
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2008

Analysis Of Kolmogorov's Superposition Theorem And Its Analysis Of Kolmogorov's Superposition Theorem And Its

Implementation In Applications With Low And High Dimensional Implementation In Applications With Low And High Dimensional

Data. Data.

Donald Bryant
University of Central Florida

 Part of the Mathematics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Bryant, Donald, "Analysis Of Kolmogorov's Superposition Theorem And Its Implementation In Applications
With Low And High Dimensional Data." (2008). Electronic Theses and Dissertations, 2004-2019. 3689.
https://stars.library.ucf.edu/etd/3689

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/174?utm_source=stars.library.ucf.edu%2Fetd%2F3689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3689?utm_source=stars.library.ucf.edu%2Fetd%2F3689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

ANALYSIS OF KOLMOGOROV’S SUPERPOSITION THEOREM
AND ITS IMPLEMENTATION IN APPLICATIONS

WITH LOW AND HIGH DIMENSIONAL DATA.

by

DONALD W. BRYANT
B.S. Massachusetts Institute of Technology, 1999

M.S. University of Central Florida, 2005

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Mathematics
in the College of Science

at the University of Central Florida
Orlando, Florida

Summer Term
2008

Major Professors: Xin Li and Mubarak Shah

c© 2008 Donald W. Bryant

ii

ABSTRACT

In this dissertation, we analyze Kolmogorov’s superposition theorem for high dimensions.

Our main goal is to explore and demonstrate the feasibility of an accurate implementation

of Kolmogorov’s theorem. First, based on Lorentz’s ideas, we provide a thorough discussion

on the proof and its numerical implementation of the theorem in dimension two. We present

computational experiments which prove the feasibility of the theorem in applications of

low dimensions (namely, dimensions two and three). Next, we present high dimensional

extensions with complete and detailed proofs and provide the implementation that aims at

applications with high dimensionality. The amalgamation of these ideas is evidenced by

applications in image (two dimensional) and video (three dimensional) representations, the

content based image retrieval, video retrieval, de-noising and in-painting, and Bayesian prior

estimation of high dimensional data from the fields of computer vision and image processing.

iii

ACKNOWLEDGMENTS

I would like to thank all the people who helped me navigate through the dissertation

process.

iv

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . x

CHAPTER ONE: INTRODUCTION . 1

1.1 Overview . 3

1.1.1 Dissertation Outline . 3

CHAPTER TWO: BACKGROUND . 5

2.1 Approximation Theory . 5

2.2 Probability and Statistics . 8

2.2.1 Probability . 8

2.2.2 Statistics . 9

CHAPTER THREE: KOLMOGOROV’S THEOREM 11

3.1 Kolmogorov’s Theorem . 11

3.1.1 Theorem Statement . 11

3.1.2 Details required for Proof . 11

3.1.3 Proof of Theorem . 21

3.2 Properties of f and its g function . 22

3.2.1 Addition and Multiplication . 23

3.2.2 Shifting . 25

3.2.3 Scaling . 29

v

3.2.4 Partial Differentiation . 33

CHAPTER FOUR: KOLMOGOROV’S THEOREM FOR n DIMENSIONS (n ≥ 2) . 36

4.1 Kolmogorov’s Theorem for High Dimensions 36

4.1.1 Set up for the Proof . 38

4.1.2 Further Details required for the Proof 43

4.1.3 Proof of Theorem . 45

CHAPTER FIVE: NUMERICAL IMPLEMENTATION DISCUSSION 46

5.1 Algorithmic Outline of Kolmogorov’s Theorem 46

5.1.1 Computation of ϕ’s in two dimensional case 46

5.1.2 Training the g-function . 49

5.2 Issues related to implementation . 50

5.2.1 Assigning ϕq values for k > 0 . 50

5.2.2 Storing data points . 52

5.2.3 Computation times . 53

5.2.4 g-function representation . 54

CHAPTER SIX: APPLICATIONS . 58

6.1 Image, Video, and MRI representation and reconstruction 58

6.2 Content Based Image Retrieval Application 63

6.2.1 Results . 68

6.2.2 Video Retrievals . 70

6.2.3 Conclusion . 71

vi

6.3 Bayesian Prior Image Applications . 72

6.3.1 Product of Experts . 75

6.3.2 Field of Experts . 76

6.3.3 PoE and FoE revisted . 76

6.3.4 A new approach . 78

APPENDIX A: OVERVIEW OF FUNCTIONS . 79

A.1 Function Overview . 80

APPENDIX B: FUNCTION CODE PRINTOUT . 82

B.1 Code for building ϕq functions . 83

B.1.1 build phis hp . 83

B.1.2 findfirst hp . 108

B.1.3 train gt . 112

B.1.4 recon ft . 122

B.1.5 eval gt . 124

LIST OF REFERENCES . 127

vii

LIST OF FIGURES

3.1 Example of intervals i, k up to k = 2 . 14

3.2 Intervals I1
3i not contained completely in I = (0, 1) 14

3.3 Example of intervals I2
3i of the first kind . 18

3.4 Example of intervals I2
3i of the second kind 19

3.5 Example squares S for k = 1 . 20

3.6 Addition . 24

3.7 Multiplication . 26

3.8 Shifting functions dUx (left) and dUy (right) 27

3.9 Shifting along x dimension: Top: (left) f(x, y) , (right) gf Middle: (left)

f(x+ 0.01, y) (right) g1 Bottom:(left) f(x+ 0.1, y) (right) g2 28

3.10 Scaling functions dWx (left) and dWy (right) 30

3.11 Scaling along x dimension . 31

3.12 Partial Derivatives with respect to x y . 34

5.1 tiger image . 53

5.2 tiger image . 53

6.1 f(x, y) = 1 . 58

6.2 f(x, y) = cos
[

2
π
(x− y)

]
. 59

6.3 f(x, y) = sin(2πx) sin(2πy) . 59

6.4 Image, g-function, reconstruction . 60

viii

6.5 Image, g function, reconstruction . 60

6.6 MRI image slices (top) and their reconstructions (bottom) 62

6.7 Portion of associated g function . 63

6.8 Frames in a video of water drop into a bucket and the reconstruction 64

6.9 Indexing: All entries in the database will go through this step; a query image

will go through the same step. 67

6.10 Various Images in WANG Database . 68

6.11 Top Image: Query Image. Six lower images are the best returned matches

from the dataset. 69

6.12 Top Image: Query Image. Six lower images are the best returned matches

from the dataset. 69

6.13 Top Image: Query Image (dinosaurs). Six lower images are the best returned

matches from the dataset. 70

6.14 Top Image: Query Image (flowers). Six lower images are the best returned

matches from the dataset. 71

ix

LIST OF TABLES

5.1 Values for φ0(x) function define over [0, 1] 55

5.2 Sample points uqij for q = 0 and k = 2 λ1 = 1, λ2 = 1√
2

. 56

5.3 Interpolation table for (uqij, g(uqij)), here the fkqij’s are the values at the cen-

ters of the squares Skqij associated with ukqij 57

x

CHAPTER ONE: INTRODUCTION

The phrase “curse of dimensionality” was coined by Richard Bellman [3], in connection

with the difficulty of optimization by exhaustive enumeration on product spaces. Bellman

considered a cartesian grid of spacing 1/100 on the unit cube in 10 dimensions, where there

are 1020 points; if the unit cube in 20 dimensions was considered, there would be 1040 points.

His interpretation: if our goal is to optimize a function over a continuous product domain

of a few dozen variables by exhaustively searching a discrete search space defined by a

crude discretization, we could easily be faced with the problem of making tens of trillions

of evaluations of the function. Bellman argued that this curse precluded, under almost any

computational scheme then foreseeable, the use of exhaustive enumeration strategies.

No other century has been as inundated with data more than this one. This is the

age where society has invested massively in the collection and processing of data of all

kinds, on scales unimaginable. Hyperspectral Imagery, Internet Portals, Financial tick-by-

tick data, and DNA microarrays are just a few of the better-known sources. Today, the

trend is towards more observations as well as to radically larger numbers of variables. We

are seeing examples where the observations gathered on individual data are curves, spectra,

images, or even movies, so that a single observation has dimensions in the thousands or

billions. Classical methods cannot cope with the explosive growth of the dimensionality of

the observation vector. Mathematicians ideally desire the ability to find patterns in such

high-dimensional data. In the context of the problems Bellman discussed, there are two

1

new influential principles: the blessings and the curse of dimensionality. This dissertation

addresses the curse of dimensionality.

At the beginning of last century, David Hilbert [8] compiled a set of twenty three problems

as a challenge to mathematicians in his celebrated address delivered to the Second Interna-

tional Congress of Mathematicians in Paris. The 13th problem entails proving whether or

not a solution exists for all 7-th degree equations using functions of two arguments. It was

first presented in the context of nomography, and in particular “nomographic construction”

a process whereby a function of several variables is constructed using functions of two vari-

ables. The actual question is more easily posed, however, in terms of the representation of

continuous functions.

Hilbert asked whether it was possible to construct the solution of the general seventh

degree equation x7 + ax3 + bx2 + cx + 1 = 0 using a finite number of two-variable func-

tions. The complete answer was given by Vladimir Arnold in 1957, then only nineteen years

old and a student of Andrey Kolmogorov. Kolmogorov had shown in the previous year

that any continuous function of several variables can be constructed with a finite number

of three-variable functions. Arnold then expanded on this work to show that in fact only

two-variable functions were required, thus answering Hilbert’s question. This formulation is

further generalized to allow almost any multivariate function (there are some exceptions [16])

to be represented by not just a two dimensional function, but a one dimensional continu-

ous function. This generalized version is usually referred to as Kolmogorov’s superposition

theorem.

2

1.1 Overview

This dissertation will attempt to address the representation of multivariate functions

through the novel theorem developed by Andrey Kolmogorov. This theorem states that a

continuous function of several variables can be represented by a composition and superposi-

tion of functions of one variable.

1.1.1 Dissertation Outline

In Chapter 2, we give background information in two areas, Approximation Theory and

Probability and Statistics. This will give the reader the ability to reference particular topics

that they may require some background.

In Chapter 3, Kolmogorov’s theorem for dimension two is studied. Here we follow the

outline given by Lorentz [16] and provide additional explanations for particular portions.

This theorem will be used to re-examine a new way to deal with high dimensional data.

Some examples of results obtained from our implementation are presented. Next, we present

some properties of the representing one-dimensional functions. We will explore what effect

the operations on the one dimensional functions have on the corresponding high dimensional

function. It is hoped that by completely understanding the relationship between different

sets of high dimensional data and the associated composition to one dimension, there will

be more efficient processing of the data to be analyzed.

In Chapter 4, we present a high dimensional extension of Lorentz’s proof . Lorentz’s

proof is specifically for a two dimensional function f(x, y) but is easily extended to higher

3

dimensions. Here we try to present a complete proof for the high dimensional case so that

it may be read independently. The purpose of presenting a complete proof of the high

dimensional case is twofold. First, we avoid referring to other parts of the dissertation which

may interrupt the continuity of the reading of the proof. Second, it allows us to write out all

of the details in the proof that will be useful for our implementation. The last topic covered

in this chapter is a detailed discussion of our algorithmic interpretation of Kolmogorov’s

theorem.

In Chapter 5, we will discuss the issues with the implementations and give some results

from experiments conducted with our image retrieval system. We will discuss the obstacles

and suggest some strategies for improving the implementation of the algorithm.

In Chapter 6, we discuss a few applications of the algorithm. There are many areas

where this algorithm can be applied but we focus primarily on digital image retrieval. We

explain in depth the manner in which a search engine uses the similarity and other properties

between g-functions of images as a matching criteria. The idea is that two similar images

(2-D functions) should have similar g-functions. We also present a framework for developing

high dimensional PDF’s in close relation to those presented by Roth and Black [4]. Lastly

our extension and modifications to that method will be discussed.

To make our algorithm useful for others, we will provide our MATLAB c©codes and the

instructions on how to use them in the Appendices.

4

CHAPTER TWO: BACKGROUND

In order to facilitate an adequate discussion in later chapters on Kolmogorov’s theorem

and its applications, we present some background material here. In the first section, we

present the important concepts from approximation theory which will be required for the

discussions and extensions of Kolmogorov’s theorem in Chapter 4 and Chapter 5. We follow

the discussion of approximation theory with a short introduction to concepts in probability

and statistics. This will be helpful for the reader to refer to when we discuss applications in

Chapter 6.

2.1 Approximation Theory

One of the main tasks in Approximation Theory is the task of finding a linear combination

of functions φiεΦ such that for P = a1φ1 + · · ·+ anφn, P is close to a given function f , which

is defined on a fixed space A. This involves selecting the set Φ and deciding how to measure

the deviation of P from f .

In order to measure the deviation of P from f , let A be a compact metric space, and let

C = C[A] be the set of continuous real functions on A. C is a linear space with the usual

properties: if f, g ∈ C then af + bg ∈ C for a, b ∈ R.

The supremum

‖f‖ = sup
x∈A
|f(x)| (2.1)

5

is attained for all functions f ∈ C; thus

‖f‖ = max
x∈A
|f |. (2.2)

This defines a norm on C[A] which has the following properties:

‖f‖ ≥ 0; ‖f‖ = 0 if and only if f = 0

‖af‖ = |a| · ‖f‖

‖f + g‖ ≤ ‖f‖+ ‖g‖.

(2.3)

Thus, C is a normed linear space associated with all continuos real functions over R. The

convergence fn → f in the norm of C, ‖fn− f‖ → 0 as n→∞, is equivalent to the uniform

convergence of fn(x) to f(x) for all x ∈ A. The space C is a complete normed linear space.

If fn is a Cauchy sequence, then fn converges to some element, f , of C:

‖fn − f‖ → 0 (2.4)

Complete normed spaces are called Banach spaces.

The following definitions apply to any Banach space X with elements f and a subset

Φ ⊆ X.

Definition. A function f is called approximable by linear combinations

P = a1φ1 + a2φ2 + · · ·+ anφn; φi ∈ Φ, ai real, (2.5)

if for each ε > 0 there is a P with ‖f − P‖ < ε. Often, Φ is a sequence: φ1, φ2, · · · , φn, · · · .

Then

En(f) = EΦ
n (f) = inf

a1,...,an

‖f − (a1φ1 + · · ·+ anφn)‖ (2.6)

6

is the nth degree of approximation of f by the φi. If the infimum is obtained for some P ,

then this P is called a best approximation.

Another useful definition is related to the continuity of functions.

Definition. To measure the continuity of a function f ∈ C([a, b]), consider the first

difference with step t,

∆tf(x) = f(x+ t)− f(x) (2.7)

of the function f and put

ω(f, h) = ω(h) = max
x,x+t∈[a,b]

|t|≤h

|f(x+ t)− f(x)|. (2.8)

The function ω(h), called the modulus of continuity of f , is defined for 0 ≤ h < l, where

l = b− a.

Lastly we look at a way to group functions into different classes. The Lipshitz condition

is one way to accomplish this.

Definition. A function f defined on A = [a, b], satisfies a Lipshitz condition with

constant M and exponent α, or belongs to the class LipMα, M > 0, 0 < α ≤ 1 if

|f(x′)− f(x)| ≤M |x′ − x|α, x, x′ ∈ A . (2.9)

This is equivalent to the inequality ω(f, h) ≤ Mhα, for 0 ≤ h < l. As an example, if

f has a derivative that satisfies |f ′(x)| ≤ M , x ∈ A, then f ∈ LipM1. It is know that

a function satisfying a Lipshitz condition on [a, b] is continuous [a, b]. Define ω(f, A) =

sup0≤h<l ω(f, h) = ω(f, l). This can be extended to 2-D or higher dimensional cases.

7

Weierstrass Comparison Test. If ‖fk‖A ≤Mk, for all k, and
∑∞

1 Mk converges, then∑∞
1 fk converges uniformly on A.

Geometric Series. The geometric series
∑∞

0 xn converges to 1
1−x for |x| < 1 and

diverges when |x| ≥ 1.

Any continuous function f defined on a closed and bounded (compact) set D attains a

maximum (and minimum) value at some point in D.

2.2 Probability and Statistics

Probability is the mathematical language used to quantify uncertainty. Statistical in-

ference is the process of using data to infer the distribution that generated the data. In

this section we introduce some basic concepts from probability theory and statistical infer-

ence. This will allow the reader to recall important concepts while reviewing the applications

related to these fields.

2.2.1 Probability

A function P which assigns a real number P (A) to each event A is a probability dis-

tribution or a probability measure if it satisfies the following three axioms:

1. Axiom 1: P (A) ≥ 0 for every event A

2. Axiom 2: P (Ω) = 1, where Ω is the complete sample space

8

3. Axiom 3: If A1, A2, . . . are disjoint then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai)

• Two events A and B are independent if

P (AB) = P (A)P (B)

• A set of events {Ai : i ∈ I} are independent if

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai)

for every finite subset J of I.

• If P (B) > 0 then the conditional probability of A given B is

P (A|B) =
P (AB)

P (B)

• (Bayes’ Theorem) Let A1, . . . , Ak be partitions of of the sample space Ω such that

P (Ai) > 0 for each i. If P (B) > 0, then for each i = 1, . . . , k,

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

.

2.2.2 Statistics

• A random variable is a mapping X : Ω→ R that assigns a real number X(ω) to each

outcome ω and satisfies the condition: (X ≤ x) = {ω : X(ω) < x} is an event for

every x ∈ R.

9

• Given a random variable the cumulative distribution function, or CDF, is the

function FX : R→ [0, 1] defined by

FX(x) = P (X ≤ x)

• When X is discrete, a probability function or probability mass function for X

is defined by fX(x) = P (X = x).

• A random variable X has a probability density function (PDF) if there exists a function

fX such that fX(x) ≥ 0 for all x,
∫∞
−∞ fX(x)dx = 1 and for every a ≤ b,

P (a < X < b) =

∫ b

a

fX(x)dx .

• If probability distribution function fX exists, then

FX(x) =

∫ x

−∞
fX(t)dt

and fX(x) = F
′
X(x) at almost all points x.

• The expected value, or mean, or first moment, of X is defined to be

E(X) =

∑

x xfX(x) if X is discrete∫
xfX(x)dx if X is continuous and fX exists

assuming the integral (or sum) is well defined. We use the following notation to denote

the expected value of X

E(X) = µ .

10

CHAPTER THREE: KOLMOGOROV’S THEOREM

3.1 Kolmogorov’s Theorem

Kolmogorov’s Theorem states that a function of several variables may be represented as

a superposition and composition of one dimensional functions. Here we present a version of

the proof for Kolmogorov’s theorem under the guidance of the proof by G. G. Lorentz [16].

3.1.1 Theorem Statement

Theorem 1 Kolmogorov’s Theorem (1957) Let I = [0, 1] and let S be the two dimen-

sional square, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. There exists constants λi, i = 1, 2, and five functions

ϕq(x) for q = 0, . . . , 4 defined on I with values in I,which have the following properties: The

ϕq’s are strictly increasing and belong to a class Lip α, α > 0. For any continuous function

f of two variables x, and y, on S, there exists a function g defined over the interval [0, 2]

such that

f(x, y) =
4∑
q=0

g (λ1ϕq(x) + λ2ϕq(y)) (3.1)

A detailed proof will be presented here which is developed very closely to that of Lorentz.

3.1.2 Details required for Proof

There are several tasks which must be completed in order to develop the functions de-

scribed in the statement of the theorem. They are as follows:

11

1. Determine values of λi such that they are rationally linearly independent

(i.e.,
∑

i aiλi = 0, ai ∈ Q when and only when all ai = 0)

2. Construct the ϕq (q = 0, . . . , 4) functions used to map a point in two dimensional space

S to a point on the real interval [0, 2] via λ1ϕq(x) + λ2ϕq(y).

3. Construct the g function used to represent the function f .

In the 2-D case, and similarly for higher dimensions, the first observation is that each

point (x, y) can be mapped to disjoint intervals on the real line through the mapping uq =

λ1ϕq(x) + λ2ϕq(y). (Over these intervals we shall define the function values for g.) This

mapping is continuous and is also one-to-one. The one-to-one property is essential since

otherwise there would be two different points (x1, y1) and (x2, y2) which would map to the

same point on the real line. As a result, a problem would occur in the reconstruction given by

the right side of equation (3.1). For example, if we define over the points (x1, y1) and (x2, y2)

different values f(x1, y1) , f(x2, y2), respectively, we would have the same approximate value

from the reconstruction for both points. This is what we do not want.

Let us start the proof. Choose the λi constants such that for rational numbers ai the

following holds true:

∑
aiλi 6= 0 if not all ai = 0 (3.2)

For the two dimensional case we can let λ1 = 1 and λ2 = λ where we choose λ to be an

irrational number. In this case it is certain that 1 and λ are linearly independent over the

rational numbers.

12

Next comes the construction of the ϕ-functions. We begin the process with some obser-

vations. There are four properties that we wish the five ϕq functions to possess. These will

insure that the intervals created by the points (x, y) will be disjoint under the transformation

uq = ϕq(x) + λϕq(y) on S into the interval [0,2]. The four criteria are:

1. The function ϕq(x) will be strictly increasing.

2. The ϕq(x) will first be defined over a set of points where the values of the ϕq function

will be rational and distinct (and all the ϕq will be extended by continuity).

3. The slope of the line between any two segments connecting the points (αi, ϕq(αi)),(βi, ϕq(βi))

is less than 5k, where k is called the rank. This will be explained more clearly later.

4. The intervals [ϕq(αi) + λϕq(αj), ϕq(βi) + λϕq(βj)] will be disjoint for different q =

0, . . . , 4.

In order to accomplish this we define the ϕq as piecewise linear functions over disjoint

intervals of I = [0, 1]. Those intervals are defined by

Iki = [i · 10−k+1 + 10−k, i · 10−k+1 + 9 · 10−k] (3.3)

i = 0, 1, 2, . . . , 10k−1; k = 1, 2, 3, . . .

The integer k, as stated earlier, is called the rank of the this interval. All Iki are contained

in I = [0, 1], except when i = 10k−1. Figure 3.1 shows intervals for up to k = 2.

The functions ϕq are associated with intervals Ikqi, which are shifts of the intervals Iki .

The relation is as follows:

Ikqi = Iki − 2q · 10−k (3.4)

13

(a) q = 0 (b) q = 3 (c) q = 4

Figure 3.1: Example of intervals i, k up to k = 2

i = 0, 1, 2, . . . , 10k−1; k = 1, 2, 3, . . .

For intervals not contained entirely in I, we replace them by I ∩ Ikqi. Figure 3.2 demonstrates

this property.

Figure 3.2: Intervals I1
3i not contained completely in I = (0, 1)

Here we specify the exact definition of the α, β points. Defining αkqi = i · 10−k+1 + 10−k−

2q · 10−k and βkqi = i · 10−k+1 + 9 · 10−k − 2q · 10−k, equation (3.4) becomes,

Ikqi = Iki − 2q · 10−k = [αkqi, β
k
qi] (3.5)

14

for q = 0, 1, . . . , 4; i = 0, 1, 2, . . . , 10k−1; k = 1, 2, 3, . . .

If the rank k is fixed, the intervals in (3.5) form five families, corresponding to q =

0, · · · , 4. No one of the families covers I. However, each point xεI is covered by at least

four of the five families, q = 0, · · · , 4. The functions ϕq will be strictly increasing, which is

sufficient for a one-to-one mapping. The most important property is that the image of each

interval Ikqi of each given rank under the ϕq will be disjoint, not only for a fixed q, but for

all q and i (and a fixed rank k). Actually, more properties will need to be clarified.

The exact formulation of the required properties is given by Lemma 1 .

Lemma 1 There exist five strictly increasing functions, ϕq, q = 0, · · · , 4, defined on [0, 1],

with values in [0, 1], and belonging to a class Lip α, α > 0 such that for each fixed rank

k = 1, 2, . . ., the intervals

∆k
qij = [ϕ(αkqi) + λϕ(αkqj), ϕ(βkqi) + λϕ(βkqj)] (3.6)

where q = 0, . . . , 4 and i, j = 0, . . . , 10k−1 are all disjoint.

The proof of Lemma 1 will outline the construction of the ϕq functions. The functions

are constructed by induction on the rank k.

1. k = 0: define α0
q0 = 0, β0

q0 = 1 and define 0 ≤ ϕq(0) < ϕq(1) < 1, q = 0, . . . , 4.

2. Fix q for the steps that follow

(a) There exists two types of Ikqi intervals for rank k > 0

i. Intervals of the first kind: These intervals contain one point from αlqi, or βlqi

from a lower rank l < k.

15

ii. Intervals of the second kind: these intervals do not contain any points αlqi, or

βlqi from a lower rank l < k.

See Figures 3.3 and 3.4 for examples of each. For short, the points αlqi, β
l
qi will be

designated as γ, where γ is either αlqi or βlqi.

(b) For intervals Ikqi, we first assign ϕq at the points αkqi and βkqi the same value:

ϕq(α
k
qi) = ϕ(βkqi) =: ϕkqi, where ϕkqi is determined as follows

i. For intervals of the first kind, it must be determined which point αlqi′ or βlqi′

from a lower rank (l < k) falls into Ikqi. We call this point γkqi. Then we assign

ϕkqi = ϕ(γ).

ii. For intervals of the second kind, each point αkqi, β
k
qi of Ikqi lie in some interval

(γ, γ′), where γ, γ′ are two adjacent points αlqi′ , β
l
qi′ from a lower rank. To

assign values to ϕq(α
k
qi) and ϕ(βkqi), it is sufficient to determine the increase

over the gap between the intervals Ikqi which fall into (γ, γ′). Let two points

in the gap be designated (x,x′). One criteria of Lemma 1 is that the slope of

each polygonal line connecting the points (αlqi′ , ϕq(α
l
qi′)) and (βlqi′ , ϕq(β

l
qi′)),

l ≤ k is strictly smaller than 5k. This requirement, along with the observation

that each gap between the Ikqi is 1
5
(γ, γ′), leads to the following formula for

determining the value for ϕq(x) and ϕq(x
′).

ϕq(x
′)− ϕq(x) = 5

x′ − x
γ′ − γ

[ϕq(γ
′)− ϕq(γ)] (3.7)

3. Now the values of ϕq need to be modified so that ϕq is strictly increasing for all q.

16

(a) Take all the values ϕkqi for rank k and form the values

ϕkqi + λϕkqj, q = 0, · · · , 4; i, j = 0, · · · , 10k−1 (3.8)

and order them on the real number line.

(b) choose an ε > 0 so small that the 2ε neighborhood of the points in (3.8) are

disjoint. We choose values in the ε neighborhood of ϕkqi and define the rational

values of ϕkq(α
k
qi) and ϕkq(β

k
qi) such that

ϕkq(α
k
qi) < ϕkqi < ϕkq(β

k
qi) (3.9)

If there is an endpoint at 0 or 1, we modify the inequality such that, for example

if βkqi = 1, it should read ϕq(α
k
qi) < ϕkqi = ϕq(β

k
qi).

4. Proceed to step (2) with k = k + 1;

Once the preceding steps are completed the four criteria which are necessary for the ϕ

functions stated at the beginning will be satisfied. Just for the purpose of recollection they

are again stated using new notation as follows:

1. The functions ϕq are strictly increasing on the set of all the points αlqi, β
l
qi, 0 ≤ i ≤ 10l−1,

l ≤ k.

2. The slope of each segment of the polygonal line connecting the neighboring points

(x, ϕq(x)), x = αlqi, β
l
qi, l ≤ k, is strictly smaller than 5k.

3. All values of ϕq(α
l
qi), ϕq(β

l
qi), q = 0, · · · , 4, 0 ≤ i ≤ 10k−1, l ≤ k, are rational and

distinct.

17

4. The intervals (3.6) are disjoint.

(a) Intervals of 1st kind (b) close up of intervals in (a)

Figure 3.3: Example of intervals I2
3i of the first kind

The last task is to construct the g-function. This is done through a series approximation

to f . Define, for each function g on [0, 2],

h(x, y) =
4∑
q=0

g(ϕq(x) + λϕq(y)) (3.10)

For a function of two variables f(x, y), the approximating function h(x, y) ≈ f(x, y) is formed

over little squares Skqij, where

Skqij = Ikqi × Ikqj, (3.11)

for q = 0, · · · , 4; i, j = 0, · · · , 10k−1

18

(a) Intervals of the 2nd kind (b) close up of intervals

Figure 3.4: Example of intervals I2
3i of the second kind

The image of squares (3.11) under the map (x, y) −→ ϕq(x) + λϕq(y) are the intervals

∆k
qij of (3.6). This is illustrated in Figure 3.5. For each fixed k, the functions ϕq(x) +λϕq(y)

maps squares (3.11) with corresponding q onto disjoint intervals.

The intervals Ikqi form five families, q = 0, · · · , 4. An interesting property to notice is that

for fixed rank k, each point x in [0,1] can fail to be covered only by one of the five families.

This also applies to y in [0, 1] and the intervals Ikqj. Therefore each point (x, y) of S can fail

to be covered by the squares (3.11) only for at most two values of q. There are at least three

hits at (x, y) out of five tries, q = 0, · · · , 4.

The following result, Lemma 2, provides the means and the criteria by which the values

for g(u) are assigned over the disjoint intervals (3.6).

19

(a) q = 0 (b) q = 1

(c) q = 2 (d) q = 3

(e) q = 4 (f) q = 5

Figure 3.5: Example squares S for k = 1

Lemma 2 . Let 2
3
< θ < 1. Let S = Ikqi × Ikqj. For each f ∈ C[S], there is a function

20

g ∈ C[0, 2] such that

‖f − h‖ ≤ θ‖f‖ and ‖g‖ ≤ 1

3
‖f‖ (3.12)

Proof. Take ε ∈ (0, θ − 2
3
). Choose k large enough so that ω(f, Skqij) < ε‖f‖. Let (x, y) be

an arbitrary point in S. There are at least three values of q, where (x, y) ∈ Skqij, for some

i, j. The corresponding terms of the sum in (3.10) will be assigned the values 1
3
fkqij, each of

which is 1
3
f(x, y), with an error less than 1

3
ε‖f‖. The two remaining terms of (3.10) are each

≤ 1
3
‖f‖ in absolute value. It follows then that

|f(x, y)− h(x, y)| ≤ 3
1

3
ε‖f‖+

2

3
‖f‖ ≤ θ‖f‖. (3.13)

This completes the proof of Lemma 2.

3.1.3 Proof of Theorem

Let f ∈ C[S] be given. We define a sequence of functions gr ∈ C[0, 2] with the corre-

sponding functions

hr(x, y) =
4∑
q=0

gr(ϕq(x) + λϕq(y)) (3.14)

as follows: First let g1, h1 be given by Lemma 2 with

‖f − h1‖ ≤ θ‖f‖, ‖g1‖ ≤
1

3
‖f‖ . (3.15)

Applying Lemma 2 again and obtain functions g2, h2, while using (f − h1) instead of f , for

which

‖(f − h1)− h2‖ ≤ θ‖f − h1‖ ≤ θ2‖f‖, ‖g2‖ ≤
1

3
‖f − h1‖ ≤

1

3
θ‖f‖ . (3.16)

21

In general the functions gr, hr will satisfy

‖f − h1 · · · − hr‖ ≤ θr‖f‖, ‖gr‖ ≤
1

3
θr−1‖f‖, r = 1, 2, · · · (3.17)

Let r →∞ in the relation (3.17). Then, the series
∑∞

1 hr converges uniformly to f . Note

that
∑∞

1 gr is dominated by
∑

1
3
θr−1‖f‖ which is convergent. So by Weierstrass theorem,∑∞

1 gr converges uniformly. Let g be the sum. This gives the desired representation (3.1).

3.2 Properties of f and its g function

Kolmogorov’s theorem defines a mapping of a function f of 2 (or n in general) variables

into a function of a single variable, g. One may ask several questions about the properties

of the function g and the effect of operations of f on the function g. For example, given two

multidimensional functions f1 and f2 and their sum f = f1 + f2, can any useful relation be

obtained between their corresponding g-functions, g1, g2, and gf? What about the relation

between the derivatives of f and its g-function gf? Or what about the relationship between

the integral of f over its domain and the integral of the g-function?

The usefulness of the answers to such questions lies in the ability to analyze multidimen-

sional functions with knowledge of only their one-dimensional g-functions. If these properties

can be formally established then one may be able to perform traditional 2-D or 3-D image

processing tasks by means of the 1-D g-function. The ultimate goal would be to have the

ability to operate on very high dimensional functions by manipulation of the 1-D g-functions.

22

3.2.1 Addition and Multiplication

We start this section with the simple properties of addition and multiplication. Each is

shown in a short proof and then demonstrated through a few examples.

Addition. For two multidimensional functions f1, f2 , let f = f1 + f2, then given their

respective g-functions, g1, g2, gf , we have gf = g1 + g2.

Proof. This is done for the dimension n = 2 case. The higher dimensional cases have

a similar argument. Let uq = ϕq(x) + λϕq(y) be the variable in the domain of g. Let

f = f1 + f2 and let each f, f1, f2 have g-functions , gf , g1, g2, respectively. On each interval

∆k
qij, gf (uq) = 1

3
fkqij, g1(uq) = 1

3
fk1,qij, and g2(uq) = 1

3
fk2,qij. Now on each such interval,

fkqij = fk1,qij + fk2,qij and finally,

gf (uq) =
1

3
fkqij (3.18)

=
1

3

(
fk1,qij + fk2,qij

)
=

1

3
fk1,qij +

1

3
fk2,qij

= g1(uq) + g2(uq) .

In Figure 3.6 , we show two functions and the sum of their g-functions along with the

reconstruction.

Multiplication. For two multi-dimensional functions f1, f2 , let f = f1·f2, then given

their respective g-functions, gf , g1, g2, we have gf = (n+ 1)·g1·g2, where n is the number of

dimensions.

Proof. This is done for the dimension n = 2 case. The higher dimensional cases have a

similar argument. Let uq = ϕq(x) +λϕq(y) be the variable in the domain of g-functions. Let

23

Figure 3.6: Addition

f = f1·f2 and let each f, f1, f2 have g-functions , gf , g1, g2, respectively. On each interval ∆k
qij,

gf (uq) = 1
3
fkqij, g1(uq) = 1

3
fk1,qij, and g2(uq) = 1

3
fk2,qij. Now on each interval, fkqij = fk1,qij ·fk2,qij

24

and finally,

gf (uq) =
1

3
fkqij

=
1

3

(
fk1,qij · fk2,qij

)
= 3·1

3
fk1,qij ·

1

3
fk2,qij

= 3g1(uq)·g2(uq) .

In Figure 3.7 , we show two functions and the product of their g-functions along with

the reconstruction.

3.2.2 Shifting

For a multi-dimensional function f1 with g-function g1, the function f = f1 +C and has

g-function gf which has the relation, gf = g1 + C
n+1

.

In order to shift along a dimension, we first need to define some universal functions dUq.

Definition. There are n universal dU -functions, dUxi
, and constants δxi, i = 1 . . . n,

such that on ∆k
q we define dU(uq) = ϕq(Mi + δxi)− ϕ(Mi) for all uq ∈ ∆k

q . Mi =
αk

qi+β
k
qi

2
is

the midpoint of interval Ikqi. Also, δxi = (2s+ 1)−k+1, where s = 2n+ 1

For the two dimensional case we have, δx = δy = 10−2

x1 = x; dUx(uq) = ϕq(
αk

qi+β
k
qi

2
+ δx)− ϕq(

αk
qi+β

k
qi

2
) for uq ∈ ∆k

qij

x2 = y; dUy(uq) = ϕq(
αk

qj+βk
qj

2
+ δy)− ϕq(

αk
qj+βk

qj

2
) for uq ∈ ∆k

qij

(3.19)

For a function f1 , with g-function g1, which is the shift of another function f , with

g-function gf , along one dimension by an amount δx, the following is their relationship:

g1(uq) = gf (uq + dUxi
(uq)) (3.20)

25

Figure 3.7: Multiplication

In order to shift a function f with g-function, gf , a multiple of δx times along a chosen

dimension, the following compositions are performed. Let g0 = gf , then

gN+1(uq) = gN(uq + dUx(uq)), N = 0, 1, 2, . . . (3.21)

Each composition shifts the graph by δxi along xi- axis. See Figure 3.9.

Proof. Given function f , its shifted version, f1, along a given dimension xi is written

f1(x1, · · · , xi + δxi, · · ·) = f(x1, · · · , xi, · · · , xn). Without loss of generality, let’s look along

26

Figure 3.8: Shifting functions dUx (left) and dUy (right)

dimension x1. We then look at the shift f1(x1 + δx1, · · · , xn) = f(x1, · · · , xn).

For a chosen rank k, let f and f1 have g-functions g1 and gf , respectively. Let the distance

between the center of adjacent squares along dimension x1 be δx1. Let the left square be

the jth square and the square to its right be j + 1. The location of the center of square j is

Mj =
αk

qj+βk
qj

2
for q = 0, 1, . . . , 2n. And the center for square j + 1 is Mj+1 =

αk
qj+1+βk

qj+1

2
. We

assign δx1 = Mj+1 −Mj = (2n+ 1)−k.

This definition of δx1 is then the process of moving the value at the center of square j+1

to the center of square j. Actually this definition moves all the values over points in square

j + 1 to those in square j, but we only focus on the centers.

Now the compositions of the points at the center of squares j and j + 1 are uq,j =∑
l,l 6=i λlϕq(xl) + λ1ϕq(Mj) and uq,j+1 =

∑
l,l 6=i λlϕq(xl) + λiϕq(Mj+1), respectively. Now

27

Figure 3.9: Shifting along x dimension: Top: (left) f(x, y) , (right) gf Middle: (left) f(x +

0.01, y) (right) g1 Bottom:(left) f(x+ 0.1, y) (right) g2

define dU = uq,j+1 − uq,j, for q = 0, 1, . . . , 2n. Note dU = dU(uq,j). Thus

dU = uq,j+1 − uq,j (3.22)

=

[∑
l,l 6=i

λlϕq(xl) + λ1ϕq(Mj+1)

]
−

[∑
l,l 6=i

λlϕq(xl) + λiϕq(Mj)

]
= λiϕq(Mj+1)− λiϕq(Mj)

= λi [ϕq(Mj+1)− ϕq(Mj)]

28

Now, we want to assign the value at locationMj+1 to locationMj. Thus, f1(Mj, · · · , xn) =

f(Mj+1, · · · , xn). For their respective g-functions the relation is

g1(uq,j) = gf (uq,j+1) (3.23)

for q = 0, 1, . . . , 2n. From equation 3.22, we have uq,j+1 = uq,j + dU . Substitution into

equation 3.23, gives

g1(uq,j) = gf (uq,j + dU) (3.24)

dropping j from the subscripts gives equation 3.20. We do this for each dimension giving n

dU functions total.

3.2.3 Scaling

For two multidimensional functions f, f1, we have for f1 = C·f , g1 = C·gf for C > 0. If

C > 1, then the function is stretched. If 0 < C < 1, the function is shrunk.

For scaling a function along a dimension xi, we need to define another set of universal

functions dVq and dWq.

There are n universal dV -functions, dVxi
, n universal dW -functions dWxi

, i = 1 . . . n,

such that for a variable uq ∈ ∆k
q we define dV (uq) = ϕq(

1
2
Mi) − ϕq(Mi) and dW (uq) =

ϕq(2Mi) − ϕ(Mi). Mi =
αk

qi+β
k
qi

2
is the midpoint of interval Ikqi. dV is a stretching function

and dW is a shrinking function.

29

For the two dimensional case we have,

x1 = x dVx(uq) = ϕq(
1
2

αk
qi+β

k
qi

2
)− ϕq(

αk
qi+β

k
qi

2
)

x2 = y dVy(uq) = ϕq(
1
2

αk
qj+βk

qj

2
)− ϕq(

αk
qj+βk

qj

2
) , for uq ∈ ∆k

qij

x1 = x dWx(uq) = ϕq(2
αk

qi+β
k
qi

2
)− ϕq(

αk
qi+β

k
qi

2
)

x2 = y dWy(uq) = ϕq(2
αk

qj+βk
qj

2
)− ϕq(

αk
qj+βk

qj

2
)

(3.25)

Figure 3.10: Scaling functions dWx (left) and dWy (right)

For a function f1, f2 , with g-functions g1 and g2 respectively, which are the scaled version

of another function f , with g-function gf , along one dimension by the amounts 2 and 1
2
, the

following are their relationships respectively:

g1(uq) = gf (uq + dWxi
(uq)) (3.26)

g2(uq) = gf (uq + dVxi
(uq)) (3.27)

In order to scale a function f with g-function, gf , a power of 2 along a chosen dimension,

30

f(x, y)

f(2x, y)

f(4x, y)

Figure 3.11: Scaling along x dimension

the following compositions are performed. Let g0 = gf , and let

gN+1(uq) = gN(uq + dWx(uq)), N = 0, 1, 2, . . . (3.28)

Each composition scales the graph by 2 along xi-axis. For scaling the graph by powers

of 1
2

replace dW with dV . Scaling of a function is shown in Figure 3.11.

Proof. Given function f , its scaled version, f1, along a given dimension xi is written

f1(x1, · · · , xi + δxi, · · ·) = f(x1, · · · , A·xi, · · · , xn), where A = 2 or A = 1
2
. Without loss

31

of generality, let’s look along dimension x1. We then look at the scaling f1(x1, · · · , xn) =

f(A·x1, · · · , xn).

For a chosen rank k, let f and f1 have g-functions g1 and gf , respectively. Let the

distance between the center of two squares along dimension x1 be δx1. Let the left square

be the jth square and the square to its right be Aj. The location of the center of square j is

Mj =
αk

qj+βk
qj

2
for q = 0, 1, . . . , 2n. And the center for square Aj is MAj = A·α

k
qj+1+βk

qj+1

2
. We

assign δx1 = MAj −Mj = (A− 1)·Mj.

Now the compositions of the points at the center of squares j and Aj are uq,j =∑
l,l 6=1 λlϕq(xl) + λ1ϕq(Mj) and uq,Aj =

∑
l,l 6=1 λlϕq(xl) + λ1ϕq(MAj), respectively. Now

define dU = uq,Aj − uq,j, for q = 0, 1, . . . , 2n. Note dU = dU(uq,j). Thus

dU = uq,Aj − uq,j (3.29)

=

[∑
l,l 6=1

λlϕq(xl) + λ1ϕq(MAj)

]
−

[∑
l,l 6=1

λlϕq(xl) + λ1ϕq(Mj)

]
= λ1ϕq(MAj)− λ1ϕq(Mj)

= λ1 [ϕq(MAj)− ϕq(Mj)]

Now, we want to assign the value at location MAj to location Mj. Thus, f1(Mj, · · · , xn) =

f(MAj, · · · , xn). For their respective g-functions the relation is

g1(uq,j) = gf (uq,Aj) (3.30)

for q = 0, 1, . . . , 2n. From equation 3.29, we have uq,Aj = uq,j + dU . Substitution into

equation 3.30, gives

g1(uq,j) = gf (uq,j + dU) (3.31)

32

dropping j from the subscripts, letting dU = dV for A = 1/2, and dU = dW for A = 2

gives equation 3.26. We do this for each dimension giving n sets of dV , dW functions total.

3.2.4 Partial Differentiation

An approximation of the partial derivative of a multidimensional function in one variable,

say xi, is given as follows

∂f

∂xi
≈ f(x1, . . . , xi + δxi, . . . , xn)− f(x1, . . . , xi, . . . , xn)

δxi
(3.32)

Using the definitions of the shifting function explained in the previous section, we can

define the one dimensional equivalent derivative. For a multidimensional function f , with

g-function, gf , the partial derivative is defined as follows:

g1(uq) =
1

δxi
[gf (uq + dUxi

(uq))− gf (uq)] (3.33)

For the two dimensional case,

x1 = x; g1(uq) = 1
δx

[gf (uq + dUx(uq))− gf (uq)]

x2 = y; g1(uq) = 1
δy

[gf (uq + dUy(uq))− gf (uq)]
(3.34)

Figure 3.12 shows the derivatives of f with respect to x and y.

We comment that the g-functions are in general of a very oscillating nature. They are

not differentiable at all. Based on our numerical computations, divided differences of the

g-functions are highly noised.

33

Figure 3.12: Partial Derivatives with respect to x y

In order to perform successive derivative approximations in one variable, the following

compositions are carried out: Let g0 = gf , then

gN+1(uq) =
1

δx
[gN(uq + dUx(uq))− gN(uq)] , N = 0, 1, 2, . . . (3.35)

Extremum. For a multidimensional function f , the absolute maximum is given by

(n+ 1)·max(gf). For the absolute minimum, the value is given by (n+ 1)·min(gf).

34

Proof. The n-dimensional cube S is a closed and bounded set, thus a function f defined

on S attains a maximum (and minimum)value at some point in S. Let the maximum value

be fmax at (x1, · · · , xn) and the minimum fmin at (y1, · · · , yn). The value 1
n+1

fmax will be

assigned to intervals containing uq =
∑

i λiϕq(xi) and the value 1
n+1

fmin will be assigned to

intervals containing uq =
∑

i λiϕq(yi). Now these values can be directly read from the range

of g giving the maximum and minimum of f .

35

CHAPTER FOUR: KOLMOGOROV’S THEOREM FOR n
DIMENSIONS (n ≥ 2)

In order to deal with with functions of more than two variables, the proof by Lorentz [16]

must be extended. In this chapter, some preliminary work and observations are provided

which should lead to a useful implementation of Kolgomorov’s Theorem in problems of high

dimension. As indicated by Lorentz, the high dimensional case can be handled as in the 2-D

case. Here we try to accomplish two objectives: 1. present a complete proof by working out

all the needed modifications for the high dimensional case so that this chapter can be read

independently. 2. Second, it allows us to write out all of the details in the proof that will

be useful for our high dimensional problem’s implementation.

4.1 Kolmogorov’s Theorem for High Dimensions

For dimension n ≥ 2, let s = 2n + 1. The statement of Kolmogorov’s theorem is as

follows:

Theorem 2 [16] Let I = [0, 1] and let S be the n-dimensional cube, 0 ≤ xp ≤ 1, p =

1, · · · , n. There exists n constants 0 < λp ≤ 1, p = 1, · · · , n, and 2n+ 1 functions ϕq(x), q =

0, · · · , 2n, defined on I and with values in I, which have the following properties: The ϕq are

strictly increasing and belong to a class Lip α, α > 0. For each continuous function f on S,

one can find a continuous function g(u), 0 ≤ u ≤ n such that

f(x1, · · · , xn) =
2n∑
q=0

g(λ1ϕq(x1) + · · ·+ λnϕq(xn)) (4.1)

36

Let us first figure out the required modifications for the proof. Using the examples from

the 2-D and 3-D cases, we see the following

• 2-D case:

Ikqi = Iki − 2q · 10−k = [αkqi, β
k
qi] (4.2)

Skqij = Ikqi × Ikqj,

q = 0, . . . , 4; i = 0, 1, . . . , 10k−1; k = 1, 2, 3, . . .

• 3-D case:

Ikqi = Iki − 2q · 14−k = [αkqi, β
k
qi] (4.3)

Skqijl = Ikqi × Ikqj × Ikql,

q = 0, . . . , 6 i, j = 0, 1, . . . , 14k−1; k = 1, 2, 3, . . .

The number intervals are related to the number of ϕq functions of which there are s =

2n+ 1. There is also a pattern concerning the shifting property of the intervals. In the 2-D

case the intervals are designed in such a way that when one shifts to say q = 5, these would

be exactly the same intervals for q = 0. The same happens for the 3-D case. When one

shifts the intervals for a function ϕq where q = 7, these would be exactly the same intervals

as q = 0. Thus the following generalization for higher dimensional cases is proposed:

Iki =
[
i · (2s)−k+1 + (2s)−k; i · (2s)−k+1 + (2s− 1) · (2s)−k

]
(4.4)

for k = 1, 2, . . . ;

and i = 0, . . . , (2s)k−1;

37

In order to maintain this cyclic behavior of shifting the intervals, one must also shift the

intervals in such a way that the (2n+1)th ϕq function is the same as the ϕ0. For the different

q, the modification of intervals becomes:

Ikqi = Iki − (s)−1q(2s)−k+1 = Iki − 2q(2s)−k

The intervals are shifted by : 2q(2s)−k

This formulation is consistent with the cases for n = 2 and n = 3. We also need to take

note of the gap length. This is crucial in the construction of intervals of the second kind. In

the 2-D case, the gap length between intervals is of length 2 · 10−k. In the 3-D case the gap

is of length 2 · 14−k. So the gap is of length proportional to s−k. The generalization of the

gap is of length 2 · s−k

4.1.1 Set up for the Proof

With the observations above and some to be presented in this section, we begin by

defining the closed intervals

Iki =
[
i · (2s)−k+1 + (2s)−k; i · (2s)−k+1 + (2s− 1) · (2s)−k

]
(4.5)

for k = 1, 2, . . . ;

and i = 0, . . . , (2s)k−1;

The variable k will be called the rank of these intervals. All intervals Iki are contained in

I = [0, 1], except when i = (2s)k−1. The functions ϕq are associated with the intervals

Ikqi = [αkqi, β
k
qi] = Iki − 2q · (2s)−k with s = 2n+ 1 (4.6)

38

for k = 1, 2, . . . ;

and i = 0, . . . , (2s)k−1;

which are obtained from the Iki by translation to the left by the distance 2q(2s)−k. (This

distance depends on the rank k). For the intervals not entirely contained in I = [0, 1], we

replace them with I
⋂
Iki .

The intervals of rank k are of length (2s)−k(2s − 2), and the gaps between them are

2(2s)−k. If we fix k, the intervals (4.6) form (2n+1) families, corresponding to q = 0, . . . , 2n.

No one of these families covers I. However, each point x ∈ I is covered by at least 2n of the

2n+ 1 families, q = 0, . . . , 2n.

Another useful remark is that the endpoints αlqi, β
l
qi of ranks l < k are among the points

of the form m · 2s−k+1; and that no end points of rank k (except 0, 1) are of this form.

Therefore, none of the αkqi, β
k
qi different from 0, 1 coincides with an endpoint of lower rank.

The ϕq will be strictly increasing. The most important property will be that of mapping

the intervals Ikqi of each given rank into small sets. It is not the smallness of measure that is

important, but rather the fact that the images of the Ikqi under the ϕq will be disjoint, not

only for a fixed q, but for all q and all i (and a fixed rank k).

The exact formulation of the required property is given in the following lemma. Let

0 < λi < 1 be linearly independent irrational numbers (over the rational field).

Lemma 3 There exists 2s + 1 strictly increasing functions ϕq, q = 0, · · · , 2n, defined on

[0, 1] and belonging to a class Lip α, α > 0 such that for each fixed rank k = 1, 2, · · · , the

39

intervals

∆k
q = [

n∑
i=1

λiϕq(α
k
qji

),
n∑
i=1

λiϕq(β
k
qji

)] for q = 0, · · · , 2n; (4.7)

and ji ∈ {0, · · · , (2s)k−1}; for i = 1, 2, · · · , n

all are disjoint.

Proof. The functions ϕq will be constructed iteratively. We put α0
q0 = 0, β0

q0 = 1, and

define 0 ≤ ϕq(0) < ϕq(1) < 1, q = 0, · · · , 2n in such a way that all these values are rational

and distinct. We continue this construction by induction on k. At the kth step, we shall

define each ϕq, q = 0, · · · , 2n, at the end points αkqi, β
k
qi of all intervals (4.6) with the same

q. For each k = 1, 2, · · · we shall take care to satisfy the following conditions:

i The function ϕq, q = 0, · · · , 2n, is strictly increasing on the set of all points αlqi, β
l
qi,

0 ≤ i ≤ (2s)l−1, l ≤ k.

ii The slope of each segment of the polygonal line connecting the points (x, ϕq(x)), x = αlqi, β
l
qi,

l ≤ k, is strictly smaller than sk.

The proceeding properties involve each single function ϕq; the following properties

involve all 2n+ 1 functions.

iii All values ϕq(α
l
qi), ϕq(β

l
qi), q = 0, · · · , 2n, 0 ≤ i ≤ (2s)k−1, l ≤ k, are rational and

distinct.

iv The intervals (4.7) are disjoint.

40

Assume that the ϕq are defined at all endpoints αlqi, β
l
qi of ranks l < k in such a way that

conditions (i) to (iv) are satisfied. We shall explain how this definition can be extended to

all points αkqi, β
k
qi in (0, 1) of rank k. First we construct a (not strictly) increasing extension

of ϕq that satisfies (ii). Later we shall change this extension slightly so as to satisfy all the

requirements (i) to (iv). The first part of the construction can be carried out independently

for each q.

Let q be fixed. We denote by γ = γq the points αlqi, β
l
qi, l < k, where the function ϕq is

already known. We have observed that each “new” point αkqi, β
k
qi in (0, 1) is different from

each of the old points γ. The intervals Ikqi cover s−1
s

of the total length of each interval

(m(2s)−k+1, (m+ 1)(2s)−k+1), and the gaps between the intervals Ikqi cover the remaining 1
s

of this length. The same applies to each interval (γ, γ′). The intervals Ikqi are of two kinds.

The intervals of the first kind contain one point γ; we call it γkqi, the interval of the second

kind contains no points γ.

For each interval Ikqi, we shall take ϕq(α
k
qi) = ϕq(β

k
qi) = ϕkqi. For the intervals of the first

kind, we select ϕkqi equal to ϕq(γ
k
qi). To define ϕkqi for the intervals Ikqi of the second kind, we

select the values of ϕq at the endpoints αkqi, β
k
qi. Let γ, γ′ (i.e. α, α′ or β, β′) be two adjacent

points γq. We define ϕq at the end points of the intervals Ikqi of the second kind contained in

(γ, γ′). It is sufficient to determine the increase of ϕq on each gap (or part of a gap)(x, x′)

we assign an increase of ϕq, proportional to the length of (x, x′). Since the total length of

gaps is 1
s
(γ′, γ), we must take

ϕq(x
′)− ϕq(x) = s

x′ − x
γ′ − γ

[ϕq(γ
′)− ϕq(γ)] (4.8)

41

Thus ϕq(x
′)− ϕq(x) < sk(x′ − x), and ϕq satisfies (ii).

From now on the construction involves all values of q. Small changes of the value of

the ϕkqi will not disturb the condition (ii), or the monotonicity of ϕq. We change slightly

the ϕkqi for the intervals of the second kind in such a way that al values ϕkqi, q = 0, · · · , 2n,

i = 0, · · · , (2s)k−1, become rational and distinct. This is possible because, in view of (iii),

the values ϕkqi = ϕq(γ
k
qi) for the intervals of the first kind already have these properties.

The last part of the kth step is an amendment of ϕq at the end points αkqi, β
k
qi of rank k,

which lie in (0, 1). Since λi are irrational numbers and linearly independent over the rational

field, the values

n∑
i=1

λiϕ
k
qji
, q = 0, · · · , 2n, ji ∈ {0, 1, · · · , (2s)k−1} (4.9)

are distinct. Let ε > 0 be so small that the 2ε-neighborhoods of the points (4.9) are disjoint.

This allows us to define the remaining values of the ϕq. For each interval Ikqi, we select

ϕq(α
k
qi), ϕq(β

k
qi) in the ε-neighborhood of ϕkqi in such a way that ϕq(α

k
qi) < ϕkqi < ϕq(β

k
qi). (If

one of the endpoints is 0 or 1, this inequality has to be changed correspondingly; for example,

if βkqi = 1, it should read ϕq(α
k
qi) < ϕkqi = ϕq(β

k
qi). It is clear that these selections can be

made so that (i), (ii), and (iii) will be satisfied; (iv) will also hold because each interval (4.7)

is contained in the 2ε-neighborhood of the corresponding point (4.9). This completes the

kth step.

By induction, each function ϕq, is defined on the set Aq of the points αkqi, β
k
qi, 0 ≤ i ≤

(2s)k−1, k = 1, 2, · · · . Moreover, on Aq,

ϕq ∈ Lip α, α = log2s 2 (4.10)

42

Indeed, let x, x + h, h > 0 be two points of Aq. We may assume h < 1
s
. Let k be the

integer that satisfies 2 ·2s−k−1 ≤ h < 2 ·2s−k. The interval (x, x+h) can contain at most one

of the points αkqi, β
k
qi. Hence, it is contained in an interval of length (2s)−k+1 between some

two such points. therefore by (i) and (ii), ϕq(x + h) − ϕq(x) < sk · (2s)−k+1 = (2s) · 2−k =

(2s) · (2s)−αk ≤ (2s)(sh)α = (2s) · sαhα if α is defined by 2 = (2s)α. This proves (4.10).

4.1.2 Further Details required for the Proof

Let Ikqi be the intervals (4.7); let S be hypercube 0 ≤ x1, x2, · · · , xn ≤ 1; and let Skqj1j2···jn

be little hypercubes:

Skqj1j2···jn =
n∏
i=1

Ikqji (4.11)

q = 0, · · · , 2n; ji ∈ {0, · · · , (2s)k−1}

The image of (4.11) under the map (x1, · · · , xn) −→
∑n

i λiϕq(xi) is the interval ∆k
q of

4.7. Lemma 3 means, therefore, that for each fixed k, the functions
∑n

i=1 λiϕq(xi) map

hypercubes (4.11) with corresponding q onto disjoint intervals.

For each fixed k, the intervals Ikqi form (2n+1) families, q = 0, · · · , 2n. We know that each

point x in [0, 1] can fail to be covered only by one of the (2n+ 1) families. The same applies

to all intervals Ikqji . Therefore each point (x1, x2, · · · , xn) of S can fail to be covered by the

cubes (4.11) only for at most n values of q. We have “at least (n+ 1) hits at (x1, x2, · · · , xn)

out of 2n+ 1 tries, q = 0, · · · , 2n.”

43

For each continuous function g(u), defined for 0,≤ u ≤ n, we put

h(x1, x2, . . . , xn) =
2n∑
q=0

g

(
n∑
i=1

λiϕq(xi)

)
(4.12)

Lemma 4 Let n
n+1

< θ < 1. For each f ∈ C[S] there is a function g ∈ C[0, s] such that

‖f − h‖ ≤ θ‖f‖ and ‖g‖ ≤ 1

n+ 1
‖f‖ (4.13)

First, take rank k so large that the oscillation of f on the cubes (4.11) does not exceed

ε‖f‖ for some ε > 0. Choose ε so small that n
n+1

+ ε ≤ θ. Let fkqj1j2···jn represent the value

of f(x1, · · · , xn) in the center of the cube Skqj1j2···jn . On each interval ∆k
q take g(u) constant

and equal to 1
n+1

fkqj1j2···jn . Next, g(u) can be extended linearly in the gaps between the ∆k
q .

This produces a continuous function on [0, n] that satisfies the second relation in (4.13).

Letting (x1, · · · , xn) be an arbitrary point in S, there are at least (n + 1) values of q,

where (x1, · · · , xn) ∈ Skqj1j2···jn , for some j1, j2, · · · , jn. The corresponding terms of the sum in

(4.12) have the values 1
n+1

fkqj1j2···jn , each of which is in the neighborhood of 1
n+1

f(x1, · · · , xn),

with an error less than 1
n+1

ε‖f‖. The two remaining terms of (4.12) are each ≤ 1
n+1
‖f‖ in

absolute value. It follows then that

|f(h, y)− h(x, y)| ≤ (n+ 1)
1

n+ 1
ε‖f‖+

n

n+ 1
‖f‖ ≤ θ‖f‖ (4.14)

44

4.1.3 Proof of Theorem

This proof is for the case of dimension n. Let f ∈ C[S] be given. We define a sequence

of functions gr ∈ C[0, n] with the corresponding functions

hr(x, y) =
2n∑
q=0

gr

(
n∑
i=0

λiϕq(xi)

)
(4.15)

as follows: First let g1, h1 be given by Lemma 4 with

‖f − h1‖ ≤ θ‖f‖, ‖g1‖ ≤
1

n+ 1
‖f‖ (4.16)

Applying Lemma 4 again and obtain functions g2, h2, while using (f − h1) instead of f , for

which

‖(f − h1)− h2‖ ≤ θ‖f − h1‖ ≤ θ2‖f‖, ‖g2‖ ≤
1

n+ 1
‖f − h1‖ ≤

1

n+ 1
θ‖f‖ (4.17)

In general the functions gr, hr will satisfy

‖f − h1 · · · − hr‖ ≤ θr‖f‖, ‖gr‖ ≤
1

n+ 1
θr−1‖f‖, r = 1, 2, · · · (4.18)

The series
∑∞

1 gr is dominated by a convergent geometric series. So by Weierstrass M-test,

it converges uniformly. Let g be the limit. Take the summation on both sides of (4.15) with

respect to r from 1 to N :

N∑
r=1

hr(x, y) =
N∑
r=1

2n∑
q=0

gr

(
n∑
i=0

λiϕq(xi)

)
(4.19)

=
2n∑
q=0

N∑
r=1

gr

(
n∑
i=0

λiϕq(xi)

)
(4.20)

Letting N →∞ gives us,

∞∑
r=1

hr(x, y) =
2n∑
q=0

∞∑
r=1

gr

(
n∑
i=0

λiϕq(xi)

)
. (4.21)

Also, note that, the first inequality implies
∑∞

r=1 hr = f uniformly.

45

CHAPTER FIVE: NUMERICAL IMPLEMENTATION
DISCUSSION

5.1 Algorithmic Outline of Kolmogorov’s Theorem

We now discuss more details on the implementation of Kolmogorov’s Theorem. Our

main ideas come from Lorentz’s proof of the Kolmogorov’s theorem in [16, Chapter 12]. For

simplicity, we discuss the case n = 2 and for functions defined in the unit square [0, 1]× [0, 1],

i.e. functions f(x, y) for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

5.1.1 Computation of ϕ’s in two dimensional case

It is unlikely that the ϕ functions in (3.1) are available in explicit formulas. In order to

use them, we have to develop some efficient algorithms to compute their numerical values.

When n = 2, there are five strictly increasing functions ϕq, q = 0, 1, . . . , 4, according to

Kolmogorov’s theorem. These functions are computed iteratively as follows.

Procedure for constructing ϕ0, . . . , ϕ4

Initialization

• For k = 1, 2, . . . and i = 0, 1, . . . , 10k−1, define

– αkqi = i · 10−k+1 + 10−k − 2q10−k

– βkqi = i · 10−k+1 + 9 · 10−k − 2q10−k

• Let αq0 = 0 and β0
q0 = 1

46

• Choose different values for ϕq(0) and ϕq(1) such that 0 < ϕq(α
0
q0) < ϕq(β

0
q0) < 1

For k = 1, 2, . . . do the following

• ϕq’s are defined on Γ = {αlqi, βlqi} for all l < k. These are the “old points”.

• Need to define ϕq at “new points”: αkqi, β
k
qi

• Let γ denote an arbitrary point from Γ.

• For i = 0, 1, . . . , 10k−1, consider two cases.

if αkqi < γ < βkqi for some γ ∈ Γ then

– ϕq(α
k
qi) = ϕq(γ)

– ϕq(β
k
qi) = ϕq(γ)

else

(there is no γ such that αkqi < γ < βkqi)

– find the smallest γ′ such that βkqi < γ′

– find the largest γ such that αkqi > γ

– collect all new points α and β contained in the interval [γ, γ′]

– if [γ, γ′] is a gap between two neighboring [α, β] intervals in [γ, γ′], define

ϕq(x
′) according to

ϕq(x)− ϕq(x′) = 5
x′ − x
γ′ − γ

[ϕq(γ
′)− ϕq(γ)]

end if

47

• Final step (making the ϕ’s strictly increasing). Pick a value for λ (irrational in theory)

– List ϕkqi + λϕkqj for all q, i, j (where ϕkqi = ϕq(α
k
qi) = ϕq(β

k
qi))

– Let d =minimum distance between these points. Let ε = d/4

– In (ϕkqi − ε, ϕkqi + ε) choose the values for ϕq(α
k
qi) < ϕkqi < ϕq(β

k
qi).

According to Chapter 3 (and Chapter 4 for higher dimensional cases), after k iterations,

these ϕ functions will satisfy the following conditions:

1. The function ϕq is strictly increasing on the set of all points αlqi, β
l
qi, 0 ≤ i ≤ 10l−1,

l ≤ k.

2. The slope of each line segment connecting the points (αlqi, ϕq(α
l
qi)) and (βlqi, ϕq(β

l
qi)) is

strictly smaller than 5k.

3. All values ϕq(α
l
qi) and ϕq(β

l
qi) are distinct.

4. The intervals

∆k
qi =

[
ϕq(α

k
qi) + λϕq(α

k
qj), ϕq(β

k
qi) + λϕq(β

k
qj)
]

(5.1)

are disjoint.

The key roles played by the ϕ-functions in the representation given by Kolmogorov’s

theorem is that the mappings u = ϕq(x) +λϕq(y) (q = 0, 1, . . . , 4) transform the unit square

to the interval (5.1) in a highly nonlinear way.

48

5.1.2 Training the g-function

Given a function f of n variables, one can train the g function in the following way.

• Fix a value of k (which will depend on the dimension space and machine precision)

• For i, j = 0, 1, . . . , 10k−1, define αqij = (αkqi + αkqj)/2, βqij = (βkqi + βkqj)/2, and fqij =

f(αqij, βqij).

– Assign g values: g(ϕq(α
k
qi) +λϕq(α

k
qi)) = 1

3
fqij, g(ϕq(β

k
qi) +λϕq(β

k
qi)) = 1

3
fqij, and

let hg(x, y) =
∑4

q=0 g(ϕq(x) + λϕq(y))

– Stop if ‖f−hg‖ is small enough, otherwise, repeat steps with f = f−hg to obtain

a new g-function.

• Output the sum of all g-functions.

The advantage here is that a single variable function is being trained as opposed to a

multivariate function. The main cost of computation is in the construction of the ϕ-functions.

Fortunately, they can be done off-line and once they are constructed, they can be used in all

representations as long as the data spaces have the same dimension.

Although the algorithm above trains the g-function by piecewise linear interpolation,

there are many other possible function forms: polynomials, splines, rational functions,

trigonometric (Fourier) series, wavelets, etc.

49

5.2 Issues related to implementation

5.2.1 Assigning ϕq values for k > 0

One of the main difficulties in assigning values to ϕq occurs in determining the smallest

2ε neighborhood around each point
∑

i λiϕq(xi), so that they are distinct. In our implemen-

tation, the values from
∑

i λiϕ
k
qi are ordered on a number line. Next the smallest distance

between each point is calculated. Once this value ε is determined, the final value used to

make ϕq(α) distinct from ϕq(β) will be ε
4
.

When the number of data points uq grows large, a considerable amount of time is required

to sort them. The main sorting algorithm used was quick sort. This is fine for dimension

s = 2 and rank k up to 3. But for dimension s > 3, this poses serious time issues. For even

this size we are sorting a list of about 50 million values.

We investigated a way to overcome this difficulty. This is presented in the statement that

follows:

Let P k
2 > P k

1 > 0 where P k
m =

∑n
j=1 λjϕ

k
qjij

be two points for rank k > 1. Let dk =

|P k
2 − P k

1 |. Then a useful smallest distance between any two points is given by d∗k.

d∗k = λ∗nϕ∗
(

1−
√
α1

α1

)
(5.2)

Proof. Let P k
2 = αkP

k
1 ; αk > 1 Now let d∗k = the distance between points P k∗

2 , P k∗
1 the

two closest points on rank k. In this way dk ≥ d∗k for all dk.

Note P k∗
2 = α∗kP

k∗
1 , α∗k > 1

So we have,

50

d∗k = |P k∗
2 − P k∗

1 | (5.3)

=

(
1− 1

α∗k

)
|P k∗

2 |

≥
(

1− 1

ξk

)
|P k∗

2 |

=

(
1− 1

ξk

)
|

n∑
j=1

λjϕ
k
qjij
|

≥
(

1− 1

ξk

)
λ∗|

n∑
j=1

ϕ∗|

=

(
1− 1

ξk

)
λ∗|nϕ∗|

(5.4)

where

λ∗ = min{λj}

ϕ∗ = min{ϕkqjij}

Now choose

εk =
nλ∗ϕ∗

4

(
1− 1

ξk

)

Note: For w(αk) =
(

1− 1
αk

)
, there exists a ξε[0, α∗k] such that w′(ξ) (α∗k − 1) = w(α∗k)−w(1).

So, ξ =
√
α∗k. Now choose ξk where ξ =

√
α∗k ≥

√
1
α∗k

>
√

1
α∗k−1

= ξk. ξk depends on the

previous rank. So starting with α∗1 from rank k = 1, one can find a minimum distance for

higher ranks and with the above choice of εk one can accomplish the task of making the uq

intervals disjoint without the necessity of sorting for each rank k.

51

5.2.2 Storing data points

Memory and storage requirements have also proven to be a hinderance to an efficient

implementation of the algorithm. At one phase during experimentation, all data points were

stored in type double format. This requires, depending on the machine, between 32 and 64

bits per data point. Our implementation utilized the 64 bit double type. The reason for

doing so is that precision plays an important role in development of the g one dimensional

function.

As per the theorem, one can easily calculate storage requirements for retaining the g

function. Depending on dimension s and rank k the number of data points to store g goes

as (4s + 2)3(k−1) × (2s + 1). There are 2s + 1 q-functions and (4s + 2)3(k−1) intervals. For

dimension 3 and rank 3 one can already see that 146×7 = 52706752 data points are needed.

With the double data type, this requires approximately 50 MB of storage. Essentially, the

goal is to develop g functions over higher rank and higher dimension. In order to accomplish

this a scheme must be developed such that all the data points for g will not be required.

We then turned to wavelet representation. Representation of the function as a wavelet

allowed us to apply thresholds. With the thresholds we could reduce the number of coeffi-

cients required to represent the g-function but maintain a representation that is very similar

to the original. This helped reduce the amount of data needed to store the function. As can

be seen in figure 5.2, the reconstructed signal from the compressed wavelet is very similar to

the original signal. Figure 5.1 shows the wavelet g-function decomposition and the wavelet

signal compression interface screen.

52

(a) g-function decomposition (b) threshold applied to g(u) function

Figure 5.1: tiger image

(a)superimposed g-function and its reconstruction from wavelet threshold function

Figure 5.2: tiger image

5.2.3 Computation times

There was little to be done with decreasing the required time for computation. This

is the most significant issue to be addressed if there is to be the possibility of using this

53

algorithm in a realtime application. There are some authors [[1]] who proposed computing

in a parallel computation environment as a solution. We have not been able to investigate

this option extensively.

5.2.4 g-function representation

The format for storing the values are in Table (5.1). For the values listed in the following

table, the parameter λ is equal to 1√
2
.

However, eventually we must deal with the truncation of the irrational values. This

issue arises when using the values of φq and uq in an application. Values are converted to a

numerical data type such as double, which requires 64 bits. In this scenario, the values for

φq and uq are truncated. With the double data type, we can represent negative values from

−1.79769e+308 to −2.22507e−308 and positive values from 2.22507e−308 to 1.79769e+308.

This is tolerable since most of the data will not require this level of precision.

For example, in image analysis, we take the intensity of the image at pixel location

(x, y) to be the value of f(x, y). Also f(x, y) would be considered piecewise linear between

pixel locations. In images the pixel locations are integer pairs (x, y). All (x, y) pairs are

re-normalized so that we are dealing with values of x and y where 0 ≤ x, y ≤ 1. The

composition φq(x) + 1√
2
φq(y) will fall between two of the values uq in the complete version of

Table(5.2). During training of the g function, we focus only on the points (x, y) that fall into

one of the Skqij cubes, then the g function value over that interval will be assigned the correct

approximate (due to truncation) value, 1
3
f(x, y). Since all values of g are constant over the

interval uq the table for the function g would be as in Table(5.3). This table will be used

54

γ φq(γ)

0 0

1/100 28302692683477/123629556035400

9/100 28303092025807/123629556035400

1/10 13249661/28937850

11/100 28319280710747/61814778017700

31/100 9461744492499/20604926005900

39/100 4730905524777/10302463002950

41/100 7104552465218/15453694504425

49/100 28418409532037/61814778017700

51/100 28451186244247/61814778017700

59/100 7112846478853/15453694504425

81/100 7137528848593/15453694504425

89/100 28550315065537/61814778017700

9/10 13373161/28937850

91/100 85436099526761/123629556035400

99/100 85436498869091/123629556035400

1 23/25

Table 5.1: Values for φ0(x) function define over [0, 1]

55

u0ij

3864965751659/494518224141600 ∗ 21/2 + 3864965751659/247259112070800

3865764436319/494518224141600 ∗ 21/2 + 3865764436319/247259112070800

3996871285159/494518224141600 ∗ 21/2 + 3864965751659/247259112070800

3997669969819/494518224141600 ∗ 21/2 + 3865764436319/247259112070800

3864965751659/494518224141600 ∗ 21/2 + 3996871285159/247259112070800

3865764436319/494518224141600 ∗ 21/2 + 3997669969819/247259112070800

1376258939553/164839408047200 ∗ 21/2 + 3864965751659/247259112070800

1376525167773/164839408047200 ∗ 21/2 + 3865764436319/247259112070800

3996871285159/494518224141600 ∗ 21/2 + 3996871285159/247259112070800

3997669969819/494518224141600 ∗ 21/2 + 3997669969819/247259112070800

Table 5.2: Sample points uqij for q = 0 and k = 2 λ1 = 1, λ2 = 1√
2

56

u0ij g(u0ij)

3864965751659/494518224141600 ∗ 21/2 + 3864965751659/247259112070800 1
3
fkij

3865764436319/494518224141600 ∗ 21/2 + 3865764436319/247259112070800 1
3
fkqij

3996871285159/494518224141600 ∗ 21/2 + 3864965751659/247259112070800 1
3
fkqij

3997669969819/494518224141600 ∗ 21/2 + 3865764436319/247259112070800 1
3
fkqij

3864965751659/494518224141600 ∗ 21/2 + 3996871285159/247259112070800 1
3
fkqij

3865764436319/494518224141600 ∗ 21/2 + 3997669969819/247259112070800 1
3
fkqij

1376258939553/164839408047200 ∗ 21/2 + 3864965751659/247259112070800 1
3
fkqij

1376525167773/164839408047200 ∗ 21/2 + 3865764436319/247259112070800 1
3
fkqij

3996871285159/494518224141600 ∗ 21/2 + 3996871285159/247259112070800 1
3
fkqij

3997669969819/494518224141600 ∗ 21/2 + 3997669969819/247259112070800 1
3
fkqij

Table 5.3: Interpolation table for (uqij, g(uqij)), here the fkqij’s are the values at the centers

of the squares Skqij associated with ukqij

as an interpolation table when values from the g function are required for reconstruction or

manipulation of the function h(x, y) ≈ f(x, y).

Table (5.3) was eventually converted into only double values. Possibly when using the

table to interpolate (uq, g(uq)) some numerical approximation errors may be introduced. A

more thorough investigation into the influence of changing from the exact value to double

precision must be done.

57

CHAPTER SIX: APPLICATIONS

6.1 Image, Video, and MRI representation and reconstruction

Some simple experiments related to representation and compression are presented in this

section. We use the basic formulation of Kolmogorov’s theorem to represent images and

video as one dimensional g- functions.

2-D Experiments. In this section, the application of Kolmogorov’s theorem will be

demonstrated. In Figures 6.1 to 6.3, there are three f(x, y) functions presented, along with

the associated g(u) function, as well as the reconstructed approximation h(x, y).

(a) original function (b) reconstruction (c) associated g(u) function

Figure 6.1: f(x, y) = 1

In another experiment, images are treated as functions of two variables. An image is a

grid of N ×M pixels grouped together. Each pixel contains some value which indicates the

intensity (color) or some other property of the image. In this sense, images can be seen as

a grid of (x, y) locations were the value at pixel (x, y) is its intensity, designated f(x, y).

58

(a) original function (b) reconstruction (c) associated g(u) function

Figure 6.2: f(x, y) = cos
[

2
π
(x− y)

]

(a) original function (b) reconstruction (c) associated g(u) function

Figure 6.3: f(x, y) = sin(2πx) sin(2πy)

We can apply the Kolmogorov approximation to reconstruct an image from the trained g

function. Using our computed ϕ functions, for each image f , we can construct its g–function.

The ϕ for rank k = 3 are universal – once constructed they can be used over and over for

any two dimensional functions. Our training of g–functions is very fast – each image takes

seconds to train and even less time to be reconstructed. Figures 6.4 and 6.5 demonstrate an

image on a x, y grid, along with the reconstruction using rank k = 3 and the associated g

function .

59

(a) original image (b) reconstruction (c) associated g(u) function

Figure 6.4: Image, g-function, reconstruction

(a) original image (b) reconstruction (c) associated g(u) function

Figure 6.5: Image, g function, reconstruction

3-D Experiments Unlike in 2-D, verification by graphing functions is not straight for-

ward in the 3-D case. However one may obtain some verification by using this method in

applications involving three dimensional data. Two applications come to light when thinking

about functions of three variables: MRI and video.

60

An MRI (or magnetic resonance imaging) scan is a radiology technique that uses mag-

netism, radio waves, and a computer to produce images of body structures. The MRI scanner

is a tube surrounded by a giant circular magnet. The patient is placed on a moveable bed

that is inserted into the magnet. The magnet creates a strong magnetic field that aligns the

protons of hydrogen atoms, which are then exposed to a beam of radio waves. This spins the

various protons of the body, and they produce a faint signal that is detected by the receiver

portion of the MRI scanner. The receiver information is processed by a computer, and an

image is produced.

In order to selectively image different voxels (volume picture elements) of the subject,

orthogonal magnetic gradients are applied. Although it is relatively common to apply gra-

dients in the principal axes of a patient (so that the patient is imaged in x, y, and z from

head to toe), MRI allows completely flexible orientations for images. All spatial encoding

is obtained by applying magnetic field gradients which encode position within the phase of

the signal. In three dimensions (3D), a plane can be defined by ”slice selection”, in which

an RF pulse of defined bandwidth is applied in the presence of a magnetic field gradient.

Figure 6.6shows shows some perspective views of MRI images and the reconstruction of those

perspective views. Figure 6.7 shows a portion of the associated g function.

One can think of video as a sequence of images. So the dimensions of the image gives

two coordinates (x, y) while the third is given by time (t), incremented in units of 1. In this

case, the value at a particular (x, y, t) coordinate represents intensity or color value at time

t. The video is assumed to be a piecewise linear function, for simplicity. Figure 6.8 shows

61

Figure 6.6: MRI image slices (top) and their reconstructions (bottom)

62

Figure 6.7: Portion of associated g function

the frames of an image sequence of a water drop falling and the reconstruction of the original

water drop frames.

These experiments give preliminary verification of Kolmogorov’s potential uses. Here we

used a rank k = 4. Along with the properties of g-functions developed in an earlier chapter,

one can potentially do high level analysis of multi-dimensional data via the one dimensional

g-function.

6.2 Content Based Image Retrieval Application

Efficient ways for image and video retrieval has become a necessity for everyone who

is dealing with the increasing quantities of digital media. Content-based image retrieval

(CBIR), a technique for retrieving images from a database on the basis of automatically-

derived features such as color, texture and shape, is becoming increasingly important in

63

Figure 6.8: Frames in a video of water drop into a bucket and the reconstruction

visual information management systems [23]. Content-based image retrieval systems have

traditionally used color and texture analysis. These analysis have not always achieved ad-

equate level of performance and user satisfaction, particularly for the retrieval of images

containing manmade objects. The growing need for robust image retrieval systems has led

to a need for additional retrieval methodologies.

Subsets of this technique are collectively referred to as view-based approaches which tend

to exploit the color, intensity or luminance information in an image. The basic idea is to use

color or intensity information, which does not depend on the geometric shape of the objects.

Most of the current view-based retrieval techniques analyze image data at a lower level on

a strictly quantitative basis for color and texture features [18]. These techniques are geared

towards retrieval on overall image similarity, especially for images containing natural objects

64

such as trees, vegetation, water, and sky.

An important issue in content-based image retrieval is effective indexing and fast search-

ing of images based on visual features. Because the feature vectors of images tend to have

high dimensionality and therefore are not well suited to traditional indexing structures, di-

mension reduction is usually used before setting up an efficient indexing scheme. One of the

techniques commonly used for dimension reduction is principal component analysis (PCA).

It is an optimal technique that linearly maps input data to a coordinate space such that

the axes are aligned to reflect the maximum variations in the data. The QBIC system, one

of the first content-based retrieval systems[6], uses PCA to reduce a 20-dimensional shape

feature vector to two or three dimensions [20, 6]. In addition to PCA, many researchers

have used Karhunen-Loeve (KL) transform to reduce the dimensions of the feature space.

Although the KL transform has some useful properties such as the ability to locate the most

important sub-space, the feature properties that are important for identifying the pattern

similarity may be destroyed during blind dimensionality reduction [15]. Apart from PCA

and KL transformation, neural network has also been demonstrated to be a useful tool for

dimension reduction of features[5]. After dimension reduction, the multi-dimensional data

are indexed. Most of these multi-dimensional indexing methods have reasonable performance

for a small number of dimensions (up to 20), but explode exponentially with the increasing

of the dimensionality and eventually reduce to sequential searching.

We also point out that content-based image retrieval methods themselves are a form of

dimension reduction technique. Instead of directly dealing with the complete set of pixel

65

values in an image, content-based methods choose to concentrate on a smaller set of features.

Our main idea is to first use the representation as guaranteed by the Kolmogorov Theorem

to reduce the high dimensional objects into a function of a single variable and then apply

the efficient 1-D methods on the 1-D representation. For example, the techniques used in

the digital signal (or time series) of speech [19] can be applied to the image identification

and retrieval problems once we transform the images into their 1-D representations using

the Kolmogorov Theorem. Similarly, video sequences (3-D objects) can be transformed into

their 1-D representation so that the techniques for 1-D sequences can be used.

To demonstrate our main ideas of using 1-D techniques to solve high dimensional prob-

lems, we apply the Kolmogorov theorem in constructing a simple image retrieval system. We

want to show that our 1-D method as applied to the g-functions can yield comparable results

as obtained using 2-D methods. We will not pay special attention in using more efficient

search and matching techniques in our system for the moment.

The database retrieval system is implemented as follows.

Indexing and Storage

1. 2-D images are transformed to their 1-D representations

2. the 1-D representation is transformed by a 1-D wavelet transformation

3. the 1-D wavelet representation is compressed by threshholding.

4. the coefficients are stored in a vector as the image’s index key

Retrieval

66

V

⇓
61.6 53.6 52.5 · · ·

−0.9 −4.0 10.7 · · ·

−0.1 −0.5 0.9 · · ·

0 0 0 · · ·

 W

Figure 6.9: Indexing: All entries in the database will go through this step; a query image

will go through the same step.

1. A test image is input as the key for the query

2. This 2-D image is converted to it’s 1-D Kolmogorov representation

3. The 1-D representation is represented as a wavelet transformation

4. The wavelet coefficients are thresholded with the default threshhold value

5. Through a linear search, the coefficients are compared to entries in the database by a

nearest neighbor match.

67

6. The nearest neighbors are returned as possible matches.

Again, our purpose is to show that 1-D methods can be directly used (to the Kolmogorov

representation g function of the image in this case) to obtain comparable results. This opens

the door for the applications of many well established techniques in 1-D domain in higher

dimensional problems.

6.2.1 Results

We have performed some experiments using the above proposed simple scheme for image

retrieval using the image database WANG ([2])that is created at the Pennsylvania State

University. It contains about 1000 color images from the Corel database. The 1000 images are

subdivided into 10 distinct classes: Africa, Beach, Horses, Dinosaurs, Flowers, Monuments,

Food, Buildings, Buses, and Elephants. See Figure 6.10 for some samples of the various

images from this database. For our experiments, we converted the images into black and

Figure 6.10: Various Images in WANG Database

68

white images for simplicity.

Figure 6.11: Top Image: Query Image. Six lower images are the best returned matches from

the dataset.

Figure 6.12: Top Image: Query Image. Six lower images are the best returned matches from

the dataset.

69

In Figure 6.11, our testing image is “horses”. The returned images show the top six

matches with one mismatch (a flower in the fifth match). In Figure 6.12, we copied the

results from [12] that used the same query image for comparison (and there is a mismatch

in the third returned image). We feel the results are comparable. Next, we show the results

for other query images: one for “dinosaurs” (see Figure 6.13) and one for “flowers” (see

Figure 6.14). Both return very good matches.

Figure 6.13: Top Image: Query Image (dinosaurs). Six lower images are the best returned

matches from the dataset.

6.2.2 Video Retrievals

As one can see from the Kolmogorov theorem, if we transform each video sequence into

its corresponding g function, we can then apply the same procedure to the g function as

we did in the image retrieval. Our experiments for video retrieval is done on a subset of

TRECVID database ([22]).

70

Figure 6.14: Top Image: Query Image (flowers). Six lower images are the best returned

matches from the dataset.

6.2.3 Conclusion

Many image and video processing problems have been solved by developing certain ex-

tensions of the well established methods in the 1-D case. While in solving 1-D problems,

we have powerful methods of time series analysis and digital signal processing. One chal-

lenging problem in dealing with images and videos is the high dimensionality. In the image

and video retrieval problems, to avoid the high dimensionality, content-based methods are

developed so that images are represented by a collection of their features that are enough

to distinguish among themselves. But which features are important and must be included is

still an open problem. In this application, we want to initiate the use of the Kolmogorov’s

theorem to solve high dimensional problems using 1-D method. We gave numerical imple-

mentation of the Kolmogorov’s theorem that allowed us to represent any functions of higher

71

dimension by functions of one variable. We believe that the Kolmogorov’s theorem can cor-

rectly “encode” and “automatically extract” the high dimensional information (features) in

the “g functions”. In other words, we are promoting the use of g functions as the features

of images or videos. We used image and video retrieval as an example to show that 1-D

methods can be used in dealing with 2-D and 3-D problems. Through a simple retrieval

scheme, we demonstrated that our “1-D method” can produce comparable (if not better)

results as the existing 2-D method. This proof-of-concept experiment may open the door for

more advanced applications of the 1-D methods in solving higher dimensional problems in

the future.

An immediate improvement we are working on is to add color in our treatment of the

problems. We also need to find good examples of video sequences for our experiments.

6.3 Bayesian Prior Image Applications

Due to the uncertainty, many machine vision problems are solved based on some form

of prior knowledge. In dealing with stereo, inpainting (i.e. filling in the missing image

regions), denoising, and optical flow problems, for example, modeling image priors becomes

necessary. This is challenging mainly due to the nature of high dimensionality of the data.

One useful idea is to combine a large number of relatively simple probabilistic models in low

dimensional subset of the data to obtain a global model. The simplest way of combining the

simple models is by using summation.

This is exactly done in the approach of mixture of Gaussians in which a weighted sum of

72

individual Gaussians is employed. This is popular due to the fact that, in practice, it is easy

to compute the sum by using the EM algorithm, and in theory, it can be proved that any

distribution can be approximated as closely as possible by the sum of a sufficient number

of Gaussians. But, in order to get a good fit, the number of Gaussians used in the mixture

must be known and it is also well-known that the mixture of Gaussians method becomes

very inefficient as the dimension of the data space gets larger. Another disadvantage of the

mixture of Gaussians lies in the averaging and smoothing tendency of a weighted sum – the

mixture cannot be sharper than any individual models [24].

An alternative way for combining individual models is by multiplication and renormal-

ization. For example, high-dimensional distributions are approximated by the product of

low-dimensional distributions. If the low-dimensional distributions are all Gaussians, then

their product will be also a Gaussian. So, products of Gaussians cannot be used to ap-

proximate arbitrary non-Gaussian distributions, as noted by Hinton [10]. However, Hinton

also found that by replacing the Gaussians by the so-called experts that are just a little bit

more complicated with one or more additional hidden variables, multiplying the individual

distributions together can still be a very powerful approach. This technique is called the

Product of Experts (PoE).

One of the advantages of PoE is that it can produce much sharper distributions than the

individual models in the product. Another feature of PoE is that the experts are obtained

through training instead of being prescribed as in [7]. In order to deal with larger sized

images, Roth and Black [4] applied the PoE technique in a framework of generic Markov

73

random field and developed a parametric representation that used data to train experts for

local patches of images. The resulting approach is called the Field of Experts. Based on

their FoE model, Roth and Black presented experimental results in image denoising and

inpainting at the level of the current state-of-art.

However, both PoE and FoE methods face the difficulty of the computation of the parti-

tion function that is used for the renormalization of the product. It turns out that in solving

the nonlinear problems where the gradient descent and quasi-Newton’s methods are used,

we need only to compute the average of the gradient with respect to the model distribu-

tion. Although the exact average of the gradient is hard to find, Hinton [11] shows that

an approximate gradient of the contrastive divergence (CD) can be used as a safe substi-

tute. Computer simulations show that this algorithm tends to converge, and to converge

rapidly, although not always to the correct solution [26]. Yuille [25] related CD method to

stochastic approximation and specified conditions under which the algorithm is guaranteed

to converge.Futher reference on prior models can be found in [9][14][27].

In spite of the recent success in applications of PoE and FoE [21][13], so far, there is

little theory to guide the construction and selection of the parametric representation of the

experts. Why PoE and FoE work as seen in practice has not been theoretically justified.

Without knowing the theoretical foundation of the methods, it is hard to come up with

improvement. In this work, we want to provide a theoretical foundation for PoE and FoE

and related mixture models methods using the function representation of Kolmogorov. Based

on this observation, we want to propose a new method for estimation of the image prior.

74

Our proposed approach relies on the efficient numerical implementation.

6.3.1 Product of Experts

PoE uses a product to combine individual expert models as follows:

p(d|θ1 · · · θn) =

∏
m pm(d|θm)∑

c

∏
m pm(c|θm)

(6.1)

where d is a data vector, θm is the vector containing all parameters corresponding to the

individual model m, pm(d|θm) is the probability of d under model m, and the summation in

the denominator runs c through all data vectors in the space. In order to fit a PoE model to

a data set using an iterative method, one must compute the log likelihood of the observed

vector d, under the PoE. This is given by :

∂ log p(d|θ1 · · · θn)

∂θm
=
∂ log pm(d|θm)

∂θm
−
∑
c

p(c|θ1 · · · θn)
∂ log pm(c|θm)

∂θm
. (6.2)

Unfortunately, even for small images d, the summation in (6.2) in this process is difficult

to compute since it involves the unknown distribution p. To avoid this difficulty, Hinton [9]

introduced a method of learning by minimizing contrastive divergence (the CD method).

But the process still remains computationally expensive.

In image related learning, a choice of experts can be the combination of Student-t distri-

bution and the linear filters that results in the Product of Student-t (PoT) of the form [17]

p(x) =
1

Z(Θ)

N∏
i=1

Φi(J
T
i x;αi),Θ = {θ1, θ2, · · · , θn} (6.3)

75

where θi = {Ji, αi} and the experts have the form

Φi(t, αi) = (1 +
1

2
t2)−αi , (6.4)

where x represents the image, and Ji are the learned filters.

6.3.2 Field of Experts

Direct application of PoE to model image priors has the limitation on the image (or

image patches) size. Black and Roth [4]-[21] overcame the problem by proposing the Field

of Experts (FoE) method through combining ideas from sparse coding with Markov random

field (MRF) models. The FoE frameworks breaks the image into overlapping cliques which

has some probabilistic correlation then apply PoE to model the potentials of the MRF of

image patches. The resulting formulation is as follows.

p(x) =
1

Z(Θ)

∏
k

N∏
i=1

Φi(J
T
i xk;αi), (6.5)

where the parameters θi and the experts Φi are defined as before and xk’s represent the

cliques in the image.

6.3.3 PoE and FoE revisted

We will place mixture and product models under the umbrella of Kolmogorov’s theorem.

If one considers f(x1, x2, ..., xn) as the prior probability distribution (or its logarithm) of

interest, then the mixture and product models among others can be considered as very

specific prior distribution (or simply function) approximations. There is a weaker version of

Kolmogorov’s theorem which is more suitable for explaining PoE and FoE models. Instead of

76

claiming the universality of the ϕ functions and constants λ’s in (4.1), Kolmogorov’s theorem

implies the following: For every function f of n variables, there are functions g0, g1, ..., gN ,

and functions ψ0, ψ1, ...ψN , all of single variable, for some N ≤ 2n+ 1, such that

f(x) =
N∑
q=0

gq

(
n∑
i=1

ψq(xi)

)
. (6.6)

This point of view is particularly useful if we only care about representing a special subset

of functions (such as the PDF’s in the cases of PoE and FoE) instead of the whole class of

continuous functions.

Let us show how to cast PoE in the framework as given by the Kolmogorov’s theorem.

If p denotes the probability as given in (6.3) and (6.4), then define

f(x) := log p(x) =
N∑
i=1

log Φi(J
T
i x;αi)− logZ(Θ). (6.7)

So, (using index q to match the notation in (6.3))

f(x) =
N∑
q=1

αq log(1 +
1

2
(JTq x;αi)

2)− logZ(Θ). (6.8)

Comparing the right hand side with the representation in (6.6), we see that what the PoE

tries to find is a special representation using linear ψq functions with ψiq(x) = Jiqx and

gq(u) = αq log(1 + 1
2
u2) for q = 1, 2, . . . , N and g0(u) = − logZ(Θ).

Similarly, taking the logarithm in (6.5), FoE model can be casted as a function represen-

tation model using linear functions for the ϕ functions in the representation (3.1) given in

Kolmogorov’s theorem:

log p(x) = −
∑
k

N∑
i=1

αi log(1 +
1

2
(JTi xk;αi)

2)− logZ(Θ). (6.9)

77

Finally, the mixture of Gaussians model is exactly when ϕ’s are quadratic functions and

g is a constant times a Gaussian of a single variable.

6.3.4 A new approach

Even though the above re-casting of PoE and FoE in the framework of Kolmogorov’s

theorem does not explain why the methods work, it does shed light on how to find alterna-

tive approaches. Let us start with the representation using the universal ϕ functions and

constants λ’s.

Let n be the dimension of the image size.

Step 1 Define n constants λi that are independent over the rational field Q.

Step 2 Compute the 2n+ 1 ϕ-functions.

Step 3 For every given image f , compute the g-function.

Step 1 can be accomplished easily in theory but in practice, due to the machine precision

limitation, one can use carefully chosen rational numbers λi such that the relation

a1λ1 + a2λ2 + · · · anλn = 0, (6.10)

does not hold for any machine number unless all ai’s are equal to 0. Step 2 is most time

consuming step and Step 3 is about evaluations of f which can be carried out in parallel if

needed.

78

APPENDIX A: OVERVIEW OF FUNCTIONS

79

A.1 Function Overview

The following functions and the core functions for implementing and applying Kol-

mogorov’s Theorem.

• function build phis hp - this function develops the ϕq functions needed to build the

disjoint intervals on the real line. It calls the function find first.

Its inputs are:

– kmax - the maximum rank for constructing the ϕq functions

– ndimension - the dimensions space we are constructing the ϕq functions.

– deltain - the user can set the spacing between ϕq(0) and ϕq(1) points

– dprecin - allows the user to specify the number of decimals places to retain in

calculations.

– endpoints01 - the user can indicate the values at ϕq(0) and ϕq(1). This will

override the values of deltain

The outputs are:

– phiq - contains all the 2n+ 1 ϕq functions as an array of two column tables with

columns γ and ϕq(γ)

– u - contains the values for intervals which indicate the domain of g

80

• function find first - this function determines which intervals are of the first or second

kind. Refer to Lemma 1 in chapter 3, for a description of intervals of the first and second

kind.

• function train gt - this function builds the g- function and stores it as an interpolating

table with columns uq, g(uq).

• function recon ft - this function is used to reconstruct the n-dimensional representa-

tion of function f according to the theorem. Its inputs are Its inputs are u and g and

a vector representing the number of sample points for each dimensional direction. The

output is a multidimensional array representing the reconstruction of the function f .

• function eval gt - this function is used to determine f at one point from the g-

function without having to reconstruct the entire f function first. Its inputs are u and

g and vector x = (x1, . . . , xn). Its output is the value f(x1, . . . , xn).

81

APPENDIX B: FUNCTION CODE PRINTOUT

82

B.1 Code for building ϕq functions

B.1.1 build phis hp

0001 function [phiq, u] = build phis hp2(kmax,ndimension,deltain,dprecin,endpoints01)

0002

0003 % hp stands for high precision .. using Symbolic toolbox to produce higher

0004 % k ranks

0005 %

0006 % input:

0007 % required: kmax (scalar) = maximum rank to build functions

0008 % optional: ndimension (scalar) = number of dimension variables

0009 % ex n=2 f(x,y) // n = 3 f(x,y,z)

0010 % delta (scalar) = difference between phi q endpoint

0011 % values

0012 % dprec (scalar) = indicates how many decimal places

0013 % to keep in

0014 % calculations

0015 % endpoints (matrix [2*ndimensions 2]) = predefined

0016 % values for

0017 % endpoints 0 & 1 . matrix must be

0018 % given dimensions

0019 %

83

0020 % output:

0021 % phi ([m,n,q] matrix array) = table of values used

0022 % to interpolate values for phi(x)

0023 % required to calculate g(phi(x)+lamba* phi(y))

0024 % u ([p,1] column vector)= table of values for which g will

0025 % be defined. u specifies the domain of g

0026 % This function builds the phi q functions and stores them in table phi

0027 % each phi will have the form

0028 % [point value interval left value]

0029 % [0.1 7/32]

0030 % [0.9 9/32]

0031 % .

0032 % .

0033 % .

0034 % [etc]

0035 %

0036 % values will be in order sorted according to point value;

0037 %

0038 % each u table will have the form

0039 % [point value q i j]

0040 % [phi(alpha qik) + lamba* phi(alpha qjk)]

84

0041 % [phi(beta qik) + lamba* phi(beta qjk)]

0042 % .

0043 % .

0044 % .

0045 % [etc]

0046 %

0047 % values will be in order sorted according to point value;

0048

0049 %Initializations

0050 % construct non decreasing functions phi q

0051 % define constants used in program

0052 %set the number of spacial dimensions to default 2-D f(x,y)

0053 if (nargin < 2)

0054 spacial dimensions = 2; % number of dimensions for domain of function

0055 else

0056 spacial dimensions = ndimension;

0057 end;

0058 qmax = 2*spacial dimensions;

0059 % set value for delta

0060 if (nargin <3)

0061 delta = sym(1/64); % 32768); % define small

85

0062 else

0063 delta = sym(deltain);

0064 end;

0065 % set maple precision to desired number of digits

0066 if (nargin < 4)

0067 dprec = 100;

0068 maple([’Digits :=’,char(sym(dprec))]);

0069 else

0070 dprec = dprecin;

0071 maple([’Digits :=’,char(sym(dprec))]);

0072 end;

0073 %define phi q for k =0

0074 if (nargin < 5)

0075 phi = sym([0 92/100]); % this is phi 0

0076 for q=1:qmax % remember in this language indices start at 1

0077 phi(:,:,q+1) = phi(:,:,1) + (q)*delta;

0078 end;

0079 else

0080 % dimension should be [2*ndimensions 2]; give error otherwise

0081 phi = sym(endpoints01);

0082 end;

86

0083

0084 final value = sym(1);

0085

0086 lambda = sym([1 1/sqrt(2)]);

0087

0088 % now build phi q for all k according to theorem , one q at a time

0089 for k =1:kmax

0090 for q=0:qmax

0091 tble = findfirst hp(spacial dimensions,q,-k);

0092 tble=sortrowshp(tble,2);

0093 SIZETBLE= size(tble);

0094 temp = sym(zeros(1,2*(10^(k-1)+1))); %make the correct number

0095 %of endpoints

0096 % we need to assign values to intervals of the first kind

0097 if (SIZETBLE(1) > 0)

0098 for m=1:SIZETBLE(1)

0099 if (tble(m,8) == 1) % this is an alpha endpoint

0100 %contained in I^k i

0101 pnt k =double(2*(tble(m,2))); %this is done to handle

0102 %k=0 gamma

0103 pnt l = double(2*(tble(m,6)));%points

87

0104 l= double(tble(m,7));

0105 temp(1, pnt k+1) =phi(l+1,pnt l+1,q+1);

0106 temp(1, pnt k+2) =phi(l+1,pnt l+1,q+1);

0107 elseif (tble(m,8) == 9) %this is an beta endpoint

0108 % contained in I^k i

0109 pnt k = double(2*(tble(m,2)));

0110 pnt l = double(2*(tble(m,6)));

0111 l= double(tble(m,7));

0112 temp(1, pnt k+1) =phi(l+1,pnt l+2,q+1);

0113 temp(1, pnt k+2) =phi(l+1,pnt l+2,q+1);

0114 end;

0115 end;

0116 end;

0117 %now all intervals of the first kind have been assigned values

0118 % assign values to intervals of the second kind here

0119

0120 % create gammatable

0121 temp2 = sym([]);

0122 for lp=0:(k-1)

0123 for ip=0:(floor(10^(lp-1)))

0124 if (lp > 0)

88

0125 alphaq = sym((10^(-lp))*(10*ip+1-2*q));

0126 else

0127 alphaq = sym(0);

0128 end;

0129 temp2 = [temp2; alphaq ip lp 1 phi(lp+1,2*ip+1,q+1)];

0130 if (lp > 0)

0131 betaq = sym((10^(-lp))*(10*ip+9-2*q));

0132 else

0133 betaq = sym(1);

0134 end;

0135 temp2 = [temp2; betaq ip lp 9 phi(lp+1,2*ip+2,q+1)];

0136 end;

0137 end;

0138 gammatble= sortrowshp(temp2,1);

0139 SIZEGTBLE= size(gammatble);

0140

0141 %now assign values to interval i=0

0142 i=0;

0143 % check to see if interval is of the first kind

0144 found = false;

0145 if (SIZETBLE(1) > 0)

89

0146 w =1;

0147 while ((w <= SIZETBLE(1)) && (~found))

0148 if (tble(w,1) == q) && (tble(w,2) ==i) && (tble(w,3)==k)

0149 found = true;

0150 end;

0151 w = w+1;

0152 end;

0153 end;

0154 if (~found) % it’s not first kind, so assign value to i=0 interval

0155 %according to theorem.

0156 j=1; % it’s second kind

0157 foundg = false;

0158 while ((j< SIZEGTBLE(1)) && (~foundg)) %look for gamma

0159 %gamm prime that

0160 gammaqil = gammatble(j,1); %contains Iq0k

0161 gammapqil = gammatble(j+1,1);

0162 alphaqik = sym((10^(-k))*(10*i+1-2*q));

0163 betaqik = sym((10^(-k))*(10*i+9-2*q));

0164 expr1 = strcmpi(maple(’evalb’,[char(gammaqil), ’ < ’, ...

0165 char(alphaqik)]), ’true’);

0166 expr2 = strcmpi(maple(’evalb’,[char(alphaqik), ’ < ’, ...

90

0167 char(gammapqil)]), ’true’);

0168 expr3 = strcmpi(maple(’evalb’,[char(gammaqil), ’ < ’ , ...

0169 char(betaqik)]), ’true’);

0170 expr4 = strcmpi(maple(’evalb’,[char(betaqik), ’ < ’, ...

0171 char(gammapqil)]), ’true’);

0172 if ((expr1 && expr2) && (expr3 && expr4))

0173 % if (((gammaqil < alphaqik) && (alphaqik < gammapqil)) &&

0174 % ((gammaqil < betaqik) && (betaqik < gammapqil)))

0175 if (gammatble(j,4) ==1)

0176 phi gamma =phi(double(gammatble(j,3))+1,2*...

0177 double(gammatble(j,2))+1,q+1);

0178 else

0179 phi gamma =phi(double(gammatble(j,3))+1,2*...

0180 double(gammatble(j,2))+2,q+1);

0181 end;

0182 if (gammatble(j+1,4) ==1)

0183 phi gammap = phi(double(gammatble(j+1,3))+...

0184 1,2*double(gammatble(j+1,2))+1,q+1);

0185 else

0186 phi gammap = phi(double(gammatble(j+1,3))+...

0187 1,2*double(gammatble(j+1,2))+2,q+1);

91

0188 end;

0189 x = gammatble(j,1);

0190 xp = alphaqik;

0191 phi x = phi(double(gammatble(j,3))+...

0192 1,2*double(gammatble(j,2))+1,q+1);

0193 temp(1,2*i+1)= phi x +5 *...

0194 ((xp-x)/(gammapqil -gammaqil))*...

0195 (phi gammap -phi gamma);

0196 temp(1,2*i+2) = temp(1,2*i+1);

0197 foundg = true;

0198 end;

0199 if (~foundg)

0200 j=j+1;

0201 end;

0202 end;

0203 if (~foundg) % if no interval was found then something is

0204 %wrong

0205 disp(’Interval gammas was not found’);

0206 end;

0207 end;

0208 % assign values for remaining intervals i>0 according to theorem

92

0209 i =i+1; % go to the next interval i, which is i =1

0210 move on = false; % indicates whether to move to the next

0211 %gamma, gammap interval

0212 j=1;

0213 while (i <= (10^(k-1)))

0214 if (j < SIZEGTBLE(1)) % this is mainly for

0215 %q=0 k =1 i =1 interval

0216 gammaqil = gammatble(j,1);

0217 gammapqil = gammatble(j+1,1);

0218 else

0219 gammaqil = gammatble(j,1);

0220 gammapqil = sym(2);

0221 end;

0222 alphaqik = sym((10^(-k))*(10*i+1-2*q));

0223 betaqik = sym((10^(-k))*(10*i+9-2*q));

0224 expr1 = strcmpi(maple(’evalb’, [char(gammaqil), ’ < ’, ...

0225 char(alphaqik)]),’true’);

0226 expr2 = strcmpi(maple(’evalb’, [char(alphaqik), ’ < ’, ...

0227 char(gammapqil)]),’true’);

0228 expr3 = strcmpi(maple(’evalb’, [char(gammaqil), ’ < ’, ...

0229 char(betaqik)]),’true’);

93

0230 expr4 = strcmpi(maple(’evalb’, [char(betaqik), ’ < ’, ...

0231 char(gammapqil)]),’true’);

0232 if ((expr1 && expr2) && (expr3 && expr4))

0233 % if (((gammaqil < alphaqik) && (alphaqik < gammapqil)) &&

0234 % ((gammaqil < betaqik) && (betaqik < gammapqil)))

0235 if (j < SIZEGTBLE(1)) % this is mainly for

0236 %q=0 k =1 i =1 interval

0237 if (gammatble(j,4) ==1) % test to see if it’s

0238 %alpha or beta

0239 phi gamma =phi(double(gammatble(j,3))+...

0240 1,2*double(gammatble(j,2))+1,q+1);

0241 else

0242 phi gamma =phi(double(gammatble(j,3))+...

0243 1,2*double(gammatble(j,2))+2,q+1);

0244 end;

0245 if (gammatble(j+1,4) ==1) % test to see if

0246 %it’s alpha or beta

0247 phi gammap = phi(double(gammatble(j+1,3))+...

0248 1,2*double(gammatble(j+1,2))+1,q+1);

0249 else

0250 phi gammap = phi(double(gammatble(j+1,3))+...

94

0251 1,2*double(gammatble(j+1,2))+2,q+1);

0252 end;

0253 else

0254 if (gammatble(j,4) ==1) % test to see if

0255 % it’s alpha or beta

0256 phi gamma =phi(double(gammatble(j,3))+...

0257 1,2*double(gammatble(j,2))+1,q+1);

0258 else

0259 phi gamma =phi(double(gammatble(j,3))+...

0260 1,2*double(gammatble(j,2))+2,q+1);

0261 end;

0262 phi gammap = final value; % can change to suit needs

0263 end;

0264 alphaqi 1k = sym((10^(-k))*(10*(i-1)+1-2*q));

0265 betaqi 1k = sym((10^(-k))*(10*(i-1)+9-2*q));

0266 % check to see which point is closer beta i-1 or gamma

0267 expr1 = strcmpi(maple(’evalb’, [char(gammaqil), ’ < ’, ...

0268 char(betaqi 1k)]),’true’);

0269 if (expr1)

0270 % if ((gammaqil < betaqi 1k))

0271 x = betaqi 1k; % beta q(i-1)k

95

0272 phi x = temp(1,2*(i-1)+2);

0273 else

0274 x = gammatble(j,1);

0275 phi x = phi gamma;

0276 end;

0277 xp = alphaqik;

0278 temp(1,2*i+1)= phi x +5 *((xp-x)/(gammapqil ...

0279 -gammaqil))*(phi gammap -phi gamma);

0280 temp(1,2*i+2) = temp(1,2*i+1);

0281 move on = false;

0282 i = i+1;

0283 else

0284 move on = true;

0285 %check to see if it’s an interval of the 1st kind

0286 w =1;

0287 found = false;

0288 while ((w <= SIZETBLE(1)) && (~found))

0289 if (tble(w,1) == q) && (tble(w,2) ==i) && ...

0290 (tble(w,3)==k)

0291 found = true;

0292 end;

96

0293 w = w+1;

0294 end;

0295 if (found)

0296 i= i+1;

0297 end;

0298

0299 end;

0300 if ((j < SIZEGTBLE(1)) && (move on))

0301 j = j+1;

0302 move on = false;

0303 end;

0304 end;

0305 % attach newly constructed rank to phi

0306 if (q==0) % only need to expand matrix once for q=0 for q> 0

0307 %elements

0308 SIZEPHI = size(phi); % already exist

0309 SIZETEMP = size(temp);

0310 phi(k+1,SIZETEMP(2),q+1)= 0;

0311 phi(k+1,:,q+1) = temp;

0312 else

0313 SIZETEMP = size(temp);

97

0314 SIZEPHI = size(phi);

0315 if (SIZEPHI(2) > SIZETEMP(2)) % add space if temp has

0316 %smaller dimensions

0317 temp(1,SIZEPHI(2)) = 0;

0318 end;

0319 phi(k+1,:,q+1) = temp;

0320 end;

0321 % create temporary u q = sum (lambda i *phi q(x i)) intervals

0322 %in order to determine epsilon

0323 Onesh = ones(1, (10^(k-1))+1);

0324 SIZEL = size(lambda);

0325 Top = phi(k+1,:,q+1);

0326 SIZETOP= size(Top);

0327 Z = zeros((SIZETOP(2)/2), SIZETOP(2));

0328 SIZEZ = size(Z);

0329 for z =1:SIZEZ(1)

0330 Z(z,2*z) = 1;

0331 end;

0332 Z = Z’;

0333 Top = Top*Z;

0334 Side= Top’;

98

0335 Sab = lambda(2)*Side*Onesh;

0336 SIZESAB = size(Sab);

0337 Tab = lambda(1)*ones(SIZESAB(1),1)*Top;

0338 Summ = Sab +Tab;

0339 SIZESUMM = size(Summ);

0340 NEWSIZE = SIZESUMM(1)*SIZESUMM(2);

0341 Side = reshape(Summ, NEWSIZE,1);

0342 if (SIZEL(2) >= 3)

0343 for l = 3:SIZEL(2)

0344 Sab = Side*Onesh;

0345 SIZESAB = size(Sab);

0346 Tab = lambda(l)*ones(SIZESAB(1),1)*Top;

0347 Summ = Sab +Tab;

0348 SIZESUMM = size(Summ);

0349 NEWSIZE = SIZESUMM(1)*SIZESUMM(2);

0350 Side = reshape(Summ, NEWSIZE,1);

0351 end;

0352 end;

0353

0354

0355

99

0356 end;

0357

0358 T1 = sort(vpa(Side));

0359 disp(Side);

0360 disp(T1);

0361 T2 = circshift(T1,-1);

0362 dvec = sort(abs(T2-T1));

0363 dmin = dvec(1);

0364 disp(dvec);

0365 % assign epsilon to dmin/4 so that the 2-epsilon neighborhoods of the

0366 % points are disjoint

0367 epsilon = sym(maple(’convert’, [’evalf(’, char(dmin/4),’)’] ,...

0368 ’rational’,’10’));

0369 % epsilon = vpa(dmin/4,WDTH);

0370 disp([’epsilon =’ char(epsilon)]);

0371 for ip =0:(10^(k-1))

0372 phi(k+1,2*ip+1,:) = phi(k+1,2*ip+1,:) - epsilon;

0373 phi(k+1,2*ip+2,:) = phi(k+1,2*ip+2,:) + epsilon;

0374 end;

0375

0376

100

0377 clear maplemex;

0378 end;

0379 %%

0380 % retrun phiq and u tables %

0381 %%

0382 %create phi q in a structure table

0383 % put k =0 and k =1 points in table

0384 for q =0:qmax

0385 for k=0:kmax

0386 if (k ==0)

0387 phiq{q+1}.table = sym([]);

0388 phiq{q+1}.table(1,1) = 0;

0389 phiq{q+1}.table(1,2) = phi(1,1,q+1);

0390 phiq{q+1}.table(2,1) = 1;

0391 phiq{q+1}.table(2,2) = phi(1,2,q+1);

0392 else

0393 %put k >0 into values into table

0394 for i =0:(10^(k-1))

0395 alphaqik = sym((10^(-k))*(10*i+1-2*q));

0396 betaqik = sym((10^(-k))*(10*i+9-2*q));

0397 expr1 = strcmpi(maple(’evalb’,[char(sym(0)), ’ <= ’, ...

101

0398 char(alphaqik)]), ’true’);

0399 expr2 = strcmpi(maple(’evalb’,[char(alphaqik), ’ <= ’, ...

0400 char(sym(1))]), ’true’);

0401 if (expr1 && expr2)

0402 %if ((0<= alphaqik) && (alphaqik <= 1))

0403 phia = phi(k+1,2*i+1,q+1);

0404 phiq{q+1}.table = [phiq{q+1}.table ; alphaqik phia];

0405 end;

0406 expr1 = strcmpi(maple(’evalb’,[char(sym(0)), ’ <= ’, ...

0407 char(betaqik)]), ’true’);

0408 expr2 = strcmpi(maple(’evalb’,[char(betaqik), ’ <= ’, ...

0409 char(sym(1))]), ’true’);

0410 if (expr1 && expr2)

0411 %if ((0<= betaqik) && (betaqik <= 1))

0412 phib = phi(k+1,2*i+2,q+1);

0413 phiq{q+1}.table = [phiq{q+1}.table ; betaqik phib];

0414 end;

0415 end;

0416 end;

0417 end;

0418 temp = sortrowshp(phiq{q+1}.table,1);

102

0419 phiq{q+1}.table = temp;

0420 temp= [];

0421 end;

0422 % build u table

0423 k = kmax;

0424 u=sym([]);

0425 for q=0:qmax

0426 for i =0:(10^(k-1))

0427 alphaqik = sym((10^(-k))*(10*i+1-2*q));

0428 betaqik = sym((10^(-k))*(10*i+9-2*q));

0429 for j =0:(10^(k-1))

0430 alphaqjk = sym((10^(-k))*(10*j+1-2*q));

0431 betaqjk = sym((10^(-k))*(10*j+9-2*q));

0432 phia =0;

0433 phib = 0;

0434 expr1 = strcmpi(maple(’evalb’,[char(betaqik),’ < ’, ...

0435 char(sym(0))]), ’true’);

0436 expr2 = strcmpi(maple(’evalb’,[char(alphaqik), ’ > ’ , ...

0437 char(sym(1))]), ’true’);

0438 expr3 = strcmpi(maple(’evalb’,[char(betaqjk), ’ < ’, ...

0439 char(sym(0))]), ’true’);

103

0440 expr4 = strcmpi(maple(’evalb’,[char(alphaqjk), ’ > ’, ...

0441 char(sym(1))]), ’true’);

0442 expr5 = strcmpi(maple(’evalb’,[char(sym(0)), ’ < ’ , ...

0443 char(alphaqik)]), ’true’);

0444 expr6 = strcmpi(maple(’evalb’,[char(alphaqik), ’ < ’, ...

0445 char(sym(1))]), ’true’);

0446 expr7 = strcmpi(maple(’evalb’,[char(sym(0)), ’ < ’, ...

0447 char(betaqik)]), ’true’);

0448 expr8 = strcmpi(maple(’evalb’,[char(betaqik), ’ < ’ , ...

0449 char(sym(1))]), ’true’);

0450 expr9 = strcmpi(maple(’evalb’,[char(sym(0)),’ < ’, ...

0451 char(alphaqjk)]), ’true’);

0452 expr10 = strcmpi(maple(’evalb’,[char(alphaqjk), ’ < ’ , ...

0453 char(sym(1))]), ’true’);

0454 expr11 = strcmpi(maple(’evalb’,[char(sym(0)), ’ < ’, ...

0455 char(betaqjk)]), ’true’);

0456 expr12 = strcmpi(maple(’evalb’,[char(betaqjk), ’ < ’, ...

0457 char(sym(1))]), ’true’);

0458 if ((expr1) || (expr2) || (expr3) || (expr4))

0459 % if ((double(betaqik) < 0) || (double(alphaqik) > 1) || ...

0460 % (double(betaqjk) < 0) || (double(alphaqjk) > 1))

104

0461 %do nothing ; this is case were square is

0462 %completely outside

0463 %(0,1) x (0,1)

0464 elseif (((expr5) && (expr6)) && ((expr7) && (expr8)) && ...

0465 ((expr9) && (expr10)) && ((expr11) && (expr12)))

0466 % (((0< double(alphaqik)) && (double(alphaqik) < 1)) ...

0467 % && ((0< betaqik) && (betaqik < 1))...

0468 % && ((0< alphaqjk) && (alphaqjk < 1))...

0469 % && ((0< betaqjk) && (betaqjk < 1)))

0470 % completely inside (0,1) x (0,1)

0471 phiai = phi(k+1, 2*i+1, q+1);

0472 phiaj = phi(k+1, 2*j+1, q+1);

0473 phibi = phi(k+1, 2*i+2, q+1);

0474 phibj = phi(k+1, 2*j+2, q+1);

0475 phia = phiai + lambda(2)* phiaj;

0476 phib = phibi + lambda(2)*phibj;

0477 u = [u; phia q i j];

0478 u = [u; phib q i j];

0479 else

0480 % partially inside (0,1) x (0,1)

0481 phiai = phi(k+1, 2*i+1, q+1);

105

0482 phiaj = phi(k+1, 2*j+1, q+1);

0483 phibi = phi(k+1, 2*i+2, q+1);

0484 phibj = phi(k+1, 2*j+2, q+1);

0485 expr1 = strcmpi(maple(’evalb’, [char(alphaqik), ...

0486 ’ < ’, char(sym(0))]), ’true’);

0487 expr2 = strcmpi(maple(’evalb’, [char(sym(0)), ...

0488 ’ < ’, char(betaqik)]), ’true’);

0489 expr3 = strcmpi(maple(’evalb’, [char(betaqik), ...

0490 ’ < ’, char(sym(1))]), ’true’);

0491 if ((expr1) && (expr2 && expr3))

0492 % if ((alphaqik < 0) && ((0 < betaqik) &&(betaqik < 1)))

0493 phiai =phi(1,2*0+1,q+1);

0494 phibi =phi(k+1,2*i+2, q+1);

0495 end;

0496 expr1 = strcmpi(maple(’evalb’, [char(sym(0)), ...

0497 ’ < ’, char(alphaqik)]), ’true’);

0498 expr2 = strcmpi(maple(’evalb’, [char(alphaqik), ...

0499 ’ < ’, char(sym(1))]), ’true’);

0500 expr3 = strcmpi(maple(’evalb’, [char(betaqik), ...

0501 ’ > ’, char(sym(1))]), ’true’);

0502 if ((expr1 && expr2) && (expr3))

106

0503 % if (((0 <alphaqik) && (alphaqik <1)) && (betaqik > 1))

0504 phiai = phi(k+1,2*i+1,q+1);

0505 phibi = phi(1, 2*0+2, q+1);

0506 end;

0507 expr1 = strcmpi(maple(’evalb’, [char(alphaqjk), ...

0508 ’ < ’, char(sym(0))]), ’true’);

0509 expr2 = strcmpi(maple(’evalb’, [char(sym(0)), ...

0510 ’ < ’, char(betaqjk)]), ’true’);

0511 expr3 = strcmpi(maple(’evalb’, [char(betaqjk), ...

0512 ’ < ’, char(sym(1))]), ’true’);

0513 if ((expr1) && (expr2 && expr3))

0514 % if ((alphaqjk < 0) && ((0 < betaqjk) &&(betaqjk < 1)))

0515 phiaj =phi(1,2*0+1,q+1);

0516 phibj =phi(k+1,2*j+2, q+1);

0517 end;

0518 expr1 = strcmpi(maple(’evalb’, [char(sym(0)), ...

0519 ’ < ’, char(alphaqjk)]), ’true’);

0520 expr2 = strcmpi(maple(’evalb’, [char(alphaqjk), ...

0521 ’ < ’ , char(sym(1))]), ’true’);

0522 expr3 = strcmpi(maple(’evalb’, [char(betaqjk), ...

0523 ’ > ’, char(sym(1))]), ’true’);

107

0524 if ((expr1 && expr2) && (expr3))

0525 % if (((0 <alphaqjk) && (alphaqjk <1)) && (betaqjk > 1))

0526 phiaj = phi(k+1,2*j+1,q+1);

0527 phibj = phi(1, 2*0+2, q+1);

0528 end;

0529 phia = phiai + lambda(2)* phiaj;

0530 phib = phibi + lambda(2)*phibj;

0531 u = [u; phia q i j];

0532 u = [u; phib q i j];

0533 end;

0534 end;

0535 end;

0536 end;

0537 temp = u;

0538 u = sortrowshp(temp,1);

B.1.2 findfirst hp

0001 function [tble] = findfirst hp(n,qwanted,kmax)

0002

0003 % findfirst(n,qwanted,kmax)

0004 %

0005 % input : qwanted= which phi q for which to find intervals of first find

108

0006 % set qwanted = -1 to find for all phi q

0007 % kmax = find intervals of the first kind up to rank kmax

0008 % set kmax to negative value to get just the intervals of

0009 % the first kind only for rank kmax. abs(kmax) >=1.

0010 % n = the dimension space

0011 % output: tble = contains all the points which are of the first kind

0012 % each row has the form

0013 % [q i k alphaqik betaqik j l 9 betaqjl] or

0014 % [q i k alphaqik betaqik j l 1 alphaqjl]

0015

0016

0017 % finds the intervals of the first kind

0018 ptable = sym([]);

0019 qmin =0;

0020 qmax =0;

0021 if (qwanted == -1)

0022 qmin = 0;

0023 qmax = 4;

0024 elseif (qwanted > 0)

0025 qmin = qwanted;

0026 qmax = qwanted;

109

0027 end;

0028 mykmin = 2;

0029 if (kmax < 0)

0030 mykmin = abs(kmax);

0031 mykmax = abs(kmax);

0032 elseif (kmax > 0)

0033 mykmin = 1;

0034 mykmax = kmax;

0035 end;

0036 for q=qmin:qmax

0037 for k=mykmin:mykmax

0038 for i =0:(10^(k-1))

0039 alphaqik = sym((10^(-k))*(10*i+1 - 2*q));

0040 betaqik = sym((10^(-k))*(10*i+9 - 2*q));

0041 for l =0:(k-1)

0042 for j = 0:(floor(10^(l-1)))

0043 if (l > 0)

0044 alphaqjl = sym((10^(-l))*(10*j+1 - 2*q));

0045 betaqjl = sym((10^(-l))*(10*j+9 - 2*q));

0046 else

0047 alphaqjl = sym(0);

110

0048 betaqjl = sym(1);

0049 end;

0050 expr1 = strcmpi(maple(’evalb’, [char(alphaqik), ...

0051 ’ < ’, char(alphaqjl)]), ’true’);

0052 expr2 = strcmpi(maple(’evalb’, [char(alphaqjl), ...

0053 ’ < ’, char(betaqik)]), ’true’);

0054 if(expr1 && expr2)

0055 % if ((double(alphaqik) < double(alphaqjl)) && ...

0056 % (double(alphaqjl) < double(betaqik)))

0057 ptable = [ptable; [q i k alphaqik betaqik j ...

0058 l 1 alphaqjl]];

0059 end;

0060 expr1 = strcmpi(maple(’evalb’, [char(alphaqik), ...

0061 ’ < ’, char(betaqjl)]), ’true’);

0062 expr2 = strcmpi(maple(’evalb’, [char(betaqjl), ...

0063 ’ < ’, char(betaqik)]), ’true’);

0064 if(expr1 && expr2)

0065 % if ((double(alphaqik) < double(betaqjl)) && ...

0066 % (double(betaqjl) < double(betaqik)))

0067 ptable = [ptable; [q i k alphaqik betaqik j ...

0068 l 9 betaqjl]];

111

0069 end;

0070 end;

0071 end;

0072 end;

0073 end;

0074 end;

0075

0076 tble = ptable;

B.1.3 train gt

0001 function [H2D,G1D] = train gt(k,phihp,uhp, myiter, funin)

0002 %

0003 % this program takes an image and sees what image is reproduced after

0004 % myiter iterations

0005

0006 % Setup the function f (an image) for processing

0007 global fun;

0008 global xi;

0009 global yi;

0010 fun = funin;

0011 SIZEFUN =size(fun);

0012 mx =1:SIZEFUN(2);

112

0013 nx =1:SIZEFUN(1);

0014 % mxl=SIZEFUN(1);

0015 % nxl = SIZEFUN(1);

0016 xii=(1/(SIZEFUN(2)-1))*(mx-1);

0017 yii=(1/(SIZEFUN(1)-1))*(nx-1);

0018 [xi,yi] = meshgrid(xii,yii);

0019 disp([size(xi) size(yi)]);

0020 % Setup the function phi,u for processing

0021 disp(’initializing.........’);

0022 if (~isnumeric(uhp))

0023 disp(’converting u’)

0024 SIZEU = size(uhp);

0025 u = zeros(SIZEU);

0026 tic;

0027 disp([’ time start=’ num2str(0)]);

0028 for i =1:SIZEU(1)

0029 u(i,:)= double(uhp(i,:));

0030 if (mod(i,5000) ==0)

0031 TOCTIC = toc;

0032 disp([’i =’ num2str(i) ’ time end=’ num2str(TOCTIC)]);

0033 tic;

113

0034 disp([’ time start=’ num2str(0)]);

0035 end;

0036 end;

0037 disp(’done converting u’);

0038 else

0039 disp(’u is already type double’);

0040 u = uhp;

0041 end;

0042 if (~isnumeric(phihp{1}.table))

0043 disp(’converting phi q’);

0044 for q=0:4

0045 phi{q+1}.table = double(phihp{q+1}.table);

0046 disp([’done converting phi ’ num2str(q)]);

0047 end;

0048 disp(’done converting phi q’);

0049 else

0050 disp(’phi q is already type double’);

0051 phi = phihp;

0052 end;

0053 disp(’done initializing....’);

0054

114

0055 SIZEU = size(u);

0056 global lambda;

0057

0058 lambda = 1/sqrt(2);

0059 maxiter =myiter;

0060

0061

0062 % preallocate memory

0063 gr = zeros([SIZEU(1) maxiter]);

0064 G = zeros(SIZEU(1),1);

0065

0066 % X=mx-1;

0067 % Y=nx-1;

0068 % [x,y] = meshgrid(X,Y);

0069 % SIZEX = size(x);

0070 % SIZEY =size(y);

0071 % xv = reshape(x,SIZEX(1)*SIZEX(2),1); %make x a long vector

0072 % yv = reshape(y,SIZEY(1)*SIZEY(2),1); %make y a long vector..

0073 % has same dimensions as x

0074 % Plot f(x,y)

0075 %z = f(x,y);

115

0076 %z = reshape(zv,SIZEX(1),SIZEX(2));

0077 % subplot(2,2,1);

0078 % surf(x,y,z);

0079 % reply = input(’Pausing. Type 1 to loop without pausing: ’);

0080 %assign values to f from f(x,y) at centers of squares

0081 alphaqik = (10^(-k))*(10*u(:,3)+1-2*u(:,2));

0082 betaqik = (10^(-k))*(10*u(:,3)+9-2*u(:,2));

0083 alphaqjk = (10^(-k))*(10*u(:,4)+1-2*u(:,2));

0084 betaqjk = (10^(-k))*(10*u(:,4)+9-2*u(:,2));

0085 %get rid of squares outside of [0,1] x [0,1]

0086 temp = find((alphaqik > 1) | (alphaqjk > 1) | ...

0087 (betaqik < 0) | (betaqjk < 0));

0088 if (~isempty(temp))

0089 alphaqik(temp) = -10;

0090 end;

0091 temp = find(alphaqik ~= -10);

0092 if (~isempty(temp))

0093 alphaqik = alphaqik(temp);

0094 alphaqjk = alphaqjk(temp);

0095 betaqik = betaqik(temp);

0096 betaqjk = betaqjk(temp);

116

0097 end;

0098 %truncate squares partially in [0,1] x [0,1]

0099 temp = find(alphaqik <0);

0100 if (~isempty(temp))

0101 alphaqik(temp) = 0;

0102 end;

0103 temp = find(betaqik >1);

0104 if (~isempty(temp))

0105 betaqik(temp) = 1;

0106 end;

0107 temp = find(alphaqjk <0);

0108 if (~isempty(temp))

0109 alphaqjk(temp) = 0;

0110 end;

0111 temp = find(betaqjk > 1);

0112 if (~isempty(temp))

0113 betaqjk(temp) = 1;

0114 end;

0115 m1 = (alphaqik + betaqik)/2;

0116 m2 = (alphaqjk + betaqjk)/2;

0117 clear alphaqik betaqik alphaqjik betaqjk ;

117

0118

0119

0120

0121 %disp([size(m1) size(m2)]);

0122 % calculate h(x,y) from f(x,y);

0123 %iterate

0124 for iter=1:maxiter

0125 i= iter;

0126 % disp([’iteration: ’ num2str(iter)]);

0127 fxy = f(m1, m2) - h(m1, m2,u,gr,phi,1);

0128 gr(:,i) = (1/3)*fxy;

0129

0130 % if(reply ~= 1)

0131 % %plot h(x,y), gr(u), G(u)

0132 % % gr(u)

0133 % subplot(2,2,3);

0134 % plot(u(:,1),gr(:,i));

0135 %

0136 % % G(u) = sum {1}^(iter} gr(u)

0137 G = G + gr(:,i);

0138 % subplot(2,2,4);

118

0139 % plot(u(:,1),G);

0140 %

0141 % %h(x,y)

0142 % zv = h(xv,yv,u,gr,phi,1);

0143 % z = reshape(zv,SIZEX(1),SIZEX(2));

0144 % subplot(2,2,2);

0145 % surf(x,y,z);

0146 % % pause to view plot

0147 % reply = input(’Pausing. Type 1 to loop without pausing: ’);

0148 % end;

0149 end;

0150

0151 %plot h(x,y), gr(u), g(u) for last time

0152 % gr(u)

0153 % subplot(2,2,3);

0154 % plot(u(:,1),gr(:,maxiter));

0155

0156 % G(u) = sum {1}^(iter} gr(u)

0157 % subplot(2,2,4);

0158 % plot(u(:,1),G);

0159

119

0160 %h(x,y)

0161 % subplot(2,2,2);

0162 % surf(x,y,z);

0163 SIZEXI =size(xi);

0164 SIZEYI = size(yi);

0165 zv = h(reshape(xi,SIZEXI(1)*SIZEXI(2),1),reshape(yi, ...

0166 SIZEYI(1)*SIZEYI(2),1),u,gr,phi,1);

0167 disp(size(zv));

0168 z = reshape(zv,SIZEFUN(1),SIZEFUN(2));

0169 H2D =z;

0170 G1D = G;

0171 %save(’myz’,’z’, ’fun’);

0172 %%%%%% end main function app8 hp

0173 %%%

0174 %%%

0175

0176 %define f(x,y) here

0177 function [fvalue] = f(x,y)

0178 global fun;

0179 global xi;

0180 global yi;

120

0181 fvalue = interp2(xi,yi,fun,x,y);

0182

0183 %define h(x,y) here

0184 function[hvalue] = h(x,y,u,g,phi,tosum)

0185 global lambda;

0186 hsum =0;

0187 SIZEG = size(g);

0188 if (tosum == 0) % sum only the latest g r; for h r(,y)

0189 for q =0:4

0190 uc = interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),x) + ...

0191 lambda * interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),y);

0192 hsum = hsum + interp1(u(:,1),g(:,SIZEG(2)), uc);

0193 end;

0194 else % sum all the g r ; for h(x,y)

0195 for i=1:SIZEG(2)

0196 for q =0:4

0197 uc = interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),x) + ...

0198 lambda * interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),y);

0199 hsum = hsum + interp1(u(:,1),g(:,i), uc);

0200 end;

0201 end;

121

0202 end;

0203 hvalue = hsum;

B.1.4 recon ft

0001 function [f2D] = recon ft(u,g, imageSize, phi)

0002 %

0003

0004

0005 global xi;

0006 global yi;

0007

0008 SIZEFUN = imageSize;

0009 mx =1:SIZEFUN(2);

0010 nx =1:SIZEFUN(1);

0011 xii=(1/(SIZEFUN(2)-1))*(mx-1);

0012 yii=(1/(SIZEFUN(1)-1))*(nx-1);

0013 [xi,yi] = meshgrid(xii,yii);

0014

0015 global lambda;

0016

0017 lambda = 1/sqrt(2);

0018

122

0019 SIZEXI =size(xi);

0020 SIZEYI = size(yi);

0021 zv = h(reshape(xi,SIZEXI(1)*SIZEXI(2),1),reshape(yi,...

0022 SIZEYI(1)*SIZEYI(2),1),u,g,phi,0);

0023 disp(size(zv));

0024 z = reshape(zv,SIZEFUN(1),SIZEFUN(2));

0025 f2D =z;

0026 %save(’myz’,’z’, ’fun’);

0027 %%%%%% end main function recon f

0028 %%%

0029 %%%

0030

0031 %define h(x,y) here

0032 function[hvalue] = h(x,y,u,g,phi,tosum)

0033 global lambda;

0034 hsum =0;

0035 SIZEG = size(g);

0036 if (tosum == 0) % sum only the latest g r; for h r(,y)

0037 for q =0:4

0038 uc = interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),x) + ...

0039 lambda * interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),y);

123

0040 hsum = hsum + interp1(u(:,1),g(:,SIZEG(2)), uc);

0041 end;

0042 else % sum all the g r ; for h(x,y)

0043 for i=1:SIZEG(2)

0044 for q =0:4

0045 uc = interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),x) + ...

0046 lambda * interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),y);

0047 hsum = hsum + interp1(u(:,1),g(:,i), uc);

0048 end;

0049 end;

0050 end;

0051 hvalue = hsum;

B.1.5 eval gt

0001 function [fx] = eval gt(x, phi, u,g)

0002 %

0003

0004

0005 global lambda;

0006

0007 lambda = 1/sqrt(2);

0008

124

0009 zv = h(x(:,1),x(:,2),u,g,phi,0);

0010 fx =zv;

0011

0012

0013 %%%%%% end main function eval g

0014 %%%

0015 %%%

0016

0017 %define h(x,y) here

0018 function[hvalue] = h(x,y,u,g,phi,tosum)

0019 global lambda;

0020 hsum =0;

0021 SIZEG = size(g);

0022 if (tosum == 0) % sum only the latest g r; for h r(,y)

0023 for q =0:4

0024 uc = interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),x) + ...

0025 lambda * interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),y);

0026 hsum = hsum + interp1(u(:,1),g(:,SIZEG(2)), uc);

0027 end;

0028 else % sum all the g r ; for h(x,y)

0029 for i=1:SIZEG(2)

125

0030 for q =0:4

0031 uc = interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),x) + ...

0032 lambda * interp1(phi{q+1}.table(:,1),phi{q+1}.table(:,2),y);

0033 hsum = hsum + interp1(u(:,1),g(:,i), uc);

0034 end;

0035 end;

0036 end;

0037 hvalue = hsum;

126

LIST OF REFERENCES

[1]

[2] http://wang.ist.psu.edu.

[3] Richard Bellman. Adaptive Control Processes: A Guided Tour. Princeton University

Press., 1961.

[4] M.J. Black and S. Roth. Fields of experts: A framework for learning image priors. In

IEEE Conf. on Computer Vision and Pattern Recognition, volume 2, pages 860–867,

2005.

[5] J.S. Catalan, J.A.; Jin. Dimension reduction of texture features for image retrieval

using hybrid associative neural networks. Multimedia and Expo, 2000. ICME 2000.

2000 IEEE International Conference on, 2:1211–1214 vol.2, 2000.

[6] Myron Flickner, Harpreet S. Sawhney, Jonathan Ashley, Qian Huang, Byron Dom,

Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele, and Peter

Yanker. Query by image and video content: The qbic system. IEEE Computer, 28(9):23–

32, 1995.

[7] Tom Heskes. Selecting weighting factors in logarithmic opinion pools. In Michael I.

Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Information

Processing Systems, volume 10. The MIT Press, 1998.

127

[8] D. Hilbert. Mathematical problems. Bull. Amer. Math. Soc.

[9] G. Hinton, S. Osindero, and K. Bao. Learning causally linked markov random fields,

2005.

[10] Geoffry E. Hinton. Product of experts. In Proceedings of the Ninth International Con-

ference on Artificial Neural Networks, volume 1, pages 1–6, 1999.

[11] Geoffry E. Hinton. Training product of experts by minimizing contrastive divergence.

Technical Report 004, Gatsby Computational Neuroscience Unit, 2000.

[12] Qasim Iqbal and J.K. Aggarwal. Feature integration, multi-image queries and relevance

feedback in image retrieval.

[13] A.J. Smola J.J. McAuley, T.S. Caetano and M.O. Franz. Learning high order mrf priors

of color images.

[14] M.I. Jordan. Learning in graphical models. MIT Press Cambridge, MA USA, 1993.

[15] W. J. Krzanowski. Recent advances in descriptive multivariate analysis. 1995.

[16] G.G. Lorentz. Approximation of Functions. Holt, Rinehart, and Winston, Inc., 1966.

[17] G. Hinton M. Welling and S. Osindero.

[18] W.Y. Manjunath, B.S.; Ma. Texture features for browsing and retrieval of image data.

Transactions on Pattern Analysis and Machine Intelligence, 18(8):837–842, Aug 1996.

128

[19] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large

annotated corpus of english: The penn treebank. Computational Linguistics, 19(2):313–

330, 1994.

[20] Wayne Niblack, Ron Barber, William Equitz, Myron Flickner, Eduardo H. Glasman,

Dragutin Petkovic, Peter Yanker, Christos Faloutsos, and Gabriel Taubin. The qbic

project: Querying images by content, using color, texture, and shape. In Storage and

Retrieval for Image and Video Databases (SPIE), pages 173–187, 1993.

[21] S. Roth and M.J. Black. On the spatial statistics of optical flow. In Proceeedings of

the Tenth IEEE International Conference on Computer Vision, volume 1, pages 42–49,

2005.

[22] Alan F. Smeaton, Paul Over, and Wessel Kraaij. Evaluation campaigns and trecvid. In

MIR ’06: Proceedings of the 8th ACM International Workshop on Multimedia Informa-

tion Retrieval, pages 321–330, New York, NY, USA, 2006. ACM Press.

[23] A. M. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based

image retrieval at the end of the early years. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 22(12):1349–1380, 2000.

[24] Ce; Adelson Edward H.; Freeman William T. Tappen, Marshall F.; Liu. Learning

gaussian conditional random fields for low-level vision. Computer Vision and Pattern

Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1–8, 17–22 June 2007.

129

[25] A.L. Yuille. The convergence of contrastive divergences. Advances in Information Pro-

cessing Systems, 17:1593–1600, 2005.

[26] S. Osindero Y.W. Teh, M. Welling and G.E. Hinton.

[27] S.C. Zhu and X. Liu. Learning in gibbsian fields: How accurate and how fast can it be?

IEEE Trans. Pattern Anal. Mach. Intell, 7:1001–1006, 2002.

130

	Analysis Of Kolmogorov's Superposition Theorem And Its Implementation In Applications With Low And High Dimensional Data.
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	1.1 Overview
	1.1.1 Dissertation Outline

	CHAPTER TWO: BACKGROUND
	2.1 Approximation Theory
	2.2 Probability and Statistics
	2.2.1 Probability
	2.2.2 Statistics

	CHAPTER THREE: KOLMOGOROV'S THEOREM
	3.1 Kolmogorov's Theorem
	3.1.1 Theorem Statement
	3.1.2 Details required for Proof
	3.1.3 Proof of Theorem

	3.2 Properties of f and its g function
	3.2.1 Addition and Multiplication
	3.2.2 Shifting
	3.2.3 Scaling
	3.2.4 Partial Differentiation

	CHAPTER FOUR: KOLMOGOROV'S THEOREM FOR n DIMENSIONS (n2)
	4.1 Kolmogorov's Theorem for High Dimensions
	4.1.1 Set up for the Proof
	4.1.2 Further Details required for the Proof
	4.1.3 Proof of Theorem

	CHAPTER FIVE: NUMERICAL IMPLEMENTATION DISCUSSION
	5.1 Algorithmic Outline of Kolmogorov's Theorem
	5.1.1 Computation of 's in two dimensional case
	5.1.2 Training the g-function

	5.2 Issues related to implementation
	5.2.1 Assigning q values for k>0
	5.2.2 Storing data points
	5.2.3 Computation times
	5.2.4 g-function representation

	CHAPTER SIX: APPLICATIONS
	6.1 Image, Video, and MRI representation and reconstruction
	6.2 Content Based Image Retrieval Application
	6.2.1 Results
	6.2.2 Video Retrievals
	6.2.3 Conclusion

	6.3 Bayesian Prior Image Applications
	6.3.1 Product of Experts
	6.3.2 Field of Experts
	6.3.3 PoE and FoE revisted
	6.3.4 A new approach

	APPENDIX A: OVERVIEW OF FUNCTIONS
	A.1 Function Overview

	APPENDIX B: FUNCTION CODE PRINTOUT
	B.1 Code for building q functions
	B.1.1 build_phis_hp
	B.1.2 findfirst_hp
	B.1.3 train_gt
	B.1.4 recon_ft
	B.1.5 eval_gt

	LIST OF REFERENCES

