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ABSTRACT 

The ability to robustly fit structures in datasets that contain outliers is a very important task in 

Image Processing, Pattern Recognition and Computer Vision. Random Sampling Consensus or 

RANSAC is a very popular method for this task, due to its ability to handle over 50% outliers. 

The problem with RANSAC is that it is only capable of finding a single structure. Therefore, if a 

dataset contains multiple structures, they must be found sequentially by finding the best fit, 

removing the points, and repeating the process. However, removing incorrect points from the 

dataset could prove disastrous. This thesis offers a novel approach to sampling consensus that 

extends its ability to discover multiple structures in a single iteration through the dataset. The 

process introduced is an unsupervised method, requiring no previous knowledge to the 

distribution of the input data. It uniquely assigns labels to different instances of similar 

structures. The algorithm is thus called Labeled Sampling Consensus or L-SAC. These unique 

instances will tend to cluster around one another allowing the individual structures to be 

extracted using simple clustering techniques. Since divisions instead of modes are analyzed, 

only a single instance of a structure need be recovered. This ability of L-SAC allows a novel 

sampling procedure to be presented “compressing” the required samples needed compared to 

traditional sampling schemes while ensuring all structures have been found. L-SAC is a flexible 

framework that can be applied to many problem domains. 
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1 INTRODUCTION 

 

 One very important task in engineering and computer science is to fit a measured data 

set to its ideal structure. For example, in the ideal case, all points on a line exactly follow the 

structure           . However, when taking measurements in the real case, the points 

associated with a particular line will not exactly fit this structure due to introduced error. All 

measuring devices such as sensors and cameras have inherent limitations which introduce 

errors into the ideal system. These errors may be due to the discrete sampling and quantization 

of a signal in an ADC, or the rounding and truncation that occurs in a CPU. The ambient lighting 

may cause a camera's CCD to operate outside of its dynamic range, distorting its color accuracy. 

These errors are system noise. Whatever the case may be, it is important to find an accurate 

estimate of the ideal structure in this noisy data. 

Noise may not be the only source of error in the system either. It is often necessary to 

extract features or a sub-set from the original dataset. The algorithms used for this often 

introduce errors themselves. Incorrect samples not associated with a structure may be 

gathered, or points may be matched incorrectly in a stereo vision system. These are outliers 

since they do not match the features extracted from the sampled set. Performing operations 

such as Least-Squares on a set containing outliers is not desired because the outliers merge 

with the valid data and skew the results. To overcome this problem, several methods for 

examining noisy data, and data contaminated with outliers have been developed. One popular 

method for robust regression is Least Median of Squares or LMedS [11], which scores structures 
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based on the median distances to all points. Its advantage is that no prior knowledge to the 

distribution is needed, however it will fail if the proportion of outliers is greater than 50%. If a 

dataset contains outliers greater than 50%, then a popular method in Computer Vision is to use 

Random Sample Consensus or RANSAC. 

RANSAC introduced by Fischler and Bolles [5] in 1981 is a very popular algorithm for 

robustly fitting data in a noisy environment often tolerating more than 50% outliers. RANSAC 

proceeds by drawing a minimum number of points needed to fit the structure, measuring the 

number of inliers to the formed structure, and scoring the fit based on the number of inliers. A 

consensus set it built and updated every time a newly formed structure contains more inliers 

then the consensus set before it. The number of random samples required to find the best fit 

up to a given probability is determined based on the estimated number of outliers, and the 

minimum number of points required to represent a structure. This estimate for inliers can be 

adapted based on the consensus set to improve the algorithms performance. Once the required 

number of samples has been reached, the consensus set is used to fit the data. RANSAC is very 

popular because it can be applied to many problem sets such as fitting lines, finding planes and 

homographies, finding the Fundamental Matrix, and motion estimation just to name a few. It is 

also relatively simple to implement and use.  
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1.1 Motivation 

RANSAC is limited to an either/or situation due to its reliance on a consensus set that is 

updated whenever a structure with a higher score is found. Therefore RANSAC is limited to 

finding only a single structure in the dataset presented. Several papers in the literature deal 

with extending RANSAC to single structures such as [16] and [18]. Only dealing with single 

structures is a severe limitation as a dataset may contain several structures, and an attempt to 

find them sequentially by removing structures after detection may cause serious problems if 

incorrect points are removed. Therefore, a novel sampling consensus algorithm, capable of 

handling multiple structures, has been developed to overcome this limitation of RANSAC. 

This thesis introduces a novel method for finding multiple structures in a dataset. 

Detecting multiple structures in a dataset introduces several challenges that need to be 

overcome. The first challenge is that of dimensionality. A RANSAC-like algorithm depends upon 

a minimum sample set, that can instantiate a geometry, typically from a relatively simple 

mathematical relationship. Detecting a line is a    problem and homographies are   . What 

about more complex geometrical structures such as human faces? As the geometry becomes 

more complex the dimensionality may increase exponentially and a closed form solution may 

not exist. Therefore for a RANSAC-like algorithm to work for all but trivial cases, it must handle 

   without a similar scaling in computational complexity. 

 To be RANSAC-like, the approach must be robust to outliers. This problem is two-fold 

when dealing with multiple structures. Gross outliers will exist in the dataset; however points 

that are inliers to one structure may be outliers to another structure. Therefore a dataset 
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containing more than one structure has both gross outliers and pseudo-outliers. These pseudo-

outliers must be handled properly as they affect the consensus sets differently. 

 Another difficulty in handling multiple structures is determining if all structures have 

been found during the random sampling process. The trivial case is to know beforehand how 

many structures exist, but what if this information is not known? Pseudo-outliers also mean 

that a refinement to an estimate of the inlier/outlier ratio cannot be obtained during the 

sampling process as can be for the single case of RANSAC. Therefore the only way to rely on an 

inlier/outlier ratio for computing the number of iterations is to have a priori knowledge of the 

input data. 

 Finally, finding all structures in a dataset can dramatically affect the sampling procedure. 

Three parameters, the number of structures, dimensionality of the minimum sample set, and 

size of the dataset all affect how many samples must be taken to ensure with a desired 

probability    that at least   outlier free minimum sample sets have been drawn. If   structures 

exist, then   different outlier free consensus sets must be drawn.  

 These issues must successfully be addressed for robust recovery of multiple structures. 

The following section describes the current state of the art. 
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1.2 Literature Review 

 This section presents the current methods existing in the literature to handle a dataset 

containing several structures. The approach of several specific algorithms are discussed and 

analyzed to determine how this thesis uniquely contributes to the current state of the art. 

Mean shift and Randomized Hough Transform are popular clustering techniques that 

have been around for several years. Mean shift, made popular in the Computer Vision 

community by [2], is a technique for finding modes in probability density functions. The mean 

shift vector locally points in the direction of the maximum increase in the density, and tends to 

converge at the modes [23]. Mean shift proves difficult in multi-modal data as the choice of 

bandwidth greatly affects performance. If the bandwidth is too tight, it may be sensitive to local 

maxima, while correct peaks may be missed if the bandwidth is too wide [23]. 

Randomized Hough Transform (RHT) [20] differs from mean shift in that it builds 

histograms in the parameter space. The computational complexity associated with the 

traditional Hough Transform [3] is compensated by building model hypotheses from random 

samples. Peaks in parameter space will tend to build around a structure in the dataset. For 

multiple structures, the histogram will become multi-modal. RHT still suffers from the 

computational complexity problem and limited accuracy, while the choice of parameter space 

critically affects performance [15]. 

These two methods were not specifically designed to handle multi-structure data but 

were adapted, due to their mode finding abilities. They are not therefore inherently robust in 
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this type of environment. Over the last few years, techniques specifically designed around 

multi-structure environments have been developed. These methods are based on the sampling 

consensus procedure of RANSAC and are more suited to this problem domain. 

In 2005, Zulliani, et. al. [25] published the multiRANSAC algorithm. The premise of this 

algorithm is that   structures are known to exist in the dataset     *           +  The set 

     *           + is the set of inliers to structures    . A manifold   ( ) of all points 

associated with the parameter vector       is defined for structures        and this 

manifold has dimension   . The minimum elements required to instantiate a structure is the 

subset      of   also called the minimum sample set (MSS). The consensus set (CS) which 

represents the best fit for structure  , is found by minimizing the error   produced by an 

applicable distance function 

  (    (  ))      (    ( ))  (1.1) 

The subset of points in    whose distance to   (  ) is such that,      where   is a user 

defined threshold, represents the CS  (  ).  

The multiRANSAC algorithm searches the dataset by instantiating the MSS of structure 

 , finding the CS, then removing the inliers from  . It does this   times. The probability of 

finding   outlier free structures is given by, 

   
.    

  
/ .    

  
/ .    

  
/

. 
  
/ .      

  
/ .  ∑     

   
   
  

/
  (1.2) 
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Since the number of inliers for each CS is not known a priori,   cannot be found. However, the 

fact that  ( )  |    | shows that  ( )    and conversely        ( ), where           

     (          ) and the consensus sets are sorted such that            . With this 

knowledge, a stopping threshold can be calculated. The probability of not selecting   outlier 

free consensus sets is given by    ( ). If the number of iterations is  , then the probability of 

not selecting   outlier free consensus sets is given by (   ( )) . As   increases, the 

probability goes to zero. The required number of iterations  , can be determined to a specified 

probability   by (   ( ))   . The number of iterations is then, 

   
    ( )

    (   ( ))
  (1.3) 

This threshold  , is updated throughout the selection process. 

MultiRANSAC is a greedy algorithm as it attempts to increase the CS at iteration   with 

the CS from iteration    . If the set   with maximum cardinality is disjoint from any set in 

 ( )( ), then  ( )( )   ( )( )   . 

There are two main drawbacks to using multiRANSAC. The first is that it is a supervised 

approach as the number of structures in the dataset is known a priori. The second is that 

multiRANSAC tends to fail if structures intersect each other as noted in [15]. This is primarily 

due to the greedy nature of merging consensus sets as it implicitly assumes non-intersecting 

structures. 

Zhang et. al. proposed a novel approach to the RANSAC hypothesis testing approach. 

“Instead of considering the residuals of all the data points per hypothesis, we propose to 
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analyze the distribution with respect to all the hypotheses for each data point [23].” The idea is 

to build a histogram of the distribution of each data point with respect to each generated 

hypothesis, and search the histogram for modes. The residuals will cluster around a structure in 

the dataset forming the mode. One advantage of the RHA method is that it is an unsupervised 

approach. The number of inliers per structure, nor the number of structures in the dataset need 

to be known prior to the search.  

The mode search algorithm is presented in three steps [23]: 

1. Smooth the histogram with a narrow window and local maxima (modes) and minima 
(valleys) are located. 

2. Remove spurious weak modes and valleys so that only single local minimum valley is 
present between two modes and only one local maximum mode is present between two 
valleys. 

3. Choose the weakest unlabeled mode and measure its distinctness. If the mode is 
distance, then it is labeled and added to the list of modes; otherwise it is marked as 
spurious and removed. If there are no more unlabeled modes, stop the procedure, 
otherwise go to step 2. 
 

 The major drawback to this algorithm is that finding the modes in multimodal data can 

be difficult and burdensome. In [15], it was pointed out that the peak corresponding to a 

structure becomes less localized as the point-model distance increases, drowning the rightmost 

modes in the noise. It was pointed out in [14] that severe outliers and incorrect bandwidth 

estimates for density estimation can produce false modes and valleys further drowning actual 

modes in the noise. 

Toldo et. al. define a “conceptual representation” where each data point is represented 

by a preferred set in [15]. Essentially an     matrix is formed where   represents the number 
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of points in the set, and   represents the number of minimum sample sets (MSS) formed. If a 

point belongs to a CS it is assigned a 1, else it is assigned a 0. In this way each column of the 

matrix represents the characteristic function of the CS of that structure, while each row 

represents the preferred set of a point. The preferred set is the set of all structures that the 

point has given consensus. Points that belong to the same structure will cluster in this 

conceptual space {0, 1}M .  

The Jaccard distance is defined as  

   (   )   
|   |  |   |

|   |
  (1.4) 

This distance measures the overlap of set A and B, with a range of 0 for identical sets, to 1 for 

disjoint sets. Each preference set is given its own cluster, then “the preference set of a cluster is 

computed as the intersection of the preference sets of its points [15].” The two clusters with 

the smallest Jaccard distance are replaces with the union of the two clusters. This process is 

repeated while the smallest Jaccard distance is less than one. The final structure for each 

cluster is given by a least squares fit.  

J-Linkage relies on a priori knowledge to the size of structures or a knowledge of and 

inlier/outlier ratio. It also relies on eliminating outliers due to the fact that they will show up as 

small clusters and therefore a rejection threshold must be set. By relying on outliers being small 

clusters, several instances of a single structure must be found to raise it above this threshold. 

 Chin et. al. [14] introduced a method for detecting multiple structures in a dataset that 

can contain over 90% total outliers. In their method, a novel mercer kernel is defined allowing 
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statistical machine learning techniques to be applied. Their method also does not require 

manual input of an inlier noise threshold. The paper refers to their method as Kernel Fitting (KF) 

and from here on this paper will use the term KF as well.  

 Proceeding in the same fashion as [23],   structure hypotheses are generated, and the 

set of residuals    {  
    

      
 } of each point    to the   structures is analyzed. Each set is 

sorted in ascending order to define, 

   ̃  {  
    

      
 }  (1.5) 

where   
  is the sorted index value. From this the Ordered Residual Kernel (ORK) [14] between 

two data points is defined as, 

   ̃(       )  
 

 
∑      

 ( ̃  

   

   

  ̃  )  (1.6) 

where    
 

 
 are the harmonic series and   ∑   

   
    is the (   )th harmonic number. The 

authors then define the Difference of Intersection Kernel (DOIK),  

   
  

 

 
.| ̃  

      ̃  

    |  | ̃  

      
  ̃  

      
|/  (1.7) 

Where       and      (   )   The parameter   is a step size that allows the rate of 

change of intersection from a fictitious inlier threshold. This parameter does not depend on the 

noise scale but on  . Since the ORK is a Mercer kernel, the input space   is mapped by   to a 

inner product space  , 

        ( )   (   )     (1.8) 
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The fact that the kernels satisfy the Mercer condition means the data can be analyzed in the 

inner product space without explicit transformation. 

 With the Mercer kernel defined, the authors attempt to remove gross outliers by 

exploiting the fact that vectors in   will have high norms if they correspond to inliers and low 

norms if they are outliers.   ,      - is the reduced dimension version of                         

   , (  )   (  )-   The distribution of the   vector norms is bimodal if gross outliers exist, 

and only contains a single mode if no gross outliers exist. Therefore by defining an inlier/outlier 

threshold, the gross outliers can be removed from the dataset. The authors give two possible 

methods for defining a threshold, a 1D Gaussian Mixture Model (GMM) as, 

  ( )  ∑    ( |     ) 

     

 (1.9) 
 

where   is a Gaussian with mean   and standard deviation     while    is the mixing 

coefficient. The threshold is then either the point of equal Mahalanobis distance or the average 

between two means [14]. Another approach is to use, 

       
       

‖  ‖
   (1.10) 

 

where       was determined empirically. Every value below the threshold will be considered 

a gross outlier and removed from the dataset. 

 To obtain the structures from the gross outlier free dataset, the centered kernel matrix 

     ̃  ̃ (1.11) 
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is used, where   , (  )    (   )- is the un-centered kernel matrix, and *  + is the set of 

outlier free points where        ̃ is obtained by adjusting   with the empirical mean  . Using 

Kernel PCA [12], if  ̃       is the eigenvalue decomposition of  ̃ , then the first   principal 

components is given by, 

     ̃  (  ) 
 
  (1.12) 

where           and            , using MATLAB® notation.   can then be clustered in 

the inner product space where, 

 
  ,        -  (  ) 

 
 (  )   (1.13) 

 The authors chose to use the Normalized Cut (Ncut) algorithm to cluster the data. The 

data is purposefully over-segmented due to the difficulty of finding a correct thresholding 

scheme. Finally, a novel structure merging technique is developed to merge the redundant 

structures and extract the final structure fitting. 

 Even though KF does not rely on a manual tuning of the noise scale that RANSAC and 

similar algorithms rely on, the step   of the ORK is not mathematically defined and is set based 

on the problem set. Also the GMM depends upon a mean, standard deviation, and mixing 

parameter that must be manually tuned. Therefore KF simply trades which parameters are 

tuned. A disadvantage of KF, is that it must do a sampling consensus fit twice, due to the fact 

that it purposefully over-segments during the clustering process. The structure merging 

algorithm uses LMedS to get an initial fit of each structure, then merges structures based on 

another defined inlier threshold.  
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1.3 A Novel Approach 

The algorithm proposed in this paper is a flexible framework that can be adapted to 

varying problem sets with minimal adjustment. It is powerful in that it is an unsupervised 

process that can discover the number of structures in the dataset without a priori knowledge to 

the number of models or inlier/outlier ratio. The algorithm is also able to handle a minimum 

sample set of very large dimensionality with minimal computational overhead. This is 

demonstrated in section 4. It is robust to gross and pseudo outliers. The algorithm also 

incorporates a novel method for compressing the sampling strategy is described in section 2 

that is a significant improvement over typical sampling methods found in the literature that 

often require the sample number to be many times the size of the dataset.  

The approach in this paper relies on two input parameters to find a best fit model for 

each structure in the dataset; the system noise threshold   and the minimum detectable 

structure  . The system noise threshold drives the determination of whether a point is an inlier 

to outlier, while the minimum detectable model drives an initial estimation for the number of 

structures in the dataset. 

Approaching the problem from this perspective produces a trade-off. On one side there 

is a hard minimum where structures less than this size are considered noise and discarded, 

however in a real system, parameters can be measured and tuned to find an optimal size. On 

the other side, the problem is cast as a multivariate problem in which a sampling scheme can 

be created to ensure all structures in a dataset can be found to a desired probability. This is an 

advantage and necessary over the typical sampling approach of estimating the inlier to outlier 
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ratio. In this scenario, the problem is bivariate, so a desired number of outlier free candidate 

sets   can be specified, but whether all structures are represented by these sets cannot be 

guaranteed.  

In reality this minimum structure threshold must be defined anyway due to the nature 

of the problem domain. In RANSAC the only the best fit is desired, however in a multi-structure 

case,   best fits are desired. If the MSS of the structure is  , then there are exactly ( 
 
) 

structures in the scene. Unless the correct number of structures is known prior to fitting, it is 

impossible to recover less without a threshold to declare noise vs. structure. Any unsupervised 

process must have a minimum size threshold whether explicitly stated or not. 

With these two system parameters given and a sampling scheme determined, a method 

is needed for distinguishing unique structures during the sampling process. If      then it 

can be considered a structure candidate, as it meets the requirement of minimum size, yet it 

may not be a best fit. A desirable solution is one that is fast, flexible, simple to implement, and 

robust. By exploiting problem domain information, a distinctive description of a structure can 

be formed. For instance, a line can be uniquely described by its slope and intercept. These 

parameters can be used to form a “descriptor” vector    that is unique to that line. As will be 

seen in section 4, even complex structures can often be represented by a very simple descriptor 

vector. Since this vector is problem domain specific, its length and parameters will vary 

according to problem under investigation. The dimensionality can be reduced by forming a 

unique label,    ‖ ‖   Similar model candidates will tend to cluster around this label and if   

is well formed, the clusters will be very distinct and easily segmented. All valid structures from 
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the dataset can then be realized by using a clustering scheme. In this thesis, k-means [10], [4] 

was used to find all the clusters. A least-squares fit of each cluster is performed to give the 

consensus set of the cluster. Due to the fact that a unique label is assigned to each structure 

candidate, the technique has been named Labeled Sampling Consensus or L-SAC. This name will 

be used throughout the rest of this thesis. 

1.4 Organization Of Thesis 

 The rest of this paper has been organized into four different sections. Section 2 develops 

the L-SAC method demonstrating it on the trivial case of finding lines in a dataset containing 

outliers. A novel sampling scheme is then introduced to dramatically reduce the required 

samples needed to recover all structures. Section 3 extends L-SAC to finding planes and 

homographies in a stereo-vision application. Section 4 applies L-SAC to detecting human faces 

from 3D point cloud data obtained from an Xbox Kinect. Finally Section 5 presents the 

opportunity for future work and development of L-SAC as well as final conclusions. 
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2 LABELED SAMPLING CONSENSUS 

 

2.1 Introduction to L-SAC 

Labeled Sampling Consensus or L-SAC is based on human decision making and 

reasoning. For example, suppose a person was trying to survey the opinion of a certain type of 

person in a crowd of people. First the surveyor would scan the crowd looking for this type of 

person. When the surveyor finds someone of interest, he or she will form a description of that 

person such as, “the older gentlemen wearing glasses to my left.” Once the surveyor makes her 

way to the person of interest, she will ask for a name or “label” to condense this description 

formed of the person to make it easier to identify him. The surveyor will continue in this fashion 

until all people of interest have been interviewed for their opinions. During this process, the 

surveyor may also have to group like individuals as someone may introduce themselves as 

“Rob”, but may also be referred to as “Robert.”  

In this very same fashion, L-SAC will sample the dataset and attempt to find structures 

of interest. A description of structure candidates found is created to distinguish between 

different structures of the same class. This description, in the form of a vector, is further 

reduced to a 1D label to reduce the complexity of the search and identification problem. A well- 

formed “descriptor” vector will create very distinct boundaries, causing similar labels to cluster 

close together, and divergent labels to be well separated. This process, allows the structures of 
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interest to be extracted by counting the number of clusters, and a best fit for the structure can 

be obtained from the data points within the cluster. 

The L-SAC algorithm is now demonstrated using the case of finding multiple lines in a 

dataset with outliers. A synthetic dataset was generated containing 6 lines, each containing 50 

points, and with a range [0 1]. The lines were perturbed by Gaussian noise with 0 mean and a 

standard deviation of         . The dataset was then contaminated with 200 points of 

random outliers. The synthetic data is shown in Figure 2.1.  

 

Figure 2.1: Demo dataset of 500 points and 6 lines that meet the minimum structure size    
There are 200 gross outliers, but 90% of the data is an outlier to a single line. 
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L-SAC depends on four input parameters, the system noise threshold    minimum model 

size    an initial estimate for the number of structures    and the minimum sample set MSS. For 

this case, the noise threshold and minimum model size have been determined heuristically to 

be,       and      respectively. To initially estimate the number of structures, L-SAC will 

initially assume a worst case scenario, whereby all structures in the system are size    and all or 

almost all points are inliers. This scenario is worst case because as the number of structures in 

the dataset increase, the number of random samples needed increases. This assumption will 

ensure enough points are sampled, so that all structures in the system are represented in the 

sampled sets. If   is the total number of points in the dataset, then the initial estimate   is given 

by, 

   ⌊
 

 
⌋  (2.1) 

 

where ⌊ ⌋ represents the floor function. For this example,           so therefore       

Finally, the MSS is determined by the structure. In this case it is a line, which can be 

represented completely by 2 points, therefore the        .  

Now that the problem set and input parameters are defined, a suitable “descriptor” 

vector,  

   ,       -  (2.2) 

and label   needs to be formed. The idea behind   and   is that a dataset may contain multiple 

structures that are very similar, however they can be distinguished from each other by 

identifying a set of parameters that can only be contained by a unique instance. For example, 
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different lines may have the same slope, but they cannot have the same intercept too and still 

be two unique instances. It is often possible to only require a few parameters to fully 

distinguish between complex n-dimensional structures. This is seen in section 4.2 where human 

faces are uniquely identified with only a 2 dimensional “descriptor” vector. Every time a 

candidate set is found, it’s unique   is found by using the model’s parameters to create its own 

vector. 

The dimensionality can be reduced by transforming this “descriptor” vector into a 1D 

label     If the parameter selection for   is good,  

    ‖ ‖ (2.3) 

will identify all unique instances of similar n-dimensional structures in the dataset. The power 

of the label is that finding any n-dimensional structure can be reduced to a 1D clustering 

problem. 

Two dimensional lines present the unique case where the vector   is a scalar due to the 

small dimensionality of the structure. The descriptor,           was used in this case, 

where    is the angle of the line to the x-axis. The y-intercept is multiplied by 2 and added to 

the slope to make the descriptor numerically unique. For example, a line represented by     

and       is numerically the same as the line       and    . If the line’s slope 

approaches   the x-intercept is used instead. From     a label   can be created to attach to 

each model candidate set     For lines, the label is simply       because the “descriptor” 

vector is already a scalar. 
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With a descriptor vector and label, the sampling procedure described later in section 2.2 

is used, to find structure candidate sets where     . These sets are labeled and catalogued 

in the set   *          +  where   is the total number of sets found. This set is not sorted 

so the index simply represents the order with which a candidate was found. To determine the 

number of structures in the dataset, it can be clustered using a simple k-means clustering 

algorithm where the number of final cluster centers represent the number of structures. Since 

the number of clusters is unknown,   is used to initialize the number of clusters. Initial cluster 

centers are determined by finding an initial center and defining a step size to get the remaining 

values. The initial center is found by, 

       ( )  (2.4) 

and the step size is given by, 

 
  

         

   
  

(2.5) 

The set of initial centers is then *          +  where            Every    is compared to 

each center and is associated to the center which minimizes, 

    ‖     ‖
 
  (2.6) 

This process continues until no updates to the cluster centers are made. The final number of 

centers gives the number of structures in the dataset, and each cluster contains similar 

candidate sets. Figure 2.2 shows the clusters formed from the L-SAC process performed on the 

synthetic dataset. The final best fit structures can be extracted by using a least-squares fit of 

the points in each cluster. This final fit is shown in Figure 2.3 .  



21 
  

 

 

Figure 2.2: It can easily be seen that 6 distinct clusters exist. A good descriptor vector and label 
will spread the "spectrum" of structure candidates such that distinct boundaries exist. 
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Figure 2.3: The final least-squares fit of all 6 lines which meet the minimum structure size    
This fit was performed with a sample size of only 55 points or 11% of the dataset. 
 

As can be seen L-SAC can be a very effective and robust method for discovering multiple 

structures in a dataset containing significant outliers, and a relatively large number of 

structures. Figure 2.3 also shows that L-SAC can distinguish between structures that are very 

similar as two of the lines have the same slope and were corrupted with the exact same noise. 

The above example extracted all 6 lines in only one sample of 55 points. Typical papers in the 

literature required 5000 samples to discover 5 lines. The next section discusses the novel 

approach to sampling that allows this significant reduction. 
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2.2 A Novel Sampling Method 

When working in a random sampling framework, it is important to understand how 

many samples are needed to assure finding at least   outlier free structures with a given 

probability. The problem statement in the literature is most often set up as finding outlier free 

structures in a known percentage of inliers to outliers. If sampling with replacement is used, 

then each sample is an independent. If the outlier percentage is  , then in a RANSAC 

framework, the probability ρ of finding at least one outlier free structures in   selections is 

given by [23], 

     (  (   ) )   (2.7) 

where   is the number of points needed to instantiate a structure. The probability can be set to 

an arbitrary value such as 0.99, 0.999, or any value sufficient to the problem set. The required 

number of samples can then be calculated as, 

 
  

   (   )

   (  (   ) )
  

(2.8) 

If multiple structures exist in the dataset, then   outlier free structures are desired. If   is the 

number of Bernoulli trials, the probability of finding   outlier free structures is, 

 

    ∑ .
 

 
/

   

   

(   )  (  (   ) )     
(2.9) 

It was observed by [8] that the probability of selecting an outlier free MSS could be 

increased by changing the sampling strategy. The first point of the MSS is chosen with a 

uniform probability while the remaining points are sampled using, 
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(2.10) 

where   is a normalization constant. This strategy is applied in [25] and [15] to constrain the 

sampling region for the dependent MSS points    to a Gaussian cluster around   . The 

probability of choosing a MSS with cardinality   of only inliers is, 

    (  ) (  |  )  (  |            )  (2.11) 

If   is the number of inliers for a given structure,   is the total number of points, α is the 

average inlier-inlier distance, and ω is the average inlier-outlier distance, the conditional 

probability can be approximated as [15], 

 
 (  |           )  

(     )    
  

  

(       )    
  

   (     )    
  

  

          
(2.12) 

If    , and   
 

  
  then the probability of choosing an outlier free MSS is then, 

 

   (
     

  

  

(   )    
  

        
  

  

)

   

  (2.13) 

By choosing σ such that a dependent point of arbitrarily close distance  ̃, chosen with 

probability  ̃, the conditional probability  (  |  ) can get arbitrarily close to 1. Then the 

effective dimensionality of the manifold reduces;        i.e.        

The main problem that arises from this sampling procedure is that this procedure 

provides a specified number of outlier free structures, however it does not guarantee that 



25 
  

these structures represent all structures in the data set. Finding multiple structures is a 

multinomial problem of dimension   . The either or approach of the Bernoulli trial creates an 

ambiguity by reducing the dimension to   . Therefore this approach cannot answer the 

question, “Have all structures in the data set been found?” The only way around this is to 

multiply the calculated number of samples by an estimate for the number of structures. This 

number can grow large very quickly if the dataset is large or the number of structures is large. 

To overcome this problem, it is proposed that instead of beginning from a known 

inlier/outlier ratio, the algorithm will begin with a known minimum model size s. This will serve 

as a threshold for the system to determine if the structure is valid or just noise. With this 

threshold in place, a worst case estimate for the number of structures in the data set can be 

determined, i.e. if the data set consists of 1000 points and the minimum detectable structure 

size is 50, there could be as many as 20 structures that must be found.  

This method is more conducive to an unsupervised process versus beginning from a 

known inlier/outlier ratio, because the only way to know the inlier/outlier ratio is to know the 

number of structures in the system. In a RANSAC framework, there is only one structure to be 

discovered; therefore the estimate for the inlier/outlier ratio can be updated during the 

sampling process. In a multi-structure environment this is impossible as points that are inliers 

to one structure are probably outliers to another. A set from a structure candidate does not 

yield information to the number of inliers vs. outliers because of this and because what unique 

structures have been found is also unknown. Therefore the only way to know the inlier/outlier 

ratio is to have a priori knowledge of the input data.  
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A novel approach to sampling is presented here with the goal of ensuring all structures 

will be instantiated and reducing the number of random samples needed to ensure success to a 

given probability. Typically the MSS of a structure is drawn, processed then replaced back into 

the population. This process repeats until the desired number of iterations is reached. Sampling 

with replacement is easier to handle mathematically due to the independence of events and 

the literature further simplifies things by posing the problem so that it can be represented by a 

binomial distribution. However, if there are more than one structure and gross outliers, the 

problem is really a multinomial one. Also, sampling without replacement limits the total 

number of samples that can be taken. Then, if there was a way that the sampling process can 

be done without replacement, and an easy way to mathematically describe how many samples 

need to be taken, the combinations forming the minimum sample sets in the dataset can be 

realized in an efficient manner.  

The novel approach then is, rather than picking an MSS, replacing, and repeating, a one-

time “grab” of   samples will be taken. This is sufficient as long as it can be guaranteed that all 

structures are represented in the “grab” to a specified probability. The minimum sample sets 

can then be obtained from combinations of the sampled points. It will be shown that often only 

a small fraction of the dataset needs to be sampled to ensure all structures. It is also noted that 

it often requires thousands of random samples for multi-structure sampling consensus 

problems to work. This novel method effectively reduces the sampling process to one sample 

“grab.”  
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To calculate the required number of samples to be retrieved in the one-time grab, start 

with finding at least one point on all estimated structures. This scenario can be cast as selecting 

colored balls from an urn problem. The total number of data points is  , and the minimum 

detectable structure size is  . The estimated number of structures in the data set is then, 
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(2.14) 

It should be noted that the formula for calculating the number of structures is different here 

than Equation (2.1) because for this situation, if there is a remainder, it counts as an additional 

structure. Each structure is represented by a set of balls of a unique color, and there is an urn 

associated to each color. The probability of a particular draw is then given by the multivariate 

hypergeometric pmf, 

 

 (          )  
∏ .  
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( 
 
)

  (2.15) 

where   is the number of points selected and    is the number of points selected in 

structure     To find the needed   for at least one point on every structure with an arbitrary 

probability requires determining the permutations in the numerator that produce a “correct” 

outcome, i.e. an outcome with at least one ball in every urn. To find a correct outcome, all the 

partitions of   into c values must be determined. For example, if      it can be partitioned 7 

ways, 
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 5 

4 1 

3 2 

3 1 1 

2 2 1 

2 1 1 1 

1 1 1 1 1. 
 

(2.16) 

Each partition represents the number of balls in an urn, so the partition 2 2 1 would 

mean 2 balls in urn 1, 2 balls in urn 2, and 1 ball in urn 3. If the number of structures is 3, than 

only partitions 3 1 1, and 2 2 1 would be considered correct. Once the correct partitions are 

found, the number of permutations of each partition must be computed because 2 1 1 is a 

different draw than 1 2 2. The number of permutations of each partition is, 

 
  

  

          
  

(2.17) 

A generating function for determining the number of unconstrained partitions of a number is 

given by the reciprocal of Euler’s function [1], 
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(2.18) 

To find the number of correct partitions  , a partitioning algorithm in [24] was modified 

to find the correct partitions, and calculate  . Therefore, if there are   correct partitions, then 

the probability of selecting at least one point on every structure given   samples can then be 

calculated as, 
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 (2.19) 

This method works extremely well when the number of structures       However, the 

number of ways to partition a number grows quickly. For instance, the number 10 can be 

partitioned 42 ways, while the number 20 can be partitioned 89,134 ways [13]. The 

computational complexity from solving the probability this way grows rapidly to the point of 

impossibility. 

 

Figure 2.4: This graph shows the cdf of picking at least one point on every structure for the case 
of 5, 10, and 20 structures in a dataset of 60. All curves were calculated exactly. 
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To overcome this issue, a statistical approach can be applied to the problem. If there are 

c structures estimated in the dataset and   points sampled at a time, the question that must be 

answered is, “has a point on all structures been found?” This yes or no question can be 

described by a Bernoulli distribution where ‘1’ means yes, and ‘0’ means no. If there are 

  Bernoulli trials then    (          ) represents the outcome of each experiment. If   is 

the probability of success or ‘1’, then the pmf for any outcome is, 

 
 (  |  )     

  (    )
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(2.20) 

The log likelihood function    (            ̂) gives, 
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(2.21) 

where  ̂ is the parameter that maximizes the likelihood function. Taking the first derivative and 

setting it equal to zero yields, 
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Finally the maximum likelihood estimate is, 

 
 ̂  
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(2.23) 

It is easily seen that the probability of selecting at least one point on every structure 

given   samples is simply the relative frequency of   Bernoulli trials. It can also be seen that  ̂ is 

an unbiased estimator [9]. Arbitrarily specifying a desired number of points on a given structure 
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is now a trivial task of changing the question to, “have  ̂ points on every model been found?” 

This is still a Bernoulli trial and can be calculated exactly the same as above. Figure 2.7 shows a 

plot of the cdf for at least 5 points and 10 points being picked on every structure to any 

arbitrary probability. 

 

Figure 2.5: The graph shows the cdf of picking at least one point on every structure in the case 
of 10 structures in a dataset of 100. The blue curve is calculated exactly, while the red curve is 
estimated. As can be seen the curves are almost identical. 
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Figure 2.6: The graph shows the cdf of picking at least one point on every structure for the case 
of 20 structures in a datset of 100 points. The blue curve is calculated exactly. Due to 
computational overhead, only the curve up to a p of 0.5 was calculated, then reflected about 
this point. The red curve shows the estimated cdf and very closely matches the blue curve. 
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Figure 2.7: A plot of the cdf for the number of samples needed to ensure  ̂ points on each 
structure to an arbitrary probability. The hypothetical dataset is 900 points containing up to 10 
structures. 
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2.3 Application of L-SAC to Finding 2D Lines 

Another test case, this time involving 10 lines was examined using L-SAC. The size of the 

dataset was 700 points, and 10 lines of 50 points each were corrupted with Gaussian noise 

         Only 95 points were sampled as shown in Figure 2.8. Figure 2.9 shows the 10 

clusters found via L-SAC, while Figure 2.10 shows the final least-squares fit. 

 

 

Figure 2.8: Ninety-five points, shown in red were sampled from the dataset of 700. 
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Figure 2.9: The 10 clusters are clearly distinct. 

 
Figure 2.10: All 10 lines fitted using a least-squares fit from each cluster. 
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3 L-SAC AND FINDING MULTIPLE PLANES 

 

3.1 Application to Planes and Homographies in Stereo Vision 

 Finding multiple structures using L-SAC can easily be extended to finding homographies 

and scene planes in two-view geometry. Hartley et al. [7] discuss the two methods for finding 

the homography   induced by three non-collinear points    and the fundamental matrix    The 

first method is to explicitly reconstruct the world point from the imaged point 

correspondences. Suppose   ,   , and    are 3 homogeneous points where    ,          -
    

then the plane p can be found by, 

 
   [

(     )   (     )

   
 (       )

]  
(3.1) 

The second method involves solving for the homography implicitly. Three point 

correspondences are related by   
     , and the fourth can be obtained via      , 

where    and   are the epipoles from each view. With 4 point correspondences the 

homography can be computed using the Direct Linear Transform (DLT) algorithm. The explicit 

approach was chosen as the implicit approach “has significant degeneracies which are not 

present in the explicit method [7].” 

Given 2 input images from 2 different views of the same scene, and point 

correspondences *      
  +  the fundamental matrix F was computed using the normalized 8-

point algorithm from [7]. First the points are normalized such that the centroid of the points is 



37 
  

the origin, and the RMS distance is √    This will condition the points to improve the 

performance. Every point is multiplied by the transformation matrix 
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]  
(3.2) 

where   ,       -
  are the homogeneous coordinates of the centroid, and   is the scaling 

factor such that  (   )   √  . F is obtained by taking the Singular Value Decomposition 

(SVD) of the constraint matrix  
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(3.3) 

It is important to force F to have rank-2, so that       ̂    by taking the SVD of F and 

rebuilding     ̂with the 2 largest singular values. By de-normalizing, F can be found as 

       ̂ .  

With the fundamental matrix found, the camera model pair  ̂  ,   |  - and                        

  ̂  , ,  -   |  
  - can be determined where  ,  -  is a skew-symmetric matrix and   is an 

epipole. Cameras  ̂ and    ̂ are projective cameras, so a scene reconstruction would have 

projective distortion. A Euclidean reconstruction was desired, so the camera calibration matrix 
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] 
(3.4) 
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is needed. The intrinsic parameters     and     are to focal length,   is the skew, and 

   ,     -
  is the principal point. The values for the matrix   were determined using Zhang’s 

calibration method [21] and executable provided at [22].  

 

Figure 3.1: Five images from different angles of a single checkerboard were taken to calibrate 
the camera. The point matches are shown in red. 
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The Euclidean camera     ̂ is easily found however    requires the essential matrix. 

The essential matrix E, is a specialized case of the more general fundamental matrix, in which 

the image coordinates are normalized. It is given by, 

   , -         (3.5) 

Taking the SVD of   yields      (     )    Now suppose there are matrices, 
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]   
(3.6) 

Then   may be factored as       , where   is a general skew-symmetric matrix, and   can be 

written as          . The term   means that a camera   can be extracted from the essential 

matrix up to a scale. There are then two possible factorizations for       , 

                    (3.7) 

Since       ,    ,     -      , where    is the last column of  . This means there are 

four possible solutions for camera    given the essential matrix E. They are, 

   
  ,     |    -  

 
  

  ,     |    -  
 

  
  ,      |    -  

 
  

  ,      |    -  
 

(3.8) 

Finally the Euclidean camera is obtained by       
 , where    

  is the solution that puts the 

scene in front of both cameras. 
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With the Euclidean canonical camera pair, the imaged point correspondences 

*      
  + can be back projected to their 3D world points, where the points are unambiguous 

up to a scale. To perform the back projection and find the homogeneous world points 

  ,       - , the optimal triangulation method found in [7] was used. First a point pair    

and   
  are translated to the respective origins by, 
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]  
(3.9) 

Then the fundamental matrix is replaced by the translated matrix       . Next the right and 

left epipole    ,        -
 s and    ,  

    
    

 -  are found where        and       

These points are normalized so that   
    

    and   
     

    . Using the rotation 

matrices: 
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(3.10) 

  is replaced by       The rotation also puts the epipoles   and    on the x-axis. This gives the 

fundamental matrix the form, 
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(3.11) 

The polynomial, 

  ( )   ((    )    
  (    ) )  (     )(    

   ) (    )(    )     (3.12) 

is formed and its 6 roots are found. The real parts of each root is evaluated at a cost function, 
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and the   which provides the minimum value to this function is selected as     The value   

    is evaluated at the asymptotic value, 
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(3.14) 

Then     is selected where, 

         (     )  (3.15) 

The two epipolar lines   ,   
    -  and     ,   -  are evaluated at the  

      For a general line ,   -   the closest point on a line to the origin is 

,           -
 
  Evaluating this for   and    gives this points  ̂ and  ̂ . These points are 

then transferred back to the original coordinate system replacing  ̂ with       ̂ and  ̂  with 

        ̂   The 3D world point can now be computed using a linear triangulation method. Since 

 ̂     and   ̂     , the equations can be formed into a matrix M such that     . If the 

rows of   and    are the vectors   
  and   

   respectively, then M is, 
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(3.16) 

Then if        ( ), The world coordinate   is found by taking the last column of  . The 

final step is to normalize   it has the form   ,       -    After projecting all points in the 
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dataset to their real world counterpart, a new set   *          + representing the real 

world coordinates is formed.  

A plane requires a minimum sample set of three points. By using the sampling 

procedure in section 2.2, the plane equation for each       can be found, and the number of 

inliers to this plane counted. To determine if a point    is an inlier to plane    ,           -
 , 

the normal to the plane is easily taken as    ,     - , then converted to the unit normal, 

  ̂  
  

‖  ‖
  

(3.17) 

The distance from point    to plane    is given by, 

    ̂  (     )  (3.18) 

where   is any point on plane     If   is less than a heuristically defined noise threshold  , than 

   is considered an inlier to     . The total number of inliers is then,   ∑      . If   is 

greater than the minimum detectable plane  , where   is also heuristically chosen, then     is 

considered a plane candidate.  

 To distinguish between different plane candidates, it is important to label each 

candidate with a description that can clearly distinguish it from different candidates, while at 

the same time cluster with similar candidates. A suitable descriptor vector can be created using 

the uniqueness of the plane’s normal vectors, or more specifically their angles to the x, y, z-

coordinate planes. It is important to ensure that the normal vectors are oriented consistently or 

similar plane candidates could get mapped to different labels. A simple method to ensure 

proper orientation is to multiply   by -1 if its z component is negative, i.e. 
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  {

       ,         - 

        ,        - 
   

(3.19) 

The angle between   and the normal to the x-coordinate plane is, 

         
   

‖ ‖‖ ‖
   

(3.20) 

where   ,     - . If    and    are found in similar fashion, where   ,     -  and 

  ,     - , then a complete description of the plane orientation is given. To further 

distinguish between similarly oriented planes, the constant   from the general plane equation 

can be used. The descriptor vector for plane candidate    can therefore be described as, 

    ,              -
   (3.21) 

 To discover the number of planes in the set of plane candidates found from random 

sampling, the vector   is used. The dimensionality of the problem can be reduced from 

        , by evaluating, 

    ‖  ‖
   (3.22) 

Therefore if   plane candidates are found during random sampling, the set   *          + is 

formed. The similar candidates will tend to cluster together, and if   is a good descriptor, the 

boundaries of the clusters will be distinct. By using k-means, the number of planes in the 

dataset can be determined. If the cardinality of the set   is denoted | |, then the initial 

estimate for the number of means is the maximum potential planes in the dataset given by, 

 
  ⌊

| |

 
⌋   

(3.23) 

To ensure that the initial mean values,        are spaced properly, a step size is defined as, 
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   (3.24) 

The k-means algorithm will iterate associating each candidate to a mean value. The number of 

means and mean values will continue to be adjusted until no change is made in association. The 

number of distinct planes in the dataset is then given by the number of clusters formed. From 

here, a best fit of the planes discovered in the dataset can be found. A least-squares fit is 

performed on the points in each cluster   to find     

 To recover the homography induced by the recovered planes, 3 imaged point 

correspondences from the plane, the Fundamental Matrix, and epipoles can be used. The 

homography is given by 

       (    )   (3.25) 

where   ,  -   and   is a 3-vector 

 
   

(  
    (   ))

 
(  

      )

‖  
      ‖

   
(3.26) 

and   is a 3 x 3 matrix with rows   
  [7]. 

3.2 Multiple Planes Example 

 An example was set up to test the performance of L-SAC in finding planes and 

homographies. A Canon Powershot SD850-IS was set to a resolution of 640x480 and calibrated 

using Zhang’s method. Two-views of the same scene were then captured and 135 point 

matches representing 3 planes were extracted as shown in Figure 3.2. Only 150 combinations of 
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24 points were used, yet all planes were recovered. The homography was recovered using 

Equation (3.25). The total runtime in MATLAB® was 3.16 seconds. 

 

Figure 3.2: Two-views of the same scene were taken. The camera was calibrated using Zhang's 
method, and the parameters were found to be:           ,           ,          , 

          , and           .  The point matches are shown in red and compose 3 image 
planes. 
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Figure 3.3: Point matches back-projected into 3D world points. 
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Figure 3.4: The points used to find the plane are overlayed the back-projected points. The 3 
colors represent the 3 different clusters found. As can be seen, only 24 points were used, and 
only 150 combinations were tried. 
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Figure 3.5: Three clusters were found by the k-means method. Again, it is shown that only a 
single instance of a structure needs to be found in L-SAC. 
 

 

Figure 3.6: Discovered planes plotted over back-projected points. 
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Figure 3.7: Example of points being projected to another plane using the recovered planes to 
find a homography. 
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4 EIGENFACE STRUCTURES 

 

4.1 Application to Finding Human Faces in Xbox Kinect Data 

Finding multiple faces using the Xbox Kinect was attempted using the L-SAC method for 

finding multiple structures. Images of multiple scenes involving faces were captured using the 

Kinect sensor. One of the greatest difficulties to searching for multiple faces in an image is the 

complex nature of the face. A simple linear or even simple non-linear function cannot fully 

describe a face. This fact means that it will take many data points to adequately describe a face 

so the dataset to search through will be very large. How can such a complex shape be described 

by a MSS and a relatively small yet unique descriptor vector that is suitable for distinguishing 

consensus sets? To accomplish this, the method of eigenfaces by Turk et al. was used to 

recognize whether the data presented in the image contained faces 

Eigenfaces was introduced in [17] as a method to perform facial recognition from a 

database of known faces. Eigenfaces could also learn new faces by recognizing an unknown 

image as a face, then adding it to the database of known faces. It was discovered by Kirby and 

Sirovich that in principle any face could be rebuilt using only a small collection of weights for 

each face and a set of standard pictures. Performing Principal Component Analysis (PCA) on the 

covariance matrix of the set of face images produces the eigenvectors which store the variation 

between each image. Only the   best eigenvectors corresponding to the   most significant 
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eigenvalues are needed. These   eigenvectors are called eigenfaces, and any face image can be 

represented by a linear combination of these eigenfaces. 

To calculate the eigenfaces, first the image of size   is converted from a 2D array to a 

vector    of length     The database of face images is then the set, *          +. The mean 

of the database is computed as, 

 
  

 

 
∑    

 

   

 
(4.1) 

The difference of each face vector to the average is             

PCA is used to find the eigenvectors    and eigenvalues    . The covariance matrix is, 

 
  

 

 
∑    

   

 

   

    
(4.2) 

where   ,          -. 

    In order to reduce the number of calculations needed, the eigenvectors    of     give, 

            (4.3) 

If both sides are pre-multiplied by A, then, 

              (4.4) 

which shows that     are the eigenvectors of      .  The     matrix          where 

      
    is formed. The eigenvectors    of   determine the linear combinations of the 

database face images. The eigenfaces    are thus, 
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   ∑                    

 

   

 
(4.5) 

A face is transformed into “face space” by, 

      
 (   )           (4.6) 

and the collection of the weights is the vector   ,          - .  

Now that the eigenfaces of the database are found, and there is a method to transform 

each image into “face space,” a method can be created to determine faces in an unknown 

image. A region in the unknown image the size of a face image is selected, and transformed into 

“face space,” using    ∑     
 
     where    is the “face space” vector. The difference of the 

unknown image is taken with the mean face as,        The squared error between   and 

  is 

    ‖    ‖
 
  (4.7) 

and if this error is below a defined threshold  , the unknown image is considered a face. 

The Kinect provides an RGB image and a depth image where each pixel value is the z-

coordinate real world depth value in millimeters.  Xu et al. [19] extended the idea of eigenfaces 

for 3D mesh models built from 3D point cloud data. The premise is simply to treat each (x,y,z) 

coordinate as a pixel, where x and y are the grid, and the z value serves as the intensity value. 

Each mesh model built from point cloud data was normalized so that the vertices of the meshes 

aligned across the database. This is an important step since the images in the database need to 

be the same size and aligned.  
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For the experiments in this thesis, the depth image produced by the Kinect was used to 

search for faces. For the procedure in this paper, the depth image was converted to real world 

(x,y,z) coordinates and point cloud data extracted. However mesh models were not produced 

from these point clouds, but the point cloud data was used directly.  

In order to use the depth image, the x and y world coordinate values needed to be 

calculated. Rather than perform a calibration procedure on the Kinect, the x-y mapping for the 

depth pixels was done using the values from [6], 

 fx_d = 1.0 / 5.9421434211923247e+02; 

fy_d = 1.0 / 5.9104053696870778e+02; 

cx_d = 3.3930780975300314e+02; 

cy_d = 2.4273913761751615e+02; 

 

(4.8) 

where fx_d, fy_d are the focal length parameters and cx_d, cy_d are the principle point 

parameters. The depth pixels were then converted to real world (x,y,z) coordinates by, 

           

  (        )( )(    )  

  (        )( )(    )  

(4.9) 

With the depth image mapped to real world coordinates, a 3D point cloud of the scene could be 

constructed and mapped to a 2D image. 
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The next step involved building a small database by extracting face images from the 

collected depth images. Six faces were captured to form a database. Each image is a 2D       

matrix, 

 
   [

             
                 

             

]  
(4.10) 

where   and   are odd values, and   is the real world z-coordinate represented as the intensity 

value of the pixel. All faces are aligned by placing the nose tip in the center of the matrix. The 

eigenfaces are computed using the process above to yield the matrix 

   ,           -  (4.11) 

where    is the eigenface corresponding to the     eigenvalue. In this experiment,        and 

only the 5 most significant eigenfaces were used. The Kinect sensor captures significant noise 

around features such as hair, glasses, and edges, therefore the database images appear quite 

noisy to the eye. However, only two pre-processing steps were performed on the image. The 

depth images were scaled to increase the dynamic range between pixel depth, and a depth 

threshold was applied to remove the background. The eigenface database can be seen in Figure 

4.1 and Figure 4.2  below.  
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Figure 4.1: RGB Images of the database. 

 

Figure 4.2: Depth Images of the database 
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With the eigenface database built, it is important to define a MSS and descriptor vector 

so that the random sampling procedure can be performed. A 3D face has been defined above 

as a 2D       matrix where   and   are odd. Therefore the MSS can be represented as simply: 

           (4.12) 

Only one point needs to be sampled and   will be captured form this center point.  

 Such a simple MSS leads to a simple descriptor vector, as the coordinates of this center 

point are descriptive enough to define a unique CS. If the sampled dataset is the image   of size 

       then the descriptor vector   is 

   ,   -   (4.13) 

As the points in the image are sampled and   is projected onto “face space”, the cost function is 

evaluated. If the     image is below    it is considered a potential face, and    is formed from 

the (i,j) coordinates. The threshold   is determined heuristically. The norm of this vector is 

taken and stored forming the set 

    *          +  (4.14) 

where   is the number of potential faces found. 

Once    is obtained, the number of faces can be determined. The values of   relating to 

the     face will tend to form a distinct cluster if   is a good descriptor, so a simple k-means 

clustering procedure will work well as an unsupervised method to organize the data and extract 

the number of faces existing in the image. For k-means to work properly, it is important for the 

initial estimate of means to be sufficiently far apart. The initial guess for the number of cluster 
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means will be the estimated maximum number of potential faces in the image determined by 

the size of I divided by the size of   rounded down to the nearest integer. To ensure that the 

initial means are sufficiently far apart, the initial mean is place at      . It is important that an 

initial mean estimate does not get placed in-between two actual clusters, otherwise a false 

cluster will form and the correct number of faces cannot be extracted. Therefore it is important 

to define a step size such that means do not overlap. If the size of   is       then if a step size 

for the remaining means is defined as: 

    √       (4.15) 

then it is ensured each mean cannot overlap two faces. With the initial means formed, the 

points   are associated to their closet mean, and the mean of each new set is formed. This 

process iterates until no changes are made. The final clusters are of the faces in the image. The 

CS of each cluster is found using a least-squares fit. This is a simple procedure since the cost 

function is a least-squares fit already. Then the     
 of each cluster found when evaluating the 

cost function gives the CS and the best fit face is represented from this CS. 

 

4.2 Examples Using Xbox Kinect 

Three experiments were performed using the Xbox Kinect to test the effectiveness of L-

SAC. The first example involved extracting 3 different faces existing in the eigenface database. 

The second example included two faces, one in the database and one completely unknown 



58 
  

face. The final example includes a face in the database, and an image of a face in the database 

to show that L-SAC will only recover the actual face. The data is presented below. 

The first experiment involved three faces from the database. Each face in the database 

was a 170 x 146 array so the minimum detectable model size is 24,820. The input image to the 

system was 240 x 550 meaning the dataset to sample was 132,000 points.  Three faces in the 

image mean there are 57,540 or 43.6% gross outliers. Only 4000 samples without replacement 

were taken or 3.03% of points. All 3 faces were found in 10.08 seconds in MATLAB®. The input 

image is below. 

 

 

Figure 4.3: Three faces from eigenface database (RGB) 
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Figure 4.4: Structure candidates found during random sampling (Depth Image). The image is a 
16-bit image, and the depth values have been scaled to maximize the dynamic range of 0-
65535. 
 

Figure 4.5 below is a histogram of the clusters formed by taking the norm of the descriptor 

vector   of each face candidate. 
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Figure 4.5: The norm of the descriptor vector of each face candidate found during the sampling 
procedure. The descriptor vector D produces very distinct peaks around each actual face. A 
simple k-means clustering can extract the unique face data. 
 

 

Figure 4.6: Final fit of faces found in the input image. The best fit of each face was found by 
performing a least-squares fit of each cluster.  



61 
  

The next experiment included an “unknown” face not found in the database. The input 

image was 280 x 550, while the face was again 170 x 146. Two faces in the image means the 

image contained 67.78% gross outliers. Again only 4000 samples were taken or 2.6% of the 

points in the dataset. Both faces were found in 13.70 seconds. 

 

Figure 4.7: Two faces, one from the database and one "unknown" face. (RGB) 

 

Figure 4.8: Face candidates found during sampling process. 
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Figure 4.9: Again, two very distinct clusters generated by the norm of D. 
 

 

Figure 4.10: Final least-squares fit of each face. As can be seen above, even faces not contained 
in the database can be discovered in the image. 
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 The final experiment was a demonstration to show that if depth images are used, an 

image of a face will not fool the algorithm. The input image contained a face from the database, 

and a life-size image of the same face. The input image size was 280 x 550, and the face size of 

170 x 146. The number of gross outliers was 83.88% and the number of samples taken was 

4000. The face was found in 12.55 seconds. 

 

 

Figure 4.11: Input image of a face from the database and an image of that face. (RGB) 
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Figure 4.12: Face candidates found during sampling process. 

 

Figure 4.13: Histogram of the norms of each face candidates descriptor vector. 
 



65 
  

 

Figure 4.14: Final fit of the single face as the imaged face does not contain depth variation and 
therefore is not detected as a face. 
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5 CONCLUSION 

 

5.1 Future Development 

There are two areas of improvement to L-SAC that were noted while developing the 

algorithm. Currently a k-means clustering algorithm is used and was chosen for its simplicity, 

time constraints, and its effectiveness for datasets where the density of structures were low to 

intermediate. As the structure density increases, k-means’ ability to correctly differentiate 

unique instances degrades as shown in Figure 5.1. This is because the initial set of means is 

unknown and estimated, and k-means is highly variable depending on the initial mean 

selection. It is easily seen that the boundary conditions in Figure 5.1 are still very distinctive, 

therefore the inability to correctly cluster is not due to a weakness in the L-SAC framework, but 

a weakness in the clustering. With more time, a better clustering scheme can be developed to 

overcome this problem as the number of structures in a dataset increase. It should still be 

noted that only J-Linkage demonstrated their algorithm with a similar number of structures in a 

dataset. Even with k-means clustering, L-SAC performed to a similar level as J-Linkage in this 

regard as shown in Figure 5.2.  
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Figure 5.1: It can be seen in the fitted line picture that 2 lines were merged together in one 
instance, while one line was split into 2 in another. This is because k-means initialization caused 
incorrect clustering as can be seen from the histogram. Ten distinct peaks are shown but 
because k-means is highly variable on the initial estimation, the clusters were incorrectly 
categorized. A more sophisticated technique would work better here. Again it can be seen that 
only 2 instances of a line are more than enough to recover it. 

 

 

The second area of improvement noticed was that it may be possible to not instantiate all 

combinations from the random sample set. For instance, if 5 points on a single structure have 

been sampled, all combinations of these five points do not need to be used since L-SAC can 

recover the structure with only one instantiation. This improvement could significantly reduce 

computational complexity for structures with a large MSS. 
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Figure 5.2: Line fitting demonstrations from the literature. Figure (a) is from RHA [23], (b) is 
from J-Linkage [15], (c) is from multiRANSAC [25], and (d) comes from KF [14]. It can be seen 
that only J-Linkage demonstrated their algorithm with significant structures, 11 total. Even with 
a naïve k-means clustering, L-SAC performs at a similar level, without needing to know the 
number of points per structure like J-Linkage. 
 

 

5.2 Conclusions and Discussion 

 RANSAC’s popularity and robustness for a single fitting structure in noisy datasets 

provided motivation to extend the capabilities of sampling consensus algorithms to apply in a 

multi-structure environment. The current state of the art in this field was examined and 

presented in this thesis. Then a novel approach was called Labeled Sampling Consensus (L-SAC) 

was introduced and applied to the trivial case of finding lines in a noisy dataset. L-SAC was 
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shown to be highly effective even in situations where the number of structures in the dataset 

was relatively large.  

Due to the fact that L-SAC seeks a label that is highly unique and amplifies the differences 

in similar structures, the clusters formed had very distinctive boundaries. By relying on 

boundary conditions rather than analyzing the modes in the distribution, it was shown that a 

structure can be found even if only one instance was instantiated from the random sample set. 

This ability of L-SAC allowed for the development of a novel sampling technique, dramatically 

“compressing” the number of samples needed, and guaranteeing all structures existing can be 

found. 

Finally, L-SAC was shown to be a powerful and flexible framework that can be generalized 

to a diverse set of problem domains. In this thesis it was applied to discovering planes and 

homographies in a stereo-vision environment, and discovering human faces using point-cloud 

data obtained from the Xbox Kinect. In both environments, L-SAC proved effective in finding all 

structures with a compressed sample set. In conclusion, the work done in this thesis provides a 

very promising starting point to an effective method that can be implemented in real life 

systems. 
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