitness value). It gives us the combined average deviation, but it could be 

that one of the compared variables (i.e. speed, distance or throttle/brake pressure) could deviate 

significantly while the other two are good. The values for the sentinel rules, which together 

constitute the performance measure of the whole agent, in Table 5 indicate that agent E is 

performing worse than the other agents. Actually, the values in different rows and columns could 

not be fairly compared with each other since different data sets have been used. Different data 

are used when, for example, Urban-Driving and Intersection-Turning is learned. The speed 

range in the data used for Urban-Driving could be only 10 km/h but for Intersection-Turning 

the range could be 65 km/h. Therefore, a value of 1.18 might not necessarily yield better 
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performance than 2.93. In the same manner, different data sets are used when training different 

agents and their respective measures cannot be fairly compared. The only thing that matters to 

the learning algorithm is when training is conducted with a specific data set, lower values 

indicate better performance. 

To get a measure on how well the agent learns its tasks, data used in evolving the two sentinel 

rule sets (i.e. sentinel rule sets of Traffic-Light-Driving and Intersection-Turning) was fed 

into the complete model and compared with the outputs of the corresponding driver. Since the 

evolution of these two sentinel rule sets involve all other contexts, this data set could be used as a 

measure on the learning capabilities of the complete agent. Table 6 shows how well the agents 

learned their tasks. 

Table 6 

Learning capabilities 

 Speed deviation Speed 
 RMS [km/h] RMS [%] Correlation 

Driver A/Agent A 2.98 4.88% 0.988 
Driver B/Agent B 3.68 6.41% 0.983 
Driver C/Agent C 2.57 4.74% 0.990 
Driver D/Agent D 2.41 4.19% 0.989 
Driver E/Agent E 8.10 13.2% 0.852 
 

The comparison made here is simply obtained by feeding the inputs experienced by the real 

driver to the agent. Their deviation is then measured at the time of the next training sample. A 

few simulation steps are performed (less than one second) to be able to make the comparison at 
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the next data sample. The initial inputs for each micro-simulation are not collected as the agent is 

acting in the simulated environment. Instead, the inputs come from inputs that the actual driver 

experienced during his run. Hence, no real simulation is performed and the deviation in position 

is minimal. Since only the outputs from the agent are compared to the driver’s performance at a 

specific location and the result of the car is of interest (not really the pedal pressure), the only 

sound measurement is speed. The speed deviation in Table 6 is calculated with the same formula 

as the fitness function, except that the distance and throttle/break pressure was not used. The 

correlation coefficient in Table 6 is calculated as 
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where µ is the mean value and σ is the standard deviation. If the correlation coefficient is close to 

1.0, there is a high correlation between the two data series. If it is close to zero, there is little 

correlation. If it is close to -1.0, the correlation is inversed. 

We can see in Table 6 that the agents have small deviations and high correlation to their 

respective driver. Agent E shows a slightly worse performance, where its deviation is higher than 

that of the other agents and the correlation is also a bit worse. As discussed earlier, looking at the 

data collection, the behavior of driver E in the second simulator run has little resemblance to his 

first run. Further investigation of driver E’s behavior shows a slight inconsistency within the 

training set. Light 2 (see Table 1) is located 30 meters after an intersection turn. This means that 
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the speed of the driver at this point is rather low, and the most obvious action is to stop at the 

light that is about to turn red, as all the other drivers did. However, driver E ran light 2. His 

attention might have been on other things in the environment and he did not spot the light early 

enough. This might explain his decision to run the yellow light. This might complicate the 

learning task of agent E since driver E stops at other lights turning red, even if his approaching 

speed is higher. Note that the training data set is missing a lot of information about the 

environment, as buildings and other objects besides the road. 

The results from the test of learning capabilities present low discrepancies between the agents 

and their respective driver. The speed deviation is low and the correlation is high. A high 

correlation, close to one, means that the agent modifies its speed in the same manner as the real 

driver. Hence, GenCL show strong learning capabilities. 

6.3. Test of Generalization 

Generalization takes place when an agent trained with one specific set of data can extend its 

correct behavior to handle similar but different situations correctly. To measure generalization, 

the agent operates in the simulated environment within the Traffic Simulator and compared with 

the recorded driver’s behavior in new situations. 

As an autonomous agent is being evolved, it is necessary to test its ability to perform in its 

normal environment (i.e. running in a simulation). It is not sufficient to only test input vectors 
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and compare them with the anticipated output vectors since this will not tell us anything about 

the agents’ accumulated errors and long-term reliability. We need to ensure that the agent is 

autonomous and that the agents’ behavior in this simulated environment actually is comparable 

to the drivers’ behavior, even after minutes, hours and days. Except for the Learning Capabilities 

evaluation, previously presented in section 6.1,, the results are gathered when the agent operates 

autonomously within the simulated environment. At each simulation cycle, the behavior of the 

agent is compared to the behavior of the driver at the same position (e.g. 35 meters prior to a 

traffic light). The deviation in behavior could primarily be measured in speed and time 

deviations. Since the comparison is made at specific locations, it would have taken the agent and 

the driver some time to get there from the start of the simulation. Hence, there will always be a 

time deviation between the agent and the driver at a certain location in the simulator 

environment. The time deviation is harmless to the agent’s behavior, but it gives a measure on 

the agent’s long-term deviation. The speed deviation measures how the agent’s behavior deviates 

from the real driver’s behavior at every specific moment. Even if this deviation is small, it could 

accumulate over time (e.g. if the agent always is slightly slower than the driver is) but it will then 

show in the time deviation. 

When comparing  the agent and the driver at specific locations, a problem occurs if the speed 

differs greatly between the agent and the driver at one location. The problem is that in such a 

case the comparison could be made with the same sample more then once (see Figure 24). If the 

agent is moving slowly and the real driver is moving fast at some part, the closest recorded 

driver’s sample will be the same sample for several of the agent’s samples, since the sample rate 
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is 10 Hz for both the driver data and the agent. This is not sound when doing a statistical analysis 

of the data, as when computing the correlation coefficient. Hence, all those occurrences of 

duplicate sample comparisons were removed from the comparison data. In the example in Figure 

24, only two of the five agents’ samples can be used, since otherwise the same driver’s sample 

needs to be used several times for comparison.  

Agent’s samples 

Driver’s samples  

Figure 24: Comparison at closest position with same sample rate but different speed  

6.3.1. Generalization in the Training Environment 

Less than 300 samples of the approximately 5,000 samples collected in city driving were used 

during the learning phase of the agents. Hence, not all of the data or the scenarios in the training 

data set were used during training, so the first generalization test was done on the complete city 

training data set. Generalization measures how well the agent can handle new but similar 

situations. Nevertheless, even if some of the data used during training were collected from the 

same parts that the agent now experiences during generalization testing, the agent will never 

experience the same input pattern as it did during learning. This is because the agent is now 

autonomous and by its action will generate its own input state for the next simulator cycle. 

Figure 25 shows the gray areas of city driving where training data samples were used during 

training of the agent. Note that not even all the samples within the sections were used. We can 
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further see that the evolved agent almost never has the same speed as the driver at a certain 

position in those segments.  

Speed Comparison Driver B / Agent B
Training Data Sections
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Figure 25: Behavior of agent B and Person B in the training environment 

There is a gap in the graph because the agent is taking an alternative route and not completely 

following the driver’s route. This is because the real driver is leaving the city and entering rural 

traffic driving that is not implemented in the agents. Therefore, no comparisons are made in 

those locations where they are taking different routes. 

In this generalization run, the agent will also experience at least four completely new traffic 
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lights and three intersection turns never exposed during training. Yet, the data used in the 

comparison are from the training data set. Each agent will run the same path, which will take 

between 140 to 170 seconds to complete depending on the agent’s behavior. This equals 1,400 to 

1,700 data samples to be compared to the drivers’ behavior. Remember that the agent was only 

trained with less than 300 data samples. 

Table 7 

Qualitative validation of the agents in the training environment 

 Light 2 Light 3 Light 4 Light 6 Light 7 Light 8 Light 3b Light 4b 
Driver A/Agent A S/S R*/R OK R/R R/R OK OK OK 
Driver B/Agent B S/S S/S OK R/R R/R OK OK OK 
Driver C/Agent C S/S S/S OK S/S S/S OK OK OK 
Driver D/Agent D S/S S/S OK R/R R/R OK OK OK 
Driver E/Agent E R/R S/S OK R/R R/R OK OK OK 
* After the simulation run, driver A explained that he became stressed and by accident ran the red 
light. This was not his normal behavior and this particular incident was regarded as an outlier 
and removed from the training set. 

Table 7shows a qualitative comparison regarding the traffic lights that the agents pass. Lights 2, 

3, 6 and 7 change from green to red. S stands for stop and R for running the light while it’s still 

yellow. Lights 4, 8 and 4b change from red to green, and OK here means that the agent performs 

in accordance to the driver (i.e., slows down when the light is still red and picks up speed when it 

turns green). Light 3b is constantly green, and OK refers to the agent performing in accordance 

to the driver (i.e. almost no noticeable change in driving behavior). 

Here we can see that the agents act in harmony with the human drivers. The only question is 
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agent A at traffic light 3. Here the agent actually runs the yellow light. Driver A ran this light 

while red but in his statements after his simulator run, he stated that it was not according to his 

usual behavior. Therefore, this traffic light occurrence was regarded as an outlier and removed 

from the training set. 

As an example on the comparison between an agent and a driver, Figure 25 shows the speed 

deviation of agent B and driver B at different positions in the training environment. The 

similarity in behavior is shown in Figure 25, where the agent and the driver slow down and stop 

at the same positions in the environment. Even if it is not visible in the figure, those occasions 

are traffic lights and intersection turning.  

By looking at the graph, we can see that the agent presents a behavior pattern that is clearly 

comparable with its corresponding driver. The notable differences are that the agent seems to 

filter out some of the fluctuations and presents a slightly smoother driving style. This is quite 

notable in most of the agent/driver comparisons. 

The results representing the differences between the agents and their corresponding driver are 

presented in Table 8. The distance covered during the comparison is 1.6 km, and it takes 

approximately three minutes to complete. The average deviation between an agent and a driver is 

probably close to zero since some of the deviation will be positive and some negative. Therefore, 

a better measurement of the deviation is the Root Mean Squared error (RMS) where the sign of 

128 

 
  
 



the error, e, is irrelevant. 
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Note that the standard deviation ( eσ ) is a measure of the variability of the error and is based on 

the population’s variation from the mean and not from the RMS. Hence, the standard deviation is 

a variability measure regarding both the positive and negative deviations. 

Table 8 

Relationship between the agents and the drivers in the training set environment. 

 Speed deviation [km/h] Time deviation [s] Speed 
 RMS Std.Dev. RMS Std.Dev. Correlation 
Agent A vs. Driver A 8.09 7.35 5.81 4.11 0.825 
Agent B vs. Driver B 8.32 7.92 3.13 2.78 0.893 
Agent C vs. Driver C 6.74 6.72 2.10 2.06 0.920 
Agent D vs. Driver D 8.46 8.45 3.13 3.12 0.842 
Agent E vs. Driver E 9.29 8.42 4.49 3.72 0.783 
 

The speed deviations and the speed correlation shown above can be compared to those presented 

earlier in the learning capabilities (Table 6). The results in Table 8 are not as good as those of 

table 6, but that’s also expected since the agent now is exposed to new data not used during 

training. The agents also act autonomously. The results show low deviation and the correlation is 

still high. The exception, however, is agent E, which shows a slightly worse performance than 

the other agents. 
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6.3.2. Generalization in the Validation Environment 

The validation environment refers to the new environment the drivers experienced during their 

second simulator run. When doing comparisons in the validation environment, the agents 

experienced the same city environment as the drivers did in their second simulator run. The 

agents will now experience totally new situations with a slight difference in environment 

behavior. The traffic lights will change their states at various distances as described in Table 2. 

The total distance where deviation could be measured between the agents and the drivers is 

approximately 2.2 km and it takes the agent 3 - 3½ minutes to cover that distance depending on 

their behavior patterns. During the drive, the agent will pass five traffic lights that change from 

green to red and one that changes from red to green. 

First, the qualitative behavior at the different traffic lights was examined. Table 9 shows the 

agents’ behavior at the traffic lights. Here it shows that agent A runs light 7 while driver A stops 

at that light. Agents B and C perform exactly as drivers B and C, respectively. Agent D, 

however, runs both light 6 and light 7, but driver D actually stops at those two lights. If we look 

at agent E and driver E, we can see that the behavior often differs at the lights. As discussed in 

section 5.1, driver E actually performs differently during the two simulator runs. In the first run, 

he was reckless and ran more yellow lights than the other drivers. On the other hand, while in the 

validation environment, he was very careful and stopped at almost every light. 
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Table 9 

Qualitative comparison of the drivers / agents performance 

 Light 1 Light 3 Light 4 Light 5 Light 6 Light 7 
Driver A/Agent A R/R OK S/S R/R R/R S/R 
Driver B/Agent B R/R OK S/S R/R R/R R/R 
Driver C/Agent C S/S OK S/S S/S S/S S/S 
Driver D/Agent D R/R OK S/S R/R S/R S/R 
Driver E/Agent E R/R OK S/S S/R S/R S/R 
S stands for stop and R for running the light while it’s still yellow. OK indicates that the agent 
performs in accordance to the driver at the light turning green. 

If we look at the speed and time deviations of the validation run in Table 10, the A, B and C 

agents perform well. However, a slightly worse performance can be observed from agent D.  

Table 10 

Speed and time deviation during the validation testing  

 Speed deviation [km/h] Time deviation [s] Speed 
 RMS Std.Dev. RMS Std.Dev. Correlation 
Agent A 7.47 7.44 1.47 1.47 0.880 (0.924) 
Agent B 7.14 6.19 2.56 1.75 0.896 
Agent C 7.12 7.11 3.60 2.80 0.926 
Agent D 10.5 9.23 9.10 6.78 0.712 (0.860) 
Agent E 17.0 12.0 38.4 30.3 0.550 (0.664) 
The values within the parenthesis represent the correlation when the occurrences are removed 
where the agent’s traffic light behavior differs from the corresponding driver’s behavior.  

Agent E, on the other hand, is not performing well at all. That agent E is not performing well in 

comparison to driver E is easy explained by the irregular behavior of driver E between the 

original training run and the subsequent simulation run. When the stopping behavior at a traffic 

light differs between the driver and the agent, the deviations will be affected rather dramatically 
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after the light, since the time for the light to turn green will be added to the time deviation. Speed 

deviation will also be affected since differences at some of the samples will be high. The agents’ 

behavior, when the lights where they misbehaved were removed from the comparison, is shown 

within the parenthesis. This is done as an indication of how much the lights affected the 

comparison. 

The results for agent A are good even when its misbehavior at one of the traffic lights is kept in 

the comparison. The misbehavior of agent D is more interesting to analyze since agent D’s 

behavior is not good. The one thing that differs from the drivers’ first and second simulator run is 

the traffic light behavior. In their first run, all the lights changed when the driver was 30 meters 

ahead of the light. This was done to trigger unpredictable driver behavior. In the second run, the 

different lights had trigger distances listed in Table 2. One question to be asked is whether the 

constant behavior of the lights in the training data set would imply lack of richness in the training 

data set. 

6.3.2.1. Richness Analysis of Training Data 

To more thoroughly investigate the misbehavior of agent D and the relation to the possible lack 

of richness in the training data set, agents B and D were presented to different light scenarios and 

their behavior was recorded. Since the knowledge learned is transparent, the evolved source code 

was also investigated to better investigate agent D’s misbehavior. 
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Table 11  

Behavior of drivers B and E at the traffic lights changing from green to red 

 Light 2 Light 3 Light 5 Light 6 Light 7 Light 9 
Driver B S S S R R S 
Driver D S S S R R S 
S stands for stop and R for running the light while it’s still yellow 

Agent D performs poorly in the validation scenarios when the validation data set is used. To 

evaluate the performance of agent D further, the performance of agent B is also investigated 

here. Agent B is of interest since it performs well during validation, and driver B and D had the 

same qualitative behavior in the training scenarios (i.e. they stopped and ran the same lights) 

(See Table 11). 

To investigate the agents’ performance, they were presented with two different traffic lights: one 

where they are going straight and one where they are about to make a turn. Furthermore, each 

light changes its state when the agent is at six different distances to the light: 100, 50, 40, 30, 20 

and 10 meters from to the light. At these distances, the light goes from green to yellow; three 

seconds later, they turn red. Note that there are six runs shown in each diagram in Figure 26 and 

Figure 27, but many of them are overlaid because the behavior of the agent is the same at certain 

times, even if the light changes at difference distances. 

133 
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Figure 26: Agent D’s behavior at traffic lights 

Black dotted lines indicate that Traffic-Light-Driving context is active, red lines that Urban-

Driving is active and yellow that Intersection-Turning is active. The diagrams do not show 

how the Sub-sub-Context’s Green-Light-Driving and Red-Light-Driving are accessed. When 
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Traffic-Light-Driving is accessed, it will in some manner access its Sub-sub-Contexts. 

Figure 26 shows the performance of agent D.  When turning at an intersection, Traffic-Light-

Driving activates and decreases the speed until agent D is closer than 76.5 meters to the light. 

Then, the Intersection-Turning context takes over and lowers the speed even more, which after 

a short time of Urban-Driving will revert to Traffic-Light-Driving again. (A Sub-Context 

needs to release the activation to enable another Sub-Context at the same level to be activated. 

Hence, the Major Context will temporarily get activated.) Now, the agent will come to a stop at 

the light, most of the time. When agent D is going straight, the Traffic-Light-Driving will not 

be activated before 76.5 meters prior to the light.  The Traffic-Light-Driving will not lower the 

speed enough to make a stop in time. In APPENDIX B: SENTINEL RULES OF AGENT B AND 

AGENT D, the evolved sentinel rules that activate Traffic-Light-Driving for agent B and D are 

presented. The code there is presented in a structured manner and has been manually cleaned of 

unnecessary code. The code generated by GenCL is on a single line, but to better understand the 

code, it was restructured. Branches of code that could never be reached (because of conflicting 

conditions) were also removed. The code shows that if agent D has spotted a traffic light and 

plans to make a turn, the Traffic-Light-Driving context immediately activates. If agent D is 

going straight, nothing is taken under consideration unless agent D is closer than 76.5 meters. 
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Agent B - Traffic light driving going straight
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Figure 27: Agent B’s behavior at traffic lights 

Figure 27 shows agent B’s behavior. When agent B is going straight, the Traffic-Light-Driving 

context activates at 70.6 meters prior to the light, and if the distance is far enough from the light 

when it turns yellow, agent B will make a stop. When making a turn, the Intersection-Turning 
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context activates at approximately 45 meters prior to the light and the Traffic-Light-Driving is 

not activated until agent B is closer than 17.4 meters as shown in the source code in APPENDIX 

B: SENTINEL RULES OF AGENT B AND AGENT D. This makes room for the Intersection-

Turning context to be activated, which reduces the speed to a level where the stopping rate of 

the agent significantly increases. Observe that the sentinel rules for Intersection-Turning are 

not presented in APPENDIX B: SENTINEL RULES OF AGENT B AND AGENT D since the 

misbehavior is related to traffic light driving. 

The interesting result of this analysis is that the poorly behaving agent D doesn’t trigger on the 

obvious 30 meter mark. Rather, the action triggers on whether agent D is going to make a turn or 

not. If we compare this to the drivers’ behavior in Table 11, we see that the drivers stopped at all 

lights turning red except light 6 and 7. Their driving path was so laid out that the drivers were 

making a turn at all lights except light 6 and 7. Hence, there is a correlation between stopping at 

the traffic light and whether the driver is making a turn or not. This shows that there is a lack of 

richness in the training set. If the training set were equipped with a light where the driver stopped 

but did not make a turn, it would have been more complete. 

This analysis actually shows that there was a lack of richness in the training data set, but the lack 

of richness was not related to the constant distance that triggered the light change as expected. It 

shows that agent D actually learned that the driver stops at a traffic light if he is going to make a 

turn at the light. If not, he actually runs all the lights as shown in APPENDIX B: SENTINEL 

RULES OF AGENT B AND AGENT D. The GP found this relation and learned it. Note that there 
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are probably other relations in the training sets, such as approaching speed at different distances 

to the light. These other relations could have been the reason why agent B manages to avoid the 

relation to turning at the intersection and generalizes better than agent D. The stochastic nature of 

GP might also influence which correlations in the data set that the learning mechanism will 

trigger. Also note that the problem addressed here is the lack of richness in training data not how 

to cope with messy training data. 

If the knowledge about the lack of richness in the training data had been present at the initial 

stage of the training phase, the most reasonable conclusion would be to partition the two data 

sets and create a new training set partially from the original training set and partially from the 

original validation set. The remaining two data sub-sets would then be merged to constitute the 

validation set. This would have overcome this richness problem since there existed occurrences 

in the validation set where the driver stopped at a light even if he would not turn in the 

intersection. Another problem present was the fact that the two data sets were collected four 

months apart. If both sets had been available at the beginning of the training phase, the chance of 

discovering this problem might have been greater. 

6.3.2.2. Capturing Individual Behavior 

The correlation between the agents’ speed and the drivers’ speed could provide another 

quantitative measure of the agents’ performance. By comparing the correlation between all the 

drivers and agents in the validation environment, we can investigate whether the agents have 
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been able to capture driver-specific features. Table 12 shows the correlation between the drivers 

and the agents. Note that the table is not symmetric because each agent operates in the 

environment, and comparative data depends on its behavior. This means that the same data is not 

used when agent x is compared to agent y as when agent y is compared to agent x. If the 

coefficient is close to one, the correlation between the variables is high. Conversely, if the value 

is low there is a low correlation between the variables. A specific row in Table 12 shows the 

correlation between a specific agent and the five different drivers’ data. The correlation is 

calculated over the entire test run and is based on a sample set between 1,500 – 2,300 samples. 

Agents A, B and C show the best correlation to the correct driver, while agent D and E correlates 

better to other drivers. Some agents misbehave at some traffic lights and the correlation 

coefficients inside the parenthesis shows the coefficient value when those occasions are removed 

from the validation data set. 

Table 12 

Speed correlation between the agents and the drivers 

 Driver A Driver B Driver C Driver D Driver E 
Agent A 0.879 (0.924) 0.840 0.831 0.708 0.667 
Agent B 0.819 0.896 0.711 0.690 0.540 
Agent C 0.853 0.644 0.926 0.857 0.913 
Agent D 00..885599  0.853 0.694 0.717 (0.860) 0.602 
Agent E 0.794 00..885555  0.738 0.675 0.550 (0.664) 
The values within the parenthesis represent the correlation when the occurrences are removed 
where the agent’s traffic light behavior differs from the corresponding driver’s behavior.  

139 

 
  
 



Driver C is the driver who shows a careful driving behavior both in the training set and in the 

validation set and that reflects in the behavior of agent C. The correlation between agent C and 

driver C is high while the correlation to the other drivers is substantially lower. Another 

interesting observation is that agent A correlates better with driver A than driver B, even when 

the agent misses the last light and seems to be more qualitatively consistent with driver B in 

Table 9. This might indicate that the agent actually learned a more detailed behavior pattern than 

the qualitative measure shown in Table 9 suggests. 

To validate the results of Table 12, it is necessary to know how similar the training data set and 

the validation data set were. If two of the training sets are similar, the corresponding agent would 

probably also be very similar in its behavior. If two of the validation sets are similar, the same 

agent should get the similar correlation values compared to those two drivers. The correlation 

between the different training sets is shown in Table 13. The correlation that is regarded rather 

high is marked with a bold red color. 

Table 13 

Correlation between the different training sets  

 

 A B C D E  
A 1 0.801 0.773 0.823 0.692 
B 0.792 1 0.869 0.882 0.906 
C 0.776 0.870 1 0.796 0.836 
D 0.825 0.881 0.797 1 0.772 
E 0.635 0.916 0.803 0.777 1 
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In Table 14, the correlation between the different validations sets are shown and the values with 

a high correlation are bold red. Table 13 and Table 14 are not symmetric since duplicate data are 

removed from the data sets to avoid producing a weighted correlation. In the same manner as 

when an agent is compared to a driver and duplicate data can appear, the same thing might 

appear when two drivers are compared. Not exactly the same data might have automatically been 

removed since it will depend on which data is the independent data (i.e. which car is the base for 

the comparison).  

Table 14 

Correlation between the different validation sets 

 

 A B C D E  
A 1 0.776 0.795 0.813 0.712 
B 0.776 1 0.662 0.723 0.652 
C 0.794 0.661 1 0.789 0.775 
D 0.814 0.723 0.784 1 0.800 
E 0.710 0.650 0.768 0.800 1 

There is a significantly high correlation between some drivers in the training set and in the 

validation set. This means that the different drivers’ behavior did not differ significantly. The 

result in Table 12 becomes even more interesting when the poor performance of agent E 

(inconsistency of driver E) and agent D (lack of richness in training data) could be explained. All 

other agents are able to capture the individual behavior of their corresponding driver. Agent A 

correlates best with driver A even if its qualitative traffic light driving better suits driver B in 

Table 9. Notable is that three of the agents were able to find the small variations in the 
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drivers’ behavior and learn those so they will best match their behavior with their corresponding 

driver. 

In conclusion, the agents have shown their ability to generalize behavior, and are able to conform 

to new but similar situations. Three of the agents have also shown ability to learn personalized 

behavior patterns even if the training data and validation data exhibit rather strong correlation 

between different drivers. Explanations to the misbehavior of the other two agents can be found 

with the lack of richness in the training data and inconsistent behavior of driver E. 

6.4. Long-term Reliability Test 

The long-term reliability test was conducted to investigate whether the agents exhibit consistent 

behavior even after a substantial amount of time in a simulation run. Given that GP will produce 

code not accessed during the training phase (i.e. non-coding regions), and that the function set 

within GP contains conditional statements that introduce discontinuities, the test of long-term 

reliability is important.  

Here the five agents were allowed to operate within the simulated environment for 40 minutes, 

passing more than 60 traffic lights and 25 intersections. Now the agents were exposed to a 

variety of traffic light scenarios where, each one different from the other. To be able to compare 

their stability and long-term reliability, their behavior was recorded when the traffic light ahead 

of them was either yellow or red, since this is one of the occurrences where different behavior 
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can be detected. The logging function (i.e. recording of the agent’s behavior) starts when the 

agent is closer to the light than 100 meters and continues 100 meters after the light (if the light is 

either yellow or red). 

If an agent was not stable and invoked Intersection-Turning when making a turn, the agent will 

approach the turn too fast and will actually end up beside the road. If this were the case, the 

agent would be stuck since no recovery algorithm was implemented for the agent to find a way 

back to the road. Hence, the fact that all the agents were still running after 40 minutes proves 

robustness in terms of Intersection-Turning. 

The data from this evaluation test is far too extensive to completely present here, but an example 

is shown in Figure 28. All data from this evaluation is presented in APPENDIX A: LONG-TERM 

RELIABILITY. 
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Figure 28: Behavior of agent C when repeatedly approaching traffic lights 7 and 8 
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Figure 28 shows the behavior of agent C as it approaches traffic light 7 and light 8 where light 7 

is located 50 meters ahead of light 8. The lights turn from green to red at different timings. We 

can see that even if the light changes at different times, the agent stops at nearly the same spot 

each time. As the lights turn green, the agent continues to light 8 that turns yellow and eventually 

red as the agent approaches the light. 

Since the traffic lights now change their states at different distances (i.e. the lights are time 

scheduled and not related to the agents’ distance) and agents might approach the lights at 

different speeds, it is difficult to make an exhausting statistical analysis of their behavior. 

Regardless, Table 15 shows a simple compilation of the agents’ behavior when they approach 

lights that are either yellow or red. Two different events occur: the light turns from green to red 

or from red to green. 

Table 15  

Agents’ Long-term behavior 

 Light turning Red 
Stopping     Avg.Dist      Std.Dev

Light turning Green 
Correct behavior 

Agent A 20/20 34.7 12.9 20/20 
Agent B 22/22 8.04 1.95 22/22 
Agent C 25/25 5.89 1.03 8/8 
Agent D 31/34 4.50 1.31 6/6 
Agent E 22/22 13.5 0.551 11/11 
 

A qualitative measure could be performed of the agents’ action when the lights turn red. The 

stopping column in Table 15 shows how many lights the agents stop at, compared to the total 
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number of lights passed turning red. All the agents, except agent D, stop at all lights turning red. 

Agent D runs three lights when they turn red late (i.e. the light actually turns red before the agent 

passes through the light). Investigating the results more, it shows that if the lights turn red when 

the agent is further away than 27 meters, the agent will stop. On the occasions where the lights 

turn red when the agent is closer than 23 meters, the agent will run it. Even if the agent 

occasionally runs the light, it is consistent and acts the same in similar situations. 

As the agents come to a stop at the red lights, a comparison could be made on their different 

stopping distances. Table 15 shows that all the agents except agent A stop at almost the same 

distance every time; therefore, their standard deviation on the stopping distance is small. The 

diagrams in APPENDIX A: LONG-TERM RELIABILITY show that agent A stops at different 

distances almost every time. The surprising fact is actually that the other four agents manage to 

generalize so well that they stop at approximately the same distance, even if the time of light 

change is different. Remember that in the data presented to the agents during learning, lights 

changed their state when the driver was 30 meters prior to the light. Hence, all the agents stopped 

consistently at the same distance during training (approximately thirty meters after the light turns 

from green to yellow). Therefore, the most obvious action is not for the agents to generalize as 

well as they have, but rather to stop approximately 30 meters after the light changes from green 

to yellow. One remark can be stated about agent D’s behavior at light 8: one behavior outlier 

occurs when the agent makes a very quick stop at 22 meter and then slowly continues towards 

the red light before picking up speed after the light turns green. 
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The final observations on the agents’ long-term behavior are their behavior when approaching 

traffic lights turning green. Two observations can be made as the agents approaching a red light 

about to turn green. The first thing that institutes correct behavior of the agents is that they do not 

stop at the red light when they are far from the light. The other behavior to investigate is that 

they lower the speed as they get closer and that they pick up speed when the light turns green. 

The column that describes the correct behavior at a light turning green in Table 15 compares the 

number of correct behaviors to the total numbers of lights turning green exposed to each agent. 

All the agents show a correct behavior all the time as they approach a red light about to turn 

green. 

This test has shown that the agents show consistent and stable performance throughout the long-

term stability test. Four of the five agents even perform more consistent traffic light driving than 

could be expected regarding the training data presented during the learning phase. 

6.5. Test of Usefulness 

In order to determine how useful the automatic creation of simulated agents through GenCL is, 

two agents were developed by an independent source in the traditional way [9]. Here, a 

knowledge engineer interviewed and rode an automobile with two drivers acting as SMEs. The 

two SMEs were drivers C and D that earlier had been driving the simulator runs resulting in C’s 

and D’s training and validation data sets. The driving part of the knowledge acquisition lasted for 

approximately 45 minutes. This is slightly more time than the drivers spent in the Driving 
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Simulator for the training set of data. One might note that collecting appropriate data in the real 

world is a bit more complicated than in a simulator. The simulator environment can be 

configured to focus on specific and interesting events, while in the real world one can try to act 

so those events might occur but it might be difficult to achieve. 

The knowledge engineer knew that his model would be compared to those developed by the 

GenCL system and was told to focus on the behavior patterns so far implemented by the GenCL 

(i.e. Traffic-Light-Driving, Intersection-Turning and Urban-Driving). Hence, the 

prerequisites for the knowledge engineer were the same as for GenCL (i.e. the same empty 

context structure). The task was for the knowledge engineer to collect knowledge through 

interviews and by observing the SMEs driving a real car. The knowledge engineer was then to 

model the drivers’ specific behavior as they drove in city traffic with specific focus on 

intersections and traffic lights. After the knowledge was collected and analyzed, two agents were 

developed and implemented to run in the same CxBR framework as the agents developed by 

GenCL. Note that an independent researcher did the knowledge engineering without any 

influence from the ones developing GenCL. Now, the two different approaches to build human 

behavior models, implemented in simulated agents, could be compared. The agents developed by 

the knowledge engineer were exposed to the same scenarios as those created through GenCL, 

and their behavior could be compared to the real driver’s behavior.  

Table 16 and Table 17 compare the agents developed by the knowledge engineer (KE) and the 

GenCL agents to the driver’s behavior in the Driving Simulator. Table 16 compares the agent’s 
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behavior to the driver’s behavior within the training environment and in Table 17 the comparison 

is made in the validation environment. 

Table 16  

Comparing GenCL and Knowledge Engineer agents in the training environment 

 Speed [km/h] 
   RMS         Std.Dev.

Time [s] 
   RMS      Std.Dev. 

Speed 
Correlation

KE agent C vs. Driver C 7.94 7.81 4.35 4.35 0.894 
GenCL agent C vs. Driver C 6.74 6.72 2.10 2.06 0.920 
KE agent D vs. Driver D 8.83 8.88 9.55 9.01 0.852 
GenCL agent D vs. Driver D 8.46 8.45 3.13 3.12 0.842 
 

Table 17  

Comparing GenCL and Knowledge Engineer agents in the validation environment  

 Speed [km/h] 
  RMS         Std.Dev. 

Time [s] 
   RMS      Std.Dev. 

Speed 
Correlation

KE agent C vs. Driver C 8.52 8.38 4.05 3.10 0.902 
GenCL agent C vs. Driver C 7.12 7.11 3.60 2.80 0.926 
KE agent D vs. Driver D  9.02 8.64 7.43 7.21 0.876 
GenCL agent D vs. Driver D 10.5 9.23 9.10 6.78 0.712 
 

Comparing GenCL agent C and KE agent C with driver C, the agent evolved by GenCL 

performs consistently better than KE agent C. Comparing D agents to driver D, the GenCL agent 

performs better in the training environment and slightly worse than KE agent D in the validation 

environment. The interesting result here is that the GenCL agent is able to perform almost as 

well as an agent developed by traditional means even if the GenCL agent D was affected by the 
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lack of richness in the training data. 

Another interesting observation to make is that both the GenCL and the KE agents C perform 

slightly better than the D agents do. This might infer that agent D’s behavior might be more 

difficult to model than agent C’s behavior. 

Bergström [9] states that the development time (including preparations, knowledge acquisition, 

knowledge processing and implementation) when the agents were developed with the knowledge 

engineering approach was three weeks of full workload. If the GenCL was generic enough and 

available, this approach could probably reduce the development time significantly. To evolve 

one agent (including knowledge in all contexts) on a Pentium 4, 1.8 GHz machine with 512 MB 

internal memory takes less than 36 hours. This is an approximation, since all of the experiments 

were done with a screen saver that was active when no user used the machine. The development 

of the screen saver is described in section 7.1.3. There was no log on how much CPU time the 

screensaver gained access. Time needs to be added for data collection, some preparation and a 

small effort to get the evolved code into use. As complexity and size of the problem increase, the 

use of an automatic creation of the agents would probably reduce development time even further. 

An example would be hazardous situations where the knowledge engineer approach would have 

to rely on interviews. Developing models for such situations would probably improve 

performance of the agents developed by learning by observation compared to those developed in 

a traditional manner. To reduce this development time further would be to research and develop 
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the Observer Module (see Figure 15). 

This test shows that the learning and generalization capabilities of GenCL are able to create an 

agent performing at least as well as an agent developed through traditional means. 

6.6. Ease of Use Evaluation 

The objective of this evaluation was to investigate how difficult the GenCL algorithm is to use, 

in terms of how sensitive the performance is on different GP settings. If the performance is very 

sensitive on the GP configuration and parameter settings, it could be regarded as difficult to use, 

since a deep knowledge about GP is required. 

These results present a collection of the results gained throughout the experiments. As described 

in section 5.3.2, the GP settings varied during different experimental runs as described in Table 

4. Besides different settings of the GP parameters, the function set was also varied throughout 

the experiments. The different function sets used are also described in section 5.3.2. The sub-set 

lightFunc was only used during the evolving of Sub-Context Traffic-Light-Driving. Evolving 

the action rules in all the contexts, all other function sets were varied. When evolving the sentinel 

rules for Traffic-Light-Driving and Intersection-Turning, the only function set used was the 

compOperator set. This reduction of the function set was done because the knowledge within 

these sentinel rules is a matter of fulfilling a set of conditions to activate a specific Sub-Context 

(i.e. classification problem). This reduction of the function set is trivial using SME knowledge 
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(e.g. when a traffic light is spotted, another behavior pattern is used). Hence, no specific GP 

knowledge is needed for this task. 

Table 18 through Table 22 describes the fitness values for agent A, B, C, D and E in their 

different contexts and sentinel rules evolved in the different experiments. Here, the fitness value 

is presented as a percentage. To recalculate the fitness to a percentage, the range of the input 

variables used in a specific training scenario (e.g. City Driving) is placed into the fitness formula. 

By dividing the actual fitness with this value, it will be described as a percentage. In these tables, 

the best, worst and average fitness is presented as is the standard deviation in fitness between the 

different experimental runs. Additionally, the number of different experimental runs is also 

presented in the tables. Note that not all possible combinations of configurations were evaluated, 

and in some scenarios with many test runs, there could be experiments with the same 

configuration. Even if two experiments have the same configuration, the result will not be the 

same because GP is a stochastic search algorithm where the outcome is based on probabilities. 

Hence, different seeds to the random generator will yield different outcomes. 

The most interesting part of the tables is standard deviation. It shows a low variation among the 

different settings. The variation between the best and worst performing results are small in most 

of the cases. These results indicate that the algorithm is insensitive to different GP 

configurations. By inspecting some of the results with identical configuration, they can be found 

among the top performing experiments and among the worst performing ones, because of GP’s 

stochastic nature. 
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Table 18  

Fitness variations for agent A with different GP settings 

 Average 
Fitness  

Standard 
Deviation 

Best 
Fitness 

Worst 
Fitness 

Test 
Runs 

Green Light 2.86% 0.79% 1.49% 4.57% 170 
Red Light 2.04% 0.23% 1.41% 2.47% 94 

Traffic Light Driving 7.71% 1.53% 4.32% 10.32% 74 
Intersection Turning 4.92% 0.58% 3.69% 7.83% 164 

City Driving 10.15% 2.62% 5.70% 23.94% 68 
Sentinel Rules (Traffic Light) 2.63% 1.01% 1.58% 4.28% 14 
Sentinel Rules (Intersection) 1.49% 0.16% 1.29% 1.83% 14 

 

Table 19  

Fitness variations for agent B with different GP settings 

 Average 
Fitness  

Standard 
Deviation 

Best 
Fitness 

Worst 
Fitness 

Test 
Runs 

Green Light 2.41% 0.41% 1.80% 3.18% 94 
Red Light 2.26% 0.40% 1.74% 3.61% 97 

Traffic Light Driving 4.27% 1.13% 2.56% 7.47% 275 
Intersection Turning 7.16% 1.26% 4.11% 11.23% 195 

City Driving 18.28% 1.39% 12.56% 21.50% 143 
Sentinel Rules (Traffic Light) 2.32% 0.47% 1.57% 3.60% 85 
Sentinel Rules (Intersection) 2.55% 0.53% 1.71% 5.32% 85 

 

Table 20  

Fitness variations for agent C with different GP settings 

 Average 
Fitness  

Standard
Deviation 

Best 
Fitness 

Worst 
Fitness 

Test 
Runs 

Green Light 3.09% 0.28% 2.40% 3.76% 315 
Red Light 7.89% 0.56% 6.20% 9.11% 55 

Traffic Light Driving 8.38% 1.10% 6.52% 10.49% 57 
Intersection Turning 2.32% 0.15% 2.06% 2.70% 39 

City Driving 6.64% 0.66% 4.55% 7.86% 22 
Sentinel Rules (Traffic Light) 4.25% 0.47% 3.28% 4.93% 8 
Sentinel Rules (Intersection) 3.05% 0.17% 2.91% 3.31% 8 
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Table 21  

Fitness variations for agent D with different GP settings 

 Average 
Fitness  

Standard
Deviation 

Best 
Fitness 

Worst 
Fitness 

Test 
Runs 

Green Light 4.90% 0.62% 3.63% 6.95% 137 
Red Light 7.39% 0.73% 5.70% 9.50% 107 

Traffic Light Driving 3.05% 0.28% 2.68% 3.33% 6 
Intersection Turning 2.29% 0.69% 1.18% 3.27% 76 

City Driving 5.77% 1.31% 3.68% 7.93% 28 
Sentinel Rules (Traffic Light) 2.79% 0.53% 2.35% 6.12% 243 
Sentinel Rules (Intersection) 6.91% 5.10% 1.91% 15.26% 243 

 

Table 22  

Fitness variations for agent E with different GP settings 

 Average 
Fitness  

Standard 
Deviation 

Best 
Fitness 

Worst 
Fitness 

Test 
Runs 

Green Light 5.63% 0.62% 3.37% 7.41% 232 
Red Light 8.90% 1.01% 7.55% 13.53% 50 

Traffic Light Driving 11.03% 1.25% 7.58% 14.65% 254 
Intersection Turning 7.22% 1.03% 5.29% 10.65% 26 

City Driving 8.94% 1.30% 6.00% 10.16% 11 
Sentinel Rules (Traffic Light) 4.61% 1.50% 3.61% 12.17% 39 
Sentinel Rules (Intersection) 8.89% 3.89% 4.24% 18.46% 39 

 

Since no evaluation of all possible combinations of configurations was made, no detailed 

statistical analysis was made on this problem. Feldt [22] presented results from a thorough 

investigation of different GP configurations. In his research, he performed factorial experiments, 

investigating different settings’ influence on the results. His results show that the two most 

influential parts of the genetic process is the population size and the number of generations the 
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evolutionary process was allowed to run. Feldt further showed that GP systems are insensitive to 

parameter variances. In this GenCL research, the configuration with 2,000 individuals operating 

in 2,000 generations might be substantial enough for the other configuration options to play a 

minor role in the evolutionary process. 

The part, not related to GP that had even more influence of the success of the evolution was the 

data reduction process. As described earlier and shown in Figure 15, the task of the observation 

module was, in this work, done manually. Reduction of data was still needed since the data set 

was far too big to be practical for the experiments. When data is reduced, the importance and 

influence to the evolution of each sample increases. This affects the search pressure of different 

sub-tasks within the learning process. As an example, if the behavior of the agent making a turn 

at an intersection affects the fitness value to a much higher degree than traffic lights, the agent 

might never learn how to handle traffic lights in a correct manner. 

The results presented here in the ease of use test show that the learning module within the 

GenCL algorithm is robust and not sensitive to different GP settings. Note that one of the better 

performing individuals was used in the final implementation of the agents but not necessarily the 

best performing individual. Because there is a hierarchy of contexts which are in the process of 

being built, some individual were put into use to enable the evolution of the next level (according 

to the LLGP scheme) of contexts before the evolutionary process at the lower level were 

completed. 
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6.7. Experiments: Summary and Conclusions 

In these experiments, we have shown that the new approach to learning human behavior, GenCL, 

is able to learn and generalize a given problem. The agents evolved also show stable, long-term 

reliability. Further, the performance of the GenCL algorithm is fully comparable to agents 

developed by the knowledge engineering approach. Finally, the learning within the GenCL 

algorithm is insensitive to variations in the setting. Hence, the algorithm is easy to use and SME 

knowledge can be used to enhance the performance. 

The results presented here are highly encouraging for further development and research 

concerning this new learning methodology. It has given significant encouragement for 

developing the Observation Module (see Figure 15) which completes our approach to learning 

human behavior by observation. 
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CHAPTER 7: SUMMARY, CONCLUSIONS AND FUTURE WORK 

As described in the introduction and background chapters in this dissertation, developing human 

behavior models are complex and time consuming. Human behavior patterns can be very 

difficult to express, and the human might not even be aware of his or her actions. In order to 

reduce development costs and open new possibilities to incorporate implicit knowledge in the 

models, learning by observation has been investigated. In this research, we have presented a new 

learning methodology for automatic human behavior modeling from observed data. The new 

approach GenCL merges GP and CxBR. CxBR is an intuitive, efficient and effective 

methodology for creating tactical human behavior models applied to simulated agents. By 

merging GP to this methodology, a learning engine is created that is able to automatically create 

knowledge according to the CxBR paradigm. GP creates the knowledge in source code that 

makes it a flexible approach and easy to complement with additional knowledge after learning. 

Alternatively, a small model could be initialized with knowledge from SMEs or doctrines and 

then be refined through the evolutionary process. 

The experiments conducted have shown good learning capabilities, generalization, long- term 

stability and insensitivity to GP parameter settings. The new methodology has further shown a 

capability to create simulated agents with at least the same performance as agents created 
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through traditional means. The results from the experiments have also shown that the hypothesis 

stated in section 2.2 was accomplished. 

7.1. Research Observations 

Two observations were made while performing this research that were not related to the 

objectives of the research but are, nevertheless, worth mentioning. The first is the positive effects 

of using a learning algorithm that produced transparent knowledge structure. The contextual 

knowledge produced by GenCL is represented in source code statements. To verify the lack of 

richness in the training data, the knowledge evolved by GenCL was investigated. Because the 

knowledge is transparent, the behavior of the evolved agent could be thoroughly investigated and 

new insights were made into its behavior. In a similar manner, the transparent knowledge could 

be investigated, after learning was conducted, to better analyze the observed human’s behavior 

patterns. This can open new application areas where the knowledge not only could be used to 

implement human behavior into simulated agents, but also to analyze the action taken by the 

observed humans (e.g. after-action reviews). 

The second observation concerns the complexity of feeding applicable data to the learning 

algorithm. One result derived from the experiments shows that the data used for learning highly 

influences the learning and generalization performance of the algorithm. It is highly important 

that the data used for learning have an equal pressure on the different tasks being learned. This is 

probably a general machine learning dilemma, but it highlights the importance and complexity of 
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the observational module. Creating a generic observational module is difficult and challenging. 

To create one for a specific problem might be feasible, however.  

7.1.1. The Relationship to Reinforcement Learning 

As described earlier, reinforcement learning consists of four sub-elements: a policy, a reward 

function, a value function and a model (optional). The policy that defines the behavior at any 

given time, serves a similar purpose as contexts in CxBR. The reward and value functions’ 

intention is to direct the learning towards better performance as the fitness function in GP. The 

value function estimates the long-time desirability of different state changes while the reward 

function gives an immediate response from the environment. This is something that normally 

could not be found in evolutionary systems. In the case where a simulation is used to evaluate the 

performance, both the short-time rewards and the long-time rewards are taken into account when 

designing the fitness function. The difference lies in the estimation process of the long-time 

reward. In the GenCL algorithm, the value function does not need to be predicted since the 

simulation could be run to measure the long-time reward.  

 

Another aspect that differentiates the evolutionary approach from reinforcement learning is that 

the evolutionary approach deals with many individuals evaluated, while in reinforcement 

learning there is usually only a single learning agent. The model in reinforcement learning is a 

model of the environment that could be used for planning. This is an expansion of the 

reinforcement learning where the learning system also learns to model the environment and uses 
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the model for planning. This is comparable to when the GP device builds and updates the action 

rules or the mission’s plan in the context-base in CxBR.  

 

The conclusion is that there are many similarities between CxBR + GP and reinforcement 

learning. There are many similarities, inspirations and theories from the reinforcement learning 

community, even though it is not learning by observation that could assist in the development 

and progress of this new approach. 

7.1.2. Initial Stability Problems 

The first set of experiments conducted did not use a simulation within the learning paradigm as 

described in Figure 16. The learning was conducted only using input to output mapping. In an 

input-output mapping scheme, the learning is conducted merely by mapping the correct outputs 

to the given inputs. The learning seemed to work well, but when the evolved models were 

inserted in the Traffic Simulator to work autonomously, some severe problems were discovered.  

In the initial experiments conducted, the fitness value in the GP module was configured to 

measure the accelerator and brake pedal pressure deviation between the GP individual and 

human. This is a common machine learning approach where the inputs are mapped to a 

benchmark output (i.e. a given set of inputs should result in corresponding correct outputs). 

Figure 29 shows how the learning was conducted by mapping the input variable’s speed, 

distance and light to the appropriate output value (i.e. throttle/brake pressure). The throttle/brake 
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pressure will affect the individual’s simulated car and produce a new speed and a new position. 

Hence, this will be adequate to model the human’s behavior if the learning is successful. Even if 

this method of learning seemed to work well, with a small deviation between the evolved agent’s 

pedal behavior and the human’s, a stability problem of the evolved agent occurred when it was 

operating autonomously in a simulated environment. 

160 

 

 

Figure 29: Learning trough input – output mapping 

When the agent is trained with input-output mapping, the correct output is learned for the 

specified inputs presented to the learning algorithm. When the agent, after training is over, 

operates in a simulated environment, the agent in reality will not experience what is described in 

Figure 29, since its own action is the cause of the speed and position at the next simulator time 

instance. In the training configuration of the input/output mapping scheme, all the inputs came 

from the recorded human performance. Actually, there is a feedback loop in the system that will 

store the accumulated error produced by the agent’s own behavior (i.e. when the agent, by its 

own actions, produces the input in the next simulator step). What complicates the issue even 

more is when IF – THEN statements are part of the GP’s function set. The use of such 

conditional statements makes the learned behavior function discontinuous. IF – THEN can be 
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described as a discontinuous step function. If the remaining error accumulated in the agent’s 

behavior becomes too large, it can trigger a branch of the GP-evolved code tree never tested 

during training, and its behavior becomes totally unpredictable.  

Actually, the accumulated error might not at all be particularly large for this to occur. During 

learning, all the inputs come from the recorded human and is therefore well aligned with a 

known correct behavior. When the agent, after learning is complete, operates autonomously in 

the simulated environment, a small drift in the agent’s performance might trigger code (due to 

the use of discontinuous functions (such as IF-THEN) stored in the agent but never tested during 

training (i.e. non-coding regions). It is a known fact that the GP’s learning process involves non-

coding regions. One approach to attack this problem might be to remove non-coding regions 

when learning is complete. 

Another approach adapted in this research is to make the learning process look similar to the 

environment of the evolved agent. The solution is to let the individuals run small micro-

simulations and be autonomous for a short duration during the learning process. The dynamics of 

the learning system are now shown in Figure 30. Now, only the initial input values are gathered 

from the recorded human performance as described in section 5.3.1.4. The GP individual is 

initiated and then set to operate in a simulated environment for a restricted duration. As the 

individual is passing predefined evaluation points, its performance (i.e. speed, position and pedal 

pressure) is compared to the recorded human performance, and the deviation constitutes the 

fitness value of the individual. Now the accumulated deviation is part of the learning process. 
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Furthermore, if the individual drifted away from the human driver’s behavior (e.g. speed 

increases) after a number of simulation cycles, and the individual is starting to behave 

differently, it will affect the fitness value significantly. 
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Figure 30: Learning through micro-simulation 

The two boxes f(Sp) and f(Th) are actually part of the Micro Simulator described in Figure 15. 

The f(Sp) box is calculating a new position as a function of the current speed and current 

position. The f(Th) is the car model that calculates the speed of the car as a function of the 

throttle/brake pressure and the current speed. Even if the GP module of the GenCL artifact still 

learns the throttle/brake pressure, the fitness function takes both speed and distance, besides 

pedal pressure, into account when it is calculated. 

7.1.3. Implementation to Maximize Computational Power 

The process of evolving GP is computationally complex and often a time-consuming task. In this 

research, complex knowledge structures evolve at different hierarchical levels. To be able to run 

the experiments within an acceptable time frame, either an extremely fast computer or some sort 
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of parallel execution must be available. Inspired by the SETI@home project [2] at the Space 

Sciences Laboratory of the University of California at Berkeley, a screensaver was developed 

that incorporates the GenCL artifact. Implemented in a screensaver, the GenCL artifact could be 

executing the evolution process on many computers while not used by others. The screensaver is 

a multi-threaded application containing two major threads. One is running the GenCL artifact 

that evolves the contextual knowledge (i.e. GP individuals). The other thread is running 

entertaining animation but also regularly presents the GenCL learning status (i.e. fitness and 

source code of the currently best individual). The configuration with multiple threads ensures the 

graceful degradation of the GenCL artifact without disturbing the user with a slow ending 

screensaver. 

Each computer with the GenCL screen saver also had a list of experiments to run. When the 

computer is done with one experiment, it reports the results via email and continues with the next 

experiment in the list. If a user enters the computer, the experiments are saved and set aside to 

permit the user to use the computer. They are resumed as the computer comes to a rest. In this 

manner, many experiments were efficiently conducted in parallel (45 Pentium 4, 1.8 GHz 

computers were used) with minor effects on computing resources. 

7.2. Conclusions 

This research has shown that individualized human behavior models can be created 

automatically from observed human performance. All human behavior knowledge, except the 
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context structure, in the agents created within this research were automatically created by the 

GenCL algorithm. The tests have also shown that those agents were able to generalize the 

knowledge and provided a stable performance with comparably high standards. 

The results presented here have shown the ability of GP to produce knowledge in all the different 

parts of the CxBR’s context base. GP has been able to evolve knowledge in the action rules of 

the contexts and the knowledge in different types of sentinel rule implementation (direct 

transition and a variant of competing context transition). Using the structure of CxBR also 

improves the learning capabilities of GP. In this research, the CxBR gave GP a frame in which to 

conduct learning. By dividing the general problem into sub-problems according to the CxBR 

structure, a learning strategy is formed, one not very different from LLGP. The work with LLGP 

has shown that this is a way of boosting the learning performance of the GP algorithm. The good 

results from this research indicate the same result. The conclusion is that the newly developed 

GenCL algorithm can learn, generalize and build stable models of tactical human behavior. 

7.3. Future Work 

Even if the experiments presented in this dissertation have shown positive results, some 

corrections could be made in the learning phase to improve the performance of GenCL. First, the 

training data and validation data could be restructured, as described in section 6.3.2.1, so the 

training data would be richer and cover more of the humans’ behavioral patterns. The other thing 

that could improve the results of training is the removal of throttle/brake pressure in all the 

164 

 
  
 



fitness functions. If there is a discrepancy in the car model used in GenCL and the car model 

used during data collection, the combination of pedal pressure and speed in the fitness function 

will not conform. If the learning algorithm evolves something that improves the speed 

correlations, it might be that it would increase the pedal pressure deviation when there is a 

discrepancy in the car models. 

Furthermore, it could be worth investigating how non-coding regions produced by the GP might 

affect the performance of the evolved agents.  If the code not addressed during evolution is 

removed, would that improve or degrade the agent's performance?  This is an interesting topic 

for future research.   

To explore the automatic creation of human behavior models further, the introduction of Fuzzy 

Logic would be interesting. As mentioned in section 4.3.3, GP could use Fuzzy Sets and Fuzzy 

Logic as terminal and functions sets. Hence, the evolved models will then have a CxBR context 

base with Fuzzy representation. One interesting aspect of this would be to see whether the agents 

would show less discrepancy to the real driver and whether the individual knowledge in the 

agents could be enhanced by using fuzzy logic. 

The results presented in this dissertation have only applied the new GenCL to one application – 

human driving behavior. The results have been encouraging, but to explore the usefulness of the 

algorithm fully, it should be applied to more and different application areas. 
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To make learning by observation complete, the development of the observer module is 

necessary. In this research, the extraction of data was done manually. If the observer module 

could be developed, it would reduce the development time of human behavior models even 

further and open up new application areas. With a fully working observer module, learning by 

observation could be done on-line and in near real time. One critical but difficult issue is to 

develop a generic observer module. As the problem space differs from time to time, the most 

problematic task for the observer module is to be applicable to many different problems. If the 

module needs to be crafted for the problem at hand, the reduction of development time might not 

be significant when compared to manually reducing the data set. 

Another interesting approach towards completing learning by observation is to minimize the 

computational effort of the observer module. This would imply the investigation of the new 

GenCL algorithm to a huge data set with a greater problem space to tackle. The two main issues 

would have to be the computational power and the time for learning if this were to be successful. 

One way to approach the computational complexity would be to implement the GenCL 

algorithm into the Massively Parallel GP Engine developed by Eklund [20]. This GP engine is 

designed for hardware implementation and is an efficient and portable solution that, combined 

with GenCL, could be developed to be a solution that facilitates the prerequisites for on-line, 

near real time, development of human behavior models [23]. 

The objective of this research was to facilitate and improve the creation of building agents with 

human behavior. The new GenCL algorithm used in this research to build human behavioral 
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models automatically could easily be modified so that the evolved agents could be equipped with 

learning capabilities. The only adjustment that would be necessary in the learning module is to 

rewrite the fitness function. Instead of letting the fitness function compare the action of the agent 

with the SME, the fitness function could be arranged to encourage certain behavior or even 

behavior that after a substantial time leads to better results. By making this small adjustment to 

the fitness function, the learning module could be incorporated into the simulated agent and the 

creation of an intelligent agent could be formed. An additional module would need to be 

incorporated in the intelligent agent that actually recognizes when the behavioral knowledge has 

been improved enough to put into use.  
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APPENDIX A: LONG-TERM RELIABILITY 
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During the Long-Term Reliability test, the traffic lights in the simulation were set to have a cycle 

time of 25 seconds (i.e. the time to transit from green->yellow->red->yellow->green>yellow). 

The agents were tasked to do a circular loop in the city where they passed six different traffic 

lights (numbered 2, 3, 4, 6, 7 and 8). It took the agents between 226 to 301 seconds to complete 

the loop, depending on their individual behavior. It seemed that most of the agents fell into some 

pattern where they stopped at the same lights at each loop in the city. The agents’ behavior was 

only recorded when they were within 100 metes of the light and the light was either yellow or 

red. If the agents were further away from the light or if the light was green, their behavior was 

not recorded. Some of the lights were passed when they were constantly green and there 

behavior was not recorded. The recorded lights were different from agent to agent. Note that 

Swedish traffic lights have a state of yellow in-between red and green. 

169 

 
  
 



Light 7

0

10

20

30

40

50

60

01020304050607080

Distance [m]

Sp
ee

d 
[k

m
/h

]

Light 4

0

10

20

30

40

50

60

01020304050607080

Distance [m]

Sp
ee

d 
[k

m
/h

]

Light 2

0

10

20

30

40

50

60

01020304050607080

Distance [m]

Sp
ee

d 
[k

m
/h

]

Light 3

0

10

20

30

40

50

60

01020304050607080

Distance [m]

Sp
ee

d 
[k

m
/h

]

 

Figure 31: Long-term behavior of agent A  

Figure 31 shows the recorded data of agent A. Lights 2 and 4 change from red to green when 

driver A approaches the light. Agent A is consistent and slows down when the light is red, but 

never comes to a complete stop while lights 3 and 7 turn red as the agent approaches the lights. 

Here we can see that when the light turns from green to yellow and then to red at different times, 

agent A has different stopping patterns and will stop at different locations almost every time. 

Agent A is consistent and stops every time a light turns red, and the different distances can be 

related to the training data configuration. All the lights within the training data changed their 

state when the car was 30 meters from the light. Hence, the anticipated stopping distance would 

be approximately 30 meters after the light changed from green to yellow. 
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Figure 32 shows the behavior of agent B.  Lights 3 and 8 turn red as the agent approaches the 

lights, while lights 4 and 6 turn green. When the lights turn red, the agent comes to a stop at 

almost the same location every time, except when the light turns red extremely late. When the 

light is red (about to turn green), the agent slows down and picks up speed again when the light 

goes from red to yellow. At one occasion, the agent slows down early but never comes to a 

complete stop before the light turns yellow (to be green). The consistency of agent B is strong 

and stable. 
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Figure 32:  Long-term behavior of agent B 

The long-term behavior of agent C is shown in Figure 33.  Agent C is the most careful agent. 

The agent comes to a stop at five of the six lights, where the sixth light was constantly green 
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each time agent C passed it. Note that lights 7 and 8 are shown in the same diagram. Agent C is 

consistent, as the agent comes to a complete stop at almost the same spot each time. 
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Figure 33: Long-term behavior of agent C 

As agent D passes the lights, it is only light 4 that turns from red to green. Actually, on one of the 

occasions light 4 turned red as the agent approached the light. In some cases, agent D’s behavior 

is especially interesting to observe. Squares in the diagrams indicate when the lights turn red or 

when the light is about to turn yellow (about to be green). When the agent comes to a complete 

stop, it stops at almost at the same spot each time. At light 2, it seems like the stopping distance 

is varied, but the agent actually slows down to a very slow speed and then comes to a complete 
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stop.  The variance of all the stops at light 2 is only 2 meters.  
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Figure 34: Long term behavior of agent D 

The only outlier is at light 8 when the agent actually makes a quick stop 22 meters prior to the 

light but then slowly increases speed, even if the light is still red. Agent D performs normal 

acceleration first when the light turns yellow. In two occasions, at light 7 and one occasion at 

light 8, the agent actually runs the red light. We can see that if the light turns red when the agent 
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is at 27 meters or earlier, the agent stops. However, if it turns red when the agent is at 23 meters 

or later, the agent runs the light. Even if the behavior is not desirable, it is still consistent. 
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Figure 35: Long-term behavior of agent E 

Agent E’s behavior is shown in Figure 35. The light was either yellow or red in only  three of the 

lights that agent E passed. Light 3 and light 8 turned red and the stopping distance is consistent 

except for one occasion where the agent brakes  hard to come to a complete stop when the lights 

change late. Light 4 changes from red to green and agent E is very consistent when slowing 

down as the light is red and picks up speed when the light is turning yellow. 

All the agents show consistent behavior when approaching the traffic lights. Agent A is the only 
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agent that stops at different distances when the light turns red. It is surprising that the other four 

agents are able to generalize that well and always stop close to the lights. This is because all the 

traffic lights during the training scenarios changed their state from green to yellow when the 

driver was 30 meters from the light. Hence, the most obvious behavior expected in the agents 

would be a stopping distance approximately 30 meters after the light changes from green to 

yellow. The fact that all the agents are still running after 40 minutes shows stability when it 

comes to intersection turning. If the agent would not slow down when taking a turn, the 

simulated car will not be able to take the turn and end up beside the road. There are no towing 

cars in the simulation, nor any recovery algorithms implemented, so the car would be stuck. 

Hence, all the agents show consistency to apply the Intersection-Turning Sub-Context 

accurately.   
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APPENDIX B: SENTINEL RULES OF AGENT B AND AGENT D
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Agent D, Sentinel rules - Traffic Light Driving 
 
if(distance<76.485488) 
{ 

if(!lightPresent) 
return 0; 

 else 
 { 

if(distance<=24.814600) 
 return 1; 
if(distance>24.814600 && distance<=27.884762) 
 return 0; 

  if(intersection) 
return 0; 

    if(mySpeed<24.250008 && distance>37.684255)  
return 0; 

  else 
return 1; 

} 
} 
else 
{ 

if(intersection && lightPresent) 
return 1; 

else 
return 0; 

} 

Agent B, Sentinel rules - Traffic Light Driving 
 
if(mySpeed>19.278542) 
{ 

if(!intersection) 
{ 

if(distance>=70.607623) 
 return 0; 
if(lightPresent) 
{ 

if(distance<17.438276 || distance>39.167455 
                      || distance>mySpeed) 

return 1; 
else 

return 0; 
     

} 
if(distance>49.220252) 

return 1; 
else 

return 0; 
} 
if(intersection && distance<17.438276) 

return 1; 
else 

return 0; 
} 
if(lightPresent && mySpeed<=19.278542) 

return 1; 
else 

return 0;  
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APPENDIX C: COMPLETE DESCRIPTION OF THE DATA SETS 
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The data sets were collected on two different occasions. The data from the first occasion is 

referred to as the training set and the second data set as the validation set. In both sets, the five 

different drivers were exposed to city driving and rural driving. The training data set took the 

drivers approximately 30 minutes to conduct, and the validation set about 20 minutes. The driver 

spent approximately two-thirds of the time in city traffic and one- third in rural traffic in both 

occasions. In both occasions, one data set was collected from each driver (totally 5 + 5 data sets).  

During the collection of the training data, the drivers started in the city center and drove to an 

office. From the office, the drivers go to a gas station and then home. Figure 36 shows the main 

part of the city route. Figure 36 through Figure 38 are extracted from the requirement description 

(with Virtual Technologies approval). The numbered circles in Figure 36 and Figure 37 note 

interesting places in the training environment: 

1. City center 

2. Office 

3. Roundabout 

4. Gas station 

5. Home 
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Green circles in the figures indicate traffic lights and blue circles indicate hazards.  

 

Figure 36: The city driving during the collection of the training data set 

During the training scenarios, the driver passed 11 traffic lights. In Figure 36 and Figure 37, 

there are only 9 traffic lights showing, but the driver passed two of them during its second time 

through the city, so the total number off traffic lights passed were 11. Six of the lights change 

from green to red, four from red to green and one was constantly green. In the training set 

scenarios, all the traffic lights changed their state when the car was approximately 30 meters 

prior to the light. Lights 1, 4, 8 and 4b (second pass of light 4) changed from red to green, light 
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3b was constantly green while the rest of the lights changed from green to red. 

The hazardous situations during the training set collection were: 

• Car from side road does not stop and turns into the same lane just in front of the 

driver.  

• Road maintenance blocking the lane.  

• Car standing still in the lane while a car is approaching in the opposite lane. 

• A slow moving tractor occupies the lane. 

• Moose at the side of the road. 

• Children at a pedestrian crossing with a green traffic light. 

• Bus leaving bus stop without signaling. 

Observe that all the hazardous situations occur on roads with opposite traffic in the other lane.   
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Figure 37: The rural driving during the collection of the training data set 

182 

 
  
 



During the collection of the validation data, the driver again starts at the city center marked as 

position 1 in Figure 38. This time, the route through the city is different and at position 2, the 

drivers turn back towards the city and eventually leave the city at position 3 where they make a 

short rural driving session.  

 

Figure 38: The city driving during the collection of the validation data set 

The traffic lights in the validation scenario now change their state at different distances and all of 

the lights, except one, change from green to red. The characteristics of the seven traffic lights are 
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described in Table 23. 

Table 23  

Traffic light characteristics in the validation data set  

Traffic Light ID Activation Distance [m] Change 
TL_01_INS 30 Green > Red
TL_02_INS 35 Green > Red
TL_03_INS 30 Red > Green
TL_04_INS 40 Green > Red
TL_05_INS 35 Green > Red
TL_06_INS 30 Green > Red
TL_07_INS 35 Green > Red

 

In the validation scenario, there are also seven hazardous situations occurring with different 

severity. Those occasions are: 

• Head-on traffic 

• Head-on traffic at the traffic light 

• Bus crossing the road at traffic light 3 

• Enforced yielding to crossing traffic 

• Aggressive car stops very late in an intersection 

• Head-on traffic on a rural road 

• Slow moving traffic on rural road 

Last in this appendix, there is an example of data from the scenarios. Each row in the data sets 
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represents one sample. The first column shows the time from the start of the simulation in 

seconds when the sample was taken. The next three columns show the position of the car. The 

units of the coordinates are meters.  Heading, pitch and roll are measured in degrees. Steering 

wheel angle is a linear, unit-less measurement of the wheel angle in the range from -1 to 1 (left to 

right).  Throttle and brake pressure are unit-less measurements of the pedal pressure in the range 

of 0 to 1, where 0 is no pressure and 1 is the pedal fully pressed.  Speed is simply the current 

speed of the car measured in km/h. HotSpots are indicators in the simulated environment placed 

there as helpers to interpret changes in the environment. All HotSpots tell us where and when 

changes take place. When a HotSpot pops up in the data set, it means that something changed 

state in the simulated environment (e.g. the traffic light changes its state from green to yellow or 

an approaching car comes within visual range). As the HotSpot ID changes, some changes in the 

driver’s environment occur. The last column shows the distance to the HotSpot. If the distance is 

negative, the HotSpot is in front of the car. If it is positive, the car has already passed the 

HotSpot.
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Time X Y Z Heading Pitch Roll Steering
Wheel  

Throttle
Pressure

Brake 
Pressure

Speed HotSpot HotSpot
Distance

183.91  
 

6070.68 -1674.85 3.71 69.88 0.08 0.57 -0.19 0.15 0 28.24 
 

CAR_1_INS 
 

262.26 
 184.04 6069.75 -1674.52 3.71 71.76 0.04 0.58 -0.18 0.15 0 28.4 TL_02_INS -29.48

184.16 6068.86
 

-1674.23 3.71 73.49
 

0.03 0.58 -0.18 0.15 0 28.53 TL_02_INS -28.54
184.28

 
6067.9 -1673.95 3.71 75.2 0.05 0.57 -0.16 0.15 0 28.66 TL_02_INS -27.55

184.4 6066.94
  

-1673.71 3.71 76.85 0.04 0.55 -0.16 0.15 0 28.78 TL_02_INS -26.55
184.52 6066 -1673.5 3.71 78.44 0.03 0.57 -0.16 0.15 0 28.88 TL_02_INS -25.59
184.65 6065.02 -1673.3 3.71 80.06 0.03 0.59 -0.16 0.15 0 28.97 TL_02_INS -24.59
184.77 6064.08 -1673.14

 
3.71 81.57 0.03 0.57 -0.15 0.15 0 29.04 TL_02_INS -23.63

184.89 6063.07 -1673 3.71 83.12 -0.06 0.58 -0.14 0.13 0 28.71 TL_02_INS -22.61
185.02 6062.08 -1672.89

 
3.71 84.58 -0.15 0.57 -0.14 0.12

 
0 28.37 TL_02_INS -21.62

185.15 6061.14 -1672.8 3.71 85.96
 

-0.64 0.63 -0.13 0 0 25.67 TL_02_INS -20.68
185.27 6060.29 -1672.75 3.71 87.2 -0.98 0.53 -0.13 0 0 23.51 TL_02_INS -19.83
185.4 6059.5 -1672.71

 
3.71 88.39 -0.63 0.35 -0.13 0 0 21.71 TL_02_INS -19.03

185.52 6058.79 -1672.7 3.71 89.55 -0.32 0.32
 

-0.14 0 0 20.24 TL_02_INS -18.32
185.64 6058.11

 
-1672.7 3.71 90.72 -0.33 0.3 -0.15 0 0 18.95 TL_02_INS -17.64

185.76 6057.5 -1672.71 3.71 91.78
 

-0.39 0.25 -0.14 0 0 17.88 TL_02_INS -17.03
185.89 6056.9 -1672.73 3.71 92.8 -0.33 0.19 -0.14 0 0 16.89 TL_02_INS -16.43
186.01 6056.33

 
-1672.76 3.71 93.69 -0.25 0.15 -0.13 0 0 16.01 TL_02_INS -15.86

186.14 6055.8 -1672.79 3.71 94.45 -0.22 0.11 -0.12 0 0 15.25 TL_02_INS -15.33
186.26 6055.28 -1672.83 3.71 95.07 -0.22

 
0.07 -0.09 0 0 14.54 TL_02_INS -14.81

186.38 6054.82 -1672.88 3.71 95.59 -0.2 0.05 -0.09 0 0 13.94 TL_02_INS -14.34
 

  
 

 



APPENDIX D: TRAINING DATA 
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This appendix lists the data samples used during the training of the agents. One data sample 

contains the current speed of the driver, the distance to a HotSpot and the throttle/brake pressure 

(labeled speed, dist and throt). The capital letter in the list names indicates the driver (A, B, C, D 

and E). The single number in the name refers to traffic light ID’s. The notation i refers to an 

intersection close to, or in conjunction with, a traffic light. When data was used to evolve action 

within Urban Driving context, no intersections or traffic lights were present. The numbering of 

the data set refers to a section between two traffic lights (e.g. speedA56[10] is 10 speed samples 

of driver A in-between lights 5 and 6).  

The table on the next page shows which data were used and when they were used. Each column 

refers to a data set (e.g. 8 referrers to data as the driver approaches traffic light 8). Each row 

describes the action rules or sentinel rules in each context evolved (A: action rules, S: sentinel 

rules, UD: urban driving, IT: intersection turning, TLD: traffic light driving, G: green light 

driving and R: red light driving).  Each cell in the table then describes which data samples were 

used for a specific scenario (e.g. evolving the agent A’s sentinel rules for Intersection-Turning 

used, among other things, data samples 19 through 35 at traffic light 2 from driver A).    
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DriverA 2 4 5 6 7 8 12 34 56 7i 8i 
S_IT 19-35 0-28     0-13   0-24 0-8 
S_TLD  0-28 0-16 0-23   0-13   0-24  
A_UD       0-11 0-8 0-8   
A_IT 0-17*         15-28 0-8 
A_TLD 20-38 0-28 0-28 0-28 0-18       
A_G  23-28 0-9 0-13  16-28      
A_R 29-38 0-15 20-28   0-7      
  
DriverB 3 4 5 6 8 2s 7i i2 i3 i8 56 
S_IT 0-18 0-24     0-24    0-13 
S_TLD  0-24  0-23   0-24    0-13 
A_UD           0-99 
A_IT        0-9 0-9 0-9  
A_TLD 4-28 0-23 0-23 0-23 4-28 0-4      
A_G 0-5 18-23 0-10 0-14  0-4      
A_R 12-28 0-12 20-23  4-10       
 
DriverC 2 3 4 5 6 8 3i 7i 12 34 56 
S_IT 14-28 0-26 0-28     0-13 0-13 0-8 0-8 
S_TLD 14-28 0-26 0-28     0-13 0-13 0-8  
A_UD         0-9 0-8 0-8 
A_IT 0-12*      0-9 5-13    
A_TLD  0-28 0-28 0-28 0-28       
A_G 0-11 0-14 22-28  0-10 10-18      
A_R 15-27 17-28 0-18  14-23 0-8      
 
DriverD 1 2 3 4 5 6 7 3i 7i 12 34 56 
S_IT  0-10 20-29 0-28     0-14 0-13   
S_TLD  12-28 7-29 0-28      0-13   

A_UD          0-11 0-13 0-13 
A_IT  0-9*      0-9 3-13    

A_TLD   5-28 5-28 5-28 5-28 5-28      
A_G   0-12 20-28 0-11        

A_R 0-14 13-27 13-24 0-12 14-25        

 
DriverE 1 2 3 4 5 6 7 3i 7i 12 34 56 
S_IT  20-28 0-28 0-28     0-13 0-13  0-13 

S_TLD  20-28 0-28 0-28 0-19    0-13   0-13 
A_UD          0-13 0-8 0-13 

A_IT  0-17*      0-9 4-11    
A_TLD   0-28 0-28 0-28 0-28 0-28      

A_G   0-14 19-28 0-9        
A_R 0-14  18-28 0-16 13-20        
* When data set 2 is used for Intersection Turning 35 meter is deducted fron the distance measure, since the 

intersection is 35 meters ahead of traffic light 2 
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speedA2[40]={ 35.81,37.53,38.90,37.14,33.10,30.51,31.40,32.51,32.23,30.15, 
31.14,34.86,35.46,36.91,37.59,36.96,35.73,35.08,35.51,36.24, 
29.66,29.38,27.83,21.99,19.61,17.33,15.23,15.6,15.55,14.30, 
12.59,11.44,10.35, 9.45, 8.72, 8.09, 7.36, 4.82,    0,    0}; 

 distA2[40]={ 92.85,90.19,86.13, 82.6,79.93,77,74.23,71.41,68.44,65.58,62.34, 
58.91,55.81,52.63,48.65,44.62,40.65,36.83,34.27,31.15,28.02,25.34,23.
18,20.91,19.39,17.71,16.24,14.89,13.22,11.59,10.17,  9.1, 7.96, 6.91, 
5.97, 5.09, 4.28, 3.71, 3.53, 3.53}; 

 throtA2[40]={     27,   26,   25,   13,    8,   15,   21,   21,   13,   12,      
  27,   25,   21,   26,   22,   19,   19,   19,   24,   21,     
   8,   13,    6,    0,    7,    0,    1,    8,    5,    0,     
   0,    0,    0,    0,    0,    0,   -4,  -43,    0,    0}; 

 
 speedA4[30]={ 44.29,42.03,40.05,38.91,37.99,36.71,35.19,33.72,32.54,31.81, 

30.37,29.08,27.91, 26.8, 23.7,20.63,18.33,16.54,15.09,14.7, 
15.92,18.56,22.11,25.48,28.63,31.49, 34.3,36.79,38.84,40.53}; 

 distA4[30]={ 64.05,61.3,58.69,56.17,53.73,51.32,49.04,46.86,44.73,42.71, 
40.73,38.83,37.05,35.31,33.65,32.2,30.9,29.78,28.78,27.86, 
26.91,25.81,24.55,23.09,21.42,19.58,17.57,15.37,13.08,10.66}; 

 throtA4[30]={       3,    3,    3,    6,    6,    3,    1,    1,    4,    4,     
    0,    0,    0,    0,    0,    0,    0,    0,    0,    6,    
   14,   30,   33,   30,   29,   31,   31,   31,   31,   31}; 

 
 speedA5[30]={ 48.34,47.04,45.88,44.7,43.65,42.58,41.72,41.14,40.83,40.24, 

39.88,39.66,36.89,33.44,26.07,14.18, 6.37, 3.87, 3.69, 5.77, 
8.24,10.89,10.07, 9.33, 8.78, 7.64, 5.55, 2.59, 0.15, 0.14}; 

 distA5[30]={ 65.97,62.04,58.04,54.33,50.46,46.88,43.21,39.77,36.58,33.38, 
30.19,26.94,23.6,20.44,17.64,15.85,15.02,14.63,14.29,13.87, 
13.23,12.36,11.46,10.57, 9.85, 9.16, 8.61, 8.26, 8.16, 8.15}; 

 throtA5[30]={       0,    0,    0,    0,    0,    0,    2,    3,   14,    7,    
   12,    7,    0,  -39,  -90, -100,  -75,   -1,   -1,   15,    
   15,    8,    0,    0,    0,  -14,  -36,  -36,  -36,    0}; 

 
 speedA6[30]={ 48.23, 48.7,49.13,49.54,49.87,49.97,50.07,50.23,50.69,51.08,  

51.50,52.09,52.66,53.18,53.66,54.18,54.58,55.00,55.94,57.51, 
59.18,60.58,61.04,59.38,55.49,51.52,48.19,45.56,44.38,43.58}; 

 distA6[30]={ 66.96,64.49,62.01,59.48,56.99,54.51,52.08,49.66,47.36,44.47, 
42.13,39.79,36.92,34.02,31.12,27.7,24.79,21.47,18.17,14.87, 
11.64, 8.39, 5.06, 1.83,-1.21,-3.99,-6.55,-8.97,-11.27,-13.52}; 

 throtA6[30]={      19,   19,   19,   19,   18,   17,   17,   20,   20,   21,    
   21,   22,   22,   22,   22,   22,   22,   22,   30,   36,    
   36,   30,   23,   10,    0,    0,    0,    3,    7,   11}; 

     
 speedA7[20]={ 45.86,43.18,40.99,41.48,42.23,42.96,43.84,45.25,46.69,48.1, 

49.22,49.73,50.16,50.05,49.65,48.69,48.26,48.71, 49.9,51.38}; 
 distA7[20]={ 58.43,55.95,53.63,51.35,49.12,46.91,44.59,42.26,39.87,37.38, 

34.64,31.88,29.28, 26.7,23.76,21.08, 18.4,15.77, 13.1, 10.1}; 
 throtA7[20]={      1,    0,    6,   19,   19,   19,   23,   28,   28,   28,    

   20,   20,   19,   15,   14,   13,   16,   20,   29,   29}; 
     
 speedA8[30]={ 48.27,45.06,42.36,39.99,37.87,36.01,34.32, 32.8,31.43,30.18, 

29.02,27.95,26.96,23.82,21.14,19.01,19.07,20.56,22.36,23.99, 
24.81,23.47,20.98,19.42,20.39,21.44,22.47,22.99,22.89,22.69}; 

 distA8[30]={ 47.74,44.91,42.36,39.94,37.67,35.51, 33.5,31.56,29.75,28.09, 
26.45,24.87,23.35,21.98,20.77,19.67,18.62,17.55, 16.4,15.14, 
13.81,12.47,11.24,10.15, 9.05,  7.9, 6.68, 5.41, 4.15, 2.86}; 

throtA8[30]={     0,    0,    0,    0,    0,    0,   -1,   -1,   -1,   -1,    
-1,   -1,   -1,   -1,   -1,   -1,   13,   17,   19,   16,    
12,    1,   -1,    6,   13,   13,   14,    9,    9,    8}; 
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speedA12[15]={ 49.38,49.65,50.01,49.58,49.56,50.32,50.95,50.6,50.23,49.78, 

50.16,50.85,51.48,51.96,51.71}; 
throtA12[15]={     15,   19,   16,   16,   18,   19,   19,   16,   16,   16,    

   19,   19,   19,   19,   16}; 
 
speedA34[10]={ 28.48,29.31,31.96,35.54,38.73,42.04,46.37,49.11,   51,51.38}; 
throtA34[10]={     16,   16,   25,   26,   29,   29,   26,   23,   21,   20}; 
    
speedA56[10]={ 70.89,69.53,68.32,66.51,62.84,59.57,56.84,54.31,52.31,52.66}; 
throtA56[10]={     4,   12,    9,    2,    0,    0,    0,    0,    7,   14}; 
 
speedA7i[30]={ 45.79,48.19,50.58,52.74,53.42,52.54,51.82,51.18,50.64,49.99, 

49.44,48.96,49.14,49.69,49.68,49.43,48.13,46.61,45.62,44.73, 
41.22,37.97,35.15,32.75,30.76,29.03,27.55,25.57,23.06,23.06}; 

distA7i[30]={ 96.95,   93,88.62, 84.2, 79.6,74.98,70.59,66.2,61.96,57.69, 
53.56,49.44,45.42,41.4,37.44,33.47,29.57,25.84,22.02,18.28, 
14.75, 11.4,  8.2, 5.22, 2.54, 0.04,-2.24,-4.51,-6.59,-8.46}; 

throtA7i[30]={    29,   29,   29,   29,   16,   15,   15,   15,   15,   14,    
   14,   14,   19,   17,   16,   14,    9,    9,   13,    7,     
    0,    0,    0,    0,    0,    0,    0,    2,    7,   15}; 

 
speedA8i[10]={ 20.39,21.44,22.47,22.99,22.89,22.69,22.58,22.92,23.41,24.15}; 
distA8i[10]={   9.05,  7.9, 6.68, 5.41, 4.15, 2.86, 1.61, 0.34,-0.94,-2.24}; 
throtA8i[10]={    13,   13,   14,    9,    9,    8,   11,   11,   12,   15}; 
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speedB4[25]={ 48.43,46.16,42.01,37.98, 34.8,32.75,32.14,30.18,28.19,26.49, 
20.84,17.34,14.97, 13.9,14.92,16.22,17.62,21.02,24.42,27.57, 
30.12,32.09,33.52,34.54,35.24}; 

distB4[25]={ 71.08,66.24,61.75,57.63, 53.9,50.48,47.24,44.12,41.16,38.38, 
35.94,33.97,32.32,30.86,29.44,27.92,26.26,24.35,22.14,19.58, 
16.77,13.74,10.59, 7.29, 3.95}; 

throtB4[25]={    14,    5,    0,    0,    0,    3,    6,    0,    0,    0,     
   0,    0,    1,    5,   10,    8,   15,   20,   21,   21,    
  21,   21,   21,   21,   21}; 

  
speedB6[25]={ 52.55,52.55,52.55,52.55, 52.4,52.16,52.21,52.44,52.77,53.14, 

53.49,53.85,54.19,54.49,54.57,54.57, 54.5,54.41,54.3,54.22, 
54.09,53.93,53.78, 53.6,53.41}; 

distB6[25]={ 72.44,69.67,66.93,64.18,61.43,58.73,56.01,53.05,50.28,47.48,  
44.7,41.92,39.18, 36.1,33.24,30.39,27.25,24.47,21.37,18.58, 
15.77, 12.7, 9.66, 6.65, 3.64}; 

throtB6[25]={     8,    8,    8,    8,    5,    8,   10,   12,   13,   14,    
  14,   14,   14,   11,    9,    8,    8,    8,    8,    8,     
   7,    7,    7,    6,    6}; 

 
speedB8[30]={ 47.36,49.27,50.61,49.94,48.44,43.96,39.92,36.54,33.69,31.08, 

28.08,23.24,18.55, 15.3,13.59,14.45,16.59, 18.9,20.77,21.84, 
23.23,23.74,23.16,20.91, 17.8,15.52,14.11,15.15,16.82,18.08}; 

distB8[30]={ 67.46,63.55,59.54,55.44,51.32,47.34,43.66, 40.2,37.22,34.45, 
31.91,29.58,27.87,26.46,25.28, 24.1, 22.8,21.28,19.65,17.86,    
16.00,14.01,12.02,10.12, 8.44, 7.06, 5.82, 4.58, 3.29, 1.78}; 

throtB8[30]={     25,   22,   18,    7,    3,   -5,   -5,   -5,   -5,  -16,  
  -17,  -17,  -17,   -3,   -1,   10,   14,   14,   11,   13,    
   13,   10,    4,    1,   -2,   -2,    2,   11,   11,    7}; 

 
speedB2s[6]={ 1.23, 2.89,  4.6, 7.49,11.34,15.98}; 
distB2s[6]={ 5.03, 4.75, 4.26, 3.47, 2.22, 0.39}; 
throtB2s[6]={     6,    6,    6,   14,   17,   18}; 
 
speedB7i[25]={ 55.09,56.32,57.04,57.41,57.45,56.68,55.94,55.21,54.4,53.18,  

52.44,53.33,54.48,54.43,54.09,53.78,53.2,52.14,51.99,51.04, 
47.64,44.64,36.81,27.76,18.18}; 

distB7i[25]={ 239.94,228.65,217.39,206.1,195.01,184.31,173.78,163.25, 
152.74,142.39,132.19,122.39,111.89,101.36,90.77,80.19, 
69.89,59.34,49.01,38.73,29.21,20.44,12.43, 6.31, 1.94}; 

throtB7i[25]={    14,    14,    11,   11,     8,     7,     7,     6,      
    6,     4,     8,    13,    13,     8,    8,     8,     
    5,     5,    8,    1,   -2,   -8,  -25,  -25,    0}; 

 
speedB3[30]={ 47.59,46.29,44.98,43.21,42.78,42.12,39.65,35.22,31.75,27.93, 

17.18, 7.47, 0.25, 0.23, 0.22,  0.2, 0.18, 0.17, 0.15, 0.13,  
0.12,  0.1, 0.08, 0.11, 0.32, 1.03, 1.92, 2.08, 1.93, 1.78}; 

distB3[30]={  64.6,58.43,52.45,46.68,41.08,35.55,30.19,25.25,20.91,16.99, 
13.96, 12.4,11.96,11.93, 11.9,11.88,11.85,11.83,11.81,11.79, 
11.78,11.76,11.75,11.74,11.71,11.63,11.45,11.18,10.92,10.68}; 

throtB3[30]={   12,   12,    9,    9,   12,    8,    3,    0,    0,  -33,   
-64,  -67,  -54,   -1,   -1,   -1,   -1,   -1,   -1,   -1,    
 -1,   -1,   -1,    0,    0,    3,    3,   -1,   -1,   -1}; 
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speedB5[25]={  44.1,41.38,38.29,36.76,36.39,36.97,37.87,38.76,39.52,40.17, 
39.87,39.48,38.43,36.32,34.01,32.02,30.25,28.71,26.94,20.48, 
14.93,10.42, 6.49, 2.91, 0.31};       

distB5[25]={ 67.13, 63.7,60.16,56.87,53.79,50.82,47.61,44.55,41.43,38.41, 
35.31,31.99,28.95,26.07,23.33,20.78,18.34,16.08,13.93,12.04, 
10.69, 9.71, 9.06, 8.69, 8.59}; 

throtB5[25]={      6,    1,    1,    6,   10,   15,   15,   16,   16,   13,    
   10,    9,    5,    0,    0,    0,    0,    0,  -18,  -47,   
  -47,  -48,  -48,  -48,  -38}; 

 
speedBi8[10]={ 15.3,15.12,20.29,23.23,22.54,16.22,15.15,18.23,20.36,22.67}; 
distBi8[10]={ 26.46,23.68, 20.2,   16,11.37,  7.5, 4.58,  1.3,-2.41,-6.65}; 
throtBi8[10]={   -3,   12,   14,   13,    3,   -2,   11,    7,   11,   11}; 
     
speedBi2[10]={ 41.72,36.02,32.08,32.94,32.98,30.93,32.15,34.04, 35.4,35.57}; 
distBi2[10]={ 47.41,41.09,35.08,29.47,23.78,18.26,13.38, 7.75, 1.89,-4.15}; 
throtBi2[10]={     4,    0,    5,   12,    4,    7,   14,   14,   11,    7}; 
     
speedBi3[10]={  3.93, 7.49,11.05,14.15,16.62,16.49,15.56,15.77, 17.6,20.27}; 
distBi3[10]={ 12.23, 11.5,10.29, 8.69, 6.69, 4.52, 2.46, 0.46,-1.67,-4.17}; 
throtBi3[10]={    16,   16,   12,   12,    9,    3,    3,    7,   12,   11}; 
     
speedB56[100]={38.62,41.17,44.05,46.59,48.82,50.23,49.53,48.92, 48.9,48.93, 

49.11,50.17,51.69,52.43, 53.6,54.53,54.07, 53.1,52.28,51.57, 
50.97,51.03,51.47,52.61,53.73,54.73,55.06,55.29,55.54,55.61, 
55.64,55.67,55.68, 55.1,54.25,53.75,53.62,53.51,53.52,53.63, 
53.85,54.07,54.33,54.63,54.93,55.16,55.41,55.61,55.82,55.98, 
56.13,56.26,56.37,20.79,26.02,30.86,35.42,38.59,39.96,41.63, 
43.34,45.21, 46.4,47.42,48.23,48.95,49.57,50.09,49.98,49.33, 
50.08,51.55,52.88, 45.1,46.87,48.35,48.55,48.28,48.03,48.08, 
48.26,48.42,53.53,54.16,54.58, 54.8,55.09,55.63,56.15,56.65, 
56.93, 57.1,57.26,57.41,57.52, 57.5,57.25,56.91,56.57,56.25}; 

throtB56[100]={   29,   32,   32,   29,   26,   18,   14,   14,   16,   16,    
   19,   25,   23,   21,   25,   21,   15,   15,   15,   15,    
   17,   18,   21,   23,   23,   23,   21,   21,   21,   20,    
   20,   20,   19,   16,   16,   18,   18,   18,   19,   19,    
   20,   20,   21,   21,   21,   21,   21,   21,   21,   21,    
   21,   21,   21,   29,   29,   29,   31,   28,   27,   20,    
   22,   22,   19,   19,   19,   19,   19,   18,   15,   14,    
   23,   23,   23,   30,   29,   24,   15,   14,   14,   17,    
   17,   17,   14,   14,   11,   10,   14,   14,   14,   14,    
   11,   11,   11,   11,   10,    9,    7,    7,    7,    7}; 
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speedC2[30]={ 32.51,31.95,30.03,28.53, 28.6,27.85,28.11,28.81,29.41,29.79, 
29.29,28.1,28.53,28.97,25.67,18.95,15.25,12.83,11.84,13.95, 
12.55,10.92, 9.67, 7.91, 2.19, 0.08, 0.06, 0.04, 0.02, 0.01}; 

distC2[30]={76.52,72.04,67.67,63.54,59.63,55.75,51.95,48.14,44.29,40.32, 
36.27,32.34,28.54,24.59,20.68,17.64,15.33,13.43,11.78,10.01, 8.17,  
6.6, 5.21, 3.98, 3.29, 3.22, 3.22, 3.21,  3.2,  3.2}; 

throtC2[30]={    18,   16,   13,   13,   15,   13,   15,   16,   16,   16,    
  13,   15,   15,   15,    0,    0,    0,    0,    6,    9,     
   0,    0,    0,  -20,  -44,  -50,  -50,  -51,    0,    0}; 

     
speedC3[30]={ 45.89,45.87,45.86,45.85,45.83,45.82,45.81, 45.8,45.79,45.78, 

45.78,45.77,45.76,45.76,44.73,41.66,39.04,36.78,34.72,32.96, 
31.38,29.94,28.66,27.48, 26.4, 22.5,19.67,17.29,13.19, 8.67}; 

distC3[30]={ 78.44,75.42,72.45,69.39,66.43,63.43,60.42,57.46,54.38,51.41, 
48.43,45.44,42.49,39.51,36.52,33.63,30.92,28.41,26.04,23.87, 
21.79,19.79, 17.9,16.09,14.34,12.77,11.41,10.21, 9.18, 8.46}; 

throtC3[30]={    15,   15,   15,   15,   15,   15,   15,   15,   15,   15,    
  15,   15,   15,   15,    0,    0,    0,    0,    0,    0,     
   0,    0,    0,    0,    0,    0,    0,  -16,  -51,  -63}; 

     
speedC4[30]={ 47.35,47.32, 47.3,47.28,46.59,44.56,43.06, 41.2,40.34,39.92, 

39.53,39.17,38.85,38.54,38.26,   38,37.83,37.71,37.67,37.67, 
37.67,37.67,37.34, 35.4,33.69,32.16,30.78,30.93,32.32,34.16}; 

distC4[30]={ 77.41,74.57,71.73,68.89,66.06,63.15,60.49,57.93,55.42,53.01, 
50.63,48.28,45.95,43.66,41.38,39.11,36.85,34.57,32.31,30.02,  
27.8,25.56,23.29,21.11,19.06, 17.1,15.26,13.34,11.47, 9.54}; 

throtC4[30]={    15,   15,   15,   15,    8,    6,    4,    3,    8,    9,     
   9,    9,    9,    9,    9,    9,   10,   10,   11,   11,    
  11,   11,    7,    0,    0,    0,    0,   13,   27,   28}; 

     
speedC5[30]={ 39.15, 37.3,35.91,34.79,34.04,33.54,33.28,34.22,35.74, 37.1, 

37.96,39.18,38.63,35.49,33.13,30.66,28.57,26.64, 18.1,10.78,  
4.84, 0.08, 0.06, 0.05, 0.04, 0.02, 0.01, 0.11, 2.29, 5.38}; 

distC5[30]={ 76.78,72.85,68.71,64.93,61.09,57.15,53.41,49.66,45.82,41.98, 
38.14,34.01,29.93,25.94,22.42,19.09,16.03,13.24,10.89, 9.39,  
8.58, 8.35, 8.34, 8.34, 8.33, 8.33, 8.33, 8.33, 8.21, 7.81}; 

throtC5[30]={     2,    5,    5,    7,    7,    8,   11,   16,   17,   13,    
  16,   17,    1,    1,    1,    0,    0,  -13,  -46,  -55,   
 -55,  -55,    0,    0,    0,    0,    0,    5,   17,   20}; 

     
speedC6[30]={ 51.08,50.76,50.35,50.24,50.42,50.58, 50.5,50.11,49.77,49.86, 

50.08,50.28,50.46,50.61,   50,45.38,39.88,31.21,21.39, 12.1,  
3.93,  0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.03, 0.02, 0.01}; 

distC6[30]={ 76.72,72.64,68.66,64.72,60.75,56.81,52.85,48.87,44.93,40.95, 
37.07,33.08,29.11,25.12,21.19,17.42,14.03,11.13, 9.07, 7.78,  
7.12, 7.03, 7.03, 7.02, 7.01, 7.01, 7.01,    7,    7,    7}; 

throtC6[30]={    16,   16,   15,   18,   18,   18,   15,   15,   15,   18,    
  18,   18,   18,   18,    0,    0,  -44, -100, -100, -100,  
-100, -100,  -99,   -4,    0,    0,    0,    0,    0,    0}; 

 
speedC8[30]={ 21.05,21.43,23.04,24.55,25.38,25.67, 24.7,23.92,23.29,22.57, 

22.03,23.41,25.45,26.41,26.81,25.55,24.46,23.87,23.85,23.32, 
21.87,20.26,18.88,18.43,18.58,18.86,19.33,20.05,   20, 19.7}; 

distC8[30]={ 38.46,37.24,35.97,34.67,33.26,31.83,30.34,28.93,27.59,26.29, 
25.12, 23.8, 22.5,21.05,19.51,18.11, 16.7,15.32,13.97,12.68, 
11.38,10.25, 9.19, 8.11,  7.1, 6.09, 5.05, 3.89, 2.79,  1.7}; 

throtC8[30]={     5,   16,   19,   17,   15,    9,    8,    8,    8,    7,     
   9,   23,   23,   16,   10,    7,    7,   11,   11,    7,     
   3,    2,    2,    7,    9,    9,   11,   11,    7,    7}; 
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speedC3i[15]={ 12.29,17.17,21.23,18.04,15.47,13.55,12.06,10.94,12.05,14.51, 

16.89, 19.36,22.45,23.97, 24.19}; 
distC3i[15]={  6.05, 4.62, 2.71, 0.77,-0.82,-2.22,-3.45,-4.56,-5.65,-6.97, 

-8.51,-10.28,-12.3,-14.6,-17.03}; 
throtC3i[15]={    33,   29,   12,   -1,   -1,   -1,   -1,    0,    8,   13,    

   13,    17,   18,   13,    12}; 
 
speedC7i[15]={ 48.65,49.06, 49.4,49.67,49.16,48.04,42.84,37.36,37.13, 37.4, 

34.07,32.16,31.13,28.33,28.04}; 
distC7i[15]={ 73.43, 66.6,59.76,52.96,45.95,39.14,32.57, 27.1,21.98,16.82,  

11.9, 7.39, 3.03,-1.08,-4.97}; 
throtC7i[15]={   16,   16,   16,   16,   13,   11,   -2,    1,   13,    5,    

  -2,    5,    2,    1,    6}; 
 
speedC12[15]={ 51.58,49.71,48.97,49.04,49.33,49.61,50.06,49.48,49.03,48.67, 

48.27,48.08,48.49,48.92,49.41}; 
throtC12[15]={    13,   13,   16,   17,   17,   18,   18,   15,   15,   15,    

   15,   17,   17,   18,   18}; 
     
speedC34[10]={ 37.15,39.42,40.73, 43.5,44.59,44.95,45.39,45.95,46.38,46.66}; 
throtC34[10]={    29,   28,   26,   26,   14,   17,   17,   18,   16,   18}; 
     
speedC56[10]={ 54.27,51.83,49.24, 47.8,46.66, 45.9,46.25,47.03, 47.9,48.49}; 
throtC56[10]={    15,   10,   13,   13,   13,   14,   17,   17,   18,   18}; 
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speedD1[30]={ 32.00,32.05,32.23,32.35,31.13,28.87,28.75,28.69,28.65,28.10, 
26.51,25.37,24.6,23.91,22.73,21.25,20.05,20.43,20.74,20.22, 
17.56,15.05,14.22,13.65,13.21,12.88,12.61,12.55,12.57, 12.6}; 

distD1[30]={ 77.18,73.39,69.63,65.87,62.14,58.69,55.43,52.23,48.94,45.63,  
42.40,39.39,36.47,33.58,30.76,28.26,25.85,23.59,21.11,18.59, 
16.47,14.64,12.99,11.31, 9.68, 8.19, 6.67, 5.25,  3.8, 2.35}; 

throtD1[30]={     17,   17,   17,   17,   12,   13,   14,   14,   14,   11,    
   10,   10,   10,    9,    8,    4,    8,    9,    9,    6,     
    0,    1,    3,    3,    3,    3,    3,    3,    3,    3}; 

     
speedD2[30]={ 38.63,38.37, 38.1,37.85,37.64,37.46,37.29,37.13,36.98,36.84, 

36.73,36.62,36.52,36.19,33.12,30.56,28.42,26.61,20.47,14.09,   
  9.4, 5.67, 3.64, 3.52, 3.41, 3.31, 3.22, 3.13, 3.04, 0.05}; 

distD2[30]={ 76.48,72.43,   69,64.91,60.87,56.89,52.96,   49,45.04,41.36, 
37.55,33.71,29.91,26.07,22.45,19.12,16.04,13.19,10.76, 8.99,  
7.78, 7.01, 6.57,  6.2, 5.85, 5.52, 5.19, 4.88, 4.57,  4.3}; 

throtD2[30]={    10,   10,   10,   10,   10,   10,   10,   10,   10,   10,    
  10,   10,   10,    5,    0,    0,    0,    0,  -19,  -35,   
 -35,  -30,    0,    0,    0,    0,    0,    0,    0,  -74}; 

     
speedD3[30]={ 35.92,35.78, 35.7,35.66,35.63,35.62,35.61,35.46,29.27, 21.1, 

19.01,22.56,24.54,22.06,17.27,17.95,18.97,19.16,15.58,11.01,   
7.2,  2.2, 0.26, 0.24, 0.22,  0.2, 0.04, 0.02,    0, 1.93}; 

distD3[30]={ 75.66,70.92,66.26,61.59,56.93,52.29,47.68,43.05,38.48,34.96, 
32.35,29.76,26.72,23.57,21.04,18.78,16.41, 13.9,11.69, 9.97,   
 8.8, 8.17, 8.09, 8.06, 8.03,    8, 7.85, 7.85, 7.85, 7.76}; 

throtD3[30]={    20,   20,   20,   20,   20,   20,   20,   20,    0,    0,    
  18,   16,   14,    0,    0,    9,    9,    1,    0,  -24,   
 -25,  -43,  -51,  -66, -100, -100, -100, -100, -100,   17}; 

     
speedD4[30]={ 53.64,53.71, 52.3,49.31,45.61,41.88,38.86,36.71,35.52,34.86,  

34.3,33.79,33.33,32.91,31.91, 30.1,28.29,23.56,19.84, 19.2, 
21.14,22.96,24.47,25.75,26.41, 26.6,26.74,26.85, 27.5,30.08}; 

distD4[30]={ 76.72, 72.4,68.05,63.87,59.95,56.36,53.02,49.94,46.98,44.15, 
41.43,38.68,36.01,33.32, 30.7,28.21,25.88,23.73,22.01,20.46, 
18.87,17.11,15.26, 13.3,11.24, 9.19, 7.09, 5.04, 2.96, 0.72}; 

throtD4[30]={    19,   19,    4,    7,    1,    1,    1,    4,    5,    7,     
   7,    7,    7,    7,    0,    0,  -12,  -33,    0,   15,    
  16,   16,   16,   16,   13,   13,   13,   13,   16,   33}; 

     
speedD5[30]={ 51.88,46.51,40.93,36.85,33.37, 32.4,33.51,35.01, 36.5,37.81,    

38, 35.3,32.38,30.03,22.42,10.94,  4.4, 3.78, 3.79, 5.31,  
6.92, 8.52,10.06,10.45,  9.5,  8.7, 6.33, 0.08, 0.06, 1.31}; 

distD5[30]={ 73.99,68.03,62.79,58.15,54.11,50.33,46.63,42.95,38.98,35.05, 
30.89, 27.1,23.46,20.25, 17.4,15.64,14.91,14.51,14.13,13.67, 
13.02,12.19,11.21,10.14, 9.12, 8.18, 7.35, 6.99, 6.96,  6.9}; 

throtD5[30]={     7,    0,    0,    0,    0,    9,   16,   16,   16,   16,     
   7,    0,    0,    0,  -87,  -87,  -33,   -2,    6,    7,     
   7,    7,    7,   -1,   -1,   -1,  -40,  -88,    2,   13}; 

speedD6[30]={ 55.06,55.04,55.01,54.99,54.96,54.94,54.81,53.76,52.75,51.77, 
51.02,51.29,51.68,51.89,52.09,52.29,52.49,52.68,52.87,53.06, 
53.24,53.65, 54.9, 56.3,57.68,59.03,59.95,60.14,60.09,60.03}; 

distD6[30]={ 77.96,75.05,72.11,69.21, 66.1,62.92,60.09,57.23, 54.4,51.64,  
48.9,46.13,43.42,40.77,38.13,35.44,32.71,29.96,27.17,24.42, 
21.68,18.92,16.08,12.93, 9.73, 6.48, 3.41, 0.01,-3.53,-7.07}; 

throtD6[30]={     10,   10,   10,   10,   10,   10,    3,    0,    0,    0,     
    8,   15,   15,   12,   12,   12,   12,   12,   12,   12,    
   12,   28,   36,   36,   36,   32,   19,   11,   11,   11}; 
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speedD7[30]={ 38.69,38.52,38.37,38.22,38.09,37.96,37.84,37.73,37.63,37.53, 
37.57,37.94,38.35, 38.8,39.23,39.64,40.01,40.37,40.72,41.05, 
41.36,41.65,41.92,42.18,42.43,42.51,42.73,42.94,43.03,42.86}; 

distD7[30]={ 73.86,71.71,69.53, 67.4,65.29,63.17,61.09,   59,56.92,54.85, 
52.79,50.73,48.63,46.55,44.42,42.27,40.13,   38,35.86,33.58, 
31.31,29.01, 26.7,24.37,21.89, 19.5,17.11,14.74,12.35,10.11}; 

throtD7[30]={    10,   10,   10,   10,   10,   10,   10,   10,   10,   10,    
  13,   14,   15,   15,   15,   15,   15,   15,   15,   15,    
  15,   15,   15,   15,   15,   15,   15,   15,   12,   12}; 

     
speedD8[30]={  38.4,35.81,33.29,29.65,25.16,19.38,16.05,14.11,14.09, 16.5, 

19.02,21.49,23.35,23.94,24.16,20.09,17.16,15.07,14.77,   16, 
16.79,17.85,18.72, 19.5,18.98,16.47,14.48,14.13,15.69,17.13}; 

distD8[30]={ 47.17,44.21,41.36,38.59,36.19,34.19,32.63,31.35,30.15,28.96, 
27.47,25.75,23.87,21.92,19.88,   18,16.43,15.08,13.87, 12.6, 
11.23, 9.72, 8.25, 6.62, 4.95, 3.53, 2.23, 1.03,-0.22,-1.59}; 

throtD8[30]={      0,    0,  -10,  -27,  -27,  -16,   -4,   -3,   12,   15,    
   15,   15,   13,   10,    6,   -3,   -2,   -1,    9,    9,     
    9,    9,    9,    9,   -1,   -2,   -2,    9,   10,   10}; 

     
 
speedD3i[15]={ 2.72, 4.48, 6.34, 8.33,10.43,12.58,13.81, 12.8,11.91,11.16, 

11.43,12.35,13.59,14.76,15.88}; 
distD3i[15]={  7.69, 7.46, 7.11, 6.64, 6.04,  5.3, 4.42, 3.57, 2.77, 2.03,  

1.31, 0.55,-0.29,-1.19, -2.2}; 
throtD3i[15]={   17,   18,   18,   18,   18,   18,    3,    0,    0,    0,     

   7,   10,   11,   11,   11}; 
     
speedD7i[15]={ 56.65,57.53, 56.8,55.71,54.59,53.45,51.76,49.85,48.05, 46.4, 

44.89,43.49,42.17,37.81,32.29}; 
distD7i[15]={ 75.29,68.81,62.22, 55.9,49.91,43.86,38.02,32.44,26.97,21.73, 

16.71,11.91, 7.21, 2.68,-1.15}; 
throtD7i[15]={    18,   14,    5,    5,    5,    4,    0,    0,    0,    0,     

    0,    0,    0,  -29,   -1}; 
 
speedD12[15]={ 45.78,48.76,51.13,53.01,52.04,50.42,50.47, 50.5,50.53,50.55, 

50.56,50.57,50.58,51.11,51.96}; 
throtD12[15]={    22,   22,   22,   22,   15,   17,   17,   17,   17,   17,    

   17,   17,   17,   19,   20}; 
     
speedD34[15]={ 36.83,38.76, 40.3,42.29,44.44, 46.5,48.47,50.42,52.29,53.17, 

53.56,53.87,54.16,54.33,54.01}; 
throtD34[15]={    30,   30,   30,   30,   30,   30,   30,   30,   30,   26,    

   22,   22,   22,   20,   17}; 
     
speedD56[15]={ 70.81,68.99,67.09, 65.3,63.76, 62.3,60.92,59.59,58.33,57.19, 

56.39,55.94,55.94,55.96,55.97}; 
throtD56[15]={     0,    0,    0,    0,    0,    0,    0,    0,    0,    3,      

    3,    9,   11,   11,   11}; 
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speedE1[30]={ 24.08,23.08,26.08,29.45,31.35,31.01,30.36,28.89,28.57,28.99, 
27.48,24.69,23.73, 23.4,23.15,21.83,20.93,20.29,20.11,20.67, 
18.41,13.44,10.94,  9.4,13.11,18.88,20.23,14.74, 6.12, 2.33}; 

distE1[30]={ 77.55,74.72,72.01,68.96,65.44,61.84,58.31,54.87,51.51,48.18, 
44.75,41.61,38.74,35.93,33.16,30.44,27.91,25.59,23.18,20.71, 
18.29,16.42,14.96,13.72,12.51,10.68, 8.34,  6.4, 5.17, 4.79}; 

throtE1[30]={      2,   14,   19,   19,   16,   14,   13,   11,   14,   14,     
    6,    6,    9,    9,    9,    6,    6,    6,    8,    8,   
  -38,  -35,  -32,  -10,   29,   25,    1,  -48,  -72,    4}; 

     
speedE2[30]={  31.8,31.44,31.17,30.95,30.77,30.63,30.52,30.43,30.87,31.48, 

31.97,32.37,32.68,32.94,33.14,33.29,33.41, 33.5,33.57,33.62, 
33.66, 33.7,33.74,33.78,33.61,   33,32.87,33.37,34.19,35.24}; 

distE2[30]={ 73.52,71.34,69.15,67.01,64.82,62.73, 60.6, 58.5,56.38,54.23, 
52.07,49.89,47.66,45.45,43.18,40.94, 38.8, 36.5,34.35,32.07,  
29.8,27.49,25.19,22.85,20.53,18.27,16.01,13.76, 11.4, 9.06}; 

throtE2[30]={     3,    3,    3,    3,    3,    3,    3,    3,    6,    6,     
   6,    6,    6,    6,    6,    6,    6,    6,    6,    6,          
   6,    6,    6,    6,    4,    4,    6,    8,   10,   12}; 

     
speedE3[30]={ 47.46,47.08,46.85,46.45,45.89,45.37,44.85,44.32,43.83,43.38, 

42.96,42.57,42.56,42.37,41.93,41.48,41.01,40.56,40.12,39.27, 
37.72,36.42,32.21,27.15,22.55,18.69,15.72,12.27, 8.25, 4.18}; 

distE3[30]={ 78.27,75.18, 72.1,69.01,65.99,62.98,59.98,57.06,54.18,51.35, 
48.52,45.76,42.94,40.14,37.39,34.65,31.97,29.34,26.73,24.14, 
21.59,19.19, 16.9,14.94,13.34,12.01,10.86, 9.94, 9.27, 8.88}; 

throtE3[30]={      2,    3,    4,    1,    1,    1,    1,    1,    1,    1,     
    1,    1,    3,    1,    0,   -1,   -1,   -1,   -1,  -19,   
  -19,  -27,  -84,  -85,  -82,  -80,  -66,  -84,  -84,  -84}; 

 
speedE4[30]={ 45.43,44.93,44.17,43.02,41.43,39.85,37.75,35.12, 32.9, 31.6, 

30.48,29.49,28.58,27.77,26.54,21.79,18.61,16.83,16.48,16.33, 
16.21,16.42, 16.6,17.88, 20.9,23.98,26.78,28.61,30.11,31.29}; 

distE4[30]={ 77.05,73.43,69.76,66.23,62.76,59.49,56.25,53.29,50.46,47.87, 
45.36,42.92,40.57,38.29, 36.1,34.05,32.37,30.91,29.57,28.26, 
26.98,25.68,24.39,23.02,21.51,19.75,17.76, 15.6, 13.3,10.92}; 

throtE4[30]={     15,   12,    9,    8,    6,    5,    0,    0,    0,    3,     
    3,    3,    3,    3,    0,    0,    0,    3,    5,    5,     
    5,    8,    5,   17,   22,   22,   22,   20,   20,   20}; 

     
speedE5[30]={ 43.89,42.99,41.48,37.92,34.88,34.27,35.05,35.35,   35,34.26, 

33.56,32.77, 31.3,29.46,27.37,21.14,14.96,  8.8, 5.67,13.25, 7.16, 
1.21, 0.12,  1.6, 3.68,  6.1, 6.38, 9.18,12.25,15.47}; 

distE5[30]={ 75.57,70.53, 65.6,60.79,56.43,52.28,48.36,44.54,40.42,36.74, 
33.23,29.66,26.23,23.04,20.07,17.46,15.62,14.42, 13.7, 8.14,   
7.1, 6.65, 6.62, 6.09, 5.82, 5.32, 13.1,12.27,11.19, 9.77}; 

throtE5[30]={  -11,   -8,  -12,  -26,  -21,   -3,    2,   -6,   -9,  -10,   
-10,  -13,  -15,  -22,  -45,  -82,  -81,  -81,  -26,  -70,   
-71,  -82,  -81,   19,   20,   17,   13,   16,   12,    9}; 

 
speedE6[30]={ 49.68,49.77,49.86,49.99,50.14,50.29,50.41,50.54,50.66,50.76, 

50.85,50.94,51.02, 51.1,51.16,51.23,51.29,51.35, 51.4,51.45, 
51.24,50.94, 50.6,50.26,49.93,49.56,49.18,48.83,48.53,48.24}; 

distE6[30]={77.97,75.39, 72.8,70.21,67.57,   65,62.16,59.53,56.68,53.82, 
51.15, 48.5,45.89, 43.2,40.56,37.67,   35,32.31,29.41,26.69, 
24.02, 21.4,18.79,16.17,13.34,10.77, 8.01, 5.27, 2.78,  0.1}; 

throtE6[30]={    16,   16,   16,   16,   16,   16,   16,   16,   16,   16,    
  16,   16,   16,   16,   16,   16,   16,   16,   16,   16,    
  14,   14,   13,   13,   13,   13,   13,   13,   13,   13}; 
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speedE7[30]={ 37.14,36.52,36.99,38.14,38.87,38.69,38.28,37.79,37.67,37.89, 

38.05,38.19,38.3,37.64,36.98,36.45,36.06,35.73,35.47,35.27, 
35.69,36.33,36.83,37.22,37.53,37.41,36.98,36.66,36.52,36.41}; 

distE7[30]={ 72.91,70.78,68.73,66.65,64.49, 62.3,60.16,58.03,55.95,53.92, 
51.83,49.76,47.71,45.61,43.61,41.58,39.64,37.74,35.74,33.73, 
31.76,29.76,27.59,25.53,23.47,21.37, 19.3,17.34,15.26,13.21}; 

throtE7[30]={     17,   20,   24,   26,   22,   21,   19,   19,   22,   22,    
   22,   22,   22,   18,   18,   18,   18,   18,   18,   18,    
   21,   22,   22,   22,   22,   19,   19,   19,   19,   19}; 

     
speedE3i[15]={ 7.19,    10,13.16,16.71,20.07,21.91,23.01,23.86,24.55,25.58, 

26.56, 27.38,27.43,26.65,26.74}; 
distE3i[15]={  7.21, 6.65,  5.9, 4.94, 3.73, 2.35,  0.9,-0.64,-2.19,-3.82,  

-5.5,-7.27,-9.08,-10.86,-12.62}; 
throtE3i[15]={   29,   30,   37,   34,   25,   15,   14,   14,   14,   17,    

  17,   17,   10,   13,   14}; 
 
speedE7i[15]={ 46.25,46.94,46.78,46.42,45.73,42.49,40.22,39.29,37.65,35.06, 

31.33,28.32,24.82,25.44,28.76}; 
distE7i[15]={ 74.23,67.76,61.24,54.76,48.28,42.03,36.41,30.79,25.49,20.39, 

15.85,11.77, 8.08, 4.71, 0.92}; 
throtE7i[15]={    16,   13,   13,   13,   10,    3,    7,    8,    5,   -2,    

   -2,   -2,    3,   20,   15}; 
 
speedE12[15]={ 31.07,43.98, 53.2,58.62,58.03, 57.2,58.09,57.35,60.46,56.49, 

55.49, 55.2,55.27,55.54,55.71}; 
throtE12[15]={    36,   29,   27,   24,   20,   21,   21,   19,   15,   18,    

   19,   19,   19,   19,   19}; 
     
speedE34[10]={ 26.74,27.59, 30.7,34.49,36.79,37.42,39.12,40.12,42.65,44.73}; 
throtE34[10]={    14,   18,   28,   28,   24,   23,   27,   27,   24,   22}; 
     
speedE56[15]={ 58.12, 58.4,58.96,59.56,60.12,60.47,60.73,60.92,61.09,61.25,  

61.4,61.46,61.45, 61.3,61.09}; 
throtE56[15]={   14,   14,   18,   18,   18,   16,   15,   15,   15,   15,    

  14,   14,   13,   12,   12}; 
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APPENDIX E: EVOLVED CODE 
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This appendix lists all evolved source code generated during this research. The code is difficult 

to read but it is syntactically correct. The two main reasons that make it unreadable is: 1) GP 

produces non-coding regions, 2) The tree structure of the individuals makes it most convenient to 

produce a single line source code. Hence, the code is not structured or well organized. 

The code assumes that the following variables are used:  

• speed - current speed of the agent  

• distance - distance to either an intersection or a traffic light 

• intersection – intersection present 

• lightPresent – traffic light present 

• Light- enumeration variable describing the light (GREEN, YELLOW or RED) 

The results from all the action rules are a pedal pressure value (positive = throttle pressure, 

negative = brake pressure). The result from the sentinel rules are a Boolean result (either true or 

false) that indicates whether the context should request activation or not. 

Two issues that need the attention of the function set used in this research are correct division 

and logarithmic functionality. Division with 0.0 results in an error and the natural logarithm does 

not allow the parameter to be 0.0. Hence, to prevent those situations from occurring the division 

and logarithmic functions need to be customized to enable all possible individuals to be 
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executed. The custom functions are described below: 

double slog(double x) //Safe log from GP-generated code 
{ 
 return (x==0.0?0.0:log(x)); 
} 
 
double sdiv(double t, double n) //Safe division from GP-generated code 
{ 
 return (n==0.0?1.0:t/n); 
} 
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Intesection Turning, Sentinel Rules 
 
//*********************************************** Agent A (2.3244) 
(intersection?(47.776726<distance?0:(lightPresent?(distance<9.543138?(speed<d
istance?0:(lightPresent?92.892239:1)):0):1)):0); 
   
//*********************************************** Agent B (3.0400) 
(distance<52.140873?(distance>23.368023?(intersection?(intersection?1:0):(!li
ghtPresent?0:0)):(lightPresent?(lightPresent?(!lightPresent?(speed<73.000274?
(!intersection?0:(lightPresent?1:(!intersection?(!intersection?(distance>93.1
76061?0:(intersection?(!lightPresent?1:0):0)):(speed>3.933836?1:(!intersectio
n?1:(!lightPresent?0:0)))):1))):(lightPresent?0:(distance<96.331675?0:(!light
Present?(lightPresent?(!intersection?(speed<8.340709?(!lightPresent?1:0):1):(
speed>43.702505?1:(!lightPresent?0:0))):0):1)))):(lightPresent?0:0)):(!lightP
resent?(speed<83.849605?1:0):(lightPresent?1:(distance<3.219703?1:(!intersect
ion?1:(intersection?(distance>73.912778?1:0):(distance>91.772210?(!intersecti
on?(!intersection?(speed<1.001007?1:0):(distance<80.715354?0:0)):1):0))))))):
(speed>12.320322?(!lightPresent?(speed<26.636555?1:(lightPresent?(speed<99.76
1955?0:(lightPresent?(!lightPresent?0:(lightPresent?(speed>48.048341?1:0):(!l
ightPresent?(speed<18.448439?0:1):0))):(speed<87.112033?(!intersection?0:(dis
tance>45.661794?(lightPresent?1:1):0)):1))):(!intersection?(distance>32.34962
0?1:(intersection?0:0)):(intersection?(!intersection?1:(speed<87.343974?(ligh
tPresent?(!intersection?1:0):(!intersection?1:0)):(lightPresent?(!lightPresen
t?0:0):0))):(lightPresent?(!intersection?0:(!lightPresent?(intersection?1:1):
1)):1))))):(!intersection?1:(speed<29.490036?(intersection?0:0):(!lightPresen
t?(!intersection?1:(lightPresent?(distance<92.779320?(lightPresent?0:(speed>1
0.983612?0:0)):0):(!intersection?(distance>47.959837?1:0):0))):(!lightPresent
?1:0))))):0))):(distance>77.828303?0:0)); 
 
//*********************************************** Agent C (3.3433) 
(lightPresent?(distance>35.319071?(lightPresent?(speed>35.319071?(distance<98
.083437?(!intersection?0:(speed<distance?0:1)):(!intersection?(speed<98.08343
7?0:1):(speed>14.383373?(speed>57.991272?(!intersection?(!lightPresent?1:0):0
):(!lightPresent?0:1)):1))):(lightPresent?0:(!intersection?0:1))):(speed>50.5
32548?0:(distance>50.215155?0:(intersection?1:0)))):(lightPresent?0:(!interse
ction?0:1))):(speed>50.532548?0:(distance>50.215155?0:(intersection?1:0)))); 
    
   
//*********************************************** Agent D (2.9296)  
(lightPresent?(intersection?(distance<31.592761?0:1):0):(intersection?(distan
ce>42.921232?(intersection?(!intersection?(!lightPresent?1:(!lightPresent?1:(
!lightPresent?1:1))):(!lightPresent?(speed>64.461196?(!intersection?1:1):0):0
)):(lightPresent?(speed>98.919644?1:(!lightPresent?(speed<7.724235?1:0):(inte
rsection?1:1))):0)):(!intersection?(!lightPresent?1:(speed<0.192267?0:0)):(di
stance>40.513321?0:1))):0)); 
   
//*********************************************** Agent E (4.3173)  
(distance>30.869472?(distance<63.628040?(distance<61.311685?(distance<63.6280
40?(distance<61.311685?(intersection?56.413465:(distance>31.998657?0:(31.9986
57>32.996612?0:(lightPresent?(speed<23.789178?0:1):(speed<20.917386?1:(32.996
612>distance?0:0)))))):0):0):0):0):(lightPresent?(speed<30.442213?0:(intersec
tion?(distance>56.413465?0:0):1)):(speed<20.917386?(speed<distance?0:1):0))); 
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Intersection Turning, Action Rules 
//*********************************************** Agent A (2.3316)  
(((speed-(((sin((exp(sdiv(59.794915,(((sin((exp(sdiv(59.794915,sdiv(59.794915
,speed))))))-(cos(77.013458)))>(cos(speed))?speed:(distance*sdiv(-12.991730,s
peed))))))))-(cos(77.013458)))>(cos(speed))?speed:(distance*sdiv(85.735648,sp
eed))))*(speed<-37.846004?(exp(((exp(speed))*distance))):(distance>38.279366?
speed:distance)))>distance?(cos(speed)):(((sin((77.013458>4.019287?distance:5
4.033021)))>speed?(exp((sin((distance>4.019287?(cos(speed)):54.033021))))):((
(sdiv((distance>speed?distance:(distance>(distance-((exp(sdiv(59.794915,-39.9
21262)))<speed?(cos(sdiv((-61.760308-(-39.921262)),distance))):(cos(speed))))
?distance:54.033021)),distance)>speed?(sin(speed)):(distance<sdiv(90.514847,1
4.004944)?(((sin((sin(4.019287))))+(speed>36.771752?((distance*4.019287)+(5.7
46635<distance?speed:-99.877926)):((distance<distance?(speed>speed?((-33.4757
53-(-95.312357))-(cos(5.746635))):92.382579):sdiv(-75.292215,distance))-(spee
d<speed?sdiv(distance,26.273384):speed))))-((speed>speed?(exp(distance)):(dis
tance<sdiv(-58.610798,14.004944)?(distance-(sin((sin(4.019287))))):(exp((cos(
37.571337))))))-(-11.301004))):(exp((cos(((speed>89.135410?sdiv(63.267921,-90
.087588):(distance<37.571337?distance:90.234076))>speed?(sin(distance)):59.64
2323)))))))-(-11.301004))<4.019287?(((((sin((sin(4.019287))))+(14.004944>52.6
96310?sdiv(sdiv(-58.610798,14.004944),14.004944):((distance<distance?(speed>s
peed?34.360789:92.382579):sdiv(-75.292215,distance))-(speed<speed?sdiv(distan
ce,26.273384):speed))))>speed?(exp((exp((sin(4.019287)))))):(distance<sdiv(-5
8.610798,speed)?(distance-((speed>speed?speed:(distance<sdiv(-58.610798,14.00
4944)?((sin((sin(4.019287))))-(sin(-70.537431))):(exp((cos(37.571337))))))-(-
11.301004))):(exp((cos(((speed>89.135410?sdiv(63.267921,-90.087588):(distance
<37.571337?distance:90.234076))>speed?(sin(distance)):59.642323)))))))-(-11.3
01004))-((speed>speed?(exp(distance)):(distance<sdiv(-58.610798,14.004944)?(d
istance-(sin((sin(4.019287))))):(exp((cos(37.571337))))))-(-11.301004))):(exp
((cos(((speed>89.135410?sdiv(63.267921,-90.087588):(distance<37.571337?distan
ce:90.234076))>speed?(sin(distance)):59.642323)))))))-(-11.301004))); 
   
//*********************************************** Agent B (1.5804) 
(exp((slog((12.063967>(exp((speed<30.100406?(cos(((sin(speed))<(sin(94.158757
))?(speed<15.878780?(cos(speed)):(cos((sin(80.281991))))):(sin((exp(19.849239
))))))):(exp((distance>49.851985?(exp((cos(distance)))):(cos((slog(21.610156)
)))))))))?(speed>7.812738?((cos(((sin(speed))<(exp((sin((cos(91.366313))))))?
(speed<28.315073?(sin((slog(((slog((distance>distance?(exp((slog(speed)))):(s
log(91.051973)))))>distance?speed:(distance>98.681600?27.106540:(sin((exp(dis
tance)))))))))):(cos((sin((slog((cos((speed>distance?(speed>48.884548?(sin(15
.424055)):69.777520):distance)))))))))):(sin((exp(19.849239)))))))>73.989074?
(slog(speed)):(exp((exp((distance<30.100406?(cos(((sin(speed))<(exp((sin((cos
(91.366313))))))?(speed<28.315073?(cos(speed)):(cos((sin(distance))))):(sin((
exp(19.849239))))))):(exp((distance>49.851985?(exp((cos(distance)))):(cos((sl
og(21.610156))))))))))))):16.855373):16.855373))))); 
   
//*********************************************** Agent C (1.6308) 
((sin(73.021637))<distance?pow((distance<speed?(pow(speed,5)>(33.744316>(dist
ance<speed?speed:71.636097)?pow(pow(distance,3),3):pow(59.166234,2))?(distanc
e>speed?(cos(-52.122562)):(sin(pow(distance,5)))):13.791314):speed),2):(log(7
2.826319))); 
   
//*********************************************** Agent D (1.1705) 
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(distance<5.307168?0.845362:(53.251747<8.786279?10.885952:(33.988464<(27.2255
62<distance?41.361735:speed)?10.885952:18.491165))); 
   
//*********************************************** Agent E (3.3490) 
(49.546800>(distance<92.010254?(63.054292<speed?-11.154515:distance):(exp(dis
tance)))?(speed>19.833979?(-58.287301<11.978515?(-12.820826>-13.620411?(((63.
054292<speed?-92.980743:distance)<4.818872?(63.054292<(speed>71.391949?speed:
((cos((exp((cos(12.717063))))))>-30.368969?(distance<28.922391?(speed<distanc
e?18.198187:(exp((cos(speed))))):distance):speed))?speed:(speed>41.660817?73.
699148:distance)):70.055238)>13.162633?6.344798:14.810632):(sin(-39.451277)))
:-8.133183):39.481795):14.242988); 
 
    
Red Light Driving, Action Rules 
//*********************************************** Agent A (1.3194) 
(sdiv((slog(pow(((distance>speed?(speed<((distance>43.296609?(cos(-88.860744)
):pow(speed,4))<89.434491?(speed<distance?((sin(((slog((cos(-7.663198))))*((c
os(speed))<0.222785?speed:pow(distance,5)))))*(speed<0.222785?speed:pow(dista
nce,5))):(sdiv(((exp((exp(-55.180517))))*speed),pow(speed,5))+(distance+sdiv(
(cos(pow(speed,3))),(distance<speed?(sin(distance)):speed))))):pow(speed,2))?
(speed>(distance>36.423841?distance:86.901455)?speed:(slog((speed<speed?(pow(
distance,4)*(pow(18.765831,4)*(cos(speed)))):(pow(distance,4)*(pow(18.765831,
4)*(cos(speed)))))))):86.901455):(cos(14.255195)))<speed?speed:(slog(pow(((sp
eed>(distance>36.423841?(sdiv(52.696310,-30.423902)+distance):86.901455)?spee
d:(slog((speed<speed?(slog(-38.035219)):(pow(distance,4)*pow(53.770561,5)))))
)<speed?speed:-9.750664),4)))),4))),(speed<distance?((slog(pow(speed,4)))>(sl
og(pow(12.381359,3)))?(-54.173406+(distance<53.770561?distance:46.739097)):(s
log((speed>(slog(pow((slog(pow(speed,4))),3)))?(44.889675+(cos((speed>3.84838
4?81.670583:-59.685049)))):(slog(speed)))))):(cos(sdiv((exp((cos(-76.476333))
)),((distance*(cos(-76.476333)))-(cos((sin((distance>(slog((pow(distance,4)-d
istance)))?(speed>distance?73.839533:16.922513):(speed<-31.113621?-6.833095:6
5.233314))))))))))))*sdiv(distance,(speed>(distance>speed?pow(distance,4):(co
s(14.255195)))?-86.938078:-35.404523))); 
 
//*********************************************** Agent B (1.2277) 
(speed<distance?(((pow(distance,3)*(cos(pow(distance,4))))>distance?-87.20053
7:8.883938)<distance?(speed<distance?((exp((distance<68.871120?-25.284585:pow
(distance,3))))<distance?(speed<distance?(sdiv(speed,(34.440138*(cos(pow(((sp
eed<speed?(distance<94.787438?(slog((exp(speed)))):15.347758):speed)-pow(dist
ance,4)),3)))))<distance?(speed<distance?(sin((sin(((slog((pow((speed+-0.3265
48),4)*distance)))<speed?(sin(((exp(sdiv(speed,distance)))<speed?((15.347758+
(speed<distance?speed:-97.399823))<distance?(cos(-99.554430)):(slog(pow(speed
,3)))):-44.730980))):-44.730980))))):-44.730980):-44.730980):-44.730980):-44.
730980):-44.730980):-44.730980):-44.730980); 
  
//*********************************************** Agent C (6.0419) 
(((pow((((((13.022248/(speed/(((pow((distance/speed),3)+distance)/distance)+7
.858516)))-66.252632)/distance)-66.252632)/distance),3)+distance)/distance)+7
.858516); 
  
//*********************************************** Agent D (5.3956) 
(slog(pow(sdiv(pow((sdiv((sin(sdiv(pow(distance,5),distance))),(cos((sdiv((sd
iv(-78.991058,(sin(distance)))-distance),(cos((exp(distance)))))-distance))))
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-distance),4),sdiv(speed,sdiv((slog((exp((cos(distance)))))),pow(speed,3)))),
4))); 
 
//*********************************************** Agent E (6.0822) 
(57.292397<(distance<-30.259102?-38.975189:distance)?(slog(pow(((32.316049<sp
eed?59.044160:76.281014)<distance?(slog((71.111178<distance?(pow(98.748741,4)
<pow(speed,5)?(cos(pow((cos(-55.113376)),5))):38.303781):distance))):-82.6410
72),4))):(19.895016<distance?(slog((38.303781<(57.292397<(slog(pow(distance,4
)))?(slog(pow(71.111178,2))):((slog(38.303781))<distance?distance:pow((19.895
016<(exp(pow(98.748741,2)))?59.044160:(exp(71.111178))),3)))?(slog(pow(distan
ce,2))):(19.895016<distance?(slog(((38.303781<speed?speed:(19.895016<71.11117
8?(slog(38.303781)):(exp(pow(98.748741,2)))))<distance?(slog((19.895016<dista
nce?(slog((speed<distance?(19.895016<speed?(-30.259102<speed?(exp(pow(-99.755
852,2))):speed):(sin(speed))):19.895016))):-82.641072))):-82.641072))):-82.64
1072)))):-82.641072)); 
 
 
Green Light Driving, Action Rules 
//*********************************************** Agent A (1.6736) 
(distance>(speed<distance?64.745017:43.082979)?(-7.467880<speed?(distance>dis
tance?distance:79.436628):61.522263):(((distance>56.944486?61.522263:distance
)>22.653889?-32.206183:72.203741)<22.653889?8.401745:(distance>-22.989593?(((
speed>56.944486?-85.308390:speed)>22.653889?-32.206183:72.203741)>22.653889?8
.401745:(distance>-33.738212?30.600909:-90.289010)):56.944486))); 
  
//*********************************************** Agent B (1.2867) 
((distance<6.369213?distance:-46.604816)>-63.109226?((13.736381+sdiv((distanc
e<24.753563?speed:(-90.997040+(speed<distance?pow(6.369213,2):48.008667))),sp
eed))+sdiv(((7.718131>72.801904?speed:48.319956)>speed?-12.552263:79.180272),
(speed-40.964995))):speed); 
  
//*********************************************** Agent C (2.0707) 
(9.872737>distance?(-0.686667<(((speed>70.958586?distance:speed)*(((speed>5.7
34428?57.475508:speed)-(distance>distance?16.000854:(((-39.786981<speed?28.94
0702:-66.447951)+speed)>distance?-44.932402:-44.511246)))>-34.104435?speed:di
stance))<speed?39.188818:((speed<speed?-80.309458:(-84.783471>1.431318?-11.44
7493:speed))-34.849086))?27.939695:27.341532):(distance<(-14.792322+(-0.68666
7+(-58.366649+97.515793)))?(35.850093-speed):15.274514)); 
   
//*********************************************** Agent D (3.1802) 
6.344798<(speed<((10.965300+distance)>36.271248?10.965300:(cos((distance*(4.1
41361+36.271248)))))?((speed+10.965300)>36.271248?28.397473:26.615192):distan
ce)?((((10.965300-(cos(((((10.965300-sdiv(speed,(speed>36.271248?10.965300:((
((cos(speed))<speed?speed:distance)<distance?speed:speed)*(sin(speed))))))+di
stance)>36.271248?10.965300:(cos((distance*(4.141361+36.271248)))))+speed))))
-sdiv(speed,(speed>36.271248?(-5.258339<distance?((10.965300-(cos((-71.245460
+(distance<30.851161?8.426160:-38.633381)))))-sdiv(speed,(speed>(10.916471+36
.271248)?10.965300:-67.247536))):speed):-72.972808)))-(cos((10.916471+speed))
))-sdiv(speed,(speed>36.271248?10.965300:-72.972808))):speed)-(cos((((distanc
e+distance)>speed?-71.233253:distance)<distance?distance:-90.484329))))-(cos(
(10.965300+speed))))-sdiv(speed,(speed>36.271248?10.965300:-72.972808))); 
   
//*********************************************** Agent E (2.5500) 
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((pow(speed,2)>sdiv(-51.506089,-93.292032)?(cos(((((cos(distance))<distance?p
ow(distance,4):(17.557298+-33.469650))>sdiv((pow(distance,4)>speed?39.139988:
pow(distance,5)),(-5.093540<67.052217?sdiv(distance,speed):pow(distance,3)))?
-46.183661:pow(speed,2))>((exp(speed))>distance?(12.424085>(slog(pow(distance
,4)))?-58.568072:speed):speed)?(12.424085>(slog(pow((pow(-53.856014,5)<pow(sp
eed,2)?(slog((speed+pow((exp(sdiv((exp(sdiv((sin((cos(sdiv(-51.225318,distanc
e))))),pow(speed,3)))),(sin((slog(distance))))))),2)))):(speed+-61.912900)),4
)))?-58.568072:speed):speed))):pow(distance,3))*-46.519364); 
     
 
Traffic Light Driving, Action Rules 
//*********************************************** Agent A (4.3729) 
(distance>-3.299051?(speed<43.784905?((distance>-22.513505?(speed>(Light!=YEL
LOW?(43.784905-(distance<speed?(redLight(distance,speed)+(Light!=GREEN?redLig
ht(distance,speed):(distance<86.492507?(distance>-20.694602?(distance>-43.168
432?greenLight(distance,speed):(distance<-88.488418?(speed>-85.216834?(distan
ce>speed?redLight(distance,speed):greenLight(distance,speed)):(distance<-2.39
5703?greenLight(distance,speed):redLight(distance,speed))):greenLight(distanc
e,speed))):(distance<-9.671316?(sdiv(redLight(distance,speed),(13.840144+32.0
16968))-11.465804):redLight(distance,speed))):(speed>speed?redLight(distance,
speed):(Light==GREEN?(Light!=GREEN?sdiv(redLight(distance,speed),(speed+56.90
7864)):(Light!=GREEN?greenLight(distance,speed):(Light!=YELLOW?speed:redLight
(distance,speed)))):greenLight(distance,speed)))))):redLight(distance,speed))
):redLight(distance,speed))?(Light!=GREEN?((Light!=YELLOW?(distance*(speed<18
.631550?greenLight(distance,speed):43.784905)):redLight(distance,speed))-(Lig
ht!=GREEN?(Light==RED?(speed<-48.496964?redLight(distance,speed):redLight(dis
tance,speed)):(speed<10.238960?-62.688070:greenLight(distance,speed))):(Light
!=YELLOW?greenLight(distance,speed):greenLight(distance,speed)))):(speed>dist
ance?(Light==GREEN?(distance-(Light==GREEN?redLight(distance,speed):distance)
):redLight(distance,speed)):(speed<speed?((Light==RED?-22.574542:speed)*dista
nce):(Light==RED?greenLight(distance,speed):(Light==RED?greenLight(distance,s
peed):speed))))):sdiv(((speed<distance?((distance+45.591601)+83.434552):(dist
ance>-25.144200?greenLight(distance,speed):(distance<-54.960784?greenLight(di
stance,speed):redLight(distance,speed))))-distance),((15.189062*(Light!=RED?r
edLight(distance,speed):(speed<-71.880245?redLight(distance,speed):redLight(d
istance,speed))))+(distance-(speed>63.145847?(-81.456954+-35.740227):greenLig
ht(distance,speed)))))):((Light!=GREEN?(speed<76.799829?sdiv(76.317636,greenL
ight(distance,speed)):(distance>-94.421216?redLight(distance,speed):greenLigh
t(distance,speed))):greenLight(distance,speed))+sdiv(greenLight(distance,spee
d),-56.315806)))<41.581469?((Light!=YELLOW?((Light==YELLOW?greenLight(distanc
e,speed):(((speed>speed?(speed<71.654408?(Light==YELLOW?(speed<13.730277?(spe
ed>speed?(Light!=YELLOW?greenLight(distance,speed):0.204474):(distance+-57.60
3687)):(Light!=YELLOW?(Light!=GREEN?speed:45.689260):(distance*speed))):redLi
ght(distance,speed)):(speed>92.742698?greenLight(distance,speed):(speed<dista
nce?((distance>24.485000?redLight(distance,speed):redLight(distance,speed))+g
reenLight(distance,speed)):(speed<98.315378?(Light!=RED?redLight(distance,spe
ed):-16.989654):redLight(distance,speed))))):((Light!=YELLOW?(Light==GREEN?(d
istance<distance?(Light==YELLOW?-61.577197:-64.854885):(distance<distance?red
Light(distance,speed):redLight(distance,speed))):(Light==RED?(Light==YELLOW?d
istance:speed):redLight(distance,speed))):(speed*-40.964995))-(Light==YELLOW?
(speed>-91.735588?greenLight(distance,speed):sdiv(redLight(distance,speed),sd
iv(91.351054,-39.982299))):(((distance>-67.308573?greenLight(distance,speed):
greenLight(distance,speed))-33.237708)-(speed>65.691091?(speed-speed):redLigh
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t(distance,speed))))))+(speed<distance?(Light==GREEN?redLight(distance,speed)
:redLight(distance,speed)):redLight(distance,speed)))<distance?(distance<dist
ance?sdiv((speed<53.691213?redLight(distance,speed):redLight(distance,speed))
,(Light!=GREEN?speed:greenLight(distance,speed))):((Light!=YELLOW?redLight(di
stance,speed):redLight(distance,speed))*(Light!=RED?greenLight(distance,speed
):speed))):greenLight(distance,speed)))-speed):((Light!=GREEN?sdiv(greenLight
(distance,speed),redLight(distance,speed)):greenLight(distance,speed))-speed)
)<41.581469?(Light!=GREEN?(Light!=YELLOW?redLight(distance,speed):((Light!=GR
EEN?sdiv(greenLight(distance,speed),redLight(distance,speed)):greenLight(dist
ance,speed))-speed)):(speed*distance)):(speed<96.478163?(speed>-30.887784?dis
tance:greenLight(distance,speed)):greenLight(distance,speed))):(speed<96.4781
63?(speed<-82.000183?greenLight(distance,speed):(speed<distance?(Light!=GREEN
?(-30.887784*redLight(distance,speed)):greenLight(distance,speed)):(speed<(Li
ght!=GREEN?sdiv(greenLight(distance,speed),redLight(distance,speed)):greenLig
ht(distance,speed))?(redLight(distance,speed)<41.581469?(greenLight(distance,
speed)<41.581469?(Light!=GREEN?(Light!=YELLOW?redLight(distance,speed):((Ligh
t!=GREEN?sdiv(greenLight(distance,speed),redLight(distance,speed)):greenLight
(distance,speed))-speed)):(speed*distance)):(speed<96.478163?(speed>-30.88778
4?redLight(distance,speed):greenLight(distance,speed)):greenLight(distance,sp
eed))):greenLight(distance,speed)):greenLight(distance,speed)))):greenLight(d
istance,speed))):(speed<96.478163?(speed<-82.000183?greenLight(distance,speed
):(speed<distance?(Light!=GREEN?(-30.887784*redLight(distance,speed)):greenLi
ght(distance,speed)):(speed<(Light!=GREEN?sdiv(57.310708,redLight(distance,sp
eed)):greenLight(distance,speed))?(redLight(distance,speed)<41.581469?((Light
!=YELLOW?redLight(distance,speed):((Light!=GREEN?sdiv(greenLight(distance,spe
ed),redLight(distance,speed)):greenLight(distance,speed))-speed))<41.581469?(
Light!=GREEN?(Light!=YELLOW?redLight(distance,speed):((Light!=GREEN?sdiv(gree
nLight(distance,speed),redLight(distance,speed)):greenLight(distance,speed))-
speed)):(speed*distance)):(speed<96.478163?(speed>-30.887784?redLight(distanc
e,speed):greenLight(distance,speed)):greenLight(distance,speed))):greenLight(
distance,speed)):greenLight(distance,speed)))):greenLight(distance,speed))):(
(25.717948+(Light==YELLOW?(Light!=YELLOW?(Light!=YELLOW?(Light==RED?(Light==R
ED?-29.233680:55.656605):(-52.269051+-91.589099)):redLight(distance,speed)):r
edLight(distance,speed)):(speed-greenLight(distance,speed))))-greenLight(dist
ance,speed))); 
  
//*********************************************** Agent B (2.1456) 
(speed>(distance<(speed>(Light==YELLOW?greenLight(distance,speed):14.163640)?
(Light==RED?(distance<(speed>29.978331?(Light!=GREEN?36.149174:speed):7.93176
0)?1.748710:redLight(distance,speed)):(Light==RED?(Light!=GREEN?36.149174:(Li
ght==RED?greenLight(distance,speed):(Light==RED?speed:greenLight(distance,spe
ed)))):(speed<54.222235?(speed>(distance<(speed>29.978331?(Light!=GREEN?36.14
9174:(Light==RED?redLight(distance,speed):(Light==RED?greenLight(distance,spe
ed):greenLight(distance,speed)))):7.931760)?1.748710:redLight(distance,speed)
)?(Light!=GREEN?(Light!=YELLOW?(speed<distance?-4.806666:redLight(distance,sp
eed)):(Light==RED?greenLight(distance,speed):(distance>distance?speed:(speed<
distance?43.351542:(speed<distance?4.049806:redLight(distance,speed)))))):(Li
ght==RED?greenLight(distance,speed):(Light==RED?speed:greenLight(distance,spe
ed)))):7.931760):greenLight(distance,speed)))):7.931760)?1.748710:redLight(di
stance,speed))?(Light!=GREEN?(Light!=YELLOW?(speed<distance?-4.806666:redLigh
t(distance,speed)):(Light==RED?greenLight(distance,speed):(distance>distance?
speed:(speed<distance?43.351542:(speed<54.222235?(speed>(distance<(speed>29.9
78331?(Light!=GREEN?36.149174:(Light==RED?greenLight(distance,speed):(Light==
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RED?speed:greenLight(distance,speed)))):7.931760)?1.748710:redLight(distance,
speed))?(Light!=GREEN?(Light!=YELLOW?(speed<distance?-4.806666:redLight(dista
nce,speed)):(Light==RED?greenLight(distance,speed):(distance>distance?speed:(
speed<distance?43.351542:(speed<greenLight(distance,speed)?4.049806:redLight(
distance,speed)))))):(Light==RED?greenLight(distance,speed):(Light==RED?speed
:greenLight(distance,speed)))):7.931760):greenLight(distance,speed)))))):(Lig
ht==RED?greenLight(distance,speed):(Light==RED?speed:greenLight(distance,spee
d)))):7.931760); 
  
//*********************************************** Agent C (5.6140) 
(Light!=GREEN?((Light!=YELLOW?(Light!=GREEN?speed:(Light!=YELLOW?distance:(Li
ght!=YELLOW?(Light==RED?(greenLight(distance,speed)/23.734244):redLight(dista
nce,speed)):greenLight(distance,speed)))):((speed/(16.788232/((-14.169744+(Li
ght!=GREEN?28.708761:2.951140))/(((redLight(distance,speed)-(-30.124821))/red
Light(distance,speed))*greenLight(distance,speed)))))-redLight(distance,speed
)))/(73.564867/redLight(distance,speed))):greenLight(distance,speed)); 
   
//*********************************************** Agent D (2.2379) 
(Light!=GREEN?(Light!=GREEN?((6.741538/((distance>speed?((Light!=GREEN?(Light
!=GREEN?redLight(distance,speed):redLight(distance,speed)):14.322336)+(speed<
3.738517?(speed/-78.850673):((Light!=YELLOW?(redLight(distance,speed)<distanc
e?(-20.273446*(-20.273446+redLight(distance,speed))):distance):6.741538)-redL
ight(distance,speed)))):greenLight(distance,speed))<(Light==GREEN?(distance-g
reenLight(distance,speed)):redLight(distance,speed))?((distance<(Light!=GREEN
?(Light!=GREEN?speed:14.322336):14.322336)?-52.812281:(Light==RED?(redLight(d
istance,speed)>speed?((Light!=GREEN?(-20.273446*14.322336):14.322336)+(speed<
(-20.273446*(-20.273446+redLight(distance,speed)))?(((-20.273446+redLight(dis
tance,speed))-(-35.251930))/-78.850673):((Light!=YELLOW?(speed<speed?speed:re
dLight(distance,speed)):6.741538)-redLight(distance,speed)))):greenLight(dist
ance,speed)):14.322336))/distance):greenLight(distance,speed)))*redLight(dist
ance,speed)):14.322336):14.322336); 
   
//*********************************************** Agent E (6.0752) 
(((speed<44.248786?distance:(Light==RED?(distance<31.437116?(distance>speed?(
21.610156>distance?22.928556:20.804468):-84.453871):speed):-43.308817))>11.55
1255?(distance>(distance>speed?(distance>14.139225?(distance>11.551255?(dista
nce>(distance>speed?20.273445:-84.453871)?(16.446424>-72.051149?(Light==YELLO
W?24.051637:speed):(Light!=GREEN?11.551255:16.446424)):(Light!=GREEN?(distanc
e>(Light!=GREEN?14.139225:distance)?(Light==GREEN?31.437116:11.551255):(Light
!=GREEN?-59.074679:16.446424)):16.446424)):(Light!=GREEN?11.551255:16.446424)
):(Light!=GREEN?(distance>(Light!=GREEN?14.139225:distance)?(Light==GREEN?(Li
ght!=RED?(Light!=RED?11.551255:11.551255):0.381481):11.551255):(Light!=GREEN?
-59.074679:16.446424)):16.446424)):(Light!=GREEN?11.551255:16.446424))?(dista
nce>14.139225?(distance>11.551255?(Light!=RED?((speed<45.091097?distance:-82.
146672)>16.446424?12.112796:(Light!=GREEN?14.139225:16.367076)):0.381481):(Li
ght!=GREEN?11.551255:16.446424)):(Light!=GREEN?(distance>(Light!=GREEN?14.139
225:distance)?(Light==GREEN?(Light!=RED?(Light!=RED?11.551255:11.551255):0.38
1481):11.551255):(Light!=GREEN?-59.074679:16.446424)):16.446424)):(Light!=GRE
EN?11.551255:16.446424)):(Light!=GREEN?11.551255:16.446424))>-59.074679?((spe
ed<44.248786?distance:(Light==RED?(distance<31.437116?(distance>speed?(21.610
156>distance?22.928556:20.804468):-84.453871):speed):-43.308817))>11.551255?(
distance>(distance>speed?(distance>14.139225?(distance>11.551255?(distance>(d
istance>speed?20.273445:-84.453871)?(16.446424>-72.051149?(Light==YELLOW?24.0
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51637:speed):(Light!=GREEN?11.551255:16.446424)):(Light!=GREEN?(distance>(Lig
ht!=GREEN?14.139225:distance)?(Light==GREEN?31.437116:11.551255):(Light!=GREE
N?-59.074679:16.446424)):16.446424)):(Light!=GREEN?11.551255:16.446424)):(Lig
ht!=GREEN?(distance>(Light!=GREEN?14.139225:distance)?(Light==GREEN?(Light!=R
ED?(Light!=RED?11.551255:11.551255):0.381481):11.551255):(Light!=GREEN?-59.07
4679:16.446424)):16.446424)):(Light!=GREEN?11.551255:16.446424))?(distance>14
.139225?(distance>11.551255?(Light!=RED?((speed<45.091097?distance:-82.146672
)>16.446424?12.112796:(Light!=GREEN?14.139225:16.367076)):0.381481):(Light!=G
REEN?11.551255:16.446424)):(Light!=GREEN?(distance>(Light!=GREEN?14.139225:di
stance)?(Light==GREEN?(Light!=RED?(Light!=RED?11.551255:11.551255):0.381481):
11.551255):(Light!=GREEN?-59.074679:16.446424)):16.446424)):(Light!=GREEN?11.
551255:16.446424)):(Light!=GREEN?11.551255:16.446424)):-84.453871); 
 
  
Traffic Light Driving, Sentinel Rules 
//*********************************************** Agent A (2.3244) 
(lightPresent?(distance>52.342295?(!intersection?(lightPresent?0:(intersectio
n?(distance>92.556535?(intersection?(speed>76.165044?1:1):(distance<50.828577
?1:(!lightPresent?(speed>49.082919?(!intersection?1:1):0):(distance>12.195196
?0:(!lightPresent?(speed<99.957274?1:(!lightPresent?(speed<18.628498?0:0):1))
:1))))):0):0)):(distance>89.193396?0:(!lightPresent?(distance>20.261238?1:(in
tersection?(distance>78.893399?0:0):(speed<34.116642?(!lightPresent?(speed>1.
928770?(!intersection?(lightPresent?(!intersection?(lightPresent?1:1):(speed>
29.386273?1:1)):(speed<83.108005?(!lightPresent?0:0):0)):(!lightPresent?(spee
d<20.438246?0:1):(intersection?0:0))):0):0):0))):(distance>63.087863?0:(!ligh
tPresent?0:(speed>31.556139?(lightPresent?(speed<66.103091?1:(intersection?(d
istance<84.969634?(!intersection?(lightPresent?0:0):(distance>12.833033?0:1))
:(lightPresent?(distance<89.617603?0:0):(distance>79.726554?0:1))):(distance<
47.410504?1:1))):(!intersection?(lightPresent?(lightPresent?1:(lightPresent?(
speed<11.294900?1:1):(!intersection?0:1))):(!intersection?(speed<38.923307?1:
0):(intersection?(!lightPresent?0:1):(!intersection?0:1)))):1)):0)))))):1):(!
intersection?0:(intersection?0:(!lightPresent?(distance<64.592425?(lightPrese
nt?(lightPresent?(!intersection?0:0):(!intersection?(speed>17.899106?0:0):(sp
eed<30.237739?0:1))):1):(!lightPresent?0:(distance<21.897030?(lightPresent?(i
ntersection?(lightPresent?1:(distance<59.251686?(!intersection?0:0):1)):(ligh
tPresent?(distance>44.499039?0:(!intersection?0:0)):1)):(speed<2.450636?(inte
rsection?1:(distance>81.658376?0:(lightPresent?0:1))):0)):(!intersection?(lig
htPresent?1:(distance>51.997436?(intersection?1:(distance<56.056398?1:0)):0))
:0)))):(distance<2.188177?0:1))))); 
  
//*********************************************** Agent B (3.0400) 
(speed>19.278542?(!intersection?(distance<70.607623?(lightPresent?(distance>1
7.438276?(intersection?25.034333:(distance<speed?(distance>39.167455?1:(inter
section?1:(lightPresent?(distance>17.438276?0:(lightPresent?1:1)):(distance>4
9.220252?1:(!intersection?1:1))))):1)):(lightPresent?1:1)):(distance>49.22025
2?1:(!intersection?0:0))):0):(17.438276>distance?(!intersection?1:1):0)):(lig
htPresent?1:0)); 
  
//*********************************************** Agent C (3.3433) 
(lightPresent?(distance>42.072817?(distance<38.898892?1:(lightPresent?(speed>
35.117649?(distance<63.811151?1:(speed<speed?0:(lightPresent?(lightPresent?(s
peed>38.898892?(distance<distance?1:(distance<90.594195?1:0)):1):0):0))):0):0
)):1):0); 

210 

 
  
 



      
//*********************************************** Agent D (2.9296) 
(distance<76.485488?(!lightPresent?0:(distance>24.814600?(lightPresent?(dista
nce>27.884762?(lightPresent?(intersection?0:(speed<24.250008?(distance>37.684
255?(intersection?1:0):1):1)):(distance>39.240699?(lightPresent?1:1):(!inters
ection?1:1))):(!lightPresent?0:(!lightPresent?(lightPresent?1:0):0))):(distan
ce>39.240699?(lightPresent?1:1):(!intersection?1:1))):1)):(intersection?(!int
ersection?1:(distance<76.485488?(!lightPresent?0:1):(intersection?(!intersect
ion?1:(!lightPresent?0:1)):(intersection?(distance<55.903805?0:(!lightPresent
?0:0)):(!intersection?0:0))))):(intersection?(distance<55.903805?0:(!lightPre
sent?0:1)):(!intersection?0:0)))); 
      
//*********************************************** Agent E (4.3173) 
(distance<9.518723?(distance<3.320414?(!lightPresent?0:0):(lightPresent?0:(di
stance<65.376751?(!intersection?(speed>17.322306?(intersection?95.974608:1):(
lightPresent?(distance<distance?0:(!intersection?1:1)):(speed<64.369640?1:1))
):(distance>56.953642?(!lightPresent?1:1):(intersection?1:(!lightPresent?(dis
tance>78.405102?1:1):(lightPresent?1:0))))):1))):(intersection?(!lightPresent
?(23.624378<speed?(distance>25.260170?(!intersection?(!intersection?0:1):(spe
ed>46.659749?(intersection?(!intersection?(23.624378<23.624378?1:0):(!interse
ction?(speed<distance?1:1):(distance<72.026734?1:0))):(distance<5.633717?(!in
tersection?(!lightPresent?1:(intersection?1:0)):1):(!intersection?(intersecti
on?(!intersection?1:1):0):(distance<23.624378?(distance<23.624378?1:0):1)))):
0)):(!intersection?(intersection?1:0):1)):(!intersection?0:0)):(27.137059<96.
331675?(distance>27.137059?(27.137059<distance?(distance>27.137059?(!lightPre
sent?0:(distance<87.636952?(distance>34.464553?(speed<distance?1:(!intersecti
on?1:0)):1):(!intersection?0:0))):(!intersection?(intersection?1:0):1)):(!int
ersection?0:0)):1):(!intersection?0:0))):(speed<96.331675?(distance>27.137059
?(27.137059<distance?(distance>27.842036?(!lightPresent?0:(distance<96.331675
?(distance>27.137059?(speed<distance?(distance>27.842036?1:(!intersection?0:1
)):(!intersection?0:0)):1):(!intersection?0:0))):(!intersection?(intersection
?1:0):1)):(!intersection?0:0)):1):(!intersection?0:0)))); 
 
    
Urban Driving, Action Rules 
//*********************************************** Agent A (2.0333) 
(67.711416<(25.901059-((67.711416<(sin(pow(speed,2)))?(sin(-55.162206)):(67.7
11416-(65.678884<(pow((slog((speed<-6.888028?(sin(speed)):pow(speed,5)))),3)-
pow((slog((sin(pow(speed,5))))),3))?pow((slog((pow((slog(speed)),3)-(speed>67
.711416?(sin((slog((65.678884-speed))))):speed)))),3):speed)))-speed))?(sin(-
55.162206)):(67.711416-(speed<37.076937?pow((slog((65.678884-(speed<(65.67888
4-(65.678884-speed))?pow((slog((pow((slog((65.678884-speed))),3)-(speed>65.67
8884?92.907498:speed)))),3):speed)))),3):speed))); 
  
//*********************************************** Agent B (3.1051) 
(speed<47.831659?29.789117:(speed>56.498916?10.977508:20.609149));  
  
//*********************************************** Agent C (0.8235) 
(((speed<(speed<84.337901?(21.091342<95.056001?speed:(22.504349*22.760704)):(
22.504349*speed))?sdiv(speed,speed):(67.210913-speed))+sdiv(80.672628,((speed
<65.279092?(speed<49.027985?sdiv(((speed>47.047334?21.091342:(speed+sdiv(spee
d,69.698172)))<speed?(speed-(((((speed<speed?sdiv((speed>44.212165?(speed>spe
ed?11.078219:11.774041):speed),(speed<57.216101?90.466017:(speed>43.775750?sp
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eed:68.105106))):((speed>speed?speed:(speed>73.790704?28.525651:speed))-(spee
d>speed?(73.772393*28.186895):speed)))-(89.690847>50.846888?99.679555:21.0913
42))-(speed>19.464705?77.388836:speed))*(speed>19.464705?77.388836:speed))-(s
peed>19.464705?77.388836:speed))):(22.504349*speed)),((speed<95.056001?(speed
-(speed>19.464705?77.388836:speed)):(22.504349*speed))+speed)):58.613849):(sp
eed>speed?(speed>speed?speed:(50.239570*speed)):35.871456))-94.946135)))+sdiv
(80.672628,((speed<65.279092?(speed<49.027985?sdiv(speed,(22.190008*speed)):5
8.613849):(speed>speed?(speed>speed?speed:speed):35.871456))-94.946135))); 
   
//*********************************************** Agent D (1.1777) 
(speed<61.079745?(speed<(18.079165<61.079745?48.133793:sdiv(6.781213,37.53776
7))?(((34.272286-61.079745)+43.266091)+(60.765404-(speed<61.079745?((speed>sp
eed?37.537767:99.310281)-52.400281):sdiv(6.781213,37.537767)))):(speed<61.079
745?((96.752830<61.079745?((18.079165<(18.079165-((speed>speed?96.752830:99.3
10281)-52.400281))?(((16.306040-(speed>speed?96.752830:61.079745))+43.266091)
+(60.765404-speed)):sdiv(6.781213,37.537767))+(60.765404-speed)):sdiv(6.78121
3,37.537767))<61.079745?(((speed<61.079745?((speed<(96.752830+(60.765404-spee
d))?(speed<61.079745?(((18.079165-((speed>speed?96.752830:99.310281)-52.40028
1))+43.266091)+(60.765404-speed)):sdiv(6.781213,37.537767)):sdiv(6.781213,37.
537767))+(60.765404-speed)):sdiv(6.781213,37.537767))<61.079745?(((16.306040-
61.079745)+43.266091)+(60.765404-speed)):sdiv(6.781213,37.537767))+(60.765404
-speed)):sdiv(6.781213,37.537767)):sdiv(6.781213,37.537767))):sdiv(6.781213,3
7.537767)); 
   
//*********************************************** Agent E (1.7617) 
((33.005768>speed?speed:(((98.425245+speed)*(speed>speed?speed:22.299875))-(s
peed*sdiv((speed-18.634602),(57.719657-((speed<speed?(speed<speed?84.246345:s
peed):((sdiv(speed,45.713675)-(speed>speed?53.260903:sdiv(8.981597,60.509049)
))+speed))>58.482620?90.450758:(speed>speed?speed:speed)))))))>27.640614?((sd
iv((speed<59.453108?speed:(speed-97.427289)),31.305887)+(speed>speed?speed:(s
peed>speed?speed:((92.434461-(sdiv(((speed>53.019806?(speed>(speed<58.561968?
38.392285:speed)?(83.919797-speed):speed):speed)<(speed<(92.434461-speed)?97.
332682:speed)?97.024445:(speed>speed?(speed>(speed<59.453108?speed:(speed-97.
427289))?((speed>52.235481?speed:85.634937)*speed):speed):speed)),speed)+(spe
ed>speed?8.536027:(speed>speed?speed:sdiv(31.073946,sdiv(speed,31.305887)))))
)-(speed>speed?19.876705:(speed>speed?speed:(speed+(speed>speed?8.536027:(spe
ed>speed?speed:sdiv(31.073946,sdiv(speed,31.305887)))))))))))+(speed>speed?8.
536027:(speed>speed?speed:((92.434461-speed)-(speed>speed?19.876705:(speed>sp
eed?speed:(sdiv(((speed>33.005768?(speed>55.595569?(83.919797-speed):speed):s
peed)<(speed<(92.434461-speed)?97.332682:speed)?97.024445:(speed>speed?(speed
>(speed<59.453108?speed:(speed-97.427289))?((speed>52.235481?speed:sdiv(4.516
739,speed))*speed):speed):speed)),speed)+(speed>speed?8.536027:(speed>speed?s
peed:sdiv(31.073946,sdiv(speed,31.305887))))))))))):(speed>speed?(speed>29.32
5236?sdiv((10.602130+((speed<speed?(55.702383+speed):(74.349193-95.742668))*s
peed)),50.907926):9.161657):speed)); 
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