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ABSTRACT 
 

 Fiber-reinforced polymer (FRP) composite materials have effectively been used 

in numerous reinforced concrete civil infrastructure strengthening projects. Although a 

significant body of knowledge has been established for epoxy matrix carbon FRPs and 

epoxy adhesives, there is still a need to investigate other matrices and adhesive types. 

One such matrix/adhesive type yet to be heavily researched for infrastructure application 

is polyurethane. This thesis investigates use of polyurethane matrix carbon fiber 

composites for strengthening reinforced concrete civil infrastructure. Investigations on 

mirco- and macro-mechanical composite performance, strengthened member flexural 

performance, and bond durability under environmental conditioning will be presented. 

Results indicate that polyurethane carbon composites could potentially be a viable option 

for strengthening concrete structures.       
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1. INTRODUCTION 

1.1 Background 

 Increasing service loads, extreme loading events, and constant exposure to an 

ever-changing ambient environment are just a few reasons why civil structures, over 

extended service periods, degrade and ultimately become structural deficient. In many 

cases, it is economically more feasible to repair/strengthen the damaged structure than 

full demolition and re-construction. Traditional methods of strengthening include steel 

jacketing/plating, addition of concrete, and near surface mounting additional steel. 

Although these methods have been proven effective, they can be cumbersome, time 

inefficient, and susceptible to corrosion. The 1980s saw the advent of more cost effective 

means to manufacture advanced fiber-reinforced polymer (FRP) composite materials; 

making the use of such materials more suitable for construction purposes. By the late 

1980’s, numerous researchers began investigating the possibilities of using FRPs to 

strengthen reinforced concrete structures. With excellent corrosion resistance, high 

strength-to-weight ratio, and stiffness-to-weight ratio, externally bonded FRP composites 

provided a time and strength efficient means to strengthen reinforced concrete (RC) 

structures.   

 Since its beginnings in the 1980s, the use of FRP for civil strengthening 

applications has been heavily researched over the past 20 year. Yet, virtually all work 

related to FRP strengthening of concrete has been focused on composites utilizing epoxy 

matrices and adhesives. Although these composites have been proven very effective, they 

do have some drawbacks: 
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-During the curing process, epoxies tend to release volatiles and fumes that can be 

irritating to the eyes and skin. 

 

-In wet lay-up applications, epoxy matrices and adhesives have to be prepared in 

the field. Furthermore, fibers have to be field impregnated prior to application.  

Such processes can lead to quality control issues of the composite material and 

the bond to the substrate.  

 

-Epoxy’s bond to concrete has been shown to be sensitive to the application 

environment; the presence of moisture is a specific concern 

 

Given this drawbacks, it is important that newer matrix systems and adhesives be 

investigated. Recently there have been developments with matrix materials such that 

issues observed with typical epoxy resins were mitigated (Bazinet et al. 2003). One such 

system utilizes polyurethane (PU) as both the matrix material and laminate adhesive. 

Some benefits of this system are as follows: 

 

-The composite laminate is a pre-impregnated system that comes in a hermetically 

sealed pouch. Hence this system can be delivered to the job site ready to use or 

can be stored for a period up to 1 year. Furthermore, pre-preg manufacturing 

results in high quality saturation of fibers and laminate quality. 
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-The curing catalyst for the PU matrix and adhesive is water. This means that 

underwater environments are not a significant obstacle.  

 

-The only byproduct of matrix curing is CO2 which is not hazardous to the 

environment or humans. 

1.2 Scope and Objectives 

 This thesis describes the experimental tests completed to preliminarily 

characterize polyurethane (PU) matrix composites for strengthening and/or retrofitting 

reinforced concrete structures. . Emphasis is put on areas that have been deemed critical 

for externally bonded FRP systems for strengthening concrete infrastructure by the 

literature.  In order to evaluate the system in question, a wide spectrum of experimental 

tests were conducted. Tests can be groups into two main sets; small-scale tests and large-

scales. Small-scales tests focused on evaluation of bond and material durability under 

various environmental conditions. Methods of evaluating bond and material durability 

included the use of scanning electron microscopy (SEM), material tensile tests, and 

flexural tests on unreinforced FRP-strengthened concrete beams. All small-scale tests 

were conducted at University of Central Florida facilities. Large-scale tests focused on 

comparing the flexural performance of 16’ reinforced concrete beam specimens 

strengthened with PU matrix CFRP to those strengthened with epoxy matrix CFRP 

systems; flexural performance under cyclic mechanical and thermal loading were 

considered. SEM was used to characterize the effect of cyclic mechanical and thermal 

loading on the CFRP laminate systems. Large-scale beam test were conducted at the 

Florida Department of Transportation Structures Research Center in Tallahassee, FL.  
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 The objective of this study was to determine answers to the following questions in 

regard to polyurethane matrix carbon fiber composites: 

  

- How do various environments affect the tensile properties of PU composites 

along with the matrix/fiber interaction at the micron level? 

 

- Does the polyurethane bond to concrete tend to degrade under environmental 

conditioning? 

 

- How do polyurethane matrix composites behave compared to epoxy matrix 

composites when externally bonded to reinforced concrete beams? 

 

- What is the failure mechanism for PU-FRP strengthened RC beams? 

 

 In completing these objectives, this thesis will provided insight to researchers and 

engineers on the PU matrix carbon fiber composites and how those composites would 

perform in infrastructure applications.  

1.3 Thesis Outline 

 The following section provides an outline of the work presented and briefly 

describes the contents of each section.  

 



5 

 

 Literature Review: The literature review for this document is presented in Chapter 

2 and is meant provide a brief introduction on FRP materials 

in terms of the two main constituents; the reinforcing fiber 

and the polymer matrix that binds the fibers. The Application 

of polymer composites in civil infrastructure is then 

discussed with emphasis on the externally bonded systems 

and their performance. Finally, polyurethane composite 

materials are briefly reviewed  

 

Specimen Details: Chapter 3 discusses the design, details, and preparation of all 

specimen types used in this research. First, the details and 

materials properties of the 4 different CFRP systems are 

discussed. This is followed by design and preparation details 

of small-scale and large-scale beam specimens respectively.    

 Test Methods  

 And Evaluation 

Procedures: Chapter 4 discusses the procedures by which specimens were  

  conditioned (either mechanically or environmentally), 

loaded, and by other means evaluated. Test schedules for all 

specimen types will be discussed in respective subsections 

along with loading procedures and conditioning 

environments described in detail. SEM evaluation procedures 

are also presented.  
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Results: Chapter 5 presents that results from the tests conducted. The 

results section has been limited to tables, plots, and figure 

integral to characterization of the PU CFRP system. The 

results chapter is broken into two distinct sections; the first 

discusses the small-scale (durability tests) tests and the other 

describes the large-scale tests.   

 

 Conclusions and 

 Recommendations: Chapter 6 provides the final conclusions, recommendations, 

and directions for future research.  
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2. LITERATURE REVIEW 

2.1 Fiber Reinforced Polymers Composites 

 Fiber Reinforced Polymer (FRP) composites consist of two main constituents: a 

reinforcing fiber, which is the main load-carrying component, and a polymeric matrix 

which is used as a stress transferring mechanism, binder, and to protect the reinforcing 

fibers from the ambient environment. The matrix material also ensures that reinforcing 

fibers maintain their designed orientation in the structural component.  

2.1.1 Reinforcing Fibers 

There are a number of different types of reinforcing fibers. This portion of the 

report will focus on carbon, glass, and aramid reinforcing fibers. Research has shown that 

these are the best suited for infrastructure applications. Table 1 contains a good 

representation of commercially available fibers and their mechanical and physical 

properties.  

 

Table 1. Typical Reinforcing Fiber Material Properties† 

Fiber 

Type 

 

 

Fiber  

Identification 

Density  

(g/cm3) 

Tensile 

Modulus 

(Msi) 

Tensile 

Strength 

 (ksi) 

Failure  

Strain 

(%) 

Coefficient of 

Thermal 

Expansion 

(10-6 /⁰F) 

Poisson's 

Ratio 

Glass  
E-glass 2.54 10.5 500 4.8 8.99 0.2 

S-glass 2.49 12.6 625 5 5.22 0.22 

Carbon  

T-300 1.76 33.5 530 1.4 -1.08 0.2 

P-100 2.15 110 350 0.32 -2.61 0.2 

AS-4 1.8 36 590 1.65 -1.08 0.2 

IM-7 1.78 43.5 770 1.81 -1.35 0.2 

Aramid  
Kevlar 49 1.45 19 525 2.8 -3.60 0.35 

Techora 1.39 10.1 435 4.6 -10.79 0.35 

        †All Values taken from (Mallick, 2008) 
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2.1.1.1 Glass Fibers 

  Glass fibers are one of the most common and popular types of reinforcing 

fibers. Glass fibers are low cost compared to carbon or aramid fiber and have a high 

commercial availability. Some of the notable advantages of glass fibers are high ultimate 

strength, relatively high elongation until failure compared to other fiber types, non-

conductive, good resistance to chemicals. The disadvantages of glass fibers are low 

tensile modulus, high specific gravity compared to carbon and aramid fibers, and surface 

abrasion sensitivity. Glass fibers also have some critical durability issues with mechanical 

fatigue (both static and cyclic), prolonged exposure to hydro-thermal loads, and alkali or 

acidic environments.   

2.1.1.2 Carbon Fibers 

 As seen in Table 1, carbon fibers can be found with various mechanical 

properties. Yet, generally speaking, carbon fibers have high strength-to-weight ratios, 

stiffness-to-weight ratios, chemical resistivity, and excellent resistance to mechanical 

fatigue. Also, carbon fibers have negative coefficients of thermal expansion (CTE) which 

means that combine with the correct resin matrix system can yield a composite with a 

zero CTE. Some of the disadvantages of carbon fibers are poor impact resistance, high 

cost compared to other fibers, limited availability, low strain-to-failure, and high electric 

and thermal conductivity. 

 Tavakkolizadeh et al. (2001) discusses the issue of carbon-to-steel galvanic 

corrosion. It was found that the corrosion rate was primarily dependent on the matrix 

thickness, direct carbon-to-steel contact area, and presence of salt solutions.     
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2.1.1.3 Aramid Fibers 

 Aramid fiber technology saw its first commercial appearance in the 1960s under 

the DuPont Company. Aramid fibers have the highest tensile strength-to-weight ratio 

amount the popular reinforcing fibers. Some advantages of aramid fibers are high 

resistance to extreme heat, high tensile strength, a negative CTE, excellent resistance to 

impact damage, and good chemical resistance. The disadvantages of aramids are difficult 

to machine, low compressive strength, and have durability issues with UV light and 

prolonged exposure to moisture (Mallick, 2008).   

2.1.2 Polymeric Matrix Materials and Adhesives 

 There exists a wide variety of matrix material materials used in the manufacturing 

of FRP composites. Matrices can be organic or inorganic and can come from different 

material families i.e. ceramic, metallic, or polymeric. The matrices that will be of focus in 

this section are epoxy and polyurethane. 

2.1.2.1 Epoxy Resins 

 Epoxy resin is one of the most popular matrix types used with carbon, glass, and 

aramid fibers in infrastructure applications. This is due to the number of advantageous 

chemical and mechanical properties that epoxy resins possess. Table 2 displays some 

general material properties of epoxy resin. Of these properties, the two worth mentioning 

are the Poisson ratio and the cure shrinkage. With a Poisson value in the range of 0.2-

0.33, cured epoxy resins have a similar Poisson values to steel and concrete which are 

normally the bonding substrates in civil applications. The low cure shrinkage for epoxies, 

which is in the low range for polymeric matrices, means that cure-induced residual strains 

at the substrate level are low.       
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Table 2. Generic Cast Epoxy Resin Properties  

Density 

(g/cm
3
) 

Tensile Strength, 

 (ksi) 

Tensile Modulus, 

(ksi) 

Poisson  

Ratio 

CTE, 10
-6

  

(10
-6

 in/in/F) 

Cure 

Shrinkage (%) 

1.2 - 1.3  8-19  400-5,950 0.2-0.33  (28-44) 1-5 

†All Values taken from (Mallick, 2008) 

  

Epoxy resins also have a number of attractive chemical properties such as absence of 

volatile matter during cure, excellent resistance to chemicals, and excellent adhesion 

properties. The disadvantages of epoxy matrices are high cost and prolonged cure time 

(Mallick, 2008)  

2.1.2.2 Polyurethanes 

 Polyurethane is generic name used more for convenience than accuracy. 

Polyurethanes are not produced by polymerizing urethane monomers and do not consist 

solely of urethane groups; they can contain a number of different chemical groups. The 

development of polyurethane based adhesives began in the late 1930’s with the first 

structural use introduced in 1968 by Goodyear (Szycher, 1999). Urethane adhesives have 

vast range of attractive properties making them a good candidate for a variety of substrate 

applications: 

 

- Effectively wet the surface of most substrates. 

- Have small molecular size that allows the adhesive to permeate porous substrates. 

- Rapid cure time that is adjustable with catalyst. 

- Cost effective. 

- Excellent at low temperature. 
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Some of the disadvantages of polyurethane adhesives are as follows: 

 

 - Limited thermal stability due to molecular constituents. 

- Issues with hydrolytic stability. 

- Sensitive to moisture in bulk. 

- Conditions under which application/curing occurs are critical. 

- Some substrates require the use of primers. 

 

 There does not exist a significant amount of research available on the use of 

polyurethanes as matrix materials for FRPs. The majority of early work published on the 

subject is related to fiber reinforced elastomeric polyurethanes (Andreopoulos et al.1989) 

and thermoplastic polyurethane composites (Kutty et al. 1991 and Kutty et al. 1991) 

which do not exhibit mechanical performance suitable for infrastructure load-bearing 

applications.  

2.2 Applications of FRP Composites in Civil Infrastructure 

 Today there is a growing popularity of using FRPs in civil construction. 

Typically, FRP composites are selected as a structural or load bearing component when 

significant strength and stiffness are needed and component self-weight is a critical 

design factor. Other instances where FRP composites have been a design option are 

scenarios where harsh and/or corrosive environments are encountered.  
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 One such application is the use FRPs for strengthening and retrofit of damaged, 

deficient, and degraded reinforced concrete (RC) flexural members. Typically, flexural 

strengthening is achieved by bonding pre-formed FRP plates or field impregnated fiber 

sheets to the tension soffit of the member. Plates and sheets can be bonded to the concrete 

substrate using a number of different adhesive systems, i.e., epoxy, polyester, vinylester, 

and polyurethane. Furthermore, different types of reinforcing fiber can be selected 

depending on the application environment, i.e., glass, aramid, carbon, and basalt. The 

composite strengthening system is defined as the combination of reinforcing fibers and 

impregnating resin. Strengthening systems may or may not include a substrate adhesive 

primer layer to promote bonding. 

 Investigations on externally bonded flexural strengthening began in the late 1980s 

(Ritchie et al., 1991). It was found that applying externally bonded FRP to the tension 

soffit of an RC beam could significantly increase the load bearing capacity of the 

member. Although increase in strength observed the increase came at the cost of 

decreased member deformation and abrupt non-ductile failure modes.  



13 

 

 The failure mode most commonly associated with flexural strengthening of 

concrete with externally bonded FRPs is laminate debonding. This failure mechanism 

occurs when the bonded laminate, either locally or globally, separates from the concrete 

member. A study by Bonacci and Maalaj (2001) involved compiling a database of 

laboratory beam specimens that were tested in flexure with bonded FRP laminates. The 

results of the study indicated that as many as 69% of laboratory specimens failed via 

laminate debonding. Debonding is a complex mode of failure that is depended on a 

number of variables such as concrete strength, FRP type, adhesive properties, and the 

environmental conditions during composite curing (Buyukozturk & Yu, 2006). Various 

debonding failure modes are depicted in Figure 1. 

 

Concrete/Tension Reber

Interface

FRP Delamination

FRP/Adhesive Interface

FRP/Concrete Interface

Adhesive

Concrete

Substrate

 

Figure 1. Typical Debonding Failure Mechanisms 

 

 Research has shown that there are a number of different factors that affect the 

performance of RC beams externally strengthened with bonded FRP laminates. One area 

of particular interest to design engineers and researchers is the long-term durability of 

strengthened members. The subsequent sections describe how mechanical fatigue/cyclic 

loading and harsh environments affect the performance of strengthened members.  
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2.2.1 Fatigue and Cyclic Loading 

 A critical factor effecting the long-term performance and durability of RC 

members strengthened with externally bonded FRP systems is repeated or fatigue 

loading. There only exist a limited number of available studies that have investigated the 

fatigue response of FRP strengthened members.  

 One of the earliest studies conducted was by Meier, et al. (1992) at EMPA (The 

Swiss Laboratories for Material Testing and Research at Dubendorf). In this study an RC 

beam with length 2000mm, depth 250mm, and wide 300mm, was strengthened in flexure 

with a glass/carbon hybrid sheet that was bonded to the tension face of the beam. The 

member was loaded in 4-point bending at a frequency of 4 Hz with a loading range of 1 

to 19 kN (stress in the tension reinforcement was in the order of 400 MPa). Ultimate 

failure of the member occurred at 805,000 cycles.  

Two more fatigue tests were conducted by Meier at EMPA. In these tests other 

test parameters were investigated such as slight increase in temperature and humidity 

during fatigue loading and pre-stress of the composite plate. Complete failure occurred at 

14 and 30 million cycles. It must be noted that stress range for the second and third tests 

was not as intense as the initial test. 
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 Barne, et al. (1999) conducted a similar fatigue study on CFRP strengthened RC 

beams. In their study, 5 RC beam specimens were constructed with the following 

dimensions and reinforcement: a span length 2.3m, depth 230mm, width 130mm, and 3 

T12 rebars as tension reinforcement. Of the 5 beams, 3 beams were strengthened with 

pultruded CFRP composite plates. The plates were bonded to the tension face of the 

beams using SikaDur 31 two part structural epoxy. Moreover, all of the strengthened 

specimens incorporated plate-end anchorage consisting of two steel anchor bolts and a 

steel plate. The remaining two beams were used as control specimens. 

 Fatigue loading was conducted at 1 Hz in a 4-point bending configuration. The 

maximum load range considered for fatigue testing was between 25.9% and 39% of the 

predicted ultimate capacity of the beams (stress in the tension steel between 198 and 303 

MPa). All strengthened specimens failed via fatigue rupture of the tension steel 

reinforcement.  

 The results of this study concluded that the fatigue stress range and the amount of 

tension steel were the most critical parameters when considering fatigue life of a CFRP 

strengthened member. 

 Ferrier, et al. (2005) conducted a study that employed the use of small-scale 

single and double lap shear test specimens. The purpose of the study was to determine the 

allowable shear bond strength and FRP strength as a function of number of load cycles. 

The test parameters considered in this study were epoxy type and stress range.  
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 The results from this study concluded that as the number of fatigue cycles 

increase there is a proportional decrease in failure strength and composite elastic 

modulus. Moreover, it could also be observed that the stress range applied during fatigue 

loading had a significant impact on fatigue life. Recall, this result was noted by Barnes 

and Mays (1999) as well.  

 Ferrier et al. also describes the syntax of progressive failure during the fatigue life 

of the specimen as follows: 

- 10% - 15% of fatigue life: Debonding begins to occur near the loaded 

end of the specimen. 

 

- 50% - 75% of fatigue life: Epoxy adhesive begins to undergo softening 

and fatigue induced degradation.  

 

-  75% - 100% of fatigue life: Crack propagation at the concrete/FRP 

interface leading to failure. 

 

The fatigue and monotonic strength of RC beams strengthened with externally 

bonded CFRP was investigated by Gheorghiu, et al. (2006). Fifteen RC beam specimens 

were constructed with dimensions: length 1215mm, width 100mm, and depth 150mm. 

All beams were strengthened with one layer of Sika CarboDur (50mm width). A 260mm 

portion of the composite laminate was left unbounded at the mid-span of all beams to 

ensure that specimen failure would occur via debonding.   
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Thirteen beams were subjected to cyclic loading and then to monotonic loading 

until failure. The two beams not subjected to cyclic loading were used as reference 

specimens and only subjected to monotonic loading. 

Cyclically loaded beams were subjected to 400,000 to 2,000,000 load cycles at 

one of two load intensities. A low-range load intensity that varied from 15-35% of 

specimen yield strength and a high-range load intensity that varied from 35-75% of 

specimen yield strength. Beams were tested at 2 Hz (10 beams) or 3 Hz (3 beams). 

The study concluded that the number of fatigue cycles at the low-range load 

intensity did not have a significant effect on the strengthened beams. Yet, the converse 

was true for the beams fatigued at the higher load intensity range. After about 200 cycles 

there was a significant increase in laminate strain and crack presence. Although the 

higher load range had an effect on observed strain and cracking, it was concluded that 

fatigue loading did not have a significant effect on member ultimate load (monotonic to 

failure).   

Toutanji, et al. (2006) investigated the cyclic behavior of RC beams strengthened 

with CFRP sheets impregnated and bonded with an inorganic matrix. The main objective 

of the study was to investigate the relationship between fatigue strength, crack width, and 

number of fatigue cycles. Seventeen beam specimens were cast for the experiment. 

Thirteen beams were strengthened with three layers of externally bonded CFRP fabric. 

Strengthened specimens also incorporated externally bonded 45 degree shear 

strengthening CFRP strips.  
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The fatigue load applied ranged between 50% and 80% (strengthened specimens) 

of the ultimate static load capacity. The study concluded that member deflections and 

laminate strains do not vary significantly after the fatigue rupture of tension steel. It was 

also concluded that due to CFRP’s higher ultimate strength compared to that of steel that 

the application of CFRP can increase the fatigue load capacity of a strengthened RC 

member. Finally it was concluded that crack initiation and propagation occurs during that 

first few hundred fatigue cycles. 

Grace, et al. (2005) conducted an experimental study investigating the effect of 

repeated loading on the flexural response of CFRP strengthened RC beams. Twelve beam 

specimens with the following dimensions were used: length 2740mm, length 254mm, and 

width 152mm. Beams were strengthened with either externally bonded CFRP plates or 

sheets. Specimens were loaded in a 4-point bending configuration at 3.25 Hz for 2 

million cycles. The loading ranges were 15%, 25%, or 40% of the ultimate flexural 

capacity. The study concluded that fatigue had no adverse effect on the ultimate load 

carrying capacity of the strengthened beam. It was noted that for the 40% of ultimate load 

range that specimens for both CFRP plate and fabric experienced softening without 

increase in applied load. 
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A study by Aidoo, et al. (2004) investigated the fatigue performance of large-

scale RC bridge girders retrofitted with CFRP materials. Particular attention was paided 

to the bond between CFRP and concrete and fatigue life of strengthened specimens. Test 

parameters taken into consideration were CFRP system (plates and sheets) and fatigue 

stress range (60% and 80% of tension steel yeild stress). Eight 6.1m (20’) reinforced 

concrete T-beams were prepared for the study. The construction details of the specimens 

prepared represented a 62% scaling of beams removed from an interstate bridge 

constructed in 1961. Fatigue loading was applied with a servo-controlled MTS hydraulic 

actuator under load control at 1Hz.  

It was observed that strengthened specimens for both stress ranges failed in the 

following manner: 

 

- Initial failure was caused by fatigue rupture of the extreme tension 

layer of reinforcing steel. In some specimens, multiple tension bars 

experienced fatigue rupture. 

 

- Shear cracking/deformation near mid-span initiated CFRP debonding. 

 

-  Complete CFRP delamination from concrete. In some cases 

delamination was induced by steel rupture. 
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It was concluded that the addition of externally bonded CFRP can increase the fatigue life 

of RC beams. The increase in fatigue life is limited by the CFRP-to-concrete bond quality 

and ability to resist fatigue induced bond degradation. It was also found that the 

preformed CFRP strip preformed better than the fabric retrofit.   

The following general conclusions can be drawn from past research on the fatigue 

durability of CFRP strengthened RC beams: 

 

- Fatigue stress range seems to play an important role in the fatigue 

performance of CFRP strengthened members. 

 

- The majority of studies reported softening in strengthened members 

due to fatigue induced degradation of the FRP-to-concrete interface. 

 

- Studies report mixed results in regard to post-fatigue monotonic 

ultimate flexural capacity. 

 2.2.2 NaCl Solution 

 There are numerous situations in externally strengthening applications where the 

FRP composite system could be subjected to salt exposure i.e. road de-icing salts and sea 

water. Although FRP composites have a high tolerance against corrosion, the FRP-to-

concrete interface could be compromised due to such exposure. There have been a few 

studies conducted on the effects of salt exposure on RC members externally strengthened 

with FRP materials. 
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 One of the earliest studies to investigate exposure to chlorides was done by 

Karbhari, et al. (1996). The study focused on the FRP-to-concrete bond behavior under 

short term exposure to various environments. Two different commercially available 

epoxy resin systems were investigated with glass and carbon reinforcing fibers. Small-

scale mortar (1:3 – cement:sand) beam specimens were used with dimensions of 

13”(length) x 2”(width) x 1”(height). Three layers of epoxy impregnated reinforcing fiber 

were applied to each strengthened specimen. After a one week cure period specimens 

were subjected to 60 days (1440 hours) of immersion in a 5% NaCl solution. Upon 

completion of environmental conditioning specimens were subjected to 4-pt monotonic 

loading until failure. 

 All four composite systems tested experienced decreased flexural performance in 

terms of ultimate load bearing capacity, deflection capacity, and flexural stiffness (EI).  

The decreases in performance were reported as follows: 13-47%, 15-53%, and 7-31% for 

ultimate load, deflection, and flexural stiffness respectively. It must be noted that the 

epoxy systems with the lower glass transition temperature experienced the most severe 

degradation for both glass and carbon fibers. Furthermore, it was determined that the 

epoxy system was more critical to the post-conditioned behavior than the reinforcing 

fiber.  
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 The effect of immersion in NaCl solution was investigated as a portion of the 

study conducted by Grace, et al. (2005). 12 beam specimens, with dimensions 9’(length) 

x 6”(width) x 10”(height) and ρ=1.15%,were exposed to immersion in a NaCl solution 

for 1000, 3000, or 10,000 hours at 73⁰F ± 3⁰F. Beams were strengthened with either 

CFRP plates or fabric sheets. The CFRP systems were adhered to the concrete surface 

using one of two types of structural epoxy. Both epoxy systems had similar material 

properties. Ultimate load testing was conducted under 4-point bending in three stages. 

 Results from load tests show no significant decrease in ultimate load bearing 

capacity for either CFRP strengthening system. The system employing CFRP plates 

actually showed an increase in ductility for all exposure periods. The system employing 

CFRP sheets showed a 16.6% decrease in ultimate deflection capacity. Ultimate strains 

values for both systems at all exposure periods experienced slight or no reductions from 

baseline values. In conclusion there did exist any type of definitive relationship between 

time of exposure and mechanical response. 

 An experimental study on the durability characterization of wet lay-up 

carbon/epoxy composites was conducted by Abanilla, et al. (2006). A portion of the study 

was focused on the effect of a salt solution on CFRP at the material level. The carbon 

fabric used had the following properties: ρ = 1.80 g/cm
3
, E = 230 GPa, and ffrp = 4900 

MPa. Specimens exposed to saline solution immersion consisted of either 2 or 6 layers of 

carbon fabric. After curing, a standard ASTM D3171 acid
 
digestion test was conducted 

and it was determined that specimen volume fractions ranged from 34 to 43%.  
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 Specimens where subjected to 100 weeks of immersion in a 5% NaCl solution at 

23 ⁰C. The effect of saline immersion was quantified via uniaxial tension (ASTM 

D3039), 3-point flexure (ASTM D790), glass transition temperature Tg (ASTM E1640), 

and moisture uptake testing. Specimens were tested throughout the 100 week period of 

exposure (5 specimens per time interval).  

 It was concluded that the presence of NaCl in solution had a negligible effect on 

the rate of moisture uptake and Tg. Tensile test (2-layer specimens) results showed an 18 

and 12% decrease in tensile strength and modulus respectively after 100 weeks of 

exposure. 3-point bending test (6-layer specimens) results showed a 25 and 9.4% 

decrease in flexural strength and modulus respectively after 100 weeks of exposure. It 

must be noted that the respective strength and modulus decreases seen over the 100 week 

period for both tests were progressive and had a tendency to stabilize over time.      

 Soudki, et al. (2007) conducted an experimental study which examined the ability 

of externally bonded CFRP plates (Sika CarboDur) and sheets (Forca-Tow) to prevent 

chloride intrusion of concrete. A total of 11 RC beams (2400mm-length x 150mm-width 

x 250mm-height and ρ=0.6%) were cast. Of which 8 beams were cracked and 

strengthened with CFRP and 3 beams remained uncracked. There were two strengthening 

schemes employed: beams strengthened with CarboDur plates incorporated U-wrap 

plate-end anchorage and beams strengthened with Forca-Tow sheets employed lateral 

CFRP anchorage strip throughout the length of the beam shear span. It must be noted that 

both the sides and tension face of the beams strengthened with Forca-Tow were covered 

with saturating epoxy. 
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 Beams were subjected to 0, 100, 200, or 300 wet/dry cycles in the presence of 3% 

NaCl solution. Each wet/dry cycle took 2 days to complete (1 day for the wet cycle and 1 

day for the dry cycle). Upon completion of the wet/dry conditioning beams were loaded 

monotonically to failure in a 4-point bending configuration.   

 Results of the study showed that beams strengthened with CarboDur plates 

yielded 19, 25, and 28% reduction in load bearing capacity for 100, 200, 300 wet/dry 

cycles respectively. Beams strengthened with the Forca-Tow system showed 2, 6, and 

11% reductions in ultimate capacity for 100, 200, and 300 wet/dry cycles respectively. 

The performance of the Forca-Tow system verses the CarboDur system was attributed to 

the epoxy coverage of the beam. It is also concluded by the authors that the Forca-Tow 

system was not greatly affected by the applied conditioning. It must be noted that the 

authors of this document believe that the performance of the Forca-Tow system can be 

attributed to the amount of additional transverse anchorage that was used.    

2.2.3 Moisture & Humidity 

 Karbhari, et al. 2003 identified exposure to moisture and humidity to be a critical 

area in need of investigation for externally strengthening. This is due to the susceptibility 

of the resin matrix to be infiltrated by moisture. Moisture intrusion of the matrix can lead 

to a number of negative effects. On the matrix level, this can cause hydrolysis, 

plasticization, and saponification. At the fiber/matrix interface level, moisture intrusion 

can cause both chemical and mechanical fiber/matrix bond degradation. If moisture is 

allowed to reach the reinforcing fibers, in the cases of aramid and glass fiber, can cause 

deterioration of the fiber and a higher possibility of premature fiber rupture. 
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 Although significant work has been completed on the investigation of humidity 

and moisture effects of FRP composites (Marom and Broutman 1981, Apicella et al. 

1983, Zheng and Morgan 1993, and Schutte 1994) the same is untrue for externally 

reinforced RC members. The following section discusses some of the available studies 

conducted on moisture/humidity effects on FRP strengthened RC members 

 The study conducted by Karbhari, et al. (1996), as discussed earlier, was one of 

the earliest experimental investigations on environmental effects on FRP strengthened 

concrete. A portion of this study focused on the immersion of specimens in water at 68⁰F 

(20⁰C) for 60 days (1440 hours). 

 Results showed that of the four composite systems tested there were 15-35% and 

15-52% reductions ultimate load and deflection at failure respectively. It was also found 

that immersion in water did not have an effect on the glass transition temperature for all 

systems. It was concluded that the resin matrix system used in creating the externally 

bonded composite had the greatest effect on the post-immersion load deflection behavior 

of the specimens. 

 The study conducted by Grace, et al. (2005),  previously discussed, included a 

portion of the experimental program that exposed specimens to 100% humidity for 

periods of 1000, 3000, and 10,000 hours at 100±3⁰F (38±2⁰C) per ASTM D 2247. Recall 

that both CFRP plates and sheets were used to strengthen beam specimens. 
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 Results of the study showed that beams strengthened with CFRP sheets exhibited 

more stable post-humidity performance than those strengthened with CFRP plates. Of the 

various exposure environments used in the study (dry heat, humidity, NaCl solution, 

freeze-thaw, alkali solution, and fatigue) it was found that the beams strengthened with 

CFRP plates showed a greater tendency to experience decreased flexural performance in 

terms of ultimate load bearing capacity and maximum flexural strain due to humidity 

exposure (at 10,000 hours); decrease of 31.9% and 54% from baseline ultimate capacity 

and maximum strain respectively. The post-exposure behavior of the specimens 

strengthened with CFRP sheets was not nearly as critical for 10,000 hours of exposure; 

9.67% , 11.4%, and 19.9% decreases from baseline results in terms of ultimate load, 

deflection, and mid-span strain respectively. All specimens failed via CFRP debonding 

and/or concrete cover delamination. 

 2.2.4 Temperature Effects 

 In infrastructure service environments, variations in ambient temperature are to 

expected. Therefore, the effect of temperature variation on the FRP-to-concrete interface 

is of importance when considering the long-term durability of strengthened members. 

There have been three types of temperature oriented tests conducted in relation to 

infrastructure applications: 

 

1) Exposure to a constant temperature (either elevated or decreased). 

 

2) Cyclic temperature exposure (such as freeze/thaw or heat/cool). 
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3) Steady-state or transient temperature exposure during the loading (both 

experimental and analytical conducted).   

 

 The study conducted by Grace, et al. (2005), previously discussed, included 

portions of the experimental program that exposed specimens to constant elevated 

temperatures and freeze/thaw cycles. Twelve RC (4 per exposure period) beam 

specimens were exposed to 1000, 3000, or 10,000 hours of 60⁰C (140⁰F) dry heat in a 

specially design chamber. Eight (4 per exposure period) beam specimens were exposed to 

350 or 700 freeze/thaw cycles where temperature cycled between -17.8⁰C and 4⁰C (0⁰F 

and 40⁰F). Air was used to freeze beams while water was used for thawing. After the 

conditioning period, specimens were loaded monotonically until failure.  

 Results revealed that freeze/thaw conditioning resulted in reduced loading bearing 

capacity of RC member strengthened with FRP plates and sheets by 3.3-9.5% and 6-13% 

respectively. There was no significant decrease in flexural performance observed in 

specimens subjected to dry heat conditioning. All specimens failed via CFRP debonding.  
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 Gamage, et al. (2006) investigated, via analytical means, the bond properties of 

CFRP to concrete under elevated temperatures. More specifically, the study focused on 

bond performance under transiant thermal loads like those associated with structural fires. 

13 single-lap shear specimens (2 of which were coated with an insulating material) were 

prepared to calibrate a non-linear heat transfer finite element model (FEM). Test 

specimens were loaded using displacement control. During testing, non-insulated 

specimens were subjected to a constant rate applied temperature of 10⁰C/min (50⁰F/min). 

Parameters investigated via FEM were bond length, bond slip, failure load, temperature 

rate, fire resistance level, and insulation thickness. 

 Based on both experimental and analytical results, the study by Gamage, et al. 

concluded the following: 

 

- The epoxy adhesives currently being used for construction applications 

are extremely sensitive to temperature variations. 

 

- A maximum service temperature of 70⁰C (158⁰F) is recommended to 

maintain force transfer between concrete and CFRP. 

 

- Bond strength, under elevated temperatures, is not dependent on bond 

length. 

 

- Un-insulated concrete-CFRP composites will reach the point of bond 

failure in the standard fire within 5-6min.  
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 Karbhari, et al. (2003) suggested that for civil infrastructure applications 

freeze/thaw conditons are to be considered the most critical temperature related service 

environment.  

2.3 Polyurethane Matrix Composites 

  Sen et al. (2006) completed a demonstration field project that focused on the 

repair of severely damaged underwater bridge piles using the same polyurethane 

composite system considered in this study and other more conventional systems. After 

two years of service, direct tension bond pull-off tests revealed that the polyurethane 

system tended to exhibit inter-layer failure. Such a failure indicates good bond to 

concrete but poor layer-to-layer adhesion. Furthermore, the ease in which the system 

could be used was noted. Mechanical testing to determine the ultimate load-bearing 

capacity of strengthened piles was not completed.  

 Setiadi et al. (2005) conducted a study on random fiber reinforced polymer 

composites and the damage sequence induced onto the composite by cyclic loading. Two 

different types of polymeric matrices were considered for the study; a modifed polyester 

employing a methyl ethyl ketone peroxide (MEKP) initiator and a thermosetting 

polyurethane. Test specimens (of dogbone geometery per ASTM D 628-01) were 

reinforced with 5 layers of random oriented E-glass mat and manufacured via resin 

tranfer molding (RTM). The approximate fiber fractions for each matrix type where 25 to 

28% for the polyester-based FRP and 23 to 25% for the urethane-based FRP. Fatigue 

testing was conducted at 0.3 Hz within a stress range of 0 to 50% of the ultimate stress of 

the respective specimen types. 
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 Results from static loading show that the urethane matrix composite had 

significantly higher strain at failure, ultimate strength, and energy absorption at failure 

than the polyester composite at the cost of lower tensile stiffness. Furthermore, the 

fracture plane and the observed post-failure cracking was more localized for that of the 

urethane composite. 

 Results from fatigue loading indicate that both matrix types show increased 

strains with cycle number. Yet, the strain increases in the urethane composite were 

smaller than those observed in the polyester composite. Furthermore, a decrease in elastic 

modulus was observed for both specimen types but was less significant in the urethane 

composite. The urethane matrix composite also exhibited a lower amount of matrix 

cracking at 1000 cycles. Moreover, cracks in the urethane matrix were observed to 

originate from micro-voids caused by CO2 during cure. It was concluded that urethane 

matrix composite performed better, under the inposed conditions, than of the polyester 

matrix composite.  
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3. SPECIMEN DETAILS 
 

 Two groups of specimens were constructed for the work presented in this thesis. 

The first group was comprised of small-scale beams and composite plates that would be 

used to evaluate the short-term durability of PU carbon composite system being 

considered. The second group of specimens was a set of large-scale reinforced concrete 

beams use to evaluate the performance of the PU system versus an epoxy based system. 

The following section describes the composite systems used, how specimens were 

constructed, how CFRP was applied, and how specimens were instrumented for testing. 

Test matrices will also be presented.  

3.1 CFRP Systems 

 For this study there were four CFRP systems used in experimental testing; 2 

polyurethane matrix systems and 2 epoxy matrix systems. The principle material 

properties, i.e. elastic modulus, rupture strength and strain, for all systems were 

experimental determined at the University of Central Florida’s Structural Analysis 

Laboratory. Tensile coupons were prepared according to ASTM D3039 for all composite 

types and testing on a Satec 200kip universal testing machine. The following section 

describes system constituents and the composite material properties. 
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3.1.1 Polyurethane Matrix Carbon Fiber Composite Systems 

 Two polyurethane matrix carbon fiber composite systems used in this study; the 

first (denoted the “PU1” system) utilized a uniaxial carbon fabric and the second 

(denoted the “PU2” system) utilized a biaxial carbon fabric. Both systems are 

commercially known as Aquawrap-Black and are produced by the Air-Logistics 

Company in Azusa, CA. The PU composite systems were pre-impregnated with a 

polyurethane resin and came ready to use in a hermetically sealed foil package. The 

matrix hardening process for the PU matrix was catalyzed by misting the pre-

impregnated composite with water. The PU composite systems also employed the use of 

an adhesive base primer (know as BP-1) to promote laminate adhesion to rough surfaces; 

a two-part polyurethane adhesive that came in pre-measured quantities ready for mixing. 

The BP-1 system also contained glass fibers for additional strength. General properties of 

the BP-1 base primer system can be found in Table 3. 

 

Table 3. BP-1 Base Primer Properties 

BP-1 Adhesive Primer 

Working Time 45 min @ 77 ⁰F 

Application Temperature 33 - 100⁰F 

Service Temperature 0 - 250⁰F 

Cure Time 60-90 min @ 77⁰F 

Bond Strength (Concrete) 225 psi 

 

 A total of 5 tensile test coupons were constructed to determine that material 

properties of the PU1 CFRP system. The stress-strain material behavior and results 

summary for acceptable samples can be found in Figure 3 and Table 4 respectively. 
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Figure 2. PU1 System Stress-strain Material Behavior 

 

Table 4. PU1 System Tensile Test Results Summary 

Sample ID Elastic Modulus (ksi) 

S1 6459 

S2 6861 

S3 6621 

S4 7611 

S5 7578 

Average 7026 

   

 A total of 9 tensile test coupons were constructed to determine that material 

properties of the PU2 CFRP system. Of the 9 test samples, 7 were considered to produce 

acceptable results. Samples 1 and 7 were not included due to substantially low numerical 

results and data acquisition malfunction respectively. The stress-strain material behavior  

and results summary for acceptable sample can be found in Figure 3 and Table 5 

respectively. 
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Figure 3. PU2 System Stress-strain Material Behavior 

 

Table 5. PU2 System Tensile Test Results Summary 

Sample ID Elastic Modulus (ksi) Rupture Strain (%) Ultimate Stess (ksi) 

S2 2356 1.52 35.8 

S3 3221 1.24 39.8 

S4 2679 1.39 37.1 

S5 3353 1.03 34.5 

S6 3716 1.01 37.4 

S8 3235 1.24 40.0 

S9 3348 1.03 34.6 

Average 3130 1.21 37.0 

 

3.1.2 Epoxy Matrix Carbon Fiber Composite Systems  

 There were two epoxy matrix systems used in this study. Both systems utilized 

the same 12” width uni-directional carbon fiber. The carbon fabric was produced by the 

Hexcel Corporation (product identification GA130). Fiber details can be found in Table 

6. 
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Table 6. Carbon Fabric Properties 

GA130 Carbon Fabric 

Weight (oz/yd2) 13.2 

Thickness (in.) 0.02 

Fibers/Tow 12000 

Weave Unidirectional 

  

 The first epoxy matrix carbon fiber composite system was designated the “EP1” 

system. The resin system used was a two-part medium viscosity epoxy produced by the 

PTM&W Company commercially known as Aeropoxy (PR2032 resin and PH3660 

catalyst). The Aeropoxy system was previously used by the FDOT in previous research 

studies. The mix ratio used, as specified by the manufacturer, was 3:1 resin to catalyst by 

weight or volume. Test specimens were constructed using two layers of CFRP fabric. 

Test results for elastic modulus and rupture strength are found in Table 8. 
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Figure 4. EP1 System Stress-Strain Behavior 
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Table 7. EP1 System Tensile Test Results Summary 

Sample ID Elastic Modulus (ksi)  Rupture Strain (%) Rupture Stress (ksi) 

S1 9084 1.12 103 

S2 9801 1.09 101 

S3 9055 1.09 101 

S4 8918 0.96 88.6 

S5 - 1.04 96.2 

Average 9214 1.065 98.1 

  

 The second epoxy matrix system, designated at the “EP2” system, employed an 

epoxy matrix that incorporated resin and catalyst from different manufacturers. The 

epoxy resin used was D.E.R.
TM

 383 produced by the DOW Company. The resin catalyst 

was Jeffamine® D-230 produced by Huntsman. The mix ratio used was 3.29:1 resin to 

catalyst by weight; this mix ratio yields an epoxy of medium viscosity. Tensile test 

coupons were prepared with two layers of CFRP fabric. Results can be found in Figure 5 

and Table 8. 
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Figure 5. EP2 System Stress-Strain Behavior 
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Table 8. EP2 System Tensile Test Results Summary 

Sample ID Elastic Modulus (ksi) Rupture Strain (%) Ultimate Stress (ksi) 

S1 9549 0.98 93.8 

S2 9681 0.92 88.6 

S3 9531 0.83 78.7 

S4 9242 0.93 85.9 

S5 8764 1.22 106 

S6 8764 - - 

S7 8552 1.26 107 

S8 8745 1.26 110 

Average 9103 1.06 95.9 

3.2 Small-scale Beam Specimens 

 Small-scale specimens were poured on August 31
st
 2009 in the UCF structures 

laboratory (refer to Figure 6). A total of 77 beams were poured measuring 6” x 6” x 24” 

of which 34 beams would be used for the work presented in this thesis. During casting, 

72 (4” x 8”) concrete cylinders were poured according to ASTM C39. Details regarding 

the concrete mix used for small-scale beam specimens can be found in Table 9. Beams 

were allowed to cure undisturbed in forms for a minimum of 7 day prior to removal. 

During curing, forms were covered with plastic to ensure minimal escape of moisture.   

 

 

Figure 6. Concrete Pour in Structures Lab 
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Table 9. Concrete Mix Details 

Cement Type Portland Type I/II 

Maximum Aggregate Size 1" 

Specified 28 Day Strength 5000 psi 

Measured Slump 3.5" 

14 Day Strength 5527 psi 

28 Day Strength 6360 psi 

 

 Once removed from forms, beams were prepared for application of CFRP. The 

substrate surface of each beam was treated with a handheld grinder to remove the thin 

layer of cement paste covering the aggregate. Each beam specimen was to have a single 

layer of PU2-CFRP. Small-scale specimen details can be found in  

Figure 7.    

 

6.0"

6.0"

24.0"

20.0"  

Figure 7. Small-scale Beam Specimen Details 
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 The CFRP laminate was applied to small-scale specimens in 3 groups. This was 

done to ensure adequate working time of the PU base primer and pre-preg laminate. In 

order to reduce the time required for lay-up, specimen were clamped together in groups 

of two and laminated with a single 12” wide layer of CFRP. The seam between 

specimens was filled with a small continuous bead of silicone caulk to prevent leakage of 

base primer between beams. The caulk was allowed to set for 45min prior to beginning 

lay-up procedures. The following procedure was followed to apply the Aquawrap CFRP 

to the surface of small-scale beams: 

 

1) The concrete surface was brushed with a steel-wire brush to remove any loose 

particle matter. 

2) The brushed surface was then cleaned with acetone to remove any residual 

chemicals or fine particles 

3) The tension soffit of each beam was then marked to identify the location of the 

applied laminate. 

4) Two beams were then placed side-by-side and secured tightly with a clamp. 

5) The seam between beams was then filled with caulk to prevent the urethane 

primer from leaking between beams. The caulk was allowed to dry for 45 min 

before proceeding.  

6) A can of BP-1 Aquawrap primer Part B was then mixed into a can of BP-1 Part A 

and mixed by hand for approximately 3min. 

7) A thin layer of primer was applied to the tension face of each set of beams with a 

paint roller and was allowed to become tacky for proceeding. 
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8) The Aquawrap CFRP was then removed from its sealed package and cut into 20” 

long sheets. 

9) Sheets were then misted with water and depressed into the tension face of each 

beam-set with an FRP roller. 

10) Applied sheets were rolled for 20min to ensure minimal formation of voids 

between CFRP and concrete. 

 

 Specimens were left undisturbed for 24 hours to allow for proper curing of the 

CFRP laminate. After 24 hours, clamps were removed and the laminate was cut along the 

specimen seam. To ensure a full cure of the CFRP laminate, specimens would not be 

exposed to conditioning environments for at least 7 days. It should be noted that the 

laminate length was altered prior to flexural tested to ensure that debonding failure would 

occur. That length was shortened from 20” to 12” by cutting that laminate with a small 

rotary tool. 
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3.3 Large-scale Beam Specimens 

 3.3.1 Beam Design 

 Large-scale concrete beam were cast at the FDOT Structural Research Center 

(SRC) in Tallahassee, FL. Beams were poured in eight separate batches with two beams 

per batch. Standard 6” x 12” compression cylinders were cast and tested according to 

ASTM Standard C39 for each batch. Details regarding the concrete mix used for large-

scale beam specimens can be found in Table 10. Consecutive batches were poured a 

minimum of seven days apart allowing all beams to cure undisturbed in the forms. Refer 

to Table 11 for the pour dates, batch numbers, and the compressive strength results from 

seven and twenty-eight day test cylinders. After seven days of curing, beams were 

removed from the forms and stored outdoors at the SRC for further curing. As noted in 

Table 11, beams 13 and 14 were damaged during handling. These beams were not 

incorporated in the study. 

 

Table 10. Large-scale Beam Concrete Mix Details 

Cement Type: Class II 

Target Slump: 3in 

Minimum f 'c: 4,500 psi 

Max Water to Cement Ratio: 0.44 

Minimum Cementitious Material: 611lb/yd
3
 

Air Content Range: 1% - 6% 
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Table 11. Large-scale Beam Concrete Details 

Batch No. Pour Date Beam ID 
Compressive Strength (psi) 

7 Day 28 Day 

1 5/11/2005 1 & 2 3205 5149 

2 5/18/2005 3 & 4 4830 7397 

3 6/1/2005 5 & 6 5105 7121 

4 6/8/2005 7 & 8 4656 6773 

5 6/15/2005 9 & 10 4249 6396 

6 6/22/2005 11 & 12 5018 7440 

7 6/29/2005 13
1,2,3

 & 14
1,2,3

 2335 3872 

8 8/31/2005 15
2
 & 16 4598 7498 

  1
Under Strength  

2
Damaged  

3
Excluded 

 

 Beam reinforcement cages were comprised of three longitudinal No. 7 deformed 

steel bars for tensile reinforcement (reinforcement ratio of 1.0%) and No. 3 bars for 

compression and shear reinforcement. It was experimentally determined that the yielding 

strength and ultimate strength for reinforcing steel was 74.8ksi and 110ksi respectively. A 

design schematic for the beams cast can be found in Figure 8. 

Figure 8. 

15"

12"

18"

2 #3 Bars

3 #7 Bars

2.25"

1.5"
8'

1.5'

 

Figure 8. Beam Dimensions and Reinforcing Details 
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3.3.2 Specimen Preparation  

 Of the 14 beams used for experimental testing, 12 beams were strengthened with 

two layers of CFRP fabric. For this portion of the study, there were 3 CFRP systems used 

to strengthen beams; the PU1, EP1, and the EP2 systems. For each composite system 

there was a set of 4 beams strengthened. Prior to applying the CFRP laminate, the tension 

soffit of each beam was cleaned to ensure the surface was free of grit and other particles. 

For all resin systems, the composite laminate was applied to the tension face of the beams 

using a hand lay-up process; beams were positioned tension face up during the 

application process. In all cases, the CFRP laminate was applied to the full width of the 

tension soffit. The first layer and second layers of CFRP measured lengths of 14’4” and 

13’10” respectively. This lay-up configuration results in a staggered bond-end to reduce 

an abrupt change in stiffness (Figure 9). 

 

CLLongitudinal

13'-10"

14'-4"

CLSupport

1st Ply

2nd Ply

Tapered ply

termination points

CLSupport

4"3"

 

Figure 9. Laminate Lay-up Diagram 
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 The CFRP laminates utilizing epoxy (EP1 and EP2) matrices were both installed 

using the same wet lay-up process. First, a thick coat of resin was applied to the prepared 

tension soffit in order to prime the concrete surface for adhesion; the resin primer coat 

was the same epoxy resin used to impregnate the fibers. The first dry fiber sheet was then 

laid down and depressed into the resin with an FRP roller. A saturating layer of resin was 

then applied to the fiber and impregnation was achieved using a FRP roller. This process 

was repeated for the second layer of fabric applied to complete the laminate installation. 

It should be mentioned that during the installation of the CFRP laminate that utilized the 

EP2 resin system, there were some issues encountered regarding premature gelling of the 

epoxy resin. This problem was mitigated by mixing new resin and reapplying new fabric. 

Although this solution was effective, it most likely led to some interlaminar and CFRP-

to-concrete interface discontinuities in bond.  
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 Unlike the epoxy systems that used the same resin to both bond and impregnate 

the fiber, the PU1 system utilized a separate two-part base primer to promote adhesion to 

the concrete surface. Hence, prior to installation of the PU1 system strengthened beams, 

the concrete tension surface was coated with a thin layer of the Air-Logistics BP-1 

polyurethane base primer. Once the base primer became tacky, the pre-impregnated 

Aquawrap fabric was removed from its sealed package and applied to the beam. During 

the lay-up process, the laminate was misted with water using spray bottles to initialize 

matrix hardening. After the installation process, the fabric was rolled every 10 minutes 

with FRP rollers to push out air bubbles. During the installation process of the PU 

system, a representative from the Air-Logistics Company was present to provide 

assistance and ensure proper installation procedures were followed. Photos taken during 

installation can be found in Figure 10. 

 After the installation of CFRP on the beams, all specimens were left undisturbed 

for at least 24 hours to allow proper curing of the bonded CFRP sheets. After the 

laminate was allowed sufficient cure time, a class V finish (FDOT classification for a 

coating that withstands cracking under the thermal and elastic expansion ranges of the 

substrate) was applied to the exposed face of the CFRP sheet. 

 One beam specimen was dedicated for the use of performing direct bond pull-off 

testing according to ASTM D4541. A small 2-layer patch of CFRP laminate, one patch 

per CFRP system, was applied to the beam in the same manner as described previous. 
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(a) Preparing Adhesive Primer (b) Primed Concrete Surface 

  

(c) Rolling CFRP Laminate (d) CFRP Termination Point 

Figure 10. PU1 CFRP Installation 
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4. TEST METHODS & EVALUATION PROCEDURES 

4.1 Small-scale Specimens 

4.1.1 Conditioning Environments 

 The following section discusses the procedures and environments used to 

environmentally condition small-scale beam specimens, composite plates and concrete 

cylinders. Five conditioning environments, considered to be critical for civil 

infrastructure, were selected: H2O, high pH, seawater, dry heat, and ambient 

environment/UV.  During the conditioning periods, all environments were monitored to 

ensure the quality of the conditioning was uniform for specimens. Conditioning periods 

for all specimens were not initiated on the same day. Table 12 provides a log of start 

dates and duration dates for all environments and conditioning periods. 

 

Table 12. Conditioning Dates 

Exposure  

Time (days) 
Dry Heat Roof 

H20 Seawater Concrete Leachate 

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

Start 10/15/09 10/15/09 10/19/09 10/20/09 10/20/09 10/21/09 10/30/09 11/4/09 

30 11/13/09 11/13/09 11/17/09 11/18/09 11/18/09 11/19/09 11/28/09 12/3/09 

60 12/13/09 12/13/09 12/17/09 12/18/09 12/18/09 12/19/09 12/28/09 1/2/10 

 

4.1.1.1 H2O Conditioning Environment 

 The H2O conditioning environment consisted of pure tap water (pH ≈ 8). During 

the conditioning period the H2O tank was periodically emptied and re-filled to minimize 

leaching of concrete pore water. 
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4.1.1.2 Concrete Leachate Conditioning Environment 

 Research as shown that water absorbed into the micro-pores of concrete can 

chemically react with the cement paste and create a high pH (>12) solution.  Therefore, it 

was determined that the polyurethane strengthening system under investigation be able to 

withstand such an environment. A high-pH concrete leactate solution was created by 

letting concrete specimens and cylinders soak in H2O while monitoring solution pH. pH 

was measured using a hand held Extech PH60 pH/temperature pen. Prior to taking 

measurements, the pen was calibrated using a two-point pH7 buffer and pH-10 buffer 

calibration. A plot of pH vs. time can be seen in Figure 11. The pH of the leachate 

solution reached a steady-state valve of approximately pH ≈ 12. A photo of the concrete 

leachate conditioning environment can be seen in Figure 12. 
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Figure 11. Concrete Lecheate Solution pH Measurements 
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Figure 12. Concrete Leachate Conditioning Environment 

 

4.1.1.3 Seawater Conditioning Environment 

 A synthetic seawater solution was created used Instant Ocean ® Sea salt. The dry 

salt material was mixed according to manufactures recommendations: approximately 

1.5lb of salt with 5 gallons of water. The water used to create the salt solution was normal 

tap water. The pH of the tap water was measured prior to mixing in salt material; a pH of 

approximately 8 was measured. During the conditioning period, pH of the seawater 

solution was measured once a week. It was determined that the pH of the solution 

reached a steady-state value of approximately pH ≈ 10. Furthermore, during conditioning 

the seawater solution was changed every 2 – 4 weeks. 
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4.1.1.4 Dry Heat Conditioning Environment 

 In order to provide constant and continuous dry heat, specimens were placed in a 

Blue M 146 Series industrial oven (refer to Figure 13 and Figure 14). A schematic of 

specimen location within the oven can be found in Figure 15. The oven temperate was set 

at 120 ⁰F. During the first week of conditioning, oven internal, specimen concrete, and 

CFRP temperatures were monitored with a Westword 2ZB46 laser temperature 

measurement device to determine whether steady-state operation was being achieved. It 

was determined that the oven was not producing a steady-state environment due to 

overheating. In order to achieve steady-state operation, the oven’s exhaust was adjusted 

until the internal temperature of the oven stabilized. Temperature measurement prior to 

and once steady-state operation was achieved can be found in Table 13/Table 14 and 

Table 15/Table 16 respectively. The average concrete and CFRP surface temperatures 

(steady-state) were determined to be 126.2 ⁰F and 126.1⁰F respectively. 
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Figure 13. Dry Heat Oven Figure 14. Specimens During Conditioning  
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Figure 15. Specimen Locations within Dry Heat Oven 
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Table 13. Beam Specimen Dry Heat Oven Temperature Measurements: Prior to Steady State Operation 

Measurements Taken: 10/18/2009 

Before Steady-State Temperature operation 

Beam No. 
CFRP Surface  

Temperature (F) 

Concrete  

Temperature (F) 

2 116.6 118.3 

6 117.3 117.1 

50 115.5 118.1 

21 118 114 

46 115 114 

48 118.1 117 

42 120.6 120.6 

39 123.6 123.1 

24 120.8 120.8 

16 122.1 121.5 

51 121.9 121.5 

29 125.9 120 

Average 119.6 118.8 

Standard Dev. 3.39 2.93 

C.O.V. 0.028 0.025 

 

Table 14. Plate Dry Heat Oven Temperature Measurements: Prior to Steady State Operation 

Measurements Taken: 10/18/2009 

Plate No. Temperature (F) 

1 124.1 

2 128.5 

3 123.6 

4 125 

Average 125.3 

Standard Dev. 2.21 

C.O.V. 0.018 
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Table 15. Beam Specimen Dry Heat Oven Temperature Measurements: Steady State Operation 

Measurements Taken: 11/5/2009 

After Steady-State Temperature operation 

Beam No. 
CFRP Surface  

Temperature (F) 

Concrete  

Temperature (F) 

2 124.5 124.8 

6 124.6 123.9 

50 128.4 127.6 

21 125.6 125.6 

46 126.8 126.4 

48 125.6 126.3 

42 127.8 128.2 

39 125.7 125.9 

24 124.6 125.9 

16 125.6 125.7 

51 126 126.3 

29 127.8 127.8 

Average 126.1 126.2 

Standard Dev. 1.33 1.23 

C.O.V. 0.011 0.010 

 

Table 16. Plate Dry Heat Oven Temperature Measurements: Steady State Operation 

Measurements Taken: 11/5/2009 

Plate No. Temperature (F) 

1 127.5 

2 127.3 

3 127.5 

4 127.1 

Average 127.4 

Standard Dev. 0.19 

C.O.V. 0.002 
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4.1.1.5 Ambient Outdoor Conditioning Environment 

 The ambient outdoor conditioning environment was completely uncontrolled. 

Specimens were placed laminate-face up on the rooftop of the University of Central 

Florida’s Engineering Building II (Figure 16). During the period in which specimens 

were conditioning, whether data was collected from the National Oceanic and 

Atmospheric Administration’s (NOAA) online database. Figure 17 depicts the daily 

maximum, minimum, and average temperature measures collected for the Orlando area. 

Figure 18 shows a graphical representation of the precipitation recorded for the 

conditioning period. 

 

 

Figure 16. Ambient Environment Specimens on the Roof 
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Figure 17. Orlando Temperature Measurements 
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Figure 18. Orlando Precipitation Measurements 
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4.1.2 Test Set-up and Instrumentation 

 Once the conditioning period was completed for beam specimens, they were 

prepped for flexural testing. The sides of all beam specimens were painted white such 

that cracks would be easily identified during and after testing. A single 120 Ohm resistive 

foil-backed strain gage was installed at the mid-span of the CFRP laminate. Gages were 

applied using X60 two-part strain gauge adhesive.    

 Flexural testing of specimens was completed on a Satec 200kip universal testing 

machine (UTM). All specimens were loaded at a rate 0.1
in

/min in a 4-point bending 

configuration with a shear span of 8 inches (refer to Figure 19). During loading, Instron 

Partner software continuously recorded load and table displacement directly from the 

UTM. A National Instruments data acquisition system was also set-up to record load, 

strain, and displacement during testing. Displacement measurements were taken at the 

mid-span of specimens using two Duncan 9600 series LVDTs. Photographs taken during 

testing can be found in Figure 20. 

6.0"

22.0"

LVDT

Contact

Bracket

Strain Gage

A

A Section A-A

 

Figure 19. Small-scale Beam Flexure Test Set-up 
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Side View Front View LVDT 

Figure 20. Small-Scale Beam Test Set-up 

4.2 Large-scale Beam Specimens 

  The 12 CFRP strengthened beams were exposed to cyclic loading, environmental 

conditioning, a combination of cyclic loading and environmental conditioning, and 

monotonic loading until failure. The following section describes the details and 

procedures used for experimental testing. Specimens were identified by the composite 

system used for strengthening and the type of conditioning in which the specimen was 

exposed. Exposure to cyclic loading and/or environmental conditioning is denoted with 

an “C” and/or “E”. For example, a polyurethane composite strengthened beam exposed to 

both cyclic loading and environmental conditioning would be identified as “PU-C-E”.  
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  The first group of specimens to be tested was the strengthened baseline specimens 

and the unstrengthened control beam. These specimens were not exposed to any type of 

conditioning. Upon completion of the ultimate loading on baseline specimens, the cyclic 

loading procedure commenced. During this time, specimens scheduled to receive both 

cyclic loading and cyclic/thermal conditioning were loaded. Upon completion of cyclic 

loading, cyclic-only specimens were loaded monotonically to failure. At this point, 

specimens to receive environmental conditioning were placed in a specially designed 

environmental chamber to begin conditioning.  

4.2.1 Environmental Conditioning 

 The environmental conditioning phase of the experiment consisted of exposing 

the selected beams to heating and cooling cycles inside of an environmental conditioning 

chamber (ECC). Within the chamber, specimens were also exposed to cycling levels of 

humidity. The purpose of the temperature and humidity cycles was to simulate exposure 

of the beams to climate conditions similar to that of sub-tropical; typical of southeastern 

Asia and United States. The chamber was designed to achieve a temperature range 

between 32 – 130 ⁰F, a maximum humidity of 100%, and to operate continuously. A 

design schematic of the ECC can be seen in Figure 21. The ECC utilized three main 

components to produce the desired environment: 

 

1) Temperature Conditioning Unit – Temperature conditioning was provided by 

a 2 ton Goodman AC/Heating Unit (PCK 024-1 HK 50-1); a commercially 

available packaged unit capable of producing 24,000 Btuh. 
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2) Humidifier – A Honeywell HE160A By-Pass Disk Humidifier was used to 

provide humidification (commercially available). 

 

3) Cycle Controller – A Watlow SD Series controller was used to control the 

environmental cycles for the chamber.  

 

Humidifier

AC/Heating

Unit

Specimens

Intake
Fan

Intake
Fan

Inlet Fan

Outlet Fan

Air Flow Duct

Supports

By-Pass Loop

Environmental Chamber (Overhead View)

 

Figure 21. Environmental Conditioning Chamber 

 

 The conditioning procedure was comprised of 2 main phases; a heating (high 

humidity) phase followed by a cooling (low humidity) phase. A full heat-cool cycle took 

approximately 2 full days to reach completion and conditioned specimens were exposed 

to 100 full cycles. The thermal conditioning procedure entailed 4 main steps in order to 

complete a single heat-cool cycle: 
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1) Heating/Humidity Ramp-up Period – The first step in the full cycle was 

heating and humidification. During this cycle, both the AC unit (heat) and 

humidifier would be engaged and flow would be introduced into the chamber 

through the input fan. It was determined that the average input air temperature 

was approximately 126 ⁰F. The duration of the ramp-up heating cycle was 

18hr. 

 

2) Heat Soak Period – The second step was a heat soak process. During this 

phase, it was attempted to maintain the chamber temperature for a duration of 

6hr. Exhaust fan were engaged at the conclusion of the heat soak period, 

expelling air volume, and beginning the cool ramp period. 

 

3) Cooling Ramp-up Period – The cooling ramp-up period is similar to the 

heating/humidity but the AC unit is engaged to provide cold air. It was 

determined that average input air temperature, for this period, was 

approximately 39 ⁰F. The cooling ramp-up period lasted for 18hr.  

 

4) Cool Soak Period – During this phase, it was attempted to maintain the 

chamber temperature for a duration of 6hr. Exhaust fan were engaged at the 

conclusion of the cool soak period, expelling air volume, and beginning the 

heat/humidity ramp period and completing the full conditioning cycle. 
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To measure the thermal performance of the conditioning chamber, thermocouples (type-

K) were installed on the tension surface of each beam specimen during conditioning, on 

the top and bottom of the chamber, and outside the chamber (ambient). Temperature and 

humidity data was acquired continuously during the conditioning period. A multi-day 

sample of temperature data can be found in Figure 22. It can be observed that the 

chamber produced internal ambient temperatures between 40 and 115⁰F and beam 

surface temperatures between 55 and 100⁰F. The humidity range achieved was between 

19% and 89%. 
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Figure 22. Conditioning Chamber Sample Data 
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   Two important considerations must be taken into account when interpreting the 

continuity and control of the conditioning process. First, during the time frame in which 

specimens were being conditioned, the conditioning chamber had intermittent 

malfunctions with critical components. Therefore, controlled environmental conditioning 

was not continuous throughout the conditioning portion of this study. Second, all of the 

beams received some level of uncontrolled ambient environmental conditioning due to 

the fact that the beams were stored outdoors of the FDOT Structures Research Center 

(SRC). The beams also received some thermal conditioning when inside of the SRC due 

to the fact that the facility does not have a climate control system for the testing area. 

Figure 23 and Figure 24 depict the average monthly precipitation and monthly air 

temperatures for the duration of time specimens were stored outdoors at the SRC. The 

temperature and precipitation data was taken from the National Oceanic and Atmospheric 

Administration (NOAA) archives for the Tallahassee Regional Airport. Although there is 

a relatively accurate record of the environmental conditions that occurred during the 

length of this study, there is no way to fully quantify the effect that the ambient 

environment had on test specimens.  
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Figure 23. Tallahassee Precipitation Data Figure 24.Tallahassee Temperature Data 

4.2.2 Mechanical Loading and Data Acquisition  

  All specimens were loaded using a four-point bending configuration. This 

configuration was used for both ultimate and cyclic tests that were performed. The 

supported length for all specimens was 15’; beam supports allowed for rotation. All 

loading was applied using a 3’ spreader beam. During load testing (cyclic and ultimate), 

steel reinforced neoprene bearing pads were used between load bearing surfaces. All 

specimens were instrumented with foil-backed resistance strain gauges covered with an 

environmental coating to protect the gauge. During testing, displacement was measured 

using either linear variable differential transducers (LVDT) or laser displacement gauges. 

Displacement measures were taken at both mid-span and support locations. A schematic 

of gage locations and loading configuration can be found in Figure 25. A photo taken 

during actual load testing can be found in Figure 26. 
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Figure 25. Gage Locations and Loading Configuration 

 

 

Figure 26. Load Testing 
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4.2.2.1 Cyclic Loading  

 The cyclic loading phase of the experiment consisted of subjecting the appropriate 

specimens to two million cycles of repeated loading at a frequency of 2Hz and a load 

range of 0.5 kip to 19.2 kip, which induced a calculated change in stress of 23ksi in the 

tension reinforcement. The load was applied using an MTS servo-controlled actuator. 

During cycling, load was applied such that the load range remained constant regardless of 

any reduction in member stiffness. The load level was selected such that tension steel 

would not yield and such that the stress range within the tension reinforcement would 

allow for an unlimited fatigue life. During loading the beam displacement and CFRP 

strains were measured. The strain gauges were calibrated to compensate for the 

temperature changes that occurred in the lab during the two million cycles. During the 

cyclic load tests, data was recorded on cycles 1, 1000, 20,000, 100,000 and every 

100,000 thereafter until cycle 2 million. The data types recorded were the maximum and 

minimum of load, displacement, beam temperature, and longitudinal CFRP strains. 

4.2.2.2 Monotonic Loading 

 The ultimate testing phase consisted of loading the specimen until failure. Failure 

was defined as a drop of at least 50% from the maximum load resisted by the specimen. 

The loading for the ultimate phase used displacement control to maintain control of the 

actuator movement during testing. The tests were performed at a rate of 0.1in/min. Load 

was applied with either an MTS servo-controlled actuator or an Enerpac hydraulic jack. 

During the ultimate loading procedure, pauses were taken at various points during tests to 

mark cracks.  
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4.3 Scanning Electron Microscopy 

 Scanning electron microscopy (SEM) was used to evaluate whether degradation 

was occurring at the fiber/matrix integration level. Numerous CFRP laminates samples 

were taken from small-scale and large-scale beam specimens including samples taken 

from specimens after 4-pt bending failure. Figure 27 shows a photo of the CFRP samples 

taken from small-scale beam specimens to be viewed in the SEM.  

 

 

Figure 27. SEM Samples 

 The scanning electron microscopy (SEM) investigation was performed at the 

Materials Characterization Facility (MCF), which is a part of the Advanced Materials 

Processing and Analysis Center (AMPAC), at UCF. High quality images were captured 

using a Hitachi S-3500N scanning electron microscope (Figure 28). Two primary 

analysis modes were utilized; the secondary electron detection imaging mode and X-ray 

energy dispersive spectroscopy. An electron accelerating voltage ranging from 15-20kV 

was used for all analysis.  
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 Prior to loading CFRP samples in the SEM, all samples were sputter coated with a 

1-2A layer of gold palladium (AuPd). This process was utilized to make samples 

electrically conductive such that they could be viewed in the SEM. The coating device 

can be seen in Figure 29.  

 

 

Figure 28. Hitachi S-3500N SEM Figure 29. Plasma Sputter Coating Machine 
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5. RESULTS 

5.1 Short-term Durability Tests 

 Prior to testing, small-scale beams were allowed to rest from their respective 

conditioning environments for at least a week. During this time frame foil backed strain 

gages were mounted and the specimens were marked for testing. Table 17 indicates the 

dates in which specimens were removed from respective environments. The following 

section presents key results from SEM, material tensile tests, and flexural test. Other 

critical numerical results and photos from tests can be found in the appendix. 

 

Table 17. Conditioning Pull Dates 

Exposure  

Time (days) 
H20 LECH SEA DRY AMB 

30 11/17/2009 11/29/2009 11/18/2009 11/12/2009 11/12/2009 

60 12/16/2009 12/27/2009 12/20/2009 12/14/2009 12/14/2009 

 

5.1.1 Unconditioned Specimens 

 Initial observations made from SEM micrographs of the unconditioned CFRP 

laminate indicates good bond between carbon fibers and the surrounding urethane matrix 

(refer to Figure 30). It was also observed that a significant number of micro-void (Figure 

31) existed at the surface of the urethane matrix. This result was confirmed by the 

manufacturer of the composite system and other research. Micro-voids form during the 

matrix curing process as CO2 is released from the urethane matrix.  
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 Unconditioned small-scale beam specimens were tested 12/28/09. Concrete 

strength for the day of test was experimental determined to be 7897 psi. After testing 

specimen C-30-3, it was determined that the bonded laminate length was too long for 

debonding failure to occur. The bond length of the laminate was shortened by 4” to 

ensure that failure would be caused by debonding. Specimens C-30-1 and C-30-2 both 

failed via debonding. Load-deflection curves for specimens C-30-1 and C-30-2 can be 

found in Figure 32. During loading specimens behaved linear-elastic until crack initiation 

near mid-span. At cracking a significant drop in load was observed followed by a second 

region of linear-elastic behavior. After loading it was determined that debonding failure 

occurred within the adhesive layer bonding the laminate to concrete. 

 The C-60 specimens were load tested on 2/7/2010. Concrete strength for the day 

of test was experimental determined to be 7936 psi. Behavior similar to that of the C-30 

specimens was observed. The load-deflection behavior for C-60 specimens can be found 

in Figure 33. All C-60 specimens failed via debonding that occurred within that adhesive 

layer. 

 

  

Figure 30. Unconditioned Fibers Figure 31. Unconditioned Matrix Void 
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Figure 32. 30 Day Control Load-Deflection Plot Figure 33. 60 Day Control Load-Deflection Plot 

   

 After flexural testing, portions of the debonded CFRP laminate were removed 

from the unconditioned beam specimens to be inspected with SEM. Although there were 

areas found where matrix micro-cracking was observed (Figure 35), there was no 

significant damage observed at the fiber/matrix level (Figure 34). Matrix cracks were not 

found to bridge between adjacent fibers or voids.   

 

  

Figure 34. Fibers After Debonding Figure 35. Matrix Void After Debonding 

 

Micro-Cracking 
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5.1.2 H2O Conditioned Specimens 

 SEM micrographs of CFRP samples taken from beams exposed to 30 and 60 days 

of an H2O solution prior to testing can be seen in Figure 36 and Figure 37. Laminate 

samples exposed to a 30 day conditioning period showed no signs of fiber or matrix 

distress. This was not the case with 60 day conditioning samples. There were multiple 

locations where bond degradation was observed to have occurred between reinforcing 

fibers and the urethane matrix. There were no signs of distress observed at or around 

matrix void locations. 

  Tensile test results for elastic modulus and ultimate strength can be seen in Figure 

38 and Figure 39 respectively. Plots reflect degradation of material properties with 

respect to duration of environmental exposure; error bars shown depict a single standard 

deviation. The number of coupons tested for 30 and 60 day test was 8 and 7 coupons 

respectively. An increase in both tensile modulus and ultimate strength was observed for 

the 30 day tests. It is hypothesized that the initial increase is due to the fact that H2O aids 

the curing reaction of the urethane matrix. Although an initial increase was observed, 60 

day tests indicate decreases in both elastic modulus and ultimate strength by 14.3% and 

10.3% respectively.    
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Figure 36. 30 Day H20 Fibers Figure 37. 60 Day H20 Fibers 
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Figure 38. H2O Elastic Modulus Degradation Plot Figure 39. H2O Ultimate Strength Degradation Plot 

 

 30 day beam specimens where tested on 12/28/09. Conditioned concrete strength 

for the day of test was experimental determined to be 7683psi. A plot of the load 

deflection behavior of 30 day specimens can be found in Figure 40.  All H2O-30 beam 

specimens failed via laminate debonding. Similar to the unconditioned specimens, it was 

determined that debonding failure occurred within the adhesive layer for all specimens. 

Fiber / Matrix 

Debonding 
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 60 day beam specimens where tested on 2/6/10. Conditioned concrete strength for 

the day of test was experimental determined to be 7810psi. A plot of the load deflection 

behavior of 60 day specimens can be found in Figure 41. Specimens H2O-60-2 and 3 both 

failed via debonding (within the adhesive layer) similar to that of the unconditioned 

specimens. The H2O-60-1 did not however fail by laminate debonding. Failure in the 

H2O-60-1 specimen was caused by initiation of a flexural crack outside of that laminate 

region. The first load drop depicted in Figure 41 for specimen H2O-60-1 correlates with a 

flexural crack that originated at mid-span.  
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Figure 40. 30 Day H2O Load-Deflection Plot Figure 41. 60 Day H2O Load-Deflection Plot 
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 The load bearing capacity at cracking and ultimate are plotted verse duration of 

H2O conditioning in Figure 42. Load at cracking tends to remain stable with increase in 

conditioning period; approximately a 1% increase in load at cracking for 60 days of H2O 

exposure. Stability of the cracking load is more than likely due to the increase in concrete 

strength and slight decrease of the CFRP elastic modulus. After 60 days of conditioning, 

the average ultimate load bearing capacity of specimens was found to increase by 11.6% 

compared to control specimens. Indicating minimal degradation to bond caused by H2O 

exposure. 

 Figure 43 depicts a plot of pre- and post-cracking flexural stiffness verses 

conditioning period. A consistent increase can be observed in the average pre-cracking 

flexural stiffness. Furthermore, little scatter was found to occur in both pre- and post-

cracking stiffness specimens. The post-cracking stiffness mainly indicates the 

contribution of CFRP to the flexural response of the specimen. It was observed that at 60 

days of conditioning that average flexural stiffness of specimens decreased by 8%. This 

result is in correlation with the slight degradation observed to occur in conditioned tensile 

coupons (refer to Figure 38). 

 The average ultimate deflection of specimens verses duration of conditioning can 

be found in Figure 44. There is an obvious trend in the data that indicates an inverse 

relationship between duration of conditioning and ultimate deflection. That is, as the 

duration of conditioning increases the average ultimate deflection decreases.   

 



75 

 

5

6

7

8

9

10

0 10 20 30 40 50 60 70

Cracking
Ultimate

25

30

35

40

L
o
ad

 (
k

ip
)

Conditioning Duration (Days)

L
o
ad

 (
k

N
)

 

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70

Pre-Crack
Post-Crack

10

20

30

40

50

60

70

S
ti

ff
n
e
ss

 (
k
ip

/i
n
)

Conditioning Duration (Days)

S
ti

ff
n
es

s 
(k

N
/m

m
)

 

Figure 42. H2O Load Bearing Capacity Degradation 

Plot 

Figure 43. H2O Stiffness Degradation Plot 
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Figure 44. H2O Deflection Degradation Plot 

 

 SEM investigation of samples taken from 60 day conditioned beams revealed that 

a substantial amount of damage had accumulated at or around the fiber/matrix interface. 

Figure 45 and Figure 46 are micrographs taken of debonded laminate. Both figures depict 

examples of the surface morphology found on tested 60 day laminate samples removed 

form beams. 
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Figure 45. Fibers After Beam Failure – 60 Day Figure 46. Single Fiber After Beam Failure – 60 Day 

5.1.3 Concrete Leachate Conditioned Specimens 

 SEM micrographs of CFRP samples taken from beams exposed to 30 and 60 days 

of a concrete leachate solution prior to testing can be seen in Figure 47, Figure 48, Figure 

49, and Figure 50. In both 30 day and 60 day samples there was no obvious degradation 

in the PU matrix or of the fiber/matrix bond. There was a significant amount of debris 

seen on the surface of leachate conditioned laminates. X-ray detection was used to 

determine the chemical nature of the crystal-like debris. Figure 51 and Figure 52 depict 

the characteristic X-ray and the corresponding detection location. The X-ray count 

indicates that this debris is merely calcium crystals that have formed on the surface of the 

composite laminate.  The count plot also indicates other trace elements such as silicon, 

magnesium, and aluminum.   
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Figure 47. 30 Day Concrete Leachate Fibers Figure 48. 60 Day Concrete Leachate Fibers 

  

Figure 49. 30 Day Concrete Leachate Void Figure 50. 60 Day Concrete Leachate Void 

 

  

Figure 51. Characteristic X-ray Count Figure 52. Detection location 
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 In order to evaluate the material performance of the PU CFRP system under high 

pH exposure, 7 tensile coupons were tested for both 30 and 60 day conditioning periods. 

Figure 53 and Figure 54 depict the relationships between tensile modulus and ultimate 

tensile strength with regard to conditioning duration respectively. The tensile modulus 

tends to decrease initially by 21.2% at 30 day but recover slightly by 60 days (total 

decrease of 9.2%). Furthermore, there is a large amount of scatter that can be observed in 

60 day specimens. It can be seen in Figure 54 that there is an obvious decreasing trend in 

the ultimate tensile strength with respect to increase in conditioning period. Reductions in 

ultimate strength for 30 and 60 tests were found to 11.6% and 15.4% respectively. 
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Figure 53. Concrete Leachate Elastic Modulus 

Degradation Plot 

Figure 54. Concrete Leachate Ultimate Strength 

Degradation Plot 
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 Unlike other conditioning environments, there were only 2 specimens for both 30 

and 60 day concrete leachate tests. This was due to lack of space for conditioning the 

extra two specimens. 30 day beam specimens where tested on 12/31/09. Conditioned 

concrete strength for the day of test was experimental determined to be 8037 psi. A plot 

of the load deflection behavior of 30 day specimens can be found in Figure 55. Both 30 

day specimens failed via laminate debonding. Specimen LECH-30-2 exhibited failure 

within the adhesive layer while specimen LECH-30-1 failure occurred partially within 

the adhesive and partially within the concrete substrate. Furthermore, the LECH-30-1 

specimen failed immediately after crack formation.  

 60 day beam specimens where tested on 2/6/10. Conditioned concrete strength for 

the day of test was experimental determined to be 7610 psi. A plot of the load deflection 

behavior of 60 day specimens can be found in Figure 56. Both 60 day specimens failed 

by debonding that originated by rupture of the PU adhesive layer 
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Figure 55. 30 Day Concrete Leachate Load-Deflection 

Plot 

Figure 56. 60 Day Concrete Leachate Load-Deflection 

Plot 
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 The relationship between flexural behavior and conditioning period can be seen in 

Figure 57 and Figure 58. There are no error bars shown for 30 day specimen post-

cracking load bearing capacity and stiffness because failure occurred in specimen LECH-

30-1. It can be observed in Figure 57 that there is a significant initial decrease in capacity 

(19.7%). Yet, at 60 days of conditioning, the average leachate specimen load bearing 

capacity had increased by 9.3% above the average baseline. With the increase, there was 

also a significant increase in data scatter observed.  

 Figure 58 depicts the pre- and post-cracking member stiffness. As observed with 

specimens bearing capacity, there is a significant initial decrease in post-cracking of 

36.7% for the 30 day tests. Yet, at 60 days, the average post-cracking stiffness value was 

found to be 110 kip/in (1.8% increase from baseline). The flexural stiffness results are in 

good correlation with tensile test results. It should be noted that 30 days results are not as 

reliability due to the number of specimens considered. 
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Figure 57. Concrete Leachate Load Bearing Capacity 

Degradation Plot 

Figure 58. Concrete Leachate Stiffness Degradation 

Plot 
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 Average ultimate deflection verses duration of conditioning can be found in 

Figure 59. There is an obvious trend in the data that indicates an inverse relationship 

between duration of conditioning and ultimate deflection. That is, as the duration of 

conditioning increases the average ultimate deflection decreases. Although, there is a 

significant decrease in ultimate deflection at 30 days, the difference in deflection at 60    

days, when compared to the 30 day tests, is not that significant.  

 After completion of flexural testing, portions of the CFRP laminate were removed 

to be viewed using SEM. Micrographs shown at different magnifications can been seen in 

Figure 60 and Figure 61. There is a substantial amount of matrix damage present. This is 

especially noticed near reinforcing fibers. It can be observed in Figure 61 that some 

debonding has occurred near the laminate surface.  
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Figure 59. Concrete Leachate Deflection 
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Figure 60. Post-fail 60 Day Leachate Fibers (x4,000) Figure 61. Post-fail 60 Day Leachate Fibers (x8,000) 

5.1.4 Seawater Conditioned Specimens 

 Prior to testing, samples of seawater conditioned CFRP laminates were inspected 

using SEM. The initial inspection of 30 day sample was not beneficial for the surface of 

the composites was almost entirely covered with crystal growth (refer to Figure 63). 

Using X-ray detection (Figure 62), it was determined that the crystals mainly consisted of 

sodium, chlorine, and calcium. Therefore prior to proceeding with any further scanning, 

new samples were prepared by cleaning that composite surface and sputter coating with 

AuPd.  

 Micrographs taken of 60 day samples can been seen in Figure 64, Figure 65, and 

Figure 66. It is very clear that surface morphological changes in the PU matrix. The 

majority of these changes were observed near matrix micro-voids in the form of small 

pits and opennings. There was also some debonding that was found to have occurred 

between the reinforcing fibers and the PU matrix   

 

Fiber / Matrix 

Debonding 
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Figure 62. X-ray Detection Count Figure 63. SEA-30 Sample Surface 

 

   

Figure 64. 60 Day Seawater Fibers Figure 65. 60 Day Seawater Void Figure 66. 60 Day Seawater Void 

Wall 

 Eight tensile coupons were tested for each conditioning period. It was found that 

conditioned specimens showed minimal to zero degradation of average tensile properties. 

Figure 67 shows how the tensile modulus changed with conditioning duration. It was 

determined that there was negligible change (± 1%) with respect to conditioning period. 

The only significant change observed was increase in data scatter. The ultimate tensile 

strength of conditioned specimens increased 4.1% for both 30 and 60 days of seawater 

exposure. 
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Figure 67. Seawater Elastic Modulus Degradation Plot Figure 68. Seawater Ultimate Strength Degradation 

Plot 

  

 30 day beam specimens where tested on 12/28/09. Conditioned concrete strength 

for the day of test was experimental determined to be 7902 psi. A plot of the load 

deflection behavior of 30 day specimens can be found in Figure 69. Specimens SEA-30-1 

and SEA-30-3 both failed via laminate debonding caused by rupture of the PU adhesive. 

Specimen SEA-30-2 did not fail in this manner, but in flexure when a second flexure 

crack developed outside the laminate span. Although this result is not consistent with 

other specimens, it does indicate substantial bond integrity after conditioning 

 60 day beam specimens where tested on 2/6/10. Conditioned concrete strength for 

the day of test was experimental determined to be 7781 psi. A plot of the load deflection 

behavior of 60 day specimens can be found in Figure 70. All 60 day specimens failed in 

different manners. During loading, specimen SEA-60-1 developed 2 flexural cracks prior 

to failure. Ultimate failure of specimen SEA-60-1 occurred by the formation of a third 

flexural crack and resulted in debonding of the CFRP laminate. Failure of specimen SEA-

60-2 occurred similar to that of SEA-30-2 that is by the formation of a flexural crack 

outside of the laminate span. Finally, SEA-60-3 failed by CFRP debonding. 
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Figure 69. 30 Day Seawater Load-Deflection Plot Figure 70. 60 Day Seawater Load-Deflection Plot 
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Figure 71. Seawater Load Bearing Capacity 

Degradation Plot 

Figure 72. Seawater Stiffness Degradation Plot 
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Figure 73. Seawater Deflection 

 

 Samples of CFRP laminate were removed from beams that failed though laminate 

debonding for inspection under SEM. Micrographs taken from 30 day samples can be 

found in Figure 74, Figure 75, and Figure 76. It can be observed that there was some 

bond loss at the fiber-matrix interface. Although bond loss was found, it was not 

continuous along fibers. The degradation that was found prior to testing around micro-

voids seemed to become more severe after mechanical loading (refer to Figure 75 and 

Figure 76). Similar results were found in 60 day specimens in terms of fiber-matrix bond 

and the increased localized damage near matrix micro-voids (shown in Figure 77, Figure 

78, and Figure 79). Yet, the damage found in the 60 day case was much more significant.  
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Figure 74. Fiber After Beam Failure 

– 30 Day 

Figure 75. Void After Beam Failure – 

30 Day 

Figure 76. Void Wall After Beam 

Failure – 30 Day 

   

Figure 77. Fiber After Beam Failure 

– 60 Day 

Figure 78. Void After Beam Failure – 

60 Day 

Figure 79. Void Wall After Beam 

Failure – 60 Day 

5.1.5 Dry Heat Conditioned Specimens 

 Specimens were conditioned in a industrial oven set at 120 ⁰F for periods of 30 

and 60 days. Figure 80 and Figure 81 show micrograph taken using SEM of the CFRP 

composite conditioned for 60 days. It can be observed that there is no apparent 

degradation of the PU matrix, reinforcing fibers, of locations were fiber/matrix 

debonding can be seen. This indicates that short term dry heat conditioning does not 

cause physical damage to PU matrix CFRP laminate.  

Matrix  

Degradation 

Bond 

Matrix  

Degradation 
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 Seven tensile coupons were tested for both 30 and 60 day conditioning periods. 

The plot shown in Figure 82 depicts the relationship between elastic modulus and 

conditioning period. Results indicate that the elastic modulus of the PU system tended to 

increase with conditioning during. Increases of 9% and 13.1% were observed for 30 and 

60 day conditioning duration respectively. Furthermore, the same trend can be observed 

with coupon ultimate strength. Figure 83 depicts the relationship between ultimate tensile 

strength and conditioning duration. Compared to control coupons, increases of 11% and 

15.1% were observed for 30 and 60 day conditioning periods respectively. The increase 

in both tensile modulus and ultimate strength could be attributed to an increased level of 

laminate cure. The cure rate of many polymeric matrices is significantly increased with 

addition of heat. Although scatter increased significantly with conditioning period, tensile 

specimen failure modes were observed to be very consistent compared to those subjected 

to other conditioning environments. 

 

  

Figure 80. 60 Day Dry Heat Fibers Figure 81. 60 Day Dry Heat Micro-void 
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Figure 82. Dry Heat Elastic Modulus Degradation Plot Figure 83. Dry Heat Ultimate Strength Degradation 

Plot 

 

 30 day beam specimens where tested on 12/31/09. Conditioned concrete strength 

for the day of test was experimental determined to be 5979 psi. A plot of the load 

deflection behavior of 30 day specimens can be found in Figure 84. The observed load-

deflection behavior and failure mode for 30 day dry heat conditioned specimens was 

consistent. All specimens displayed load-deflection similar to that of the unconditioned 

control specimens. Furthermore, all 3 30 day specimens failed debonding of the CFRP 

laminate; failure occurring within the adhesive layer.   

 60 day beam specimens where tested on 2/6/10. Conditioned concrete strength for 

the day of test was experimental determined to be 6060 psi. A plot of the load deflection 

behavior of 60 day specimens can be found in Figure 85. The 60 day specimen load-

deflection behavior was also similar to that of the unconditioned specimens. Moreover, 

failure mode was also similar to unconditioned specimens. All 60 day beams failed via 

laminate debonding initiated by rupture within the adhesive layer. 
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Figure 84. 30 Day Dry Heat Load-Deflection Plot Figure 85. 60 Day Dry Heat Load-Deflection Plot 

 

 The relationship between ultimate flexural capacity and conditioning duration can 

be found in Figure 86. It can be observed that the ultimate flexural capacity of dry heat 

conditioned specimens tended to increase with conditioning duration. At 60 days, there 

was an increase of flexural capacity, compared to baseline, of 4.5%. The increase in 

flexural capacity would indicate stability of the PU adhesive bond under continuous 

exposure to heat. Although an increase is observed, there was also a significant increase 

in measurement scatter.  

 Figure 87 depicts the relationship between member flexural stiffness and exposure 

duration. It was found that member post-cracking stiffness tended to increase, without 

increase in data scatter, as the duration of conditioning increased. This result is supported 

by those found in tensile test results. A total increase in post-cracking stiffness of 5.6 % 

was observed from experimental result. 
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Figure 86. Dry Heat Load Bearing Capacity 

Degradation Plot 
Figure 87. Dry Heat Stiffness Degradation Plot 

 Figure 88 shows how the member post-cracking ultimate deflection was effected 

by conditioning duration. It can be observed that as conditioning duration increases, there 

is a decrease in deflection at failure. At 60 days, average deflection was found to have 

decreased by 24.2% 

 After specimens were tested, portions of the CFRP laminate were removed from 

one of the 60 day specimens. Samples were viewed using SEM to identify if damage 

caused by loading differed from that of unconditioned specimens. Micrographs taken at 

different magnifications can be found in Figure 89 and Figure 90. Micrographs show that 

there is no excess damage that has been induced by dry heat conditioning.  
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Figure 88. Dry Heat Deflection 

 

  

Figure 89. Dry Heat Fibers after Beam Failure – 60 

Day (x180) 

Figure 90. Dry Heat Fibers after Beam Failure – 60 

Day (x800) 
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5.1.6 Ambient Outdoor Conditioned Specimens 

 Specimens subjected to the ambient outdoor environment where left undisturbed 

on the roof of the UCF College of Engineering and Computer Science Building II. There 

specimens were exposed to UV, continuous temperature change, high levels of humidity, 

and rain. Specimens were inspected weekly to document visual changes. On the 7
th

 day 

of conditioning, it was found that the urethane matrix had begun to change in color from 

a whitish-tan to a greenish-yellow. Figure 91 and Figure 92 are photos taken of the CFRP 

laminate surface prior to conditioning and after 30 days of ambient exposure respectively. 

There is a very discernable difference in color between the two laminate samples.  

 SEM Inspection of conditioned samples revealed that a significant amount of 

cracking had occurred within the bulk polyurethane matrix and at the fiber/matrix 

interface. Figure 93 shows cracks that have developed at the fiber/matrix interface along 

with those that propagate transversely to the fiber. The crack formation seen in Figure 93 

was identified in both 30 day and 60 day laminate samples (Figure 94). The other 

cracking pattern found in both 30 and 60 day samples was that illustrated in Figure 95 

and Figure 96. Cracks were found to develop at matrix micro-voids and propagate in the 

radial direction. The possible concern with such crack formation at the micro-voids is 

that, under minimal mechanical loading, cracks will join between voids. Such a 

mechanism, if found extensively within a laminate, could result in significant changes in 

the characteristic material properties such as elastic modulus and breaking strength. 
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Figure 91. Control Laminate Figure 92. 30 Day Ambient Environment Laminate 

 

  

Figure 93. 30 Day Ambient Environment Fibers Figure 94. 60 Day Ambient Environment Fibers 

 

  

Figure 95. 30 Day Ambient Environment Void Figure 96. 60 Day Ambient Environment Void 
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 Figure 97 and Figure 98 represent the evolution of elastic modulus and ultimate 

strength for tensile specimens tested. For 30 day and 60 day conditioning periods, a total 

of 5 and 4 tensile coupons were tested. Although test results indicated an initial decrease 

in elastic modulus, 60 day results indicated an overall increase in modulus of 4.9%. It can 

also be observed that there was also more scatter present in the 60 day results compared 

to that of the 30 day results. There was no significant change in the breaking strength 

with respect to duration of conditioning; data scatter was also consistent. Such results 

would indicate that although SEM micrographs show the presence of crack formation 

within the matrix that this degradation did not seem to have a significant impact on 

behavior of the macro-mechanical behavior of the composite.  
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Figure 97. Ambient Environment Elastic Modulus 

Degradation Plot 

Figure 98. Ambient Environment Ultimate Strength 

Degradation Plot 

  



96 

 

 30 day beam specimens where tested on 12/28/09. Conditioned concrete strength 

for the day of test was experimental determined to be 7673psi. A plot of the load 

deflection behavior of 30 day specimens can be found in Figure 99. All AMB-30 

specimens exhibited load-deflection behavior similar to that of the unconditioned 

specimens. AMB-30 specimens failed via debonding of the CFRP laminate. In all cases, 

debonding was initiated by rupture within the BP-1 adhesive layer.  

 60 day beam specimens where tested on 2/6/10. Conditioned concrete strength for 

the day of test was experimental determined to be 8348psi. A plot of the load deflection 

behavior of 60 day specimens can be found in Figure 100. Specimen AMB-60-1 was the 

only beam to behave similar to unconditioned specimens. AMB-60-2 and 3 both failed 

soon after the initiation of the first mid-span flexural crack. Hence, both specimens show 

little to no post-cracking behavior. Nevertheless, all three specimens failed by laminate 

debonding within the adhesive layer.  
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Figure 99. 30 Day Ambient Environment Load-

Deflection Plot 

Figure 100. 60 Day Ambient Environment Load-

Deflection Plot 
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 Figure 101 depicts the evolution of load bearing capacity at cracking and ultimate 

for specimens exposed to ambient conditioning. At 30 days the load to induce cracking 

tends to decrease slightly but recovers by 60 days and exceeds that of the unconditioned 

specimens. Furthermore, data scatter is nominal for cracking loads at 30 and 60 days. 

These cases are not seem with specimen ultimate capacity, rather there exists a 

decreasing tend as conditioning time increases. Scatter of data for 30 day tests is quite 

significant for ambient exposure specimens. It should be noted that only a single 60 day 

specimen (AMB-60-1) was used for the plot shown in Figure 101. This was because the 

other specimens failure immediately after cracking. 

 The effect of conditioning on flexural stiffness can be observed in Figure 102. 

The trend seen in the post-cracking stiffness correlates to the initial decline at 30 day and 

recovery at 60 day of the elastic modulus.  

 The average ultimate deflection of specimens verses duration of conditioning can 

be found in Figure 103. There is an obvious trend in the data that indicates an inverse 

relationship between duration of conditioning and ultimate deflection. That is, as the 

duration of conditioning increases the average ultimate deflection decreases.  Yet, this 

trend does not seem substantial due to the exclusion of specimens AMB-60-2 and 3. 
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Figure 101. Ambient Environment Load Bearing 

Capacity Degradation Plot 

Figure 102. Ambient Environment Stiffness 

Degradation Plot 
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Figure 103. Ambient Environment Deflection 
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 Samples of debonded laminate were taken for 30-day specimens and viewed 

under the SEM. Representative micrographs are shown in Figure 104 and Figure 105 at 

different magnifications. It can be observed that matrix cracks propagated within close 

proximity of adjacent matrix micro-voids. Furthermore, a number of free-standing cracks 

also developed within the bulk urethane matrix. In comparison with   

  

  

Figure 104. Ambient Environment Laminate After 

Beam Failure – 30 Day (x80) 

Figure 105. Ambient Environment Laminate After 

Beam Failure – 30 Day (x1500) 

5.2 Large-scale Beam Specimens 

 Large-scale beams were tested on different days depending on the conditioning. 

Details regarding test dates, cure times, and specimen compressive strengths can be found 

in Table 18.   
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Table 18. Large-scale Test Dates and Compressive Strengths 

Batch No. Pour Date Test Date 
Cure Time  

(days) 
Beam ID 

Compressive Strength 

psi MPa 

1 5/11/2005 5/30/2008 1115 1 & 2 8203 56.6 

2 5/18/2005 11/7/2008 1269 3 & 4 9530 65.7 

3 6/1/2005 5/30/2008 1094 5 & 6 9684 66.8 

4 6/8/2005 11/7/2008 1248 7 & 8 8237 56.8 

5 6/15/2005 11/7/2008 1241 9 & 10 8589 59.2 

6 
6/22/2005 5/30/2008 1073 11 9836 67.8 

6/22/2005 11/7/2008 1234 12 9356 64.5 

8 8/31/2005 11/7/2008 1164 15
2
 & 16 9668 66.7 

1
Under Strength  

2
Damaged  

3
Excluded  

 

5.2.1 Baseline Flexural Tests 

5.2.1.1 Unstrengthened Control Beam 

 The control beam for this project was tested to failure on 2/6/2007. Loading was 

paused at 20.3, 30.5, and 40.6kip to mark cracks. The control beam failed in a 

progressive manner; first with concrete cracking, steel yielding, and finally concrete 

crushing. The ultimate load obtained by the control beam was 52.2kip (Δ=2.63”). 
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5.2.1.2 PU Baseline Beam 

 The PU baseline specimen was tested to failure on 2/6/2007. During the load 

testing, there were no observed problems with DAQ or the test set-up. Therefore the load 

test was completed in a single run. Loading was paused at 26.3, 39.5, and 52.6 kips for 

cracks to be marked. Failure of the PU baseline specimen ultimately occurred at 74.3 kips 

(Δ=1.82”). The failure mode was determined to be CFRP rupture followed by laminate 

debonding. During the final three minutes of the load test, a video was recorded to 

capture the beam’s failure. Figure 106 shows two frames from the video taken. The first 

frame where failure was evident (initial CFRP rupture) is denoted to have a time interval 

of t = 0sec for reference. The initial ruptured occurred approximately 50” from the north 

support (between SG2 and SG3). Immediately after the CFRP rupture, laminate 

debonding occurred. It should be noted that debonding failure occurred within the 

urethane adhesive layer. Figure 107 shows a close-up picture of the debonding surface. It 

can be observed that a whitish colored layer of material (urethane) remains on the 

concrete substrate, supporting the conclusion of cohesive failure within the adhesive 

layer. 

 

  

Figure 106. PU Baseline at Failure: Video Frame Shots 

 

CFRP Rupture 

t = 0 sec t = 0.067 sec 

Debonding 
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Figure 107. PU Baseline CFRP Rupture Plane 

 

5.2.1.3 EP1 Baseline Beam 

 The EP1 baseline specimen was tested to failure on 2/6/2007. During the load 

testing, there were no observed problems with DAQ or the test set-up. Loading was 

paused at 25.5, 38.3, and 51.1 kips for cracks to be marked. The EP1 baseline specimen 

failed at a load of 70.3kip (Δ=1.56”). The dominate mode of failure was CFRP 

debonding. Figure 108 was taken from a video, taken during the time of testing, that 

shows the initiation of CFRP debonding occurring the North end of the specimen. It was 

observed that during the debonding failure longitudinal splitting of the CFRP composite 

and concrete cover separation occurred. Figure 108 shows a photo taken after failure 

occurred. It can be observed that both light and dark colored portions exist on the 

concrete tensile face. The lighter colored areas indicate the removal of concrete substrate 

during debonding; this implies a sound interface between CFRP and concrete. The darker 

colored areas indicate that debonding occurred at the CFRP-to-concrete interface; this 

could indicate poor wetting of the fiber surface.  
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Figure 108. EP-Baseline Failure 

5.2.1.4 EP2 Baseline Beam 

 EP2 baseline specimen was tested on 2/6/2007. During the load testing, there 

were no observed problems with DAQ or the test set-up. Loading was paused at 25.5, 

38.3, and 51.1 kips for cracks to be marked. Recall that during the application of the 

CFRP sheets to the EP2 baseline specimen, there were problems with premature gelling 

of the epoxy resin. A number of the following results shown are more than likely a result 

of this issue.  The EP2 baseline specimen failed at a load of 71.5 kip (Δ=1.61”). The 

dominating mode of failure was debonding originating from the north end of the 

specimen. When debonding failure occurred, only one half of the laminate separated from 

the concrete substrate (refer to Figure 109). During debonding, the north plate-end of the 

CFRP also ruptured via interlaminar shear (refer to Figure 109). The most interesting 

result to be seen was in the post-fail inspection of the debonded CFRP and respective 

concrete surface. If was found that a significant number of areas on the debonded plate 

did have adequate or any matrix saturation of the reinforcing fiber. Moreover, these areas 

showed signs of little or no adhesion to the concrete substrate (see Figure 109). Figure 

110 depicts a close-up picture of the post-fail tensile concrete surface. Three distinct 

regions can be identified:  

 

Cover 

Delamination Light 

Dark 
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1) Region 1 (R1): Area where plate debonding occurred within the concrete 

substrate indicting sound FRP-to-concrete bonding. 

 

2) Region 2 (R2): Area where plate debonding occurred at the FRP-to-concrete 

interface indicting poor bonding. 

 

3) Region 3 (R3): Area of poor fiber saturation/wetting. R3 areas could have 

resulted from, as mentioned earlier, premature gelling of the resin. 

 

It should be noted that the small area shown in Figure 110 was typical for the debonding 

surface found on the EP2 specimen. 

 

 

Figure 109. EP2 Baseline at Failure 

 

Interlaminar Debonding 

& CFRP Rupture 

Poor Fiber Saturation & 

Adhesion to Substrate 
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Figure 110. EP2 Baseline Concrete Substrate Post-fail 

 

5.2.1.5 Baseline Beam Comparative Results 

 Figure 111 shows the load-deflection behavior of all strengthened baseline 

specimens along with the control beam. This figure shows that all strengthened 

specimens significantly increase (34.7-42.3%) the load bearing capacity of the control 

member. Yet, this increase in capacity comes at the cost of decreased ductility (losses of 

48-60%). It can be observed that the all specimens show no significant stiffness increases 

in the pre- and post-cracking stages of loading. This is more than likely due to the initial 

steel reinforcement ratio (ρ=0.01) and the small amount of CFRP added to the member. 

Yet, there is a noticeable post-yield stiffness increase with all strengthened specimens 

compared to the control beam. The polyurethane baseline specimen exhibited the greatest 

ultimate load-bearing capacity, deflection, and post-yielding ductility (followed by the 

EP2 and EP1 type specimens respectively. 
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Figure 111. Baseline Specimen Load-Deflection Results  

5.2.1.6 Failure Modes and Bond 

 CFRP strengthened beam specimens were inspected after failure in order to gather 

more information regarding the governing mode of debonding failure. Four modes of 

debonding failure were identified: 

 

Mode 1) Cover Delamination: Failure caused when the bonded CFRP laminate 

ruptures the mechanical bond between concrete and tension 

reinforcement. Ultimately, separation between concrete and tension 

reinforcement is caused. 

 

Mode 2) Type-1 Laminate Debonding: Failure mode caused by rupture of the 

concrete substrate within the bond-line region of the tension soffit 

(refer to Figure 112). This failure mode can be identified by a thin layer 

of concrete that remains on the separated CFRP sheet. 
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Mode 3) Type-2 Laminate Debonding: Failure caused by simultaneous rupture 

within the concrete substrate, adhesive layer, and CFRP laminate (refer 

to Figure 112). Failure at interface layers also occurs. 

 

Mode 4) Type-3 Laminate Debonding: Failure caused by rupture within the 

adhesive layer (refer to Figure 112).    

 

- CONCRETE

- ADHESIVE

 BOND LINE
REGION

- CFRP

Type-1 Type-2 Type-3

 

Figure 112. Bond-line Failure Mode 

  

 In this study, the CFRP systems utilizing epoxy matrices displayed combinations 

of failure modes 1-3. This result is considered to by typical for epoxy matrix/adhesive 

systems (Buyukozturk & Yu, 2006). The PU system displayed Mode 4 debonding failure. 

Although, this mode is debonding in nature it is fundamentally different than those the 

literature considers normal for externally bonded FRP strengthened concrete. 
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 In order to confirm the mechanism by which debonding failure occurred, samples 

of CFRP laminate were viewed using SEM. Micrographs were taken of portion of the 

laminate that was bonded to the concrete substrate. Figure 113 and Figure 114 depict 

micrographs taken of CFRP utilizing the EP1 matrix system. It can be observed in Figure 

113 that rupture occurred mainly within the FRP-to-concrete interface and within the 

FRP/adhesive interface. Figure 114 shows rupture within the adhesive layer and within 

the concrete substrate. Figure 115 and Figure 116 are micrograph taken from of CFRP 

samples utilizing the PU matrix/adhesive system. It can be observed in both figures that 

rupture occurred within the adhesive layer confirming visual inspection  

 

  

Figure 113. EP1 Debonded Laminate (x150) Figure 114. EP1 Debonded Laminate (x500) 
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Figure 115. PU Debonded Laminate (x90) Figure 116. PU Debonded Laminate (x150) 

5.2.1.7 Flexural Cracking 

   Along with differences in failure mode and bond behavior, the epoxy-type and 

polyurethane specimens possessed slightly different cracking patterns at failure. Crack 

patterns observed during testing can be found in Figure 117, Figure 118, Figure 119, and 

Figure 120. It was observed that the polyurethane specimen had a higher concentration of 

flexural cracks along the beam profile compared to epoxy-type specimens. Moreover, the 

polyurethane specimen exhibited increased propagation of cracks throughout the member 

cross-section. The increased presence of cracks in the polyurethane specimens could be 

attributed to the stiffness of the urethane primer layer used to adhere the CFRP laminate 

to concrete. That is, the urethane primer layer is significantly less stiff than either epoxy 

resin used. This would result in larger stress transfer lengths and reduced section 

stiffness.      

  
Figure 117. Unstrengthened Control Beam Crack 

Pattern 
Figure 118. PU Strengthened Beam Crack Pattern 

  
Figure 119. EP1 Strengthened Beam Crack Pattern Figure 120. EP2 Strengthened Beam Crack Pattern 
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5.2.2 Cyclic Loading Results 

 A total of 6 beams were subjected to 2 million loading cycles; three of which would 

also receive controlled thermal conditioning. Figure 121 presents the displacement 

measurements acquired during the loading period. It should be noted that displacement 

results for the PU-C-E specimen are not shown. It was determined that a significant 

amount of sensor drift occurred during testing. Hence, these results have been omitted. 

Measurements reflect displacements recorded at the minimum (0.5 kip) and maximum 

(19.2 kip) load points; measurements account for settlement and softening of bearing 

pads. 

 All specimens endured the full 2 million cycles without failure. During loading, all 

epoxy matrix specimens exhibited a similar trend with increase in cycle number. During 

the first 100,000 load cycles the maximum deflection progressively increased. After the 

100,000 cycle mark, the maximum deflections of epoxy-based specimens tend to 

converge to limiting values. The EP-type specimens exhibited consistent increases in 

total fatigue induced deflection compared to the initial cycle measurement. Total 

measured deflection increase ranged from 19.5% to 22.4% for EP-type specimens. 

Compared to the epoxy-type specimens, the initial deflection (cycle 1) of the PU-C 

specimen was higher. Yet, with an increasing number of load cycles, the mid-span 

deflection tended to increase only slightly; 3.8% increase from the first load cycle.       
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Figure 121. Mid-span Displacement History Plot 

 

  The residual deflections recorded during the cyclic loading procedure seemed to 

steadily accumulate with increasing number of load cycles. This steady increase was 

more dominant in the EP1-C-E specimen and both EP2 specimens. This would indicate 

that either concrete is undergoing creep/softening due to repeated loading or the bond is 

deteriorating with cycle number. Either one of these actions would lead to reduced 

deflection recovery after the load cycle reached maximum load. Yet, bond degradation is 

believed to be governing cause for the PU-C specimen, because the specimen displayed 

only a slight increase in maximum and residual deflection during the full cyclic loading 

procedure. If excess deflection were governed by concrete’s tendency to creep and soften 

under repeated loading, the PU-C specimen would have displayed behavior similar to that 

of the EP-type specimens  
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  The results presented in Figure 122-Figure 124 correspond to axial CFRP strain 

measurements recorded during the fatigue loading procedure; the maximum recorded 

strains are shown (solid lines). Gage positions 2, 3, and 4 are shown left to right 

respectively. Due to an error that occurred with the data acquisition system, data for the 

PU-C specimen was lost.  

  It is evident from Figure 122-Figure 124 that all specimens exposed to cyclic 

loading experienced increase in maximum mid-span strains (SG3 location) by the end of 

2 million cycles, relative to the initial load cycle. Epoxy-based specimens showed a more 

continuous increase in mid-span strain with increase in cycle number; the rate of strain 

increase was also more significant in epoxy-based specimens. It was observed that 

epoxy-based specimens experienced maximum mid-span strain increases of 37.7%-

45.3% from initial values. The converse can be observed for the polyurethane specimen 

(PU-F-T). The initial maximum mid-span strain value recorded was significantly higher 

than those recorded for epoxy specimens. Yet, the increase in strain over time, relative to 

the initial cycle, was much lower (8.5%). 
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Figure 122. Strain Gage 2 History 

Plot 

Figure 123. Strain Gage 3 History 

Plot 

Figure 124. Strain Gage 4 History 
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  The maximum strains recorded at the quarter-span locations (SG2 and SG4) begin 

at relatively low values for all epoxy-based specimens. Yet, as the cycle number 

increases, some epoxy specimens experienced abrupt increases in strain values at quarter-

span locations. Previous to conducting monotonic load tests, all specimens were 

inspected for areas of debonding on the CFRP laminate. Inspection was conducted using 

coin tapping and approximate debonding regions were marked and plotted (Figure 125).  

A correlation can be observed between specimens that experienced abrupt jumps in 

quarter-span strain and approximate debonding locations. The EP2-C specimen 

underwent the most significant increase in maximum quarter-span strain and was found 

to have a considerable amount of debonding in the vicinity of the quarter-span gages. 

This same result was observed at the SG2 and SG4 locations for the EP2-C-E and EP1-C 

specimens respectively. Although maximum quarter-span strains were initially higher 

than epoxy specimens, the polyurethane specimen (PU-C-E) only sustained 21.1% and 

34.7% strain increases at the SG2 and SG3 locations respectively after 2 million fatigue 

cycles.  
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Figure 125. Approximate Debonding Locations 
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5.2.3 Ultimate Loading of Conditioned Specimens 

 Although the load-bearing capacity for all three specimens increased, the EP1-C 

and EP2-C specimens displayed a considerable reduction in deflection capacity at failure 

(refer to Figure 126). Furthermore, both epoxy based specimens achieved yield as failure 

occurred (EP2-C) or just previous to failure (EP1-C). There was also a significant 

decrease in the maximum achieved strain in the CFRP laminate for the epoxy based 

systems (refer to Table 19). The decrease in maximum strain, at the time of failure, 

indicates inefficient use of the CFRP in term of strength. 

 Cyclic loading seemed to have little effect of the polyurethane based CFRP 

system. Compared to the urethane baseline specimen, exposure to cyclic loading only 

caused a 4.4% reduction in load bearing capacity and a 14.5% reduction in ultimate 

deflection.   
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Figure 126. Ultimate Load-Displacement Plot - Cyclic Loading Specimens 
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 There was not a considerable difference in the load-deflection behavior (Figure 

127) between any of the specimens subjected to environmental conditioning. There was 

only a 11% difference between the ultimate deflections for the PU-E and EP2-E 

specimens; these specimens had the lowest and highest ultimate deflections respectively. 

Furthermore, the difference between the minimum and maximum observed ultimate loads 

was found to be 5.9%. Therefore there was no one CFRP system that significantly 

outperformed any other in term of post-conditioning flexural performance. It should be 

noted that the EP2 system achieved a considerable level of mid-span strain failure. 

Moreover, all specimens performed comparably or out performed baseline ultimate load, 

deflection, and strain achieved at failure (refer to Table 19).  
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Figure 127. Ultimate Load-Displacement Plot – Environmentally Conditioned Loading Specimens 
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 It can be observed form load-deflection results (Figure 128) of the C-E specimen 

types that there is no significant difference between the PU and EP1 strengthened beams. 

Although, the EP2-C-E specimen showed significant decreases in deflection, ultimate 

load, and mid-span strain achieved at failure (refer to values in Table 19).  
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Figure 128. Ultimate Load-Displacement Plot - Cyclic Loading & Env. Conditioning Specimens 

 

Table 19. Results Summary 

Specimen 

ID 

Yielding Ultimate 

Ductility 

 Index 

Failure  

Mode 
Load  

(kip) 

Deflection 

(in) 

Mid-span 

Strain  

in CFRP (με) 

Load  

(kip) 

Deflection  

(in) 

Mid-span 

Strain  

in CFRP (με) 

Control 41.7 0.7 N/A 52.2 2.6 N/A 4.02 cc 

PU 61.0 1.0 3669 74.3 1.8 3904 1.88 rup/db 

EP1 63.2 0.8 3135 70.3 1.2 5382 1.44 db 

EP2 60.9 0.9 3474 71.4 1.6 6829 1.81 db 

PU-C 61.9 0.9 3408 71.0 1.6 5637 1.78 rup/db 

EP1-C 63.4 0.8 3235 63.5 0.9 3403 1.06 db 

EP2-C 60.2 0.8 3187 60.3 0.8 3194 1.00 db 

PU-E 66.6 0.9 3269 74.3 1.4 5139 1.56 db 

EP1-E 65.4 1.0 3176 74.8 1.5 6072 1.58 db 

EP2-E 56.2 0.8 3505 70.5 1.7 7676 2.15 db 

PU-C-E 63.1 1.0 3328 73.9 1.7 6174 1.73 db 

EP1-C-E 65.2 0.9 3217 76.6 1.7 6785 1.76 db 

EP2-C-E - - - 53.1 0.7 2273 - db 
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By examining the differences in flexural performance measures between 

conditioned and non-conditioned specimens, trends can be identified and conclusions can 

be drawn. Figure 129 depicts the percentage retention of strain, deflection, and ultimate 

load at failure compared to baseline results. Three key results can be identified: 

- The PU system specimen performed consistently with changes in 

conditioning type. This was a result not observed in the epoxy-based systems. 

- Fatigue loading appears to have a pronounced effect on flexural 

performance. This is mostly observed with the GE system specimens. 

- Thermal conditioning does not appear to have an adverse effect on flexural 

performance. 
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Figure 129. Quantitative Results 

 5.2.4 Scanning Electron Microscopy  

 Upon completion of thermal conditioning and cyclic/ultimate loading procedures, 

samples of debonded CFRP were taken from the EP1-C-E  and PU-C-E specimens to be 

examined via SEM. The objective of SEM investigation was to detect viable degradation 

at the fiber/matrix level along with detailed observations of the composite surface that 

was bonded to concrete. Results were compared to respective samples that had been 

exposed to ambient air for the duration of this study. 
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 Figure 130 and Figure 131 depict virgin samples of the EP1 CFRP laminate. In 

both figures it can be observed that there is good bond between the surrounding matrix 

and reinforcing fibers. Also the bulk epoxy matrix is seen to be very smooth. This is not 

that case in the micrographs seen in Figure 132 and Figure 133 which were taken from 

the EP1-C-E beam specimen. It is apparent that degradation occurred at the fiber/matrix 

level. Furthermore, there is a discernable difference in matrix morphology. The same 

type of degradation can be observed between Figure 134/Figure 135 and Figure 

136/Figure 137 which depict the PU laminate type.  

 

  
Figure 130. Unconditioned EP1 Fibers (x400)  Figure 131. Unconditioned EP1 Fibers (x2000) 

  

Figure 132. Conditioned EP1-C-E Fibers (x800)  Figure 133. Conditioned EP1-C-E Fibers (x2000) 
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Figure 134. Unconditioned PU Fibers (x500)  Figure 135. Unconditioned PU Fibers (x3000) 

  

Figure 136. Conditioned PU-C-E Fibers (x900)  Figure 137. Conditioned PU-C-E Fibers (x3000) 

5.2.5 Bond Pull-off Tests 

 Upon completion of the conditioning period, bond pull-off test locations were 

prepared and tested. Pull-off testing was performed using a James Instruments Inc. 007 

James Bond Tester fixture. This fixture conforms to the current ASTM standard for such 

a test.  
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(a) Failure Surfaces (b) Average Pull-off Stress 

Figure 138. FDOT Bond Pull-off Results 

 

 The dominant mode of failure observed, in the epoxy-based systems, was rupture 

of disc specimen within the concrete layer. This indicates a good bond between FRP and 

concrete, that is a sound FRP/concrete interface layer. Specimen A3 was observed to fail 

in the top epoxy layer of the pull-off specimen. This means that the testing disc was 

pulled from the CFRP substrate leaving the CFRP material remaining adhered to 

concrete. Based on the results from specimens A1 and A2, pull-off specimen A3 was 

either not prepared properly or that poor bond existed between the test disc and the CFRP 

substrate.  

 All PU specimens exhibited a cohesive failure mode occurring within the 

urethane adhesive layer. The pull-off stress at failure, although low compared to the 

epoxy systems, and the failure surface for this matrix system were very consistent 

compared to the epoxy based systems. 

  

EP2-1          EP2-2      EP2-3 

EP2 – System 

PU-1          PU-2       PU-3 

PU – System 

EP1-1          EP1-2      EP1-3 

EP1 – System 
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6. CONCLUSIONS AND RECOMMENDATIONS  
 

 This thesis presented experimental results related to the characterization of 

polyurethane matrix carbon fiber composites for strengthening reinforced concrete 

structures. There were two main groups of specimens tested; small-scale and large-scale 

specimens. Small-scale specimens were used to investigate both component and bond 

durability. Large-scale tests were used to characterize the system response of beams 

strengthened with PU composite laminates and how they compared to epoxy 

matrix/adhesive composites. 

 The conclusions are drawn from experimental tests will be presented in three 

groups: small-scale test conclusions (or durability performance conclusions), large-scale 

test conclusions, and general conclusions. Based on the conclusions, design 

recommendations will be made along with installation recommendations. Finally, insight 

will given as to where further investigation on the use of PU composites for strengthening 

concrete should be concentrated. 

6.1 Conclusions on Durability  

 Based on results from environmentally conditioned tensile coupons and small-

scale beams, the following conclusions can be drawn: 

 

- Given pre- and post-test SEM results, the polyurethane matrix system appeared 

to be sensitive to the aqueous conditioning environments i.e. H2O, seawater, and 

the concrete leachate.  
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- The dry heat conditioning environment did not have any adverse effect on the 

PU composite system; average elastic modulus and ultimate strength actually 

tended to increase with duration of conditioning. 

 

- Ambient exposure (UV) caused a significant amount of damage at the 

fiber/matrix level. Damage was typically found in the form of mirco-cracking at 

the fiber/matrix bondline and crack initiation from micro-voids. Yet, average 

tensile properties (at 60 days) did not seem to be deviate substantially from 

baseline results. 

  

- Although some degradation was observed in material properties, conditioning 

did not alter the primary debonding failure mechanism (shear rupture within the 

adhesive layer) of strengthened beams. 

  

- The polyurethane adhesive was not significantly affected by environmental 

conditioning other than that of the ambient outdoor environment. Degradation is 

attributed to exposure to UV light. 

6.2 Conclusions on System Performance   

- Members strengthened with the PU composite system displayed a considerable 

level of consistency in the following areas: 

 

1. Ductility (although reduced from the RC control) 



123 

 

  

2. Load bearing capacity at failure 

 

3. Failure mode 

 

4. Post-conditioning bond integrity  

 

 

- The consistency of results with the PU system indicates that both the cyclic 

loading and environmental conditioning had little or no adverse effect on the 

strengthening ability of this system.   

 

- Due to a softer adhesive interface, flexural members strengthened with CFRP 

laminates bonded with PU adhesives are expected to undergo an increased 

cracking.  

6.3 General Conclusions 

- The governing mode of flexural failure for members strengthen with the PU 

systems was debonding occurring within the adhesive layer 

 

- Mirco-cracking in the PU matrix radiating from micro-voids formed during 

curing tends to propagate and connect under applied stress. 
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6.4 Design and Construction Recommendations 

- Upon removing the PU system from the sealed package, the polyurethane matrix 

begins catalyzing with moisture in the air. Therefore careful consideration must 

be taken during installation to incorporate the relative humidity of the application 

environment. 

 

- During the matrix hardening process of the polyurethane system, carbon dioxide 

is released as a reaction byproduct. Therefore periodic rolling of the fiber after 

installation must be done to avoid formation of voids in the laminate. 

6.5 Recommendation for Future Work 

 Significant attention should be paid to the bond behavior of PU adhesives to 

concrete. The work presented in this thesis showed that fundamental debonding 

mechanism of externally bonded PU-CFRPs is via shear rupture of the PU adhesive 

interface. Therefore it is recommended that the shear bond strength of PU adhesives to 

concrete be investigated along with the development of a bond model to predict bond 

failure. Further study of the material and system performance of PU-CFRPs should also 

be investigated for resistance to mechanical and environmental loading. 
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APPENDIX A - TENSILE SPECIMENS 
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A1 H20 Conditioning Tensile Specimens 
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Figure 139. H2O-30 Tensile Samples – Stress/Strain 

Behavior 

Figure 140. H2O-60 Tensile Samples – Stress/Strain 

Behavior 

  
Figure 141. H2O-30 Tensile Samples – Test Photos Figure 142. H2O-60 Tensile Samples – Test Photos 

Table 20. H2O-30 Tensile Samples – Results Summary Table 21. H2O-60 Tensile Samples – Results Summary 

Sample 

 ID 

Max 

Stress 

(ksi) 

Max 

Load 

(kip) 

E (ksi) 

S1 35.9 2.4 2961 

S2 35.9 2.1 3787 

S3 36.7 2.3 3512 

S4 37.7 2.4 3149 

S5 39.8 2.5 3893 

S6 43.6 2.4 3557 

S7 47.8 2.5 3940 

Average 39.6 2.4 3476 

SD 4.62 0.155 296 
 

Sample 

 ID 

Max 

Stress 

(ksi) 

Max 

Load  

(lbs) 

E (ksi) 

S1 39.9 2.6 2746 

S2 34.8 2.5 2394 

S3 28.7 2.3 2352 

S6 29.5 2.3 3150 

S7 33.1 2.4 2778 

S8 33.1 2.6 2612 

Average 33.2 2.4 2684 

SD 4.03 0.138 293 
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A2 Leachate (LECH) Conditioned Tensile Specimens 
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Figure 143. LECH-30 Tensile Samples – Stress/Strain 

Behavior 

Figure 144. LECH -60 Tensile Samples – Stress/Strain 

Behavior 

  
Figure 145. LECH -30 Tensile Samples – Test Photos Figure 146. LECH -60 Tensile Samples – Test Photos 

Table 22. LECH -30 Tensile Samples – Results 

Summary 

Table 23. LECH -60 Tensile Samples – Results 

Summary 

Sample 

ID 

Max 

Stress 

(ksi) 

Max  

Load 

(kip) 

E (ksi) 

S2 23.1 1.7 2021 

S3 23.3 1.8 1771 

S4 30.6 2.2 2042 

S5 33.8 2.3 3017 

S6 35.1 2.1 2878 

S7 42.3 2.5 3067 

S9 40.5 2.4 3528 

Average 32.7 2.2 2466 

SD 7.60 0.314 666 
 

Sample 

ID 

Max 

Stress 

(ksi) 

Max 

Load 

(kip) 

E (ksi) 

S1 30.4 2.2 3295 

S2 33.3 2.3 3028 

S3 35.3 2.5 2629 

S4 26.3 1.9 2491 

S5 33.3 2.5 2363 

S6 32.4 2.5 3417 

S7 28.4 2.2 2735 

Average 31.3 2.3 2871 

SD 3.12 0.207 404 
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A3 Seawater (SEA) Conditioned Tensile Specimens 
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Figure 147. SEA-30 Tensile Samples – Stress/Strain 

Behavior 

Figure 148. SEA-60 Tensile Samples – Stress/Strain 

Behavior 

  
Figure 149. SEA-30 Tensile Samples – Test Photos Figure 150. SEA-60 Tensile Samples – Test Photos 

Table 24. SEA-30 Tensile Samples – Results Summary 
Table 25. SEA-60 Tensile Samples – Results 

Summary 

Sample 

ID 

Max 

Stress 

(ksi) 

Max 

Load 

(kip) 

E (ksi) 

S1 35.4 2.3 2989 

S2 25.6 1.6 3024 

S3 39.2 2.4 3237 

S5 38.1 2.3 2856 

S6 35.1 2.1 2878 

S7 42.3 2.5 3083 

S9 40.5 2.4 3518 

Average 36.6 2.2 3084 

SD 5.50 0.312 230 
 

Sample 

ID 

Max 

Stress 

(ksi) 

Max 

Load 

(kip) 

E (ksi) 

S1 37.3 2.5 2930 

S2 34.3 2.1 3114 

S3 38.4 2.5 3875 

S4 35.0 2.1 4836 

S5 42.6 2.7 2898 

S6 36.5 2.3 2683 

S7 42.2 2.5 3459 

Average 38.0 2.4 3399 

SD 3.26 0.220 748 
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A4 Dry Heat (DRY) Conditioned Tensile Specimens 
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Figure 151. DRY-30 Tensile Samples – Stress/Strain 

Behavior 

Figure 152. DRY-60 Tensile Samples – Stress/Strain 

Behavior 

  
Figure 153. DRY-30 Tensile Samples – Test Photos Figure 154. DRY-60 Tensile Samples – Test Photos 

Table 26. DRY-30 Tensile Samples – Results Summary Table 27. DRY-60 Tensile Samples – Results Summary 

Sample 

ID 

Max 

Stress 

(ksi) 

Max 

Load 

(kip) 

E (ksi) 

S1 44.8 2.7 3521 

S2 45.7 2.8 3959 

S3 39.4 2.5 3959 

S4 40.1 2.5 2833 

S5 39.4 2.3 3317 

S6 38.7 2.6 2898 

S7 39.7 2.3 3777 

Average 41.1 2.5 3414 

SD 2.86 0.186 471 
 

Sample 

ID 

Max 

Stress 

(ksi) 

Max 

Load 

(kip) 

E (ksi) 

S1 41.7 2.6 3411 

S2 46.2 2.6 3312 

S3 40.8 2.7 4097 

S4 39.1 2.6 3285 

S5 44.4 2.7 3694 

S6 45.6 2.6 3545 

S7 40.2 2.6 3233 

Average 42.6 2.6 3557 

SD 2.80 0.072 304 
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A5 Ambient (AMB) Conditioning Tensile Specimens 
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Figure 155. AMB-30 Tensile Samples – Stress/Strain 

Behavior 

Figure 156. AMB-60 Tensile Samples – Stress/Strain 

Behavior 

  
Figure 157. AMB-30 Tensile Samples – Test Photos Figure 158. AMB-60 Tensile Samples – Test Photos 

Table 28. AMB-30 Tensile Samples – Results Summary Table 29. AMB -60 Tensile Samples – Results Summary 

Sample ID 

Max 

Stress  

(ksi) 

Max 

Load 

(kip) 

E (ksi) 

S1 38.0 2.5 2578 

S2 33.8 2.5 2486 

S4 38.6 2.6 3062 

S5 35.7 2.6 2561 

S8 35.7 2.7 3126 

Average 36.4 2.6 2763 

SD 1.96 0.089 305 
 

Sample ID 

Max 

Stress 

(ksi) 

Max 

Load 

(kip) 

E (ksi) 

S1 36.7 2.4 3504 

S3 39.8 2.5 2809 

S4 34.0 2.2 3002 

S6 37.8 2.5 3828 

Average 37.1 2.4 3286 

SD 2.41 0.157 465 
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APPENDIX B - SMALL-SCALE BEAM SPECIMEN DATA 

AND PHOTOS 
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B1 Unconditioned Control Beam Specimens 

 

(a) Specimen at Failure 

  

(b)  Concrete Substrate  (c) Debonded Fiber 

Figure 159. Beam C-30-1 

 

 

(a) Specimen at Failure 
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(b)  Concrete Substrate  (c) Debonded Fiber 

Figure 160. Beam C-30-2 

 

 

(a) Specimen at Failure 

  

(b)  Concrete Substrate  (c) Debonded Fiber 

Figure 161. Beam C-60-1 
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(a) Specimen at Failure 

  

(b)  Concrete Substrate (c) Debonded Fiber 

Figure 162. Beam C-60-2 

 

(a) Specimen at Failure 

  

(b)  Concrete Substrate (c) Debonded Fiber 

Figure 163. Beam C-60-3 
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B2 H2O Conditioning Beam Specimens 

Table 30. H2O-30 Beam Test Results Summary 

ID 

Cracking 

Load  

(kip) 

Pre-crack  

Stiffness 

(kip/in) 

Post-crack  

Load  

(kip) 

 Post-crack  

Deflection  

(in) 

Post-crack  

Stiffness 

(kip/in) 

Max 

Strain 

H2O-30-1 7.50 370 8.71 0.093 92 6787 

H2O-30-2 7.39 348 9.07 0.090 93 8924 

H2O-30-3 7.23 339 6.42 0.065 79 2633 

Average 7.37 353 8.07 0.08 88 6115 

Standard Dev. 0.133 16.0 1.440 0.016 7.99 3199 

C.O.V. 0.0180 0.0453 0.1786 0.1877 0.0907 0.5232 

 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 164. Beam H2O-30-1 
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(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 165. Beam H2O-30-2 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 166. Beam H2O-30-3 
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Table 31. H2O-60 Beam Test Results Summary 

Specimen 

ID 

Cracking 

Load 

(kip) 

Pre-crack  

Stiffness  

(kip/in) 

Post-

crack 

Load  

(kip) 

Post-crack  

Deflection  

(in) 

Post-crack  

Stiffness  

(kip/in) 

Max  

Strain 

H2O-60-1 7.52 429 8.69 0.070 114 9634 

H2O-60-2 7.80 403 8.20 0.067 86 7894 

H2O-60-3 7.61 396 n/a 0.041 n/a 908 

Average 7.64 410 8.44 0.06 100 6145 

SD 0.146 17.3 0.348 0.016 20.17 4619 

COV 0.0191 0.0423 0.0412 0.2686 0.2020 0.7516 

 

 

Figure 167. Beam H2O-60-1 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 168. Beam H2O-60-2 
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(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 169. Beam H2O-60-3 
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B3 Concrete Leachate (LECH) Conditioning Beam Specimens 

Table 32. LECH-30 Beam Test Results Summary 

ID 

Cracking  

Load  

(kip) 

Pre-crack  

Stiffness  

(kip/in) 

Post-crack  

Load  

(kip) 

 Post-crack  

Deflection  

(in) 

Post-crack  

Stiffness  

(kip/in) 

Max  

Strain 

LECH-30-1 7.72 235 4.93 0.056 N/A 164 

LECH-30-2 6.76 258 6.07 0.078 79 1745 

Average 7.24 246 5.50 0.07 79 955 

Standard Dev. 0.679 15.9 0.810 0.016 N/A 1118 

C.O.V. 0.0938 0.0645 0.1473 0.2374 N/A 1.1713 

 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 170. Beam LECH-30-1 
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(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 171. Beam LECH-30-2 
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Table 33. LECH-60 Beam Test Results Summary 

Specimen ID 

Cracking 

Load 

(kip) 

Pre-crack  

Stiffness  

(kip/in) 

Post-crack 

Load  

(kip) 

 Post-crack  

Deflection  

(in) 

Post-crack  

Stiffness  

(kip/in) 

Max  

Strain 

LECH-60-1 6.52 363 8.92 0.063 124 4984 

LECH-60-2 7.81 322 7.59 0.062 95 5565 

Average 7.16 343 8.26 0.06 110 5274 

SD 0.912 29.0 0.940 0.062 20.31 411 

COV 0.1273 0.0845 0.1138 0.9948 0.1849 0.0779 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 172. Beam LECH-60-1 

 
(a) Specimen at Failure 
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(b) Concrete Substrate (c) Debonded Laminate 

Figure 173. Beam LECH-60-2 
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B4 Seawater (SEA) Conditioning Beam Specimens 

Table 34. SEA-30 Beam Test Results Summary 

ID 

Cracking 

Load 

(kip) 

Pre-crack  

Stiffness 

(kip/in) 

Post-crack  

Load 

(kip) 

Post-crack  

Deflection (in) 

Post-crack  

Stiffness 

(kip/in) 

Max 

Strain 

SEA-30-1 8.41 364 7.87 0.073 104 6860 

SEA-30-2 8.01 304 8.13 0.063 127 4133 

SEA-30-3 7.05 302 7.45 0.054 126 1906 

Average 7.83 323 7.82 0.06 119 4299 

Standard Dev. 0.698 35.2 0.344 0.009 13.25 2481 

C.O.V. 0.0892 0.1089 0.0440 0.1475 0.1113 0.5771 

 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 174. Beam SEA-30-1 
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(a) Specimen at Failure 

Figure 175. Beam SEA-30-2 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 176. Beam SEA-30-3 
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Table 35. SEA-60 Beam Test Results Summary 

Specimen ID 

Cracking 

Load 

(kip) 

Pre-crack  

Stiffness  

(kip/in) 

Post-

crack 

Load  

(kip) 

 Post-

crack  

Deflection  

(in) 

Post-

crack  

Stiffness  

(kip/in) 

Max  

Strain 

SEA-60-1 8.62 444 11.12 0.090 136 11168 

SEA-60-2 9.31 376 9.03 0.074 128 2534 

SEA-60-3 8.38 406 7.73 0.067 121 5227 

Average 8.77 409 9.29 0.08 129 6310 

Standard Dev. 0.484 34.1 1.710 0.012 7.90 4418 

C.O.V. 0.0551 0.0834 0.1840 0.1514 0.0615 0.7001 

 

 

 
Figure 177. Beam SEA-60-1  

 

 
Figure 178. Beam SEA-60-2  
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(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 179. Beam SEA-60-3 

  



147 

 

B5 Dry Heat (DRY) Conditioning Beam Specimens 

Table 36. DRY-30 Beam Test Results Summary 

ID 

Cracking 

Load 

(kip) 

Pre-crack  

Stiffness  

(kip/in) 

Post-crack 

Load  

(kip) 

 Post-crack  

Deflection  

(in) 

Post-crack  

Stiffness  

(kip/in) 

Max  

Strain 

DRY-30-1 7.87 278 7.57 0.065 131 5837 

DRY-30-2 7.62 307 7.91 0.086 89 5512 

DRY-30-3 7.27 286 8.36 0.088 114 5873 

Average 7.59 290 7.95 0.08 111 5741 

Standard Dev. 0.301 14.8 0.396 0.013 21.06 199 

C.O.V. 0.0397 0.0510 0.0498 0.1607 0.1893 0.0346 

 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 180. Beam DRY-30-1 
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(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 181. Beam DRY-30-2 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 182. Beam DRY-30-3 
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Table 37. DRY-60 Beam Test Results Summary 

ID 

Cracking 

Load 

(kip) 

Pre-crack  

Stiffness  

(kip/in) 

Post-crack 

Load  

(kip) 

 Post-crack  

Deflection  

(in) 

Post-crack  

Stiffness  

(kip/in) 

Max  

Strain 

DRY-60-1 7.33 325 9.43 0.076 119 9546 

DRY-60-2 7.63 356 7.47 0.058 131 3278 

DRY-60-3 7.56 306 6.81 0.059 92 2431 

Average 7.51 329 7.91 0.06 114 5085 

Standard Dev. 0.155 25.2 1.364 0.010 20.40 3886 

C.O.V. 0.0207 0.0766 0.1725 0.1607 0.1790 0.7643 

 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 183. Beam DRY-60-1 
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(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 184. Beam DRY-60-2 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 185. Beam DRY-60-3 
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B.6 Ambient (AMB) Conditioning Tensile Specimens 

Table 38. AMB-30 Beam Test Results Summary 

ID 

Cracking 

Load 

(kip) 

Pre-crack  

Stiffness 

(kip/in) 

Post-crack  

Load 

(kip) 

Post-crack  

Deflection 

(in) 

Post-crack  

Stiffness 

(kip/in) 

Max 

Strain 

AMB-30-1 6.91 399 6.78 0.060 104 5622 

AMB-30-2 7.08 416 5.99 0.066 64 1443 

AMB-30-3 7.62 357 8.61 0.090 99 6969 

Average 7.20 391 7.13 0.07 89 4678 

Standard Dev. 0.375 30.1 1.346 0.016 21.58 2881 

C.O.V. 0.0521 0.0771 0.1888 0.2252 0.2424 0.6159 

 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 186. Beam AMB-30-1 
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(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 187. Beam AMB-30-2 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 188. Beam AMB-30-3 
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Table 39. AMB-60 Beam Test Results Summary 

ID 

Cracking 

Load 

(kip) 

Pre-crack  

Stiffness  

(kip/in) 

Post-crack 

Load  

(kip) 

 Post-crack  

Deflection  

(in) 

Post-crack  

Stiffness  

(kip/in) 

Max  

Strain 

AMB-60-1 8.48 346 9.11 0.070 128 4166 

AMB-60-2 7.59 281 N/A N/A N/A 152 

AMB-60-3 7.82 350 N/A N/A N/A 1790 

Average 7.96 326 9.11 0.07 128 2036 

Standard Dev. 0.464 38.6 N/A N/A N/A 2018 

C.O.V. 0.0582 0.1184 N/A N/A N/A 0.9912 

 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 189. Beam AMB-60-1 
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(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 190. Beam AMB-60-2 

 

 
(a) Specimen at Failure 

  
(b) Concrete Substrate (c) Debonded Laminate 

Figure 191. Beam AMB-60-3 
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