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ABSTRACT 

The conservation biology field seeks to preserve biodiversity and the processes shaping 

that variation. Conservation biology is intimately tied to evolutionary research, in order to 

identify evolutionary distinct lineages that may be in danger of disappearing. Interestingly, 

patterns and processes of lineage divergence and persistence change with respect to spatial and 

temporal scale. I seek to evaluate biodiversity, the factors that have shaped this heterogeneity, 

and how this variability persists. To accomplish this I used a phylogeographic approach as well 

as niche and population modeling on the Peromyscus maniculatus species group found widely 

distributed in North America. My emphasis was on the southeastern U.S. species P. polionotus 

and its distinct beach forms. At a continental scale, I found that environmental niches are likely 

involved in generating and/or maintaining genetic lineages within the P. maniculatus species 

group. These findings add to a growing number of studies that have identified lineages 

occupying different environmental spaces. At a regional scale, I supported the hypothesis that 

barrier islands on the Atlantic coast of Florida were colonized by an ancestral form of P. 

polionotus by a single colonization, from the central Florida area. Subsequently, at least two 

distinct lineages diverged (P. p. phasma and P. p. niveiventris). I also found evidence that 

suggests that the extinct form of beach mouse (P. p. decoloratus) is part of the P. p. phasma 

lineage. At the population level, I evaluated changes in genetic diversity in historical samples 

compared to those that experienced recent human encroachment on natural habitat I used tissue 

preserved in natural history collections to compare with live-trapped specimens, and found that 

P. p. niveiventris has maintained historical genetic diversity levels. I suggest that the 

continuation of historical levels of genetic diversity is due to the presence of a single large area 
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of continuous habitat in the central portion of the species’ current distribution. Finally, I 

evaluated the importance of scrub and beach habitat to the population dynamics of beach mice. 

Beach mice have traditionally have been associated with beach dunes rather than with the scrub 

habitat found more inland on barrier islands. Using almost three years of capture-recapture data 

from Cape Canaveral Air Force Station (CCAFS), I created a stochastic matrix model to assess 

the relative contribution of populations from the two different habitats to a variety of 

demographic measures. Both field data and model results provided evidence that the population 

dynamics of beach mice may rely much more on scrub habitat than formerly documented. 

Overall, my research emphasized a hierarchical approach to evaluate biodiversity and the 

processes shaping differentiation at different spatial and temporal scales. The methods and 

findings give insight into speciation at different scales, and can be applied to a wide range of taxa 

for questions related to evolutionary and conservation biology. 
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CHAPTER 1. INTRODUCTION 
 

The unifying goal of conservation biology is to preserve biodiversity and the natural 

processes that shape and maintain that diversity (Moritz 2002, Groom et al. 2005). Therefore, to 

address questions on how biodiversity is maintained it is necessary to identify patterns of 

diversity and the processes that have shaped such patterns. Diversity can be organized 

hierarchically from populations to communities, with each level encompassing a broader spatial 

scale and posing different challenges and questions. Along this hierarchy we can gain insight 

into the formation of diversity and persistence at multiple taxonomic, spatial and temporal scales 

(Noss 1990, 2005). To this end my interests are to understand the evolutionary drivers of 

biodiversity organization, and how it is maintained at multiple levels. Specifically, I have 

investigated biodiversity at multiple spatial and taxonomic scales, to better understand how 

evolutionary process impacts organisms at multiple scales. At a continental spatial scale I 

investigated the drivers of genetic divergence that occurs in widely distributed taxa, to gain 

insight into how environmental differences can set the stage for an evolutionary process that 

shapes their current biodiversity. Evolutionary processes can also influence diversity at a 

regional scale, e.g., following the isolation of populations exposed to differential selective 

pressure. I was, in particular, interested in how at a local scale evolutionary processes affect 

biodiversity subjected to recent colonization. Coastal habitat provides an ideal setting for 

investigating patterns of speciation at a local scale, as sea level rise has dramatically changed 

coastal landscapes. At the population level I evaluated how taxa are impacted by historical and 

current evolutionary processes, and how local diversity may persist in diverse habitats. 
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Environmental impact on wide spatial scale 

The impacts of ecological drivers on evolutionary divergence are not well understood, 

either as direct selective drivers or as a means of maintaining isolation between geographically 

divided lineages (Schluter 2001, Wiens and Graham 2005, Schluter 2009). By investigating taxa 

at a broad spatial scale, ecological drivers should be more evident, as taxa are faced with a wide 

range of environmental conditions in different habitat settings. The ecological impact on lineage 

divergence and speciation is closely associated to the niches sister taxa occupy, where niche is 

defined as the multi-dimensional ecological space that bounds a species’ persistence (Hutchinson 

1957, MacArthur 1972, Hutchinson 1978). Predictions based on this interpretation of the 

ecological niche suggest diversity is predominantly explained by two prevailing hypotheses: 

niche conservatism and niche divergence. Niche conservatism occurs when lineages retain 

ancestral ecological affiliations and closely related lineages persist in similar ecological niches. 

This is thought to be caused by stabilizing selection or lack of variation in ancestral traits (Lord 

et al. 1995, Webb et al. 2002, Wiens and Graham 2005). Several studies have found empirical 

support for the niche conservatism hypothesis (Peterson et al. 1999, Peterson and Vieglais 2001, 

Kozak and Wiens 2006). The alternative hypothesis, niche divergence, predicts that sister 

lineages occupy different niches. Examples are accumulating where phylogenetic relatedness is 

not related to niche similarity and sister taxa occupy separate niche spaces, suggesting an 

environmental driver on lineage divergence and the process of speciation (Losos et al. 2003, 

Graham et al. 2004, Raxworthy et al. 2007, Pyron and Burbrink 2009). Relationships in niche 

space primarily measures conditions at a fixed point in time; however, an important 

environmental driver is historical climatic change (Hewitt 2004, Martínez-Meyer et al. 2004, 

Oberle and Schaal 2011). 
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Climatic changes and recent habitat: divergence at smaller scales 

Biodiversity has been greatly impacted by global events that cause dramatic temporal 

changes in climatic conditions (Aubry et al. 2009, Wilson and Eigenmann Veraguth 2010). In 

North America and Europe, glaciation has been shown to impact speciation and population level 

processes (Hewitt 1996, Lomolino et al. 2005, Aubry et al. 2009, Previšić et al. 2009, Benke et 

al. 2011). The most recent ice age, which occurred around 20,000 years ago, had a great impact 

on the distribution and diversity of extant taxa (Hewitt 1996, Hewitt 2000, Hewitt 2004, 

Lomolino et al. 2005, Morgan et al. 2011). The retreat and displacement of organisms from the 

glaciated portions of Europe, Asia, and North America are well documented (Hoffman and 

Blouin 2004, Rowe et al. 2004, Svenning and Skov 2007); whereas, little attention has been 

given to shifts in the biota of coastal areas as sea levels fluctuated with the end of glaciation (Van 

Zant and Wooten 2007). In Florida sea levels were 130 meters below current stands at the time 

of maximum glacial accumulation, with shore lines over 100 km of current shore lines of the 

Gulf coast (Wanless and Parkinson 1989, Davis 1997, Lambeck and Chappell 2001). Flooding 

and reshaping of coastal Florida slowed down between 5,000-6,000 years ago as contemporary 

coast lines stabilized. Barrier islands of the Atlantic and Gulf coasts of Florida were likely in 

place in the same time period (Wanless and Parkinson 1989, Mayhew and Parkinson 2007, 

Madsen et al. 2010, Kolditz et al. 2012). Given the complex history of climate change and 

habitat modification in coastal areas, current biodiversity in these areas must be examined from 

the viewpoint that both historic and recent evolutionary processes likely explain genetic patterns 

within taxonomic groups. 



 

4 

Temporal sampling of genetic diversity 

In recent time humans have been considered the main culprit in fostering the elevated rate 

of extinction often associated with habitat loss and genetic deterioration (Schwartz et al. 2007, 

Wake and Vredenburg 2008, Helm et al. 2009, Barnosky et al. 2011). Humans affect the 

persistence of populations at a local scale by reducing habitat availability, suitability, and 

connectivity (Fahrig and Merriam 1994, Fahrig 2003, Dixo et al. 2009). Genetic diversity can be 

used to index the condition and persistence of threatened and endangered taxa. The reason for 

this viewpoint is smaller populations often exhibit loss of genetic diversity as a result of genetic 

drift (Lacy 1987, Frankham 1997), and lowered genetic diversity has been shown to increase the 

likelihood for a population to go extinct (Saccheri et al. 1998, Reed and Frankham 2003, 

Lavergne and Molofsky 2007). Loss of genetic diversity is also a sensitive measure of loss of 

population size (Schwartz et al. 2007). 

Several studies have shown that low genetic diversity may be historic and not reflect 

recent human influences (e.g. Miller and Waits 2003, Taylor et al. 2007, Reding et al. 2010). 

Thus it is essential to identify what process has shaped current genetic diversity, humans or 

natural events prior to human influence, before making decisions regarding genetic 

augmentations or recoveries. To gain insight into the processes that have helped shape genetic 

diversity we can utilize extensive tissue collections found in museums of natural history 

(Wandeler et al. 2007, Leonard 2008). Samples collected prior to humans’ impacts offer a 

historic reference condition to compare with the current genetic diversity. In cases where we 

identify loss of genetic diversity based on natural events, other threats may be more important for 

the future persistence of a taxa (Miller and Waits 2003). If we can identify human caused loss of 
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genetic diversity, possible genetic augmentation or other genetic considerations may be 

necessary to ensure the future of such taxa (Frankham 2010). 

Population dynamics in a variable landscape 

The landscape a taxon occupies is heterogeneous at many scales (Lord and Norton 1990), 

and such heterogeneity can possibly influence the persistence of populations. Demographic 

performance, such as survival and fecundity, can vary based on habitat quality; therefore, a 

population’s risk of experiencing disturbance events also may vary as a function of differences in 

habitat quality (Sturtevant et al. 1996, Brachet et al. 1999, Heinrichs et al. 2010). Understanding 

the importance of habitat quality in driving population dynamics, and how these habitats are 

utilized over time informs our knowledge of management needs (Olson et al. 2004, Heinrichs et 

al. 2010). 

Field data on habitat use provides insight into building more realistic population models 

that successfully capture and evaluate relative contributions of life stages and habitat features in 

population persistence (Pascarella and Horvitz 1998, Picό et al. 2002, Olson et al. 2004, 

Heinrichs et al. 2010). Such quantitative approaches have been recognized as important tools for 

use in making management choices, and can provide information to justify management of 

appropriate habitats to ensure persistence of populations (Beissinger and McCullough 2002, 

Morris and Doak 2002, Olson et al. 2004). 

Small rodent as a model system 

In my research I use the P. maniculatus species group, with special emphasis on the 

subspecies of P. polionotus, as my model system. A number of features of this system make it 

tractable for testing patterns of diversity and processes shaping diversity at multiple taxonomic 
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and spatial scales. The P. maniculatus species group is distributed throughout North America 

(Hall 1981, Carleton 1989; Fig. 1.1), with five species recognized within the group: P. 

maniculatus, P. polionotus, P. melanotis, P. keeni and P. sejugis (Chirhart et al. 2005). Of these 

species, P. maniculatus is the most widely distributed and occupies a diverse array of habitats 

(Greenbaum et al. 1978, Carleton 1989). Historically, P. maniculatus was used as an example of 

centrifugal speciation, being a widely distributed central species, with closely related species 

with more restricted distributions at its periphery (Blair 1950, Brown 1957). This species has 

also been recognized for its morphological and geographical variation, which is reflected in the 

recognition of 67 subspecies by Hall (1981). Furthermore, many of these morphological 

differences have been associated with differences in habitat affinities among the subspecies 

(Blair 1950, Carleton 1989). Genetic markers have shown further evidence of geographic 

partitioning of this widely distributed species (Avise et al. 1983, Lansman et al. 1983, Dragoo et 

al. 2006, Kalkvik et al. 2012). The peripheral species in this group are of more limited 

distribution. Peromyscus polionotus is isolated from P. maniculatus and is found in the piedmont 

and coastal plain of the southeastern U.S.A.; P. melanotis is parapatric to P. maniculatus in 

mountain conifer forest areas of Arizona, U.S.A., and central Mexico (Greenbaum et al. 1978). 

Peromyscus keeni is found in northwestern North America, and was recently recognized as a 

species based on genetic variation (Hogan et al. 1993). Peromyscus sejugis is restricted to two 

islands in Baja California (Fig. 1.1; Alvarez-Castañeda 2001). The diversity within the P. 

maniculatus group makes this an excellent model system for addressing diversification at a broad 

scale. 
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Figure 1.1 Distribution of members of the Peromyscus maniculatus species group: P. 

maniculatus (green), P. keeni (blue), P. melanotis (red), P. polionotus (yellow) and P. sejugis 

(black arrow). 

Peromyscus polionotus (old field mouse) has been recognized to have 16 subspecies 

(Hall 1981) and provides a system to address questions on the processes that shape biological 

diversity at the species and population level. This species is nocturnal, monogamous, and semi-

fossorial. The elaborate burrow system limits its distribution to areas with sandy soil in the 

piedmont and coastal plain, particularly in fallow fields, open scrub, sand hill, and coastal dunes 

systems (Fig. 1.2; Bowen 1968, Hall 1981, Whitaker and Hamilton 1998). The burrowing 

behavior has been found to have a strong genetic component in Peromyscus species (Weber and 

Hoekstra 2009). The IUCN red list (accessed July 2012), categorizes subspecies of P. polionotus 

distributed on the mainland of least concern. These subspecies are locally abundant with no 

recognized threats. In contrast, subspecies of P. polionotus distributed along Atlantic and Gulf 

coastal barrier islands, collectively called beach mice, are under threat primarily from habitat 
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loss (Ehrhart 1978, Humphrey and Barbour 1981, Humphrey 1992, Stout 1992). Currently seven 

extant and one recently extinct subspecies are recognized along the barrier islands (Fig. 1.2; Hall 

1981). All but one of the extant beach mouse subspecies are listed as threatened or endangered 

by the U.S. Fish and Wildlife Service. Range reduction and decline in number of populations has 

been attributed to predation by domestic cats and to loss of coastal habitat as a result of urban 

development (Ehrhart 1978, Humphrey and Barbour 1981, Humphrey 1992, Stout 1992). In 

addition, all beach mouse subspecies are vulnerable to severe storms (Holler 1992). 

Phenotypically beach mice are distinguished by having lighter pelage color than the 

mainland subspecies (Sumner 1926, Bowen 1968, Whitaker and Hamilton 1998). The lighter 

pelage has been attributed to differential selective pressures on the mainland compared to barrier 

islands, where lighter often white soil is found (Hoekstra et al. 2006, Steiner et al. 2007, Mullen 

and Hoekstra 2008, Mullen et al. 2009). Some have argued that divergence of these beach mice 

from an ancestral P. polionotus has been driven by this selective pressure (Hoekstra et al. 2006, 

Steiner et al. 2009). Others have argued that divergence could have been caused by random 

genetic drift (Van Zant and Wooten 2007). Regardless of the evolutionary mechanism that has 

led to the formation of these distinct beach subspecies, the processes that shaped the distinct 

phenotypic variation must have occurred within the last 5000-6000 years, as the coastal habitats 

they occupy were formed in the same time period (Wanless and Parkinson 1989, Parkinson and 

White 1994, Mayhew and Parkinson 2007). 
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Figure 1.2 Distribution of Peromyscus polionotus across south-eastern U. S. Subspecies 

designations are based on Hall (1981). Beach mice subspecies are distributed along Florida and 

Alabama barrier islands. † indicates recently extinct taxon. 

Goal of study 

In my doctoral research I addressed ecological and evolutionary questions related to the 

origin and persistence of mammal diversity and the effects of niche occupancy and habitat 

quality at different spatial scales. My research is organized into four chapters, and addresses 

diversity and persistence at species, subspecies and population levels. I have tested hypotheses 

related to four goals. First, I began at a larger spatial scale, where I tested the relationships 

between phylogenetic lineages and climatic environment for the widely distributed P. 

maniculatus species group (Chapter 2). My results showed that diversity within this species 
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group is greatly associated with differences in the environment they occupy. My second goal was 

to address the evolutionary history of subspecies found on the Atlantic coast and to determine 

how they are related to the mainland populations (Chapter 3). This research provided new insight 

into the formation of the Atlantic coast beach mouse subspecies and the genetic relationship 

among both extant and extinct subspecies. My third goal was to test the impact of habitat loss 

and coastal development on the genetic diversity of P. p. niveiventris (Chapter 4). This 

subspecies has experienced an extensive range reduction, and would be a good candidate for 

showing reduced genetic diversity associated with human influences. I obtained samples of P. p. 

niveiventris collected in the 19
th

 and early 20
th

 centuries from natural history museums to test if 

genetic diversity prior to major human developmental pressures was greater than we observe 

today. The results from this study provide greater insight into the historical levels of genetic 

diversity in this subspecies, as well as providing alternatives for future management of this and 

potentially other listed taxa. In my fourth goal, I tested the importance of heterogeneous habitat 

on populations of P. p. niveiventris (Chapter 5). Using demographic and model-derived data, my 

research provides important findings on the likely role of scrub habitat and the population 

dynamics and persistence of this subspecies. The findings in this chapter will inform the 

conservation and management of any taxon that occupies juxtaposed habitats with compositional 

and structural differences.  

Overall my research provides insight into the impact of the natural and anthropogenic 

environment upon which mammal diversity depends. In addition, I provide new information on 

the evolution and persistence of taxa occupying a dynamic landscape in a changing world. 

 



 

11 

References 

Alvarez-Castañeda, S. T. 2001. Peromyscus sejugis. — Mammalian Species 1-2. 

Aubry, K. B. et al. 2009. Phylogeography of the North American red fox: vicariance in 

Pleistocene forest refugia. — Mol. Ecol. 18: 2668-2686. 

Avise, J. C. et al. 1983. Mitochondrial DNA differentiation during the speciation process in 

Peromyscus. — Mol. Biol. Evol. 1: 38-56. 

Barnosky, A. D. et al. 2011. Has the Earth/'s sixth mass extinction already arrived? — Nature 

471: 51-57. 

Beissinger, S. R. and McCullough, D. R. 2002. Population viability analysis. — University of 

Chicago Press. 

Benke, M. et al. 2011. Patterns of freshwater biodiversity in Europe: lessons from the spring 

snail genus Bythinella. — J. Biogeogr. 38: 2021-2032. 

Blair, W. F. 1950. Ecological factors in speciation of Peromyscus. — Evolution 4: 253-275. 

Bowen, W. W. 1968. Variation and evolution of Gulf coast populations of beach mice, 

Peromyscus polionotus. — Bull. Florida State Museum 12: 1-91. 

Brachet, S. et al. 1999. Dispersal and metapopulation viability in a heterogeneous landscape. — 

J. Theor. Biol. 198: 479-495. 

Brown, W. L., Jr. 1957. Centrifugal speciation. — The Quarterly Review of Biology 32: 247-

277. 

Carleton, M. D. 1989. Systematics and evolution. — In: Kirkland, G. L. and Layne, J. N. (eds), 

Advances in the study of Peromyscus (Rodentia). Texas Tech University Press, pp. 7-

142. 



 

12 

Chirhart, S. E. et al. 2005. Microsatellite variation and evolution in the Peromyscus maniculatus 

species group. — Mol. Phylogenet. Evol. 34: 408-415. 

Davis, R. A. J. 1997. Geology of the Florida coast. — In: Randazzo, A. F. and Jones, D. S. (eds), 

The geology of Florida. University Press of Florida, pp. 155-168. 

Dixo, M. et al. 2009. Habitat fragmentation reduces genetic diversity and connectivity among 

toad populations in the Brazilian Atlantic Coastal Forest. — Biol. Conserv. 142: 1560-

1569. 

Dragoo, J. W. et al. 2006. Phylogeography of the deer mouse (Peromyscus maniculatus) 

provides a predictive framework for research on hantaviruses. — J. Gen. Virol. 87: 1997-

2003. 

Ehrhart, L. M. 1978. Pallid beach mouse. — In: Layne, J. N. (ed), Rare and endangered biota of 

Florida. University of Florida. 

Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. — Annu. Rev. Ecol. Evol. 

Syst. 34: 487-515. 

Fahrig, L. and Merriam, G. 1994. Conservation of fragmented populations. — Conserv. Biol. 8: 

50-59. 

Frankham, R. 1997. Do island populations have less genetic variation than mainland 

populations? — Heredity 78: 311-327. 

Frankham, R. 2010. Challenges and opportunities of genetic approaches to biological 

conservation. — Biol. Conserv. 143: 1919-1927. 

Graham, C. H. et al. 2004. Integrating phylogenetics and environmental niche models to explore 

speciation mechanisms in Dendrobatid frogs. — Evolution 58: 1781-1793. 



 

13 

Greenbaum, I. F. et al. 1978. Chromosomal evolution and the mode of speciation in three species 

of Peromyscus. — Evolution 32: 646-654. 

Groom, M. J. et al. 2005. Principles of conservation biology. — Sinauer Associates. 

Hall, E. R. 1981. The mammals of North America. — John Wiley & Sons Inc. 

Heinrichs, J. A. et al. 2010. Assessing critical habitat: Evaluating the relative contribution of 

habitats to population persistence. — Biol. Conserv. 143: 2229-2237. 

Helm, A. et al. 2009. Human influence lowers plant genetic diversity in communities with 

extinction debt. — J. Ecol. 97: 1329-1336. 

Hewitt, G. 2000. The genetic legacy of the Quaternary ice ages. — Nature 405: 907 - 913. 

Hewitt, G. M. 1996. Some genetic consequences of ice ages, and their role, in divergence and 

speciation. — Bio. J. Linn. Soc. 58: 247-276. 

Hewitt, G. M. 2004. Genetic consequences of climatic oscillations in the Quaternary. — Philos. 

Trans. R.Soc. Lond. B Biol. Sci. 359: 183-195. 

Hoekstra, H. E. et al. 2006. A single amino acid mutation contributes to adaptive beach mouse 

color pattern. — Science 313: 101-104. 

Hoffman, E. A. and Blouin, M. S. 2004. Evolutionary history of the northern leopard frog: 

reconstruction of phylogeny, phylogeography, and historical changes in population 

demography from mitochondrial DNA. — Evolution 58: 145-159. 

Hogan, K. M. et al. 1993. Systematic and taxonomic implications of karyotypic, electrophoretic, 

and mitochondrial-DNA variation in Peromyscus from the Pacific Northwest. — J. 

Mammal. 74: 819-831. 

Holler, N. R. 1992. Perdido key beach mouse. — In: Humphrey, S. R. (ed), Rare and endangered 

biota of Florida. University of Florida, pp. 102-109. 



 

14 

Humphrey, S. R. 1992. Anastasia island beach mouse. — In: Humphrey, S. R. (ed), Rare and 

endangered biota of Florida. University of Florida, pp. 94-101. 

Humphrey, S. R. and Barbour, D. B. 1981. Status and habitat of three subspecies of Peromyscus 

polionotus in Florida. — J. Mammal. 62: 840-844. 

Hutchinson, G. E. 1957. Concluding remarks. — Long Island Biological Association. 

Hutchinson, G. E. 1978. An introduction to population ecology. — Yale University Press. 

Kalkvik, H. M. et al. 2012. Investigating niche and lineage diversification in widely distributed 

taxa: phylogeography and ecological niche modeling of the Peromyscus maniculatus 

species group. — Ecography 35: 54-64. 

Kolditz, K. et al. 2012. Geochemistry of Holocene salt marsh and tidal flat sediments on a barrier 

island in the southern North Sea (Langeoog, North-west Germany). — Sedimentology 

59: 337-355. 

Kozak, K. H. and Wiens, J. J. 2006. Does niche conservatism promote speciation? A case study 

in North American salamanders. — Evolution 60: 2604-2621. 

Lacy, R. C. 1987. Loss of genetic diversity from managed populations: interacting effects of 

drift, mutation, immigration, selection, and population subdivision. — Conserv. Biol. 1: 

143-158. 

Lambeck, K. and Chappell, J. 2001. Sea level change through the last glacial cycle. — Science 

292: 679-686. 

Lansman, R. A. et al. 1983. Extensive genetic variation in mitochondrial DNA's among 

geographic populations of the deer mouse, Peromyscus maniculatus. — Evolution 37: 1-

16. 



 

15 

Lavergne, S. and Molofsky, J. 2007. Increased genetic variation and evolutionary potential drive 

the success of an invasive grass. — Proc. Natl. Acad. Sci. 104: 3883-3888. 

Leonard, J. A. 2008. Ancient DNA applications for wildlife conservation. — Mol. Ecol. 17: 

4186-4196. 

Lomolino, M. V. et al. 2005. Biogeography. — Sinauer Associates. 

Lord, J. et al. 1995. Seed size and phylogeny in six temperate floras: constraints, niche 

conservatism, and adaptation. — Am. Nat. 146: 349-364. 

Lord, J. M. and Norton, D. A. 1990. Scale and the spatial concept of fragmentation. — Conserv. 

Biol. 4: 197-202. 

Losos, J. B. et al. 2003. Niche lability in the evolution of a Caribbean lizard community. — 

Nature 424: 542-545. 

MacArthur, R. H. 1972. Geographical ecology: patterns in the distribution of species. — Harper 

& Row. 

Madsen, A. T. et al. 2010. Luminescence dating of Holocene sedimentary deposits on Rømø, a 

barrier island in the Wadden Sea, Denmark. — The Holocene 20: 1247-1256. 

Martínez-Meyer, E. et al. 2004. Ecological niches as stable distributional constraints on mammal 

species, with implications for Pleistocene extinctions and climate change projections for 

biodiversity. — Global Ecol. Biogeogr. 13: 305-314. 

Mayhew, T. A. and Parkinson, R. W. 2007. Holocene evolution of the barrier island system, 

east-central Florida. — Fla. Sci. 70: 383-396. 

Miller, C. R. and Waits, L. P. 2003. The history of effective population size and genetic diversity 

in the Yellowstone grizzly (Ursus arctos): Implications for conservation. — Proc. Natl. 

Acad. Sci. USA. 100: 4334-4339. 



 

16 

Morgan, K. et al. 2011. Comparative phylogeography reveals a shared impact of pleistocene 

environmental change in shaping genetic diversity within nine Anopheles mosquito 

species across the Indo-Burma biodiversity hotspot. — Mol. Ecol. 20: 4533-4549. 

Moritz, C. 2002. Strategies to protect biological diversity and the evolutionary process that 

sustain it. — Syst. Biol. 51: 238-254. 

Morris, W. F. and Doak, D. F. 2002. Quantitative conservation biology: theory and practice of 

population viability analysis. — Sinauer Associates. 

Mullen, L. M. and Hoekstra, H. E. 2008. Natural selection along an environmental gradiate: a 

classic cline in mouse pigmentation. — Evolution 62: 1555-1570. 

Mullen, L. M. et al. 2009. Adaptive basis of geographic variation: genetic, phenotypic and 

environmental differences among beach mouse populations. — Proc. R. Soc. B. 276: 

3809-3818. 

Noss, R. 2005. Hierarchical indicators for monitoring changes in biodiversity. — In: Groom, M. 

J. et al. (eds), Principles of conservation biology. Sinauer Associates, pp. 28-29. 

Noss, R. F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. — Conserv. 

Biol. 4: 355-364. 

Oberle, B. and Schaal, B. A. 2011. Responses to historical climate change identify contemporary 

threats to diversity in Dodecatheon. — Proc. Natl. Acad. Sci. 108: 5655-5660. 

Olson, G. S. et al. 2004. Modeling demographic performance of Northern spotted owls relative 

to forest habitat in Oregon. — J. Wildl. Manage. 68: 1039-1053. 

Parkinson, R. W. and White, J. R. 1994. Late Holocene erosional shoreface retreat within a 

siliciclastic-to-carbonate transition zone, east central Florida, USA. — J. Sed. Res. 64: 

408-415. 



 

17 

Pascarella, J. B. and Horvitz, C. C. 1998. Hurricane disturbance and the population dynamics of 

a tropical understory shrub: megamatrix elasticity analysis. — Ecology 79: 547-563. 

Peterson, A. T. et al. 1999. Conservatism of ecological niches in evolutionary time. — Science 

285: 1265-1267. 

Peterson, A. T. and Vieglais, D. A. 2001. Predicting species invasions using ecological niche 

modeling: new approaches from bioinformatics attack a pressing problem. — Bioscience 

51: 363-371. 

Picό, F. X. et al. 2002. An extended flowering and fruiting season has few demographic effects 

in a Mediterranean perennial herb. — Ecology 83: 1991-2004. 

Previšić, A. N. A. et al. 2009. Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, 

Limnephilidae) in multiple microrefugia within the Balkan Peninsula. — Mol. Ecol. 18: 

634-647. 

Pyron, R. A. and Burbrink, F. T. 2009. Lineage diversification in a widespread species: roles for 

niche divergence and conservatism in the common kingsnake, Lampropeltis getula. — 

Mol. Ecol. 18: 3443-3457. 

Raxworthy, C. J. et al. 2007. Applications of ecological niche modeling for species delimitation: 

a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. — 

Syst. Biol. 56: 907 - 923. 

Reding, D. et al. 2010. Spatial and temporal patterns of genetic diversity in an endangered 

Hawaiian honeycreeper, the Hawaii Akepa (Loxops coccineus coccineus). — Conserv. 

Genet. 11: 225-240. 

Reed, D. H. and Frankham, R. 2003. Correlation between fitness and genetic diversity. — 

Conserv. Biol. 17: 230-237. 



 

18 

Rowe, K. C. et al. 2004. Surviving the ice: Northern refugia and postglacial colonization. — 

Proc. Natl. Acad. Sci. USA. 101: 10355-10359. 

Saccheri, I. et al. 1998. Inbreeding and extinction in a butterfly metapopulation. — Nature 392: 

491-494. 

Schluter, D. 2001. Ecology and the origin of species. — Trends Ecol. Evol. 16: 372-380. 

Schluter, D. 2009. Evidence for ecological speciation and its alternative. — Science 323: 737-

741. 

Schwartz, M. K. et al. 2007. Genetic monitoring as a promising tool for conservation and 

management. — Trends Ecol. Evol. 22: 25-33. 

Steiner, C. C. et al. 2009. The genetic basis of phenotypic convergence in beach mice: similar 

pigment patterns but different genes. — Mol. Biol. Evol. 26: 35-45. 

Steiner, C. C. et al. 2007. Adaptive variation in beach mice produced by two interacting 

pigmentation genes. — PLoS Biology 5: e219. 

Stout, I. J. 1992. Southeastern beach mouse. — In: Humphrey, S. R. (ed), Rare and endangered 

biota of Florida. University of Florida, pp. 242-249. 

Sturtevant, B. R. et al. 1996. Temporal and spatial dynamics of boreal forest structure in western 

Newfoundland: silvicultural implications for marten habitat management. — For. Ecol. 

Manage. 87: 13-25. 

Sumner, F. B. 1926. An analysis of geographic variation in mice of the Peromyscus polionotus 

group from Florida and Alabama. — J. Mammal. 7: 149-184. 

Svenning, J. C. and Skov, F. 2007. Ice age legacies in the geographical distribution of tree 

species richness in Europe. — Global Ecol. Biogeogr. 16: 234-245. 



 

19 

Taylor, S. S. et al. 2007. Historic and contemporary levels of genetic variation in two New 

Zealand passerines with different histories of decline. — J. Evol. Biol. 20: 2035-2047. 

Van Zant, J. L. and Wooten, M. C. 2007. Old mice, young islands and competing 

biogeographical hypotheses. — Mol. Ecol. 16: 5070-5083. 

Wake, D. B. and Vredenburg, V. T. 2008. Are we in the midst of the sixth mass extinction? A 

view from the world of amphibians. — Proc. Natl. Acad. Sci. 105: 11466-11473. 

Wandeler, P. et al. 2007. Back to the future: museum specimens in population genetics. — 

Trends Ecol. Evol. 22: 634-642. 

Wanless, H. R. and Parkinson, R. W. 1989. Late Holocene sealevel history of Southern Florida: 

control of coastal stability. Proceedings of the Eighth Symposium on Coastal 

Sedimentology, Coastal Sediment Mobility. pp. 197-214. 

Webb, C. O. et al. 2002. Phylogenies and community ecology. — Annu. Rev. Ecol. Syst. 33: 

475-505. 

Weber, J. N. and Hoekstra, H. E. 2009. The evolution of burrowing behaviour in deer mice 

(genus Peromyscus). — Animal Behaviour 77: 603-609. 

Whitaker, J. O., Jr. and Hamilton, W. J., Jr. 1998. Mammals on the eastern United States. — 

Cornell University Press. 

Wiens, J. J. and Graham, C. H. 2005. Niche conservatism: integrating evolution, ecology, and 

conservation biology. — Annu. Rev. Ecol. Syst. 36: 519-539. 

Wilson, A. B. and Eigenmann Veraguth, I. 2010. The impact of Pleistocene glaciation across the 

range of a widespread European coastal species. — Mol. Ecol. 19: 4535-4553. 

  



 

20 

CHAPTER 2. INVESTIGATING NICHE AND LINEAGE 

DIVERSIFCATION IN WIDELY DISTRIBUTED TAXA: 

PHYLOGEOGRAPHY AND ECOLOGICAL NICHE MODELING OF THE 

PEROMYSCUS MANICULATUS SPECIES GROUP
1 

 

Introduction 

A fundamental question in speciation concerns the influence of the ecological niche on 

lineage divergence. Most of the current discussion on the relationship between lineage 

divergence and the ecological niche is dominated by two prevailing hypotheses: niche 

conservatism and niche divergence. Niche conservatism predicts that closely related taxa retain 

ancestral ecological affiliations and persist in similar environments. This may be caused by 

stabilizing selection or lack of variation in ancestral traits (Lord et al. 1995, Webb et al. 2002, 

Wiens and Graham 2005), but niche conservatism is primarily a pattern of evolution and by itself 

does not explain causality (Losos 2008). Empirical work has shown that divergence of allopatric 

sister taxa is often characterized by niche conservatism, whereby geographic isolation influences 

the pattern of speciation without shifts in niche dimensions (e.g., Peterson et al. 1999, Peterson 

2001, Kozak and Wiens 2006). The alternative hypothesis, niche divergence, predicts that sister 

taxa will occupy different niches. Under this hypothesis, being adapted to different 

environmental conditions can promote lineage divergence, even in sympatry. Evidence is 

accumulating that sister taxa often exhibit niche divergence and that niche evolution may be 

more common than initially assumed (e.g. Losos et al. 2003, Graham et al. 2004, Pyron and 

Burbrink 2009, Dormann et al. 2010). Differences in niche space can be observed in recently 

diverged taxa, as researchers have found that niches can shift in as little as 104-105 years (Evans 

                                                      
1
 Kalkvik, H. M. et al. 2012. Investigating niche and lineage diversification in widely distributed taxa: phylogeography and 

ecological niche modeling of the Peromyscus maniculatus species group. — Ecography 35: 54-64. 
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et al. 2009). In these cases, the environment may function as a barrier to gene flow if two or 

more allopatric lineages are separated by suboptimal conditions (Rissler and Apodaca 2007). 

Alternatively, adaptation to different local and regional environmental conditions may prevent 

lineages from interacting, thus reducing gene flow even when distributed in sympatry or 

parapatry (Wiens and Graham 2005). 

Widely distributed species are ideal for studying the relationship between lineage 

divergence and niche divergence. Such taxa often show patterns of genetic or phenotypic 

structure along environmental gradients, as heterogeneous landscapes tend to foster adaptation to 

distinct niches (Avise et al. 1987). In North America and Europe, many widespread species are 

divided into distinct lineages that have either allopatric or parapatric distributions (e.g., Taberlet 

et al. 1998, Hoffman and Blouin 2004, Fontanella et al. 2008). However, little attention has been 

given to the possible influence that the environment might have on the diversification and 

maintenance of these lineages. 

Phylogeography has been widely used to identify diverging lineages in a spatial context 

(e.g., Lansman et al. 1983) and is currently the most utilized tool for investigating the connection 

between micro- and macroevolutionary processes related to speciation (Hickerson et al 2010). 

This approach identifies evolutionary relationships and the spatial component of the formation 

and maintenance of biodiversity (Avise et al. 1987, Avise 2000). This spatial component has 

usually been limited to geographic distances, which unfortunately ignores a great deal of 

environmental complexity that may impact taxa (Graham et al. 2004). Recent studies have 

combined phylogeography and ecological niche modeling (ENM) to understand the relationship 

of distributions and niche spaces with speciation and the maintenance of genetic variation 

(Graham et al. 2004, Rissler and Apodaca 2007, Jakob et al. 2009, Pyron and Burbrink 2009). 
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Ecological niche modeling for taxa with wide distributions can help identify contact zones 

between lineages, quantify their spatial overlap, and explore the possible nature of their isolation 

(Kozak et al. 2008). 

Our application of ENM parallels species distribution models (SDM), and predicts spatial 

distributions of taxa based on occurrence records and environmental data (Elith and Leathwick 

2009). The predicted spatial distribution gives an estimate of the ecological niche: the multi-

dimensional environmental space that bounds a species’ persistence (Hutchinson 1978). Utilizing 

the ENM approach facilitates the testing of correlations between lineage diversification and the 

environmental setting those lineages occupy. 

To test for the association between environmental conditions and lineage divergence, we 

used the widely distributed mammal species Peromyscus maniculatus and the more narrowly 

distributed P. polionotus as a model system. These taxa belong to a species group first defined by 

Osgood (1909) and are distributed throughout North America (Hall 1981, Carleton 1989). 

Diverse habitat conditions occur over the geographic distribution of P. maniculatus, which may 

have led to isolation of populations. Phylogeographic lineages have previously been identified in 

P. maniculatus (Lansman et al. 1983, Dragoo et al. 2006, Gering et al. 2009), and morphotypes 

associated with different habitats have also been observed (Blair 1950, Carleton 1989). 

Morphological variation is further reflected in the recognition of 67 subspecies within P. 

maniculatus (Hall 1981). The closely related species P. polionotus is restricted to the 

southeastern United States, where it is hypothesized to have diverged from a grassland form of 

P. maniculatus (Carleton 1989). Until recently, limited data were available to address the origin 

of P. polionotus. Through the efforts of this and other research (Dragoo et al. 2006, Degner et al. 

2007, Van Zant and Wooten 2007, Gering et al. 2009), we compiled a comprehensive dataset for 
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these two species to evaluate the evolutionary relationships of these taxa and to explore the 

relationship of environment to lineage divergence between and within these species. Thus we: 

(1) inferred phylogeographic relationships among individuals of P. maniculatus and P. 

polionotus, (2) established whether phylogeographic lineages occupy distinct climatic niches, 

and (3) predicted distributions of each lineage to determine potential overlap and contact zones. 

Materials and Methods 

Taxon Sampling 

We assembled a cytochrome b (cyt b) data set using 478 samples that were obtained 

throughout the known range of P. maniculatus and P. polionotus. A total of 343 P. maniculatus 

(DQ385628-DQ385827; EF666142-EF666277; EU006766-EU006772), 38 P. polionotus 

(EF216336-EF216347; EU140757-EU140793), 2 P. keeni (DQ385716 and EU140797), and 5 P. 

melanotis (DQ385626 and EU574689-EU574701) sequences were obtained from GenBank 

(Dragoo et al. 2006, Degner et al. 2007, Van Zant and Wooten 2007, Gering et al. 2009). 

Additionally, 89 tissue samples of P. polionotus, representing 9 populations, were collected from 

peninsular Florida. Published sequences from two additional species were included as outgroups: 

P. gossypinus (DQ385625; Dragoo et al. 2006), and P. leucopus (AF131926; Bradley et al. 

2000). 

DNA Extraction and Sequencing 

DNA from collected samples was extracted using a DNeasy tissue kit (Qiagen). We 

amplified the complete mitochondrial (mtDNA) cyt b gene using the primers 14724F and TD-20 

(Van Zant and Wooten 2007). PCR conditions followed Herron et al. (2004). Sequencing was 

conducted by the Nevada Genomics Center (Reno, Nevada, United States) using an ABI 3730 
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sequencer and chromatograms were edited using Sequencher v.4.7 (Gene Codes Corp.). 

Alignments of the sequences were made by visual inspection using GeneDoc v.2.6 (Nicholas et 

al. 1997). GenBank accession numbers for sequences generated by this study are listed in Table 

2.1. 

Phylogenetic Analysis 

We identified haplotypes and reduced redundancy in the data with TCS (Clement et al. 

2000), which estimates a haplotype network with maximum parsimony. The output includes a 

list of individuals with the same haplotypes, and only one representative of each haplotype was 

included in the final alignment. Phylogenetic analyses were conducted using Bayesian inference 

(BI; MrBayes v.3.1.2; Huelsenbeck and Ronquist 2001) and maximum likelihood (ML; RAxML 

v.7.0; Stamatakis et al. 2008). We used Bayes factors to determine the best partitioning strategy 

in BI (Brandley et al. 2005). Preliminary analyses yielded a two-partition model, with 1
st
 and 2

nd
 

codon positions together and the 3
rd

 position separate. Substitution models for each partition in 

BI and ML were identified by MrModelTest v.2.4 using the Akaike Information Criterion 

(Nylander 2004). For BI we initiated two independent Markov Chain Monte Carlo (MCMC) 

runs, each with four chains, and ran them for 10
7
 generations, sampling every 1000 generations. 

Using Tracer v.1.4 (Rambaut and Drummond 2007), we determined stationarity and 

conservatively discarded 2 x 10
6
 generations as burn-in. We estimated a ML phylogeny using 

RAxML v.7.0 (Stamatakis et al. 2008), on the Cipres Portal v.2.0 

(http://www.phylo.org/portal2). We determined bootstrap values (BS) for ML using 100 pseudo-

replicates. We defined lineages based on monophyly and with individuals inhabiting a 

geographically distinct area (Wiens and Penkrot 2002). 
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Table 2.1. Cyt b haplotypes from the 9 new sampled locations of P. polionotus used in 

phylogeographic analysis. Two haplotypes (EF) were the same as reported by Degner et al. 

(2007). 

Location Genbank Accession# 

Pelican Island National Wildlife Refuge, Indian 

River County, FL 

EF216337 

Archbold Biological Station, Highlands County, FL EF216346, JF322885, JF322886, 

JF322887 

Avon Park Air Force Range, Highlands County, FL JF322885, JF322887 

Suwannee Ridge WEA, Suwannee County, FL JF322893, JF322894, JF322895, 

JF322896 

Ocala National Forest, Marion County, FL JF322888, JF322889, JF322890, 

JF322891, JF322892 

Anastasia State Park, St. Johns County, FL JF322897 

Fort Matanzas, St. Johns County, FL JF322897 

Crescent Beach, St. Johns County, FL JF322897 

Frank Butler Park, St. Johns County, FL JF322897 

 

Taxon and Environmental Sampling for Estimating Climatic Niche 

We estimated the niche using two approaches. First we utilized multivariate statistics on 

climate conditions at lineage occurrence points, which provided information on the climatic 

niche based on the variables alone. Second we conducted niche modeling, which projects the 

climatic niche across a geographic region. For both approaches we included the lineages 

recovered in the phylogenetic analysis of P. maniculatus and P. polionotus that had more than 

five location points. We georeferenced our genetic samples based on museum voucher locations, 

locale descriptions from original papers, and personal communication with the authors of 

original papers (Dragoo et al. 2006, Degner et al. 2007, Van Zant and Wooten 2007, Gering et al. 

2009). Our analysis included only one sample per location. 

We utilized climatic variables obtained from the WorldClim database with a resolution of 

30 arc-seconds (Hijmans et al. 2005). As temperature and precipitation can impact the metabolic 
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rate of Peromyscus species (MacMillen and Garland Jr 1989), climate could provide insight into 

the spatial distribution of Peromyscus species. Additionally, we incorporated an altitude layer 

from the Shuttle Radar Topography Mission (SRTM) data set, as Peromyscus species exhibit 

different torpor patterns depending upon the elevation they occupy (Tannenbaum and Pivorun 

1984).  

Some of the environmental variables are highly correlated and could over-parameterize 

the models. To reduce over-parameterization we identified and eliminated correlated variables 

using the methods of Rissler and Apodaca (2007). We extracted climatic and altitude data across 

North America for 10
5
 randomly generated points; for each pair of variables we estimated 

Pearson correlation coefficients using JMP v.8.0 (SAS Institute Inc.). For those pairs of variables 

that exceeded our threshold of r = 0.75, we included the variable which was most biologically 

meaningful. We incorporated 12 variables, one quantifying altitude and the others quantifying 

variation in temperature and precipitation: annual mean temperature, mean diurnal temperature 

range, isothermality, annual temperature range, mean temperature of wettest quarter, mean 

temperature of coldest quarter, seasonal precipitation, precipitation of wettest quarter, 

precipitation of driest quarter, precipitation of warmest quarter, and precipitation of coldest 

quarter. 

Estimation of Climatic Niche by Occurrence Points 

We tested for significant differences in the climatic niche based on occurrence points of 

all lineages using two methods. First, we used parametric multivariate statistics to compare the 

multi-dimensional climatic values between sample locations. We extracted climatic and altitude 

values for each georeferenced genetic sample using ArcGIS v.9.2 (ESRI, Redlands, CA, USA). 

We square-root transformed those variables not found to be normally distributed: altitude, mean 
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diurnal temperature range, precipitation of wettest quarter, precipitation of driest quarter, 

precipitation of warmest quarter, and precipitation of coldest quarter. We evaluated homogeneity 

of variances based on Levene’s test conducted in SPSS v.18.0, and all variables met this 

assumption. Overall significant differences among the climatic spaces that the lineages occupy 

were determined using a multivariate analysis of variance (MANOVA) in SPSS v.11.0. 

As a second approach to compare climatic niches among lineages, we used parametric 

discriminant analysis (DA). Discriminant analysis maximizes explained variation based on a 

priori defined groups and ordinates the variables at occurrence points. Ordination reduces the 

number of variables needed to explain the variation among the groups, and removes collinearity 

among ordination axes for subsequent analysis. For the DA analyses, groups were defined as the 

lineages inferred by phylogenetic analysis. Canonical scores (CV) for the DA were determined in 

JMP v.7.0. To determine differences in CV among lineages, we estimated the centroid and 95% 

confidence interval (CI) for each lineage. Lack of overlap of the 95% CI in at least one of the CV 

axes suggested deviation in the environmental space we estimated for the lineages. 

Testing for Spatial Autocorrelation 

Differences in environmental space among phylogenetic lineages can be the result of 

spatial autocorrelation. We accounted for this potential bias by performing a partial Mantel test 

to assess the correlation between environmental and genetic differences while controlling for 

geographic distance. Environmental differences that were positively correlated with genetic 

divergence, independent of geographic distance, would suggest that genetic divergence is truly 

associated with changes in the environment. Statistical significance was estimated based on 999 

permutations, with α = 0.05, using the vegan v.1.13 package in R v.2.6 (Oksanen 2009). 

Environmental differences were estimated as the Euclidian distance of CVs among sample 
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locations. We calculated genetic distance with MEGA v.4.0 (Tamura et al. 2007) using a 

Kimura-2-parameter model and gamma-distributed rate variation. Geographic distance was 

estimated using the package fields v.4.1 in R (Fields Development Team 2006). 

Estimation of Climatic Niche by Niche Modeling 

The analyses above are limited to point locations, therefore we used a niche model to 

project the environmental space utilized by a lineage and to test for environmental and 

geographic association among and between phylogenetic lineages. We created niche models with 

Maxent v.3.2, which estimates distributions based upon niche characteristics using a maximum 

entropy algorithm (Phillips et al. 2006, Phillips and Dudík 2008). Maximum entropy is useful for 

estimating distributions when absence data are lacking (Phillips et al. 2006) and generally 

performs better than other distribution modeling approaches (Elith et al. 2006, Wisz et al. 2008). 

Maxent incorporates a method of regularization for selecting environmental variables when 

building models. This reduces the need to select environmental variables to avoid over-

parameterization, yet some variable selection is recommended to reduce collinearity (Elith et al. 

2011). To increase the sample size for creating the model, we included additional locations from 

natural history museums. Locations were provided by Field Museum of Natural History, Cornell 

University, Florida Museum of Natural History, Los Angeles County Museum of Natural 

History, Louisiana State University Museum of Zoology, Museum of Southwestern Biology, 

Mississippi State University, Museum of Vertebrate Zoology, Paleobiology Database, Santa 

Barbara Museum of Natural History, University of Alaska Museum of the North, University of 

Colorado Museum of Natural History, University of Washington, and Yale Peabody Museum 

(Accessed through GBIF Data Portal, www.gbif.net, 20 April 2009). A minimum convex 

polygon (MCP) was created using known occurrence points from each phylogenetic lineage, and 



 

29 

museum specimens for locations within each MCP were assigned to the appropriate lineage. A 

GIS shape file of the locations used in the analysis is available upon request. 

The occurrence data were randomly partitioned into training (75%) and test (25%) 

datasets to evaluate the accuracy of each model. We determined model accuracy by calculating 

the area under the curve (AUC) of the receiver operating characteristic (ROC) plot (Phillips et al. 

2006). In Maxent the AUC is the probability, ranging from 0 to 1, that a random presence 

location is ranked above a random background site (Phillips et al. 2006). A value of 1 implies a 

perfect fit, 0.5 no different than random, and < 0.5 suggests the model performs worse than 

random expectation. Models with AUC values above 0.75 are considered good, and models with 

AUC > 0.90 are considered excellent (Swets 1988, Elith 2002). We determined the best model 

for each lineage in Maxent by running iterations until the probability of change was 1.0 x 10
-5

, or 

after a maximum of 500 iterations. To identify contact zones and quantify levels of sympatry or 

parapatry, we estimated the spatial overlap in predicted distributions between all genetic lineages 

included in the analysis. We used the minimum training presence, which is the minimum 

probability of occurrence in the modeled distribution, for each model as the threshold to create 

maps of suitable climatic niche for each lineage. Overlap between two lineages was calculated as 

the proportion of cells where conditions were predicted to be suitable for both lineages. All 

estimates of overlap were conducted using ArcGIS v.9.2. 

We utilized the niche equivalency method proposed by Warren et al. (2008) to determine 

differences in the niche between lineages based on entire distributions. We first measured niche 

overlap between distributions by calculating two indices: Schoener’s D (Schoener 1968), and I 

(Warren et al. 2008). Both measures give pair-wise niche overlap with values ranging from 0 (no 

overlap) to 1 (identical niche models). Then, we used the niche equivalency test in ENMtools 
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(Warren et al. 2008) to determine niche differences. This is a one-tailed test which determines if 

niche models are significantly dissimilar from random by comparing the observed D and I to a 

null distribution. The null distribution is derived from pseudo-replicate distributions by randomly 

assigning lineage membership to the occurrence data for two lineages. Subsequently, D and I are 

estimated for the resulting models. This is repeated several times to create the null distribution 

for D and I (Warren et al. 2008). We compared all pair-wise combinations of lineages to assess 

differences in both sister and non-sister taxa. We calculated D and I for each comparison using 

100 pseudo-replicates. Because the spatial scale of this study caused computational constraints in 

estimating the null distributions of D and I, we reduced the spatial resolution of the 

environmental layers to 2.5 minutes when inferring the pseudo-replicate niche models as 

suggested by Pyron and Burbrink (2009). However, changing the scale of the environmental 

layers has the potential to significantly change the estimated models (Guisan et al. 2007). To 

ensure that changing the resolution of the environmental layers did not result in overestimating 

niche similarity of the null distribution, we estimated D and I between each lineage for niche 

models created using the lower resolution climatic and altitude data. 

Results 

Phylogenetic Analysis 

The cyt b sequence alignment consisted of 1154 base pairs with 274 (23.7%) parsimony 

informative characters. The sample consisted of 350 haplotypes representing the majority of the 

geographical distribution of P. maniculatus and P. polionotus. We identified 13 new cyt b 

haplotypes from the 89 P. polionotus individuals sampled for this study (Table 2.1). 
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GTR+I+G was the optimal nucleotide substitution model for both partitions as 

determined by MrModelTest. BI and ML methods produced similar topologies, but ML did not 

resolve deeper divergences in the phylogeny. We identified 6 lineages within P. maniculatus 

(Fig. 2.1) that were distinct monophyletic groups located in geographically distinct areas. 

Lineage 1 was a well supported clade (posterior probability (PP) = 1.00; bootstrap (BS) = 70) 

associated with the Pacific coast and Rocky Mountains (lineage 1; Fig. 2.1 and Fig. 2.2), and its 

sister lineage was restricted to the grasslands of the central United States (lineage 2; Fig. 2.2). 

Lineage 2 was less well supported (PP = 0.65; BS = 74; Fig. 2.1), but due to their allopatric 

distributions we consider lineages 1 and 2 as distinct. Two strongly supported sister lineages 

were identified in northeastern North America (lineage 3; PP = 0.99; BS = 86; lineage 4; PP = 

1.00; BS = 77; Fig. 2.1). Clades 3 and 4 overlap in part of their ranges based on sample locations 

(Fig. 2.2). Lineage 5 was identified in southern New Mexico based on a limited number of 

sequences (PP = 1.00, BS = 98; Fig. 2.1). An additional clade was inferred by BI that extends 

from the Baja California peninsula to California and Nevada (lineage 6; PP = 1.00; BS < 50; Fig. 

2.1 and Fig. 2.2). 

We determined that two of the other members of the species group, P. polionotus and P. 

keeni, rendered P. maniculatus paraphyletic. Peromyscus keeni formed a clade based on BI (PP = 

0.97). This lineage seems to be associated with the western lineages (lineage 6), but the 

relationship is poorly supported (PP = 0.58; BS < 50). Peromyscus polionotus forms a strongly 

supported clade (PP = 1.00; BS = 99) that is nested within P. maniculatus. Both BI and ML place 

P. melanotis as the sister species to the remaining members of the P. maniculatus species group 

(PP = 1.00; BS = 100). 
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Estimated Climatic Niche and Niche Modeling 

We modeled P. polionotus and the five most widespread lineages of P. maniculatus 

(lineage 1, 2, 3, 4 and 6; Fig. 2.2). Lineage 5 was only identified by 4 sample locations, covering 

an area of just over 7 km
2
. With such limited spatial information we did not include this lineage 

in the niche modeling because extremely small sample numbers may not produce accurate 

models (Hernandez et al. 2006, Wisz et al. 2008). 

 

Figure 2.1. Phylogram based on Bayesian inference of cyt b sequences of the P. maniculatus 

species group. Nodal support given by Bayesian posterior probability (PP) above the line, and 

maximum likelihood bootstrap (BS) below line. Values below 0.5 indicated by a dash (–). 

Numbers indicate lineages of interest within P. maniculatus. 
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Figure 2.2. Spatial distribution of P. polionotus and six monophyletic lineages of P. maniculatus 

based on phylogenetic analysis of cyt b. Distribution for the two species shown as shaded area: 

P. maniculatus in light grey and P. polionotus in dark grey. Scale bars equal 1000 km. 

 

Among the sample locations of the six lineages included in our analysis, we found a 

significant overall difference in the climatic and altitude variables at occurrence points 

(MANOVA, Wilks’ lambda = 0.007, F60, 542 = 17.4, p < 0.001). Discriminant analysis indicated 

93.4% of environmental variation among the genetic lineages was explained by the first two 

canonical scores (CV; Fig. 2.3). The first axis explained 74.3% of the variation and was 

primarily determined by mean diurnal temperature range. The second axis explained 19.1% of 

the variation and was determined mainly by precipitation of the driest quarter and precipitation 

of the warmest quarter. On the first axis, 95% confidence intervals overlap for only lineages 3 

and 4 (Fig. 2.3). Along the second axis, lineages 1, 2 and 6 formed a group, separate from a 

second group where lineages 3 and 4 overlap. The P. polionotus lineage remained separate on 
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the second axis (Fig. 2.3). Discriminant analysis supports the MANOVA result of separation in 

the environmental space among the lineages. Overall the lineages differ in their environmental 

space, based on the canonical scores. The only lineages without differentiation on either axis 

were lineages 3 and 4. 

 

Figure 2.3. Result of discriminant analysis for testing divergence in environmental space for five 

phylogenetic lineages of P. maniculatus and P. polionotus, based on 11 climatic layers and 

altitude. Percent explained variation for each CV is reported for both axes; total variation 

explained was 93.3%. Each point represents the centroid for each lineage; error bars show the 95 

% confidence interval. 

 

Among the lineages we found a positive correlation among the lineages between genetic 

distance and environmental distance when geographic distance was controlled (r = 0.562; p = 

0.001; Table 2.2). We also observed a significant positive correlation within lineages 3 and 4 

(lineage 3, r = 0.412, p = 0.020; lineage 4, r = 0.272, p = 0.004; Table 2.2). Within the remaining 
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lineages (1, 2, 6 and P. polionotus) we found no correlation between genetic and environmental 

distance when we controlled for geographic distance (Table 2.2). 

Table 2.2. Estimated correlation coefficients between genetic and environmental distance 

comparing sample locations of P. maniculatus lineages and P. polionotus, with geographic 

distance controlled using a partial Mantel test. 

Genetic lineage r P-value 

All combined 0.562 0.001
* 

Lineage 1 0.078 0.258 

Lineage 2 0.094 0.296 

Lineage 3 0.412 0.020
*
 

Lineage 4 0.272 0.004
*
 

Lineage 6 -0.018 0.497 

P. polionotus -0.053 0.628 

*significance at α = 0.05 

We developed distribution models using 189 locations for P. maniculatus lineage 1, 45 

for lineage 2, 55 for lineage 3, 40 for lineage 4, 107 for lineage 6, and 64 for P. polionotus. Each 

model showed high specificity with AUC values for the test dataset ranging from 0.903 to 0.996.  

These models exhibited little overprediction outside of the locations included to create the 

models (Fig. 2.4). The minimum probability of occurrence for training points ranged from 0.066 

for lineage 6 to 0.256 for lineage 2. The most important variables for each model were different. 

Mean temperature for driest quarter was most important for lineages 2 and 3, while precipitation 

of the warmest quarter was most important for lineage 6 and P. polionotus. The remaining 

models had the following greatest weight of variables: lineage 1 (isothermality), and lineage 4 

(precipitation of driest quarter). For each model we determined that four variables were needed 

to explain 84% or more of the variation, with the remaining variables providing little information 

to the predicted distributions. 

Distributional overlap ranged from 0.0% - 44.4% (Table 2.3). The distribution of P. 

polionotus did not overlap with any other predicted distributions. An overlapping area between 



 

36 

lineages 1 and 2 existed at the eastern edge of the Rocky Mountains that made up 6.7% of the 

total predicted area (Table 2.2, Fig. 2.5A). Distributions of lineages 1 and 6 overlapped in 

California (15.5%; Table 2.3; Fig. 2.5B). Overlap between lineages 2 and 4 occurred in the 

central prairie region of the United States (5.6%; Table 2.3, Fig. 2.5C). Lineages 3 and 4 had the 

highest overlap (44.4%) of their predicted distributions, encompassing much of the northeastern 

United States (Table 2.3, Fig. 2.5D). 

 Based on our estimates of niche overlap, we found D to range from 0.001 to 0.609, with 

lineage 2 and P. polionotus showing the largest differences while lineages 3 and 4 are the most 

similar (Table 2.3). All values are significantly different than predicted by randomly choosing 

location points for any of the pair-wise comparisons. Values of I showed the same pattern 

observed using D and ranged from 0.295 to 0.706 (Table 2.3). Niche overlap according to I 

indicated the lowest overlap between lineages 2 and P. polionotus and the highest overlap 

between lineages 3 and 4. All comparisons remained significant for both D and I when models 

were estimated from lower resolution environmental layers. This suggests that changing the 

resolution did not change our inferences of overlap in niche among lineages. Again, all 

comparisons show significantly lower values of overlap than expected by random processes 

(Table 2.3). 
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Figure 2.4. Predicted distribution using Maxent for (A) P. maniculatus lineage 1, (B) lineage 2, 

(C) lineage 3, (D) lineage 4, (E) lineage 6, and (F) P. polionotus. Lineages were determined 

based on phylogenetic analysis (see Fig. 2.1). Distribution was determined based on 12 

environmental variables. Shades indicate probability of occurrence, with darker shade being 

higher likelihood. Scale bars show 1000 km on each map. 
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Figure 2.5. Overlap between predicted distributions of lineages using minimum training presence 

criterion as threshold of presence of suitable niche space. Grey areas are predicted allopatric 

while black areas are predicted overlap. (A) Predicted distribution of overlap between lineages 1 

(light) and 2 (dark), (B) lineages 1 (light) and 6 (dark), (C) lineages 2 (light) and 3 (dark), and 

(D) lineages 3 (dark) and 4 (light). Scale bars show 1000 km on each map. 
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Table 2.3. Percent geographic overlap in spatial niche space predicted by Maxent using 

minimum training presence criterion as thresholds for probability of occurrence of P. polionotus 

and 5 lineages of P. maniculatus. In addition, measures of niche overlap between genetic 

lineages of P. maniculatus and P. polionotus, using indices D and I proposed by Warren et al. 

(2008). Significance for the two indices determined by 100 pseudo-replicates in ENMtools, 

testing for significant difference in niche space than that expected by chance. Significance 

determined at α = 0.05. 

 

Lineage pair 
Percent 

overlap 
D P-value I P-value 

Lineage 1 vs. Lineage 2 6.7% 0.149 < 0.001 0.419 < 0.001 

Lineage 1 vs. Lineage 3 1.6% 0.049 < 0.001 0.355 < 0.001 

Lineage 1 vs. Lineage 4 4.7% 0.052 < 0.001 0.362 < 0.001 

Lineage 1 vs. Lineage 6 15.5% 0.280 < 0.001 0.533 < 0.001 

Lineage 1 vs. P. polionotus 0.0% 0.011 < 0.001 0.308 < 0.001 

Lineage 2 vs. Lineage 3 5.6% 0.109 < 0.001 0.403 < 0.001 

Lineage 2 vs. Lineage 4 0.9% 0.042 < 0.001 0.343 < 0.001 

Lineage 2 vs. Lineage 6 0.0% 0.015 < 0.001 0.309 < 0.001 

Lineage 2 vs. P. polionotus 0.0% 0.001 < 0.001 0.295 < 0.001 

Lineage 3 vs. Lineage 4 44.4% 0.609 < 0.001 0.706 < 0.001 

Lineage 3 vs. Lineage 6 0.0% 0.006 < 0.001 0.303 < 0.001 

Lineage 3 vs. P. polionotus 0.0% 0.012 < 0.001 0.321 < 0.001 

Lineage 4 vs. Lineage 6 0.0% 0.012 < 0.001 0.307 < 0.001 

Lineage 4 vs. P. polionotus 1.1% 0.024 < 0.001 0.333 < 0.001 

Lineage 6 vs. P. polionotus 0.0% 0.007 < 0.001 0.304 < 0.001 

 

Discussion 

As predicted, our phylogenetic analysis recovered distinct genetic lineages among 

members of the Peromyscus maniculatus species group. We also recovered distinct 

phylogeographic lineages within P. maniculatus similar to those found by other researchers 

(Lansman et al. 1983, Gering et al. 2009). These data add another example to the library of 

widely distributed species that show phylogeographic structure across North America (e.g., 

Hoffman and Blouin 2004, Pyron and Burbrink 2009). It should be noted that our phylogenetic 

inference relies on a single mitochondrial marker, which has its limitations. Increasingly, the 
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fields of phylogenetics and phylogeography are utilizing multilocus approaches (Brito and 

Edwards 2009). Individual loci may not represent the evolutionary history of species as the locus 

itself is subject to evolutionary forces beyond those affecting the lineage. However, the majority 

of diversification events within the P. maniculatus species group occurred during the Pleistocene 

(Zheng et al. 2003, Van Zant and Wooten 2007), and adding nuclear gene sequences might not 

necessarily provide additional information (Martins et al. 2009). 

The climatic analysis and ENM results for P. maniculatus and P. polionotus show that 

genetic divergence is correlated with niche divergence. Almost all lineages occupy significantly 

different climatic niches based on multiple lines of evidence. Our two multivariate statistical 

approaches, MANOVA and DA, support our interpretation that the phylogenetic lineages occupy 

significantly different climatic envelopes (Fig. 2.3). These two methods both utilize an a priori 

assumption of grouping data (i. e., phylogenetic lineages); however, we came to the same 

conclusion when using a principal component analysis (results not shown), which have no a 

priori requirement. The MANOVA and DA analyses are limited to known sample locations; 

however, by incorporating ENM we estimated the climatic and geographic distribution beyond 

the sample locations, and found lineages to be associated with significantly different climatic 

niches (Fig. 2.4; Table 2.3). The differences we observed in the climatic niches are not an artifact 

of geographic distance, as our partial Mantel test showed a positive correlation between genetic 

and environmental distance when we controlled for geographic distance (Table 2.2). 

By evaluating the niche relationship between sister taxa we gained insight into how the 

environment may influence divergence events. Sister lineages 3 and 4 occupy very similar 

environmental spaces based on location data, which suggests these lineages have followed the 

pattern of niche conservatism (Fig. 2.3). If sister taxa are in allopatry, niche conservatism can 
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reflect a pattern where lineages fail to adapt to the landscape matrix separating populations 

(Wiens and Graham 2005). Interestingly, the two lineages occupying north-east North America 

are parapatric based on haplotype distributions (Fig. 2.2), or sympatric based on the level of 

spatial overlap (Table 2.3; Fig. 2.5D). In either case, due to the extensive spatial overlap found in 

their estimated distributions, current geographic isolation does not account for the genetic 

divergence between these two lineages. However, historical spatial isolation could have caused 

the patterns we observe as the two lineages are currently distributed in an area that was under ice 

during the last glaciations. Thus, the current pattern could be the result of secondary contact 

between populations expanding from glacial refugia, a pattern replicated in multiple taxa within 

this region of North America (Hoffman and Blouin 2004, Rowe et al. 2004). Another line of 

evidence suggests that niches may not be conserved between these two eastern lineages. 

Utilizing the methods of Warren et al. (2008), we found that these two lineages exhibit the 

highest level of niche similarity of any pair-wise comparison of genetic lineages, although they 

are still less similar to each other than expected by chance (Table 2.3). Lineages 3 and 4 were the 

only lineages showing a positive correlation between genetic and environmental distance. This 

suggests that genetic differentiation within these lineages may follow a climatic gradient across 

their distribution. 

 Sister lineages 1 and 2 from western North America support the hypothesis of niche 

divergence. They occupy significantly different climatic niches (Fig. 2.3; Table 2.3), with 

parapatric distributions (Fig. 2.2 and 2.5A). The overlap forms a potential contact zone between 

the two sister lineages, and this corresponds to the same area Osgood (1909) proposed to be a 

zone of integration between two subspecies. These lineages represent two ecomorphs (Blair 

1950), with lineage 1 representing a forest type and lineage 2 a grassland type. These ecomorphs 
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have distinct morphological differences, with the forest type having a long tail, large ears and 

large feet, while the grassland type is distinct with a short tail, small ears and small feet (Blair 

1950). Selective pressure on niche may have influenced this lineage divergence, causing shifts in 

climatic niche and morphological differences between the two lineages. We cannot refute the 

possibility that the two lineages are connected by gene flow, which could explain the mixed 

nodal support for lineage 2 (PP = 0.65; BS = 70). Use of fast evolving nuclear markers such as 

microsatellites could aid in understanding the current interaction between these two lineages. 

 We determined that P. polionotus has diverged from P. maniculatus both genetically and 

ecologically (Fig. 2.1, 2.3 and 2.4). Peromyscus polionotus is hypothesized to have originated 

from a peripheral population of P. maniculatus, in particular from a lineage of short-tailed 

grassland mice (Blair 1950, Carleton 1989). However, Avise et al. (1983) found that P. 

polionotus clustered with a forest-dwelling form of P. maniculatus. Our phylogenetic analysis 

found low support for a sister relationship between P. polionotus and an ancestral P. maniculatus 

lineage (Fig. 2.1); the ancestral lineage diverged into both grassland (lineage 2) and forest-

dwelling (lineage 1) forms (Fig. 2.1). While the evolutionary relationships of P. polionotus 

remain unclear, our data suggest that this species occupies a distinct niche compared to its closest 

relatives (Fig. 2.3). Our distribution models show some overlap among all geographically 

neighboring lineages for P. maniculatus, but overlapping with P. polionotus is limited to 1.1% 

overlap with lineage 4 (Table 2.3). This fits the expected distributions for the two species (Fig. 

2.2), but it also suggests that the environmental space between P. polionotus and neighboring P. 

maniculatus lineages may have suboptimal conditions and could function as a barrier between 

the two species. 
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We also found possible contact zones in our ENM between non-sister lineages of interest. 

These areas match with proposed contact zones in the western United States between lineages 1 

and 6, and in central regions, between lineages 2 and 3 (Fig. 2.5B and 2.5C; Osgood 1909, Hall 

1981). Our data show that lineages 1 and 6 occupy significantly different environmental spaces, 

and our phylogenetic analyses shows they are isolated based on mtDNA. However, it is uncertain 

if hybridization may occur, or if a factor collinear with our climatic variables separate these two 

lineages in the contact zone. The contact zone between lineages 2 and 3 could represent another 

interaction between the long-tailed forest type (lineage 3), and the short-tailed grassland type 

(lineage 2). Field experiments in parts of P. maniculatus’ distribution have shown that the two 

ecomorphs preferentially occupy grassland or forest (Hooper 1942, Wecker 1963), which 

suggests that these ecomorphs can be isolated by vegetative habitat preference. The divergence 

in the climatic niche we observe may reflect niche divergence between lineages 2 and 3 because 

of collinearity with patterns of vegetation separating the different ecomorphs. 

Peromyscus polionotus and the lineages within the P. maniculatus occupy unique 

environmental space, which could indicate that natural selection is a factor in lineage divergence, 

formation, and maintenance of species in a heterogeneous landscape (Rissler and Apodaca 

2007). If the landscape had an impact in shaping the current diversity we observe within this 

group, such divergence would have had to occur recently, as the P. maniculatus species group is 

a recent radiation with divergence occurring in the Pleistocene (Zheng et al. 2003, Van Zant and 

Wooten 2007). This is possible as studies have found that adaptation to new environmental 

conditions can occur over short periods of time, with the niche being labile over time (Evans et 

al. 2009, Dormann et al. 2010). However, to validate niche as a driving factor in lineage 

divergence, phenotypic traits must be identified related to adaptations for persisting in their niche 
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and resulting in reproductive isolation between lineages (Graham et al. 2004, Kozak et al. 2008). 

We do not identify such traits attributed to lineage divergence in our study, but two sister 

lineages (lineages 1 and 2) and two non-sister lineages (lineages 2 and 3) may represent 

morphologically different groups: forest and grassland ecomorphs. These morphological 

differences between lineages 1 and 2 could possibly show differential adaptation to different 

environments, whereas adaptation to different niche space between lineages 2 and 3 may serve to 

avoid hybridization between these closely related lineages. 

Conclusions 

 A body of evidence is accumulating that niche divergence is common and can occur over 

short periods of time (Evans et al. 2009, Dormann et al. 2010). Even within closely related 

species, evidence for niche conservatism and niche divergence is observed (Evans et al. 2009, 

McNyset 2009, Pyron and Burbrink 2009). This pattern is evident for P. maniculatus and P, 

polionotus, in which we demonstrate niche divergence and niche conservatism in different 

lineages. Our study suggests a potential for climate, or a collinear variable, to be a relevant 

component in the diversification of widely distributed taxa. Many taxa inhabit wide distributions 

and encounter heterogeneous landscapes. This heterogeneity of habitat is often reflected in 

phylogeographic patterns similar to those we observed (e.g., Hoffman and Blouin 2004, 

Fontanella et al. 2008). The results of this study suggest that other wide-ranging taxa may also 

exhibit a mosaic of niche divergence and niche conservatism. 
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CHAPTER 3. COLONIZATION AND DIVERGENCE: 

PHYLOGEOGRAPHY AND POPULATION GENETICS OF THE 

ATLANTIC COAST BEACH MICE 
 

Introduction 

 Identifying colonization patterns and the processes driving range changes is fundamental 

to understanding both the evolutionary history and current patterns of diversity observed in taxa. 

In newly-formed habitat, colonization is the initial step of speciation (Juan et al. 2000, Grant and 

Grant 2011). Novel habitats formed by major geological events such as glaciations have been 

studied to understand the patterns and processes of colonization and speciation in insects 

(Hochkirch and Görzig 2009, Croucher et al. in press), birds (VanderWerf et al. 2010, Grant and 

Grant 2011) and marine invertebrates (Tomascik et al. 1996, Bird et al. 2011). However, it is 

also important to account for how global climatic oscillations have shaped the current 

distributions and diversity of species. During the last glacial cycle, which reached its maximum 

around 20,000 years before present (ybp), areas at higher latitudes were directly impacted by a 

changing landscape, causing species’ ranges to shift (Davis and Shaw 2001, Lomolino et al. 

2005, Aubry et al. 2009). Evaluating colonization in formerly glaciated areas has provided 

insight into current patterns of divergence in a wide range of taxa such as mammals (Rowe et al. 

2004, Fløjgaard et al. 2009, Grill et al. 2009), amphibians (Hoffman and Blouin 2004, Recuero 

and García-París 2011), plants (Demesure et al. 1996, Huck et al. 2012), and insects (Mende et 

al. 2010, Hortal et al. 2011). 

 Glacial oscillations have also affected taxa beyond the glacial edge (Soltis et al. 2006). 

Changing sea levels significantly altered coastal areas with an approximately 130 m increase in 

global sea level since the last glacial maximum (30,000-19,000 ybp; Lambeck and Chappell 
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2001, Lambeck et al. 2002). Significant research has been done on the impact of sea level 

fluctuations on coastal marine taxa (Wares and Cunningham 2001, Maggs et al. 2008, Wilson 

and Eigenmann Veraguth 2010), yet few studies have addressed the impact of sea level 

oscillation on the biodiversity of terrestrial taxa occupying coastal habitat (but see Van Zant and 

Wooten 2007). 

 Islands, especially oceanic islands, have been widely used to evaluate consequences of 

colonization (MacArthur and Wilson 1967, Cowie and Holland 2006, Losos et al. 2010). While 

oceanic islands are fully disconnected from the mainland, barrier islands are closely associated 

with the mainland and are ideal areas to investigate the impacts of colonization on the 

evolutionary history of recently diverged taxa. These land formations are relatively narrow bands 

of sand, which are formed parallel to mainland coastline (Johnson and Barbour 1990). Barrier 

islands in North America (Davis 1997, Bryan et al. 2008) and Europe (Madsen et al. 2010, 

Kolditz et al. 2012) have their origins during the Holocene. These islands are impacted by high 

rates of sea level change interupting patterns of sand deposition (Rosati and Stone 2009). With 

the rapid sea level rise that occurred after the last glacial maximum in North America, conditions 

were thus poor for barrier islands formation (Davis 1997). As sea level stabilized around 6,000 

ybp, near current levels, conditions were again favorable for the formation of barrier islands 

(MacNeil 1950, Davis 1997). Therefore species inhabiting barrier islands could colonize only 

very recently. 

 A species that has been greatly influenced by the recent formation of barrier islands is 

Peromyscus polionotus (old field mouse), which primarily occupies habitat with sandy soil in 

southeastern U.S.A. (Whitaker and Hamilton 1998). Much attention has been given to subspecies 

occupying coastal barrier islands of Alabama and Florida, with emphasis on spatial variation of 
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morphological characters (Sumner 1926, Bowen 1968, Selander et al. 1971, Hoekstra et al. 2006, 

Van Zant and Wooten 2007, Mullen et al. 2009). These subspecies are collectively called beach 

mice and each subspecies exhibits lighter pelage color compared to mainland conspecifics 

(Bowen 1968, Hoekstra et al. 2006). The phenotypic variation in pelage color has been attributed 

to different selective pressures for crypsis, based on correlations between pelage and soil color 

found on the different barrier islands (Mullen and Hoekstra 2008). The origins of the beach mice 

subspecies are hypothesized to be recent events associated with the Holocene formation of the 

barrier islands (Hoekstra et al. 2006). For the subspecies occupying the Gulf coast barrier islands 

Bowen (1968) hypothesized, based on pelage color, that the diversity was the result of multiple 

colonization events from mainland populations after the stabilization of the barrier islands when 

the Gulf was near current levels. This hypothesis was challenged by molecular data that 

supported an older establishment of Gulf coast taxa. It was postulated that beach mice tracked 

the receding shore line and became isolated (Van Zant and Wooten 2007). Others, however, have 

found evidence of a single colonization of Gulf coast beach mice, but at a much more recent time 

than previously claimed (Domingues et al. in press). In comparison to the multiple studies 

conducted and hypotheses generated for Gulf coast beach mice, the evolutionary history and 

colonization patterns of beach mouse subspecies occupying the Atlantic coast have received less 

attention in the literature. However, for the Atlantic coast beach mice Bowen (1968) proposed a 

single colonization event from a mainland source, with subsequent isolation on the barrier 

islands. 

 In this study we aimed to determine the evolutionary history of the beach mice occupying 

the Atlantic coast of Florida, using rapidly evolving genetic markers. First, we sought to evaluate 

lineage differentiation on the Atlantic coast barrier islands. There are three recognized 
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subspecies occupying the Atlantic coast (Hall 1981): P. p. phasma (Anastasia beach mouse), P. 

p. decoloratus (pallid beach mouse), and P. p. niveiventris (southeastern beach mouse). 

Subspecies are often used as a means of partitioning within species variation, and are frequently 

based on phenotypic variation (O'Brien and Mayr 1991). However, several studies have shown 

that phenotypic variation may not represent independent evolutionary trajectories, especially on 

islands (e.g., Burbrink et al. 2000, Culver et al. 2000, Hull et al. 2008, Tursi et al. in press), and 

therefore the biological validity of these subspecies should be tested. A study of Gulf Coast 

beach mice supported the correlation between phenotypic variation as indicated by subspecies 

designation and genetic differentiation (Mullen et al. 2009). We tested the hypothesis that the 

three Atlantic coast subspecies each maintain independent evolutionary trajectories, and can be 

considered as separate taxonomic units. Then, we evaluated the colonization patterns of the 

Atlantic coast beach mice using sequence and genotype data. We tested Bowen’s (1968) single 

colonization hypothesis, where the Atlantic coast was colonized from a single mainland source, 

with subsequent processes shaping current diversity. Alternatively, the Atlantic coast beach mice 

could have colonized the barrier islands from multiple mainland sources, where differences 

among sources impacted current diversity. Finally, we tested whether the genetic diversity of 

Atlantic coast beach mice follows the assumptions of island populations, with founder effects 

and smaller effective population sizes resulting in lower diversity compared to mainland lineages 

(Frankham 1997). We hypothesized that the Atlantic coast beach mouse subspecies should have 

lower genetic diversity compared to mainland conspecifics. Of the three Atlantic coast beach 

mice, one is recently extinct (Humphrey 1992) and the extant subspecies are listed as endangered 

or threatened (U.S. Fish and Wildlife Service 1989). Therefore, we conclude by discussing 

implication for conservation efforts related to these taxa and the areas they inhabit. 
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Methods and Materials 

Sampling and DNA extraction 

 We obtained a total of 492 specimens for this study from 20 locations representing the 

distribution of P. polionotus on peninsular Florida and that of extant Atlantic coast beach mice 

(Fig. 3.1). Of those, 490 were collected using trapping methods described in Degner et al. 

(2007). We trapped 69 individuals that we expected to represent two mainland P. polionotus 

subspecies; P. p. subgriseus (SRWEA and ONF), and P. p. rhoadsi (LARA, LLSP, APAFR, and 

ABS) (Table 3.1). We collected 77 individuals from four locations representing the range of the 

Anastasia beach mouse, P. p. phasma (Table 3.1). We collected 344 individuals across the 

current range of the other extant southeastern beach mouse, P. p. niveiventris (Table 3.1). We 

collected 2-4 mm of tail tissue from each individual and stored the samples in 95% ethanol at -

20C prior to DNA extraction. We also acquired two museum specimens of the extinct pallid 

beach mouse, P. p. decoloratus, from the Museum of Southwestern Biology (MSB 64761 and 

MSB 64762). These two specimens were collected on Daytona Beach (DB) in 1946. For each 

museum specimen, we collected tissue as a 4x4 mm
2 

section of skin taken from the venter. 

 We extracted genomic DNA from all tissue samples using a DNeasy tissue purification 

kit (Qiagen Inc.), following the manufacturer’s protocols. Before extraction, the fresh tissue was 

lysed for 2-4 hours, until dissolved. The two museum tissues were soaked in 95% ethanol at 4°C 

for 24 hours to remove any PCR inhibitors (Mullen and Hoekstra 2008), then lysed for 24 hours 

until dissolved. 

Genetic markers 

 We amplified and sequenced 1100 base pairs (bp) of the mitochondrial cytochrome b (cyt 

b) gene for all fresh tissue specimens following the protocol described in Herron et al. (2004). 
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The DNA from the P. p. decoloratus museum specimens was degraded; therefore, we had to 

amplify seven 200-300 bp amplicons to generate the complete gene sequence. PCR reactions for 

the museum specimens were done in 25 μL volumes, containing 20-30 ng DNA, 2 mM MgCl, 

1X Amplitaq Gold Buffer, 200 μM dNTPs, 0.75 units AmpliTaq Gold (Roche, NJ), and 160 nM 

primer. Thermocycler conditions were: 94°C for 2 minutes followed by 45 cycles of 94°C for 1 

minute, annealing temperature for 1 minute, and 72°C for 2 minutes. Annealing temperatures and 

primer sequences used for museum specimens can be found in Table 3.2. All sequences were 

processed on an ABI 3730 DNA analyzer by the Nevada Genomics Center (Reno, NV). 

Sequences were edited in Sequencher v.4.8 (Gene Codes, Ann Arbor, MI) and aligned by eye in 

GeneDoc v.2.7 (Nicholas et al. 1997). 
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Figure 3.1 Localities of specimens acquired for this study. Circles designate a collection site, and 

are color coded by taxonomic grouping. Mainland subspecies were represented as blue and 

purple: P. p. subgriseus (SRWEA and ONF), P. p. rhoadsi (LARA, LLSP, APAFR, ABS). 

Atlantic coast beach mice collected were: P. p. phasma (ASP, FBP, CB, FM – green), P. p. 

decoloratus (DB – dark green), and P. p. niveiventris (SDP, CNS, MINWR, BG1-3, SG1-3, 

PINWR – red-orange). Abbreviations for sample locations can be found in Table 3.1. 
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Table 3.1 Samples of P. polionotus included in study, with location name, county, sample ID (ID), geographic coordinates (in 

decimal degrees), sample size, and samples used for cytochrome b (cyt b) and microsatellite analyses for each sample location.  

 
Samples used 

Location  County ID Latitude Longitude n Cyt b Microsat. 

P. p. subgriseus 
       

Suwannee Ridge Wildlife and Environmental Area Suwannee Co. SRWEA 29.9591 -82.9296 10 10 10 

Ocala National Forest Marion Co. ONF 29.2406 -81.7837 9 7 9 

P. p. rhoadsi        

Lake Apopka Restoration Area Orange Co. LARA 28.6660 -81.5770 2 2 0 

Lake Louisa State Park Lake Co. LLSP 28.4517 -81.7388 25 14 25 

Avon Park Air Force Range Highlands Co. APAFR 27.6104 -81.2591 10 10 10 

Archbold Biological Station Highlands Co. ABS 27.1833 -81.3493 13 13 13 

P. p. phasma 
       

Anastasia State Park St. Johns Co. ASP 29.9018 -81.2910 40 14 40 

Frank Butler Park St. Johns Co. FBP 29.7723 -81.2483 3 3 0 

Crescent Beach St. Johns Co. CB 29.8091 -81.2582 1 1 0 

Fort Matanzas National Monument St. Johns Co. FM 29.7091 -81.2285 33 13 33 

P. p. decoloratus 
       

Daytona Beach Volusia Co. DB 29.2106 -81.0231 2 2 0 

P. p. niveiventris 
       

Smyrna Dunes Park Volusia Co. SDP 29.0721 -80.9142 19 7 19 

Canaveral National Seashore Volusia Co. CNS 28.8196 -80.7520 31 8 31 

Merritt Island National Wildlife Refuge Brevard Co. MINWR 28.6044 -80.5908 32 0 32 

Cape Canaveral Air Force Station 
       

 
Beach Grid 1 Brevard Co. BG1 28.4351 -80.5661 35 6 35 

 
Beach Grid 2 Brevard Co. BG2 28.4239 -80.5776 41 0 41 

 
Beach Grid 3 Brevard Co. BG3 28.5117 -80.5539 28 0 28 

 
Scrub Grid 1 Brevard Co. SG1 28.4756 -80.5854 43 0 43 

 
Scrub Grid 2 Brevard Co. SG2 28.4365 -80.5933 44 0 44 

 
Scrub Grid 3 Brevard Co. SG3 28.4495 -80.5490 56 0 56 

Pelican Island National Wildlife Refuge Indian River Co. PINWR 27.7997 -80.4215 15 15 15 
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Table 3.2 Primer sequences for amplifying cyt b in degraded DNA samples of P. polionotus. 

 

 We included rapidly-evolving nuclear markers by genotyping ten microsatellite loci for 

mainland and Atlantic coast subspecies. We utilized the following ten microsatellite loci: pml-

02, pml-06, pml-11 (Chirhart et al. 2000); PO-25, PO-71, PO-105, PO3-68, PO3-85 (Prince et al. 

2002); and ppa-01 and ppa-46 (Wooten et al. 1999). We conducted the PCR reactions in 25 μL 

volumes containing 1-10 ng DNA, 2.5 μL PCR buffer, 0.3 units Taq polymerase (Proligo), 0.2 

μM of forward and reverse primer, 0.8 mM combined concentration of DNTPs and 1.5-2.5 mM 

MgCl. We sized the PCR products using a CEQ 8000 Genetic Analysis System (Beckman-

Coulter, Fullerton, CA). We scored allele sizes using the CEQ 8.0 software and 400 bp standards 

(Beckman-Coulter). We tested our microsatellite data for Hardy-Weinberg equilibrium (HWE) 

and linkage equilibrium in GenePop v.4.0 (François 2008). Significance was estimated using a 

Sequence Primer name Primer sequence 
Annealing 

temperature 

Amplicon 1 mt14152F 5' AAC ATC CGA AAA AAA CAC CC 3' 50°C 

 
mt14341R 5' CTG ATG AGA ATG CTG TAG TTG TG 3' 

 
Amplicon 2 mt14297F 5' TAG CCA TAC ACT ACA CAT CAG 3' 55°C 

 
mt14534R 5' CCT ATG AAT GCT GTT GCT ATT AC 3' 

 
Amplicon 3 mt14471F 5' CTG ATG AGA ATG CTG TAG TTG TG 3' 55°C 

 
mt14688R 5' AAA TGC GAA GAA TCG TGT TAG G 3' 

 
Amplicon 4 mt14647F 5' CCT ATG AAT GCT GTT GCT ATT AC 3' 55°C 

 
mt14894R 5' ATT TTG GTT TTA TTT TTC CCA G 3' 

 
Amplicon 5 mt14866F 5' ATT TTG GTT TTA TTT TTC CCA G 3' 55°C 

 
mt15079R 5' GTT TTG AGG TTT GTA GTA GAG G 3' 

 
Amplicon 6 mt15030F 5' ATT TTG GTT TTA TTT TTC CCA G 3' 55°C 

 
mt15237R 5' AGA ATA TCT GGG AAA AAT AAA ACC 3' 

 
Amplicon 7 mt15193F 5' ATT GGA CAA CTA GCC TC 3' 55°C 

  mt15377R 5' AGA ATA TCT GGG AAA AAT AAA ACC 3'   
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Markov chain approach (Dememorization = 10
4
, Number of batches = 10

3
, Number of iterations 

per batch = 10
4
) for each locus and population. 

Data analysis – taxonomic designation 

 To test our first hypothesis regarding the evolutionary relationships and taxonomic 

designations of the Atlantic coast beach mouse subspecies we used both phylogenetics and 

haplotype networks. We estimated the phylogenetic relationship among unique haplotypes using 

Bayesian Inference (BI; MrBayes v.3.1.2; Huelsenbeck and Ronquist 2001) and maximum 

likelihood (ML; Garli v.2.0; Zwickl 2006). We rooted our phylogenetic analyses using cyt b 

sequences from P. melanotis obtained from Genbank (DQ385626; Dragoo et al. 2006), as this 

species has been found to be sister to P. polionotus and its closest relatives (Kalkvik et al. 2012). 

In order to evaluate the relationship of P. polionotus to its closest relatives we included cyt b 

sequences from each major lineage of P. maniculatus (DQ385632, DQ385706, DQ385717, 

DQ385756, DQ385816, DQ385825; Dragoo et al. 2006) and P. keeni (DQ385716; Dragoo et al. 

2006) identified by Kalkvik et al. (2012). To provide a complete sampling of P. polionotus, we 

included published cyt b sequence data for P. p. sumneri, P. p. albifons, and P. p. polionotus, 

representing mainland subspecies from the Florida panhandle, Georgia, and Alabama 

respectively (EU140776,EU140779, EU140770, EU140781, EU140757, EU140767; Van Zant 

and Wooten 2007). We also included four Gulf coast beach mouse subspecies (P. p. peninsularis 

[EU140791], P. p. tryssyllepsis [EU140784], P. p. leucocephalus [EU140789], P. p. allophrys 

[EU140778]; Van Zant and Wooten 2007) for complete representation. Following the methods 

outlined by Brandley et al. (2005) we used Bayes factors to determine the best partitioning 

strategy for our data set. We determined the best substitution model for the cyt b data in 
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MrModelTest v.2.4 using the Akaike information criterion (Nylander 2004). For the BI we 

completed two independent Markov chain Monte Carlo (MCMC) runs in MrBayes, with each 

run having four chains, for 2 x 10
6
 generations and sampling every 1,000 generations. We 

determined stationarity for our runs using Tracer v.1.5 (Rambaut and Drummond 2007) and 

discarded the first 200,000 generations as burn-in. We used the default parameter settings in 

Garli to estimate ML topology. Following the recommendations by the program author (Zwickl 

2006), we initiated four runs to ensure convergence, where each run was terminated after 20,000 

generations with no improvement in the likelihood score of the topology. We assessed the nodal 

support using bootstrapping, with 1,000 replications. Each replicate was terminated after 10,000 

generations with no improvement in likelihood score of the topology. Nodes were considered 

supported if their posterior probability was above 0.95, as it measures probability of a node 

representing a true phylogenetic divergence (Huelsenbeck et al. 2001). Supported nodes had 

bootstrap values above 70% due to conservative estimates of inferring correct clades (Hillis and 

Bull 1993).We estimated the geographic distribution and frequency of the unique haplotypes for 

the cyt b sequences by constructing a haplotype network following the 95% statistical parsimony 

method (Templeton et al. 1995). The network was constructed  using TCS (Clement et al. 2000). 

Data analysis – colonization patterns 

 We tested Bowen’s single colonization hypothesis of the Atlantic coast barrier islands 

using a haplotype network based on mitochondrial sequence data and measures of genetic 

structure based on microsatellite data from the Atlantic coast beach mice and mainland 

subspecies. For analysis of genetic structure using microsatellites we included only sample 

locations with more than five individuals to provide sufficient population level sampling (Table 
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3.1). In order to measure genetic structure we estimated genetic differentiation based on 

microsatellite data among and between mainland and beach mouse subspecies. We determined 

whether allele size (RST) or allele state (FST) best fit our data. In cases where loci are following a 

stepwise mutation model and have high mutation rates, RST is expected to be larger than FST 

(Hardy et al. 2003). We estimated genetic differentiation using SPAGeDi v.1.3 (Hardy and 

Vekemans 2002). We tested the null hypothesis of no contribution of allele size on genetic 

differentiation (FST = RST) using a permutation test in SPAGeDi, where we created a null 

distribution of RST values. We estimated the distribution using 20,000 permutations. We found 

RST to be a better predictor across our sample locations as our observed RST values were 

significantly larger than the RST null distribution (one-tailed test) (Hardy et al. 2003; See Resuts). 

We estimated pair-wise genetic differentiation as pair-wise RST using SPAGeDi. To test if 

genetic differentiation is associated with geographic distance (i.e. isolation by distance) we 

conducted a Mantel test using IBDWS v.3.15 (Jensen et al. 2005), where significance was 

estimated using 30,000 permutations. We measured geographic distance as Euclidean distance in 

kilometers between sample locations using the dist function in R v.2.12, and genetic 

differentiation as pair-wise RST as determined in SPAGeDi described above. 

As an additional test of our colonization hypothesis we determined the number of 

genetically distinct clusters (K) using a Bayesian admixture approach (STRUCTURE v.2.2; 

Pritchard et al. 2000). STRUCTURE estimates likelihood values [Pr(X|K)] by fitting data to the 

given K through minimizing HWE and linkage disequilibrium. STRUCTURE also estimates the 

proportional association for each individual for each inferred K, measured as a membership 

coefficient. Using the membership coefficient we can identify potential recent migrants or gene 
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flow. This approach typically identifies the highest order of genetic structure across samples, so 

we applied a hierarchical approach to test for genetic structure and genetic isolation among the 

mainland and extant Atlantic beach mouse subspecies. The initial analysis included all 

individuals, and subsequent clusters were separately analyzed in STRUCTURE to evaluate any 

lower level genetic structuring. 

As we had uneven sampling among our subspecies, which was dominated by P. p. 

niveiventris individuals (n = 344), we tested for the impact of sample bias on our STRUCTURE 

analysis using ten randomized runs. For each run we included all samples of P. p. phasma (n = 

73) and all mainland subspecies samples (n = 67). For P. p. niveiventris we picked 75 individuals 

using the random function in Excel 2010 (Microsoft) for each randomized run, ensuring all 

sample locations were included. To evaluate the sensitivity of STRUCTURE to sample bias we 

also conducted additional STRUCTURE runs where we included randomly chosen sets of 100, 

150 and 200 P. p. niveiventris individuals for separate analyses. For all our STRUCTURE 

analyses we determined the best fit K for our data using the best Pr(X|K), and the procedure of 

Evanno et al. (2005) based on the second order derivative of Pr(X|K). The second order 

derivative, called ∆K, shows the rate of change in likelihood between subsequent K. The highest 

∆K has been shown to be a good estimate of best K based on given data (Evanno et al. 2005). 

Most of the parameters were kept at default values as suggested for the STRUCTURE admixture 

model. Each run had an initial 2x10
4
 generations of burn-in with a subsequent run of 

5x10
5
generations used to estimate parameters; we ran 10 independent runs per K. Each analysis 

was run with K values from one to the number of sample locations included in the analysis. To 

evaluate geographic distinctiveness, we plotted the membership coefficient values for each 
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individual for the K determined to provide the best fit to the data. Migrants or recent gene flow 

was inferred when individuals had membership coefficients more associated to clusters found 

outside of their sample locations. 

Data analysis – island vs. mainland genetic diversity 

 We tested our last hypothesis of reduced genetic diversity on barrier islands compared to 

the mainland by determining genetic diversity measures using both cyt b and microsatellite data. 

To compare genetic diversity using our cyt b data, we estimated the number of haplotypes, 

haplotype diversity, average nucleotide differences (k), and nucleotide diversity (π) using DnaSP 

v.5.10 (Librado and Rozas 2009) for sequences collected from mainland subspecies, and for each 

Atlantic coast subspecies. To statistically compare the mainland and Atlantic coast subspecies, 

we generated confidence intervals around our diversity estimates. Computer simulation in DnaSP 

is based on a coalescent algorithm based on a neutral, infinite-sites model that assumes a large, 

constant population size (Hudson 1990, Wall 1999). Peromyscus polionotus is locally abundant 

both on the mainland and on the barrier islands, which indicates that our model system does not 

violate the assumption of large population size (Smith 1968, Extine and Stout 1987, Lynn 2000). 

We based the simulations on a segregation site in the empirical data set, and we included no 

recombination in the data because only one mitochondrial locus was considered. Each simulation 

was based on 10,000 replications, and we generated 95% confidence intervals for estimates of 

the number of haplotypes, haplotype diversity and π. We interpreted a lack of overlap in 

confidence intervals as a significant deviation in genetic diversity for cyt b. 

 For the microsatellite data we did pair-wise comparisons of genetic diversity based on 

samples from mainland and Atlantic coast subspecies. We estimated genetic diversity for each 
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sampled location as the number of alleles and allelic richness using FSTAT v.2.9.3 (Goudet 

2001). Additionally, we estimated observed and expected heterozygosity for each sample 

location in GenAlEx v.6.4 (Peakall and Smouse 2006). We tested for significant difference in 

genetic diversity of microsatellites using the group comparison tool in FSTAT, based on allelic 

richness and observed and expected heterozygosity. Significance was determined based on 

15,000 permutations in FSTAT. 

Results 

Genetic markers 

 For the mainland subspecies we successfully generated cyt b sequence data from 56 

individuals representing all mainland sample locations (Table 3.1). For P. p. phasma we acquired 

sequence data for 31 individuals representing the four sample locations, which is a subset of the 

total number of collected individuals (Table 3.1). We acquired 36 sequences of P. p. niveiventris 

a subset of individuals captured that represented all sample locations (Table 3.1). To ensure that 

we had sequenced a sufficient number of individuals we conducted an individual-based 

rarefaction analysis (Gotelli and Colwell 2001). The resulting haplotype accumulation curves 

suggested we had sample sizes sufficient to identify a majority of the cyt b haplotypes. 

 We generated microsatellite data for all individuals from sample locations where we had 

collected more than five individuals (Table 3.1). We genotyped a total of 484 individuals that 

represented five mainland locations (n = 67; Table 3.1), two locations for P. p. phasma (n = 73; 

Table 3.1), and ten locations for P. p. niveiventris (n = 344; Table 3.1). We did not include P. p. 

decoloratus in microsatellites analyses, because of low sample size and failure to obtain 
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microsatellite data as a result of amplification failure DNA. We found ten microsatellite loci to 

be out of HWE in seven different sample locations after Bonferroni corrections for multiple 

comparisons. We did not observe a clear pattern of specific loci being consistently out of HWE 

across sample locations, so we did not expect null alleles to be a major problem for our 

microsatellite dataset. Of all comparisons between loci within a sample location (765 total 

comparisons), we determined after Bonferroni correction that only two locus pairs were in 

linkage in two different sample locations. With so many comparisons we expect some to be 

significant by chance, so these results suggest our loci are not physically linked. Due to the low 

number of locus-by-population deviations in HWE and lack of linkage, we did not exclude any 

populations or loci from our analysis. 

Taxonomic designation 

The aligned sequence data consisted of 1103 bp with 93 (8.4%) parsimony informative 

characters. Across our samples we identified a total of 23 unique haplotypes, which correspond 

to published haplotypes in Degner et al. (2007) and Kalkvik et al. (2012). Preliminary analysis 

showed that a non-partitioned model was best for estimating phylogenetic relationships from our 

data set (harmonic mean likelihood [unpartitioned] = -2200.13; harmonic mean likelihood 

[partitioned] = -2128.39; 2 x ln(Bayes factor) = 0.066). AIC chose GTR+I+Γ (Tavaré 1986) as 

the best nucleotide substitution model for our data, and it was implemented into both the 

Bayesian (BI) and maximum likelihood (ML) analyses.  

Both BI and ML approaches resulted in similar topologies, with little resolution (Fig. 

3.2). The tree estimated from the BI and ML approach resolved a highly supported monophyletic 

P. polionotus lineage (BI = 1.00, ML = 100; Fig. 3.2), but P. polionotus haplotypes formed an 
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extensive polytomy (Fig. 3.2). Among the sampled haplotypes the phylogenies inferred a P. p. 

niveiventris lineage with low support (BI = 0.89, ML = 66; Fig. 3.2). We also identified a single 

haplotype representing both P. p. phasma and P. p. decoloratus, and we found no resolution 

among mainland haplotypes (Fig. 3.2). We identified a strongly supported clade of four 

haplotypes that represented P. p. rhoadsi in part (Ppr7–9; BI = 1.00, ML = 94; Fig. 3.2). These 

haplotypes were found in south Florida (APAFR and ABS) and in central Florida (LLSP). An 

additional lineage representing P. p. rhoadsi haplotypes from APAFR and LLSP (Ppr4–6) was 

only supported by BI (BI = 1.00, ML = 67; Fig. 3.2). Finally, we recovered a lineage 

representing three haplotypes of P. p. subgriseus found in ONF (Pps3–5); this was also 

supported by BI only (BI = 0.97, ML = 67; Fig. 3.2). Overall, there was a lack of resolution 

using the cyt b sequence data to resolve the phylogenetic relationships among P. p. niveiventris, 

P. p. phasma, P. p. decoloratus and mainland P. polionotus spp. with confidence. 

We gained additional insight into subspecies relationships through haplotype network 

analysis of our cyt b sequence data (Fig. 3.3). Despite a low number of informative characters 

leading to low resolution in the BI and ML phylogenies described above, we observed no overlap 

in haplotypes between mainland subspecies and those found on Atlantic coast barrier islands. We 

identified a total of 19 unique haplotypes among mainland subspecies. Of these, nine haplotypes 

represented sample locations within the distribution of P. p. subgriseus (Pps1–9; Fig. 3.3), and 

the remaining ten mainland haplotypes were found in P. p. rhoadsi sample locations (Ppr1–10; 

Fig. 3.3). While the two mainland subspecies do not share haplotypes, we found most P. p. 

subgriseus haplotypes to be more closely associated to the P. p. rhoadsi haplotypes Ppr1, than to 

each other (Fig 3.2). Additionally, there is no overlap of haplotypes between the two sample 
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locations designated as P. p. subgriseus (Fig. 3.3). Of the haplotypes identified among the P. p. 

rhoadsi sample locations, three were shared among some of the sample locations (Ppr1–2, Ppr8; 

Fig. 3.3). Haplotype Ppr1 is shared between the two sample locations in central Florida (LARA, 

LLSP), while Ppr2 is found in central Florida (LARA and LLSP) and in south Florida (ABS) 

(Fig. 3.3). Most of the individuals with haplotype Ppr8 were found in south Florida (APAFR and 

ABS), but two individuals in central Florida (LLSP) also exhibited this haplotype (Fig. 3.3). All 

the haplotypes found mainland link up to haplotype Ppr1 with one to seven mutational steps; this 

haplotype also connects to the haplotypes found in the Atlantic coast beach mice. The beach 

mice subspecies share a common unsampled or extinct haplotype with the mainland Ppr1 

haplotype. For P. p. niveiventris we observed three haplotypes with two to three mutational steps 

from the most similar mainland haplotype. The three haplotypes in P. p. niveiventris were unique 

to the subspecies (Fig. 3.3). The two northern most Atlantic coast beach mouse subspecies, P. p. 

phasma and P. p. decoloratus, shared a single haplotype (Fig. 3.3). Our parsimony analysis of 

the haplotype network indicated that the two extant coastal subspecies are each closely related to 

but distinct from the mainland subspecies. 
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Figure 3.2 Phylogram based on Bayesian inference of cyt b haplotypes for Florida peninsula and 

Atlantic coast beach mice P. polionotus. Phylogeny included published haplotypes of Gulf coast 

beach mice subspecies and mainland P. polionotus from Florida panhandle, Alabama and 

Georgia. Black circles designate strong nodal support based on bootstrap values (> 70), and 

posterior probability from Bayesian inference (> 0.95). Grey circles mark nodes that are strongly 

supported by posterior probability (> 0.95) only. 
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Figure 3.3 Haplotype network based on cyt b sequence data from peninsular Florida P. 

polionotus spp. (P. p. subgriseus and P. p. rhoadsi) and the three Atlantic coast beach mouse 

subspecies (P. p. niveiventris, P. p. phasma and P. p. decoloratus. Each circle designates a 

unique haplotype, and size corresponds to frequency of individuals carrying haplotype. Color 

corresponds to sample locations seen in legend (see Fig. 3.1 for abbreviations). Small white 

circles designate unsampled or extinct haplotypes. 
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Colonization patterns 

 In measuring genetic differentiation we found the observed global RST value was 

significantly larger than the permutation distribution (P-value = 0.003). Based on the results of 

the permutation test, RST is a better predictor for describing genetic structure across our samples 

compared to FST. The global RST value indicated a high level of genetic structure among 

mainland P. polionotus locations (Global RST = 0.266 ± 0.050 95% CI). We found the pair-wise 

RST values to range from -0.002 (CC IG2 and SDP; CC BG1 and CC BG3) to 0.854 (SDP and 

FM) (Table 3.3). Pair-wise RST values among and between Atlantic subspecies and mainland 

sample locations show that the lowest amount of structure is among P. p. niveiventris locations 

(average RST = 0.080). Among the mainland locations we observed an average RST = 0.107, with 

RST = 0.133 between the two P. p. subgriseus locations and an average of RST = 0.099 among the 

P. p. rhoadsi locations. We observed the greatest pair-wise structure within P. p. phasma 

(average RST = 0.319). We found pair-wise RST values for P. p. niveiventris to be lower when 

compared to mainland locations (average RST = 0.257) than compared to the P. p. phasma 

locations (average RST = 0.540). Between the mainland locations and P. p. phasma the average 

pair-wise RST was 0.447 (Table 3.3). We found a significant positive relationship between 

genetic differentiation and geographic distance (Mantel test; P = 0.043; Fig. 3.4), but the 

geographic distance did not explain a majority of the variation in genetic differentiation (R
2
 = 

0.174; Fig. 3.4).
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Table 3.3 Genetic differentiation measured as pair-wise RST values for sample locations of P. polionotus spp., based on ten 

microsatellite loci (below diagonal). Geographic distance between sample locations are shown as Euclidean distance measured 

in kilometers (above diagonal). 

 Mainland subspecies Atlantic coast beach mice 

 P. p. subgriseus P. p. rhoadsi P. p. phasma P. p. niveiventris 

 
SRWEA ONF LLSP APAFR ABS ASP FM SDP CNS MINWR CC BG3 CC IG1 CC IG3 CC IG2 CC BG1 CC BG2 PINWR 

SRWEA - 136.7 203.8 308.1 345.5 158.2 166.6 218.8 246.4 272.6 281.5 281.3 285.9 283.3 285.5 285.4 342.9 

ONF 0.133 - 87.9 188.6 233.0 87.7 74.9 86.6 110.8 136.1 144.8 144.6 149.2 146.6 148.8 148.7 208.5 

LLSP 0.092 0.034 - 104.8 146.3 167.2 148.5 106.1 104.8 113.6 116.1 112.9 116.5 112.1 114.8 113.7 148.3 

APAFR 0.189 0.169 0.081 - 48.4 255.1 233.7 166.2 143.5 128.7 121.9 116.9 116.6 112.9 114.3 112.6 85.2 

ABS 0.122 0.036 0.076 0.140 - 302.7 281.4 214.6 191.4 174.9 167.3 162.3 161.5 158.1 159.3 157.6 114.5 

ASP 0.326 0.169 0.167 0.355 0.176 - 22.3 99.3 131.3 159.6 170.5 172.9 177.0 176.7 177.8 178.5 248.9 

FM 0.693 0.719 0.554 0.778 0.535 0.319 - 77.2 109.3 137.7 148.6 150.9 155.0 154.6 155.8 156.5 226.7 

SDP 0.302 0.442 0.184 0.249 0.366 0.432 0.854 - 32.2 60.9 71.6 73.8 77.9 77.4 78.6 79.3 149.6 

CNS 0.221 0.239 0.197 0.336 0.253 0.322 0.617 0.199 - 28.7 39.4 41.6 45.7 45.4 46.5 47.2 118.1 

MINWR 0.283 0.343 0.194 0.274 0.346 0.380 0.732 0.046 0.131 - 10.9 14.4 17.7 18.7 19.0 20.1 91.1 

CC BG3 0.241 0.304 0.171 0.210 0.302 0.370 0.719 0.032 0.149 0.022 - 5.1 6.9 9.2 8.6 10.0 80.3 

CC SG1 0.180 0.245 0.130 0.174 0.239 0.326 0.641 0.074 0.169 0.078 0.014 - 4.6 4.4 4.9 5.8 76.9 

CC SG3 0.223 0.294 0.171 0.251 0.289 0.356 0.633 0.029 0.087 0.018 0.013 0.038 - 4.6 2.3 4.0 73.4 

CC SG2 0.213 0.268 0.129 0.186 0.268 0.341 0.647 -0.002 0.128 0.022 0.007 0.027 0.006 - 2.7 2.1 72.9 

CC BG1 0.291 0.358 0.206 0.206 0.351 0.424 0.741 0.028 0.201 0.040 -0.002 0.044 0.040 0.023 - 1.7 72.1 

CC BG2 0.300 0.360 0.206 0.238 0.364 0.423 0.733 0.004 0.176 0.012 0.007 0.070 0.031 0.013 0.002 - 71.2 

PINWR 0.137 0.353 0.194 0.301 0.252 0.375 0.751 0.244 0.134 0.185 0.194 0.161 0.105 0.136 0.230 0.221 - 
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Figure 3.4 Plot of correlation between genetic differentiation and geographic distance. Genetic 

differentiation was estimated as RST based on microsatellite data, and geographic distance was 

Euclidean distance measured in kilometers (km). The relationship between the two axes was 

significant based on Mantel test (P = 0.043; 30,000 permutations). 

 

 When we included all sample locations with microsatellite data in our Bayesian 

admixture model, the best K describing the genetic structure among all sample locations was two 

(Fig. 3.5A), based on the methods of Evanno et al. (2005). When all individuals were included P. 

p. niveiventris was assigned to one cluster, and the mainland subspecies and P. p. phasma 

comprised a separate cluster (Fig. 3.6A). We found P. p. niveiventris to be strongly associated 

with a single cluster, with only three individuals having a membership coefficient less than 75% 

for this cluster. All individuals of P. p. phasma were strongly associated (membership coefficient 

> 97%) with the second cluster (Fig. 3.6A). The individuals captured at mainland locations were 

primarily associated with the same cluster as P. p. phasma, with only 6% of the mainland 
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individuals more associated with the same cluster as P. p. niveiventris (Fig. 3.6A). Such distinct 

separations between P. p. niveiventris and the other two groups in our data set indicate that P. p. 

niveiventris has little to no admixture with P. p. phasma or mainland subspecies. 

Due to our high sample number of P. p. niveiventris relative to the other subspecies we 

tested if numerical sample bias could impact the STRUCTURE results. Thus we included ten 

STRUCTURE analyses with randomized sampling of P. p. niveiventris samples for more 

balanced sampling between Atlantic coast and mainland subspecies. We found a consistent 

pattern suggesting lack of gene flow between the coastal subspecies and mainland, and lack of 

gene flow between the two extant coastal subspecies, in all analyses. However, numerical 

sampling bias did influence the hierarchical structure. When including all subspecies with 

approximately equal sample size we found K = 2 to best fit our data (Fig. 3.7A). With more even 

sampling one cluster contained all mainland subspecies and P. p. niveiventris individuals, and the 

other cluster contained the P. p. phasma individuals (Fig. 3.7B). All individuals were strongly 

associated with their respective clusters, having membership coefficients over 75% for their 

respective cluster. Further, over 98% of the individuals had membership coefficients greater than 

90% for their respective cluster (Fig. 3.7B). Contrary to our analyses including all individuals, 

our randomized runs indicated divergence between P. p. phasma and the cluster containing the 

mainland subspecies and P. p. niveiventris. With different levels of numerical sample bias we 

observed consistency in K = 2 best fitting the data (Table 3.4). With approximate even sample 

size all runs split out P. p. phasma as its own cluster, but when we increased our number of P. p. 

niveiventris samples to 100 individuals we found 10% of the runs with P. p. niveiventris as its 

own cluster. By the time we increased P. p. niveiventris samples to over twice as many as those 
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representing mainland subspecies and P. p. phasma (n = 200),  all runs supported P. p. 

niveiventris forming its own cluster in the STRUCTURE analyses. 

When all individuals were included, the mainland individuals primarily associated with 

the same cluster as P. p. phasma. To resolve the relationship between the individuals in the 

mainland and P. p. phasma cluster a separate STRUCTURE analysis with only mainland and P. 

p. phasma individuals. We observed the greatest ∆K at K = 2 for this data subset (Fig. 3.5B). The 

two clusters separate the mainland individuals from the P. p. phasma individuals, with individual 

membership coefficients >75% for their respective cluster (Fig. 3.6B). With such distinct 

membership coefficients our data indicates no admixture between mainland subspecies and P. p. 

phasma. For the randomized analyses, we only included the mainland subspecies and the 

randomly picked P. p. niveiventris. For this sample we determined again K = 2 as best fitting the 

data (Fig. 3.7C), where the two clusters are geographically associated with one cluster containing 

P. p. niveiventris individuals, and the second cluster associated with individuals captured 

mainland (Fig. 3.7D). Almost all individuals were highly associated with their geographic 

cluster, with 92% of the individuals having a membership coefficient over 95%. Of all 

individuals only two individuals had a membership coefficient below 75% (Fig. 3.7D). These 

two individuals were found mainland, and could reflect limited gene flow. We finally ran 

STRUCTURE on individuals captured at mainland locations, to evaluate any genetic structure 

among these populations. When only mainland individuals were included, the greatest ∆K was at 

K =3 (Fig. 3.5C). Membership was primarily determined by geographic location with one cluster 

mainly making up the individuals captured in P. p. subgriseus sample locations (SWEA and 

ONF). The remaining clusters consisted of P. p. rhoadsi sample locations, with one cluster in 
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central Florida (LLSP), and a second cluster consisting of primarily individuals from the 

southern range of P. p. rhoasi (APAFR and ABS) (Fig. 3.6C). Close association with specific 

clusters indicated limited admixture among the sampled mainland locations. However, a few 

individuals were associated with clusters different from their geographic location, which could 

indicate current or recent gene flow between populations and between mainland subpsecies (Fig. 

3.6C). 

 

Figure 3.5 Best fit number of clusters (K), shown as black box, for implementing in genetic 

structure analysis based on likelihood values (diamonds) estimated in STRUCTURE (Pritchard 

et al. 2000) and ∆K (line) estimated following the methods of Evanno et al. (2005). Three 

analyses were conducted in STRUCTURE: (A) including all samples of P. polionotus, (B) 

including only individuals captured mainland or P. p. phasma, and (C) only P. polionotus 

collected mainland.  
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Figure 3.6 Estimated membership coefficients from STRUCTURE analysis based on ten 

microsatellite loci for P. polionotus spp. from peninsular Florida. (A) includes all individuals of 

mainland spp. (P. p. subgriseus and P. p rhoadsi) and extant Atlantic coast beach mouse spp. (P. 

p. phasma and P. p. niveiventris). (B) includes only individuals defined as P. p.phasma or 

mainland spp. (C) includes only individuals captured mainland, and is divided into sample 

locations (see Table 3.1 for abbreviations). Colors indicate different clusters: (A) K = 2, (B) K = 

2, and (C) K = 3.
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Figure 3.7 Hierarchical STRUCTURE analyses for Peninsular P. polionotus spp. using randomized subsampling for even 

sample size. Best fit number of clusters (black box in A and C) was estimated based on likelihood value (circles) estimated in 

STRUCTURE (Pritchard et al. 2000) and ∆K (lines) estimated following methods of Evanno et al. (2005) for ten randomized 

runs for (A) all subspecies, and (C) mainland subspecies and P. p. niveiventris. Estimated membership coefficients from 

STRUCTURE for all subspecies (B) and mainland subspecies and P. p. niveiventris (D). Colors indicate different unique 

clusters. 
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Table 3.4 Impact of skewed sample size incorporated into STRUCTURE, with different sample 

sizes for P. p. niveiventris (Ppn) compared to P. p. phasma (Ppp)  and mainland subspecies, P. p. 

subgriseus and P. p. rhoadsi. Best K was determined based on Evanno et al. (2005) criteria. 

Reported was percent of runs for specific clustering patterns, with “/” indicating same cluster and 

“+” indicating separate cluster.  

Sample size 

 

Percent of runs with specific clustering pattern 

P. p. n. P. p. p. Mainland 
Max 

∆K 

Ppp + 

Ppn/mainland 

Ppn + 

Ppp/mainland 

Mainland + 

Ppn/Ppp 

75 73 67 2 100% 0% 0% 

100 73 67 2 90% 10% 0% 

150 73 67 2 30% 70% 0% 

200 73 67 2 0% 100% 0% 

344 73 67 2 0% 100% 0% 

Island vs. mainland genetic diversity 

 We found the greatest amount of mitochondrial genetic diversity within the mainland 

locations (Table 3.4). The group with the lowest genetic diversity included P. p. phasma and P. 

p. decoloratus, with a single haplotype identified across all samples and locations. Within the P. 

p. niveiventris locations we detected limited genetic diversity, however, none of the 

measurements of mitochondrial diversity were higher than the overall diversity found in 

mainland P. polionotus (Table 3.4). Each mainland sample location contained more than one 

haplotype, even with small sample sizes (LARA; N = 2; Table 3.4). We found two locations with 

more than one haplotype within the P. p. niveiventris locations (CNS and CC; Table 3.4), while 

the remaining locations were fixed for a single haplotype (SDP and PINWR; Table 3.4). 

 Based on our haplotype and genetic structure data we pooled the mainland samples when 

comparing genetic diversity between mainland P. polionotus and the Atlantic coast subspecies 

(see Discussion). We found the observed levels of genetic diversity to fall within the 95% 

confidence interval (CI) of the simulated estimates (Fig. 3.8), suggesting our simulations 
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provided good estimates of observed diversity. We found the number of haplotypes and π to be 

significantly higher for the mainland P. polionotus subspecies compared to the Atlantic coast 

subspecies, based on the lack of overlap in the 95% CI (Fig. 3.8). Mainland samples had greater 

haplotype diversity than P. p. phasma, but there was overlap in the 95% CI with P. p. 

niveiventris. This overlap indicates that haplotype diversity is not significantly different between 

mainland P. polionotus and P. p. niveiventris (Fig. 3.8). We found P. p. niveiventris to have 

greater genetic diversity than P. p. phasma, with no overlap in 95% CI for all measures of 

diversity (Fig. 3.8). 

 For our microsatellite data we observed greater genetic diversity within the mainland 

sample locations compared to the Atlantic coast sample locations (Table 3.5). We observed some 

of the lowest genetic diversity within the P. p. phasma sample locations, however, two of the P. 

p. niveiventris locations (SDP and PINWR; Table 3.5) also exhibited comparable low genetic 

diversity. The permutation test implemented into FSTAT indicated that the mainland P. 

polionotus had greater genetic diversity than that found in P. p. phasma after Bonferroni 

correction for multiple comparisons (Allelic richness, P-value < 0.001; Ho, P-value < 0.001; He, 

P-value = 0.001; Fig. 3.9). The values of genetic diversity for P. p. niveiventris were found to be 

between the mainland subspecies and P. p. phasma for all three measures (Fig. 3.9), and P. p. 

niveiventris was not significantly different from either the mainland subspecies (Allelic richness, 

P-value = 0.020; Ho, P-value = 0.478; He, P-value = 0.050; Fig. 3.9), or P. p. phasma (Allelic 

richness, P-value = 0.038; Ho, P-value = 0.038; He, P-value = 0.057; Fig. 3.9), after Bonferroni 

correction for multiple comparisons.
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Table 3.5 Genetic diversity for cyt b sequence data across sample locations of P. polionotus captured in peninsular Florida. 

Diversity reported for all mainland subspecies (P. p. subgriseus and P. p. rhoadsi), all samples of beach mouse subspecies P. 

p. phasma and P. p. decoloratus, all beach mouse subspecies P. p. niveiventris, and for each sample location for each of these 

groups (not reported for P. p. phasma and P. p. decoloratus as they share the same single haplotype). For each location we 

reported sample size (N), number of haplotypes, number of polymorphic sites, haplotype diversity, nucleotide diversity (π) , 

and average nucleotide differences (k). 

Group 
Sample 

location 
N 

# 

haplotypes 

# 

polymorphic 

sites 

haplotype 

diversity 
π k 

Mainland subspecies All 56 19 26 0.885 0.005 5.098 

 
SRWEA 10 4 7 0.644 0.002 2.378 

 
ONF 7 5 6 0.857 0.002 2.381 

 
LARA 2 2 1 1.000 0.001 1.000 

 
LLSP 14 9 14 0.934 0.004 4.615 

 
APAFR 10 2 10 0.467 0.003 4.667 

 
ABS 13 3 8 0.295 0.002 1.231 

        
P. p. phasma/ 

P. p. decoloratus 
All 33 1 0 0.000 0.000 0.000 

        
P. p. niveiventris All 36 3 3 0.538 0.001 0.624 

 
SDP 7 1 0 0.000 0.000 0.000 

 
CNS 8 2 1 0.536 0.004 0.536 

 
CC 6 3 3 0.600 0.001 1.000 

  PINWR 15 1 0 0.000 0.000 0.000 
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Figure 3.8 Measures of genetic diversity based on cyt b sequence data for P. polionotus samples: 

number of haplotypes (A), haplotype diversity (B), and nucleotide diversity (π; C). X-axis shows 

diversity for mainland subspecies (P. p. subgriseus and P. p. rhoadsi), P. p. niveiventris and P. p. 

phasma. Black diamonds show observed value, and grey circles show estimated values based on 

coalescence simulation in DnaSP. Error bars show 95% confidence intervals for simulated data.
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Table 3.6 Data summary for ten microsatellite loci across the sampled locations of P. polionotus; mainland subspecies (P. p. 

subgriseus and P. p. rhoadsi), P. p. phasma, and P. p. niveiventris. For each sample location sample size (n) is reported, in 

addition to measures of genetic diversity: number of alleles (A), allelic richness (AR), and observed (Ho) and expected (He) 

heterozygosity. For each measure of diversity values are reported as averages and standard deviations. 

Group 
Sample 

location 
n A AR Ho He 

Mainland 

subspecies 
SRWEA 10 8.2 ± 2.6 7.1 ± 2.1 0.764 ± 0.170 0.785 ± 0.166 

 
ONF 9 7.8 ± 1.9 7.0 ± 1.6 0.760 ± 0.162 0.801 ± 0.067 

 
LLSP 25 11.7 ± 3.5 7.5 ± 1.2 0.774 ± 0.122 0.855 ± 0.035 

 
APAFR 10 7.1 ± 2.0 6.3 ± 1.4 0.739 ± 0.218 0.782 ± 0.073 

 
ABS 13 9.2 ± 2.3 7.1 ± 1.4 0.735 ± 0.203 0.822 ± 0.055 

       P. p. phasma ASP 40 5.7 ± 1.8 3.8 ± 1.0 0.478 ± 0.223 0.615 ± 0.144 

 
FM 33 3.0 ± 1.8 2.2 ± 1.1 0.206 ± 0.233 0.290 ± 0.245 

       P. p. niveiventris SDP 19 4.2 ± 1.3 3.5 ± 1.2 0.588 ± 0.237 0.525 ± 0.212 

 
CNS 31 7.7 ± 3.3 5.1 ± 1.8 0.598 ± 0.232 0.673 ± 0.251 

 
MINWR 32 7.6 ± 3.4 5.4 ± 1.9 0.671 ± 0.263 0.718 ± 0.201 

 
BG3 28 8.9 ± 4.1 5.8 ± 2.0 0.709 ± 0.191 0.733 ± 0.187 

 
SG1 43 8.1 ± 3.0 5.3 ± 1.8 0.707 ± 0.261 0.713 ± 0.235 

 
SG3 56 9.7 ± 4.3 5.8 ± 1.8 0.711 ± 0.206 0.735 ± 0.204 

 
SG2 44 9.1 ± 3.7 5.7 ± 2.0 0.691 ± 0.222 0.729 ± 0.217 

 
BG1 35 9.1 ± 3.0 6.0 ± 1.8 0.706 ± 0.193 0.747 ± 0.191 

 
BG2 41 9.5 ± 4.0 5.8 ± 2.1 0.716 ± 0.270 0.721 ± 0.252 

  PINWR 15 4.2 ± 1.6 3.7 ± 1.3 0.600 ± 0.229 0.583 ± 0.188 
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Figure 3.9 Measures of genetic diversity based on ten microsatellite loci for P. polionotus across 

peninsular Florida: allelic richness (A) and observed (B) and expected (C) heterozygosity. Each 

bar illustrates genetic diversity within mainland subspecies (P. p. subgriseus and P. p. rhoadsi), 

P. p. niveiventris or P. p. phasma. Different letters above bars indicate significant differences 

between them. After Bonferroni correction α = 0.017. 
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Discussion 

We have identified divergence and isolation consistent with rapid evolution in a lineage 

invading novel coastal habitat. First we found that the two extant Atlantic coast beach mouse 

subspecies, P. p. phasma and P. p. niveiventris, represent distinct lineages, supporting the 

hypothesis that these subspecies constitute unique taxonomic units. The relationship of the 

extinct subspecies P. p. decoloratus to the other subspecies remains unclear, as our limited 

sample sizes showed it to share a single haplotype with P. p. phasma. Second we found that all 

recognized subspecies appear to have originated from a single mainland source. The haplotypes 

found on the barrier islands originate from a single haplotype from central Florida. These 

findings support Bowen’s single colonization hypothesis, but we cannot distinguish between a 

single colonization event with subsequent diversification or multiple colonization events from 

that shared source. Third we found support for different clustering patterns depending on the 

level of sample bias (Table 3.4). This can have consequences for future use of STRUCTURE in 

evaluating genetic structure. Regardless of the route and dynamics of barrier island colonization, 

the two extant subspecies each have unique phylogenetic trajectories and limited genetic 

diversity. Finally, as expected for recently established and narrowly-distributed subspecies, we 

found low genetic diversity in P. p. phasma in both mitochondrial and nuclear markers, 

compared to mainland conspecifics. However, for P. p. niveiventris we found similarly low 

mitochondrial sequence diversity, but nuclear diversity was similar to mainland sample locations 

(Fig. 5.8 and 5.9), potentially due to large founder populations or multiple founder events. 
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In evaluating the taxonomic status of the Atlantic coast beach mouse subspecies we 

found evidence that the two extant subspecies, P. p. phasma and P. p. niveiventris, show clear 

genetic differentiation from each other and from the mainland subspecies, with unshared cyt b 

haplotypes and lack of gene flow estimated from microsatellite data. As expected with recently 

diverged taxa our phylogenetic tree provided little information for discerning evolutionary 

relationships among P. polionotus spp. In recently isolated taxa, divergence can be difficult to 

detect as a result of incomplete lineage sorting and insufficient time for evidence of phenotypic 

and genotypic differentiation to manifest in sampled characters (Maddison and Knowles 2006). 

The remaining analyses suggested that P. p. phasma and P. p. niveiventris belong to their own 

distinct taxonomic units. Lack of gene flow has been also documented between the Gulf coast 

beach mouse subspecies (Mullen et al. 2009, Domingues et al. in press), suggesting that the 

recognized beach mouse subspecies all represent their own evolutionary trajectories. The only 

subspecies without support for this evolutionary independence was P. p. decoloratus, where both 

specimens examined had the same haplotype found in P. p. phasma. This result suggests these 

two subspecies may represent the same evolutionary lineage. The different subspecies are 

identified by their pelage color (Bowen 1968), and the this seems to be a strong predictor for 

identifying evolutionary lineages for beach mice both on the Atlantic coast, as we have shown 

here, as well as on the Gulf coast (Mullen et al. 2009, Domingues et al. in press). 

Variation within species is widely recognized through the use of subspecies designation. 

However, many studies have shown discrepancies between evolutionary lineages and taxonomic 

groupings within species (Burbrink et al. 2000, Zink 2004, Mulcahy 2008, Daza et al. 2009, 

Newman and Rissler 2011, Tursi et al. in press). Such deviation could reflect influence of clinal 
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or other environmental variation in morphological characters used to identify (van Valen 1973, 

Myers et al. 1996, Grieco and Rizk 2010, Svanbäck and Schluter 2012), rather than reflecting 

evolutionary history. Color patterns have been one trait that has been found to be a poor 

predictor of intraspecific variation (e.g., Burbrink et al. 2000, Trujano-Alvarez and Álvarez-

Castañeda 2007). However, in beach mice pelage-defined color patterns are an ideal character 

state for determining evolutionary lineages (this study, Mullen et al. 2009, Domingues et al. in 

press). The possible causal explanations for the correspondence of pelage color to evolutionary 

lineage in this system maybe the evolutionary processes that impact the beach mice. Extensive 

research has documented selective differentiation in beach mice, with a selective advantage to 

matching pelage color to sand substrate (Mullen and Hoekstra 2008, Vignieri et al. 2010). The 

genes influencing pelage color variation in beach mice differ between Gulf and Atlantic coast 

subspecies (Hoekstra et al. 2006, Steiner et al. 2007, Steiner et al. 2009), but beach mice 

differentiation seems to be driven by similar selective pressures on different populations. 

Comparable results have been reported in Anolis species, where dewlap colors denote 

intraspecific variation (Glor and Laport 2012). In this case dewlap colors may be under selective 

pressure for species recognition, sexual selection, or both (Losos 1985, Vanhooydonck et al. 

2005).  

Differential selective pressure for background matching seems to be driving coastal 

speciation in P. polionotus. However, correspondence of taxonomic units to evolutionary 

lineages is not as clear on the mainland. Mainland P. polionotus subspecies are also recognized 

by phenotypic variation, with eight recognized subspecies (Hall 1981). Our sample locations fell 

within the distributions of P. p. subgriseus and P. p. rhoadsi, but our genetic data do not support 
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the existence of separate evolutionary trajectories for these taxonomic units. The two subspecies 

do not share haplotypes; however, most of the P. p. subgriseus haplotypes directly linked up to a 

central Florida P. p. rhoadsi haplotype (Fig. 3.3). This suggests P. p. subgriseus haplotypes are 

more closely associated with a P. p. rhoadsi haplotype than to other P. p. subgriseus haplotypes. 

Additionally, genetic structure does not support clear differentiation between the two subspecies 

(Fig. 3.6). In order to resolve mainland intraspecific variation further sampling would be needed. 

Dispersal to islands has become increasingly recognized as an important process 

affecting the distribution of biodiversity on islands (de Queiroz 2005, Cowie and Holland 2006), 

but how islands are initially colonized has received little attention (Cowie and Holland 2006). 

Several studies have found that diversity of a focal taxon on islands was the result of 

colonization from a single source that gave rise to adaptive radiations currently seen among 

island taxa (Grant 1981, Böhle et al. 1996, Burns et al. 2002, Filardi and Moyle 2005). Barrier 

islands are much more closely associated with continental landmasses than oceanic islands, and 

could provide a greater opportunity for colonization from multiple sources. Any variation 

observed among islands could then be a result of variation from different sources. Our study 

provided an opportunity to test hypotheses of the colonization patterns of P. polionotus on to 

recently formed barrier islands.  

One of the most comprehensive studies of beach mouse evolution was based on pelage 

color by Bowen (1968), and he proposed hypotheses for the establishment and evolution of Gulf 

and Atlantic coast beach mouse subspecies. On the Gulf coast previous studies have rejected 

Bowen multiple colonization hypothesis (Van Zant and Wooten 2007, Domingues et al. in 
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press). On the Atlantic coast, Bowen’s hypothesized that the diversity observed is the result of a 

single colonization event (Bowen 1968). Our haplotype network indicated that the extant 

subspecies of Atlantic coast beach mice originated from the same source, based on inferred 

lineages to a haplotype currently found in central Florida (Fig. 3.3), and therefore supports 

Bowen’s single colonization hypothesis. However, our data cannot distinguish between single 

colonization of the barrier islands or multiple colonization events from the same gene pool. 

Our data does suggest a sequence of events regarding the formation of extant Atlantic 

beach mouse diversity. We found that P. p. phasma seems to have been isolated from mainland 

P. polionotus and P. p. niveiventris the longest, with the greatest amount of genetic 

differentiation from other subspecies based on RST values. When we included even sample sizes 

we also found support for an initial isolation of P. p. phasma from a P. p. niveiventris/P. p. 

subgriseus/P. p. rhoadsi cluster (Fig. 3.7). These findings suggest that P. p. phasma was isolated 

from other P. polionotus populations before P. p. niveiventris was isolated from the mainland.  

Our numerical sampling bias of P. p. niveiventris raises an important question on the 

sensitivity of STRUCTURE analyses using skewed sample sizes. STRUCTURE is widely used 

in population genetics studies, illustrated by the over 6,000 times Pritchard et al. (2000) has been 

cited (Web of Knowledge, accesses 6-July-2012). However, the impact of sample size has not 

sufficiently addressed in the use of STRUCTURE. With greater trapping intensity of P. p. 

niveiventris we had over three times more samples for this subspecies than for the other 

subspecies (Table 3.1). With increased sample bias, STRUCTURE tended to attribute all 

members of the geographical locality with the most samples as being a unique genetic population 
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(Table 5.4). When we reduced sample bias we increasingly observed a tendency of P. p. phasma 

to form its own cluster, while P. p. niveiventris and the mainland subspecies formed a separate 

cluster. Even with smaller bias (P. p. niveiventris; n = 100) we observed runs with contradictory 

results (90% of runs P. p. phasma form its own cluster, 10% of runs P. p. niveiventris form its 

own cluster; Table 3.4). Our findings emphasized the importance of including independent runs 

for STRUCTURE analysis, but also of considering the possible effects of sampling bias. We 

found conflicting results due to sampling bias, and our inferences must take such biases into 

consideration. 

Colonizing islands is often associated with the reduction of effective population size 

through bottlenecks and founder effects. This can lead to loss of genetic diversity through 

genetic drift and inbreeding (Frankham 1997). Reduced genetic diversity has been reported in 

many studies of island populations (e.g., Eldridge et al. 1999, Jones et al. 2004, Boessenkool et 

al. 2007). While barrier islands are often closely associated with the mainland, and therefore may 

avoid loss of diversity through maintenance of gene flow, we found P. p. phasma to conform to 

the hypothesis of isolation and lower genetic diversity for island populations. Both our cyt b and 

microsatellite data showed significantly lower genetic diversity for P. p. phasma compared to 

mainland genetic diversity (Fig. 3.8 and 3.9). For P. p. niveiventris we found genetic diversity to 

be significantly lower compared to the mainland populations for cyt b (Fig. 3.8), but diversity 

was not significantly different for microsatellite loci (Fig. 3.9). The patterns of genetic diversity 

suggest that not all island populations are affected equally by initial founder effects and 

subsequent bottlenecks and isolation. Variation in evolutionary history, ecology and behavior 

among lineages can cause differences in the impact on genetic diversity (Taylor et al. 2007). 
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Initial population size can greatly impact genetic diversity for populations (Clegg et al. 2002), so 

the higher nuclear genetic diversity in P. p. niveiventris could be caused by a larger founder 

population, compared to that of P. p. phasma. We did observe a discrepancy between the two 

genetic markers in P. p. niveiventris, which may be due to the nature of the markers. The 

effective population size for mitochondrial markers is only one quarter of nuclear markers, 

making genes such as cyt b more sensitive to bottlenecks and founder effects (Fay and Wu 

1999). If P. p. niveiventris was established by a larger founder population, this subspecies could 

have maintained genetic diversity comparable to what is observed on mainland, but the 

colonization effects were enough to impact the genetic diversity of the mitochondrial genome. 

In summary, we found pelage color to correspond to evolutionary lineages in the Atlantic 

coast beach mouse subspecies. We also found that the Atlantic coast subspecies originated from 

the same mainland source. With a large numerical sample bias we were able to show that 

STRUCTURE analyses can be influenced by numerical sampling bias. And finally, we found P. 

p. phasma to follow the predicted pattern of lower genetic diversity in island population, while P. 

p. niveiventris has maintained nuclear genetic diversity at mainland levels. 

Conservation implications 

Our understanding of the evolutionary history and population genetics of beach mice can 

greatly impact conservation efforts. Among the extant beach mouse subspecies, only one is not 

federally listed as either threatened or endangered. For the extant Atlantic coast beach mice, P. p. 

phasma is listed as endangered and P. p. niveiventris is listed as threatened (U.S. Fish and 

Wildlife Service 1989). In order to protect specific segments of a species the Endangered Species 
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Act has since 1978 provided protection to populations of terrestrial vertebrates that are 

considered “distinct population segments” (DPS) (Pennock and Dimmick 1997). Prior research 

has defined P. p. niveiventris as an evolutionarily significant unit (Degner et al. 2007), however, 

our findings support defining both extant Atlantic coast beach mouse subspecies as two DPS 

based on the criteria given by the U.S. Fish and Wildlife Service and National Marine Fisheries 

Services (1996). The criteria for being defined as a DPS is ‘discrete’, ‘significant’ and 

endangered compared to other conspecifics. ‘Discrete’ refers to being disconnected to 

conspecifics such as by a lack of gene flow, and ‘significant’ relates to the use of unique habitat 

(U.S. Fish and Wildlife Service and National Marine Fisheries Service 1996). The two 

subspecies are ‘discrete’ by showing lack of gene flow to mainland conspecifics or between 

subspecies. The Atlantic coast beach mice are ‘significant’ as they occupy unique coastal habitat 

compared to mainland conspecifics. Finally, the Atlantic coast beach mice are federally listed, 

while the mainland conspecifics are considered of least concern. 
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CHAPTER 4. UNRAVELING NATURAL VERSUS ANTHROPOGENIC 

EFFECTS ON GENETIC DIVERSITY WITHIN THE SOUTHEASTERN 

BEACH MOUSE (PEROMYSCUS POLIONOTUS NIVEIVENTRIS)
2
 

 

Introduction 

Habitat loss and fragmentation are among the greatest negative impacts humans have on 

natural populations (Groom et al. 2005, Fischer and Lindenmayer 2007). Reduced habitat and 

increased fragmentation of populations leads to isolation of populations which are disconnected 

‘islands’ in the landscape. Smaller populations are subject to genetic drift and loss of genetic 

diversity (Lacy 1987, Frankham 1997, Thalmann et al. 2011, Tracy and Jamieson 2011). 

Populations that have sustained losses of genetic diversity have an increased probability of 

extinction (Saccheri et al. 1998, Reed and Frankham 2003, Lavergne and Molofsky 2007). 

Therefore levels of genetic diversity have been widely used in conservation biology as measures 

of human impact on taxa of interest and in assessing their future management needs (Miller and 

Waits 2003, Schwartz et al. 2007, Helm et al. 2009). 

Several studies have shown that natural populations can exhibit low genetic diversity 

independent of human influences (O'Brien 1994, Hedrick 1995). Thus, low levels of 

contemporary genetic diversity can be explained by historical events acting prior to 

anthropogenic impacts (Miller and Waits 2003, Taylor et al. 2007, Reding et al. 2010). For 

example, historical population bottlenecks, gene flow restrictions, and founder effects can 

account for current levels of genetic structure and diversity (Culver et al. 2000, Paxinos et al. 

                                                      
2
 Kalkvik H.M. et al. (in review) Unraveling natural versus anthropogenic effects on genetic diversity within the 

southeastern beach mouse (Peromyscus polionotus niveiventris). Conserv. Genet. 
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2002, Miller and Waits 2003, Taylor and Jamieson 2008). Changes in evolutionary pressures 

may also result in variation in genetic diversity and structure across a species’ distribution 

(Lawton 1993, Eckert et al. 2008) and genome-wide selection sweeps can also cause reduced 

genetic diversity (Amos and Harwood 1998). These historical impacts on a population can result 

in adaptation to local environments (Avise et al. 1987, Slatkin 1987, Åbjörnsson et al. 2004). 

Continental and insular populations are well known to exhibit differences in genetic 

diversity (Frankham 1997, Frankham et al. 2002). In a wide range of taxa that occupy landforms 

such as barrier islands, patterns of reduced genetic diversity relative to congeners on the 

mainland have been observed (Triggs et al. 1989, Frankham 1997, Bidlack and Cook 2001, 

MacAvoy et al. 2007). The genetic diversity in these insular populations has been shaped by 

historical (natural features) forces and more recently subjected to natural and anthropogenic 

influences. Naturally, populations occupying islands are often founded by few individuals, which 

has consequences on genetic diversity (Mayr 1942, Tinghitella et al. 2011). Taxa occupying 

barrier islands most likely dispersed from mainland populations and natural colonization events 

could account for contemporary genetic diversity. Barrier islands are also unique in that natural 

disturbance events such as hurricanes and floods may provide additional hardship (selective 

pressures) for taxa due to reoccurring bottlenecks during such events (Breininger et al. 1999, Oli 

et al. 2001, Scileppi and Donnelly 2007, Pries et al. 2009, Saha et al. 2011b). Anthropogenic 

influences manifest as land use conversion in coastal habitats and result in the loss of biotic 

diversity (Barbier et al. 2008, Mhemmed et al. 2008). One third of earth’s human population now 

occupies coastal areas (Barbier et al. 2008) and this trend seems to be increasing (Small and 

Nicholls 2003). Thus the genetic diversity of barrier island taxa can be shaped by historical 
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founder events or bottlenecks acting alone, recent anthropogenic habitat loss, or a combination of 

historical and contemporary events. 

Our purpose here is to examine genetic diversity of Peromyscus polionotus niveiventris 

(southeastern beach mouse) endemic to barrier islands subjected to diverse extrinsic factors, e.g., 

hurricanes and development pressures. This taxon is one of eight subspecies of P. polionotus that 

occupy barrier islands of the gulf coast of Alabama and Florida and the Atlantic coast of Florida 

(i.e. beach mice; Hall 1981). Historically ancestral beach mice populations were isolated from 

mainland conspecifics with the formation of the barrier islands (Hoekstra et al. 2006, Van Zant 

and Wooten 2007). Within the last few decades P. p. niveiventris has experienced a range 

contraction on the southeast barrier islands of Florida from a historical range of approximately 

350 km to an estimated current range of approximately 70 km of continuous habitat as described 

by Stout (1992). In addition, two disjunct populations remain in a few kilometers of habitat in the 

northern and southern end of the current distribution (Fig. 4.1). The range contraction of P. p. 

niveiventris can be tracked over the last few decades (Stout 1992), and fits well with a model of 

decreased habitat associated with increased housing development of the area (Winsberg 1992). 

Prior work with this subspecies did not determine if genetic diversity was compromised by 

recent habitat losses (Degner et al. 2007). 

To understand the genetic consequences of anthropogenic impacts we must be able to 

compare pre-development and post-development populations of P. p. niveiventris. Recent 

advances in the use of historical DNA derived from museum collections permit comparisons of 

historical and contemporary genetic diversity (Wandeler et al. 2007, Leonard 2008). Studies 
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using this approach have been able to identify taxa where historical processes prior to human 

influence can explain current low genetic diversity (e.g. Hoffman and Blouin 2004, Chan et al. 

2005, Reding et al. 2010), while other studies have documented a reduction in genetic diversity 

associated with human impacts (e.g. Hauser et al. 2002, Culver et al. 2008, Thalmann et al. 

2011). 

We predicted a loss of genetic diversity in mitochondrial DNA in the contemporary range 

of P. p. niveiventris compared to the historical samples, based on the extensive loss of habitat for 

this subspecies. This comparison will identify the degree to which historical diversity has been 

affected by hypothesized anthropogenic influences over recent decades. Next we examined 10 

microsatellite loci to describe genetic diversity and genetic structure within contemporary 

populations of P. p. niveiventris. We expected that extant genetic diversity would be higher in 

the contiguous tracts of habitat relative to disjunct habitats. The results we report inform future 

conservation strategies for this taxon based on insights into the historical and contemporary 

trends in its population genetics. 

Methods and Material 

Sampling and DNA Extraction 

 We acquired tissue as 4x4 mm
2
 sections of skin taken from the venter of 78 dried 

museum specimens (Table 4.1). These specimens, categorized as historical, were collected from 

Volusia to Palm Beach Counties and represent the known historical range of P. p. niveiventris 

(Table 4.2). Our contemporary samples were from Smyrna Dunes Park (SDP), Canaveral 

National Seashore (CNS), Merritt Island National Wildlife Refuge (MINWR), Cape Canaveral 
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(CC) and Pelican Island National Wildlife Refuge (PINWR) (Fig. 4.1). Samples from the current 

distribution were categorized as peripheral (SDP and PINWR), or central (CNS, MINWR and 

CC), based on location (Table 4.2, Fig. 4.1). In total, 344 contemporary individuals were used in 

this study. Individuals from contemporary sample locations were live trapped using methods 

described in Degner et al. (2007) and we collected 2-4 mm of tail tissue and stored the samples 

in 95% ethanol at -20°C prior to DNA extraction. 

Genomic DNA was extracted from all tissue samples using a Qiagen DNeasy tissue 

purification kit (Qiagen Inc.). Museum tissues were soaked in 95% ethanol at 4°C for 24 hours to 

remove any salts and PCR inhibitors (Mullen and Hoekstra 2008). These tissues were 

subsequently lysed for 24 hours until dissolved. Contemporary tissue was lysed for 3-4 hours 

until completely dissolved. 
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Table 4.1 Collection data for museum skin specimens of Peromyscus polionotus niveiventris used for DNA analysis. Museum samples 

were acquired from the following museums; American Museum of Natural History (AMNH), Cornell University Museum of Vertebrates 

(CU), Field Museum of Natural History (FMNH), Florida Museum of Natural History (FLMNH), Harvard Museum of Comparative 

Zoology (MCZ), University of New Mexico Museum of Southwestern Biology (MSB), University of California Berkley Museum of 

Vertebrate Zoology (MVZ), and University of Michigan Museum of Zoology (UMMZ). 

Museum  Museum ID Specific Location County Year Collected Haplotype 

AMNH 12972 Jupiter Island Palm Beach Co. 1895 X 

AMNH 12973 Jupiter Island Palm Beach Co. 1895 X 

AMNH 12977 Jupiter Island Palm Beach Co. 1895 X 

AMNH 12978 Jupiter Island Palm Beach Co. 1895 - 

AMNH 12981 Jupiter Island Palm Beach Co. 1895 X 

AMNH 12982 Jupiter Island Palm Beach Co. 1895 X 

AMNH 12983 Jupiter Island Palm Beach Co. 1895 X 

AMNH 12984 Jupiter Island Palm Beach Co. 1895 X 

AMNH 166249 Cape Canaveral Brevard Co. 1923 X 

AMNH 166250 Cape Canaveral Brevard Co. 1923 X 

AMNH 166251 Cape Canaveral Brevard Co. 1923 X 

AMNH 166252 Cape Canaveral Brevard Co. 1923 X 

AMNH 166572 Eau Gallie Brevard Co. 1951 Z 

AMNH 166753 Eau Gallie Brevard Co. 1951 A 

CU 3339 Unknown Brevard Co. 1942 A 

CU 3341 Unknown Brevard Co. 1942 A 

CU 3342 Unknown Brevard Co. 1942 B 

CU 3343 Unknown Brevard Co. 1942 B 

CU 3344 Unknown Brevard Co. 1942 A 

CU 3345 Unknown Brevard Co. 1942 A 

CU 3346 Unknown Brevard Co. 1942 A 

CU 3347 Unknown Brevard Co. 1942 A 

CU 3349 Unknown Brevard Co. 1942 A 
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Museum  Museum ID Specific Location County Year Collected Haplotype 

CU 3350 Unknown Brevard Co. 1942 A 

CU 3395 Unknown Brevard Co. 1942 - 

CU 3396 Unknown Brevard Co. 1942 - 

CU 3397 Unknown Brevard Co. 1942 A 

CU 8234 New Smyrna Volusia Co. 1954 A 

CU 8235 New Smyrna Volusia Co. 1954 A 

CU 8236 New Smyrna Volusia Co. 1954 A 

CU 8237 New Smyrna Volusia Co. 1954 A 

FMNHC 5321 Jupiter Island Palm Beach Co. 1895 X 

FMNHC 5323 Jupiter Island Palm Beach Co. 1895 X 

FMNHC 5324 Jupiter Island Palm Beach Co. 1895 X 

FLMNH 12534 Merritt Island Brevard Co. 1942 X 

FLMNH 12538 Coronado Beach Brevard Co. 1946 Y 

FLMNH 16389 John's Island Beach Indian River Co. 1974 A 

FLMNH 23730 Canaveral Air Force Base Brevard Co. 1986 A 

FLMNH 23731 Sebastian Inlet Indian River Co. 1986 B 

FLMNH 23732 Sebastian Inlet Indian River Co. 1986 A 

FLMNH 23733 Sebastian Inlet Indian River Co. 1986 A 

FLMNH 23734 Pepper Beach St. Lucie Co. 1986 B 

FLMNH 24370 Fort Pierce St. Lucie Co. 1988 B 

FLMNH 24371 Sebastian Inlet Indian River Co. 1989 A 

FLMNH 2729 Oak Lodge Brevard Co. 1948 X 

FLMNH 2731 Oak Lodge Brevard Co. 1948 X 

FLMNH 2732 Oak Lodge Brevard Co. 1948 X 

FLMNH 2734 Vero Beach Indian River Co. 1947 Y 

FLMNH 5901 Floridana Beach Brevard Co. 1960 X 

FLMNH 63 Sebastian Inlet Brevard Co. 1948 X 

FLMNH 64 Sebastian Inlet Brevard Co. 1948 X 
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Museum  Museum ID Specific Location County Year Collected Haplotype 

MCZ 3076 Oak Lodge Brevard Co. 1893 X 

MCZ 3077 Oak Lodge Brevard Co. 1893 - 

MCZ 3078 Oak Lodge Brevard Co. 1893 - 

MCZ 3079 Oak Lodge Brevard Co. 1893 X 

MCZ 3080 Oak Lodge Brevard Co. 1893 A 

MCZ 3081 Oak Lodge Brevard Co. 1893 Y 

MCZ 3082 Oak Lodge Brevard Co. 1893 - 

MCZ 3083 Oak Lodge Brevard Co. 1893 - 

MCZ 3084 Oak Lodge Brevard Co. 1893 - 

MCZ 3085 Oak Lodge Brevard Co. 1893 - 

MCZ 3086 Oak Lodge Brevard Co. 1893 - 

MCZ 3087 Oak Lodge Brevard Co. 1893 - 

MCZ 3088 Oak Lodge Brevard Co. 1893 - 

MCZ 3090 Oak Lodge Brevard Co. 1893 - 

MCZ 3091 Oak Lodge Brevard Co. 1893 - 

MSB 64750 Coronado Beach Brevard Co. 1946 B 

MSB 64755 Coronado Beach Brevard Co. 1946 A 

MSB 64770 Micco Brevard Co. 1948 A 

MVZ 67208 Oak Lodge Brevard Co. 1895 A 

MVZ 67209 Oak Lodge Brevard Co. 1895 B 

UMMZ 104089 Oak Lodge Brevard Co. 1908 A 

UMMZ 104090 Oak Lodge Brevard Co. 1908 A 

UMMZ 104091 Oak Lodge Brevard Co. 1908 - 

UMMZ 104092 Oak Lodge Brevard Co. 1908 A 

UMMZ 104093 Oak Lodge Brevard Co. 1908 A 

UMMZ 104094 Oak Lodge Brevard Co. 1908 B 

UMMZ 104095 Oak Lodge Brevard Co. 1908 A 
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Table 4.2. Measures of genetic diversity for cyt b sequence data across the contemporary and historical range of P. p. 

niveiventris. For each time scale and each location we report: category (C – C: contemporary – central, C – P: contemporary – 

peripheral, H: historical), sample size (N), haplotypes, number of polymorphic sites, average nucleotide differences (k), and 

nucleotide diversity (π). 

Time scale Location Category N Haplotypes 
Polymorphic 

sites 
k π 

Contemporary Overall  37 3 3 0.62 0.00056 

 
Smyrna Dunes Park C – P 7 1 0 0.00 0.00000 

 

Canaveral National 

Seashore 
C – C 8 2 1 0.54 0.00050 

 
Cape Canaveral C – C 6 3 3 1.00 0.00088 

 
Sebastian Inlet State Park C – P 1 1 0 0.00 0.00000 

 

Pelican Island National 

Wildlife Refuge 
C – P 15 1 0 0.00 0.00000 

Historical Overall  63 5 6 0.91 0.00120 

 
New Smyrna H 7 3 2 0.52 0.00071 

 
Cape Canaveral H 5 2 1 0.40 0.00113 

 
Oak Lodge H 23 4 4 0.84 0.00126 

 
Jupiter Island H 10 1 0 0.00 0.00000 
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Figure 4.1. Sample locations of P. p. niveiventris across their contemporary distribution (black 

line) along the Atlantic coast of Florida. Tissue samples were collected from Smyrna Dunes Park 

(SDP), Canaveral National Seashore (CNS), Merritt Island National Wildlife Refuge (MINWR), 

Cape Canaveral and Pelican Island National Wildlife Refuge (PINWR). Six trapping grids were 

set up at Cape Canaveral, designated as Beach Grid (BG) 1 to 3 and Inland Grid (IG) 1 to 3. 
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Evaluating Loss of Genetic Diversity Using mtDNA 

 We amplified and sequenced 1100 bp of the rapidly evolving mitochondrial gene 

cytochrome b (cyt b), to assess the contemporary and historical genetic diversity of P. p. 

niveiventris. Because historical DNA samples were degraded, we amplified seven 200-300 base 

pair portions of the gene to recover the entire cyt b sequence. PCR reactions were done in 25 μL 

volumes, containing 20-30 ng DNA, 2 mM MgCl, 1X Amplitaq Gold Buffer, 200 μM dNTPs, 

0.75 units AmpliTaq Gold (Roche, NJ), and 160 nM primer. Thermocycler conditions were: 

94°C for 2 minutes, 45 cycles of 94°C for 1 minute, annealing temperature for 1 minute, and 

72°C for 2 minutes. Annealing temperature and primer sequences used for historical DNA can be 

found in supplementary materials (Table 4.3). Among the contemporary samples we sequenced 

between six and 16 individuals for each sample location, a total of 37 individuals, following the 

same protocol given in Herron et al. (2004). We included MINWR as part of the CC sample for 

our sequence data. All sequences were processed on an ABI 3730 DNA analyzer by Nevada 

Genomics Center (Reno, NV). Sequences were edited in Sequencer v.4.8 (Gene Codes, Ann 

Arbor, MI), and aligned by eye using GeneDoc v.2.6 (Nicholas et al. 1997). 

To compare diversity between historical and contemporary samples of cyt b, we 

estimated number of haplotypes, number of polymorphic sites, average nucleotide differences 

(k), and nucleotide diversity (π) using DnaSP v.4.2 (Rozas et al. 2003). We compared the genetic 

diversity among historical samples to contemporary samples using a one-tailed Welch’s t-test in 

R v.2.11 stats package to test for the loss of genetic diversity. We only included estimated 

genetic diversity in the t-test for locations with more than five individuals in the sample area.
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Table 4.3. Primer sequences for amplifying cyt b in degraded DNA samples of P. polionotus. 

Sequence Primer name Primer sequence 

Annealing 

temperature 

Amplicon 1 mt14152F 5' AAC ATC CGA AAA AAA CAC CC 3' 50°C 

 

mt14341R 5' CTG ATG AGA ATG CTG TAG TTG TG 3' 
 

Amplicon 2 mt14297F 5' TAG CCA TAC ACT ACA CAT CAG 3' 55°C 

 

mt14534R 5' CCT ATG AAT GCT GTT GCT ATT AC 3' 
 

Amplicon 3 mt14471F 5' CTG ATG AGA ATG CTG TAG TTG TG 3' 55°C 

 

mt14688R 5' AAA TGC GAA GAA TCG TGT TAG G 3' 
 

Amplicon 4 mt14647F 5' CCT ATG AAT GCT GTT GCT ATT AC 3' 55°C 

 

mt14894R 5' ATT TTG GTT TTA TTT TTC CCA G 3' 
 

Amplicon 5 mt14866F 5' ATT TTG GTT TTA TTT TTC CCA G 3' 55°C 

 

mt15079R 5' GTT TTG AGG TTT GTA GTA GAG G 3' 
 

Amplicon 6 mt15030F 5' ATT TTG GTT TTA TTT TTC CCA G 3' 55°C 

 

mt15237R 5' AGA ATA TCT GGG AAA AAT AAA ACC 3' 
 

Amplicon 7 mt15193F 5' ATT GGA CAA CTA GCC TC 3' 55°C 

  mt15377R 5' AGA ATA TCT GGG AAA AAT AAA ACC 3'   
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To evaluate the evolutionary relationships among haplotypes we constructed haplotype 

networks for both historical and contemporary cyt b sequences. The haplotype networks were 

generated using Templeton et al. (1992) methodology, following the statistical parsimony 

approach implemented in TCS v.1.4b1 (Clement et al. 2000). The connection limit for the 

haplotype network was set to 95%. 

Contemporary Genetic Structure and Interconnectivity 

 We utilized microsatellite loci to assess genetic structure and infer patterns of 

interconnectivity among sample locations across the current distribution of P. p. niveiventris. 

Microsatellite loci failed to amplify in historical samples, so only contemporary individuals were 

included. We genotyped all 344 contemporary individuals at ten microsatellite loci: pml-02, pml-

06, pml-11 (Chirhart et al. 2000), PO-25, PO-71, PO-105, PO3-68, PO3-85 (Prince et al. 2002), 

ppa-01, and ppa-46 (Wooten et al. 1999). PCR reactions were conducted in 25 μL volumes 

containing 1-10 ng DNA, 2.5 μL PCR buffer, 0.3 units Taq polymerase (Proligo), 0.2 μM of 

forward and reverse primer, 0.8 mM combined concentration of DNTPs and 1.5-2.5 mM MgCl. 

PCR products were sized using CEQ 8000 Genetic Analysis System (Beckman-Coulter, 

Fullerton, CA). Allele sizes were scored using the CEQ 8.0 software and 400 bp standards 

(Beckman-Coulter).  

We determined if each sample location and locus was in Hardy-Weinberg equilibrium 

(HWE) and linkage equilibrium using GenePop v.4.0 (François 2008), where significance values 

were estimated using a Markov chain approach (Dememorization = 10
4
, Number of batches = 

10
3
, Number of iterations per batch = 10

4
). We determined the distribution of genetic diversity 
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across the sample locations in the current range by measuring diversity as the number of alleles 

and allelic richness using FSTAT v.2.9 (Goudet 2001), in addition to observed and expected 

heterozygosity, which were estimated using GenAlEx v.6.1 (Peakall and Smouse 2006). 

Significant differences in genetic diversity between sample locations were determined using the 

group comparison tool in FSTAT to test for significance at α = 0.05 probability level based on 

10
4
 permutations. 

 We determined current genetic structure across the range of P. p. niveiventris by 

estimating global F-statistic values following the methods of Weir and Cockerham (1984). To 

evaluate interconnectivity we estimated differentiation between sample locations as pair-wise FST 

(Weir and Cockerham 1984). Both measures of differentiation were estimated in FSTAT. 

Genetic differentiation is predicted to increase with geographic distance (i.e. Isolation by 

Distance; Wright 1943), so to test for the relationship between genetic and geographic distances, 

we ran a Mantel test in IBDWS v.3.15 (Jensen et al. 2005). Significance was estimated using 

3x10
4
 randomizations. Pair-wise FST was used as a measure of genetic distance, and geographic 

distance was the Euclidiaen distance (km) between sample locations estimated using dist 

functions in R. 

 Lastly, we estimated the number of genetically distinct clusters (K) as an additional test 

of genetic structuring across the current range of P. p. niveiventris using a Bayesian admixture 

procedure (STRUCTURE v.2.2; Pritchard et al. 2000). With a Bayesian admixture procedure we 

can also identify recent gene flow between sample locations. The software STRUCTURE fits the 

data to a given K minimizing Hardy-Weinberg and linkage disequilibrium, and gives a likelihood 
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score [Pr(X|K)] for how well the data fit a set K. We applied a hierarchical approach to test the 

connectivity between the peripheral sample locations and the central part of the current range. 

First we included all individuals, and then we included only one or the other peripheral sample 

location (SDP and PINWR, Fig. 4.1) with all central sample locations. Lastly, we included only 

central sample locations in the STRUCTURE analysis. To determine the best fit K for each 

analyses, we used the best Pr(X|K) score as well as the method suggested by Evanno et al. 

(2005), which determines the second order derivative of Pr(X|K). Most parameters were set to 

the defaults given by STRUCTURE, with an admixture ancestral model. The initial 2x10
4
 

MCMC generations were discarded as burn-in, with a subsequent 5x10
5
generations used to 

estimate parameters. We ran the analyses for the number of clusters ranging from one to ten, 

with 25 independent runs for each cluster. We plotted the membership coefficient values for each 

individual included in the analysis to evaluate the genetic structure for the best fit K. Individuals 

with membership coefficients associated closely to clusters other than those found in its sample 

location were considered evidence of a migrant or recent gene flow. 

Results 

Evaluating Loss of Genetic Diversity Using mtDNA 

Sixty three of 78 samples provided sufficient (> 75%) cyt b sequence data to analyze 

(Table 4.1). Five haplotypes were identified from the historic samples and two corresponded to 

published haplotypes of this subspecies (Fig. 4.2A; EF216336 and EF216337; Degner et al. 

2007). Of the 63 historical samples, 45 had sufficient spatial information to assign to specific 
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trapping locations: New Smyrna, Cape Canaveral, Oak Lodge and Jupiter Island (Table 4.2; 

Fig.4.2A). 

A total of 37 cyt b sequences were generated from the contemporary sampling of P. p. 

niveiventris. Three haplotypes, corresponding to published haplotypes, were identified in the 

contemporary distribution (Table 4.2; EF216336-216338; Degner et al. 2007) and two locations 

had more than one haplotype (Cape Canaveral and Canaveral National Seashore; Fig. 4.2B). All 

measures of mitochondrial genetic diversity were higher from the historical range than the 

current range (Table 4.2). However, when the difference in genetic diversity was tested across 

the sample locations, we found no statistically significant loss of genetic diversity (haplotype: t = 

0.933, df = 5.534, P = 0.195; polymorphic sites: t = 0.677, df = 5.798, P = 0.262; k: t = 0.185, df 

= 5.449, P = 0.430; and π: t = 1.121, df = 5.575, P = 0.138). We did observe a significant loss of 

nucleotide differences (k: t = 2.545, df = 3, P = 0.043) and nucleotide diversity (π: t = 2.731, df = 

3, P = 0.036) when we excluded the central sample locations from the analysis. 

The historical haplotype network showed the highest frequency of haplotype A (44%), 

followed by haplotype X (36%), which was not recovered in the contemporary distribution (Fig. 

4.2C). Haplotype B was well represented with eight sequences found across the historical range 

(Fig. 4.2C), whereas two historical-only haplotypes, Z and Y, were found at lower frequencies. 

The five haplotypes identified in the historical range were each found in several sample 

locations, and no area exhibited unique haplotypes (Fig. 4.2A). The resolution of the haplotype 

network was poor, and does not inform the relationship between the different haplotypes (Fig. 

4.2C). All of the haplotypes differed by one to two base pair changes. The contemporary samples 
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show a majority of individuals were assigned to haplotype B (54%) followed by haplotype A 

(43%), with only one individual of contemporary-only haplotype C (Fig. 4.2D). Haplotypes A 

and B differ by one base pair, whereas A and C have two base pair differences separating them 

(Fig. 4.2D). 

Contemporary Genetic Structure and Interconnectivity 

 Three of the locus-by- sample location comparisons deviated from HWE for the 

microsatellite data set after the Bonferroni correction for multiple comparisons was applied. The 

deviation in HWE was found in three separate sample locations. In estimating linkage 

disequilibrium among all loci within each sample location, two loci combinations significantly 

deviated from linkage disequilibrium after Bonferroni correction. Based on the limited number 

of locations with loci out of HWE (N = 3), and only two locus pairs in linkage disequilibrium, 

we included all sample locations and loci in our analysis. 

 We found similar genetic diversity among the sample locations from the central part of 

the current distribution of P. p. niveiventris (Fig. 4.1; Table 4.4). The two locations found on the 

periphery of the range (SDP and PINWR; Fig. 4.1; Table 4.4) had significantly lower allelic 

richness (P = 0.024) and expected heterozygosity (P = 0.024) than values found for the 

remaining range of P. p. niveiventris.  

 Global FST estimated across the current distribution of P. p. niveiventris was 0.042 ± 

0.004 SE. The pair-wise FST estimates ranged from 0.004 between the geographically closest 

locations (BG3 and IG3) to 0.213 between the most distant locations (SDP and PINWR; Table 

4.5). We did uncover a significant relationship between geographic distance and genetic distance 
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throughout the dataset, with increased genetic differentiation following increased geographic 

distance (Mantel test; P < 0.0001, R
2
 = 0.855; Fig. 4.3). 

 

Figure 4.2. Sampling locality of cyt b sequence data across the historical (A) and contemporary 

(B) range of P. p. niveiventris with haplotypes labeled by each location (haplotype frequencies 

are stated in parentheses). Historical samples were collected from four areas; New Smyrna (NS), 

Cape Canaveral (CC), Oak Lodge (OL), and Jupiter Island (JI). Contemporary samples were 

collected from Smyrna Dunes Park (SDP), Canaveral National Seashore (CNS), Cape Canaveral 

(CC), Sebastian Inlet State Park (SISP), and Pelican Island National Wildlife Refuge (PINWR). 

The relationship among the historical (C) and contemporary (D) haplotypes is shown as 

haplotype networks, where the relative size of the box or oval illustrates frequency of the 

haplotype and lines illustrate proposed mutational steps. 
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Table 4.4. Summary data for 10 microsatellite loci across the contemporary range of P. p. niveiventris represented by 

344 individuals. Sample location, sample size (N), number of alleles (A), allelic richness (AR), and observed (Ho) 

and expected (He) heterozygosity. Values are reported as averages and standard deviations. 

Sample location N A AR Ho He 

Cape Canaveral 
     

 
Beach Grid 1 35.0 ± 0.00 9.4 ± 2.99 8.0 ± 2.54 0.706 ± 0.193 0.759 ± 0.180 

 
Beach Grid 2 40.8 ± 0.42 9.5 ± 3.95 7.7 ± 2.96 0.716 ± 0.270 0.738 ± 0.240 

 
Beach Grid 3 27.6 ± 0.52 8.9 ± 3.98 7.7 ± 3.21 0.709 ± 0.191 0.738 ± 0.185 

 
Inland Grid 1 43.0 ± 0.00 8.6 ± 3.53 7.1 ± 2.90 0.707 ± 0.261 0.731 ± 0.242 

 
Inland Grid 2 44.0 ± 0.00 9.6 ± 4.35 7.8 ± 3.09 0.691 ± 0.222 0.691 ± 0.222 

 
Inland Grid 3 56.0 ± 0.00 9.8 ± 4.26 7.9 ± 2.85 0.711 ± 0.206 0.731 ± 0.242 

Canaveral National Seashore 30.5 ± 0.53 7.7 ± 3.30 6.6 ± 2.45 0.598 ± 0.232 0.673 ± 0.251 

Merritt Island National Wildlife Refuge 31.7 ± 0.67 7.6 ± 3.41 6.7 ± 2.70 0.671 ± 0.263 0.718 ± 0.201 

Smyrna Dunes Park 18.9 ± 0.32 4.2 ± 1.32 4.1 ± 1.34 0.588 ± 0.237 0.525 ± 0.212 

Pelican Island National Wildlife Refuge 15.0 ± 0.00 4.2 ± 1.62 4.2 ± 1.62 0.600 ± 0.229 0.583 ± 0.188 
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Table 4.5. Geographic and genetic distance between sample locations of P. p. niveiventris. Below diagonal is pair-wise FST 

estimated in FSTAT based on 10 microsatellite loci, while above diagonal is Euclidean distance between sample locations 

measured in kilometers. Sample location abbreviations are defined in Fig. 4.1. 

 

BG1 BG2 BG3 CNS IG1 IG2 IG3 MINWR SDP PINWR 

BG1 - 4.6 4.6 45.7 4.0 6.9 2.3 17.7 77.1 73.4 

BG2 0.012 - 4.4 41.6 5.8 5.1 4.9 14.4 72.9 76.9 

BG3 0.005 0.009 - 45.4 2.1 9.2 2.7 18.7 76.6 72.9 

CNS 0.032 0.026 0.028 - 47.2 39.4 46.5 28.7 31.4 118.1 

IG1 0.021 0.027 0.024 0.046 - 10.0 1.7 20.1 78.5 71.2 

IG2 0.012 0.013 0.013 0.033 0.017 - 8.6 10.9 70.8 80.3 

IG3 0.009 0.010 0.004 0.023 0.019 0.015 - 19.0 77.8 72.1 

MINWR 0.020 0.019 0.013 0.022 0.035 0.019 0.020 - 60.1 91.1 

SDP 0.127 0.108 0.109 0.118 0.148 0.116 0.107 0.122 - 148.9 

PINWR 0.112 0.125 0.125 0.147 0.149 0.138 0.119 0.130 0.213 - 
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Figure 4.3. Plot of genetic distance (FST values estimated from microsatellite data) versus 

Euclidean geographic distance for all contemporary P. p. niveiventris sample locations. Mantel 

test shows a significant relationship between the two variables (P < 0.0001, 30000 

randomizations). 

 

 In the Bayesian admixture model we found a large increase in likelihood scores [P(X|K)] 

when we included all sample locations with increasing K until reaching a mode of K = 8 (Fig. 

4.4A). Based on the procedures by Evanno et al. (2005), the best K value for explaining our 

microsatellite data was K = 2 (Fig. 4.4A). When only one of the two peripheral sample locations 

(SDP or PINWR) was included the P(X|K) did not provide a clear mode or optimal K; however, 

both analyses had K = 3 as best K based on the Evanno et al. (2005) procedures (Fig. 4.4 B and 

C). We observed a small mode, coinciding with the highest ∆K, at K=7 when we included only 

the central sample locations (Fig. 4.4D). When all sample locations were included and K = 2, 
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most locations showed high admixture, with individuals for the sample locations being affiliated 

with both genetic clusters (Fig. 4.5A). Individuals from the peripheral sample locations favored 

one cluster, where all individuals were associated to one of the two clusters (Fig. 4.5A). When 

eight clusters were used, the central sample locations showed admixture, with individuals 

variably associated with the different clusters (Fig. 4.5B). With K = 8 the two peripheral sample 

locations had strong membership coefficients for their respective clusters (Fig. 4.5B). The 

hierarchical analyses provided additional support for these findings, with all individuals in the 

peripheral sample locations showing high membership coefficients to a single cluster, while the 

central sample locations showed high levels of admixture (Fig. 4.6A and 4.6B). When only 

central sample locations were included they all showed admixture (Fig. 4.6C). 

Discussion 

Evaluating Loss of Genetic Diversity Using mtDNA 

Understanding current anthropogenic impact on taxa and ecosystems is central to 

conservation biology; however, it is vital to understand the historical processes and patterns that 

have affected these taxa prior to human settlements. Anthropogenic habitat loss has resulted in 

the recent extirpation or reduction in numbers of P. p. niveiventris populations (Stout 1992). Low 

genetic diversity prior to anthropogenic impacts is also observed. Compared to mainland 

relatives, where 22 haplotypes have been identified (Degner et al. 2007, Kalkvik et al. 2012), we 

recovered a total of six haplotypes among both historical and contemporary samples. It is 

thought that beach mice were isolated by dispersal barriers, i.e., lagoonal systems, when barrier 

islands became separated from the mainland (Hoekstra et al. 2006, Van Zant and Wooten 2007). 

It has been suggested that the divergence between beach mice and mainland populations 
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occurred around 6,000 ybp with the formation of the barriers (MacNeil 1950, Hoekstra et al. 

2006), but molecular evidence suggests this divergence occurred around 200,000 ybp (Van Zant 

and Wooten 2007). An initial founder effect or bottleneck in the early stages of the formation of 

P. p. niveiventris may be the most parsimonious explanation for the historical loss of genetic 

diversity. Such events can affect taxa over a long period of time with subsequent bottlenecks 

having little additional impact on the genetic diversity (Taylor and Jamieson 2008). Several 

studies have found that current, low levels of genetic diversity are explained by historical 

bottlenecks and founder effects dating to times prior to anthropogenic impacts (Hoffman and 

Blouin 2004, Chan et al. 2005, Calvignac et al. 2008, Reding et al. 2010). 

We were unable to demonstrate a statistically significant loss of genetic diversity in P.p. 

niveiventris over the last century based on cyt b sequence data obtained from museum 

specimens. However, when we removed the contemporary sample locations found in the 

continuous habitat from the analysis we observed a significant loss of nucleotide differences (k) 

and nucleotide diversity (π) compared to historical data (Fig. 4.2B). The sample locations within 

the central range are the only locations that currently exhibit location level genetic variation 

among cyt b sequences (Table 4.2; Fig. 4.2B). These findings indicate that this remaining 

continuous habitat serves as a refuge of historical genetic diversity. The two areas with the 

highest historical genetic diversity (New Smyrna and Oak Lodge; Fig. 4.2A), are currently fixed 

for their haplotypes (described as SDP and PINWR in current distribution; Fig. 4.2B). Thus it 

seems that these areas have undergone a recent genetic loss most likely due to anthropogenic 

induced habitat destruction. 
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Figure 4.4. Likelihood values (diamonds) estimated in STRUCTURE (Pritchard et al. 2000) and 

∆K (line) estimated following the methods of Evanno et al. (2005) for determining best fit 

numbers of clusters (K) implemented into the STRUCTURE analysis. As described in the 

methods, structure analysis was conducted hierarchically for contemporary P. p. niveiventris 

sample locations: all sample locations (A), SDP and central sample locations (B), PINWR and 

central sample locations (C), and only central sample locations (D). 
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Figure 4.5. Estimated membership coefficients for individuals within the ten sampled locations 

across the contemporary distribution of P. p. niveiventris (based on ten microsatellite loci), for 

K=2 (A) and K=8 (B) clusters. Sample locations are arranged by decreasing latitude and 

abbreviations are defined in Fig. 4.1. 
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Figure 4.6. Membership coefficients given by STRUCTURE for sampled individuals in sample 

locations of P. p. niveiventris based on ten microsatellite loci. The hierarchical analyses included 

(A) the peripheral SDP sample location and central sample locations, (B) central sample 

locations and peripheral PINWR sample location, and (C) only central sample locations. Sample 

locations are arranged by decreasing latitude and abbreviations are defined in Fig. 4.1. 
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Contemporary Genetic Structure and Interconnectivity 

Studies using temporal sampling have shown that human exploitation and habitat 

alteration can result in loss of genetic diversity within natural populations of a diverse set of 

organisms over short periods of time (Pichler and Baker 2000, Hauser et al. 2002, Culver et al. 

2008, Thalmann et al. 2011). We predicted a loss of genetic diversity in P. p. niveiventris after an 

approximate 80% reduction in its range over the last few decades. Contrary to our predictions, 

we observed no statistically significant loss of cyt b diversity over the current distribution (Table 

4.2), although this locus was not hyper-variable in either sample. We do find a strong geographic 

pattern of contemporary genetic diversity, which correlates to habitat richness. The central 

portion of the contemporary range is the most genetically diverse, whereas, the northern and 

southern disjunct sample locations exhibit statistically lower levels of genetic variation. The 

importance of continuous habitat for the persistence of biodiversity has been addressed both 

theoretically (Fahrig 2002) and empirically (Fahrig 2003). It has been shown that continuous 

habitat is favored for persistence when measured both genetically and demographically in a wide 

range of taxa, such as reptiles (Johnson et al. 2007, Dixo et al. 2009), birds (Coulon et al. 2010), 

and mammals (Haag et al. 2010, Holland and Bennett 2010). 

Contemporary genetic structure of P.p. niveiventris provides insight into the processes 

that most likely explain the conservation of historical genetic diversity. Central to the outcome of 

these processes is the continuous, linear configuration of the habitat. We found indirect evidence 

of dispersal within the 70 km extent of coastal dunes currently occupied by P. p. niveiventris. For 

example, pair-wise FST values estimated from microsatellite data showed low levels of genetic 

structuring (Table 4.5), and the STRUCTURE analyses indicated high levels of admixture 
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among these locations (Fig. 4.5 and Fig. 4.6). These levels of genetic admixture may explain 

how P. p. niveiventris is able to maintain the highest level of genetic diversity observed among 

beach mice subspecies with an average of 8.0 alleles per loci (Table 4.4), compared to 4.3-6.8 

alleles per loci for subspecies on the Gulf coast that typically occupy more fragmented habitat 

(Mullen et al. 2009). 

 We identified two peripheral sample locations, SDP and PINWR (Fig. 4.1), as being 

disjunct from the current central distribution of P. p. niveiventris. These sample locations are 

isolated by urbanized zones that represent barriers to gene flow. The two peripheral sample 

locations do not share haplotypes, indicating isolation. Further evidence for the lack of 

connectivity comes from the absence of genetic admixture with the central sample locations (Fig. 

4.5 and Fig. 4.6A and 4.6B) and higher levels of genetic differentiation for the disjunct sample 

locations compared to the central sample locations (Table 4.5). The lack of gene flow may result 

in further reduction of genetic diversity through genetic drift. We did observe a pattern of 

isolation by distance (IBD; Fig. 4.2), that is explained by an equilibrium between migration and 

genetic drift across the range (Wright 1943, Hutchison and Templeton 1999). A lack of gene 

flow to some of the sample locations would explain a deviation from IBD. However, we may 

observe IBD across the current range of P. p. niveiventris as a result of collinearity between 

habitat availability and geographic distance, or that the isolated sample locations are peripheral 

in the current distribution. 

Consequences for Management 

The relatively undeveloped 70 km stretch of continuous coastal habitat now occupied by 

P. p. niveiventris came under Federal ownership and protection as an indirect result of the cold 
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war and U.S. space program. Coastal habitats south of Cape Canaveral, with the exception of 

isolated parcels, have lost beach mice as components of these ecosystems. A combination of land 

conversion, beach erosion, tropical storms and hurricanes, feral animals, and human activities 

explain this loss. In the short term, the sequestered Federal lands should continue to support P. p. 

niveiventris. Long term, climate disruption poses an unknown threat given the fact that the 

critical habitat lies at the interface of land and the Atlantic Ocean (Barbier et al. 2008, Mawdsley 

et al. 2009). 

Overall, our cyt b data indicate that genetic diversity has generally been maintained over 

the past 100 years, even with extensive loss of habitat. However, we postulate that this diversity 

is only maintained because of the presence of a long section of undeveloped coastal dune habitat, 

found on protected and managed Federal lands. These findings illustrate the importance of 

preserving continuous habitat or larger areas for organism to inhabit, to reduce the overall 

impacts of human interference and allow persistence of the taxon (Breininger et al. 1998, Fischer 

and Lindenmayer 2007, Medina-Vogel et al. 2008). This area has also been recognized as 

significant for the conservation of several sea turtle species (Schmid 1995). Going forward, the 

conservation of the approximately 70 km coast line of intact habitat will be essential to ensure 

the genetic integrity of P. p. niveiventris, and presumably the genetic integrity of other taxa 

occupying this area. 

Given the isolation and associated lower genetic diversity of the two peripheral sample 

locations (SDP and PINWR), we believe these sample locations (Fig. 4.1) are of immediate 

conservation concern. Lower genetic diversity can be expected in peripheral sample locations 

(Lawton 1993, Eckert et al. 2008), but historical data indicate that these two sample locations 
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had historically higher genetic diversity and the recent range contraction and isolation seem to 

have resulted in a loss of genetic material from these areas. 

 Peromyscus polionotus niveiventris is a taxon that most likely will be increasingly 

impacted by current global warming and sea level rise, as seen and projected in other taxa 

(Geselbracht et al. 2011, Maschinski et al. 2011, Saha et al. 2011a). Adaptation in response to 

these changing environmental conditions depends in part on the genetic variation represented in 

the population at risk (Lavergne and Molofsky 2007). With no evidence of overall loss of 

mitochondrial genetic diversity over the last few decades, and the highest current nuclear 

diversity observed among beach mice, P. p. niveiventris seems not to have been genetically 

impacted by human encroachment of coastal habitat elsewhere in its range. However, we show 

the importance of evaluating changes in the distribution of genetic diversity and isolation of 

peripheral sample locations from a historical perspective. By including historical and 

contemporary information we show that the persistence of coastal taxa may depend upon 

connected habitat with low anthropogenic impacts. 

Conclusions 

 Genetic diversity is associated with persistence of populations (Reed and Frankham 2003, 

Lavergne and Molofsky 2007), and is therefore an important metric in our conservation of 

species. Both historical and anthropogenic impacts may be responsible for current levels of 

genetic diversity and structure. We determined that historical forces are probably responsible for 

current low levels of genetic diversity rather than recent anthropogenic impacts on habitat of P. 

p. niveiventris. These results are supported by similar studies in different taxonomic groups (e.g. 

Hoffman and Blouin 2004, Chan et al. 2005, Reding et al. 2010). We determined that P. p. 
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niveiventris has maintained historical levels of genetic diversity in the large federally protected 

continuous habitat as opposed to the two peripheral sample locations that have reduced diversity. 

The 70 km long federally protected coastal habitat functions as a refuge for genetic diversity, 

while lands outside of this area are undergoing anthropogenic change. This study illustrates the 

importance of evaluating historical genetic diversity in a landscape influenced by both historical 

events and recent anthropogenic influence. Our results indicate the importance of maintaining 

continuous habitat for the future persistence of genetic diversity. 
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CHAPTER 5. BEACH MOUSE OR SCRUB MOUSE? CHASING THE 

TALE OF A MOUSE IN TWO HABITATS 

Introduction 

Knowledge of population dynamics is essential for informed management to maintain 

common species or to recover species in decline. Populations vary in space and time both within 

and between discrete habitats. The importance of spatial habitat heterogeneity on the behavior of 

individuals in populations has long been recognized in theoretical studies (Holt 1985, Hanski 

1998), and an increasing body of literature presents empirical evidence for variation in 

population dynamics in response to habitat heterogeneity (Kanda et al. 2009, Nystrand et al. 

2010, Puzin et al. 2011). In fact, population persistence has been shown to be more dependent on 

habitat quality (e.g., extent of escape cover or food supply) than other variables, such as small 

and isolated populations (Thomas et al. 2001). Moreover, some taxa may depend on availability 

of two or more habitats for long-term persistence (Brambilla et al. 2007). Thus, identifying the 

relative contributions of different habitats to population dynamics can aid in management of 

listed species (Sturtevant et al. 1996, Heinrichs et al. 2010) and in the allocation of resources in 

managing taxa of conservation concern. 

Spatial dynamics across landscapes have been observed to vary temporally in red deer 

(Cervus elaphus; Forchhammer et al. 1998), white stork (Ciconia ciconia; Sæther et al. 2006), 

and large mammalian herbivores (Gaillard et al. 2000), providing insight into how populations 

persist in variable environments (Cáceres 1997). One aspect of temporal variation is seasonality, 

which has given rise to specific physiological adaptations in vertebrates (Hazlerigg and Loudon 

2008). Seasonal variation in population dynamics has been studied in small mammals (Merritt et 

al. 2001), measles (Ferrari et al. 2008) and green crab (Carcinus maenas; Bessa et al. 2010). 
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Several studies have found correlations between climate and observed seasonal population 

dynamics of small mammals (O'Connell 1989, Merritt et al. 2001). Seasonal changes can also 

impact the importance of habitat use for certain taxa (Brambilla and Rubolini 2009). In mammals 

such as old field mice (Peromyscus polionotus), resource availability has also explained seasonal 

adaptations and differences in vital rates such as survival and reproduction (Smith 1974).  

Population modeling has been widely used to evaluate relative contributions of spatial 

and temporal variation to species’ dynamics (e.g., Pascarella and Horvitz 1998, Wemmer et al. 

2001, Picό et al. 2002, Olson et al. 2004, Fraterrigo et al. 2009, Heinrichs et al. 2010). Population 

models have also aided in the development of conservation policies and management of listed 

taxa (Hedrick et al. 1996, Beissinger and Westphal 1998, Brook et al. 2000). Many of these 

models incorporate uncertainty and therefore provide accountability for stochastic elements to 

ensure confidence in the results obtained (Beissinger and McCullough 2002, Morris and Doak 

2002, McGowan et al. 2011). Some studies have specifically evaluated the impact of habitat on 

population dynamics and have employed models to justify particular management choices for 

protecting appropriate habitat (Olson et al. 2004, Heinrichs et al. 2010). Incorporating habitat 

differences, temporal variation, and other elements of uncertainly into population models should 

be expected to greatly improve their precision. 

In this study we examined population dynamics of the southeastern beach mouse 

(Peromyscus polionotus niveiventris) with emphasis on spatial and temporal variation in 

demographic performance measured as abundance, survival and population growth rates. This 

subspecies is one of eight P. polionotus ssp. collectively called beach mice because of the coastal 

habitats they occupy on the barrier islands of Alabama and Florida (Whitaker and Hamilton 
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1998). Among these eight subspecies, six are listed as either threatened or endangered, one is not 

listed, and one is considered extinct (Ehrhart 1978, Humphrey and Barbour 1981, Humphrey 

1992a, b, Stout 1992). Habitat loss and fragmentation, driven by land development, are the 

primary threats to beach mice (Holler 1992a, b, Humphrey 1992a, Stout 1992, Kalkvik et al. in 

review). Beach mouse habitat was originally considered putatively the narrow zone of sea oats 

(Uniola paniculata) that dominated primary dunes of barrier islands (Ivey 1949, Bowen 1968). 

Although there are scarce early reports of beach mice occupying denser scrub habitat found 

further inland on barrier islands (Blair 1951, Pournelle and Barrington 1953, Ivey 1959). 

However, scrub, secondary dune, and tertiary dune habitats are now recognized as potentially 

important for beach mice persistence (Extine and Stout 1987, Swilling et al. 1998, 

Sneckenberger 2001, Pries et al. 2009). Moreover, little is known of the contribution of these 

habitats to population dynamics of beach mouse subspecies because no studies have addressed 

temporal variation in occupancy of the different habitat types. Research carried out in a single 

habitat type has shown mixed results on seasonal variation in P. polionotus with some studies 

showing no seasonal differences in population variables (Davenport 1964, Rave and Holler 

1992), while others have reported seasonal and inter-annual variation (Caldwell and Gentry 

1965, Gentry 1966). 

We evaluated spatial and temporal variation in population dynamics of P. p. niveiventris 

with these objectives: 1) to measure demographic variation of P. p. niveiventris across seasons in 

scrub and beach habitat; 2) to create a stochastic-matrix model reflecting seasonal and habitat 

variation in population dynamics of P. p. niveiventris; and 3) to evaluate the relative impact of 

habitat, vital rates, and life stages across different seasons using population modeling to 
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understand the population dynamics of P. p. niveiventris. We expected scrub habitat to have a 

significant influence on the population dynamics of this species in certain coastal settings. Our 

findings provide insight into how these animals use a spatially heterogeneous landscape across 

seasons. 

Methods and Materials 

Study site and data collection 

We conducted our study at Cape Canaveral Air Force Station (CCAFS, 28.38°N, 

80.42°W), located in Brevard County, Florida, USA (Fig. 5.1). CCAFS covers over 6,000 ha and 

represents the southern part of a large area of public land comprised of Kennedy Space Center, 

Merritt Island National Wildlife Refuge, and Canaveral National Seashore. Together these areas 

make up approximately 70 km of managed barrier island coastal habitat with restricted 

development. The eastern coast line of CCAFS is predominately relatively low dunes that are 

dominated by Uniola paniculata (sea oats), Ipomoea pes-caprae (railroad vine), Ipomoea 

imperati (beach morning-glory), Panicum amarum (beach grass) and a variety of herbs and 

grasses (Kutz 1942). The inland habitats are mainly coastal strand and scrub. Coastal strand 

includes open sandy areas with patches of scrub dominated by Serenoa repens (saw palmetto), 

Coccoloba uvifra (sea grape), Myrica cerifera (wax myrtle), Sideroxylon tenax (buckthorn), and 

Muhlenbergia capillaris (muhly grass) (Johnson and Barbour 1990, Schmalzer et al. 1999). 

Coastal scrub is found on inland dunes and is dominated by several oak species (Quercus 

geminata, Q. chapmanii, and Q. myrtifolia) (Schmalzer et al. 1999), in addition to S. repens, S. 

tenax, and M. capillaris. Compared to the Gulf coast barrier islands, what is defined as coastal 
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scrub on the Atlantic coast islands resembles tertiary dunes and interior scrub on the Gulf coast 

barrier islands (Johnson and Barbour 1990). 

We established six study sites at CCAFS to evaluate the population demography and to 

estimate parameters for our matrix model for P. p. niveiventris. Three sites were located in beach 

habitat, and three in coastal scrub (Fig. 5.1). Habitat structure was shown to differ between beach 

and scrub grids based on habitat variables such as: bare ground, woody vegetation, non-woody 

vegetation, height of vegetation, and percent surface course sand (Simmons 2009). Scrub grids 

were separated from beach grids by 1.7 – 10.0 km (average = 5.1 km), while scrub grids were 

separated from the beach grids by 2.1 – 9.2 km (average = 4.8 km). We trapped within grids for 

one night, twice a month from November 2003 through March 2006. Population size estimates 

typically require trapping between 5 to 7 consecutive nights (Otis et al. 1978); however, beach 

mice can experience significant weight loss with consecutive trapping (Suazo et al. 2005), so we 

limited our trapping to one night to avoid detrimental impacts on recaptures. At each site an 8X8 

grid was established comprised of 64 trap stations, with rows and columns separated by 15 

meters. One Sherman live trap (22.9 x 8.9 x 7.6 cm; H. B. Sherman Traps, Inc., Tallahassee, FL) 

was set at each station. Traps were baited with sunflower seeds, set in the late afternoon, and 

checked the next morning. At first capture, each individual was given a numbered ear tag and tail 

clipped to provide tissue for genetic analysis. At every capture we determined sex and 

reproductive status (♂: descended or non-descended testes, ♀: pregnant, or lactating). We used 

pelage color and body mass to determine age class (juvenile, sub-adult or adult) (Layne 1968). 

All individuals were released at site of capture. 
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Figure 5.1 Trapping locations at Cape Canaveral Air Force Station, Florida, USA. Three grids 

were located in scrub habitat (SG; ) and three were located in beach habitat (BG; ). Scale bar 

equals 1 km. 
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Population demography data analysis 

 We calculated the minimum number alive (MNA – also known as minimum number 

known alive) for each trap event and grid as an index of abundance. We defined MNA for a 

given trapping period as the number of individuals captured during a trapping event, in addition 

to individuals marked previously and not captured during that period but captured during a 

subsequent event (Krebs 1966, Pocock et al. 2004). Because we trapped on one night per 

sampling event, we did not have sufficient data for model-based population estimates (Menkens 

and Anderson 1988), and the grids we trapped cannot be considered closed. While MNA has 

been shown to underestimate population size, it is proportional to population size and can be 

used as an index of population size to examine intraspecific patterns of population dynamics 

(Slade and Blair 2000). We were primarily interested in the relative changes in population size 

during our trapping period rather than absolute numbers. 

 For each site and trapping period, we calculated the sex ratio and number of individual 

for each age classes (juvenile, subadult and adult). Peromyscus polionotus is considered to be 

monogamous (Foltz 1981, Turner et al. 2010), so we expected sex ratios to be 1:1 between adult 

males and females found in each grid across the sample period. We tested to determine if each 

grid conformed to the 1:1 ratio based on overall number of males and females using a goodness-

of-fit test in R v.2.12.1(R Development Core Team 2010). We tested for temporal variation in 

sex ratio by pooling data from each trapping event based on habitat (beach or scrub), season and 

year. We defined seasons as winter (Dec. – Feb.), spring (March – May), summer (June – Aug.), 

and fall (Sept. – Nov.). To test if we have environmental differences between the seasons, we 

collected climate data (precipitation and temperature; (Spaceport Weather Data Archive; 

http://trmm.ksc.nasa.gov/) at CCAFS and Kennedy Space Center collected during the trapping 

http://trmm.ksc.nasa.gov/
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period 2003-2006. We used the nonparametric Kruskal-Wallis one way analysis of variance to 

test for significant difference between the seasons. 

 Habitat differences can impact the abundance and survival of individuals (Manning and 

Edge 2004, Converse et al. 2006). We estimated adult survivorship and probability of recapture 

based on the Cormack-Jolly-Seber (CJS) model, which uses mark-recapture data for an open 

population. CJS estimates survival for a given time interval, but also gives the probability of 

recapture for an individual in this time interval. This model also allows for considering 

alternative partitioning of field data (Lebreton et al. 1992). We used program MARK to estimate 

survival (Φ) and recapture probability (p) using a maximum likelihood approach (White and 

Burnham 1999, White et al. 2002). We used our mark-recapture data for all trapping grids to 

estimate survival differences between beach and scrub habitat. We also tested models including 

temporal variation (e.g. yearly, seasonally and monthly survival). We used the Akaike 

Information Criterion (AIC) to choose the most informative model as the one with the lowest 

AIC value and the highest model weight (Burnham and Anderson 2002). We estimated standard 

deviation and 95% confidence interval for survival values for the most informative model by 

running a Markov chain Monte Carlo (MCMC) Bayesian parameter estimation procedure in 

MARK. We used the default settings in MARK with the number of stored samples of 10,000 and 

a 1,000 burn-in. 

 We estimated the reproductive rate for the grids as number of reproductive females in the 

population. Prior studies have shown that P. polionotus and close relatives exhibit temporal 

variation in the number of reproductively active females (Davenport 1964, Smith 1974). To test 

whether habitat affected reproductive rate we calculated the ratio of reproductive adult females 
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to the total number of adult individuals captured. We pooled reproductive data within habitat 

types across season and years because of small sample sizes during monthly trapping periods. 

Model structure 

 To test for effects of habitat on population dynamics of P. p. niveiventris, we used a 

stochastic matrix model with dimensions equal to the product of life stages and habitat types. 

Such a matrix approach has been called a megamatrix analysis that allows for evaluating the 

dynamics among patches in a landscape as well as the dynamics of the organisms found within 

each patch in the landscape (Horvitz and Schemske 1986, Cipollini et al. 1994, Pascarella and 

Horvitz 1998). In our study, the megamatrix represented population dynamics across a landscape 

made up of two habitat types: scrub and beach. Part of the matrix represented dynamics within 

habitat types, while transitions between the two habitat types represented individual movement 

between the two habitat types. 

 Our megamatrix model was designed specifically to explore the population dynamics of 

P. p. niveiventris at CCAFS. In the model we included both sexes, with the assumption of a 

monogamous mating system. We assumed with our model that there was movement between the 

two habitat types at CCAFS. Mice have been shown to readily move short distances between the 

habitat types (Extine and Stout 1987), and rare long-distance movement has been documented in 

this subspecies (4.8 km and 28 km respectively; Bard 1997, Oddy et al. 1999), which suggests 

that dispersal between and among our sample grids might occur. We assume that in the period of 

our study, vegetation on the grids remained relatively stable from year-to-year in terms of 

primary productivity and species composition. Therefore, the habitat is considered static in our 
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model and transitions in the megamatrix between the two habitats represented movement of 

animals rather than changes in habitat. 

 To simplify our analyses we defined two life stages for P. p. niveiventris in each habitat: 

juvenile and adult. Juvenile is defined as sexually immature individuals, whereas individuals 

capable of reproduction are treated as adults. The juvenile stage is relative short, with females 

being sexually mature after approximately 30 days (Clark 1938). No clear evidence is available 

for age at sexual maturity of males in this species, but we assume similar age of sexual maturity 

in males as in females for our model. Based on molting patterns in P. polionotus, subadults are 

typically >30 days old and would be included in the adult life stage in our matrix model (Golley 

et al. 1966, Layne 1968). For the life stages we included in the model, juveniles can survive into 

adulthood, and adults can survive from one season to the next. When an individual reaches 

adulthood it can contribute to the reproductive output of the population (Fig. 5.2). We assumed 

that some juveniles migrate between habitat types and are found as adults in the next season in 

the other habitat (Fig. 5.2). Most reported long-distance migration observed in P. polionotus has 

been by juveniles that were captured as adults in new locations (Smith 1968, Oddy et al. 1999), 

and other field data show younger mice move longer distances than adults (Swilling and Wooten 

2002, Tenaglia et al. 2007). 

 We used a periodic matrix model to evaluate the impacts of seasonal variation on the 

population dynamics of P. p. niveiventris as other mammals have shown seasonal differences in 

population dynamics (Caswell and Trevisan 1994, Caswell 2001, Picό et al. 2002). A periodic 

matrix allows us to consider each season as a separate matrix, where the product of these 
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matrices is equal to an annual matrix (AAn), which projects population dynamics across one year 

(Caswell and Trevisan 1994, Caswell 2001). 

( ) AAn   BSp  BSu  BFa  BWi 

Based on this approach, we created a megamatrix for each season (BSp = spring, BSu = summer, 

BFa = fall, BWi = winter) that represented the population dynamics for each time period. 

 

Figure 5.2. Basic life cycle of P. p. niveiventris at CCAFS based on known ontogeny and 

behavior in two different habitats. Basic life stages are non-reproducing juveniles (Juv.) and 

reproducing adults (Adult). Solid lines show transitions within habitat, and the dashed lines 

indicate migration between the two habitats 

 The transition stages in our matrix model were determined by vital rates, which reflected 

the known ontogeny and behavior of P. polionotus (Table 5.1). Most of the life span of P. 

polionotus is spent as an adult in either beach or scrub habitat, which is determined by the adult 

seasonal survival (Sa). Juveniles surviving to adulthood were determined by juvenile seasonal 

survival (Sj); however, they become sexually mature after 30 days (Layne 1968), so we included 

that they have to survive as adults part of the season. A proportion of the juveniles were assumed 

to migrate from one habitat to the other, so such migration was accounted for in the juvenile and 
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adult transition (Table 5.1). The fecundity was determined by the survival of adults from one 

season to the next, and the number of offspring contributed by the adults. Number of offspring 

was determined as the product of litter size (L), proportion of reproductively active females (Pre) 

and the survival of the litter to juvenile (SL): 

(2) Fecundity                

The adult stage is the only life stage contributing juveniles to the next season; however, with 

rapid sexual maturity and seasonal transition matrices, individuals found as juveniles in one 

season have time to produce litters that appear as juveniles in the next season (~ 30 days sexual 

maturity; Layne 1968). We therefore included that juveniles from one season can contribute 

juveniles to the next season, based on the seasonal survival of juveniles to adulthood (Sj) and 

then subsequent survival as an adult to the next season (Sa). In order to provide offspring to the 

next season mice had to survive one third of the season as juvenile, and the remaining two thirds 

as an adult. Our survival rates reflect seasonal survival, so Sj was multiplied by 
 

 
 and Sa was 

multiplied by 
 

 
 (Table 5.1).  

A wide range of stochastic elements may impact the outcome of population models 

(McGowan et al. 2011). We included temporal variation found between seasons; however, when 

sufficient data were available we incorporated additional temporal variation by including 

seasonal data from multiple years. We incorporated parametric uncertainty for vital rates for each 

season by sampling from probability distributions, which characterize uncertainty for specific 

parameters. When we had sufficient data from multiple years, the model randomly selected one 

of the years for sampling parameters. The model was then repeated multiple times to capture this 
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variation (McGowan et al. 2011). For survival (Sa, Sj, and SL) and migration (m) we used a beta 

distribution, which is bound by zero and one, and is determined by a defined average and 

standard deviation (Caswell 2001, Morris and Doak 2002). The distributions for Sa was 

determined by average and standard deviation (SD) estimates of adult survival from our field 

data. We acquired estimates for Sj and SL from other studies. Seasonal Sj has been reported for 

another beach mouse subspecies (P. p. ammobates) as summer survival (Sj = 0.475 ± 0.144 SD), 

and spring/fall/winter survival (Sj = 0.638 ± 0.144 SD) (Traylor-Holzer et al. 2005). Litter 

survival was estimated based on field observations of P. polionotus whereas of the estimated 

number of offspring born, only 50% emerged from burrows (Caldwell 1960). Therefore, we set 

litter survival as an average SL = 0.5 ± 0. 1 SD. We have no estimate of long-distance migration 

among our sample grids. Genetics studies have shown that there is gene flow across CCAFS 

(Degner et al. 2007, Kalkvik et al. in review); however, no long-distance migration was observed 

during trapping events in this study. We included an average seasonal migration rate of m = 0.1 

± 0.01 SD. Preliminary analysis showed average migration rates ranging from m = 0.01 to m = 

0.5 did not significantly alter the outcome of the model, so only one migration rate distribution 

was included in the model. Having limited data on the number of reproductively active females, 

we used a uniform distribution, which means there is an equal probability to pick any number 

within a given range. We determined the maximum and minimum proportion of reproductively 

active females in the population across our sample period for each season. The term for litter size 

was set as a constant as we did not have data on population level variation in litter size. Based on 

values from laboratory colonies average litter size was L = 4.117 in P. polionotus (Kaufman and 

Kaufman 1987). 
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Table 5.1 Population megamatrix model for P. p. niveiventris, given by two habitat types (beach and scrub) and two life stages; 

non-sexually mature juveniles (J) and sexually mature adults (A). Parameters included are: litter size (L), survival of litter (SL), 

proportion reproductive females (PreBeach or PreScrub), juvenile survival (Sj), adult survival (Sa) and migration rate (m). 
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We used MatLab v. 7.4.0 (Mathworks 2007a) for the population model. To provide 

sufficient sampling of the vital rate distributions, we ran our model with 10,000 replications with 

independent sampling of the parameter distributions for different seasons for each replicate. 

Model Analysis 

We calculate the finite rate of increase, lambda (λ), of the annual megamatrix (AAn) to 

evaluate our model output as giving a realistic scenario of the population dynamics of P. p. 

niveiventris. We used sensitivity and elasticity analysis to evaluate relationships between of 

seasons, habitats, and the population dynamics of P. p. niveiventris. Sensitivity analysis of 

demographic parameters measures the impact that small changes in matrix elements, or vital 

rates, have on λ (Caswell 2001). Sensitivity can be difficult to interpret, especially where 

nonlinear relationships between λ and parameters make it more difficult to summarize sensitivity 

as a single number. Also, sensitivity does not scale the relative impact that changes have on 

different rates or matrix elements, nor does it exclude matrix elements that are biologically 

impossible (Morris and Doak 2002). Elasticity (           
   

 
 ) rescales sensitivity to make it 

easier to interpret, and measures proportional changes in λ with small proportional changes in a 

matrix element or vital rate (de Kroon et al. 1986, de Kroon et al. 2000, Caswell 2001). All 

elasticity values sum to one in a matrix, and each elasticity value can be interpreted as the 

relative importance of the vital rate or matrix element on λ (de Kroon et al. 1986, de Kroon et al. 

2000). 

We determined the impact of individual vital rates by estimating sensitivity and elasticity 

for each vital rate in each seasonal megamatrix using the eigenall function by Morris and Doak 
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(2002) in MatLab. To evaluate the influence of small changes in the matrix elements, we 

determined sensitivity and elasticity values for each matrix element for period matrices. Caswell 

and Trevisan (1994) showed that the sensitivity for a specific periodic matrix [SB
(h)

] is given by 

( ) S
B(h)

=[B(h 1)  B(h 2) B(1)  B(m)  B(m 1) B(h+1)]
 
 S

A
(h)  

where Bh is a specific periodic matrix (h = 1, 2, 3,…., m), and SA
(h) 

is the sensitivity matrix for 

the annual matrix for all periods. The product of the periodic matrices is transposed to the annual 

sensitivity matrix, denoted by the superscript T. For our study the periodic matrices represent 

each of our seasonal megamatrix, where the annual matrix is the matrix multiplication of each 

matrix element for the four seasons. The elasticity [EB
(h)

] for a the seasonal matrix B
(h)

 was 

estimated by  

( ) E
B(h)

=
1

λ
Bh   SB(h)  

where EB(h) designate the elasticity of each seasonal megamatrix, Bh was the seasonal matrix, and 

SB(h) was the sensitivity for the respective seasonal megamatrix (Caswell and Trevisan 1994). 

The asterisk (*) denoted the element-by-element product of the matrices. The sensitivity and 

elasticity of matrix elements for each seasonal megamatrix revealed the impact of each life-stage 

transition on population dynamics of P. p. niveiventris in the two habitats and four seasons. We 

evaluated the contribution of the two habitat types and migration between them by summing all 

elasticity values within each habitat. Sums provide information on the relative importance of 

events occurring within or between habitats for overall population dynamics (Pascarella and 

Horvitz 1998). 
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We estimated sensitivity and elasticity values for each the 10,000 replicates of our model. 

To compare sensitivity and elasticity we calculated the average and 95% confidence interval 

across all replicates. We interpreted overlap in confidence intervals to suggest vital rates or 

matrix elements to be equally influential, while lack of overlap suggested one variable had 

greater or lesser impact on the population dynamics of P. p. niveiventris. 

Results 

Study site and data collection 

We trapped 17,920 trap nights over the period November 2003 – March 2006 across six 

grids (Table 5.2). Trapping intensity per grid ranged from 2,496 trap nights on one of the beach 

grids (BG3; Fig. 5.1; Table 5.2) to 3,264 trap nights on one of our scrub grids (SG1; Fig. 5.1; 

Table 5.2). However, the two habitats were almost equally trapped with a difference of 128 trap 

nights between scrub and beach (Table 5.2). During the study, 1083 individuals of P. p. 

niveiventris were trapped 3,672 times (0.205 captures/trap night) (Table 5.3). We had greater 

number of captures in scrub (n = 2683) compared to beach habitat (n = 989). The number of 

captures per grid was uneven with SG3 having the most with 1,415 captures (0.491 captures/trap 

night) and the fewest captures in BG3 with 151 captures (0.060 captures/trap night).  

We also captured two other small rodents in the trapping grids. Small numbers of cotton 

mice (P. gossypinus) and cotton rats a (Sigmodon hispidus) were captured on the grids (Table 

5.3). Peromyscus gossypinus was captured in all six grids with greater frequency in the beach 

habitat (115 captures; Table 5.3) than in scrub habitat (43 captures; Table 5.3); however, the 

number of individuals did not differ substantially between the two habitats (Beach – 54 
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individuals; Scrub – 41 individuals; Table 5.3). We captured S. hispidus in two of three grids in 

the scrub habitat and at each beach grid, yet neither the number of total captures (Beach – 43 

captures; Scrub – 34 captures; Table 5.3), nor the number of individuals captured (Beach – 34 

individuals; Scrub – 31 individuals; Table 5.3) differed substantially between the two habitats. 

Table 5.2 Trapping efforts defined as trap nights for six grids at CCAFS between November 

2003 to March 2006. 

Trapping location Trap nights 

All Grids   17920 

Scrub Grid 
 

 
1 3264 

 
2 2880 

 
3 2880 

Total Scrub 9024 

  
 

Beach Grid 
 

 
1 3200 

 
2 3200 

 
3 2496 

Total Beach  8896 
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Table 5.3 Number of Peromyscus polionotus niveiventris, P. gossypinus and Sigmodon hispidus trapped on six grids at Cape 

Canaveral Air Force Station between November 2003 and March 2006, reported as total captures per species (Captures) and 

the number of unique individuals per grid (Individuals). Captures per trap night are reported in parentheses. 

 

P. polionotus niveiventris P. gossypinus S. hispidus 

Grids Captures Individuals Captures Individuals Captures Individuals 

All Grids 3672 (0.205) 1083 (0.060) 158 (0.009) 95 (0.005) 77 (0.004) 65 (0.004) 

 
      

Scrub Grid 
      

1 746 (0.229) 177 (0.054) 9 (0.003) 7 (0.002) 0 (0.000) 0 (0.000) 

2 522 (0.181) 117 (0.041) 5 (0.002) 5 (0.002) 18 (0.006) 15 (0.005) 

3 1415 (0.491) 496 (0.172) 29 (0.010) 29 (0.010) 16 (0.006) 16 (0.006) 

Total 2683 (0.297) 790 (0.088) 43 (0.005) 41 (0.005) 34 (0.004) 31 (0.003) 

 
      

Beach Grid 
      

1 367 (0.115) 90 (0.028) 80 (0.025) 35 (0.011) 5 (0.002) 4 (0.001) 

2 471 (0.147) 139 (0.043) 31 (0.010) 15 (0.005) 26 (0.008) 20 (0.006) 

3 151 (0.060) 64 (0.026) 4 (0.002) 4 (0.002) 12 (0.005) 10 (0.004) 

Total 989 (0.111) 293 (0.033) 115 (0.006) 54 (0.006) 43 (0.005) 34 (0.004) 
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Population demography data analysis 

Temporal variation in MNA of P. p. niveiventris showed different trends among grids 

within habitats and between habitats (Fig. 5.3A and B). Overall, a greater number of individuals 

was found on the scrub grids than on the beach grids for most of the trapping events (note scale 

difference between panels; Fig. 5.3A and B). MNA peaked in winter or spring of 2004 on the 

beach grids and steadily declined until October. It is important to note Hurricane Jeanne reached 

these grids September 26 and resulted in some flooding and sand deposits up to 30 m inland on 

the grids. Two of the three grids (BG1 and 2) recovered MNA over fall and winter of 2004-05, 

whereas BG3 did not recover to it former MNA. The scrub grids peaked in MNA in winter or 

spring of 2004 and declined through the summer and fall (Fig. 5.3B). Hurricane impacts 

appeared to be minimal in late summer as MNA on the grids remained relatively stable in 

contrast with declines in MNA on the beach grids. Nonetheless, the overall trend of MNA on the 

scrub grids was to gradually decline until November-December 2004 after which SG1 and 3 

increased while SG2 remained in decline.  

We divided our data into four seasons, and we observed a significant difference in the 

climatic conditions for the seasons during the period trapped (2003 – 2006) based on data from 

CCAFS and Kennedy Space Center (Spaceport Weather Data Archive; 

http://trmm.ksc.nasa.gov/). Specifically, we found precipitation (Kruskal-Wallis; Χ
2
 = 11.7, df = 

3, P = 0.009) and temperature (Kruskal-Wallis; Χ
2
 = 29.5, df = 3, P < 0.001) were significantly 

different among seasons. 

 

http://trmm.ksc.nasa.gov/
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Figure 5.3 Minimum number alive for P. p. niveiventris across the trapping period for three grids 

in (A) beach habitat and three grids in (B) scrub habitat at CCAFS (Fig. 5.1). Gray area indicates 

a period where three major hurricanes reached Florida; Jeanne impacted the beach grids 

September 26, 2004.  
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We captured more individual males than females across the sampling period on four of 

the six grids, but the differences were not significant (p > 0.05) (Table 5.4). When we examined 

the sex ratio by season, year, and habitat, a significant temporal variation in the 1:1 sex ratio for 

the beach (X
2
 = 19.0, df = 8, p = 0.015) was indicated (Table 5.5). A reanalysis showed the 

outcome was explained by one outlier, which when removed reduced the p value to 0.077. We 

found no significant variation in the 1:1 sex ratio (X
2
 = 7.05, df = 8, p-value = 0.531) for the 

scrub grids. 

Table 5.4 Individual male and female P. p. niveiventris captured in each grid at CCAFS (Fig. 1) 

during 2003 – 2006, reported as number females, females, ratio between the two sexes, X
2
 value 

for deviation from predicted 1:1 ratio and p-value (P) of goodness-of-fit test. 

 

 

 

 

 

 

Grid Females Males Females/Males Χ
2
 P 

BG1 42 48 1.00:1.14 0.40 0.527 

BG2 72 67 1.07:1.00 0.18 0.672 

BG3 28 36 1.00:1.29 1.00 0.317 

SG1 93 84 1.11:1.00 0.46 0.499 

SG2 49 68 1.00:1.39 3.09 0.079 

SG3 238 258 1.00:1.08 0.81 0.369 



 

 

169 

 

Table 5.5 Seasonal variation in number of P. p. niveiventris individuals categorized by sex in 

each habitat at CCAFS based on season and year. Ratio of females and males are reported. 

 
 

Sex 
 

Habitat Capture period Female Male Female/Male 

Beach Winter 2003 53 34 1.56:1.00 

 
Spring 2004 141 136 1.04:1.00 

 
Summer 2004 75 87 1.00:1.16 

 
Fall 2004 27 36 1.00:1.33 

 
Winter 2004 30 35 1.00:1.17 

 
Spring 2005 75 77 1.00:1.03 

 
Summer 2005 21 35 1.00:1.67 

 
Fall 2005 8 23 1.00:2.88 

  Winter 2005 10 20 1.00:2.00 

Scrub Winter 2003 81 113 1.00:1.40 

 
Spring 2004 261 249 1.05:1.00 

 
Summer 2004 243 253 1.00:1.04 

 
Fall 2004 168 188 1.00:1.12 

 
Winter 2004 120 139 1.00:1.16 

 
Spring 2005 151 152 1.00:1.01 

 
Summer 2005 102 117 1.00:1.15 

 
Fall 2005 75 69 1.09:1.00 

  Winter 2005 53 57 1.00:1.08 

 

Our adult survival estimates were derived from trapping data collected from spring 2004 

(March – May 2004) until winter 2005 (December 2005, January – February 2006). The most 

informative model for survival (Φ) and recapture probability (p) was Φ estimated by year and 

season, and p by year, season and habitat (Table 5.6). This model (1) suggests there was not a 

significant difference in survival between the two habitat types. The next best model (2) included 

differences in survival in the two habitats for estimating Φ (Table 5.6). As an additional test for 

the hypothesis that Φ differed between habitats we ran a likelihood ratio test which showed no 

significant contribution of habitat differences in survival rates. 
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 Our data did not support a difference in survival between the two habitats (X
2
 = 7.25, p-

value = 0.611), therefore we combined the data for further analysis. We observed the highest 

survival during winter 2004 and 2005 with respective estimated seasonal survival of 0.823 

(standard deviation [SD] = 0.027; 95% CI [confidence interval], 0.774 – 0.878) and 0.772 (SD = 

0.045; 95% CI, 0.671 – 0.848) (Fig. 5.4). The lowest estimated seasonal survival was observed 

during fall 2004 (Φ = 0.657; SD = 0.026; 95% CI, 0.603 – 0.707) and 2005 (Φ = 0.667; SD = 

0.037; 95% CI, 0.592 – 0.735) (Fig. 5.4). Spring 2004 had higher estimated survival (Φ = 0.751; 

SD = 0.023; 95% CI, 0.703 – 0.793), than spring 2005 (Φ = 0.661; SD = 0.025; 95% CI, 0.611 – 

0.708) (Fig. 5.4). The summer survival estimates were similar, with 0.743 (SD = 0.023; 95% CI, 

0.695 – 0.785) for 2004 and 0.755 (SD = 0.044; 95% CI, 0.659 – 0.831) for 2005 (Fig. 5.4). 

We observed a great amount of variation in the proportion of reproductive females during 

our study by season, year, and habitat (Fig. 5.5). The greatest proportions of reproductive 

females were observed in spring 2004, fall 2005 and winter 2005 (0.28, 0.32, and 0.29, 

respectively) in scrub habitat. The fewest reproductive females were observed in beach habitat 

during spring, summer and winter 2004 (0.06, 0.03 and 0.09, respectively). This trend was 

reversed in 2005 when the proportion of reproductive females on the beach grids was ~20% in 

each season. We found the proportion of reproductive females in the scrub habitat exhibit more 

variability among seasons and between years than did females from the beach habitat.  

.
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Table 5.6 Best ten models for estimating survival (Φ) and recapture probability (p) using maximum likelihood in MARK for capture-

recapture data for P. p. niveiventris. Models were arranged based on Akaike Information Criterion (AICc). Reported is difference in 

AICc (ΔAICc ) for each model compared to model with lowest AICc value (i.e., best model). Additional measures of confidence in 

model selection are AICc weights and model likelihood. Included is number of parameters required by each model. 

Model 

# 
Model AICc ΔAICc 

AICc 

Weights 

Model 

Likelihood 
Parameters 

1 Φ(Year X Season); p(Year X Season X Habitat) 7406.1 0.0 0.995 1.0000 27 

2 Φ(Year X Season X Habitat); p(Year X Season X Habitat) 7417.2 11.2 0.004 0.0038 36 

3 Φ(Habitat); p(Year X Season X Habitat) 7419.1 13.0 0.002 0.0015 20 

4 Φ(Habitat); p(Month X Habitat) 7454.8 48.8 0.000 0.0000 80 

5 Φ(.); p(Month X Habitat) 7454.9 48.8 0.000 0.0000 79 

6 Φ(Month); p(Season X Habitat) 7458.7 52.7 0.000 0.0000 116 

7 Φ(Season); p(Season X Habitat) 7469.5 63.5 0.000 0.0000 12 

8 Φ(Year X Season); p(Year X Season) 7470.8 64.7 0.000 0.0000 18 

9 Φ(Season X Habitat); p(Season X Habitat) 7470.8 64.7 0.000 0.0000 16 

10 Φ(Habitat); p(Season X Habitat) 7474.3 68.2 0.000 0.0000 10 



 

 

172 

 

 

Figure 5.4 Seasonal adult survival estimate for P. p. niveiventris based on the best model in 

MARK, for 2004 and 2005. Bars indicate 95% Confidence interval estimated in MARK.
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Figure 5.5 Proportion reproductive females in P. p. niveiventris population for each season, in beach and scrub habitat for 

trapping year 2004 and 2005.
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Model Analysis  

After running our model for 10,000 replications we found the stochastic sampling of 

parameters gave a finite growth rate, lambda (λ), ranging from population decline (~0.5), to 

population growth (~2.0). Most replicates were relative close to a stable population (λ =1) with 

an average λ = 1.041 ± 0.004 95% confidence interval (CI) (Fig. 5.6). 

We found that seasonal survival (Sa) of P. p. niveiventris had the greatest impact on the 

population growth in our model for all but one of four seasons, based on sensitivity analysis 

(Table 5.7) and for all seasons based on elasticity analysis (Table 5.8). For the other vital rates 

the overall patterns were similar for the sensitivity and elasticity analysis (Table 5.7 and 5.8), and 

because elasticity gave proportional influence on λ for each vital rate we focus primarily on the 

elasticity results. Other vital rates indicated as significant in determining λ were proportion of the 

population that was reproductive females in the scrub (PreScrub) and survival of litter (SL) (Table 

5.8). In contrast, reproductive females in the scrub (PreScrub) and juvenile survival (SJ) have less 

impact on the overall population growth rate. Litter size (L) and migration rate (m) have little 

impact on the growth rate with both values close to zero for all four seasons (Table 5.8). With the 

exception of the complete overlap of the elasticity of L and Sl, no vital rates overlapped in their 

95% CI. 
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Figure 5.6 Estimate of lambda for stochastic matrix model of P. p. niveiventris, based on 10,000 

replications. Values reported are average and 95% confidence interval (CI). 
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Table 5.7 Average sensitivity values and 95% confidence intervals (CI) for each vital rate across 

the four seasons, based on the model for P. p. niveiventris. Bold term shows highest average 

value for each season. Vital rates are: litter size (L), migration rate (m), proportion reproductive 

females in beach (PreBeach) and scrub (PreScrub), adult survival (Sa), litter survival (SL) and 

juvenile survival (Sj).  

Season L m PreBeach PreScrub Sa SL Sj 

Average 
 

Spring 0.067 -0.139 0.222 1.146 1.265 0.554 0.135 

Summer 0.048 -0.088 0.335 0.972 1.199 0.398 0.101 

Fall 0.084 -0.127 0.150 1.170 1.346 0.693 0.177 

Winter 0.079 -0.154 0.200 1.299 1.285 0.652 0.146 

95% CI 
 

Spring 0.0004 0.0015 0.0071 0.0086 0.0015 0.0025 0.0008 

Summer 0.0002 0.0011 0.0081 0.0088 0.0009 0.0009 0.0004 

Fall 0.0004 0.0013 0.0028 0.0058 0.0015 0.0019 0.0008 

Winter 0.0004 0.0016 0.0061 0.0083 0.0015 0.0024 0.0008 

 

Table 5.8 Average elasticity values for each vital rate across the four seasons, based on the 

model for P. p. niveiventris. Bold term shows highest average value for each season. Also 

reported is the 95% confidence interval (CI) for each vital rate and season. Vital rates are: litter 

size (L), migration rate (m), proportion reproductive females in beach (PreBeach) and scrub 

(PreScrub), adult survival (Sa), litter survival (SL) and juvenile survival (Sj). 

Season L m PreBeach PreScrub Sa SL SJ 

Average 
 

Spring 0.278 -0.014 0.037 0.241 0.913 0.278 0.087 

Summer 0.208 -0.009 0.054 0.154 0.950 0.208 0.050 

Fall 0.341 -0.012 0.032 0.309 0.890 0.341 0.110 

Winter 0.286 -0.013 0.031 0.255 0.919 0.286 0.081 

95% CI 
 

Spring 0.0012 0.0001 0.0013 0.0019 0.0005 0.0012 0.0005 

Summer 0.0008 0.0001 0.0014 0.0013 0.0003 0.0008 0.0003 

Fall 0.0011 0.0001 0.0006 0.0014 0.0006 0.0011 0.0006 

Winter 0.0011 0.0001 0.0010 0.0017 0.0005 0.0011 0.0005 
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Our sensitivity analysis showed that the adult stage in the scrub habitat had the greatest 

impact on the annual λ for modeled populations of P. p. niveiventris. Minor changes in adult 

reproduction (adult to juvenile transition) and adult survival (adult to adult transition) had equal 

impacts on annual population growth, based on overlap in 95% CI (Table 5.9). This was the case 

for all seasons, with the highest values in summer (adult-juvenile, 0.654 ± 0.0024 95% CI; adult 

– adult, 0.744 ± 0.0026 95% CI) and lowest values in winter (adult-juvenile, 0.562 ± 0.0018 95% 

CI; adult – adult, 0.604 ± 0.0018 95% CI) (Table 5.9). We found adult survival in the scrub 

habitat to have the greatest proportional impact on the annual λ based on our elasticity analysis. 

All seasons had the same pattern of greatest elasticity values with adult survival (Table 5.10). In 

each habitat we found adult survival to have the greatest elasticity values, and these were 

significantly higher than any other elasticity values within the habitat based on 95% CI for all 

seasons (Table 5.10). In the scrub and beach habitat, the ability for juveniles to survive to 

provide offspring for the next season had the lowest elasticity values in each season (Table 5.10). 

Overall, migration between the two habitats had little impact on the population dynamics of P. p. 

niveiventris, with average elasticity values of 0.004 for the four seasons (Table 5.10). 

We found scrub to have an overall higher impact on the population dynamics of P. p. 

niveiventris than the beach, when we summed up the elasticity for each habitat and migration 

direction. Across all seasons the scrub had the greatest impact on the annual λ (Fig. 5.7). We 

observed the smallest proportional change of λ with minor change to the migration between the 

two habitats. We found no seasonal difference between the elasticity of the habitats (Fig. 5.7).
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Table 5.9 Average sensitivity values and 95% confidence interval (CI) for each matrix element for the model of P. p. 

niveiventris population dynamics with migration rate between habitats at 1% (m = 0.01). Values reported for each season. Bold 

terms are the highest values. Values overlapping in the 95% CI were considered not significantly different. 

Time t + 1 (by season, 

habitat and stage) 

Average Sensitivity at time t by habitat and stage 95% CI Sensitivity at time t by habitat and stage 

Beach Scrub Beach Scrub 

SPRING   Juvenile Adult Juvenile Adult Juvenile Adult Juvenile Adult 

Beach 
Juvenile 0.016 0.061 0.070 0.172 0.0004 0.0010 0.0005 0.0011 

Adult 0.014 0.054 0.058 0.145 0.0004 0.0011 0.0005 0.0013 

Scrub 
Juvenile 0.049 0.192 0.261 0.627 0.0005 0.0012 0.0016 0.0024 

Adult 0.055 0.218 0.297 0.712 0.0006 0.0013 0.0018 0.0027 

SUMMER 

        
Beach 

Juvenile 0.017 0.061 0.072 0.174 0.0004 0.0010 0.0005 0.0011 

Adult 0.015 0.053 0.059 0.146 0.0004 0.0010 0.0005 0.0013 

Scrub 
Juvenile 0.051 0.199 0.280 0.654 0.0006 0.0011 0.0021 0.0024 

Adult 0.058 0.226 0.318 0.744 0.0006 0.0012 0.0024 0.0026 

FALL 

         
Beach 

Juvenile 0.016 0.058 0.068 0.165 0.0004 0.0010 0.0005 0.0011 

Adult 0.014 0.051 0.055 0.137 0.0004 0.0011 0.0005 0.0013 

Scrub 
Juvenile 0.047 0.185 0.259 0.607 0.0005 0.0011 0.0019 0.0020 

Adult 0.054 0.210 0.296 0.691 0.0006 0.0012 0.0021 0.0022 

WINTER 

        
Beach 

Juvenile 0.015 0.055 0.064 0.155 0.0003 0.0009 0.0005 0.0010 

Adult 0.013 0.046 0.050 0.124 0.0003 0.0009 0.0005 0.0011 

Scrub 
Juvenile 0.044 0.172 0.240 0.562 0.0005 0.0010 0.0017 0.0018 

Adult 0.047 0.184 0.258 0.603 0.0005 0.0010 0.0019 0.0018 
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Table 5.10 Average elasticity values and 95% confidence interval (CI) for each matrix element for the model of P. p. 

niveiventris population dynamics with migration rate between habitats at 1% (m = 0.01). Values reported for each season. Bold 

terms are the highest values. Values overlapping in the 95% CI were considered not significantly different. Matrix elements 

with '-' indicates biologically impossible transitions based on the assumptions of the model. 

Time t + 1 (by season, 

habitat and stage) 

Average Sensitivity at time t by habitat and stage 95% CI Sensitivity at time t by habitat and stage 

Beach Scrub Beach Scrub 

SPRING   Juvenile Adult Juvenile Adult Juvenile Adult Juvenile Adult 

Beach 
Juvenile 0.004 0.012 - - 1.0x10

-4
 2.7x10

-4
 - - 

Adult 0.009 0.039 0.004 - 2.5x10
-4

 8.5x10
-4

 3.5x10
-5

 - 

Scrub 
Juvenile - - 0.076 0.176 - - 7.1x10

-4
 6.5x10

-4
 

Adult 0.004 - 0.177 0.501 4.2x10
-5

 - 6.9x10
-4

 1.7x10
-3

 

SUMMER 

        
Beach 

Juvenile 0.003 0.012 - - 8.5x10
-5

 2.9x10
-4

 - - 

Adult 0.009 0.041 0.004 - 2.4x10
-4

 8.6x10
-4

 3.4x10
-5

 - 

Scrub 
Juvenile - - 0.054 0.148 - - 3.4x10

-4
 5.9x10

-4
 

Adult 0.004 - 0.182 0.552 4.2x10
-5

 - 9.7x10
-4

 1.3x10
-3

 

FALL 

         
Beach 

Juvenile 0.004 0.017 - - 1.1x10
-4

 3.1x10
-4

 - - 

Adult 0.009 0.035 0.004 - 2.5x10
-4

 8.0x10
-4

 3.6x10
-5

 - 

Scrub 
Juvenile - - 0.089 0.216 - - 5.5x10

-4
 8.5x10

-4
 

Adult 0.004 - 0.169 0.455 3.9x10
-5

 - 9.1x10
-4

 1.1x10
-3

 

WINTER 

        
Beach 

Juvenile 0.004 0.014 - - 9.6x10
-5

 3.0x10
-4

 - - 

Adult 0.009 0.038 0.004 - 2.4x10
-4

 8.3x10
-4

 3.4x10
-5

 - 

Scrub 
Juvenile - - 0.078 0.200 - - 5.2x10

-4
 9.4x10

-4
 

Adult 0.004 - 0.169 0.482 4.0x10
-5

 - 9.2x10
-4

 1.2x10
-3
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Figure 5.7. Elasticity estimate for each part of the megamatrix, with bars indicating beach 

(Gray), scrub (Black). Elasticity value is given for the four seasons used in the model. Each bar 

shows average elasticity based on 10,000 replicates of the model, and the error bar shows the 

95% confidence interval. The elasticity values shown in the figure for beach to scrub migration 

and scrub to beach migration was negligible. 

Discussion 

 Our first objective was to document demographic variation among seasons and between 

years within two juxtaposed and structurally contrasting habitats occupied by P. p. niveiventris 

on Cape Canaveral, Florida, U.S.A. This area, effectively all of CCAFS, has been identified as 

critical to the long-term survival of this lineage of P. polionotus (Degner et al. 2007, Suazo et al. 

2009, Kalkvik et al. in review). Our study strengthened these prior studies by identifying 
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important differences in the population dynamics of this mouse in adjacent beach and scrub 

habitat. For example, the joint contributions of these habitats mitigate threats from tropical 

storms. Therefore population persistence of P. p. niveiventris depends locally and perhaps 

regionally on these habitats remaining intact into the future (Sturtevant et al. 1996, Brambilla et 

al. 2007, Heinrichs et al. 2010).  

 Our capture-recapture data indicated important variation in vital rates of P.p. niveiventris 

by grid, habitat, season, and year of study. Minimum number alive on the grids exhibited 

different trends over the study period. These patterns were driven by capture success in the two 

habitat types. The number of new individuals and the number of recaptures in the scrub greatly 

exceeded comparable numbers from the beach habitat. The data did not reveal how the dynamics 

in MNA was influenced by immigration or emigration. We were able to look at patterns of 

reproductive efforts and found that most seasons during our trapping period were characterized 

by a greater proportion of reproductive females in the scrub than were found in the beach habitat 

(Fig. 5.5). The three highest values of proportion of reproductive females were in spring 2004, 

fall 2005, and winter 2005 in scrub habitat. These observations suggested the scrub habitat may 

have contributed more to the population growth of P.p. niveiventris than the beach habitat. 

Nonetheless, reproductive activity of females in the beach habitat for spring and summer of 2005 

exceeded that found in the scrub. Dapson (1972) presented indirect evidence that P.p. 

niveiventris at Vero Beach in 1969 ceased reproduction in April-June. Temporal variation in 

proportion of reproductive females has been observed in close relatives of P. p. niveiventris 

(Davenport 1964, Smith 1974). Seasonal variation in the proportion of reproduction active 

females clearly occurred on Cape Canaveral in our study. This is contrary to observations of 
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another beach mouse subspecies, P. p. ammobates, where the proportion of reproductively active 

female mice in scrub habitat apparently tracked similar patterns to those found in females from 

adjacent beach habitat across time (Swilling et al. 1998). 

 We expected to find adult survival to show patterns of spatial and temporal variation, but 

based on our maximum likelihood analysis in MARK, we did not detect habitat differences in 

survival. Seasonal variation in survival by year averaged > 65% to > 80% in all comparisons 

with post-hurricane survival the winter of 2004 being significantly improved over the fall (p < 

0.05) (Fig. 5.4). Seasonal variation in survival has been documented in other beach mice with 

winter survival as high or higher than other seasons (Swilling et al. 1998). Dapson (1972) 

estimated the maximum age of P. p. niveiventris as 307 days with the implication that some 

individuals survival up to three seasons. The proximal causes for the temporal variation in 

survival are not clear, but could be explained by seasonal variation in resources as reported in 

other small mammal communities (Boutin 1990, Adler 1998). 

 Hurricanes are a major threat to populations of beach mice on the Gulf and Atlantic 

coasts (Swilling et al. 1998, Pries et al. 2009). Our grids were subject to indirect effects of two 

hurricanes (Charley and Frances) and the direct effects of Hurricane Jeanne between August and 

the end of September 2004 (www.noaa.gov; accessed January 6, 2012). Populations based on 

MNA were in gradual declines on five of six grids immediately prior to Hurricane Jeanne’s 

landfall September 26 (Fig. 5.3). These trends ceased or began to reverse on the beach and scrub 

grids in the remaining months of 2004. Some studies have evidence that scrub habitat landward 

of primary dunes function as a refuge during and after hurricanes (Swilling et al. 1998, Pries et 

http://www.noaa.gov/
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al. 2009). We expected to see higher survival and numbers in scrub than the beach habitat after 

Hurricane Jeanne the fall of 2004. MNA on the beach grids were reduced relative to the scrub 

grids the fall of 2004. The explanation for the lag in population recovery on the beach grids was 

likely physical damage to the primary dunes and back dune area, e.g., erosion, sand deposition, 

and flooding. At the population level, we were unable to detect a difference in survival between 

the two habitats during this period (Table 5.1). Furthermore, recruitment must have failed after 

the storm damage on the beach grids because the proportion of reproductive females peaked at 

this time (Fig. 5.5). In contrast to the beach grids, two of our grids in scrub habitat (SG1 and 

SG3; Fig. 5.3) increased MNA during fall and winter of 2004-2005. We were unable to provide 

an independent test of the value of the scrub habitat as a refuge and hedge against local 

extinction as demonstrated by Swilling et al. 1998 and Pries (2009). Our efforts to detect 

dispersal from beach to scrub or scrub to beach were unsuccessful (unpublished data). 

 We utilized a population modeling approach to investigate the impact of the different 

habitats on the overall population dynamics of P. p. niveiventris at CCAFS. The use of 

population modeling has met some criticism in conservation biology, in particular for modeling 

extinction risk (Beissinger and Westphal 1998, Coulson et al. 2001). Our study does not aim to 

predict the risk of extinction for the population of P. p. niveiventris occupying CCAFS, but 

rather to utilize modeling approaches to evaluate vital rates of the mouse in the landscape they 

occupy. Evaluating landscape variation has been successfully used in other taxa without 

projecting population trends (e.g., Horvitz and Schemske 1986, Cipollini et al. 1994, Pascarella 

and Horvitz 1998). Our model represents the complex seasonal dynamics of a rapidly developing 

rodent, where females can theoretically produce offspring of their own in 72 days after their birth 
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(Layne 1968). In addition, we incorporated stochastic elements by treating vital rates as 

distributions rather than constants. Temporal variation in vital rates was added when data were 

available. Incorporating stochasticity in the model provided realism and greater confidence in the 

results (Beissinger and McCullough 2002, Morris and Doak 2002, McGowan et al. 2011). To 

evaluate the stability of our model, and to ensure our model was not producing unrealistic 

scenarios for the population dynamics of P. p. niveiventris, we estimated annual λ. With an 

average λ = 1.014, and a narrow confidence interval (95% CI = 0.004), we believe our model 

represents a realistic scenario reflecting the population dynamics of P. p. niveiventris (Fig. 5.6). 

Additionally, the confidence interval around our estimated sensitivity or elasticity values 

accounted for only 5% or less of the estimated average, suggesting even with stochasticity our 

model produced similar results. Oli et al. (2001) provided estimates of r (intrinsic rate of natural 

increase), which we transformed to annual increase or λ, for four populations of beach mice (P. 

p. ammobates and P. p. trissyllepsis) from the Gulf coast of Alabama and Florida. Their 

estimates of λ ranged from 2.7511 for Fort Morgan to 1.0704 at Gulf Islands National Seashore. 

Given the rapid and short-term changes in populations of P. polionotus at numerous study sites, 

major shifts in λ must be the rule (Oli et al. 4 study sites, see Fig. 2; this study, 6 independent 

grids, see Fig. 5.3).  

   Our model has two limitations that have not been addressed. First, no explicit effort was 

made in the model structure to account for catastrophic events. Second, we recognized density-

dependence can impact population persistence (Stacey and Taper 1992) through feedbacks on 

vital rates during various life stages (Morris and Doak 2002). Incorporating density-dependent 

processes into population models is recommended, but long-term data are necessary for proper 
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estimation of such processes (Coulson et al. 2001). Oli et al. (2001) were unable to incorporate 

density dependence in their PVA models and failed to find evidence for density-dependent 

responses in their field data. Even with the lack of accounting for density-dependence. We 

believe our model provided useful insights into the population biology of P. p. niveiventris in the 

absence of density-dependent functions.  

 Our field data suggested temporal and spatial variation of P. p. niveiventris at CCAFS, 

but this does not provide a clear indication of the contribution of the different habitat types on 

the overall population dynamics. Modeling studies using both theoretical and empirical 

information have shown that habitats and their configurations can contribute differentially to 

population dynamics (Fraterrigo et al. 2009, Heinrichs et al. 2010). Using a modeling approach 

we found scrub habitat to have a greater impact on the overall population dynamics of P. p. 

niveiventris at CCAFS than the beach habitat (Fig. 5.7). With higher numbers of mice found in 

scrub habitat, as shown in our study (Table 3.3; Fig. 3.3) and in other studies (Extine and Stout 

1987), these results seems to fit with observed patterns. We found adult survival in the scrub to 

have the greatest impact on the population dynamics (Table 5.10), which seems counterintuitive 

as we found no difference in adult survival between habitats based on our capture-recapture data 

(Fig. 5.4). Most likely this is a result of greater reproductive effort of females in the scrub habitat 

relative to females in beach habitat (Table 5.8). While adult survival is the same between scrub 

and beach habitat, it seems to be the maintenance of the higher reproductive output in the form of 

juveniles becoming adults , which then survive, that explains the greater influence of adult 

survival in the scrub habitat. 
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 Our evidence from capture-recapture efforts and modeling strongly indicate the scrub 

habitat sustained greater numbers of P. p. niveiventris at CCAFS than the beach habitat. Only a 

modest difference in reproductive effort or recruitment by mice in the scrub could account for 

the apparent success relative to the beach animals. However, this could be a function of the 

amount of scrub available relative to the beach habitat, that is, an area effect. Other beach mice 

subspecies has been shown to utilize tertiary dunes and scrub habitat less extensively than 

documented in this study (Swilling et al. 1998, Sneckenberger 2001, Pries et al. 2009). In other 

locations within the distribution of beach mice, scrub has also been argued to function as 

temporary refuge from hurricanes (Pries et al. 2009). We know that within the distribution of P. 

p. niveiventris other populations have persisted for decades with little or no scrub habitat 

available (Stout 1992). Our study therefore does not suggest that the presence of extensive scrub 

habitat is essential for the persistence of beach mice; however, when scrub is present it can 

greatly impact the overall population dynamics of beach mice. If the impact by scrub is purely an 

area effect, as seen in a wide range of taxa (see review Connor et al. 2000), we would expect 

population sizes to be correlated with amount of overall habitat (beach and scrub) that is present. 

To evaluate this prediction, further research is needed on the population dynamics in the known 

populations of P. p. niveiventris, as identified by Kalkvik et al. (in review). 

 Modeling has provided unique insights into population dynamics of many taxa, which 

can be directly implemented into management and conservation decisions (Olson et al. 2004, 

Heinrichs et al. 2010). Conservation of dune systems has received attention in the context of 

beach mice population management (Jester 1998). Agencies have recognized the need to address 

the importance of scrub for future beach mice conservation (U.S. Fish and Wildlife Service 



 

 

187 

 

1993). Our findings provide further evidence for the need to manage not only beach habitat, but 

also the adjacent scrub habitat. The data generated from this study suggest higher densities of 

mice in scrub habitat CCAFS, and our population model provides evidence that mice in scrub 

habitat can have a significant impact on the overall population dynamics (Fig. 5.7). 

 In conclusion, our study provides an example of identifying the contribution of different 

habitat types in the overall population dynamic of an organism. We found that P. p. niveiventris 

at CCAFS occupying scrub habitat have a greater impact on overall population dynamics of the 

mice than has historically been recognized. Combining both trapping data and population 

modeling, we gained stronger evidence for the impact that scrub habitat has for this subspecies. 

While other beach mice populations may not utilize scrub habitat as extensively as the P. p. 

niveiventris population at CCAFS, our study illustrates the need to address conservation of beach 

mice beyond beaches. Our study does not suggest that beach habitat is incapable of supporting 

healthy populations; however, we suggest that when extensive scrub habitat is present, it has the 

potential to influence the overall population dynamics of beach mice. Most likely both habitats 

would be necessary for long-term persistence of the population as has been seen in other taxa 

(Brambilla et al. 2007). With our findings of both variation in habitat and seasonal impacts on 

the population dynamics of P. p. niveiventris, we provide further evidence for the need for 

detailed studies on population dynamics for appropriate management of listed taxa (Gaillard et 

al. 2000, Heinrichs et al. 2010). 
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CHAPTER 6. CONCLUDING REMARKS 

My aim was to understand diversity and persistence in subspecies of Peromyscus 

polionotus at different spatial and temporal scales. By following this broad based approach I 

have been able to gain new insight into possible ecological and evolutionary drivers that have 

shaped the diversity we see today as well as the likely roles played by historic and anthropogenic 

forces. I provide insight into the association of diversity and the environment at a wide spatial 

scale (Chapter 2), the formation of the unique coastal diversity we observe in P. polionotus 

(Chapter 3), human impact on genetic diversity (Chapter 4), and how at least one beach mouse 

population may rely more on scrub habitat than coastal dunes habitat (Chapter 5). 

Environmental influence on diversification 

 Divergence and speciation operate over spatial and temporal gradients in which related 

taxa respond according to two patterns: niche conservatism and niche divergence. Niche 

conservatism is associated with sister taxa persisting in similar environmental niches, caused by 

a restriction via stabilizing selection or by a lack of ancestral variation for natural selection to 

differentiate (Lord et al. 1995, Webb et al. 2002, Wiens and Graham 2005). An alternative 

pattern, niche divergence, predicts closely related taxa will occupy different environmental 

niches (Losos et al. 2003). Contemporary work shows that niches can diverge very rapidly, 

suggesting that niche divergence can occur in very recently diverged lineages (Evans et al. 2009, 

Dormann et al. 2010). 

 My research with the widely distributed P. maniculatus species group provides additional 

support that niche divergence can drive speciation. Using niche based modeling (Phillips et al. 
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2006, Phillips and Dudík 2008) I observed significant differences in the inferred niche spaces 

occupied by P. maniculatus and P. polionotus and found niche distinction between 

phylogenetically-inferred lineages within P. maniculatus. I was even able to determine, using 

recently developed statistical tools (Warren et al. 2010), that sister taxa with greatly overlapping 

modeled distributions were occupying environmental spaces more different than would be 

expected by chance. Most of the lineages identified in my phylogeny for the P. maniculatus 

species group were within P. maniculatus. Furthermore, my results support the notion that 

diversification within widely distributed species, such as P. maniculatus, may be dependent upon 

niche divergence. 

 My study provided new insight into the identification of contact zones among distinct 

lineages. I found several potential contact zones between spatially adjacent lineages within P. 

maniculatus using the modeled distributions. These potential contact zones will be important to 

study to identify possible environmental differences that isolate these lineages at smaller spatial 

scales. Small scale field studies have already shown habitat preferences between 

morphologically distinct members of P. maniculatus (Hooper 1942, Harris 1954), and my 

findings provide new areas that warrant research for evaluating local environmental segregation 

of lineages. My data also suggest that other widely distributed, genetically structured taxa may 

serve as model organisms for testing the impact the environment has on shaping biodiversity 

(Hoffman and Blouin 2004a, Fontanella et al. 2008, Vargas-Ramírez et al. 2010, Turmelle et al. 

2011). 
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Climate, sea levels, and young diversity 

 Historic climatic oscillations and other dramatic environmental fluctuations have 

impacted modern patterns in biodiversity (Hewitt 1996, Hewitt 2000, Hewitt 2004, Lomolino et 

al. 2005, Lessa et al. 2010, Hortal et al. 2011). North American biogeographic research has 

focused on inter- or intraspecific variation observed in taxa that reside at northern latitudes, 

where glacial sheets covered much of the area during the last ice age (Bermingham et al. 1992, 

Mila et al. 2000, Shafer et al. 2010). The last ice age left formerly continuous populations to 

expand from isolated refugia in which distinct lineages had formed; glacial retreat reduced the 

isolation and these lineages could in time meet forming secondary contact zones. These events 

during and after the ice age have left distinct genetic patterns in many taxa (Hoffman and Blouin 

2004a, Rowe et al. 2004, Rowe et al. 2006, Recuero and García-París 2011). Continental and 

coastal habitats underwent somewhat similar processes at the end of the Pleistocene as the fauna 

and flora expanded or retreated with changing conditions. 

I chose to study taxa that have a temperate to sub-tropical distribution to investigate the 

impacts that sea level oscillations (in conjunction with glacial fluctuations) have on coastal 

diversity. Using two genetic markers, I found the two extant Peromyscus polionotus subspecies 

(P. p. niveiventris and P. p. phasma) endemic to the Atlantic barrier islands to form two distinct 

genetic units, with no haplotypes shared between them and distinct differences in microsatellite 

structure. Both extant subspecies are also genetically distinct from the inland P. polionotus 

populations. These findings support the distinction of the extant Atlantic coast beach mice as 

their own taxonomic units. Interestingly, the extinct subspecies, P. p. decoloratus cannot be 
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differentiated genetically from the northern subspecies, P. p. phasma. Further investigation into 

the distinctness of P. p. decoloratus can help to determine if this subspecies represents lost 

populations of P. p. phasma rather than loss of a whole subspecies. With the exception of P. p. 

decoloratus, my research provides evidence that the extant Atlantic coast beach mouse 

subspecies are on their own evolutionary trajectory. This is supported by the lack of gene flow 

and genetic distinctiveness of P. p. niveiventris and P. p. phasma. The separate evolutionary 

trajectory is further corroborated by the evidence in literature that the phenotypic differences in 

pelage coloration are caused by differential selection based on soil coloration (Hoekstra et al. 

2006, Mullen and Hoekstra 2008, Vignieri et al. 2010, Domingues et al. In Press) 

Bowen (1968) proposed that the Atlantic coast beach mice originated from a single 

colonization of mice from inland populations that subsequently dispersed along the coastline to 

diverge into different subspecies. While I cannot reject the possibility of multiple colonization 

events shaping the current diversity, I found support for the interpretation that all the Atlantic 

coast beach mice originated from the same source, which currently is located in the interior of 

central Florida. 

Genetic diversity, land management and conservation 

 Genetic diversity is a widely used tool for assessing the likelihood of population 

persistence (and therefore conservation concern) of taxa, stemming from the finding that 

genetically depauperate populations have an increased likelihood of extinction (Frankham 1995, 

Frankham et al. 2002). Loss of genetic diversity is often associated with anthropogenic 

influences, but several studies have shown that genetic diversity may be more influenced by 
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events prior to human alterations of the environment (Hoffman and Blouin 2004b, Taylor and 

Jamieson 2008, Reding et al. 2010, Tracy and Jamieson 2011). My research demonstrates that P. 

p. niveiventris has maintained the same genetic diversity over the last 100 years in coastal 

settings where minimal land development pressures have occurred; however, genetic diversity 

has been reduced in areas with extensive anthropogenic disturbance. My findings suggest that the 

current genetic diversity observed in P. polionotus was shaped by historical events prior to 

human development of coastal habitat. P. p. niveiventris displays a significantly lower signal of 

genetic diversity when compared with inland populations of P. polionotus. It seems likely that 

founder effects and early bottlenecks resulted in the current genetic diversity we observe in P. 

polionotus niveiventris. Early bottlenecks can greatly reduce genetic diversity, leaving little 

variation to be acted upon by subsequent bottleneck events (Taylor and Jamieson 2008). Among 

the coastal populations of P. polionotus, P. p. niveiventris has maintained higher genetic 

diversity than any other beach mouse subspecies (see Chapter 3; Mullen et al. 2009). 

 In land management, the need to protect large spans of continuous habitat has often been 

associated with charismatic megafauna (Maehr 1990, Quigley and Crawshaw Jr 1992, Noss et al. 

1996, Maehr et al. 2002, Leimgruber et al. 2003, Van Aarde et al. 2006). However, smaller 

organisms can be greatly impacted by the loss of continuous habitat. Currently, P. p. niveiventris 

has approximately 70 km of continuous habitat, making up the central part of their contemporary 

distribution (Fig. 4.1), which is the longest stretch of continuous habitat found among the beach 

mice. My research reveals that two disjunct populations of P. p. niveiventris show a significant 

loss of genetic diversity, compared to historical population level genetic diversity. In contrast, 

the continuous habitat acts as a refuge of historical genetic diversity for P. p. niveiventris. With 
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the genetic diversity found primarily in this large stretch of habitat, my data provide evidence 

that large areas of continuous habitat may serve to maintain historical genetic diversity. Florida 

contains large pieces of publically owned land which may contain continuous habitat for a wide 

range of taxa, including P. p. niveiventris (Fig. 6.1). Based on my findings for P. p. niveiventris, 

efforts to maintain these pieces of land may be important for maintaining historical genetic 

diversity for taxa occupying these areas. 

Beach or scrub? That is the question 

 Habitats can vary in quality, such as presence of cover and food, which can influence 

population persistence in those habitats (Thomas et al. 2001). However, population persistence 

can also be influenced by the availability of more than one habitat type (Brambilla et al. 2007). 

Beach mice have traditionally been associated with primary dunes and sea oat (Uniola 

paniculata) habitats (Ivey 1949, Bowen 1968), but recent studies have reported several beach 

mice subspecies occupying scrub habitat, possibly as temporal refugia from natural disturbance 

(Extine and Stout 1987, Swilling et al. 1998, Pries et al. 2009). I used field data and matrix 

modeling to show the importance that scrub habitat has on the population dynamics of P. p. 

niveiventris. My field data corroborate the observation by Extine and Stout (1987) that higher 

numbers of mice can occur in scrub habitat than in juxtaposed beach habitat. I found over a two 

year period, minimum numbers alive, a proxy of population density, were consistently higher in 

scrub habitat than in beach habitat. 

Population modeling has been shown to be a very useful tool in understanding population 

dynamics, where we can assess the importance of life stages, habitats, and vital rates on the 
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overall changes in population numbers (Pascarella and Horvitz 1998, Wemmer et al. 2001, Picό 

et al. 2002, Olson et al. 2004, Fraterrigo et al. 2009, Heinrichs et al. 2010). Based on matrix 

modeling, through sensitivity and elasticity analysis, I am able to show that scrub habitat greatly 

impacts the overall population dynamics of P. p. niveiventris. While my research did not seek to 

project populations into the future, the findings in this study highlight the importance of plant 

cover other than beach habitat for the persistence of beach mice. To adequately protect the 

variation in P. p. niveiventris and other beach mice, conservation planning needs to take both 

beach and adjacent scrub habitat into consideration. Scrub habitat may have greater importance 

for beach mouse population dynamics than solely acting as a refuge from natural disturbances 

such as hurricanes. 

Overall conclusions and future directions 

 Overall my research has provided new insight into the environmental and climatic 

influence on speciation and diversification at both a continental and regional scale. In addition, I 

have provided new research on the impact of human encroachment on natural habitat on 

populations, and in particular the impact we can have on the genetic diversity in a taxon that has 

experienced extensive habitat loss. I have also demonstrated the importance of different habitat 

on the overall population dynamics and possible persistence of a coastal taxon. While my 

findings can be generally applied to evolutionary biology and ecology, my research has been 

motivated by conservation. Conservation biology aims not only to identify and preserve 

biodiversity, but also to identity those processes that shaped biodiversity (Moritz 2002, Groom et 

al. 2005). 
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Figure 6.1 Publically owned land across Florida (blue). Scale bar is showing scale to 100 

kilometers (Florida Natural Areas Inventory; http://www.fgdl.org). 
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Future direction in my studies will be to bring my research approach from a single 

species, or species group, to a multi-taxa sampling strategy. Niche modeling is a correlative 

analysis and may not provide insight into the mechanistic interaction between the environment 

and an organism (Kearney 2006). By sampling a wide range of taxa with similar distributions, 

we may gain evidence of converging environmental features that have a broad impact on 

biodiversity, rather than species-specific patterns. Other studies have found widely distributed 

taxa to show evidence of niche divergence (eg. Pyron and Burbrink 2009), so it is clear the P. 

maniculatus species group is not the only North American taxa showing pattern of niche 

divergence. My predicted distributions from the niche modeling also identify specific areas that 

sister and non-sister taxa overlap. The areas of overlap I identified could either be hybrid zones 

between genetic lineages or partitioned by local habitat, so additional field experiments could be 

executed in these specific areas to identify exact mechanism for interpreting these genetic 

lineages. I have shown in my research that the coastal P. polionotus subspecies may be on their 

own evolutionary trajectory; furthermore, my data provide support for the possibility of a single 

colonization event onto the Atlantic coast of Florida, which has given rise to the extant diversity. 

To provide increased understanding of the dynamics of this young coastal habitat, it would be 

interesting to investigate the relationship between other taxa found on both mainland and barrier 

island along the Atlantic coast of Florida. Should we find convergence in the pattern of 

differentiation in other taxa, it would suggest similar processes shaping the general biodiversity 

of the barrier islands, whereas a lack of convergence would suggest the beach mice subspecies 

resulted from a unique pattern of divergence. No other taxa on these islands have been 

documented to show contrasting phenotype traits as seen in the distinct pelage differences of 
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beach mice among the barrier islands. Therefore, it would be interesting to further explore why 

one taxon has undergone such rapid selection, while other have not experienced the same 

selection regime. 

Coastal areas are greatly impacted by human populations (Small and Nicholls 2003), and 

I have shown that the remaining continuous habitat in the current central portion of the 

distribution of P. p. niveiventris may function as a genetic refuge for the species. This area 

contains a wide range of listed species (Breininger et al. 1998), and some may be more sensitive 

to human encroachment than others based on their life-history traits (e.g., generation time, 

feeding behavior, movement patterns, etc.). By testing temporal changes in genetic diversity and 

structure of a wide range of taxa in this area we can gain further insight into the impact of such 

continuous habitat at a community level rather than at a species specific level. Finally, I was able 

to show the importance of scrub habitat for P. p. niveiventris using field data and population 

modeling. However, many aspects can be further explored for this system, such as how density 

dependence feedbacks may act on different life stages and their vital rates. Also, with sampling 

limited to three years, I was not able to capture long term natural fluctuations in the population. 

Additional questions that would be interesting to resolve might include interspecific competition, 

resource dependence and the impact of natural (e.g., hurricane) and human caused (e.g., habitat 

destruction) disasters. By continuing to monitor P. p. niveiventris this system can provide 

additional insight into all of these elements of the population dynamics of a taxon in a dynamics 

landscape. However, even more important, long term monitoring can also provide insight into 

the impact of climate changes on a small mammal in a landscape that will be impacted by 

changes in the air and in the sea. 
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