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ABSTRACT 

Reflectarrays are passive quasi-periodic sub-wavelength antenna arrays designed for discrete 

reflected phase manipulation at each individual antenna element making up the array. By 

spatially varying the phase response of the antenna array, reflectarrays allow a planar surface to 

impress a non-planar phasefront upon re-radiation. Such devices have become commonplace at 

radio frequencies. In this dissertation, they are demonstrated in the infrared for the first time – at 

frequencies as high as 194 THz. Relevant aspects of computational electromagnetic modeling are 

explored, to yield design procedures optimized for these high frequencies. Modeling is also 

utilized to demonstrate the phase response of a generalized metallic patch resonator in terms of 

its dependence on element dimensions, surrounding materials, angle of incidence, and frequency. 

The impact of realistic dispersion of the real and imaginary parts of the metallic permittivity on 

the magnitude and bandwidth of the resonance behavior is thoroughly investigated. Several 

single-phase reflectarrays are fabricated and measurement techniques are developed for 

evaluating these surfaces. In all of these cases, there is excellent agreement between the 

computational model results and the measured device characteristics. With accurate modeling 

and measurement, it is possible to proceed to explore some specific device architectures 

appropriate for focusing reflectarrays, including binary-phase and phase-incremental approaches. 

Image quality aspects of these focusing reflectarrays are considered from geometrical and 

chromatic-aberration perspectives. The dissertation concludes by briefly considering two 

additional analogous devices – the transmitarray for tailoring transmissive phase response, and 

the emitarray for angular control of thermally emitted radiation. 
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CHAPTER 1: INTRODUCTION 

1.1 Electromagnetic Phase Shaping, Interference, and Array Behavior 

Time-harmonic electric fields have been classically described by four terms: position or 

direction (x, y, z or a similar coordinate system), time (t), magnitude (E), and sinusoidal 

frequency (f) [1]: 

 ]),,(Re[);,,(
~ 2 ftjezyxEtzyxE 

  (1) 

From this expression, and knowledge of the medium containing or confining the electric 

field, several other electromagnetic quantities can be derived using Maxwell’s equations 

[2] and the wave equation, including the corresponding magnetic field, electric flux 

density, magnetic flux density, and electric current density. These relations and terms are 

the fundamental basis of a wide range of science and engineering disciplines including 

wave propagation, antenna theory, and circuits.  

 

Interference arises when two propagating time-harmonic fields interact. Consider a 

propagating electric field of the form: 

 ftjzj eeEybxazE  2
01 )ˆˆ()(

~
  (2) 

If a second, identical propagating field is delayed by an arbitrary time delay t0, the new 

field can be expressed by: 

 )0(2
02 )ˆˆ()(

~ ttfjzj eeEybxazE    (3) 

which, when superimposed with the first field, yields: 

 ]1[)ˆˆ()(
~ 2

0
 jftjzj eeeEybxazE   (4) 
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where θ is equal to -2πft0 and represents the phase delay between the two propagating 

waves. The magnitude of the resulting electric field (neglecting position and time) is 

equal to: 

 )]cos(1[|
~

| 0  EE  (5) 

Thus, when the phase delay is 2nπ (n = 0, ±1, ±2…), the fields will constructively 

interfere completely and double the magnitude of the resulting propagating field. When 

the phase delay is 2nπ + π (n = 0, ±1, ±2…), the fields will destructively interfere 

completely and no propagating field will be present. The specific case of interference 

over time described is known as temporal interference [3] or interference by division of 

wave amplitude [4]. 

 

A more practical application of electromagnetic interference is the interference that arises 

between two coherent point sources, also known as spatial interference or interference by 

division of wavefront [4]. In spatial interference, the optical path difference between the 

two sources result in a spatially varying relative phase difference between the two 

coherent radiated fields and, subsequently, a predictable change in field magnitude as a 

function of position. Thomas Young carried out what is generally regarded as the best-

known demonstration of spatial interference [5] . In his double slit experiment, Young 

inadvertently verified the dual nature of photons as particles and waves by shining light 

through two diffractive slits and imaging the resulting periodic dark and bright 

interference bands on a planar screen placed behind the slits. The experiment was 

successful due to the slits behaving as coherently fed Huygens’ sources [6], which 

radiated the necessary spherical wavefronts that gave rise to the periodic interference 
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pattern observed (Figure 1). His experiment has been modified and repeated for a 

multitude of other elementary particles (electrons, protons, large molecules [7], etc.) and 

for more than two interfering slits. 

 

 
Figure 1: Young’s sketch of the interfering wavefronts of two slit sources. 

Public domain image. 
 

Electromagnetic phase shaping, for the purpose of selective spatial interference, is of 

significant interest to antenna and optics designers. Through a geometrical arrangement 

of radiating sources with or without a selective feeding phase delay, it is possible to give 

rise to wavefront shaping or beam steering due to interference processes alone, without 

the need of utilizing physical path differences like as is the case with refractive surfaces. 

Following the array development procedure outlined by Balanis [8], the electric field 

radiated by the superimposition of an N x N planar array of identical, coherent, non-

coupled sources can be expressed by: 

  AFEE elementarray   (6) 

where Eelement is the electric field contribution of each source, AF is an expression that 

describes the array layout, and Earray is resulting electric field radiated by the array. The 
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normalized array factor for a periodic phased array in the x-y plane can be represented 

by: 

 














































)
2

sin(

)
2

sin(
1

)
2

sin(

)
2

sin(
1

y

y

x

x

n

N

N

N

N
AF  (7) 

 xx kd   cossin  (8) 

 yy kd   sinsin  (9) 

where d is the distance between each element, k is the wave number, and β is the 

progressive phase difference of the excitation field between each element. Assuming the 

sources radiate with the same field magnitude, altering the progressive phase difference 

between each element will define the direction of the main lobe of the array’s radiation 

(θ0, Φ0), or: 

 00 cossin  kdx   (10) 

 00 sinsin  kdy   (11) 

 

From these relations, it is clear that the altering the spacing and phase delay of the 

elements making up a planar, periodic arrangement of sources can give rise to selective 

radiation directivity and wavefront shaping. Thus, the goal of this dissertation is to 

investigate the use of passive, sub-wavelength resonant elements to achieve selective 

wavefront shaping in the infrared. All aspects of phase manipulation will be considered – 

reflection, transmission, and emission.  
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1.2 State of the Art Resonant Phase Shaping Elements and Arrays  

Beamforming antennas are a sub-class of antennas comprising of an array or quasi-array 

of antenna elements characterized by their ability to collectively exhibit a narrow radiated 

beamwidth or a focusing wavefront [9]. Beamforming antennas are highly directive 

antennas that find heavy usage at microwave frequencies where omni-directional 

antennas would be undesirable, such as in satellite communication systems, line of sight 

transmission systems, and scannable detectors. At higher frequencies, including visible 

and infrared (IR) frequencies, beamforming antennas are often deployed as focusing 

elements, directional detectors, and collimators.  

 

Reflector antennas (Figure 2) are one of the oldest and simplest known beamforming 

antenna devices and have been deployed, in various forms, across the entire 

electromagnetic spectrum. In its most basic configuration, the reflector antenna is simply 

a reflective surface of arbitrary geometry impinged upon by electromagnetic radiation. 

Thus, the planar mirror could be viewed as the earliest developed reflector antenna. From 

the planar mirror, additional reflector antenna geometries have been developed at visible 

frequencies, such as the focusing, spherical mirror. Reflector antenna development at 

microwave frequencies did not began to mature until World War II to meet the needs of 

the emerging field of radar [10]. Now sold commercially for use in receiving 

telecommunication and television signals, radio frequency (rf) reflector antennas continue 

to increase in popularity as an integral part of most satellite communication systems [11]. 

The main advantage for reflector antennas, aside from simplistic design procedure, is 

their potential for high radiation efficiency. Across the electromagnetic spectrum, several 
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high conductivity materials are available that allow for low-loss upon reflection by the 

reflector antenna. Without active components, reflector antennas are well suited for high 

power applications and rarely need maintenance. In addition, with the capability of 

collimation, reflector antennas exhibit high gain – often exceeding 60 dB at rf frequencies 

[11]. 

 

 
Figure 2: Parabolic reflector with reflected planar wavefront. 

 
 

Even with its numerous advantages, the reflector antenna exhibits several distinctive 

limitations. In the traditional spherical and parabolic configurations, the reflector is 

inherently bulky. Unlike planar antennas, the parabolic reflector, traditionally physically 

thicker to maintain proper shape, prohibits folding for transport. Resulting from the fact  

that wavefront modification occurs due to physical path length differences, reflector 

antennas cannot be made conformal, which restricts deployment on mobile structures, 

such as vehicles or aircraft, where drag may become a concern. At shorter wavelengths, 
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the cost of fabrication will increase because of enhanced sensitivity to height variations 

on the antenna surface. In addition, diffraction at the edge of the reflector becomes a 

concern at short wavelengths. Additionally, utility stacking of reflector antennas and 

other devices, such as frequency selective surfaces (FSS), is difficult or completely 

impossible.  

 

To overcome the bulky nature of refractive optics, diffractive surfaces have seen 

widespread interest in development due to their planar nature. Classical diffractive 

focusing surfaces, commonly known as Fresnel zone plates or FZP, consist of a series of 

concentric rings spaced to transform normally incident planar radiation into a spherical 

wave through diffraction from the concentric grating and the resulting far-field 

interference [6]. Soret proposed the earliest FZP comprised of repeated regions of high 

transmission and low transmission (Figure 3) [12]. These regions were spaced by 180 

degrees of relative phase to ensure that only the components of the incident wavefront 

that led to constructive interference were transmitted and the destructive components 

were reflected. Wood later suggested that greater throughput could be achieved if the 

opaque zones would instead be retarded by 180 degrees allowing them to interfere 

constructively [12]. Wood also noted that the binary nature of the early FZP would lead 

to multiple, unwanted higher order foci [12]. To reduce the power in the higher-order 

foci, numerous phase corrected zone plates have been developed with repeated rings with 

relative phase difference smaller than 180 degrees [13]. The smaller relative phase steps 

result in smaller wavefront errors and, subsequently better image quality. 
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Figure 3: Soret FZP layout. 

Black segments denote regions of high reflectivity.  
 

There are several problems associated with FZPs. Their best known issue is their 

extremely narrowband operation due to the wavelength dependence of their concentric 

ring layout. Another common pitfall with FZP design is achieving phase variations of less 

than 180 degrees for improved image quality. One method for reducing undesirable foci, 

while maintaining a planar surface, has been to employ phase correction through index 

grading [6]. In a graded-index FZP, the number of discrete phase states in the structure is 

increased through the progressive variation of the index of refraction of a dielectric 

material contained in each zone of the FZP. Unfortunately, this approach is difficult to 

implement in the infrared and terahertz band of the spectrum owing to the lack of 

practical, low-loss dielectric materials of varying refractive index. Instead, infrared 

designs have required the implementation of non-planar dielectric kinoform FZPs [14], 

which utilize discrete height grading for phase correction or shaping across the zones of 
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the diffractive element. The need for three-dimensional lithography in kinoform FZPs 

greatly increases the cost and complexity of these devices when compared to binary 

FZPs. 

 

Thus, it is of high interest to develop a new method for designing focusing elements that 

do not require bulky refractive elements or difficult-to-fabricate kinofrom FZPs. One 

such method is to employ resonant antenna elements to replicate the behavior of the 

phase corrected FZP. Through a variety of methods, resonant elements can be tuned to 

exhibit a desired relative phase delay upon radiation, while maintaining entirely planar 

surfaces. The resonant behavior of the antenna elements also opens the door for sub-

wavelength phase control for integrated aberration correction in the infrared. The next 

three sections will discuss some state-of-the-art phased antenna structures, both passive 

and active, currently utilized in the rf and infrared bands.  

 

It should also be noted that passive resonant elements have additional uses outside of 

phase shaping. Resonant planar antenna devices have been used for years as spectral 

filters, either as frequency selective surfaces (FSS) [15] or electronic band gap devices 

(EBG) [16]. Through a phenomenon discussed later in the dissertation, FSS can also be 

developed to exhibit engineered emission properties when heated. Recent research has 

expanded into investigating the usage of these surfaces to exhibit negative index of 

refraction, known as negative index materials or NIM [17], to exhibit extremely low 

indices of refraction, known as near-zero materials or NZM [18], or to exhibit perfect 

magnetic conductivity, known as artificial magnetic conductors or AMC [19]. 
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1.2.1 Resonant Polarizers 

One of the simplest planar, phased element devices that is well documented in the 

literature is the resonant polarizer. These surfaces have been utilized in the microwave 

portion of the spectrum as engineered quarter-wave plates or linear-to-circular polarizers 

[20]. Polarization conversion is achieved by introducing an asymmetry in the resonant 

element to delay one orthogonal component of the linearly polarized incident radiation by 

90 degrees, while maintaining equal power in each component, which results in re-

radiated circular polarization. Because of this, the name resonant polarizer is a bit of a 

misnomer as only a capacitive, inductive, or physical path delay is necessary to achieve 

the desired circular polarization. The surfaces; however, still exhibit a preferred band of 

operation and share a physical structure analogous to most frequency selective surfaces. 

Several element designs have been developed for the purpose of linear-to-circular 

polarization conversion including the meanderline polarizer [21], the twist reflector [22], 

and the waffle-grid polarizer [23]. 

 

Of the three mentioned polarizers, the meanderline polarizer is the most applicable to the 

research presented in the dissertation. First published in the 1970s [24], the meanderline 

polarizer consists of a periodic, sub-wavelength stepped metal grating (Figure 4). 

Decomposing a linearly polarized impinging field at 45 degrees relative to the direction 

of a meanderline, yields two equal magnitude, orthogonal fields about the horizontal and 

vertical axis of the meanderline. The horizontal component of the meanderline will 

experience a capacitive delay due to the inter-element coupling between each 

meanderline, while the vertical component will experience an inductive delay due to the 
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physical length of the meanderline. When these capacitive and inductive leads are 

selected properly, it becomes possible to introduce a 90 degree phase delay between the 

two orthogonal states with the intent of inducing circular polarization. Furthermore, 

because each state is dominated by one reactive component and the cross-polarization of 

the meanderline is low, minimal loss will be experienced since the meanderline is unable 

to resonate and will not form a band gap. 

 

 
Figure 4: Meanderline polarizer schematic. 

Horizontal in this figure is defined from the left to right on the page and vertical is 
defined from top to bottom of the page. 

 
 

Resonant polarizers have only recently been developed to operate in the infrared. Work 

by Dr. Jeff Tharp at the Infrared Systems Lab has verified the operation of a meanderline 

polarizer in the mid-wave infrared (3 – 5 μm) [25] and the long-wave infrared (8 – 12 

μm) [26] [27]. Meanderline surfaces are desirable in the infrared for their low footprint, 
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high design flexibility, and low fabrication cost compared to similarly behaved 

birefringent crystals In addition, the surface exhibits excellent bandwidth, acceptable 

angular dispersion, and the potential for reflective phase shaping [28]. 

1.2.2 Phased Arrays 

Phased arrays (Figure 5) share several similarities with reflector antennas in terms of 

their ability to control radiated wavefronts and exhibit high directivity. Phased arrays are 

traditionally active, planar devices, which, by introducing a progressive feed phase delay 

between neighboring elements, will radiate only in a specified direction or with a specific 

wavefront [29]. The simplest phased array consists of a large array of horn antennas fed 

by a single source, but with each antenna connected to the source by a different length of 

waveguide. The waveguide length difference between the aperture antennas introduces a 

phase delay in the radiated fields of each horn, which, in turn, changes the array’s far-

field pattern to add constructively in only a specific direction or exhibit an arbitrary 

wavefront. Planar, microstrip phased arrays behave in exactly same way, with 

progressive phase difference introduced by waveguide length or lumped elements. 
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Figure 5: Phased array with spherical radiated wavefront. 

 

From the array relations developed in the previous section, it is clear that antenna’s 

directivity depends on both the inter-array element spacing and the directivity of an 

element of the array. Thus, phased arrays can be designed to achieve high directivities 

comparable to the directivity of a reflector antenna. Additionally, the utilization of a non-

uniform array arrangement allows for further control of the radiated far-field pattern and 

is one method to introduce non-planar wavefronts. 

 

The significant difference between the reflector antenna and the phased array is that the 

phased array is not dependent on a physical height difference to alter the radiated 

wavefront. This allows the phased array to be significantly thinner than the reflector 

antenna and allows the antenna to be designed for conformal deployment with correction 

for height differences occurring in the progressive phase delay [30]. Phased arrays can 

also be tuned by introducing a progressive phase delay at each radiating element. These 
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devices can be designed to radiate more complicated wavefronts than conventional 

reflective or refractive surfaces. 

 

Unlike reflector antennas, phased arrays exhibit many of the limitations common to most 

planar antennas. Often inefficient with low power excitation, phased arrays cannot handle 

high power sources without physical breakdown [8]. Additionally, phased arrays are 

inherently active devices and, thus, cannot be utilized as an intermediate focusing 

element. Analysis of phased arrays, especially when accounting for coupling or when 

using non-uniform arrays, is far more complicated than reflector antennas and will often 

demand the use of a numerical analysis. 

 

Similar to the resonant polarizer, phased arrays are another newly developed infrared 

technology [31]. Phased arrays are desirable in the infrared as a potential method to 

achieve lensless imaging – utilizing the directionality of the phased array to achieve high 

directivity and directionality without a need for a lens [32].  Presently, phased arrays in 

the infrared have to rely on antenna-coupled bolometers [33] for detection, although 

alternative mechanisms could be employed including metal-oxide-metal [34] or Schottky 

[35] diodes. Phased arrays are also an important tool for simultaneously measuring phase 

and magnitude in the infrared using square-law sensors [36] and near-field probing [37]. 

Currently, tunable infrared phased arrays are also under development allowing for 

electronically-controllable field of view detectors. 
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1.2.3 Reflectarrays 

The reflectarray antenna, in its most simple form, is passive, planar microstrip antenna 

array designed for reflected beamforming. By varying the re-radiated phase response 

across the surface through variation of local geometry of the array elements, reflectarrays 

allow a planar surface to radiate a wavefront of arbitrary shape upon reflection (Figure 6). 

Similar to the phased array described in 1.2.2, the far-field pattern of the reflectarray can 

be found by summing the far-field pattern re-radiated by each of the individual elements 

in the array. The reflectarray also has a very small physical footprint, can be conformal, 

allows fabrication using traditional lithography techniques, and grants the possibility of 

utility stacking [38]. As a passive device, the reflectarray inherits many of the 

advantageous characteristics of the reflector antenna including simplified design using 

ray tracing and relatively low-loss operation. The combination of these beneficial 

characteristics makes reflectarrays desirable for use in a multitude of antenna systems 

[39]. 
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Figure 6: Planar reflectarray mimicking the reflected wavefront of a parabolic reflector. 

 

From a conceptual standpoint, the individual microstrip elements making up the 

reflectarray can be viewed as direct reflector/phased-array hybrid. When radiation 

impinges on an element in the reflectarray the phase delay introduced upon reflection 

relative to the neighboring elements will depend on the spacing difference between each 

element (path difference) and the dimensional differences between the elements 

(equivalent to a feed phase difference). Most reflectarray designs have fixed element 

periodicity for simplicity, and instead simply varied the dimensions of the array element 

to change the surface impedance at the point of the element to introduce the desired phase 

shift in the same way that the phased array would vary waveguide lengths or the reflector 

would vary curvature to create the desired phase delay. 

 

The first reflectarray design published in 1963 was not a microstrip array, but instead 

relied on an externally illuminated series of stacked rectangular waveguides to impress 

reflected phase responses [40]. Nearly a decade later, in the late 1970s, initial work began 



 17

to adapt reflectarray concepts to exploit the emerging field of microstrip technology - 

giving birth to the modern reflectarray [41]. The majority of these early microstrip 

reflectarrays utilized printed dipole or crossed dipole array layouts for phase modification 

due to their relative ease in characterization and fabrication. Around the 1990s, more 

complicated and efficient element geometries emerged with the creation of ring [42], 

variable patch [43], and stub-tuned reflectarrays [44]. State of the art reflectarray research 

has begun to focus on reflectarray bandwidth improvement, polarization control, and 

offset feed configurations. 

 

Several commercially available reflectarrays have already been released to the market. 

Malibu Research, based in Camarillo, California, currently sells a reflectarray known as 

FLAPS™ (Flat Parabolic Surface) for use in rf and millimeter radar applications [45] - 

[46]. The FLAPS™ is an integral component of many new microwave devices including 

the newly deployed crowd control rf gun. Because the FLAPS™ is designed to be 

foldable, it allows the rf gun to be rapidly deployed on military or civilian vehicles, 

unlike earlier designs that utilized bulky reflectors. ILC Dover based in Frederica, 

Delaware markets an inflatable reflectarray as a way to lower payload weight when 

deploying in Ka and X band satellite applications [47]. Additionally, TRLabs in Canada 

offers a tunable reflectarray design for beamsteering and offset feeding applications [48]. 

No prior research has been carried out to expand reflectarray operation into the infrared. 
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1.3 Thesis 

Even with the advent of high-resolution fabrication and improvements in material 

characterization at high frequencies, very little research has been carried out into using 

so-called metamaterial surfaces for phase shaping in the infrared, aside from polarization 

control and detector beam steering. Compared to traditional optical elements, resonant-

antenna-based wavefront shaping surfaces can be cheaper to fabricate, have a smaller 

physical footprint, and allow for direct stacking of multiple planar elements, (e.g. filters 

and polarizers) for additional weight and volume reductions. These IR resonant focusing 

element devices could also provide additional degrees of freedom not previously 

available in conventional polished and diffractive IR-optical surfaces for correction of 

monochromatic and chromatic aberrations. 

 

It is the intended goal of this dissertation to establish practical methods for development 

and characterization of passive, phased elements in the infrared. Procedures for 

designing, analyzing, and modeling planar resonant elements in the infrared are 

described. Fabrication of these devices using electron beam lithography is outlined with 

an emphasis on reducing future fabrication costs. Finally, the dissertation provides 

detailed instruction for testing final and intermediate versions of these devices using 

interferometry and at-focus imaging. In all, three classes of resonant, phased surfaces are 

considered: reflectarrays, transmitarrays, and emitarrays. 
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CHAPTER 2: THE INFRARED RESONANT PHASED ELEMENT 

2.1 Metal-Dielectric Resonance Modes 

The performance and behavior of planar, resonant antenna elements have been described 

in detail in the literature (i.e. [6], [8], [15], etc.). Simply speaking, if a metal film 

deposited on the surface of a dielectric is illuminated by an incident electromagnetic 

wave, currents will begin to be excited on the surface of the metal film. If the length of 

the film, along the direction of the polarization of the incident radiation, were to be less 

than a wavelength, a standing-wave current mode can be formed on the film (Figure 7). 

The currents excited on this film will also interact with currents on other neighboring 

elements because of fringing fields excited at the edge of the film, resulting in 

electromagnetic coupling (Figure 8). The resulting standing wave gives rise to a reactive 

storage mechanism, with the peak storage occurring when the standing wave has current 

nulls at the two ends of the metal film and a maximum at the center. At this wavelength, 

the antenna is considered to have its primary resonance. The overall spectral performance 

of these surfaces can therefore be related to that of a semiconductor band gap, where the 

center of the band gap of the antenna element is at the point of peak energy storage. The 

metal surface may also have multiple resonant wavelengths, depending on its geometry, 

which will result in multiple absorption bands.  
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Figure 7: Current modes on two microstrip antenna elements in an infinite array at 

resonance (standing wave present). 
Incident radiation is polarized from the right to the left of the page. 

 

 
Figure 8: The near-field electric field pattern from the two microstrip antenna elements in 

Figure 7 demonstrating coupling. 
Incident radiation is polarized from the right to the left of the page. 

 

Several factors define the shape of an antenna’s primary band gap. The geometry of the 

metal film will determine the current path that must be taken to establish resonance and 

will determine the antenna’s center wavelength and bandwidth. The index of the 

dielectric material the antenna is fabricated on will influence the effective wavelength of 

the incident radiation on the top surface of the metal film. Inter-element spacing will 

determine the degree of coupling observed between elements. Inclusion of a groundplane 

will allow for the excitation of microstrip-type modes and suppression of the backside re-



 22

radiated lobe. Because of the planar nature of these surfaces, microstrip type antennas are 

also strongly anisotropic. 

2.2 Relating Resonance Properties to Phase 

For any electromagnetic resonator, it is possible to directly relate the surface’s spectral 

reflectivity to its phase delay upon reflection. From Cauchy’s integral theorem and the 

residue theorem, the reflectivity of a surface (R) can be directly related to the phase delay 

of that surface (θ) by the Kramers-Kroenig relation [57]: 
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where ω in this case is the desired angular frequency. Several important properties can be 

determined from this relationship. First, for phase shaping to occur, a change in 

reflectivity must occur. Thus, this requires all reflective phase shaping surfaces to exhibit 

some loss to operate. Second, the phase delay introduced by a surface is determined by 

the reflectivity of the surface at all frequencies, not just at the frequency of interest for 

phase shaping. This allows for multi-band metamaterials, such as slot-loaded elements, to 

shape phase differently than a single band resonator, even in the case where the one of 

the additional resonance bands falls outside the design frequency. Finally, a band gap 

type of resonance will result in a relatively symmetrical dip in reflectivity with a 

specified bandwidth. This symmetrical drop in resonance will result in a non-linear 

decrease in phase upon reflection with a smaller phase shift at shorter wavelengths and a 

larger phase shift at longer wavelengths. This is commonly referred to by the saying 

“bumps (in reflectivity) makes wiggles (in phase).” A similar type of relationship, from 



 23

reciprocity, will later be demonstrated for transmission devices, and it can be seen that for 

a single layer, the frontside and backside lobes of a resonating antenna element will be in 

phase.  

2.3 Chromatic Dependence of Resonance Modes 

The chromatic dependence of the resonance mode for a resonating antenna element array 

can be found directly from the Kramers-Kroenig relation. Figure 9 demonstrates the band 

gap behavior of an arbitrary resonant metamaterial element with a groundplane. The 

resonance behavior is relatively symmetrical with the center frequency around 25 THz. 

The phase upon reflection for this surface is presented in Figure 10. As mentioned before, 

the phase decreases with an increase in resonance frequency or shorter wavelength. The 

specific phase and reflection magnitude depends on the resonant structure used and 

cannot be easily predicted analytically. Modeling of these structures will be discussed 

later in this chapter. 
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Figure 9: Band gap behavior of an arbitrary resonant, groundplane-backed antenna array. 
 

 
Figure 10: Phase behavior of an arbitrary resonant, groundplane-backed antenna array. 

 

While it is not possible to look at a metamaterial element and immediately predict its 

performance without modeling, several important rules of thumb can be utilized. For a 

groundplane-backed element, changing the width, length (along the direction of the 

incident radiation polarization), or the dielectric material isolating the antenna structure 
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from the groundplane will primarily result in a change in the center frequency of the 

element. Altering the thickness of the dielectric standoff layer or altering the trace 

material making up the antenna element will primarily change the bandwidth and depth 

of notch of the resonant antenna element. These rules are summarized in Figure 11 and 

all of these rules will be explored in greater detail throughout the dissertation, especially 

in Chapter 3. 

 

 
Figure 11: Summary of design rule of thumbs for resonant, groundplane-backed antenna 

array. 

2.4 Angular Dependence of Resonance Modes 

The angular dependence of a resonant antenna element in an array is not quite as simple 

to explain as its chromatic behavior. For most of the dissertation, reflected phase and 

magnitude will assumed to be measured or modeled at normal incidence, unless 

otherwise specified. The angular performance of the same metamaterial from the 

previous section is presented in Figure 12 and Figure 13. Up to about 22.5 degrees (45-
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degree cone angle) the antennas performance is relatively unchanged relative to its 

performance at normal incidence. At larger angles, the two polarization states (TE and 

TM) no longer behave similarly and significant changes in phase relative to angle are 

observed. While difficult to predict without the use of modeling, the decrease in phase 

delay can be explained by the effective size of the antenna elements increasing with 

increasing angle of incidence. The separation of the two polarization states is due the to 

TM wave no longer being polarized along the direction of the resonant element and, thus, 

experiencing difficulty exciting a cavity mode and suffering interference from excited 

surface currents. 

 

 
Figure 12: Reflectivity vs. incident angle for an example groundplane-backed antenna at 

28.28 THz. 
In the plot, the TE mode is solid and TM mode is dotted. 
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Figure 13: Phase vs. incident angle for an example groundplane-backed antenna at 28.28 

THz. 
In the plot, the TE mode is solid and TM mode is dotted. 

2.5 Computational Electromagnetic Modeling of Infrared Phased Elements 

For the highest design accuracy before fabrication, most phased element designers 

employ some form of computational electromagnetic modeling (CEM) [58]. CEM takes 

into account system non-idealities, such as lossy materials or surface coupling, which are 

difficult to incorporate into circuit or transmission-line equivalent models without a 

significant increase in complexity. In the context of the dissertation, two independent 

modeling approaches have been considered and consulted: the infinite array FEM model 

and the periodic MoM model. 

 

The finite element method (FEM) is a numerical technique by which a three dimensional 

model, representing the designed antenna, is discretized into a sub-domain in which the 

fields are represented by local interpolation functions. Matrix equations are derived from 
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a global assembly of the finite elements in the mesh while enforcing boundary conditions. 

Solving the matrix equations yields local fields at nodes throughout the mesh, which may 

be interpolated to arbitrary locations. Post processing computations produce far-field 

information and scattering parameters. Ansoft HFSS, employed in the dissertation for 

FEM modeling, specifically generates tetrahedral meshing elements and utilizes a three-

dimensional design interface for model boundary definition [59]. Ansoft HFSS also 

includes numerous features beneficial to modeling phased devices, such as automated 

plotting, wave ports for quasi-plane wave excitation, and parametric solution sweeps. 

HFSS is also desirable for modeling in the infrared because the software includes the 

capability of incorporating dispersive materials. 

 

While FEM is suitable for three-dimensional geometries, the Method of Moments (MoM) 

numerical technique lends itself to planar structures by, traditionally, only meshing the 

surface of the radiating structures. The reduced discretization required for MoM leads to 

shorter solution times when compared to the same system modeled using FEM. 

Considering the structures developed in this dissertation are entirely planar, the shorter 

simulation times and spatial simplifications make MoM solvers desirable. By meshing 

the trace surfaces of a design using a given number of polygons for a set frequency, the 

method of moments technique is used to solve the mixed-potential integral equation 

(MPIE) and calculate the surface current everywhere on the mesh. Ansoft Designer, the 

MoM solver utilized in the dissertation, uses a zero-order normal element basis function 

[60] to interpolate the interior current values from values on the edges. Testing functions 

are applied to the MPIE to obtain a matrix equation, which is then solved to find surface 
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current. From the surface current, Designer calculates the S-parameters and the radiated 

fields. Much like Ansoft HFSS, Designer also includes support for finding far fields, 

plane wave excitation, and parametric solving. 

2.5.1 Finite Element Model 

Of the two models, the FEM model will always have the potential to be the most 

accurate, although there is the risk of over-simplification when selecting excitation and 

bounding methods [61]. For all of the devices modeled in the dissertation, the infinite 

array waveguide method (IAWM) was identified the best tradeoff between accuracy and 

solution time. The IAWM utilizes an ideal waveguide geometry to approximate a plane 

wave excitation and enforces the symmetrical mutual coupling that would be expected 

with an infinite planar array [62]. Assuming a waveguide with a square cross-section, two 

opposing faces along the cross-section of the rectangular waveguide are assigned an ideal 

perfect magnetic conductor (PMC) surface and the other surface is allowed to be the 

default HFSS boundary, which is a perfect electric conductor (PEC). The primary mode 

of this waveguide is TE0, which mimics a quasi-TEM wave (Figure 14). Placing the 

element to be tested in this waveguide and exciting or bounding the two open apertures of 

the waveguide allows for phase characterization of the element using the scattering 

matrix and preserves symmetric mutual coupling through image theory. 
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Figure 14: IAWM waveguide cross section with electric field polarization. 

 
 

Creation of a transmissive FEM model (Figure 15) initially follows the standard 

procedure used in the formulation of any planar, passive HFSS antenna model. The 

foundation of the model is a three-dimensional rectangle representing the substrate with 

dielectric properties equal to the as-fabricated values. Computationally, it is not possible 

to model the full extent of the substrate. Thus, the substrate layer should be approximated 

to be a quarter-wavelength in thickness at the longest solved wavelength to ensure no 

unwanted coupling between the resonant structure and the feeding structure on the 

bottom face of the substrate at that wavelength. The quarter-wavelength height will also 

ensure accurate results at shorter wavelengths because the electrical distance between the 

radiating structure and the waveport increases inversely with wavelength. On the top of 

the substrate, the geometry that represents the resonant element is constructed. It is 

critical that this element have a finite thickness, accurate material properties, and the 

ability to solve for fields within the structure. A three-dimensional air box wraps around 

the element to bound the air side of the model space with the bottom face of the air box 
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M 
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touching the top face of the substrate layer. PEC and PMC boundaries are assigned on the 

sides of the air box and substrate, as defined in Figure 14. Finally, the top of the air box 

and the bottom of the substrate are terminated with waveports having a wave impedance 

matched to the surface in contact. Solving the model occurs by sweeping the frequency or 

the dimensions of the resonant element and calculating the change in phase of the 

scattering matrix (typically S11 for reflection and S21 for transmission). 

 

 
Figure 15: Model layout for FEM transmissive design. 

 

Some additional post processing may be required for the transmissive design. Because 

the substrate is terminated in a perfectly matched waveport, it may be necessary to 

introduce additional loss in the calculated magnitude of transmission to account for the 

backside reflection from the other side of the substrate. Similarly, additional steps must 

be taken to account for substrate Fabry-Perot resonances, if present. For frequency swept 

designs, de-embedding will be required to normalize the linear offset in phase associated 

Waveport PMC 

Element 

Substrate 

Air 



 32

with the effective change in path length due to the change in wavelength. It should be 

noted that this simulation is only valid for on-axis illumination. 

 

Reflective modeling in HFSS is fundamentally similar to transmissive modeling. The 

layout of the unit cell is identical except the lower waveport has been replaced with a 

finite conductivity boundary to simulate the groundplane and the substrate is equal to the 

thickness of the desired standoff layer (Figure 16). Determination of the relative phase 

delay upon reflection can be found by calculating the phase of S11 at the top waveport. No 

additional post-processing is required for the substrate since it is accurately modeled as 

finite. De-embedding is still necessary to account for the change in wavelength at 

different frequencies. 

 

 
Figure 16: Model layout for FEM reflective design. 

The groundplane in the actual model does not need to have a finite thickness, but a finite 
thickness has been added to the image for clarity. 

 

Waveport PMC 

Element 

Standoff 

Air 

Groundplane 



 33

The modeling approaches presented in this section are by no means complete or the only 

way to model phased structures in HFSS. Another method to model the structures that 

was used in the early development of the dissertation is to employ an actual plane wave 

excitation. Starting with the previous model, the top boundary of the air box is replaced 

with a perfectly matched layer (PML) boundary “referenced to FSS” and the model is 

typically excited by an external uniform plane wave instead of a waveport. Instead of 

PEC and PMC boundaries, the sidewalls of the model will have Master/Slave boundaries. 

Master/Slave boundaries are linked boundaries where field patterns exiting one boundary 

are forced to match patterns entering on the other boundary. This field enforcement 

makes it possible to account for non-normal excitation, while still maintaining a specific 

incident wavefront. Determination of phasing can still be found from the far-field 

scattering matrix. Version 11 of HFSS also provides the option for using Floquet Ports, 

which are similar to waveports in terms of setup, but provide the ability for off-axis 

simulation. 

2.5.2 Periodic MoM Model 

While less accurate than HFSS due to the lack of meshing in the entire solution space, the 

solve time improvements from Designer were found to be valuable and the results from 

these models were accurate for groundplane backed designs. Due to the relative thickness 

of the substrates used in infrared fabrication, Ansoft Designer is not suitable for modeling 

transmissive designs. In the model, there is no need to specify the three dimensional 

properties of the phased device, but a separate layer stack-up dialog is utilized (Figure 

17). Through the layer stack-up, Designer defines thickness and material properties for 
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the standoff layer, groundplane, and trace layers. A separate interface is used to draw the 

actual resonant element (Figure 18). Placing structures on a “signal layer” effectively 

deposits metal on that layer. Placing structures on a “metalizedsignal layer” etches metal 

from the layer, which is assumed to initially be of infinite extent. To take into account 

coupling between neighboring elements, the edges of the model have periodic boundaries 

defined with size equal to the periodicity of the array. Excitation is a plane wave at 

prescribed angle of incidence. Far-field phase is found by varying element dimensions or 

frequency and calculating the reflected phase change. No additional post processing is 

typically needed. 

 

 
Figure 17: Example of layer stack-up in Ansoft Designer. 
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Figure 18: Model layout for periodic MoM modeling. 

2.6 Fabrication of Infrared Phased Elements 

Fabrication of all of the nano-scale devices developed in the dissertation was achieved 

following a standard electron beam (e-beam) lift-off process. Substrates used include 

standard silicon wafers or silicon dioxide optical flats. Before fabrication of the patterned 

surface, groundplane and standoff layers were deposited on the substrate (Figure 19). 

Groundplanes, if necessary to the design, were either a thin film of gold (Au) or 

aluminum (Al). Both films were formed using physical vapor deposition (PVD). Gold 

films were deposited using e-beam evaporation and necessitated an adhesion layer of 5 to 

10 nm of titanium (Ti), which was also evaporated using e-beam evaporation. Aluminum 

films were deposited using thermal evaporation and did not require an adhesion layer. 

The standoff layer, if necessary to the design, consisted of either zirconium dioxide 

(ZrO2) or Dow Corporation’s Cyclotene 3022-35. The ZrO2 films were deposited using 

ion assisted e-beam evaporation by an external company, Evaporated Coatings, Inc. in 

Element 

Periodic Boundary 
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Willow Grove, PA. Cyclotene was deposited at the IR Systems Lab and is based on B-

staged bisbenzocyclobutene (BCB), a spin on polymer. Processing of BCB films, as well 

as spin speeds, are outlined in [63]. 

 

 
Figure 19: Standard substrate coating process. 

 

Pattern writing of the desired surface followed a standardized e-beam fabrication 

procedure developed by Charles Middleton, a member of the IR Systems Laboratory at 

the University of Central Florida. The process described here is for a single layer of resist 

and a more complicated, bi-layer procedure that was also used for earlier devices is 

outlined in [49]. E-beam lithography utilizes a vector scanning electron beam to write the 

desired device pattern into an e-beam sensitive resist made up of large chains of polymers 

deposited on the device’s standoff layer. In the case of a positive resist, when exposed to 

the electron beam, the polymers in the resist break apart and the exposed region can be 

removed from the surface of the standoff layer using a chemical developer. The size and 

sharpness of the exposed pattern is controlled by the e-beam’s electron beam current, 

dose, and size, which required the use of dose matrixes for characterization prior to 

fabrication. E-beam lithography is described in detail in [64]. With the desired regions of 

the standoff layer exposed, it is possible to deposit the metal making up the pattern using 

a conventional PVD process. Because the evaporation process deposits metal uniformly 
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across the wafer, a final lift off step is necessary to remove undesirable metal deposited 

on the resist and the remaining resist itself. 

 

Before pattern writing can begin, the substrate, including any coatings, must be cleaned 

to remove any organic debris or large particles on the surface that may lead to unwanted 

contamination. The substrate was spun at 6000 RPM for one minute and was sprayed for 

10 seconds each with acetone, methanol, and isopropyl alcohol (IPA), in that order. The 

substrate was then placed on a hotplate at 180 ºC for dehydration baking. After three 

minutes, the substrate was removed and blown for ten seconds using nitrogen to remove 

any particles that may have accumulated on the surface of the wafer during baking. ZEP 

520A-7, a positive resist, was spun on the surface of the substrate at 3000 RPM for 80 

seconds and baked for four minutes at 180 ºC for a layer thickness of about 300 nm. The 

resist-coated wafer was then loaded into the UCF/CREOL Leica EBPG5000+ Electron 

Beam System, the e-beam system used for pattern writing of the all of the designs, for 

vacuum pump down. Beam current for all designs was 25 nA, accelerating voltage was 

50 kV, and dose was 100 µC/cm2. Pattern writing for the devices typically lasted for one 

to four hours, upon which the exposed wafer was removed from chamber, ready for 

development. The resist coating and exposure steps are outlined in Figure 20. The ZEP 

layer was developed and the exposed sections removed by bathing the wafer in ZEP RD 

developer for 90 seconds. Development was then stopped by an IPA rinse and the wafer 

was dried using nitrogen (Figure 21).  
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Figure 20: Resist coating and e-beam exposure. 

 

 
Figure 21: Resist development to reveal pattern. 

 

With the desired pattern now present in the resist, the developed wafer was then loaded 

into an evaporator. Similar to deposition process used in forming the groundplane, a thin-

film of metal (either titanium, nickel (Ni), gold, or aluminum) was deposited to form the 

resonant elements. A final lift-off process was employed to remove the unwanted 

deposited metal and un-developed resist. The metal layer on top of resist was first 

removed by gently rolling scotch tape across the entire wafer. Most metals will simply 

roll-off with the tape due to poor adhesion between the film and the resist layer. The ZEP 

layer was then lifted-off in a methylene chloride or ZEP Remover (ZDMAC) ultrasound 

bath and, subsequently, residual solvent was removed with an IPA rinse. For further 

cleaning and removal of unwanted resist with designs not containing a BCB standoff 
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layer, a 4 minute oxygen plasma etch using Branson Barrel Etcher P2000 was employed. 

At this point, only the desired pattern remained and the device was ready for testing.  

 

 
Figure 22: Metal evaporation and lift-off process. 
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CHAPTER 3: METAMATERIAL RESONANCE DAMPING 

3.1 Infrared Metamaterial Dependence on Dispersive Materials 

One of the greatest limiting factors of IR metamaterial modeling has been the assumption 

that materials at IR exhibit electromagnetic properties independent of frequency. 

Traditionally a valid assumption at rf, the majority of materials utilized in metamaterial 

fabrication exhibit measurable frequency dependent (FD) optical properties at IR. FD 

material properties in the infrared are due to several physical phenomenon including 

molecular vibration, phonon absorption, free carrier loss, and defect scattering [65]. This 

material dispersion can have a significant impact on the measured performance of the 

fabricated metamaterial and will degrade agreement between measured and modeled 

results when assuming static material properties. Furthermore, a large number of 

commercial electromagnetic solvers used in metamaterial characterization were 

developed specifically for rf application and, thus, require frequency independent 

material definitions exclusively or provide only a limited means to account for dispersive 

materials.  

 

To overcome this limitation, a procedure to account for FD material properties in IR 

metamaterial modeling was developed. This procedure includes material measurement 

using an ellipsometer and integration of dispersive materials in existing commercially 

available full-wave modeling packages. Two example FSS designs are presented showing 

significant improvements in agreement between modeled and measured results. 
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3.1.1 Material Characterization 

Before modeling an IR metamaterial design, materials used for fabrication must be first 

characterized for their dispersive optical properties. While FD properties for many 

materials have been previously characterized and published, inconsistency in 

measurement approaches limit the utility of such results. Published material studies 

frequently characterize materials only in ideal situations, often at a single frequency, such 

as within a vacuum, as a bulk composition [66], or using mathematical models [67]. In 

addition, even if the material is studied in a similar configuration as the FSS to be 

modeled, variability in deposition techniques, layer intermixing, atmospheric conditions, 

material composition, and handling can render prior measured data inaccurate for 

modeling. For the highest possible accuracy when modeling FSS on dispersive materials, 

optical material properties must be characterized directly as deposited. Specifically, a 

J.A. Woollam Infrared Variable-Angle Spectroscopic Ellipsometer (IR-VASE) was 

utilized in the course of the dissertation to measure the optical properties of each material 

used in fabrication (see Appendix A.1 for more information). Because most 

commercially available modeling software programs only accept material property 

definitions as complex dielectric constants, and not index of refraction, the measured data 

from the ellipsometer had to be converted for direct utilization by using the relationships: 

 )(~)(~  rn   (13) 

or, if the software only accepts conductivity for metal layers,: 

 nkf 04    (14) 
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3.1.2 Implementation of Dispersion in Full-Wave Simulation 

To carry out modeling, a MATLAB function was created to utilize the measured FD 

material properties. The MATLAB function consists of three major components – User 

Interface (UI), Solver Independent Code (SIC), and Solver Specific Code (SSC). The UI 

component of the code provides the interface necessary for user input and real time 

presentation of results. The SIC component interprets the users input, reads FD material 

properties from the shared network library, and creates result files and directories. The 

SSC component provides functionality to interface with a specific external 

electromagnetic solver and to interpret the results generated by the solver. The function’s 

layered approach is desirable as it allows for easy integration of multiple electromagnetic 

solvers without changing the UI or SIC. Currently, Ohio State University’s Periodic 

Method of Moments (PMM) and Ansoft Designer, both Method of Moments solvers, are 

supported. It should be noted that, as mentioned previously, Ansoft HFSS already 

includes support for FD materials. 

 

Solutions for frequency dependent material designs are realized using frequency point-

by-point simulation. To improve performance, the MATLAB function is provided with a 

template specifying initial geometry. Step modeling is achieved by populating the desired 

template with material properties at each frequency step and calling the necessary solver. 

In the function’s current implementation, PMM setup files, written in FORTRAN, are 

directly modified at each step, whereas Designer setup files utilize a closed file format 

and require modification using VBScript to directly interface with the modeling program. 
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Results are then stored for each frequency step in a spreadsheet and the UI is updated in 

real time. A summary of the program is provided in Figure 23. 

 

 
Figure 23: Implementation of frequency dependent modeling. 

 

In addition to support for FD materials, the developed MATLAB function further 

enhances all of the solvers by introducing new capabilities. Most significant of this new 

functionality, especially from the standpoint of the user, is the fact that parameter input, 

user interfaces, and results are all presented identically regardless of the chosen solver. 

Neutral presentation is desirable to lower the learning curve necessary to model, such as 

the need to learn FORTRAN for PMM or the Ansoft product UI for Designer, and 

improves post processing and sharing of data between solvers. The function also adds the 

ability to specify variable parametric sweeps and auto-renders the design in 3-D - 

functionality not available in some commercially available solvers, including PMM. The 

function also easily integrates optimization. 
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3.1.3 Example Results: Square Loop FSS on ZrO2 

For verification of the need to account for FD material properties in FSS modeling, a 

manganese (Mn) square loop FSS on a ZrO2 standoff layer with an Au groundplane 

(Figure 24) was fabricated and tested using a spectral radiometer (Figure 25). The same 

design was modeled using PMM assuming frequency independent materials (εr = 3.0272, 

tan(δ) = 0.023, Rs = 40Ω) and the developed MATLAB function following the process 

outlined in the previous section. Figure 26 is a plot of the modeled and measured 

emissivity of the square loop FSS. From the figure, the FD model provides an improved 

indication of the device’s measured behavior over the frequency independent model 

including a better bandwidth match from 3-6 μm, accurate prediction of the device’s 

reflectivity peak around 7 μm, and improved agreement from 8 to 14 μm. Ansoft 

Designer yielded similar results.  

 

 
Figure 24: SEM image of fabricated square loop FSS on ZrO2. 

 



 45

 
Figure 25: Infrared spectral radiometer. 

 

 
Figure 26: Measured, frequency independent PMM, and frequency dependent PMM 

results for square loop FSS on ZrO2. 
 

In addition to modeling results, run time data for the model from Figure 26 was collected 

for each program and summarized in Table 1. As expected, the use of frequency 

dependent materials facilitated by the MATLAB function resulted in an overall increase 

of run time. The increase can largely be attributed to additional time required to copy the 
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measured permittivity values from the shared drive, extract the results, save the results to 

a spreadsheet file, generate of the function’s UI, and launch and close the desired solver. 

Overall, the longer runtime is acceptable due to the increase in model accuracy and 

additional program functionality. 

 

Table 1: Comparison of runtime for a square loop FSS using 100 frequency points. 
 Frequency Independent Frequency Dependent 

PMM 177s 555s 
Designer 552s 1291s 

 

3.1.4 Example Results: Square Loop FSS on a Polymer 

From the standpoint of mass-producing an IR metamaterial, non-traditional standoff 

layers, such as polymers, would be desirable to lower fabrication costs, to reduce 

fabrication time, and to allow for flexible substrates. Due to their composition, most 

polymers will exhibit significant frequency dependence and numerous absorption bands 

at infrared. To evaluate FSS behavior on a polymer dielectric, another square loop FSS 

was modeled (Figure 27) using both a fixed, lossless permittivity dielectric (εr = 1.5, tanδ 

= 0) and the complex indices of a sample plastic measured from the IR-VASE (Figure 

28). When assuming a fixed permittivity dielectric, the square loop FSS was easily 

optimized for high emissivity from 5 – 8 μm simply by scaling an existing design. 

Running the same models using the developed MATLAB function and accounting for the 

frequency dependence of the plastic, the FSS retains some of its original behavior with 

the introduction of a high emissivity band between 8 – 9 μm and a sharp dip in emissivity 

around 7.5 μm. From a design standpoint, this new behavior can significantly change the 



 47

potential applications of the FSS by effectively expanding the device’s emissivity band 

and introducing an undesired dip in the middle of that band. Even with the measured 

optical properties, predicting these new trends before testing is clearly problematic when 

using only a frequency independent model. By including material frequency dependence, 

further design optimization can occur with a reasonable expectation of accuracy and, 

thus, a reduction in the need of costly fabrication and measurement iterations. 

 

 
Figure 27: Frequency independent PMM and frequency dependent PMM results for 

square loop on plastic. 
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Figure 28: Frequency dependent index of refraction (n,k) of polymer dielectric from 

ellipsometer. 
 

3.1.5 IR Material Dispersion: Conclusions and Applications 

As demonstrated in the previous sections, material dispersion can have a significant 

impact on the performance of an IR metamaterial. In the context of the dielectric standoff 

layer, any absorption bands in the material may lead to a loss of the desired 

electromagnetic behavior of the metamaterial in that spectral range. Outside of that 

spectral range, electromagnetic performance can also be altered from the gradual change 

in the real part of the index, known as normal dispersion. These effects are well known in 

the literature, even in the rf portion of the spectrum, but the severity of these phenomena 

at high frequencies demonstrate the need for accurate measurement and modeling in the 

infrared. 
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A metamaterial’s dependence on the optical properties of the material making up the 

surface can also be exploited for design flexibility. The rest of the chapter will focus 

developing a method known as metamaterial damping – a technique that can be used to 

alter the bandwidth and resonance frequency of an antenna element operating in the 

infrared. This approach employs the dispersion of the metal making up the metamaterial 

device, as opposed to the standoff layer, and the inherent unique properties of most noble 

metals in the infrared to tune the performance of the surface. 

3.2 Theoretical Foundation of Metamaterial Damping Theory 

One approach to achieve metamaterial optimization or spectral tuning in the infrared 

without altering the element geometry is to exploit the structure’s resonance-behavior 

sensitivity to its metal-film conductivity. Variation in metal conductivity alters the Ohmic 

loss in the metamaterial, which yields resonance damping and two phenomena that are 

important for design optimization: bandwidth expansion and spectral shifting. Resonance 

damping is a well-understood concept within the physics and engineering community. If 

a harmonic oscillator encounters a resistive force, the system’s oscillations will become 

damped, occurring at a lower frequency and magnitude compared to the undamped case. 

Consequently, the decrease in the magnitude of the oscillation must result in an increased 

resonance bandwidth for the system. For resonant antenna devices, the resistive force 

typically takes the form of attenuation due to the conversion of electromagnetic energy to 

heat. Passive, infrared resonant elements are especially sensitive to damping, due to the 

highly dispersive and lossy nature of metals in the infrared band. 
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The effect of damping due to the finite conductivity in infrared metamaterials has been 

published previously, but not heavily explored as a means of metamaterial optimization 

or tuning. Munk acknowledged that altering the conductivity of an FSS resulted in 

frequency shifting, attributing this phenomenon to an increase of the real part of the 

permittivity of the metal film with frequency [66]. Novotny provides a much more 

detailed analysis of this behavior for visible antennas [68] and found results similar to the 

ones presented in the following sub-sections, without considering the related resonance-

bandwidth issue. Frequency and bandwidth scaling due to damping can also be observed 

in the results of numerous other papers (such as [69] and [70]), but damping effects have 

largely been neglected or not properly identified. 

3.2.1 Thin-Film Resistor Impedance at Infrared Frequencies 

Before introducing an equivalent resonator model, it is necessary to first develop a 

method for determining the Ohmic loss of a metamaterial element in the infrared. For the 

purpose of this derivation, a simple metamaterial unit cell element contained within an 

infinite length sheet of the same material with thickness h is assumed to consist of a 

dipole slab of width w and length l. The dipole is excited by a plane wave normally 

incident on the dipole’s surface with an electric-field component of the form: 

 zjeExzE 
0ˆ)(

~   (15) 

where γ is the propagation constant of the plane wave inside the metal film, l is orientated 

in the x-direction, w is orientated in the y-direction, and h is orientated in the z-direction. 

The current density excited by the wave as it penetrates the surface is: 
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 zjeExzJ  0ˆ)(
~   (16) 

where σ is the bulk admittivity (dynamic complex conductivity) of the film. The 

propagation constant can be defined in terms of the optical properties of the metal film: 

 
c

jknf )(2 


  (17) 

where f is the frequency, n is the index of refraction, k is the extinction coefficient, and c 

is the speed of light in a vacuum. The relative permeability of the metal in the infrared is 

assumed to be unity. The total current, I, flowing through the metal film along the length 

of the dipole can be found by solving the integral: 

 xdzzJwI
h

ˆ)(
~

0

   (18) 

Neglecting the phase term of the propagation constant, Eq.  (18) yields the expression: 
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Eq. (19) can be reduced by substituting in skin depth or: 
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To yield: 
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Similarly, the voltage, V, developed over the length of the slab can be found by: 

 lEV 0  (22) 

Finally, the impedance of the film, Zfilm, can be determined by Ohm’s Law: 
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Eq. (23) can be recognized as the classical thin-film resistor impedance equation when 

the ratio of the film thickness to skin depth approaches infinity. 

 

In the microwave portion of the spectrum, it is customary to assume that the admittivity 

of the metal film is purely real and nearly equal to the dc conductivity. This conclusion is 

from the Drude-Lorentz model, which relates dc conductivity and metal relaxation time 

to admittivity [65]: 
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where τ is the metal’s relaxation time and σ0 is the metal’s bulk dc conductivity. The 

relaxation time for most noble metals will be on the order of 10 to 100 fs [65], which 

causes the imaginary term in Eq. (24) to approach zero at low frequencies. In the THz, 

the imaginary term can no longer be neglected, as the frequency is on the same order as 

the inverse of the relaxation time. Thus, it is of importance to account for complex 

admittivity in Eq. (23) by relating the conductivity directly to the film’s optical 

properties, through: 

 ))(1(2 2
0 jknfj    (25) 

where ε0 is the free-space permittivity. Substituting Eq. (25) into Eq. (23) yields: 
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Eq. (26) can also be re-written in terms of relative permittivity, εr, using the relationship: 
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 nkjknj rr 222    (27) 

which yields: 
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Assuming that εr′ << -1, which is typical for metals outside of the visible and ultraviolet 

portion of the spectrum [65], Eq. (28) can be simplified and separated into complex 

components: 
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where Rfilm is resistivity of the film and Xfilm is the reactivity of the film. From Eqs. (29) 

and (30), the ratio of the resistive and reactive components of the metal film is nearly 

equal to the material’s loss tangent, tan(δ), or:  
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Finally, the expressions for Rfilm and Xfilm can be further simplified when they are 

expressed in terms of loss tangent and the real part of permittivity: 
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The values of Rfilm and Xfilm represent the complex impedance of the metal slab presented 

to the incident radiation. Unlike the situation in the microwave band, the slab is no longer 

purely resistive. It will exhibit a largely capacitive response, because εr′ is strongly 

negative in the infrared, with a loss tangent approaching unity.  

3.2.2 Equivalent-Circuit Resonator Derivation 

Using the dipole layout presented in the previous section, an equivalent circuit for an 

infinite array of this element at primary resonance is presented in Figure 29. The 

resonance properties of the equivalent circuit can be expressed by: 
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where Δf is the full-width at half-power (FWHP) bandwidth of the dipole, R is the 

effective resistance of the dipole observed by a current excited at the surface of the 

dipole, L is the effective inductance of the slab, and C is effective capacitance. 

Inductance and capacitance are predominantly determined by the geometries of the 

element and the unit cell, with the resistance determined by the loss of the metal making 

up the dipole. The impedance of the dipole can be determined by summing in series the 

structural, or resonant, impedance of the element, assuming no damping or metal loss, 

and the impedance of the metal slab calculated previously. The resistance of the 

equivalent circuit can be found by adding in series the film’s resistance and the structural 

resistance, R0, of the dipole: 



 55

 0RRR film   (36) 

The structural resistance is caused by selective loading, substrate loss, or unwanted re-

radiation and is independent of the metal. Similarly, the inductance of the equivalent 

circuit can be related to the reactance of the metal film through: 
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where L0 is the structural inductance. Altered structural inductance from metal film 

reactance is likely the same thing reported by the plasmonic community as photon drag 

[71]. Capacitance is assumed to be independent of the metal film properties and is 

entirely determined by: 

 0CC   (38) 

where C0 is the structural capacitance due to mutual coupling. 

 

 
Figure 29: Resonant circuit equivalent model for an infinite array of dipole metamaterial 

elements. 
 Mutual coupling is assumed to only occur along the long direction of the dipole. 
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Several important conclusions can be made regarding damping in the infrared using the 

proposed equivalent-circuit model. As expected, increasing the loss of the metal will 

result in an increase of the dipole’s resonance bandwidth from Eq. (34) and this increase 

in bandwidth will result in an decrease in the resonance frequency from Eq. (35). 

Interestingly, increasing the magnitude of the reactance of the film will further increase 

the resonance frequency by decreasing the inductance of the slab from Eqs. (37) and (35). 

The reactance of the film has a limited impact on the bandwidth of the system relative to 

the resistance of the film because R0 will be significantly smaller than Rfilm for any good 

metamaterial structure, with most antenna loss occurring due to the metal making up the 

resonator. This leads to the unique situation where it is possible to have a narrowband 

design, with a small Rfilm, experience a significant decrease in the resonance frequency 

due to having a simultaneously large Xfilm. The specific conditions required for this to 

occur, in terms of metal properties, are discussed later. 

 

Unfortunately, there are several limitations inherent to this theoretical approach. It has 

been shown that metals in the infrared, unlike the microwave portion of the spectrum, 

exhibit appreciable dispersion. The development of these equivalent-circuit models 

assumes quasi-static parameter values, which will lead to errors in the predicted 

bandwidths of the resonant metamaterial. The presented model also does not provide 

methods for accounting for some non-idealities present in the metal films, such as the 

anomalous skin effect and film depth profile variations. Most of these limitations can be 

mitigated by employing some form of full-wave electromagnetic modeling, which will be 

discussed in the next section. In general, optimization using metamaterial damping is not 
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suitable for every application, since it involves increasing the absorption loss of the 

metamaterial element. Additional film absorption will lead to unwanted heat loading on 

the metamaterial element which may lead to structural or performance issues. 

3.3 Simulated Validation of the Metamaterial Damping Theory 

For validation of the proposed equivalent-circuit model, an infinite array of cross FSS 

elements was modeled at normal incidence using Ansoft HFSS, a finite-element-method 

electromagnetic solver. Cross elements were chosen due to their wide use in metamaterial 

structures, their similarity in performance to dipole elements, and their polarization 

insensitivity at normal incidence. The dimensions of the element considered are presented 

in Figure 30 and the element’s square unit cell size was fixed at 2.5 µm. The thickness of 

the metal film was fixed at 100 nm. The superstrate is taken as vacuum (εr = 1) and the 

substrate as lossless silicon (εr = 11.4). This design was chosen with typical dimensions 

for resonance near the LWIR (long-wave infrared) CO2 laser line at 10.6 µm or 28.28 

THz. 

 

 
Figure 30: Dimensions of cross metamaterial element. 

2.1 µm 

0.5 µm
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3.3.1 Real Frequency-Independent Conductivity 

The element under study was first modeled with four frequency-independent real values 

of conductivity typical for the infrared (σ = 0.5, 1, 5, 10 MS/m). In addition, the modeled 

performance of the design using a perfect electric conductor (PEC) material (σ = ∞ S/m) 

was found to determine the undamped response. Unless the option to solve inside of a 

metal film is explicitly enabled, HFSS applies a finite-conductivity boundary to the metal 

film surface, where the thickness of the film is assumed to be infinite and the admittivity 

is assumed to be purely real for the calculation of surface impedance [59]. The finite-

conductivity boundary surface condition is used to investigate the sensitivity of the 

crosses’ bandwidth and resonance frequency to changes in conductivity without the 

influence of unwanted radiation propagation through the film or finite skin depth. 

Modeled results are presented in Figure 31. As expected from Eqs. (23), (32), and (33), 

the modeled cross metamaterial exhibits increased damping with decreasing conductivity. 

Because the conductivity is real, no reactive components are present to influence the 

damping behavior. 
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Figure 31: Modeled transmission of the cross element with four frequency independent 

conductivities. 

3.3.2 Complex Frequency-Independent Impedance Surfaces 

To study how the complex impedance of the film impacts resonance behavior and to 

validate the claims used to develop Eqs. (37) and (38), the cross design was modeled 

using four complex film impedances. HFSS has the capability to model surface 

boundaries with complex sheet resistance; however, the surface must have zero thickness, 

limiting the practicality of this approach. Sheet resistance can be related to the film 

impedance through 

 filmsheetfilm Z
l

w
Z   (39) 

 The complex sheet resistance values used in modeling are presented in Table 2, as well 

as modeled center frequency and bandwidth. Each model is labeled with the format (Rfilm-

sheet, Xfilm-sheet) and the modeled results are presented in Figure 32. As expected, reducing 

the resistance of the film reduced the bandwidth and increased the resonance frequency. 
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Similarly, increasing the reactance of the metal film resulted in a decrease in the 

resonance frequency. Slight variations in bandwidth are also observed with changes in 

reactance, but the bandwidth is significantly more sensitive to the resistance of the film, 

validating the claim made in the previous section. 

 

Table 2: Frequency-independent sheet resistances used in modeling and modeled 
resonance frequency and bandwidth. 

Model Name Rfilm-sheet Xfilm-sheet f (THz) Δf (THz) 
(1,1) 1 Ω/□ 1 Ω/□ 28.10 1.46 
(1,2) 1 Ω/□ 2 Ω/□ 27.46 1.29 
(2,1) 2 Ω/□ 1 Ω/□ 27.95 2.82 
(2,2) 2 Ω/□ 2 Ω/□ 27.32 2.58 

 

 
Figure 32: Modeled transmission of the cross element with four frequency-independent 

complex sheet resistances. 

3.3.3 Complex Frequency-Independent Conductivity 

It is also important to consider a more realistic model to test the validity of Eqs. (32) and 

(33). Thus, the cross from Figure 30 was re-modeled using representative frequency 



 61

independent complex dielectric parameters and HFSS was instructed to solve inside the 

metal films. Four individual models were compared to determine the crosses’ change in 

response due to changes in magnitude of εr′, tan(δ), and δskin. The skin depth can be found 

directly from permittivity and loss tangent using the relationship: 
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The permittivity values used and the derived parameters are listed in Table 3. Each model 

is labeled using a multiple of permittivity and loss tangent relative to those used in the 

first model with the format (εr′, tan(δ)). The modeled results are presented in Figure 33.  

 

Table 3: Frequency independent permittivities used in modeling and derived loss tangent 
and skin depth values. 

Model Name εr′ εr′′ tanδ δskin (28.28 THz, nm)
(1, 1) -1800 2880 -1.6 33.12 

(2, 0.5) -3600 2880 -0.8 26.98 
(1, 2) -1800 5760 -3.2 25.76 
(2, 1) -3600 5760 -1.6 23.42 
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Figure 33: Modeled transmission of the cross element with four frequency-independent 

complex permittivities. 
 

The results presented in Figure 33 are consistent with the equivalent-circuit model and 

Eqs. (29) and (30) – increasing the magnitude of the real part of permittivity decreases 

bandwidth and increasing the magnitude of the imaginary part of permittivity counteracts 

damping and shifts the resonance to higher frequencies. One of the more intriguing 

results is that model (2, 0.5) demonstrates a narrower bandwidth than model (2, 1), even 

though both models have the same real part of permittivity and model (2, 1) resonates at a 

higher frequency. This is caused by the loss tangent of the metal also playing a role in 

determining the resistance of the metal film. Minimizing tan(δ) and maximizing the 

magnitude of εr′, from Eq. (32), will yield a smaller film resistance and, thus, a smaller 

bandwidth. Minimizing tan(δ); however, also increases the reactive component of the 

metal film resulting in a larger resonance frequency. Conversely, (1, 2) has a narrower 

bandwidth than (1, 1) due to a larger loss tangent, which yields a lower film resistance, 
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but the smaller εr′ results in a larger overall bandwidth when compared to (2, 0.5) or (2, 

1).  

3.3.4 Measured Metal-Film Properties 

To further test the proposed theory, the cross design was modeled using measured metal 

permittivities, which were complex and frequency dependent. Three metals were selected 

for comparison due to their distinct properties in the LWIR: gold for a loss tangent 

magnitude less than one, aluminum for a loss tangent magnitude greater than one and 

nickel for a loss tangent magnitude nearly equal to one. Determination of the optical 

properties of these metals in the infrared was done using films evaporated on a silicon 

witness sample and the IR-VASE ellipsometer. The measured and derived optical 

properties are presented in Figure 34, Figure 35, and Figure 36. The modeled resonance 

behaviors of the crosses using the measured optical properties of the metals are presented 

in Figure 37. 
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Figure 34: Measured real part of permittivity for gold, aluminum, and nickel. 

 

 
Figure 35: Measured loss tangent for gold, aluminum, and nickel. 
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Figure 36: Calculated skin depth for gold, aluminum, and nickel. 

 

 
Figure 37: Modeled transmission of four cross metamaterial arrays made of three 

different metals and PEC. 
 

Once again, the results are consistent with the predictions from the equivalent-circuit 

model. Nickel demonstrates the most damped response since its magnitude of the real 

part of permittivity is small and its loss tangent is nearly equal to one. Gold has the 



 66

largest magnitude of the real part of permittivity of the three metals and, thus, the lowest 

film loss and therefore exhibits the narrowest bandwidth and deepest notch. Consistent 

with results from the frequency-independent simulation, aluminum’s large loss tangent 

magnitude decreases the film’s reactive component and allows it to resonate at the 

highest frequency, closest to the undamped design. However, aluminum’s small real part 

of permittivity results in a notch significantly shallower than gold, as well as a larger 

bandwidth.  

3.4 Measured Validation of the Metamaterial Damping Theory 

To validate the modeled results, the cross-FSS design was fabricated and measured using 

the three metals. Fabrication followed the electron-beam lithography process outlined in 

the previous chapter. Deposition of the metal films was done using electron-beam 

evaporation for gold and nickel and thermal evaporation for aluminum. The substrate was 

a 350-µm-thick high-resistivity, double-side-polished silicon wafer. A SEM micrograph 

of a portion of the fabricated array is presented in Figure 38. Measurement of the 

transmission of these surfaces was carried out using a Perkin-Elmer micro-FTIR 

spectrometer with a microscope attachment. Results from this measurement, as well as 

the modeled results from Figure 37, are compared in Figure 39. Both modeling and 

profilometer measurements indicated that the thickness of the gold film was 

approximately 90 nm, while the other films were approximately 100 nm thick. 
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Figure 38: SEM micrograph of a portion of the gold cross metamaterial array. 

 

 
Figure 39: Measured (solid) and modeled (dotted) transmission of three cross 

metamaterial arrays made up of three different metals. 
 

Overall, excellent agreement is observed between modeled and measured results. Ringing 

is present in all of the measured results due to the Fabry-Perot resonance from the finite 

thickness of the substrate. This also leads to slight differences between modeled and 
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measured notch depth since the HFSS model neglects the backside reflection. Additional 

differences can be attributed to the presence of native oxide layers for the nickel and 

aluminum films as well as the likely presence of residual resist. 

3.5 Implications of Metamaterial Damping Theory 

Metamaterial damping has a significant impact on a wide variety of infrared resonant 

devices including antenna-coupled bolometers, waveguides, and FSS. More than any 

other device; however, phased resonant elements are especially sensitive to damping due 

to their narrowband performance. The next sections will outline some specific 

implications of damping theory in terms of material properties, bandwidth, and phase 

response. 

3.5.1 Impact of Relaxation Time on Damping and Film Reactance 

Based on the circuit model and measured results it is clear, with films sufficiently thick 

compared to the skin depth, that the loss tangent and the real part of permittivity are the 

best indicator of metamaterial resonance performance. From Eqs. (24), (25), and (27), 

loss tangent can be defined completely in terms of metal relaxation time, or: 
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again assuming that |εr′| >> 1. Similarly, the real part of permittivity can also be defined 

in terms of loss tangent: 
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With the usual definition of dc conductivity: 
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where N is the carrier density, e is the electronic charge constant, and m0 is electron rest 

mass. Substituting Eqs. (41) and (42) into Eqs. (32), (33), and (40), yields: 
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assuming an infinite film thickness for simplicity. From the previous results, to minimize 

bandwidth damping, it is desirable to maximize relaxation time, while reducing film 

resistivity. Conversely, to counteract frequency damping by decreasing the reactance of 

the film, it is desirable to minimize relaxation time, resulting in a larger skin depth. The 

only other option available to a metamaterial designer is to alter the carrier density which 

can be achieved by utilizing different metals and not necessarily through film processing. 

Of the two, metal film relaxation time provides the largest range of variation through the 

alteration of impurity scattering [72]. 

 

It should also be noted that this type of design optimization is limited to frequencies close 

to the relaxation frequency, or (2πτ)-1. For most metals, the relaxation frequency falls in 

the infrared and THz frequency bands. To illustrate, the complex impedance of two 
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fictitious bulk metals with relaxation times equal to 10 and 100 fs is plotted in Figure 40. 

Both metals have the same carrier concentration and their dc conductivity is set to 1020τ 

S/ms. From the figure and earlier results, it is shown that it is not possible to counteract 

damping for these two metals in the microwave portion of the spectrum by reducing the 

reactivity of the metal film because the impedance is already nearly real. Above the 

relaxation frequency and into the visible, the real part of the impedance for both metals 

has approached its maximum value and the reactive component becomes dominant and 

nearly the same for all relaxation times. Thus, in both the microwave and visible, the 

metal with the highest dc conductivity, and typically the largest relaxation time, will have 

the narrowest bandwidth and highest resonance frequency.  

 

 
Figure 40: The complex impedance of two bulk metals with relaxation time of 10 or 100 

fs in the IR and THz.  
Carrier concentration for the two metals is assumed to be the same. 

 

The region of interest for the proposed optimization approach falls in between the 

relaxation frequencies of the two metals. In this region, the metal with a higher real part 
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of impedance also has the smaller reactive component. Assuming an appropriate 

geometry is chosen to exploit the reduced reactivity of the film, according to Eq. (35) or 

similar expression, it is possible to have a metamaterial structure resonate at a higher 

frequency with a lossy metal than with a metal with having a larger dc conductivity. The 

metal film’s higher resistivity will still yield a larger bandwidth than the metal with the 

larger dc conductivity, unless the carrier concentration is significantly different. 

3.5.2 Bandwidth Considerations 

In the development of the equivalent-circuit model, the bandwidth of the metamaterial 

was defined as the FWHP bandwidth about the resonance frequency. This definition is 

meaningful for devices where notch depth is significant, such as phased devices like 

reflectarrays or devices where a strong resonance is necessary to approximate an 

equivalent material response, such as negative permittivity in NIM metamaterials. For 

band-reject filter designs, like the cross metamaterial characterized in the previous 

section, the actual depth of the notch is not necessarily important, as long as the 

transmission of the reject band is below some arbitrary floor value. Thus, it has been 

customary in these situations to define the bandwidth as the frequency difference between 

two 3 dB roll-off points and not relative to the center resonance frequency. Assuming 

only one rejection band, the 3 dB roll-off points for a band reject filter will occur at the 

two points where the filter passes 50% of the maximum passband transmitted power.  

 

To investigate the impact of damping on the 3 dB bandwidth, the two sets of bandwidths 

for the modeled results in Figure 37 were calculated and are presented in Table 4. As 
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expected from the equivalent-circuit model, the FWHP bandwidth increased as metal loss 

increased. On the other hand, the results for nickel demonstrate that damping can 

minimize the 3 dB roll-off bandwidth by reducing the contrast between the loss and pass 

bands. This result suggests that in infrared filter applications the narrowest bandwidth can 

be achieved through the use of lossy metals and not necessarily through high 

conductivity. The trade-off for this approach is higher loss in the passband and the 

requirement of smaller element dimensions to counteract frequency damping. 

 

Table 4: Calculated bandwidths for the three measured-metal designs in Figure 37. 
Metal f (THz) Δf (THz) 3-dB Δf (THz) 
Gold 29.09 0.77 9.71 

Aluminum 29.21 3.23 10.29 
Nickel 27.16 3.77 9.50 

3.5.3 Phase Considerations 

The impact of metamaterial damping on phase can be explored through the Kramers-

Kroenig relation outlined previously. From the relation, reducing the depth of the notch, 

and subsequently broadening the resonance, will result in a slower phase transition versus 

frequency, which can be beneficial to reduce fabrication tolerances. The downside of the 

slower phase transition is that the range of the possible phase variations will be 

decreased, a limitation that will be discussed in more detail in the next chapter. Low 

reactivity metals in the infrared, such as aluminum, are similarly desirable for phased 

elements due to their minimal frequency shifting compared to an ideal PEC element and 

their favorable large resonant element size at the designated resonant frequency. 
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CHAPTER 4: THE INFRARED REFLECTARRAY 

4.1 Fundamental Theory 

The first device investigated for phasing in the infrared was the reflectarray. As discussed 

previously, the reflectarray is classically a planar, microstrip antenna array with a specific 

layout to give rise to a specific desired wavefront upon re-radiation. Phasing of the 

antenna elements can be achieved through a multitude of methods including slot-loading, 

stub-loading, variable unit-cell sizes, and multiple element geometries; however, the 

phasing mechanism used in the dissertation was largely focused on variable sized 

elements. This chapter will introduce the methods used in characterizing infrared 

reflectarray elements, the design techniques necessary to construct a focusing 

reflectarray, and a preliminary discussion of the aberrated image behavior to be expected 

from these surfaces. 

4.1.1 The Variable-Patch Reflectarray Element 

As mentioned in the Section 1.2.3, several reflectarray layouts have been designed, 

fabricated, and tested in the past. Based on this prior research, variable-patch reflectarray 

designs (Figure 41) have gained popularity as the optimal reflectarray element for 

efficient, wideband applications. Specifically, variable-patch reflectarrays achieve 

reflected phase variation by varying the length or width of the patch (or both equally to 

maintain polarization insensitivity). Changing the dimensions of the patch ideally alters 

the reactive component of surface impedance at the element’s location on the array. Pozar 
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carried out the initial development of the variable-patch reflectarray [43] and several 

other individuals and organizations have tested and developed similar designs [73] - [75]. 

 

 
Figure 41: Variable-patch reflectarray schematic. 

 

Variable-patch reflectarrays have numerous advantages when compared to other 

available reflectarray geometries [76], which make the design desirable for deployment at 

higher frequencies. Unlike ring element designs, the square patch reflectarray is easily 

fabricated with a high degree of accuracy using most micro-lithography techniques. The 

size of the patch scales well with frequency as opposed to reflectarray elements that 

utilize stubs to generate phase delays. By changing the length of the patch independently 

from the width, it is possible to impose phase delays in orthogonal directions for 

polarization selectivity [77], but the conventional variable-patch reflectarray does not 

inherently exhibit polarization sensitivity unlike some ring designs. Most significantly, 

variable-patch reflectarrays demonstrate superior bandwidths, approaching 10%, - far 

larger than almost all other single layer reflectarray designs [78]. 
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4.1.2 Waveguide Equivalent Circuit Model 

The simplest approach to characterize the behavior of a variable-patch reflectarray is to 

break up the patches into individual, isolated unit cells and employ an equivalent circuit 

approximation analogous to the one developed in the previous chapter. Inherently a 

resonant structure, radiating patches are best represented as a terminated transmission line 

(Figure 42). Beginning at the termination of the transmission line, the reflectarray 

groundplane will behave as a short, which exhibits a reflection coefficient of -1 

corresponding to the expected 180 degree phase shift upon reflection by a plane wave 

impinging on a perfect electric conductor (PEC) surface. The substrate of the reflectarray 

itself can be modeled as the transmission line by neglecting dielectric loss. Therefore, the 

standoff layer transmission line will exhibit a characteristic impedance equal to the wave 

impedance of the substrate material (Zd) and a length equal to the height of the substrate 

(d). Assuming the width and length of the patch are equal, the patch itself can be 

represented as a variable inductor [79], with inductance (L) proportional to the ratio of 

the length of the patch (l) relative to the length of the equally sized unit cell (lunit-cell): 
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Thus, when the length of the patch approaches zero, the inductor will behave as an open 

and when the length of the patch approaches the length of the unit cell, the inductor will 

behave as a short or a groundplane. The unit cell is finally connected to the open 

terminals of an infinite waveguide with characteristic impedance equal to the free space 

wave impedance to represent the air above the reflectarray. 
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Figure 42: Reflectarray transmission line equivalent. 

 

Determination of phase shifting can be directly calculated by finding the input reflection 

coefficient at the interface of the substrate transmission line to the air transmission line. 

Using conventional transmission line calculations, the reflection coefficient (Гin) is 

represented by  
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where λ0 is the free space wavelength and εr is the real part of the substrate’s dielectric 

constant. Finally the phase response of the reflectarray can be calculated by finding the 

phase of Гin, or 
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The transmission line model allows for several significant conclusions about the general 

behavior of the variable-patch reflectarray. First, the height of the substrate will 

determine the extent of the phase shift achievable by the reflectarray by regulating the 

initial reflectarray phase response when the patch area is not large enough to introduce a 

significant inductance and only the groundplane is the dominant radiator. This 

phenomenon can be visualized by plotting the phase response of the reflectarray on a 

Smith Chart (Figure 43) starting at the dominant groundplane state and tracing out the 

entire system response as the patch increases in size. When the patch approaches the size 

of the unit cell, it will begin to behave as a short, independent of the standoff layer and 

groundplane. Unless the reflectarray element is at the same physical height as the 

groundplane or at a height corresponding to a multiple of one half the operating 

wavelength, the phase delay introduced by the groundplane and by the patch dominant 

states will not be equal and a complete rotation about the Smith Chart will not occur. 

From this behavior, and taking into account that no dielectric is entirely lossless, it is 

important to utilize the smallest possible substrate height to achieve nearly 360 degrees of 

phase shift at a single frequency. Another important conclusion is that the input 

impedance will always be purely imaginary and, thus, Гin will always have a magnitude 

of unity – signifying no losses in the system as expected in the idealized model. 

Additionally, the input impedance is dependent on the area of the patch, which will result 

in a non-linear relationship between the phase response of the patch and the length of the 

patch. 
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Figure 43: Smith chart plot of Гin demonstrating reflectarray phase transition by varying 

patch size. 
 

The bandwidth properties of a variable size patch reflectarray may also be predicted. If 

the substrate height is reduced to allow for a larger phase response range at the center 

frequency, the transformed impedance of the groundplane will decrease to a short as 

wavelength increases – effectively shorting the patch and preventing operation. If 

wavelength decreases, the effective dielectric height will increase and the phase response 

range of the reflectarray will diminish. Additionally, operating bandwidth will not be 

linearly related to the ratio of dielectric height to wavelength.  

 

Although the transmission line equivalent network is beneficial for predicting reflectarray 

behavior, it can rapidly become complex when accounting for system non-idealities such 

as dielectric or metal losses (as seen from the previous chapter). The physical dimensions 

of the patch does not correspond to the actual electrical length of the patch that the 
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incident plane wave will observe due to substrate scaling and fringe fields. The model 

also cannot take into account surface coupling between neighboring elements without the 

introduction of a correction factor. Instead, these surfaces must be characterized using 

numerical modeling for the high degree of accuracy needed in design [80]. 

4.1.3 Improving Bandwidth 

One of the greatest limitations of the variable-patch reflectarray is the device’s limited 

bandwidth. Conventional reflective optical components, such as mirrors, have large 

operating bandwidths dependent entirely on material properties and physical dimensions. 

As demonstrated through transmission line equivalent circuit, the variable-patch 

reflectarray’s bandwidth is defined by the patch’s resonance, which is directly related to 

the dielectric height and the patch’s relative electrical dimensions. Three possible 

approaches are possible to achieve bandwidth improvement in infrared reflectarrays: 

developing multi-band layouts, controlling the electromagnetic properties of the materials 

making up the reflectarray, and stacking reflectarray layers. 

 

The first approach to improving bandwidth involves altering the patch layout to create a 

multi-band resonance. In this approach, dielectric height is fixed; however, patches are 

arranged to have multiple resonant frequencies. Design of multi-band reflectarrays are 

inherently difficult because of the non-uniform element spacing at higher frequencies and 

the complexity of the design layouts necessary to achieve more than two bands of 

resonance. Additionally, multi-band reflectarrays are not capable of continuous behavior 

between the two operating bands – limiting broadband operation. One way to ease these 
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challenges is to utilize an evolutionary algorithm to design the elements, such as using a 

genetic algorithm [81] or particle swarm algorithm. One such multi-band element, the 

slot loaded patch, will be discussed in 4.1.4.  

 

 
Figure 44: Example multi-band reflectarray layout. 

 

Another approach to improving reflectarray bandwidth requires varying the 

electromagnetic properties of the materials making up the structure. The easiest means to 

achieve bandwidth improvement by material variation is through controlled alteration of 

the substrate’s permittivity. By replacing the reflectarray substrate with a piezoelectric, 

doped material, or photonic material [82] [83] and biasing or illuminating the device, it is 

possible to tune the substrate permittivity using the bias voltage to shift reflectarray 

resonance to a specific frequency band. Unlike the multi-band layout, however, the 

reflectarray will still be limited to a single, narrow band of operation at a fixed applied 

voltage. 

 

The final approach to improving reflectarray bandwidth is through element stacking. 

Current research at microwave and millimeter-wave frequencies has demonstrated that 

stacking of reflectarray layers on top of one another will result in multiple bands of 



 81

operation and, if desired, these bands can be continuous [84] - [86]. The main limitation 

of stacked reflectarrays is the increase in material losses due to the introduction of 

multiple metal layers and the increased complexity in modeling reflectarrays with more 

than two layers. 

 

 
Figure 45: Stack-up for a multi-layer reflectarray. 

4.1.4 Achieving Phase Variation Greater Than 360° 

From the transmission line equivalent circuit, the reflectarray is fundamentally limited to 

phasing of no more than 360 degrees. Due to the need to prevent the patch from shorting 

to the groundplane, a more practical limit usually falls around 300 degrees. Thus, if phase 

steps of less than 60 degrees over the complete unit circle are desired, alternative 

geometries must be developed. One such method, developed in more detail later, is slot 

loading. By introducing a slot into the center of the patch, the resonant current modes of 

the reflectarray are forced to traverse around the slot, effectively increasing their path 

length and, subsequently, phase delay. Slot elements are also desirable due to their low-

loss and additional design flexibility by increasing the number of elements available to 
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the reflectarray designer given a set of fabrication limits (reflectarray elements and slot 

loaded reflectarray elements). 

 

From an image quality or aberration correction standpoint it is also desirable to expand 

the phase delay capability of the reflectarray to even greater than 360 degrees. The 

simplest method is to fabricate the patch elements on to a stepped structure, similar to a 

non-planar FZP [87]. The stepped structure physically moves the effective location of the 

reflectarray location allowing it to better mimic a physical reflector. From a fabrication 

standpoint, this is not desirable as the reflectarray ceases to be a planar device. Another 

alternative, at the cost of losing polarization insensitivity, is to utilize slot loaded dipoles 

in place of patches (Figure 46). By increasing one dimension of the slot loaded dipole to 

the point it no longer resonates in the desired band of operation, it is possible to increase 

the electrical length current path of the resonant direction to long enough to yield phase 

delays surpassing 2π [88]. 
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Figure 46: Dipole reflectarray with greater than 360 degrees of phase delay. 

4.1.5 The Dielectric Reflectarray 

As illustrated in Chapter 3, the presence of two metallic surfaces in the reflectarray 

design can lead to unwanted Ohmic loss. This Ohmic loss is especially undesirable at 

high frequencies due to Drude dispersion. One method for minimizing Ohmic loss is to 

construct the variable patch entirely out of a low-loss, but high-index dielectric material. 

In this type of design, a standoff layer is unnecessary and the phase contrast is determined 

by the thickness of the dielectric patch sitting directly on the groundplane. Because the 

surrounding media around the dielectric patch is air, this design has the further benefit of 

increasing the size of the effective unit cell to reduce fabrication critical dimensions. 

 

To verify the dielectric reflectarray, a simple model was developed at 28.3 THz. In 

HFSS, a 900 nm thick layer of high-resistivity silicon was modeled on a gold 
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groundplane with a fixed unit cell of 7 μm. The model, with generated fields, is shown in 

Figure 47. Varying the size of the dielectric patch, results in a phase plot analogous to the 

resonant antenna element described in Chapter 2 (Figure 48). While promising, the 

dielectric reflectarray will exhibit significantly greater chromatic variation and angular 

performance degradation compared to other reflectarray designs. This is due to the fact 

that the dielectric reflectarray utilizes interference between the top and bottom faces of 

the patch to achieve a band gap which yields a strong dependence on the dielectric 

patch’s height. 

 

 
Figure 47: Dielectric reflectarray at 28.3 THz. 

The brown box is the silicon patch and the concentration of the fields at the patch 
illustrates its ability to store field energy. 
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Figure 48: Modeled phase performance of dielectric reflectarray. 

 

4.1.6 Circularly Polarized Reflection 

As discussed in the development of the variable patch reflectarray, it is possible to 

introduce an asymmetry into the patch element to separately phase the two orthogonal 

current modes. Orthogonal phase shaping, assuming equal magnitude excitation in both 

orthogonal linear polarization states, allows for one polarization state to be delayed by 90 

degrees with the intent of yielding circularly polarized re-radiation. Focusing of the 

circularly polarized radiation is still achievable because the asymmetric patches could 

still be spatially phased across the surface of the reflectarray, while maintaining the π/2 

relative phase delay between the two orthogonal polarization states. To verify that a 

circular polarized element was feasible an asymmetric patch was modeled in Designer 

(2.1 x 2.8 μm titanium patch, 75 nm thick, 1.17 μm thick BCB standoff layer, aluminum 
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groundplane, 5 μm square unit cell). Modeled results (Figure 49) show circularly 

polarized re-radiation at 9.8 μm. 

 

 
Figure 49: Modeled reflection and phase properties of a circularly polarized reflectarray 

element. 
The gray line corresponds to the difference in reflectivity (field) or ΔR and the black line 
corresponds to the difference in phase upon reflection of the two orthogonal states or Δθ. 

 

4.1.7 Focusing Reflectarray Layout Development 

The basic layout of the focusing reflectarray is derived from Figure 50 and [6]. In the 

figure, O is defined as the center of the reflectarray, F is the desired focal point of the 

array, f is the focal length (from O to F), Zn is the nth zone in the reflectarray,  ρn the 

distance from the Zn to focal point, and rn is the distance from origin to the outer edge of 

Zn. The maximum phase variation that a polarization insensitive reflectarray element can 

achieve is typically 2π, thus for a total of i unique, equally-spaced phase zones, the 

relative phase difference between each zone will be: 
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Figure 50: Ideal focusing reflectarray layout. 

 

The focusing reflectarray is specifically designed to correct for the path difference 

between successive zones by introducing a zone-specific phase delay to allow the re-

radiated light to arrive in phase. Thus, relative phase can be related to the differences in 

path between adjacent zones and the focal point: 
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where λ is the center design wavelength and k is the propagation constant of the light in 

the media above the reflectarray. From the triangle OFZn we can relate several terms: 



 88

 
2

2
22 1

f

r
frf n

nn   (55) 

Following the previous assumptions, rn << f, which reduces the previous equation to: 
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This can then be related to the path difference between the equally spaced-in-phase zones 

by: 
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By using this equation, it is now possible to determine the distance from the origin of the 

array to the outer edge defining each zone. Although the calculations were done in only 

two dimensions, it is easy to show that the three-dimensional solution can be found by 

rotating OFZn about the line OF to maintain symmetry. 
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It is also of interest to determine the number of zones necessary to achieve a focusing 

design given a known aperture diameter, D. This can be done by substituting D/2 for rn in 

the previous equation and by letting n equal N, the total number of zones: 
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This can be written in terms of F/#: 
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Once the design equations were determined, it was necessary to develop a placement 

algorithm for creating computer readable layouts used in fabrication of the reflectarray 

devices. This algorithm is included in the developed GDSII MATLAB Toolbox discussed 

in Appendix B. The program generates a binary GDSII layout file given layout files for 

each reflectarray element’s geometry, the reflectarray’s diameter, the design wavelength, 

and the desired F/#. 

4.1.8 Additional Fabrication Requirements 

Fabrication of reflectarray devices is fundamentally the same as outlined in Section 2.6; 

however, additional steps must be taken to properly handle the substrates used in the 

construction of a practical reflectarray. Any physical height variations in the 

reflectarray’s substrate will give rise to unwanted phase shaping, which necessitates the 

use of an optical flat (as demonstrated in Figure 51). The polishing processes used in the 
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fabrication of visible-grade optical flats typically require large substrate thickness to 

diameter ratios, on the order of 1:16 or larger. Most e-beam lithography systems, 

including the Leica EBPG5000+, can only handle thin substrates, no more than a few 

millimeters thick. To overcome this limitation, a custom adapter was machined that fits 

into the 5” mask holder of the system and allows the substrate to be recessed into the 

system by 3.175mm, below where the flat would sit in a standard wafer or piece-part 

holder. Two grounding clips were added on opposite sides of the recess to provide an 

electrical path to ground, thus prevent the wafer from charging. An image of this adapter 

is presented in Figure 52. Otherwise, the fabrication process is unchanged from the one 

presented in the earlier section. 

 

 
Figure 51: 10.6 µm interferogram of a typical 380µm thick prime-grade silicon wafer 

exhibiting significant surface curvature. 
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Figure 52: Custom e-beam holder for thick substrates. 

4.2 LWIR Reflectarray 

Initial development of the infrared reflectarray was carried out in the long wave infrared 

(LWIR). The long wave was chosen over other bands due to the availability of high-

energy sources (CO2 laser) and larger wavelengths of operation for larger resonant 

element dimensions. The next few sections will discuss the design process starting with 

initial verification of reflectarray behavior in the infrared through the creation of a 

focusing device. 

4.2.1 Initial Element Development 

To test the feasibility of an LWIR focusing reflectarray, a simple two inch, three-stripe 

reflectarray layout was developed (Figure 53). Three 6.3 mm by 28 mm arrays of 

 
2” 

Grounding Clip 
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patches, isolated from each other on the dielectric by 8 mm, were deposited on a 

groundplane backed standoff layer for testing. Each uniform array was made up of a 

single sized patch element to demonstrate a unique phase shift upon reflection in 

measurement for comparison to modeled results. In addition, a 3.175 mm, quarter wave 

flatness (at 632.8 nm), silicon dioxide optical flat was used as the device’s substrate to 

ensure that any phase modification was due to the patches only and not due to a physical 

defect in the substrate. The standoff layer of these devices was chosen to be 450 nm of 

ZrO2 with a 100 nm thick Au groundplane. All of the devices in the initial element 

development section were fabricated using a bi-layer resist process and all of the metal 

elements consisted of a 100 nm thick film of Au. 

 

 
Figure 53: Proof of concept reflectarray layout. 

 

Prior to fabrication of the first proof of concept devices, two initial fabrication runs were 

carried out on silicon wafers. The purpose of these runs was to characterize the e-beam 

 

8 mm

6.3 mm

50 mm

28 mm
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fabrication process outlined earlier in the dissertation and to verify that 100 µC/cm2 was 

an appropriate dose for the reflectarray elements. The first sample consisted of a 4 by 4 

dose matrix of arrays consisting of alternating rows of 2.98 µm, 3.14 µm, or 3.24 µm size 

patches with a fixed periodicity of 5.54 µm (Figure 54 and Figure 55). The goal of this 

run was to determine the necessary dose to achieve well-formed patches, verified by 

imaging of the device using a scanning electron microscope (SEM). The second run 

consisted of verifying the desired dose from the first fabrication run using a slightly 

larger array of patches and did not require metallization. With development complete, it 

was possible to use a visible microscope to observe the exposed pattern in the resist and 

verify that the predicted dose resulted in well-formed patches. 

 

 
Figure 54: SEM image of metalized dose matrix. 
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Figure 55: Visible image of metalized dose matrix. 

 

For the proof of concept, two devices were initially fabricated. The first device used the 

same patch dimensions as the initial dose matrix for three reflectarray rows - 2.98 μm, 

3.14 μm, and 3.24 μm (Figure 56). The patch size values were chosen based on early-

modeled values that suggested a phase shift from 180 degrees of 40, 80, and 120 degrees, 

respectively, but were subsequently better predicted in later models. The three rows in the 

second device were chosen to provide additional sample points. The patch sizes were 

measured to be 2.82 µm, 2.90 µm, and 3.52 µm (Figure 56). Images of one of the 

reflectarray stripes for the first device are presented in Figure 57 and Figure 58. 
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Figure 56: Fabricated strip reflectarray with reference sizes. 

 

 
Figure 57: SEM micrograph of one of the stripes of the fabricated reflectarray. 

 

 2.98 µm or 2.82 µm 

3.14 µm or 3.52 µm 
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Figure 58: Visible micrograph of one of the stripes of the fabricated reflectarray. 

 

Measured results were interferograms taken of the two prototype devices using a 

Tywman-Green Interferometer (see Appendix A.2) and these results are presented in 

Figure 59 and Figure 60. Testing of these two devices were carried out at Lockheed 

Martin Corporation, Orlando, Florida. The first device tested was a coated optical flat. 

From the measured results, the optical flat is seen to exhibit excellent flatness at 10.6 μm 

that implies that all fringe shifts observed by the interferometer will be entirely a result of 

the reflectarray. Observation of the two fabricated reflectarrays successfully 

demonstrated that each row in the reflectarray does in fact demonstrate a unique phase 

shift (fringe shift) and that the phase shift is entirely dependent on the size of the 

reflectarray patches. 

 

One unavoidable issue that arose from the testing was non-uniform illumination of the 

device under test. Although present in the testing of the first device, this phenomenon 

50 µm 
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was especially pronounced for the second device, which was tested a few weeks later. 

The non-uniform illumination was a result of misalignment of the interferometer and not 

a product of the devices under test. Additionally, this misalignment makes efficiency 

characterization with the interferometer impossible and increases the difficulty of post 

analysis. These issues motivated the construction of in-house interferometric capabilities 

for reflectarray characterization. 

 

 
Figure 59:  Interferogram of coated wafer. 

Non-uniform illumination is clearly present, with the bottom of the wafer “hotter” than 
the top of the wafer 

 

                        
Figure 60: Interferograms of fabricated reflectarrays. 
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With the measured data in hand, it was now possible to begin analysis of the results for 

relative phase extraction. For this purpose, a MATLAB function was written to carry out 

fringe following. Each interferogram, with limited masking to remove noise from the 

edge of the image, was read in and converted to an intensity matrix, normalized to 

account for the non-uniform illumination of the device, and cropped to contain only the 

center fringes passing over the reflectarray stripes. The MATLAB function then fit the 

cross-fringe profiles to a sinusoid. The primary purpose of the fitting was to allow for 

fringe smoothing and to reduce reflectarray edge noise and non-idealities in the testing 

setup. No numerical averaging was necessary, as the phase shift is optimized as a fitting 

parameter for the sinusoid. Results from both devices are presented in Figure 61 and 

Figure 62. 



 99

 
Figure 61: Smoothed phase response results for first reflectarray. 
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Figure 62: Smoothed phase response results for second reflectarray.
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To determine the actual phase shift introduced by the reflectarray stripes, a correction 

factor was introduced to account for the double pass offset due to the height difference 

between the reference groundplane and the reflectarray patches. The double pass phase 

shift for a 450 nm standoff layer with a permittivity of 2.0 was calculated to be 43.4 

degrees. This problem did not affect modeling because the software assumed a fixed 

phase reference plane. By subtracting the phase offset from the values generated by the 

MATLAB function analysis, the phase shift introduced by the reflectarray was calculated 

and is summarized for the two proof of concept devices in Table 5. Table 5 also includes 

results from a third array fabricated using a slightly modified layout on a silicon wafer to 

accommodate a larger number of stripes with patch sizes of 3.3 μm, 3.4 μm, 3.7 μm, 3.9 

μm, and 4.1 μm. 

 

Table 5: Measured relative phase shift vs. reflectarray patch size. 
Patch Size Relative Phase Shift Upon Reflection 

2.82 μm 174.4 º 
2.90 μm 172.4 º 
2.98 μm 136.4 º 
3.14 μm 124.1 º 
3.24 μm 110.3 º 
3.30 μm 79.7 º 
3.40 μm 56.3 º 
3.52 μm -56.2 º 
3.70 μm -95.1 º 
3.90 μm -109.3 º 
4.10 μm -112.4 º 

 

In addition to verifying that reflectarray behavior was achievable at infrared frequencies, 

a secondary purpose of this portion of the infrared reflectarray research was to verify that 

phase behavior could be predicted using CEM. The results from Table 5 are plotted with 

results from an Ansoft Designer model in Figure 63. As demonstrated in the figure, 
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excellent agreement is observed between measured and modeled results. Similar 

agreement was found using Ansoft HFSS. 

 

 
Figure 63: Modeled (solid line) vs. measured (dark squares) results for initial element 

development. 

4.2.2 Low Loss Element Development 

Following the positive results of the initial element’s development, several modifications 

to the LWIR reflectarray’s layout were introduced for production cost reduction and 

reflection efficiency gains. All of the gold metal layers in the design were replaced with 

aluminum for improved adhesion and lower deposition costs. The groundplane was also 

reduced to 80 nm thick and the elements making up the array were reduced to 75 nm to 

minimize phase errors caused by the physical height of the elements. In addition, the 

ZrO2 standoff layer was replaced with a layer of BCB, which has similar optical 

properties to ZrO2 without the need of sputter or evaporation deposition. The index of 

BCB, slightly higher than ZrO2 in LWIR, required a reduced unit cell periodicity of 5 
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µm. Fabrication also moved away from using an optical flat to a standard silicon wafer 

because of improvements in imaging capability from the in-house interferometer. The 

larger size of the silicon wafer allowed for more stripes to be tested per fabrication run 

and removed several tolerance issues inherent to fabrication with the thick substrates. 

Comparison of the new layout to the old is presented in Figure 64. 

 

 
Figure 64: New layout prototype on a silicon wafer imaged below previous prototype on 

an optical flat. 
 

For the reflectarray to be a viable technology for focusing applications, reflection loss of 

the patch elements must be minimized. Therefore, the thickness of the substrate layer was 
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increased to 1.2 µm to reduce loss introduced by the band gap of the resonant patches 

(Figure 65), with the added benefit of increasing the bandwidth of the reflectarray 

element. One detrimental result of the increased substrate thickness, as predicted by 

theory, was a decreased overall phase variation (Figure 66). To mitigate this issue, 

patches loaded with slots were determined through numerical modeling to provide the 

nearly complete phase transition required for up to a focusing reflectarray with phase 

steps of 45 degrees.  

 

 
Figure 65: Modeled reflectarray reflectivity with varying standoff layer film thickness. 
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Figure 66: Modeled results for new layout (black line) vs. old layout (grey line).  

The black boxes represent slot loaded patch phase points (patch size = 4.5 μm, slots = 1, 
1.5, 2, 2.5, 3, 3.5, 4 μm). 

 

A new prototype (bottom of Figure 64) was developed and tested to validate the 

numerical models of the proposed 2nd generation reflectarray element. These devices 

were tested for the first time at the IR Systems Lab using a newly developed 10.6 µm 

Twyman-Green interferometer. The new interferometer allowed for faster testing and 

better imaging with zoom when compared to the previous interferometer housed at 

Lockheed Martin (Figure 67). Figure 68 illustrates the improved contrast and lower loss 

of the new layout versus the older layout, while Figure 69 demonstrates the near 360-

degree transition possible using slot loaded elements. Finally, two arrays of two different 

sized elements was fabricated demonstrating additional phase selectivity, with a phase 

response falling in between the two patch sizes (Figure 70). 
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Figure 67: Improved interferometer characterization capability demonstrating zoom, 

better edge transition resolution, and uniform illumination. 
 

 
Figure 68: Improved efficiency of new layout with reflectarray regions denoted by red 

box.  
The new layout exhibits better fringe contrast and has similar brightness to neighboring 

reference (no element) regions. 
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Figure 69: Square loop reflectarray element with reflectarray regions denoted by red box. 
Fringes across the reflectarray are nearly flush to the fringes in the neighboring reference 

regions due to a phase transition close to 360 degrees. 
 

 
Figure 70: Improved phase selection by mixing elements. 

4.2.3 Continuous Reflectarray 

Before a focusing reflectarray was attempted, a simple continuous phase variation 

reflectarray was fabricated. The reflectarray layout was rectangular and had a gradual 

decrease in patch dimensions from the top of the prototype to the bottom consisting of 10 

sub-arrays (Figure 71). The purpose of this device was to verify that the individual 

elements making up the sub-array were not resolvable and that the transitions between 

differing elements were not significant. Measured results using the LWIR interferometer 
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verified that individual phase variations could not be isolated and that continuous phase 

transitions occurred between neighboring elements (Figure 72).  

 

 
Figure 71: GDSII layout of continuous reflectarray. 

Sizes were chosen to match the non-linear transition of the elements and the element 
dimensions are 1.5 µm, 2 µm, 2.3 µm, 2.4 µm, 2.5 µm, 2.6 µm, 2.7 µm, 2.8 µm, 3.0 µm, 

and 4.0 µm. 
 

 
Figure 72: Continuous phase variation reflectarray device measured at 10.6 µm. 

Element 1.5: 5250x525

Element 2.0: 5250x525

Element 2.3: 5250x525

Element 2.4: 5250x525

Element 2.5: 5250x525

Element 2.6: 5250x525

Element 2.7: 5250x525

Element 2.8: 5250x525

Element 3.0: 5250x525

Element 4.0: 5250x525
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4.2.4 Binary Focusing Reflectarray 

For the first focusing prototype, only one discrete phase state of a two-element 

reflectarray was populated with patch elements of fixed dimension. The other phase state, 

or other element, was simply the combination of the groundplane and the standoff layer. 

Using the low-loss element layout dictated the use of aluminum patch elements of 

dimension 2.83 µm and thickness of 75 nm to achieve 180 degrees of phase shift upon 

reflection, relative to the region without patches. Unit cell spacing was 5 µm to prevent 

the appearance of grating lobes. A pattern layout was generated for an F/6, 25.4 mm 

diameter reflectarray with a total of 100 zones and greater than 20 million patch 

elements. This reflectarray layout is also notable since it is the largest known reflectarray 

ever tested in both number of elements and electrical diameter of the array [89]. One 

portion of the array is shown in Figure 73 and complete array resembled Figure 3. 

Modeled results predict a surface absorption loss due to the band gap of the reflectarray 

elements of 14%. 

 

 
Figure 73: Visible micrograph of (a) reflectarray rings with layout schematic and (b) 

patch elements in the rings. 
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Measurement of the focusing reflectarray was done by imaging the beam profile of a 

collimated beam reflected off of the reflectarray. Specifically, the beam from a 10.6 µm, 

10 W CO2 laser was initially expanded with a telescope to a collimated beam of diameter 

of 25.4 mm. The collimated beam was then directed by a beam splitter onto the surface of 

the reflectarray. The reflected focusing beam was projected onto a Spiricon pyroelectric 

detector array. The specific testing setup is discussed in greater detail in Appendix A.3. 

Determination of the optimal focal point was found by shifting the position of the device 

under test on a rail to minimize the focused spot size. Figure 74a is an image of the 

fabricated reflectarray element at optimal focus, 152.4 mm away from the camera. 

Introducing a defocus, as in Figure 74b, yields a nearly symmetric blur spot, as expected. 

Thus, a focusing reflectarray has been successfully demonstrated at infrared frequencies. 

 

 
Figure 74: (a) Reflected beam profiles of reflectarray at optimal focus and (b) reflectarray 

outside of optimal focus. 
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4.2.5 Two-Element Focusing Reflectarray 

When the binary reflectarray was originally tested, there was a question whether or not 

the focusing was arising entirely due to a diffractive effect. Based on modeling, the BCB 

layer thickness of 1.2 µm would still provide a reduced volume compared to a 

groundplane-backed Soret FZP, which would require a standoff layer height of 

approximately λ/4 or 1.8 µm. To validate that the reflectarray was focusing due to the 

resonant elements, and not another phenomenon, the same two-element layout was 

fabricated again, but with elements in every zone. The two-elements chosen were 2 µm 

(138.22 degrees) and 3.45 µm (-43.15 degrees), for a relative phase difference of 180 

degrees. Measurements of this surface demonstrated the same behavior as the binary 

reflectarray. Modeled results predict a surface absorption loss due to the band gap of the 

reflectarray elements of 13%. 

4.2.6 Eight-Element Focusing Reflectarray 

Finally, to verify that a smaller focused spot (reduced power into the higher order foci) 

was possible with a graded reflectarray, an eight-element reflectarray was developed 

using the same F/# and diameter as before. The eight-element reflectarray has phase steps 

of 45 degrees, as opposed to the 180 degrees in the two previous designs, which should 

yield 95% of the reflected power into the primary focus [6]. The eight elements used 

included (from center zone outward) a blank region (180 degrees), 2.025 µm patch 

(135.82 degrees), 2.35 µm patch (91.74 degrees), 2.60 µm patch (45.28 degrees), 2.825 

µm patch ( 7.74 degrees), 3.5 µm patch (-45.12 degrees), 4.5 µm patch loaded with a 2.25 

µm slot (-89. 14 degrees), and a 4.5 µm patch loaded with a 4 µm slot (-132.43 degrees). 
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Modeled results predict a surface absorption loss due to the band gap of the reflectarray 

elements of 16%. The reflectarray was fabricated and the measured results are shown 

Figure 75. As expected, the focused spot is significantly smaller, with a diameter less 

than 200 µm, as opposed to the greater than 500 µm spot size observed with the binary 

reflectarray. In spite of the smaller spot, significant stray light is present and lower power 

is observed in the focus spot than the two previous designs.  

 

 
Figure 75: 8 element graded reflectarray. 

While a smaller focus (purple spot) is observed, significant stray light (colored gray) is 
present. 

4.3 MWIR Reflectarray Element Development 

Following the progress of the LWIR reflectarray, it was of high interest to expand IR 

reflectarray technology into the MWIR. To aid in measuring these new devices, a MWIR 

Tywman-Green interferometer was constructed. The MWIR interferometer was built on 
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the same optical train as the LWIR interferometer using two turn mirrors and a helium 

neon (HeNe) laser operating at 3.39µm (Figure 76). Due to the low power of the HeNe, a 

platinum silicide (PtSi) camera was utilized in place of the 10.6 µm Pyrocam. 

 

 
Figure 76: 3.39 µm interferometer setup using portions of the 10.6 µm optical train.  

The wire grid polarizer allows for power control since the source laser is linearly 
polarized. 

 

With testing capability in hand, development of the MWIR reflectarray followed an 

identical path as the earlier, multi-stripe LWIR reflectarray. BCB was again chosen as the 

standoff layer due to the material’s low-loss in the MWIR and ease of deposition. 

Aluminum was similarly picked due to the metal’s high reflectivity and limited damping 

at 3.39 µm, although the patch thickness was reduced to 40 nm. New Designer models 

were developed and the optimal thickness of the BCB standoff layer was found to be 350 

nm, which required adding additional solvent to thin the BCB. An optimal unit cell length 

of 1.5 µm was chosen. A total of 9 patch sizes were fabricated on a silicon wafer and 
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imaged. Figure 77 contains several imaged stripes demonstrating unique fringe shifting. 

Measured results are presented against modeled results in Figure 78. Some surface 

curvature was observed, due to the substrate, but this was accounted for during analysis. 

Thus, the feasibility of reflectarray behavior in the MWIR has been demonstrated. 

 

                       
 Figure 77: Four stripes of the 3.39µm reflectarray prototype demonstrating unique fringe 

shifting at each stripe. 
 

 
Figure 78: Measured and modeled results for the 3.39 µm reflectarray prototype. 

Solid line is modeled data and data points correspond to measured results. 
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4.4 NIR Reflectarray Element Development 

Similarly, it was of high interest to expand the reflectarray technology into the NIR. For 

testing, a custom interferometer system was built (Figure 79). The source for the NIR 

interferometer was a 1.55 µm diode laser and the detector was a SUI Goodrich camera. 

 

             
Figure 79: 1.55 µm interferometer source and testing setup. 

 

As with the MWIR design, BCB and aluminum (30 nm thickness for patches) were 

determined to be optimal materials for use in development of the NIR reflectarray 

elements. Another model was developed and the thickness of the BCB standoff layer was 

chosen to be 200 nm with a unit cell length of 0.8 µm. Figure 80 contains images of two 

of the total 9 patch sizes fabricated demonstrating fringe shifting. Measured results are 

presented against modeled results in Figure 81. Several complications were identified in 

development of the NIR Reflectarray: 

 

 Great care must be taken to ensure that a uniform thickness BCB layer is applied, 

due to the dilution need to achieve layer thicknesses of 200 nm. The discrepancies 
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between modeled and measured results are due to height variations in the standoff 

layer 

 Patch elements of size 100, 150, and 200 nm were written, but destroyed during 

lift-off due to their small size 

 Patch elements of size 250 and 300 nm exhibited array damage during lift-off 

 Significant substrate curvature was observed, leading to potential error in 

measured phase values. 

 

It is important to note that all four issues can be readily corrected. The MWIR 

reflectarray was fabricated after the NIR reflectarray using two layers of thinned BCB 

and did not contain significant height variation. Extremely small elements do not appear 

to be necessary and alternative approaches for the fabrication of sub-micron elements are 

available in the lab. Finally, surface curvature can be reduced by carrying out fabrication 

to use an optical flat. All of these issues will be addressed in future work; however, the 

results do demonstrate the feasibility of reflectarray behavior in the NIR. 
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Figure 80: Two stripes of 1.55µm reflectarray prototype demonstrating unique fringe 

shifting at each stripe. 
 

 
Figure 81: Measured and modeled results for the 1.55µm reflectarray prototype. 

 Solid line is modeled data and data points correspond to measured results. 

4.5 Aberration Behavior 

The aberration behavior of the reflectarray arises from two separate sources. The first is 

due to the geometrical shape of the reflectarray and the second is due to the chromatic 
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and angular behavior of the elements making up the reflectarray. The geometrical 

aberrations are well documented in the FZP community [6] [90]. Prior to this work, no 

known investigations have been carried out in the aberration performance of 

metamaterial surfaces as imaging devices. The next two sections will investigate methods 

for predicting the aberration performance of a reflectarray. 

4.5.1 Angular 

From section 4.1.7, the one-dimensional optical path difference (OPD) of a graded 

reflectarray can be written as (following the process outlined in [90]): 

 fOPD n    (65) 

ρn can be rewritten on axis as: 

 22
nn rf   (66) 

which yields: 
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Thus can be expanded with a power series: 
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It should be noted that this term is equal to ρn,n-1 (difference in path between adjacent 

zones, from before) if the higher order term is neglected. The higher order term 

represents the spherical aberration component of the graded FZP at normal incidence. 
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The OPD developed can be expanded to account for an incident marginal ray at an angle 

of α. The off-axis OPD can be represented as: 

 )tan1)(tan1(sin 22   f
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which can be expanded to: 
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The first term of the off-axis OPD represents the diffraction-limited performance and the 

fourth term represents the spherical aberration, as before. The third term describes coma 

and the second term describes astigmatism and field curvature, with no distortion present. 

Several important conclusions can be made from this result. Remembering that: 

 
i

fn
rn

2
  (71) 

and 

 
/#8F

iD
N   (72) 

it can be shown that increasing the diameter or decreasing F/# of the graded reflectarray 

will result in a greater coma contribution. Expansion into two dimensions is not shown 

and would involve the inclusion of an appropriate cos(φ) term (see [90]). 

 

Inclusion of the performance of the reflectarray elements is not trivial. The phase delay of 

the elements are dependent on both the incident angle of the radiation, as shown in Figure 

13, and, thus, the angle of re-radiation, from reciprocity. From that same figure, the 

additional phase delay introduced by off-angle radiation can be expressed as: 
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 )()(, nnnnaddtional    (73) 

Where α is the incident angle, βn is the angle formed by OZnF from Figure 50, and θn is 

the relative phase difference between the off-axis and on-axis responses of the 

reflectarray element. Phase delay can be related to path length (l) by: 
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Thus, the additional path contribution from one of the reflectarray’s sub-zones at non-

normal illumination/re-radiation would be: 
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This term can incorporated directly into the two OPD expressions developed previously: 
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The next step for finding the aberration contribution of the reflectarray elements is to 

develop an analytical representation of the off-axis behavior of the reflectarray. 

Unfortunately, there is no way to predict this response prior to modeling, as shown in 

previous sections 2.4, 2.5, and 4.1.2. Nevertheless, from Figure 13 and assuming only TE 

polarized radiation, the phase delay introduced due to non-normal incident or re-radiated 

radiation will have a quasi-sigmoid form resembling [91]: 
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Where x is some arbitrary angle, θ0 is an offset term and A and B are structure dependent 

terms. Using a Taylor expansion, converting to path length, and neglecting the piston 

terms, the equation can be expanded out to: 
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Several exciting conclusions can be made from this result. First, the off-axis behavior of 

the reflectarray will primarily contribute to the tilt (first term) and to the coma (second 

term) of the ideal graded reflectarray developed previously. Secondly, even at normal 

incidence, the reflectarray can produce off-axis aberrations due to βn not being equal to 

zero at the edges of the reflectarray: 

 )/#
2

1
(tan)( 11  FMax n  (80) 

Thus, smaller F/# reflectarrays will experience more significant aberration contributions 

arising from the antenna elements making up the array. This type of behavior is 

completely different from similar refractive or diffractive surfaces where only spherical 

aberration should be present at normal illumination. Figure 82 shows an astigmatism 

dominated imaged spot from a reflectarray device for nearly normally incident 

illumination. 
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Figure 82: Images of binary reflectarray aberration behavior: (left) image of blur spot 

with detector placed inside focus and (right) detector placed outside focus demonstrating 
astigmatism. 

 

In general, it is desirable to get rid of the on-axis higher order aberrations at normal 

incidence. To do this, each sub-zone of the graded reflectarray will have to be corrected 

for their position within the array and their corresponding βn. As mentioned previously, 

no simple expression exists for determining the off-axis behavior of a reflectarray 

element. Instead, the reflectarray layout generator can be hooked directly into a database 

or CEM to pick out reflectarray elements on the fly (Figure 83). Furthermore, it should be 

feasible to select elements with phase delays to correct for the on-axis spherical 

aberration allowing for near diffraction limit imaging without altering the array’s layout. 

Similarly, the discrete phase control achievable by the reflectarray can be utilized for 

more complicated correction, including suppression of system aberrations. 
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Figure 83: Future design method for aberration corrected reflectarray. 

4.5.2 Chromatic 

The graded reflectarray will once again obey the aberration behavior of the FZP. 

Following the development from [90], chromatic aberration will not be appreciable until 

the OPD has been shifted by a quarter-wave. This can be used to find the bandwidth of 

the structure: 
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Setting this equal to the ρn,n-1 can yield the bandwidth of the structure: 
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Thus, increasing the diameter or decreasing the F/# will result in a decrease in the 

effective bandwidth of the reflectarray. 

 

As with the angular aberration discussion, the chromatic behavior of the reflectarray 

element is quasi-sigmoid (Figure 10). This behavior is detrimental to the bandwidth of 
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the reflectarray. The phase delay introduced by changing the incident wavelength can be 

written as 
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where again A and B are dependent on the structure of the resonant element. From this 

expression, as the wavelength is increased, the phase delay introduced by the reflectarray 

will be decreased resulting in a further loss of path length. This phenomenon arises from 

the electrical current path length of the resonant element decreasing with larger 

wavelengths. Thus, assuming minimal dispersion in the materials making up the radiating 

structure, there appears to be no means of changing the direction of the phase curve to 

increase the phase delay at longer wavelengths, which would allow for achromatic type 

designs. 
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CHAPTER 5: THE INFRARED TRANSMITARRAY 

5.1 Fundamental Theory 

Similar to the reflectarray in terms of layout and advantages, transmitarray devices work 

by varying the impedance of a 2-dimensional surface with resonant antenna elements to 

focus or diverge an impinging beam of known propagation direction upon transmission 

(Figure 84). Wavefront shaping still occurs due to the superposition of the fields re-

radiated by the resonant elements. The specific wavefront formed is dependent on the 

effective phase delay of each element in the array. Transmitarrays are desirable over 

graded index (GRIN) lenses in the infrared due to the lack of choices for transparent 

dielectrics in the band with significantly different indices. These surfaces are also 

substantially easier to fabricate then similarly behaved kinoform, transmissive FZPs. 

 

 
Figure 84: Planar transmitarray focusing a planar wavefront. 
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Transmitarrays, in various forms, have existed since the mid-1980s [92], but have only 

experienced limited research interest. Most transmitarray designs are three-dimensional, 

have been proposed for use as power combiners [93], and consist of two patch arrays 

(one receiving and one transmitting) interconnected with two vias at either end of a delay 

line and an amplifier in either a tile [94] [95] or tray configuration [96]. Three-

dimensional passive transmitarrays can be constructed by simply removing the amplifier 

[97]. Planar, passive transmitarrays have been realized through replacing the receiving 

patch array with a slot array and directly coupling the transmitting array [98] [99]. It 

should also be noted that the transmitarray defined here should not be confused with 

similarly named radar transmit arrays [100] or magnetic resonance transmit arrays [101]. 

 

In addition to the reasons already provided, the planar, passive transmitarray shares most 

of the advantages of its reflectarray cousin. The impedance, or progressive phase of the 

surface, is discrete, which allows for sub-wavelength control of aberrations. 

Transmitarrays are planar surfaces and can incorporate utility stacking or fabrication on a 

non-planar surface. The elements making up the array can be loaded with tunable 

elements for electronically controllable beamsteering. Furthermore, transmitarrays are 

lithographically generated and potentially cheaper than kinoform lenses or similar 

refractive lenses. 

5.2 Single Layer Transmitarray 

The most logical way to investigate the feasibility of a single layer transmitarray is to 

follow the same design approach as the reflectarray, assuming that reciprocity is 
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maintained. To that end, a square patch transmitarray was developed. Due to a flaw in 

HFSS maintaining the polarity of the waveports used in the transmissive IAWM, it was 

not possible to model the patch with variable patch sizes. Instead, a fixed 1.8 μm by 1.8 

μm patch was modeled over a portion of the LWIR that should provide a means for 

predicting the phase contrast available to the transmitarray at a fixed frequency. The 

patch was placed on an infinite half-space of silicon, was 75 nm thick, and had a 

periodicity of 2.5 μm. Modeled results are presented in Figure 85. Unfortunately, only a 

small amount of phase variation is achieved (~120 degrees) while incurring significant 

reject band loss – far greater than the reflectarray. 

 

 
Figure 85: Square patch transmitarray modeled performance. 

The gray line corresponds to the transmittivity (field) of the transmitarray and the black 
line corresponds phase delay introduced by the transmitarray. 

 

To help mitigate the loss in the band gap of the transmitarray, a slot patch was also 

modeled. From Babinet’s principle, the slot should exhibit the complimentary 

performance of the solid element in terms of spectral transmission. The results of this 
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model, using the same periodicity and materials as before is presented in Figure 86. The 

slot exhibits a small range of possible phases. The same model was repeated using a cross 

slot with arm widths of 400 nm and lengths equal to 1.8 μm to increase the strength of the 

resonance. The cross slot did improve the phase range, but not enough to be practical in a 

focusing device (Figure 87). Both slots will also require the usage of a lower index 

substrate material to reduce the reflection loss in the passband. 

 

 
Figure 86: Patch slot transmitarray modeled performance. 

The gray line corresponds to the transmittivity (field) of the transmitarray and the black 
line corresponds phase delay introduced by the transmitarray. 
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Figure 87: Cross slot transmitarray modeled performance. 

The gray line corresponds to the transmittivity (field) of the transmitarray and the black 
line corresponds phase delay introduced by the transmitarray. 

5.3 Feasibility and Alternatives To The Infrared Transmitarray 

Modeling indicates that resonating elements make poor phased transmission devices. It 

could be easily argued that phase contrast could be increased through multiple layers or 

the use of aperture coupling to introduce a quasi-groundplane [98] [99]. Both of the 

approaches are undesirable due to the considerable effort necessary to align multiple 

layers with unit cell spacing in the single digit micron range. The lack of a groundplane, 

when compared to the reflectarray, also leads to a significant loss caused by the backward 

radiated lobe. Furthermore, the extreme loss of these structures rejection bands strongly 

limit the practicality of these surfaces when compared to far superior surfaces such as 

dielectric FZP or even GRIN lenses. 
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Some alternative approaches exist. The most obvious approach would be to utilize non-

resonant antenna elements, analogous to the meanderline structure discussed in the first 

chapter. Exploiting the inductive or capacitive delay of these structures would accomplish 

the same goal as the transmitarray. Devices of this type include the metal grid double 

square slotted elements as shown in [6]. Another alternative would be to utilize all 

dielectric surfaces to approximate the indexes necessary to form a GRIN like surface. 

This type of surface would be analogous to a spatially varied moth-eye surface [102]. 

 

 

 



 131

CHAPTER 6: THE INFRARED EMITARRAY 

6.1 Fundamental Theory 

The formation of thermally excited, coherent emission using planar, ordered surfaces has 

been investigated over the past few years for potential applications in efficient energy 

harvesting [103] and related fields. Grating based emitters were one of the earliest 

surfaces shown to demonstrate coherent emission, specifically directional emission 

patterns [104], linear polarized emission [105], circular polarized emission, and short 

range coherence [106]. Prior publications have also noted the similarity of these surfaces 

to classical, resonant antennas [107], but have typically analyzed their behavior using 

band theory or plasmonics [108]. While promising, grating based emitters are limited in 

their practicality due to complexity of excitation and fundamental geometrical simplicity. 

 

Emission frequency selective surfaces (eFSS) are promising alternative to diffractive 

phased surfaces. eFSS, just like illuminated absorber FSS, consist of an array of passive, 

resonant antenna elements fabricated above a groundplane forming a resonant cavity. The 

array will emit when in physical contact with a thermal source, such as a hot plate, and 

does not require localized excitation. Because eFSS require a groundplane to function, 

these structures do not rely on transparent substrates, like many emissive diffractive 

grating designs, and allow for direct spectral and emission magnitude control, 

independent of the surface of the thermal source. Furthermore, these surfaces enjoy the 

possibility of multi-band operation and robust design using well-established 

computational electromagnetic techniques. The eventual goal of this research is to utilize 
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the phasing capabilities of an eFSS to focus emitted radiation, analogous to the 

reflectarray surface, thus creating an emitarray. 

6.1.1 Relating Thermal Performance to Electromagnetic Performance 

The emissivity of a surface can be related to its electromagnetic properties through two 

relationships: the conservation of energy and Kirchhoff’s law. The conservation of 

energy relates the reflectivity (ρ), transmitivity (τ), and absorptivity (α): 

 1)()()(    (85) 

Kirchhoff’s law for a surface at equilibrium relates the surface absorptivity to its 

emissivity (ε): 

 )()(    (86) 

Kirchoff’s law can then be substituted into the conservation of energy equation to yield: 

 )()(1)(    (87) 

Thus, modeled or measured reflectivity and transmission data for a given surface can be 

used to directly calculate the emissivity of that surface.  

 

Furthermore, for groundplane backed surfaces where transmitivity is equal to zero, such 

as the eFSS, reflectivity can be directly related to emissivity through: 

 )(1)(    (88) 

This conclusion has been validated in multiple publications including [109] and [110]. 
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6.1.2 Phasing Thermal Emission 

As mentioned previously, the performance of an illuminated, groundplane backed, planar 

resonant antenna element, assuming sub-wavelength unit cell spacing and minimal 

shorting to the groundplane, will experience some degree of coupling (mutual or 

otherwise) to any neighboring elements. This coupling will directly impact the resonance 

properties of the array, serving as a capacitive loading. Thus, given that the spectral 

reflection and emission performance of antenna element are directly related, then the 

thermally excited currents in an emitting eFSS must also be influenced by this coupling.  

 

Consider two identical dipoles, with resonance in the infrared, in near proximity to one 

another. As the dipoles are heated, currents are excited on the surface of each element. 

The antennas begin to resonate and mutual coupling occurs due to the fields excited by 

the currents. In this way, short-range coherence is established. Now consider if one of the 

dipoles is slightly shorter than the other. Even though the elements are no longer 

identical, they will still couple and experience a capacitive load due to the coupling. From 

the analysis of the reflectarray, at a given frequency in the band gap of the two dipoles, 

the two elements should radiate out of phase. Assuming that the array is expanded out to 

an infinite extent, once the array reaches equilibrium, all of the elements in the array 

should be emitting coherently with one another because the current path on the surface of 

each dipole is significantly less than the coherence length. The exception to this rule 

would occur at the edges of the array where edge effect may become significant. 
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However, if the eFSS element is symmetric about two or more planes and allows for 

orthogonal current modes to exist at resonance, no field mechanisms are present to ensure 

coherence between the two resonant modes. The lack of coherence between orthogonal 

current modes is significant and precludes the use of many reflective polarizer designs as 

polarized or directional emitters, since the two orthogonal polarization states will not 

radiate in phase. Thus, the only way to achieve circularly polarized emission or 

unpolarized coherent emission is to utilize a resonant element with a strong cross-

polarization. 

 

From prior publications, detecting or analytically proving coherent emission is extremely 

difficult. The rest of the chapter will initially look at some methods for demonstrating 

long-range coherent emission through polarization. Finally, an emitarray surface will be 

discussed and initial results will be presented. 

6.2 Polarized Emission 

Polarized emitting materials have been demonstrated previously – most notably lasers 

and chiral materials [111]. The issue with all of these approaches is they require non-

planar structures or structures secondary to the emission surface (such as a linear 

polarizer) to achieve polarization. Planar eFSS are an excellent alternative to these 

surfaces and can be significantly easier to fabricate and tailor to meet specific emission 

needs. The next three sub-sections will investigate one linearly polarized eFSS and two 

planar circularly polarized emitters. 
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6.2.1 Linearly Polarized Emission by Asymmetric Resonant Elements 

Linearly polarized resonant elements can be realized through the usage of a dual band 

FSS element. The purpose of this experiment is to verify that emission from an eFSS can 

be polarized. The simplest dual-band emitter element is the dipole patch. By ensuring the 

width of the dipole is small enough that it will not resonate in the same band as the dipole 

itself, the element will emit strongly linearly polarized light, polarized along the direction 

of the length of the dipole. It should be noted that the dipole element is not the only 

geometry with dual-band behavior; thus, more complicated designs could be developed 

depending on the spectral properties desired.  

 

Fabrication of the dipole-based linearly polarized emission surface was carried out using 

the standard electron beam lithography process outlined earlier. The groundplane and 

supporting structure of the device consisted of a 380 µm thick silicon wafer with an 85-

nm-thick film of aluminum deposited directly on the wafer. A 1.2 µm film of BCB was 

spun on to isolate the elements from the groundplane, and the asymmetric emission 

elements were made up of a lossy 100 nm film of titanium. The dipole antenna elements 

were 2.9 µm by 0.5 µm. The square unit cell spacing was 5 µm. Measured polarization 

results using a polarizer and a power meter for the fabricated elements are presented in 

Table 6 and demonstrate linearly polarized emission. Even though an aperture was 

mounted to exclude the un-populated regions surrounding the emission surface, 

significant leakage was observed around the edges of the aperture diminishing the 

contrast of the co-polarized and cross-polarized power. 
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Table 6: Measured emitted power from a dipole array heated to 100 °C. 
Polarization State Power 

Co-Polarized 0.125 mW 
Cross-Polarized 0.095 mW 

 

For visual verification and a better demonstration of the linear nature of the emission 

surface, a pattern using the University of Central Florida’s emblem, the Pegasus, was 

fabricated using orthogonally orientated dipoles (Figure 88). The Pegasus was 27.5 mm 

in diameter. Images of this device (Figure 89) produced using an integrated 8-12 µm 

camera and a linear polarizer demonstrate the high contrast response of the dipole over a 

large bandwidth. When the array is imaged without a polarizer present in the optical train 

of the Pegasus, as in Figure 90, both orthogonal dipoles emit equally and the shape 

cannot be resolved. 

 

 
Figure 88: UCF Pegasus logo with dipole orientations. 
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Figure 89: Images of the linearly polarized Pegasus with the camera’s linear polarizer (a) 

horizontally oriented and (b) vertically oriented. 
 

 
Figure 90: Images of the linearly polarized Pegasus with the camera’s linear polarizer not 

present. 
The dark spot in the circle is due to a defect in the array. 

 

6.2.2 Circularly Polarized Emission by a Compact Multi-Layer Structure 

Achieving circular polarization from thermal emission is significantly more challenging 

than linear polarization. Instead of shifting one linear polarization state to emit into a 

separate spectral band or suppressing emission into that state completely, circular 

polarization requires emission into both linear states with a 90° phase difference between 
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the two states. Prior to this research, the best way to achieve circular polarized emission 

is to linearly polarize the emitted radiation using a wire-grid polarizer and align the now 

linearly polarized radiation at a 45° angle relative to a quarter-wave plate. The quarter-

wave plate delays one orthogonal state of the linearly polarized radiation by 90° allowing 

circular polarization to be transmitted. The process is shown in Figure 91 and described 

in detail in [25]. 

 

 
Figure 91: State-of-the-art circular polarizer for emitted radiation. 

In this schematic, the fast axis of the quarter-wave plate is rotated from the normal of the 
page 45° about an axis parallel to the incident radiation’s propagation (black line). The 

wire grid is orientated in the plane of the paper, perpendicular to the incident radiation’s 
propagation (black line). 

 

While fundamentally simple, the process of using a wire-grid polarizer and a quarter-

wave plate is inefficient and inelegant. The most obvious limitation is that the wire-grid 

polarizer will suppress half of the emitted light, greatly reducing the power of an already 

inefficient emission process and causing unwanted scatter and thermal loading. The wire 
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grid, the surface closest to the emitting surface, is not resonant, which means that another 

coating or structured surface must be placed on the emitting surface if spectral or 

magnitude control is desired. Furthermore, previous designs have typically mounted the 

polarizer and plate on a separate substrate that cannot be easily placed in contact with the 

emitting surface due to structural or thermal shock reasons [112]. This leads to 

volumetrically large systems and limits the possibility of conformal polarization control. 

 

All of these limitations can be corrected for by replacing the wire-grid polarizer with a 

linearly polarized emission surface. The linearly polarized surface will allow for more 

emitted energy in the band of interest than the 50% allowed by the wire-grid, since the 

undesired polarization emission path is not present and all emission from the heated 

surface must occur in the desired polarization state only, if designed properly. Spectral 

and emission magnitude control are readily available by altering the geometry and metal 

of the periodic asymmetric elements. The system is also significantly more compact than 

the wire-grid design with the substrate replaced with an electrically thin, thermal 

insulation layer. A schematic for this polarizer is presented in Figure 92.  
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Figure 92: Compact, multi-layer circular polarizer for emitted radiation. 

In this schematic, the fast axis of the quarter-wave plate is rotated from the normal of the 
page 45° about an axis parallel to the incident radiation’s propagation (black line). The 
linearly polarized emission surface is orientated for emission in the plane of the paper, 

perpendicular to the incident radiation’s propagation (black line). 
 

6.2.3 Circularly Polarized Emission by a Single-Layer Structure 

As mentioned before, to achieve circularly polarized emission using a planar element, a 

structure with no symmetry and the presence of two interacting orthogonal modes must 

be utilized. To meet that end, a tripole [113] eFSS structure was adapted. The tripole was 

initially chosen due to its significant cross-polarization and the fact the two orthogonal 

polarization states share common current paths. By shortening one of the legs of tripole, 

it is possible to shift the resonance of the element resulting in a progressive phasing 

between the orthogonal linear polarization states (Figure 93). Choosing the length of the 

leg to result in a phase delay of 90 degrees and minimizing the difference in emissivity 

between the two orthogonal states, the resulting tripole will have circularly polarized 
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emission. The modeled results of an asymmetric tripole with two legs 1.65 μm long, one 

leg 1.05 μm, and an arm width of 0.5 μm are presented. The elements had a unit cell 

spacing of 3.5 by 4.0 μm. The modeled device exhibits a fairly large band of operation 

from about 8.5 to 10.8 μm. Other than the geometry of the element, all design parameters 

are identical to the linearly polarized eFSS in the previous section. 

 

 
Figure 93: Asymmetric tripole. 

The red line corresponds to the horizontal current mode and the blue line corresponds to 
the vertical current mode. 
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Figure 94: Modeled emission and phase properties of asymmetric tripole. 

The gray line corresponds to the difference in emissivity and the black line corresponds 
to the difference in phase upon emission. 

 

The asymmetric tripole was fabricated into a four-square checkerboard pattern as shown 

in Figure 95. The piece was then mounted on a hot plate and imaged twice with a linear 

polarizer; aligned once in the horizontal direction and once in the vertical direction, as 

shown in Figure 96. The arrays are seen to exhibit a degree of linearly polarized 

emission, which is consistent with the model (Δε is not equal to zero over the entire 8 to 

12 μm band). Next, a quarter-wave plate was introduced and the array was re-imaged in 

the two orthogonal circularly polarized states (Figure 97). The images suggest that the 

arrays exhibit circularly polarized emission, as only the quarter-wave plate polarizer was 

rotated when taking the pictures. There are several reasons to be suspicious of this result: 

the quarter-wave plate used was a meanderline polarizer, which, while more broadband 

than a conventional crystal quarter-wave plate, exhibits appreciable chromatism and also 

exhibits a preference towards one linear polarization state due to fabrication errors. Never 
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the less, these initial results are promising and suggest the need for additional 

investigation. 

 

 
Figure 95: Visible micrograph of four-quadrant checkerboard of asymmetric tripoles. 

Each quadrant has a different emission polarization than the other two adjacent regions. 
 

 
Figure 96: Two thermal images (side by side) of checkerboard asymmetric tripole with 

linear polarizer filter present in front of the camera in two orthogonal directions. 
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Figure 97: Two thermal images (side by side) of checkerboard asymmetric tripole with 

circular polarizer in front of the camera and in two orthogonal directions. 

6.3 Mutually Coupling Induced, Long-Range Coherent Emission: The Emitarray 

All of these results lead up to the question of whether it is possible to exploit inter-

element coupling to achieve far-field, focused, spectral emission. From reciprocity, any 

reflectarray designed in the dissertation, assuming a coherent thermal excitation, should 

emit into a focused spot at the design frequency. In reality, the previously designed 

reflectarrays cannot focus emission due to the low cross-polarization of the patch 

elements preventing coherence between the two polarization states. This limitation can be 

overcome by using a high cross-polarization element, such as the tripole used in the 

previous section. On a more practical note, focused emission is extremely difficult to 

detect given the presence of significantly stronger out-of-band emission due to the broad 

nature of resonant elements in the infrared. Thin-film-based narrowband infrared filters 

typically have too large of bandwidth to be beneficial. Diffractive based directional 

emitters have overcome this issue through the use of multiple-pin-hole optical trains to 

suppress un-directed emission [114].  
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Regardless of the noted limitations, the two-element reflectarray developed in Chapter 4 

was mounted on a hot plate, heated to approximately 120 ºC, and imaged using the IR 

microscope described in A.4 and a 10 - 11 μm narrowband filter. With the object plane of 

the microscope placed at the hypothetical image plane of the reflectarray, the expected 

focused spot was not observed. Unexpectedly, slightly tilting the hot plate resulted in the 

appearance of a null at the focal point of the reflectarray that was not present when a non-

structured wafer was mounted on the active hot plate and similarly tilted. At the moment, 

no method for validation if this null is due to far-field interference, nevertheless, it is a 

promising result. 

 

 
Figure 98: Thermal image of reflectarray at focus. 

The rings of the reflectarray can be seen suggesting no interference is occurring. 
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Figure 99: Thermal image of reflectarray at focus with slight tilt added to the hot plate. 

A null can be clearly seen suggesting that interference may be occurring and that 
coherence is being maintained. 
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CHAPTER 7: CONCLUSIONS 

7.1 Summary 

The purpose of this dissertation was to investigate the use of surfaces consisting of sub-

wavelength, resonant antenna elements for phase shifting, beam steering, and focusing of 

electromagnetic radiation in the infrared. All aspects of surface interaction has been 

considered for phasing – reflection, transmission, and emission. The overriding goal of 

the dissertation was to establish a new class of optical component as an alternative to 

conventional diffractive or polished elements. These surfaces are especially exciting due 

to their low footprint and design flexibility. 

 

Investigation of these phased surfaces began with the development of the modeling and 

fabrication techniques necessary for creating passive, planar phase elements with 

resonance in the infrared. This development included descriptions of the chromatic and 

angular performance of a typical groundplane-backed element. Due to the complexity of 

these devices, it was necessary to explore multiple modeling techniques including FEM 

and MoM. Finally, a fabrication procedure for these devices was developed using 

electron beam lithography. 

 

With the several modeling approaches developed, the unique properties of the infrared 

materials used in forming resonant antenna elements were investigated. Initial work using 

PMM and Designer demonstrated the need for accurate material properties from 

ellipsometry and inclusion in modeling software. The metamaterial damping 
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phenomenon was analytically developed and demonstrated in FSS arrays. Damping has a 

critical effect on the performance of phased devices due to its impact on both resonant 

frequency and bandwidth. 

 

The first device investigated experimentally was the infrared reflectarray, a reflective 

phase shaping device. From a waveguide circuit model, the performance of a patch 

elemnt in the variable reflectarray was investigated. Initial testing of phased reflective 

resonant antenna elements was demonstrated in the LWIR and then expanded into the 

MWIR and NIR. With the performance of the antenna elements known, three focusing 

reflectarrays were developed in the LWIR, including an eight-element graded reflectarray 

with minimal power in the higher order foci. The study of the infrared reflectarray was 

concluded with an investigation of the surface’s aberration behavior. 

 

The next two devices considered were the transmitarray and emitarray. The 

transmitarray, through modeling, was determined to be too lossy to be practical. After 

initial development demonstrating the relationship between reflection and emission 

properties, several polarized emission surfaces were fabricated and tested demonstrating 

the feasibility of coherent emission. Initial testing of an emitarray prototype demonstrated 

promising results include the presence of a possible far-field null. 

 

In general, there are numerous aspects of this dissertation that can be seen as a notable 

contributions to the field of Electrical Engineering and Optics: 
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 Establishment of a new class of infrared focusing element that is both practical 

and offers new properties not found in existing elements at the infrared 

 First documented demonstration of a reflectarray operating in the infrared 

frequency band 

 Highest documented frequency for reflectarray element operation (193.5 THz) 

and focusing reflectarray operation (28.3 THz) 

 First exploration of the feasibility of transmitarrays in the infrared 

 Exploration of FSS absorber phasing and demonstration of FSS directional 

emission 

 First documented  demonstration of a polarized-emission FSS. 

7.2 Future Work 

In addition to the static reflectarray, it would be desirable to have a tunable focusing 

surface for beamsteering at infrared. This would allow for an electronically steerable field 

of regard reflector, without the need for bulky gimble systems. Tuning has already been 

demonstrated in the rf portion of the spectrum and an infrared tunable device could be 

realized either using high-frequency diodes or photo-conductive elements. 

 

Another area of interest would be to integrate a reflectarray surface with an antenna-

coupled bolometer. Prior work [115] has suggested that similar surfaces will yield 

improved D* and capture area. One of the primary advantages of the reflectarray is it can 

be placed behind the detector to ensure minimal loss by allowing the detector to be 

illuminated first before interacting with the wavefront shaping surface. 
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A further area of investigation for these surfaces is commercial feasibility. Every device 

tested in this dissertation was fabricated using electron beam lithography. E-beam 

lithography, while highly accurate and excellent for prototyping, is an extremely 

expensive and slow process. Future devices will have to be fabricated using more cost-

effective methods such as nano-imprint lithography or immersion lithography. Similarly, 

investigations will have to be carried out to devise methods for encapsulating the phased 

devices for use outside of the laboratory environment. For reflectarray surfaces, this will 

not be especially challenging; however, determining capping layers that will not interfere 

with emitarray surfaces will be a much larger challenge. Results of initial investigations 

on how to reduce material costs and have been presented. 

 

As with any work, there is considerable need for future improvement and revision. With 

elements measured in the MWIR and NIR it should be possible to fabricate focusing 

devices in these bands. Additional research can be done to improve the understanding of 

aberrated performance of these types of surface, with an emphasis on integrating into a 

commercially available optical system design package such as CodeV or ZEMAX. With 

the aberration treatment provided, it should be possible to develop a new LWIR 

reflectarray with better image quality by tapering the phase of the elements on the edge of 

the aperture to correct for the change in re-radiation angle. Developing a method of 

properly testing the emitarray would open doors into demonstrating long-range, wide-

band focused emission. Finally, numerous other reflectarray designs were proposed, such 
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as the circularly polarized reflectarray, the broadband reflectarray, and the dielectric 

reflectarray that have not yet been verified in the laboratory. 
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APPENDIX A: PHASE CHARACTERIZATION IN THE INFRARED 
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A.1 The Variable Angle Spectral Ellipsometer 

A.1.1 The Variable Angle Spectral Ellipsometer Fundamentals 

The variable angle spectral ellipsometer (VASE) is a useful tool for the characterization 

of the optical properties of deposited thin-films and for wideband phase characterization 

of transmissive and off-axis reflective phased devices. The specific ellipsometer used in 

the course of this dissertation is a J.A. Woollam IR-VASE (Figure 100). The IR-VASE 

has an operating spectral range of approximately 2 to 45 µm with the spectral range 

determined by the IR-VASE’s source (a glowbar) and the cut-off of the optics in the 

system. In terms of thin-film characterization, the instrument is capable of measuring 

standard fabrication materials, film thickness, bulk materials, films consisting of multiple 

layers, and anisotropic materials. 

 

 
Figure 100: J. A. Woollam IR-VASE.  

 

The measurement process of the ellipsometer is described in detail in [116]. The key 

component to recognize is that the ellipsometer, when not in FTIR mode, measures the Ψ 
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and Δ of the surface under test. These terms are related to the measured change in 

polarization upon reflection from the test surface by: 

 
s

pj

R

R
e  )tan(  (89) 

where Rp is the ratio of the reflected and incident parallel polarized light and Rs is the 

ratio of the reflected and incident senkrecht polarized light. Ψ and Δ can then be fit using 

an oscillator model for determination of the optical properties of the surface. 

Furthermore, if the orientation of the incident light is known, Δ can be used to determine 

the relative phase difference between two known states and tan(Ψ) can be used to 

determine the relative magnitude difference between the two states. 

A.1.2 IR-VASE Characterization of the Optical Properties of Thin Films 

Detailed instructions on how to use the IR-VASE and WVASE software for 

characterization of thin-films at IR frequencies falls outside the scope of this dissertation 

and is documented in [117]. The following sub-sections contain recommendations and 

techniques used in measuring the materials presented in this dissertation. As with all 

ellipsometry, these are general recommendations and exceptions are possible and 

expected in many situations. 

A.1.2.1 Sample Preparation 

In general, the easiest thin-film materials to characterize are metals. Metal films should 

be deposited with the desired fabrication thickness or, for a nominal measurement, at a 

thickness greater than three (maximum-wavelength) skin depths. In this case, the 
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substrate the metal is deposited on is not an issue, so long as it is reasonably flat, since 

the metal should not be transmissive.  

 

Dielectric or semiconducting materials; however, require additional care when 

characterizing. Because these films are typically optically transmissive over some portion 

of the IR band, the choice of substrate material can greatly influence the accuracy of the 

measurement. Ideally, a high reflectivity material should always be used as a substrate to 

ensure high index contrast with the thin-film and to limit unwanted transmission through 

the substrate, which will lead to a reduced signal-to-noise ratio. Thus, the best material to 

use as a substrate when characterizing transparent thin-films in the infrared is a low-

resistivity metal such as gold or aluminum. If these materials pose a processing problem 

or if the index of the thin-film material is sufficiently low, a high index material, such as 

silicon or germanium, can also be used. Lossy materials such as silicon dioxide should be 

avoided because characterization is difficult in the loss bands of these substrates. 

A.1.2.2 Minimizing Backside Reflections 

Unlike visible ellipsometers, the IR-VASE is susceptible to un-wanted interference from 

light reflecting off the backside of the substrate. This is due to the coherence length of the 

incident radiation in the infrared being on the order of the thickness of a typical wafer. 

Several methods to avoid this issue include using metal substrates, roughening the 

backside of the substrate, using optically thick substrates, or treating the backside of the 

substrate with a scattering material. 
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A.1.2.3 Ensuring Unique/Realistic Solutions When Modeling 

When fitting oscillators to the measured Ψ and Δ, it may be tempting to fit every single 

spectral feature with an oscillator or employ overly complicated oscillator models (such 

as the Gaussian-Lorentz or the PSEMI). This approach should be avoid at all costs and 

will lead to non-realistic and non-unique solutions. To increase the uniqueness of the fit, 

several simple steps should be followed: 

 Start from an existing model, if possible. Most of the existing models should 

already be unique. 

 When developing a new model, consult prior publications to determine where 

oscillations should be present or for approximate dc conductivities or carrier 

concentrations. 

 If no information is available about the material, the simplest model is typically 

the best (Occam’s Razor). Additional oscillators, non-ideal model effects, and 

angular offsets should only be added if they are realistic and have an appreciable 

impact on the mean square error (MSE) of the model. 

 Use appropriate oscillator models depending on the portion spectrum that was 

measured. This includes using Lorentzian oscillators in the visible and Gaussian 

oscillators in the infrared. 

 When in doubt, check the “Fit Statistics.” No free variable should have a 

correlation greater than 0.75 and the 90% confidence limits should be realistic in a 

unique fit. 
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A.1.2.4 Miscellaneous Tips 

 As the system ages, the glowbar will gradually lose power. The system must be 

monitored to ensure that the proper voltage is being applied to the system. Over 

biasing the system will increase the signal-to-noise ratio of the machine at the risk 

of reducing the life of the glowbar. 

 Additional signal-to-noise gains can be achieved by increasing the averaging of 

the system. 

 In addition to ellipsometry, the machine can also act as a standard FTIR. In this 

configuration, the ellipsometer will supply Rp and Rs. 

 For visibly transparent materials, best effort alignment may be necessary, as the 

alignment laser is a HeNe. In these situations, it may also be desirable to attempt 

transmissive emissivity if possible, which is only sensitive to the tilt of the surface 

and not its z-position. Best effort alignment is also necessary for rough surfaces. 

 For testing of films smaller than the incident beam, the sample should be 

physically affixed to the surface of a larger wafer for mounting on the IR-VASE. 

Successful masking of materials smaller than the incident beam has been achieved 

using a “sticky-note” to cover the exposed mounting surface. 

 Anisotropic thin-films are difficult to characterize and, typically, can be treated as 

isotropic. Thicker anisotropic films should always be characterized with 

transmission and reflection ellipsometry over several angles for determination of 

the orientation of the anisotropic molecules. It should also be noted that materials 

such as polymers might exhibit slight anisotropic behavior due to film stress 

occurring during deposition [118]. 
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 As a general rule of thumb, non-ideal modeling is rarely necessary, although, 

adding an angle offset is typically beneficial. 

 Fitting should always be done over the entire spectrum of the measurement 

because out-of-band oscillations still influence the material’s performance in-band 

(i.e. ordinary dispersion). The most common exception to this rule is when the 

measurement has sufficiently large depolarization in the long and/or short wave 

that the measured results are invalid. 

A.1.3 IR-VASE Characterization of Phased Devices 

As mentioned previously, the IR-VASE can also be used to characterize the phase 

properties of a surface through the value Δ. For transmissive devices, the senkrecht and 

parallel polarizations can be aligned about the y- and x-axis of the element at normal 

incidence. By introducing non-symmetry in the element about the two axes, it is possible 

to use Δ as the relative phase difference between the two orthogonal dimensions. For a 

patch element, one orthogonal state could be reduced in width to form a dipole and 

suppress resonance in that direction. Thus, in this example, Δ, at the frequency of interest, 

would be a direct measurement of the phase delay introduced by a patch element of 

length equal to the length of the dipole. Similar steps could be taken for reflected phase 

measurement; however, this must be done at an angle of 26 degrees or greater. 

A.2 The Twyman-Green Interferometer 

The Twyman-Green interferometer is a modified version of the Michelson interferometer 

[119]. For a typical unequal-path Twyman-Green (Figure 101), a coherent, 
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monochromatic light source (typically a laser) is focused into a pinhole and collimated 

with a collimating lens (telescope) to form planar wavefronts. Half of the reference beam 

passes through a beam splitter and reflects off the test surface or test mirror back into the 

interferometer. The other half of the reference beam reflects off the beam splitter and 

impinges on a flat reference surface, typically a gold mirror on a piezoelectric substrate 

or mechanical stage for tilt adjustment and correction, and is reflected back into the 

interferometer. The beams are then redirected to an IR camera or detector by the beam 

splitter (neglecting the beam reflected back into the laser) for imaging of the generated 

interference pattern. This resulting image is also known as an interferogram. 

 

 
 

Figure 101: Twyman-Green interferometer schematic [120].  
 

The interference pattern imaged at the detector can be utilized to determine surface 

variations between the device under test and the reference mirror. If an ideal test mirror 
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was placed perfectly flat to the reference mirror, the two reflected beams will arrive at the 

detector with a spatially uniform phase difference and the detector will image a uniform 

illumination across the field of view (the image will be bright if the beams arrive in phase 

and dark if the beams arrive out of phase). If either the reference mirror or the test surface 

were at a slight tilt, a series of parallel bright and light fringes would be imaged, 

corresponding to the interference resulting from the two beams experiencing different 

path lengths. Thus, increasing the tilt of the either surface further will increase the 

number of fringes imaged corresponding to the increased change in path difference across 

the plane of tilt.  

 

Assuming the test surface had some local physical deformity, such as a curvature, the 

fringes of the generated interference pattern of the tilted mirrors would be shifted to 

reflect the difference in path length introduced by the physical height difference arising 

from the deformity. By measuring the fringe shift relative to a known reference position, 

it is possible to determine relative height error difference at various points across the test 

device by relating phase difference to path length difference. As such, the Twyman-

Green is referred to as a two-pass interferometer because a physical height change on the 

test device will result in a fringe shift (phase shift, θfringeshift) in the interference 

corresponding to twice the height of the deformity:  

 360*
*2

0
 height

tfringeshif   (90) 

This is a result of the path length for both the incoming wave and reflected wave being 

altered equally by the height change. Therefore, the Twyman-Green can only resolve 

height differences equal to half the wavelength, otherwise wrapping will occur and the 
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height difference cannot be uniquely determined using the techniques outlined in this 

appendix. 

 

For testing of resonant elements in the infrared, a similar approach can be used to 

determine phase shifting. Although these devices are typically physically flat, the phase 

difference introduced upon reflection will still introduce interference, which can be 

characterized using the interferometer. For the reflectarray proof of concept devices, the 

interference fringes were placed orthogonal to the longest extent of the patch rows and, 

thus, phase shifting by the reflectarray elements can be measured relative from the 

regions outside the reflectarray stripes (standoff layer and groundplane only) by 

observing how much the fringes shifts. Unlike conventional polished optics 

characterization; however, the interferometer is no longer double pass, as phase shifting 

occurs upon re-radiation and the reflected or incident path length is unchanged, reducing 

Eq. (90) to (91): 

 360*
)(

0
 effectiveheight

tfringeshif   (91) 

This also allows for the measurement of phase variations greater than 180 degrees or one-

half wavelength. Additionally, it should be noted that the fringe shifting introduced by 

the patches is linearly shifted compared to reference regions due to the double pass height 

difference between the groundplane and the patch height. 
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A.2.1 Identifying Phase Shaping Elements in Interferograms 

Identification of reflected phase modulation by resonant elements can be found directly 

from observation of the surface’s interferogram. First, consider Figure 102, which is an 

interferogram of an optically flat surface. Dark regions of the interferograms are points 

where the wavefronts reflected off the reference and test surface destructively interfere 

and bright points correspond to regions where the two beams fully constructively 

interfere. In the figure, the light and dark fringes are parallel and equally spaced across 

the entire image indicating, from Eq. (90) and the recognition that either the reference or 

the test surface is physically tilted, there is no or little phase shifting caused by the 

surface. This behavior is expected from a flat surface, free of physical height deformity. 

It should be noted that the fringes only need to be parallel for the surface to be flat 

relative to the reference - rotation of the fringes about the center of the interferogram only 

indicates a rotation of the tilt plane. 

 

 
Figure 102: Measured interferogram of a nearly flat surface.  
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Next, consider Figure 103, which contains an array of phased elements surrounded by 

regions of no elements (standoff layer and groundplane only) on the top and the bottom. 

In addition to a darker bright fringe due to element loss, the region containing the phased 

elements can be identified by a shifting of the dark and light fringes to the right (in this 

example). Assuming that the element region is uniform in its phasing, the amount each 

fringe has been shifted relative to the no element region should be equal for each fringe, 

moving from the left to the right and the top to bottom. For this specific device, the phase 

shift is not uniform and, thus, the fringe has a curved sag indicating a larger phase shift at 

the center of the element stripe compared to the edge of the array.  

 

 
Figure 103: Measured interferogram of a region of phase shifting elements. 

This caption is at the bottom of the figure.  
 

In addition to spatially varying phase across the array, further considerations must be 

made before calculation of element phase shaping. Figure 104 demonstrates what 

happens when one element has a phase shift greater than 180 degrees. In the top array, 

the fringes have been shifted to the right, just like in the case of Figure 103. In the bottom 

array, the fringe has been shifted in the opposite direction indicating that one of the arrays 

is generating a phase variation greater than 180 degrees. The reason for this will be 

discussed in the next section. Another issue that can arise when imaging phased element 

arrays is reference regions with curvature. Both Figure 103 and Figure 104 have parallel 
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and well-aligned reference regions that make analysis straightforward. In Figure 80, for 

example, the reference regions are no longer parallel or equally spaced indicating that the 

substrate has a physical deformity or curvature. Curved reference regions can be 

corrected for in post processing or by always using an optically flat substrate. 

 

 
Figure 104: Measured interferogram of two arrays of phase shaping elements with one 

array having a phase variation greater than 180 degrees. 
 

A.2.2 Analyzing Interferograms for Phase Information 

Once a phase shifting region has been identified, along with a point of reference, the 

phase of the elements in the region can be found with spatial measurement. Figure 105 

shows an ideal interferogram consisting of three reference regions (R1, R2, and R3) and 

two-element stripes (S1 and S2). For the purpose of this analysis, only the dark fringes 

will be considered, since the brighter regions can be difficult to observe if the element 

arrays have loss (as in Figure 104). From interference theory, the distance between the 

center of two neighboring dark fringes (points of complete destructive interference) in a 

single pass system will be 180 degrees (from Eq. (5)). Element phase delays of less than 
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180 degrees will result in the fringe being shifted along the direction of the reference 

mirror that is tilted closest to the beam splitter (assuming only the reference mirror has 

been tilted). Element phase delays greater than 180 degrees, but less than 360 degrees, 

can be rewritten as 180 – θ. Negative phase delays will cause the fringe to shift along the 

direction of the reference mirror that is tilted furthest away from the beam splitter. Phase 

delays greater than 360 degrees will wrap and cannot be directly determined using this 

method. For the purpose of this example, Figure 105 is assumed to have been generated 

with the reference mirror tilted such that the right side of the Figure is closest to the beam 

splitter. Thus, S1 has a phase delay less than 180 degrees and S2 has a phase delay 

greater than 180 degrees. 

 

 
Figure 105: Ideal interferogram of two phase-shaping arrays. 

Phased regions are denoted by S1 and S2. Reference regions are denoted by R1, R2, and 
R3. 
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Because the distance between the dark fringes in the reference regions is known to be 180 

degrees, the phase shifting caused by each stripe region can be found by the ratio of the 

spatial distance between the reference fringe and the shifted region and the total distance 

between two reference fringes. These values can be found using a ruler or using an image 

manipulation program such as Photoshop or The GIMP to measure pixel distance. Thus, 

for S1, the phase delay would be (using The GIMP to measure): 

  60180*150/501 pxpxS  (92) 

Similarly, S2’s phase delay can be found with correction for the fact the phase delay is 

greater than 180 degrees: 

  30060180*150/501 pxpxS  (93) 

From this analysis, it is clear that the phase resolution (smallest phase variation that can 

be uniquely measured) of the interferogram is equal to the inverse of the number of pixels 

between the two dark fringes divided by two (Nyquist Criterion). In this example, the 

smallest resolvable phase variation is equal to: 

  6.0180*)150*2/(1 pxresolve  (94) 

A.2.3 Interferogram Analysis Post Processing 

Post processing of the phase calculated from the interferogram takes two forms: 

correction for physical height differences between the reference and phasing elements 

and correction for non-idealities in the substrate. Assuming a uniform standoff layer 

thickness with known index of refraction, the linear phase difference (θoffset) between the 

reference region can be calculated by: 
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 360*
**2

0
 nthickness

offset   (95) 

Thus the actual phase delay introduced by the resonant array is equal to: 

 offsettfringeshifactual    (96) 

It should be noted that this calculation is only valid if the phase reference plane is at the 

height of the elements, which is customarily the case in modeling. 

 

Correction for substrate non-idealities is more complicated. The simplest error to correct 

for is fringe tilt. Figure 106 is the same design as Figure 105, but with a gradual (non-

realistic) tilt introduced. The tilt can be readily indentified by the fact the top and bottom 

reference fringes are no longer parallel about the y-axis only. Correction can either be 

carried out during testing by rotating the substrate slightly, after testing by rotating the 

image, or through numerical analysis (the next section). Non-linear surface or device 

variations (such as those seen in Figure 80, Figure 103, and Figure 104) cannot be as 

easily corrected for and require averaging, additional numerical analysis, and best guess 

efforts by the designer. 
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Figure 106: Ideal interferogram of two phase-shaping arrays with tilt added. 

A.2.4 Interferogram Analysis using MATLAB 

Prior to this point, all analysis has been carried out by hand, which limits the ability of 

the designer to correct for issues such as surface tilt or curvature. This section will 

discuss one method to use MATLAB to automate the analysis of interferograms for phase 

extraction through a series of code snippets: 

 

%Read image file 
ifg = imread(file); 
  
%Normalize Plot 
ifg = cast(ifg, 'double'); %need to cast to renormalize 
min_val = min(min(ifg)); 
ifg = ifg - min_val; 
max_val = max(max(ifg)); 
ifg = ifg * 60 / max_val; 
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The first step is to import the image file (stored in the variable file) and normalize the 

array to a known maximum value (60 is chosen for improved plotting). Note any linear 

magnitude offset is removed from the image, since only phase information is needed. 

 

ifg = ifg(start_cord(2):end_cord(2),start_cord(1):end_cord(1)); 
  
[Y_len,X_len] = size(ifg); 
y_points = 1:Y_len; 
x_points = 0:X_len-1; 
  
for idx = y_points 
    data = ifg(idx,:) - min(ifg(idx,:)); 
    ifg(idx,:) = data * 60/max(data); 
end 
 

Next, the code clips the image to contain only reference regions and element stripes 

(defined by start_cord and end_cord). The design is then renormalized by taking x-

directional slices with a fixed y-coordinate to remove any unwanted loss and normalize 

the fringes across both the reference and stripe regions in magnitude (the fringes are 

assumed to be in the y-direction with the long portion of the element arrays orientated 

orthogonally along the x-direction). 

 

%Seed 
vars = [44 0]; 
  
%Curve fit the interferogram to sinusoids 
for idx = y_points 
    vars = fminsearch(@merit_sine,[vars(1) vars(2)], [], 
x_points,ifg(idx,:)); 
    f_values(idx) = vars(1); 
end 
  
f_value = mean(f_values); 
 
function [merit] = merit_sine(vars,x,data) 
  
sine=30*sin(2*pi*x/vars(1) + vars(2)) + 30; 
merit=mean((data-sine).^2); 
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Using a minimum searching algorithm, with an assumed phase delay of 0 degrees and a 

frequency of 44, MATLAB fits the interferogram fringes to a sinusoid to determine the 

frequency (spacing) of the fringes. The frequency is found at each y-coordinate and then 

averaged over all y-coordinates to find the fixed fringe spacing across the surface 

(assuming that the test surface does not have significant surface curvature). 

 

var = 0; 
  
for idx = y_points 
    var = fminsearch(@merit_sine2,[var], [], 
f_value,x_points,ifg(idx,:)); 
    phi_values(idx) = var; 
end 
 
function [merit] = merit_sine2(var,F,x,data) 
  
sine=30*sin(2*pi*x/F + var) + 30; 
merit=mean((data-sine).^2); 
 

Finally, the minimum searching algorithm is rerun to determine the phase delay 

necessary to fit the fringes to a sinusoid with the frequency determined previously. The 

variable phi_values contains the phase delay across the surface indexed by the y-

coordinate. Once these values are known, additional steps can be taken to account and 

correct for surface non-idealities by using matrix manipulation. The results of this 

algorithm can be seen in Figure 61 and Figure 62. 

A.2.5 Interferometry of Transmissive Devices 

Similar analysis of transmissive devices can be carried out using a Mach-Zehnder 

interferometer. This type of analysis falls outside the scope of this dissertation, but this 

interferometer is discussed in detail in [119]. 
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A.3 At-Focus Spot Imaging 

Characterization of complete, focusing reflectarray devices was carried out using at-focus 

spot imaging (AFSI). AFSI requires placement of the imaging detector in the plane of the 

primary focus of the reflectarray to image the focused spot formed. This presents an issue 

because the image plane of the reflectarray falls within the path of the incident beam. To 

overcome this challenge, a modified Twyman-Green configuration (Figure 101) was 

employed. For the AFSI setup, the reference mirror was replaced with a scattering or 

absorbing surface and the test surface was replaced with the focusing element. With the 

second channel disabled, no interference will occur and the detector can directly image 

the reflected spot without blocking the incident beam (Figure 107).  

 

 
Figure 107: AFSI test setup. 

The image shows the end of the telescope of the Twyman-Green Interferometer. The 
collimating lens is shown in the foreground, the beam splitter is in the center, the 

reflectarray is on the adjustable mount on the right, the detector is shown on the left 
(SPIRICON camera), and the concrete block is being used to block the second channel. 
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Additional care must be used when carrying out AFSI. Placement of the reflectarray too 

far away from the beam splitter, such that the image plane falls close to the location of 

the beam splitter, may lead to localized heating and undesirable damage. Thus, it is 

highly recommended that the reflectarray be placed as close as possible to the beam 

splitter when testing. For aberration characterization, a flat, reflective surface should 

initially be used in place of reflectarray for characterization of baseline system 

aberrations (from the laser, lenses, or beam splitter). 

A.4 The Infrared Microscope 

AFSI is an appropriate method for verifying surface focusing and approximate focal 

length, but is not necessarily the most effective method for characterizing surface 

aberrations. For characterizing aberrations, it was necessary to construct and infrared 

microscope. By placing the image plane of the reflective surface at the object plane of the 

microscope, it is possible to magnify the focused spot generated and characterize the 

shape of the spot for unwanted aberrations. The specific microscope constructed is shown 

in Figure 108 and consisted of a Raytheon LWIR camera front-end lens to form a 

telescope with the camera (focused at infinity). Using this setup, the field of view was 

approximately 5mm by 5mm. 
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Figure 108: Infrared microscope. 
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APPENDIX B: GDSII TOOLBOX 
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B.1 About the GDSII Toolbox 

To provide the progressive phasing across the surface of the reflectarray necessary to 

impose a spherical phase front, a layout generator was initially developed based on the 

theory presented in Section 4.1.7 to individually place reflectarray elements for optimal 

performance. The program was written using MATLAB and automatically generates a 

binary GDSII layout file given layout files for the reflectarray element’s geometry, the 

reflectarray’s diameter, the design wavelength, and the desired F/#. From this original 

program, the GDSII Toolbox was developed. 

 

The GDSII Toolbox is a robust collection of MATLAB functions specifically for 

automating the process of array generation in nanofabrication. The toolbox was written in 

a way that someone, without understanding of GDSII file structure, could create 

complicated layouts and elements directly in the flexible MATLAB environment.  

Resulting GDSII file sizes from the toolbox are smaller than identical designs generated 

by the commercially available editor used at the Infrared Systems Laboratory and file 

generation times are typically greater than 5,000 elements written a second. 

B.2 Using the GDSII Toolbox 

Installation of the GDSII Toolbox is possible by placing the toolbox’s *.m in the 

MATLAB path. To run the pre-developed modules (higher level functions), a user only 

needs to run “gdsii_toolbox” in the MATLAB console and follow the resulting prompts. 

A total of 6 top-level modules are available in the original version: 

 array_gen – Generates a square or circular array. 
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 image2pattern – Generates an array layout based on a grayscale image. Elements 

are placed based on the relative darkness of each pixel. 

 image2pattern_0 – The same as image2pattern with bright regions left without 

elements. 

 fzp – the original reflectarray layout generator. 

 fzp_0 – the same as fzp, but the first repeated zone is left without elements. 

 element_gen – Generates a single patch, loop, cross, or meander line element. 

This function is useful for pre-generating elements for use in the other modules. 

B.3 Creating New GDSII Toolbox Modules 

The easiest way to describe how to create a new toolbox module is to consider an existing 

module, array_gen: 

 

%Function for generating a circular or rectangular array. 
% 
%Form: array_gen() 
% 
%Parameters: 
%This function does not take any parameters from command line. 
% 
%Returns: 
%GDS-II file of desired circular pattern. 
  
%Copyright 2008 
%IR Systems Lab, CREOL 
%University of Central Florida 
%Last updated 07/22/2008 
  
%Changelog 
%10/29/2007 - Initial Version 
%10/31/2007 - Minor UI cleanup 
%07/22/2008 - Updated to match code in write_array 
%             Improved circle generating algorithm 
  
function array_gen() 
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The initial section contains help information about the function, as well as copyright 

information and a changelog. The function name should match the name of the *.m file 

and should be something easy to remember. Once completed, the new function should be 

added to gdsii_toolbox. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%VARIABLES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
UNIT = write_units('fetch'); %Default unit 
pref_fname = 'array_gen.dat'; 
p_string1 = {'Please select unit cell element:'}; 
p_string2 = {'Please select array geometry:'}; 
dlg_title1 = 'Customize Element'; 
dlg_title2 = 'Customize Array'; 
geom_sname1 = {'New...', 'From an Existing File...'}; 
geom_sname2 = {'Rectangular', 'Circular'}; 
num_lines = 1; 
flag = 0; 
 

The variable section is the portion of the code where all of the global functions variables 

are defined. This includes the preference filename (pref_fname), dialog strings 

(p_string1, p_string2, dlg_title1, dlg_title2, geom_sname1, geom_sname2, num_lines), 

and other useful variables (flag). At the start of all functions, the write_units(‘fetch’) 

command may be run to determine the software’s defaults units. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Prompt User for element type 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Put up prompt 
[ptr,res] = 
listdlg('PromptString',p_string1,'Name',dlg_title1,'SelectionMode','sin
gle','ListSize', [225 200], 'ListString',geom_sname1); 
  
%Did the user cancel? 
if ~res 
    return; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Generate element if needed 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if ptr == 1 
    FILE_ARRAY = {element_gen(matlabroot,[num2str(now),'.gds'])}; 
    flag = 451; 
else 
    FILE_ARRAY = locate_gdsii(1); 
end 
 

The function first prompts the user whether they would like to use an existing element 

geometry or generate a new geometry using element_gen. To invoke element_gen in 

automatic mode, the function must pass it a filename and element_gen will return the 

passed filename. For this situation, the actual filename of the temporary element 

gdsii_file is not important to the user. If the user wishes to use an existing GDSII file, 

locate_gdsii can be used to prompt the user for which file to use and the function will 

return the desired filename. The value passed to locatate_gdsii is the number of times the 

user should be prompted (for batch opening). It should be also noted that the flag is no 

longer zero if a new element is created. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Get additional information from the user 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Put up prompt 
[ptr,res] = 
listdlg('PromptString',p_string2,'Name',dlg_title2,'SelectionMode','sin
gle','ListSize', [225 200], 'ListString',geom_sname2); 
  
%Did the user cancel? 
if ~res 
    return; 
end 
  
if ptr == 1 
    geom = 'rect'; 
     
    prompt = {'Element Periodicity (in X, um):','Element Periodicity 
(in Y, um):','Number of Elements in Array (in X):','Number of Elements 
in Array (in Y):'}; 
     
    defAns = open_pref(pref_fname, 4); 
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    answer = inputdlg(prompt,dlg_title2,num_lines,defAns,'on'); 
  
    %Check for abort 
    if isempty(answer) 
        return; 
    end 
  
    %Convert all of the user input 
    ARRAYX = str2double(cell2mat(answer(3,:))); 
    ARRAYY = str2double(cell2mat(answer(4,:))); 
    ELEMENT_PERIODICITYX = str2double(cell2mat(answer(1,:))); 
    ELEMENT_PERIODICITYY = str2double(cell2mat(answer(2,:))); 
  
    %I need to cheat a little for perfomance/codesize reasons - force  
    %square pixels. 
    PERIODICITYX = ARRAYX * ELEMENT_PERIODICITYX; %Calc size of pixel 
in x 
    PERIODICITYY = ARRAYY * ELEMENT_PERIODICITYY; %Calc size of pixel 
in y 
  
    %Save Current Settings 
    save_pref(pref_fname, answer); 
  
    %Pregenerate some values for performance 
    sPERIODICITYX = 1/UNIT * PERIODICITYX; 
    sPERIODICITYY = 1/UNIT * PERIODICITYY;  
     
    %Save Current Settings 
    save_pref(pref_fname, answer); 
     
else 
    geom = 'circle'; 
    prompt = {'Element Periodicity (in X, um):','Element Periodicity 
(in Y, um):','Number of Elements in a Pixel (in X):','Number of 
Elements in a Pixel (in Y):','Diameter of array (in mm):'}; 
     
    defAns = open_pref(pref_fname, 5); 
  
    while 1 
        answer = inputdlg(prompt,dlg_title2,num_lines,defAns,'on'); 
  
        %Check for abort 
        if isempty(answer) 
            return; 
        end 
  
        %Convert all of the user input 
        DIAMETER = str2double(cell2mat(answer(5,:))); 
        ARRAYX = str2double(cell2mat(answer(3,:))); 
        ARRAYY = str2double(cell2mat(answer(4,:))); 
        ELEMENT_PERIODICITYX = str2double(cell2mat(answer(1,:))); 
        ELEMENT_PERIODICITYY = str2double(cell2mat(answer(2,:))); 
  
        %I need to cheat a little for perfomance/codesize reasons - 
force  
        %square pixels. 
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        PERIODICITYX = ARRAYX * ELEMENT_PERIODICITYX; %Calc size of 
pixel in x 
        PERIODICITYY = ARRAYY * ELEMENT_PERIODICITYY; %Calc size of 
pixel in y 
  
        if PERIODICITYX ~= PERIODICITYY 
            answer{3} = [num2str(ARRAYX),' - Pixel is not a square!']; 
        else 
            PERIODICITY = PERIODICITYX; 
            break; 
        end 
         
        defAns = answer; 
    end 
  
    %Save Current Settings 
    save_pref(pref_fname, answer); 
  
    %Pregenerate some values for performance 
    DIAMETER = DIAMETER*1000; 
    sPERIODICITYX = 1/UNIT * PERIODICITY; 
    sPERIODICITYY = 1/UNIT * PERIODICITY;   
end 
 

This portion of the code asks the user which array shape they wish to create (square or 

circle) and then prompts for dimensions. It is important to note that the 

open_pref/save_pref function can be used to save the user’s response, so that when the 

function is run a second time, the previous response will automatically be inputted. Also, 

it is important that the inputted sizes are scaled properly before proceeding (using UNIT, 

from before). 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Create the gds file to output 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[fid,filename,CELL_NAME] = create_gdsii_file(); 
tic; 
 

The function create_gdsii_file prompts the user where to save the final GDSII file. 

CELL_NAME is the name of the of the final array cell and the same as the filename, 

without extension. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Write the Header 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
write_header(fid, filename); 
 

write_header writes the header portion of the GDSII file. This also includes the time and 

the library (IR LAB CREOL MATLAB CUSTOM). The header is the first thing to write. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Write Element Information 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
write_units(fid); 
NAME_ARRAY = write_elements(fid, FILE_ARRAY, ARRAYX, ARRAYY, 
ELEMENT_PERIODICITYX * 1/UNIT, ELEMENT_PERIODICITYY * 1/UNIT, -
sPERIODICITYX/2, -sPERIODICITYY/2, 1, flag); 
 

write_units writes the units information to the GDSII file and must follow write_header. 

write_elements will write the baseline geometry to the GDSII file (specified with 

FILE_ARRAY) and create an array based on the array size (ARRAYX, ARRAYY), 

element spacing (ELEMENT_PERIODICITYX, ELEMENT_PERIODICITYY), the 

starting points of the array (-sPERIODICITYX/2, -sPERIODICITYY/2), and the number 

of elements (1). If flag has been set to 451, as is the case when element_gen has been 

called, the element geometry gdsii file is deleted. NAME_ARRAY is the name(s) of the 

array (cells) created. This completes the element placement portion of the code for the 

square array.  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Additional code for circle generator 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if strcmp(geom, 'circle') 
    %Prep Array 
    open_gdsii_structure(fid,CELL_NAME); 
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    %Write Structure 
    outer_radius = (DIAMETER/2)/PERIODICITY; 
  
    %Search and place elements 
    for y = 1:outer_radius 
        %Find edge positions and array sizes   
        num_x = floor(2*sqrt(outer_radius^2-(y-0.5)^2)); 
        num_x = num_x  + rem(num_x,2); 
        px = -num_x/2*sPERIODICITYX; 
        py = y*sPERIODICITYY; 
  
        %Write a single row 
        write_array(fid, NAME_ARRAY{1}, num_x, 1, sPERIODICITYX, 
sPERIODICITYY, px, py-sPERIODICITYY); 
        %Write the mirrored row 
        write_array(fid, NAME_ARRAY{1}, num_x, 1, sPERIODICITYX, 
sPERIODICITYY, px, -py); 
    end 
    close_gdsii_structure(fid); 
end 
 

This portion of the code illustrates how more complicated layouts can be generated (in 

this case, a circle). To create a custom array layout, it is necessary to open the GDSII 

array (open_gdsii_structure), write the array (write_array, with similar parameters as 

write_elements), and close the array (close_gdsii_strucuture). 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%End the GDS-II file and close it 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close_gdsii_file(fid); 
  
%Display time to run 
disp(['Run Time: ', sprintf('%g',toc),'s']); 
beep; 
 

The last step is to close the file with the command close_gdsii_file. Further information, 

including the input and return values, of each function in the toolbox can be found by 

typing “help” followed by the function name in the console. 
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B.4 Limitations of the GDSII Toolbox 

Several limitations are present in the software. Many of the mid-level functions, such as 

write_array, write_elements, etc., were written specifically for the original six modules. 

Lower level functions are either hard-coded or difficult to directly interface without using 

these middle functions. All of the functions are not suited for handling a GDSII stream 

spanning multiple files. While not impossible to alter, the code places all elements on 

layer 1 or on the layer of the original imported file. All of the modules lack command line 

modes and require a GUI. image_pattern requires a grayscale image and will fail with 

any other type of image (RGB, indexed, etc.). Practically no error handling is present in 

the lower level code, except to prevent accidental data loss. 
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