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ABSTRACT 

 

Recent advances in nanoscience and nanotechnology have provided the scientific 

community with exciting new opportunities to rationally design and fabricate materials at 

the nanometer scale with drastically different properties as compared to their bulk 

counterparts. In this dissertation, several challenges have been tackled in aspects 

related to nanoparticle (NP) synthesis and characterization, allowing us to make 

homogenous, size- and shape-selected NPs via the use of colloidal chemistry, and to 

gain in depth understanding of their distinct physical and chemical properties via the 

synergistic use of a variety of ex situ, in situ, and operando experimental tools. A variety 

of phenomena relevant to nanosized materials were investigated, including the role of 

the NP size and shape in the thermodynamic and electronic properties of NPs, their 

thermal stability, NP-support interactions, coarsening phenomena, and the evolution of 

the NP structure and chemical state under different environments and reaction 

conditions.  
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OUTLINE 

 

Recent advances in nanoscience and technology have provided the scientific 

community with new exciting opportunities to rationally design and fabricate materials at 

the nanometer scale with drastically different properties as compared to their bulk 

counterparts. A variety of challenges related to nanoparticle (NP) synthesis and 

materials characterization have been tackled , allowing us to make more homogenous, 

well defined, size- and shape-selected NPs, and to probe deeper and more 

comprehensively into their distinct properties. In this dissertation, a variety of 

phenomena relevant to nanosized materials are investigated, including the thermal 

stability of NPs and coarsening phenomena in different environments, the experimental 

determination of NP shapes, gaining insight into NP-support interactions, epitaxial 

relationships, and unusual thermodynamic and electronic properties of NPs, including 

the effect of adsorbates on the electron density of states of small clusters, and the 

chemical, and structural evolution of NPs under reaction conditions.  

In chapter 2, a general description of different characterization tools that are used 

in this dissertation is provided. In chapter 3, the details of two different methods used for 

NP synthesis, namely inverse micelle encapsulation and physical vapor deposition 

(PVD) are described. 

 Chapter 4 describes the thermal stability and coarsening behavior of Pt NPs 

supported on TiO2(110) and γ-Al2O3 as a function of the synthesis method, support pre-

treatment, and annealing environment. For the Pt/TiO2(110) system, micelle-

synthesized NPs showed remarkable stability against coarsening for annealing 

temperatures up to 1060°C in vacuum, in contrast to PVD-grown NPs. When comparing 
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different annealing environments (H2, O2, H2O), Pt NPs on γ-Al2O3 annealed in O2 were 

found to be the least affected by coarsening, followed by those heated in H2O vapor. 

The largest NP growth was observed for the sample annealed in H2. The role of the 

PtOx species formed under oxidizing conditions will be discussed. 

In chapter 5, the shape of Pt and Au NPs and their epitaxial relationship with the 

TiO2(110) support was extracted from scanning tunneling microscopy (STM) 

measurements. Three main categories of NP shapes were identified, and through 

shape modeling, the contribution of facets with different orientations was obtained as a 

function of the number of atoms in each NP. It was also shown that the micelle-

synthesized Pt and Au NPs have an epitaxial relationship with the support, which is 

evident from the fact that they always have one symmetry axis parallel to TiO2(110) 

atomic rows in [001] directions.  

Chapter 6 describes how the presence of NPs on TiO2(110) surface affects its 

reconstruction upon high temperature annealing in vacuum. In contrast to NP-free 

TiO2(110) substrates, long and narrow TiO2 stripes are observed for Pt NP-decorated 

surfaces. This phenomenon is explained based on the stabilization of TiO2, induced by 

Pt NPs, which hinders the desorption of oxygen atoms in TiO2 to vacuum.  

In chapter 7, a systematic investigation of the thermodynamic properties of γ-

Al2O3-supported Pt NPs and their evolution with decreasing NP size is presented. A 

combination of in situ extended x-ray absorption fine structure spectroscopy (EXAFS), 

ex situ transmission electron microscopy (TEM) measurements, and NP shape 

modeling is used to obtain the NPs shape, thermal expansion coefficient, and Debye 
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temperature. The unusual thermodynamic behavior of these NPs such as their negative 

thermal expansion and enhanced Debye temperature are discussed in detail. 

Chapter 8 presents an investigation of the electronic properties of size-controlled 

γ-Al2O3-supported Pt NPs and their evolution with decreasing NP size and adsorbate 

(H2) coverage. The hydrogen coverage of Pt NPs at different temperatures was 

estimated based on XANES data and was found to be influenced by the NP size, and 

shape. In addition, correlations between the shift in the center of the unoccupied d-band 

density of states (theory) and energy shifts of the XANES spectra (experiment) upon 

hydrogen chemisorption as well as upon modification of the NP structure were 

established. 

Chapter 9 is dedicated to an operando study, describing the evolution of the 

structure and oxidation state of ZrO2-supported Pd nanocatalysts during the in-situ 

selective reduction of NO in H2 via EXAFS and XANES measurements.  
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CHAPTER 1: INTRODUCTION 

 

Numerous recent exciting technological developments are based on taking 

advantage of unusual properties of metal nanostructures as compared to bulk materials, 

such as their different electronic, chemical, structural, magnetic, and optical properties.1-

34 In order to fully exploit these opportunities and to rationally design, fabricate, and 

utilize nano-sized materials, not only a thorough understanding of their properties is 

needed, but also a comprehensive picture of how these properties evolve under 

different environmental conditions, such as at elevated temperatures, and under 

different chemical atmospheres. In fact, the physical and chemical properties of 

nanosized materials might be significantly altered depending on their size, shape, 

crystalline structure, chemical state, support material, gaseous environment, 

surrounding pressure, and temperature. Therefore, great care should be taken in 

understanding and controlling these parameters in order to conclude whether the 

scientific findings of a given study could be generalized to other material systems. 

Different surface science and spectroscopy techniques were used in this 

dissertation, including atomic force microscopy (AFM), scanning tunneling microscopy 

(STM), x-ray photoelectron spectroscopy (XPS), and x-ray absorption spectroscopy 

(XAS). In chapter 2, the fundamental physical concepts underlying the experimental 

tools are described together with instrumentation details and examples of typical data. 

Two methods for synthesizing metal NPs are used throughout this dissertation, 

namely, the inverse micelle encapsulation method and physical vapor deposition (PVD). 

Micelle prepared NPs can be deposited on planar substrates using dip coating, drop 



2 
 

coating, and spin coating, and on powder substrates via impregnation. The PVD method 

can be used to deposit metal NPs on planar surfaces under vacuum conditions. These 

synthetic routes are described in chapter 3. 

One of the most important challenges in the synthesis of NPs for a variety of 

industrial applications is to avoid their agglomeration. NP growth phenomena could 

adversely affect their performance (e.g. catalytic deactivation) or change the NP’s 

chemical properties toward undesired products (e.g. change in selectivity). Synthesizing 

the NPs via inverse micelle encapsulation, guarantees the lateral separation of the NPs 

by the polymer tails (PS group), that extend outward from the micelle core.  The PS 

groups repel other micelles and keep the metal NPs away from each other. However, 

after polymer removal, coarsening may still occur. In chapter 4, two different coarsening 

pathways, namely, Ostwald ripening and diffusion-coalescence, are investigated using 

STM upon high temperature annealing of PVD and micelle-prepared Pt NPs supported 

on TiO2(110). The role of different surface pre-treatments in the stability of NPs was 

studied. A comparison was also made between micelle- and PVD-prepared NPs, with 

the micellar NPs demonstrating a superior stability against coarsening or NP mobility. In 

addition, the effect of different environments, namely O2, H2 and H2O on the coarsening 

behavior of micelle-synthesized Pt NPs supported on γ-Al2O3 was investigated using 

extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge 

structure (XANES) spectroscopies. 

Another factor that has recently attracted a lot of attention is the effect of NP 

shape on its properties, including chemical reactivity. NPs with different shapes feature 

different ratios of crystalline facets, which might lead to distinct catalytic activity and 
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selectivity. Also, the NP shape affects the number of low-coordinated surface atoms at 

corners and edges, which are known to display distinct electronic and chemical 

properties. Furthermore, for supported NPs, the NP-support interaction is expected to 

influence the thermodynamic equilibrium shape of the NPs depending on the interfacial 

binding energy as well as the degree of interfacial order, e.g. the absence or presence 

of an epitaxial relationship. Such interaction should also be more pronounced for 2D 

nanoparticles with high interfacial area as compared to 3D NPs. In chapter 5, the 

shapes of micellar Pt NPs supported on TiO2(110) are directly resolved by STM. With 

the aid of NP shape modeling, the number of atoms in each NP and also the ratio of 

different facet areas were extracted for all resolved NP shapes. In addition, certain 

epitaxial relationships between the NPs and the TiO2 [110] substrate were observed, 

with the edge of the NPs being in registry with TiO2(110)-[001] rows. A good NP-support 

epitaxial relationship could facilitate charge transfer phenomena and lead to strain in the 

system, both of which might lead to novel NP functionalities. 

NP-support interactions are also one of the main factors affecting the 

thermodynamical and electronic properties of NPs. For some systems, the so called 

strong metal-support interaction (SMSI) is known to dramatically affect the NPs’ 

catalytic reactivity via their encapsulation with a thin support overlayer blocking the NPs’ 

surface active sites. Nevertheless, the support itself might also be affected by the 

presence of NPs. For instance, NPs can catalytically facilitate the oxidation or reduction 

of certain support materials such as TiO2 depending on the heat treatment environment. 

In chapter 6, it is demonstrated that the presence of Pt and Au NPs also affects the 

morphology of the TiO2(110) surface upon high temperature treatments in vacuum. In 
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particular, the formation of long nanostripes (up to 80 nm) attached to the NPs and 

having similar width as the NP diameter was evidenced. 

X-ray absorption spectroscopy (XAS) is a powerful technique for studying 

nanoscale systems under realistic industrial-conditions, such as at elevated 

temperatures and under atmospheric or high pressure gas or liquid environments. This 

technique is able to provide information regarding the composition, chemical state, and 

crystalline properties of NPs such as crystalline structure, lattice parameter, and bond 

length disorder, as well as thermodynamic properties such as the coefficient of thermal 

expansion, and the Debye temperature. Insight on the electronic properties of NPs such 

as charge transfer phenomena and adsorbate effects can also be infered. Chapter 7 is 

dedicated to discussing the unusual thermodynamic properties of γ-Al2O3 supported Pt 

NPs measured by XAS, including their enhanced Debye temperature and negative 

thermal expansion. These effects are attributed to adsorbate and support effects, and to 

some extent also to the specific way that EXAFS probes such thermodynamic 

properties. 

In chapter 8 XANES measurements are used to assess the electronic properties of 

Pt NPs supported on γ-Al2O3. In particular, the hydrogen coverage on the surface of Pt 

NPs is estimated at different temperatures, and it was shown that for small Pt NPs, 

more than one hydrogen atom could be stabilized per surface Pt atom. 

As was mentioned before, one of the most exciting aspects of XAS measurements 

is the fact that they can be carried out under operando conditions, while the samples 

are effectively contributing to a catalytic reaction. In chapter 9, structure, chemical state, 
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and reactivity correlations are investigated during the selective reduction of NO over Pd 

NPs on ZrO2. 
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CHAPTER 2: MEASUREMENT TECHNIQUES 

 

2.1 Scanning tunneling microscope (STM) 

2.1.1 Fundamentals 

The technique of STM was developed in 1981 by Gerd Binnig and Heinrich Rohrer 

to image conductive surfaces with atomic resolution. Since then it has revolutionized our 

understanding of surface science by allowing us to directly image surfaces with 

exceptional resolution. Unlike normal optical microscopes and scanning electron 

microscopes (SEM), there is no lens system involved in the STM imaging process.   

The working principle of STM is based on a quantum tunneling effect that allows 

electrons to tunnel through a small vacuum gap (a few Angstroms) between a sharp 

conductive tip and a conductive or semiconducting sample when a bias voltage is 

applied (Fig. 1). Although the electrons could tunnel through the tip-sample gap without 

a bias voltage, no net current would be obtained (Fig. 1b). By applying the bias voltage, 

a net current is obtained due to the difference between the Fermi levels of the sample 

and the tip. The STM tip can approach and feel the sample surface through the 

tunneling current without any physical contact.   

For small bias voltages and assuming a constant density of empty electronic 

states for the tip, the tunneling current (It) decreases exponentially away from the 

sample surface within the vacuum gap between the tip and the sample:  

)8exp()(~ zmVEI bFst


Φ
−ρ  (1) 

http://en.wikipedia.org/wiki/Gerd_Binnig
http://en.wikipedia.org/wiki/Heinrich_Rohrer
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, where Vb is the applied bias voltage between the tip and the sample, z is the 

distance between the tip and the sample, Φ is the average work function of the tip and 

sample, and )( Fs Eρ is the electron density of states near the Fermi level. 

  

Fig. 1:  (a) Free electron waves near the metal surface decay exponentially outside 
the metal (into the vacuum). (b) If the insulating gap (e.g. vacuum) is small 
enough, an overlap between the two electron wave functions will be observed.  
However, no net current would be detected, since the Fermi energies are in 
the same level. (c) A net current is obtained when a bias voltage is applied 
between the two metals. 
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The exponential behavior of the tunneling current as a function of the vacuum gap 

size results in drastic changes in the measured current with small changes in tip-sample 

distance and is responsible for the excellent z-resolution of STM (~ 0.1 Å). In fact, the 

outmost atom of the tip apex (the closest to the surface) is responsible for as much as 

90% of the tunneling current, since other atoms only a few Angstroms further away do 

not contribute significantly due to the exponential dependence of It with distance, Fig. 

2a.  

 

2.1.2 Instrumentation 

A schematic of the STM scanner and the electronic controllers is shown in Fig. 2b. 

The STM scanner tube is made of a piezoelectric material. Piezoelectric materials have 

the property of converting mechanical stress to voltage and vice versa. Therefore, such 

materials are ideal for applications in which very small deformations (<4%) are desired.  

In our example, by applying a voltage to four electrical pads on the side of a scanner 

tube (X+, X-, Y+, Y-), it bends in x and y directions. Applying the voltage to electrical 

pads on the top and bottom of the scanner tube also allows control of the tip position in 

the z direction.  The STM tip scans the surface line by line and the controller collects the 

data (height or current) to image the surface.  

STM works in two different modes: constant height and constant tunneling current. 

In both cases the voltage is constant. In constant height mode, the tip moves above the 

surface without any height adjustment (no feedback) and the system measures the 

tunneling current. The changes in the tunneling current determine the surface 

morphology, with higher current when the tip is closer to the surface (Fig. 3a) or when 
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regions of higher electron density of states are probed. This measurement mode could 

only be used for flat surfaces since otherwise the tip may crash on the surface.  

 

 

Fig. 2: Schematic of the STM setup. (a) The apex of the tip is in tunneling distance 
from the sample. The tip atom closest to the sample surface is responsible for 
most of the tunneling current. (b) Schematic of the STM setup and electronic 
controllers. The scanner tube can move the tip in x, y and z directions. The 
pre-amplifier is installed as close as possible to the STM setup to minimize 
noise on the tunneling current (~ 0.1 nA). In one of the most common STM 
operation modes, the feedback loop maintains a constant tunneling current by 
adjusting the tip height. 

In constant current mode, a feedback loop continuously adjusts the distance 

between the tip and the sample to obtain the desired constant tunneling current. If the 

current increases (due to either the presence of a protrusion on the surface or a region 

of higher electron density of states), the tip is moved away from the surface and vice 

versa. In this way, the changes in the height of the tip (z) are used to image the 
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morphology and electronic properties of the surface (Fig. 3b).  This method was used 

throughout the next chapters of this dissertation. 

 

 

Fig. 3: Two different STM measurement modes: (a) constant height mode, in which 
the changes in the tunneling current are used to extract information on the 
morphology of the sample, and (b) constant current mode, in which the 
changes in the tip height determine the morphology. 

It should be mentioned that the images obtained by STM are the result of both, 

morphology and electronic properties of the surface, as indicated in eq. (1) by the term [

),( zfI st ρ= ]. For instance, if there is a region on a flat surface that is more 

conductive than its surroundings, it will result in a higher tunneling current and therefore, 

when scanning in constant current mode, the feedback loop will move the tip away from 

the surface to compensate for the change. Hence, such area would be seen as a region 

protruding from the surrounding surface. 

To bring the tip close to the surface, a piezoelectric inch worm motor is used. This 

motor is capable of moving the tip in one dimension (vertically up and down) with step 
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sizes as small as a few Angstroms. Different stages involved in the movement of an 

inchworm motor one step upward are depicted in Fig. 4.  

 

Fig. 4: Different stages during the movement of a piezoelectric inchworm motor one 
step upward. Three sections of the motor, namely up, center, and down could 
be activated separately. By applying the voltage to sections U and D they 
expand laterally and lock inside the outer cylinder. The middle section C 
expands vertically upon applying the voltage. The parts activated by the 
voltage are shown with red color, while the inactive sections are shown with 
blue color. In the first stage, only section D is locked and the upper part is free 
(a). Then the middle part expands (b), and section U locks as well (c). 
Subsequently, the lower part releases (d), and section C contracts to its initial 
length (e). Now section D locks (f) and section U unlocks (g). The latter motion 
returns the setup to a similar position as that depicted in (a), but vertically 
displaced upward. By tuning the expansion of the middle section, the length of 
each step of the inchworm motor could be adjusted. 

The inchworm motor moves the tip toward the sample until it detects the tunneling 

current. At this point, the motor stops and the STM scanner starts to control the tip 

position ( Fig. 2).  
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2.1.3 Tip preparation 

The STM tips are prepared either by cutting Pt-Ir wires at a glazing angle or from 

tungsten wires etched chemically in a 5 Molar NaOH solution under a bias voltage of ~ 

3 V. I designed and tested a tip-etching setup for this project. In such setup, the cathode 

is a gold wire positioned on the side of a beaker, while the anode (tungsten wire) is in 

the middle. During the tip etching process, the W wire dissolves into the solution 

gradually following the reaction below:  

)(322 2
2
42 gHWOOHOHW +→++ −−

 
(2) 

 

However, the rate of dissolution is greater close to the meniscus, Fig. 6(a), since 

the lower parts are shielded partially by the falling −2
4WO salt generated by wire sections 

above. When the neck gets too thin, it breaks off and releases the lower hanging piece. 

An electronic setup monitors the current and shuts down the voltage if any sudden 

change in current is detected. The detachment of the lower piece of the etched W wire, 

results in a sudden change in the current, triggers the electronic setup to shut off the 

voltage immediately. This is a very important step in order to avoid further etching of the 

tip, which might lead to a dull tip. A schematic of the setup and an image of an STM tip 

prepared with this method are shown in Fig. 5. 

After the electrochemical etching, the tungsten tips were further cleaned before the 

STM measurements via an in situ (UHV) Ar+ sputtering process (4x10-6 mbar, 4 kV, 15 

min) inside the STM chamber. 
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Fig. 5:  (a) Partially etched tungsten wire inside a NaOH solution. (b) Example of a 
tungsten tip prepared by wet etching acquired with an optical microscope.  

 

2.1.4 STM images 

Two examples of STM images obtained on Au(111) and TiO2(110)-[1x2] surfaces 

are shown in Fig. 6.  As was mentioned in the previous section, in STM images the 

electronic and morphological properties of a sample are convoluted.  

As an example, STM images of the TiO2(110)-[1x1] surface show bright and dark 

(up and down) atomic rows corrugating the surface. Interestingly, the bright rows 

correspond to Ti rows on the surface that are vertically located lower than the oxygen 

rows. Thus, although with respect to the surface morphology, the O atoms are located 

above the Ti atoms, in STM images they seem to be below the Ti rows due to different 

electronic properties of titanium and oxygen, with the Ti atoms having a higher electron 

density of states.  
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Fig. 6: STM images of (a) a Au(111) single crystal showing atomic resolution and (b) 
a TiO2(110) surface with a (1x2) surface reconstruction. The color coding 
shows the higher points with a yellow color and the lower points with a dark 
red color. TiO2 atomic rows in the [001] direction could be seen on the three 
terraces of the TiO2 surface displayed. The height of each TiO2 step is 3.2 Å 
and the distance between atomic rows is 13 Å (twice that in between the rows 
in the 1x1 reconstruction). The images were obtained using a SPECS Aarhus-
150 STM. 

 

2.2 Atomic force microscope (AFM) 

2.2.1 Fundamentals 

The atomic force microscope is another tool for imaging nanometer scale features 

on surfaces. It was also developed by Binning and Rohrer in 1986. In AFM, a cantilever 

that has a sharp tip at the end is brought close to the sample surface until an interaction 

between the tip and the surface exerts a force on the cantilever that bends it upward or 

downward depending on the direction of the force. The interaction between the tip and 

the surface could involve van der Waals forces (always present), capillary forces, 
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electrostatic forces, magnetic forces, etc. The dominant interaction probed would 

depend on the AFM setup, sample properties, and tip-sample distance.  

The AFM cantilever could be understood as a system comprising of a mass m, a 

spring with a force constant k, and a damperς . This system is driven by an external 

periodic force F0 sin(ωt) and is interacting with the surface via the force Fin (Fig. 7a).  

 

 

Fig. 7:  (a) Schematic of a mass-spring harmonic oscillator driven by a periodic force. 
The amplitude (b) and phase of the oscillation for different damping constant is 
shown as a function of the frequency of the driving force. 
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The equation of motion could be derived as: 

)sin(2 0int0 tFFzkzzm ωςω +=++   (3) 

, where mk /0 =ω  is the undamped natural frequency of the system.  

The steady state solution for the damped harmonic oscillator (without intF ) could 

be written as: 

)sin()()( ϕωω += tAtz  (4) 

, where the oscillation amplitude )(ωA  and the phase ϕ are: 
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The amplitude and phase of the oscillation are shown in Fig. 7 as function of the 

angular frequency of the driving force for different damping values. For large values of 

the damping constant, no significant resonance occurs (Fig. 7a).   

The maximum oscillation amplitude occurs at a resonance frequency, rω : 

2
0 21 ςωω −=r  (7) 

After finding the solution for the derived damped harmonic oscillator, the tip-

sample interaction, intF could be added to the solution following first order perturbation 
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theory. The effect of such additional force could be simply understood as a modification 

of the spring constant of the system from k  to effk  and consequently of the system’s 

natural frequency from 0ω  to effω :  

0

int

z
e z

dFk
dz
dFk 






 −=−=  (8) 
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A schematic of the changes induced in the resonance frequency due to tip-sample 

interactions is shown in Fig. 8 for attractive and repulsive forces. 

 

Fig. 8: Change in the resonance frequency induced by the tip-sample interaction. The 
shift in resonance frequency is positive for repulsive forces and negative for 
attractive forces.  
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 However, in both cases the tip-sample interaction results in the reduction of the 

oscillation amplitude. The change brought about by the tip-sample interaction is the shift 

of the resonance curve without any change in the shape of the curve (Fig. 8)  

 

2.2.2 Instrumentation 

In order to approach the sample toward the tip (or the tip toward the sample in a 

different microscope configuration), AFM uses either a piezoelectric inchworm motor or 

a stepper motor. Similar to STM, it also has a piezoelectric scanner. However, unlike 

STM, AFM could work with both conductive and nonconductive samples, since rather 

than using the tunneling current as measurement parameter, it relies on tip-sample 

interaction forces.  

The small deflection of the cantilever could be detected using an optical setup as 

shown in Fig. 9. A laser beam is focused on the cantilever and reflects back to reach a 

photo-diode. The photo-diode has four separate panels. A small deflection of the 

cantilever results in the displacement of the laser spot on the position-sensitive detector, 

increasing the photoelectric signal in some of the panels and decreasing it in others. By 

comparing the photoelectric signal of the four panels, the upward and downward 

deflection of the cantilever as well as its sidewise deflections could be detected.   

AFM works in different modes, namely contact mode, tapping mode, and non-

contact mode. In contact mode, the tip is brought into direct contact with the surface 

(actually within a few Angstroms from the surface) and the cantilever deflects due to the 

tip-sample interaction. The scanner feedback loop changes the height of the tip to 

maintain a constant deflection and therefore, the tip can follow the morphology of the 
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surface. However the tip-sample contact could eventually damage both the tip and the 

sample, especially under ambient conditions in which the surface is usually covered 

with a thin liquid film. Nevertheless, this operation mode could be used to intentionally 

damage the surface to for example measure surface mechanical properties such as 

friction and nanoparticle-support adhesion energies by detaching the NPs from the 

surface. 

 

Fig. 9: (a) Schematic of an AFM setup including the laser source, the cantilever 
reflecting the laser, and the mirror guiding the reflected beam towards a four-
panel photodetector. (b) Schematic of an actual multimode AFM head from 
digital instruments (VEECO metrology group) used for the measurements 
shown in this thesis.  

Another AFM operation mode is known as tapping mode, in which a piezoelectric 

element drives the cantilever to oscillate at or close to its resonance frequency with a 

typical frequency of 200-400 KHz and oscillations 20-100 nm in magnitude. The 

cantilever vibration produces an AC signal in the photodetector output. The tip is 

brought close to the surface until it feels the interaction with the surface at the lowest 
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point of its oscillation. Due to the external force applied by the surface to the tip, the 

magnitude of the oscillation amplitude and also the phase changes. At that instance, the 

feedback loop activates a piezo-actuator in the scanner to move the cantilever in the z 

direction to maintain a constant oscillation magnitude, allowing the tip to follow the 

surface morphology. This technique provides the best results for ambient 

measurements and was used for the acquisition of all AFM images shown in the coming 

chapters.  

Non-contact mode AFM is similar to tapping mode but with much lower oscillation 

magnitude (2-30 nm) and therefore, can provide better resolution (up to atomic 

resolution), although it is mainly appropriate for measurements under UHV conditions.  

 

2.2.3 AFM images 

An example of an AFM image of an array of Pt NPs supported on SiO2/Si(111) 

obtained in  tapping mode is shown in Fig. 8. 

 

Fig. 10: AFM image of Pt NPs supported on SiO2/Si(111).  
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2.3 X ray photoelectron spectroscopy (XPS) 

2.3.1 Fundamentals 

XPS is a quantitative, surface sensitive technique that provides information on the 

composition, chemical state and charging phenomena of different chemical elements 

present at/near the sample surface (1-10 nm).  

XPS is a spectroscopy technique in which the sample under study is irradiated by 

x-rays resulting in the ejection of core level electrons (photoelectrons) having binding 

energies lower than the incident photon energy, hν (Fig. 11). 

 

 

Fig. 11: Schematic of the XPS process. Absorption of the x-ray photon ejects one of 
the core electrons (in this case from a 1s level) to the vacuum level. Such 
electron is subsequently collected by the electron analyzer. The Fermi levels 
of the sample and the analyzer are equal since both are grounded. The 
photoelectron’s kinetic energy is measured by the electron energy analyzer.   

Usually in XPS the energy of the x-ray (hν) is fixed, and by measuring the electron 

kinetic energy, its binding energy can be obtained: 
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, where νh  is the incident x-ray energy, sampleφ  and analyzerφ  are work functions of the 

sample and the analyzer respectively, and bE  is the binding energy of the electron 

excited by the x ray photon.  analyzerφ  is constant for a specific analyzer and therefore can 

be compensated in the energy calibration process. Fortunately, the sample work 

function sampleφ  is not needed to obtain the binding energy, eq. (10). 

Each element has a unique set of electron energy levels and therefore, XPS can 

be used to determine the elemental composition. Also the relative concentration of each 

individual element can be extracted by comparing the different photoelectron count 

rates of distinct elements, while considering their sensitivity factors. 

With the exception of electrons in s-levels, other electron energy levels appear in 

XPS as two peaks with two different energies, due to spin-orbit coupling. Such energy 

splitting is shown in Fig. 12.  

The interaction between the electron spin, S , and its orbital angular momentum, l , 

results in two different values of the total angular momentum, J . The antiparallel 

configuration is more energetically favorable resulting in lower electron binding energy 

while the opposite is true for the parallel configuration. For instance, for p electrons, the 

possible total angular momenta are 3/2 and 5/2. There is a maximum of 4 electrons in 

p3/2 states, and only two in p1/2 states and therefore, the photoelectron count rate for p3/2 

states should be twice as large as that of p1/2. 
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Fig. 12: Spin-orbit energy splitting for different energy levels. The degeneracy is (2J+1) 
for each state. For instance, for 2p states, the degeneracy is four for 2p3/2 (3/2, 
1/2,-1/2, -3/2) and two for 2p1/2 (1/2 and -1/2). Therefore, the intensity ratio 
obtained when comparing both XPS peaks should be proportional to the 
number of electrons in each state. The XPS area obtained for 2p3/2 states 
should be twice as large as that of 2p1/2. Similarly, it could be shown that the 
count rate ratio (i.e. ratio of XPS peak areas) for 3d5/2 and 3d3/2 states is 6/4.    

XPS peaks are also sensitive to the chemical state of the element. For instance, 

for most elements a higher oxidation state results in the shift of the electron binding 

energy to higher values. This is due to the fact that oxygen has a high electronegativity 

and could attract electrons resulting in lower electron density around the target nucleus 

and therefore, higher binding energies for the remaining electrons, which are pulled 

closer to the nucleus.  
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2.3.2 Instrumentation 

An x-ray beam is generated by electron bombardment of an anode (e.g. Al, Mg, 

Ag). The x-ray is subsequently filtered through a quartz single crystal monochromator, 

based on Bragg diffraction to achieve an x-ray beam with a narrower energy distribution 

(Fig. 13). This leads to a better energy resolution and narrower width of the  XPS 

spectra. In our system, half of the dual-anode target is made of Al and the other half of 

Ag. The energy of the Al-Kα radiation is 1486.6 eV, and that of Ag-Lα is 2984.2 eV.  

Following Bragg’s law for any given crystalline material (e.g. quartz in this case), a 

constructive interference could occur for certain wavelengths depending on the 

reflection angle: 

)sin(2 θλ dn =   (11) 

,where λ is the x-ray wavelength, d is the interplanar atomic distance, θ is the 

reflection angle. d is a characteristic parameter of the single crystal used for the 

monochromator, and θ can be adjusted to obtain a constructive interference for the 

main x-ray energy of the incident beam.  

Since the energy of the x-ray generated by Ag is almost twice as that generated by 

Al, the same monochromator used for Al could be used for Ag (second order Bragg 

diffraction, n=2 in eq.11) with minor angular adjustments.  

Photoelectrons ejected from the sample due to x-ray irradiation are collected 

through a lens system and are filtered based on their kinetic energy in a hemispherical 

analyzer. 
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Fig. 13: Schematic illustration of a monochromatic XPS setup including a double 
anode x-ray source, monochromator, sample, lens system, hemispherical 
analyzer, and multichannel electron detector. 

The analyzer has a hemispherical capacitor that bends the trajectory of the 

photoelectrons (Fig. 13). Only electrons with certain energy will be able to reach the 

multichannel detector (made of 5 channeltrons in our case) that is located on the other 

side of the analyzer, opposite to the photoelectron entrance port. Channeltrons are 

made of low work function materials that are able to multiply any single electron they 
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receive by a factor of ~108 at their output. This allows the acquisition setup to count the 

number of electrons reaching the channeltrons based on the number of generated 

electrical pulses. The voltage of the capacitor in the hemispherical analyzer is swept 

gradually, changing the energy of the electrons reaching the channeltrons. Therefore, a 

spectrum of photoelectron count rates as a function of their energy could be obtained.  

  

2.3.3 XPS spectra 

Each chemical element has its own specific finger-print in XPS spectra appearing 

as a set of peaks at certain energies. Fig. 14a shows and example of an XPS spectrum 

of a Si(111) single crystal with a thin oxide film on top showing Si-2p, Si-2s, and O-1s as 

three main peaks. The high resolution spectra of the Si-2p region, is shown in Fig. 14b.  

The data were fitted using a commercial XPS analysis software; CASA XPS 

(copyright © 1999-2008 Neal Fairley).35 Several constrains used in the fitting process 

are described below. As can be seen in Fig. 14b, each Si species has two components 

due to the spin-orbit splitting effect, described in Fig. 12.  

The ratio of the area under the 2p3/2 and  2p1/2 peaks is set to be 2. Also, the split 

in energy for 2p3/2 and 2p1/2 is constant, in this example 0.6 eV, and is used as another 

constrain during the spectral fitting, Fig. 14. 

Three different chemical states could be seen for Si-2p. The first peak at ~99.3 eV 

is Si0 from the Si substrate underneath the oxide, and the second largest peak at 

~103.3 eV is Si4+ from the top SiO2 thin film. There is also a smaller component in 

between the two main peaks at ~101 eV that shows an intermediate oxidation state. 

This component is assigned to SiOx species that usually formed at the SiO2/Si interface.  
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Fig. 14: XPS spectrum of a Si(111) wafer terminated by a thin SiO2  layer. (a) The 
survey spectrum measured over a large energy range is used for the initial 
identification of the elemental composition of the sample including Si and O 
peaks. (b) High resolution spectrum of the Si-2p core level region showing 
silicon in three different chemical states: Si, Si4+ in SiO2, and an intermediate 
state of Siδ+ in SiOx with x having a value between 0 and 2. The red curve 
shows the overall fit to the black experimental data (noisy black curve).  
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2.4 X-ray absorption spectroscopy (XAS): extended X-ray absorption fine- 
structure (EXAFS) and X-ray absorption near-edge structure (XANES) 
spectroscopy  

2.4.1 Fundamentals 

 EXAFS and XANES are powerful, element sensitive, ensemble-averaging 

synchrotron-based techniques that provide information about the NPs’ size, shape, 

oxidation state, charge transfer phenomena, adsorbate effects, interatomic distances, 

crystalline disorder, as well as thermodynamic properties of the material, such as the 

Debye temperature and the thermal expansion coefficient.  

For these techniques, a brilliant synchrotron-generated x-ray beam is shone into 

the sample and the absorption coefficient is measured by varying the x-ray energy using 

a monochromator (Fig. 16).  

In the transmission XAS geometry, the x-ray intensity decays inside the sample 

exponentially: 

)exp(0 dIIt µ−=  (12) 

, where  0I   and  tI  are the incident and transmitted x ray intensities respectively, 

µ is the absorption coefficient and d is the sample thickness. Therefore the absorption 

coefficient could be obtained as: 

d
II t )/ln( 0−

=µ  (13) 

By measuring the absorption signal while the x-ray energy is changed, the energy 

dependence of the absorption coefficient can be extracted. In general, the absorption 
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coefficient decreases with increasing energy, but for any given material, sudden 

increases in the absorption coefficient appear at certain energies which are known as 

absorption edges.  

X-ray photons could be absorbed by the material resulting in the excitation of 

photoelectrons. However, only electrons with binding energies lower than the x-ray 

photon energy could interact with it. By increasing the x-ray energy, electrons with 

higher binding energy could also be excited and contribute to the absorption process. 

Therefore, by increasing the x-ray photon energy and after adding each new electron 

energy level, the absorption coefficient shows a sudden increase. In contrast to XPS, 

the photoelectron energy is irrelevant to EXAFS, and only the amount of x-ray photons 

absorbed by the material is measured. 

Interestingly, after each absorption edge, fine oscillations appear in the absorption 

coefficient. Such oscillations are not expected for individual atoms (e.g. gas phase). The 

origin of these oscillations could be understood based on the interference of 

photoelectron waves. The ejected photoelectron waves are scattered back by 

neighboring atoms (Fig. 15).  

If the reflected photoelectrons interfere constructively with the outgoing electron 

wave, the electron density of states in the excited state at the position of the absorbing 

atom increases. This results in a higher probability of absorption of the x-ray photon. On 

the other hand, a destructive interference would result in lower probability of electron 

excitation with the concomitant decrease in the absorption coefficient (Fig. 15). This 

explains why for a single atom no oscillation is expected to occur.  

 



30 
 

  

Fig. 15: Schematic of the origin of EXAFS oscillations. Constructive (destructive) 
interference of outgoing and back scattered photoelectron waves results in 
higher (lower) density of electronic states at the position of the absorbing 
atom. In the region close to the absorption edge (XANES region), the 
photoelectrons have low kinetic energy (large wavelength), and therefore, the 
interference phenomena are not contributing to the absorption coefficient. Only 
in the EXAFS region (>150 eV above the edge) the absorption coefficient is 
affected by interferences of photoelectrons.   

Since in EXAFS we are only interested in the oscillations of the absorption 

coefficient, we can normalize the data using a single atom background: 
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, where )(Eµ
 
is the absorption coefficient, )(0 Eµ  is the absorption coefficient for 

one atom, and )( 00 Eµ∆ is the edge jump. A typical Pt-L3 XAS spectrum acquired in 
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transmission mode is shown in Fig. 17.  Depending on the energy of the x-ray photon, 

the kinetic energy of the emitted photoelectrons changes, resulting in photoelectrons 

with different wavelengths: 

2
0 )(2



EEm
k e −

=  (15) 

, where k  is the photoelectron kinetic energy,  em  is the electron mass, E  is the 

x-ray energy, and 0E  is the energy at the absorption edge. 

 Theoretical models were developed to explain the EXAFS data, and the 

fundamental EXAFS equation is shown below:  
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= ∑   (16) 

, where the sum over all the neighboring atoms involved in scattering process is 

considered. )(kf j  and
 

)(kjδ  are the scattering amplitude and the phase shift, 

respectively. jR  is the distance of the scatterer atom from the absorbing atom, )(kλ  is 

the photoelectron mean free path, jN  is the degeneracy or the coordination number of 

the scatterer, and 2
jσ  is the mean square disorder of a given neighbor distance. 2

0S  is 

the amplitude reduction term due to the slight relaxation of all other electrons in the 

presence of the core hole generated by the ejected photoelectron. Since  2
0S  and jN  

have a 100% correlation, the value of 2
0S  should be obtained from a reference sample. 

Equation 16 could be used to fit the experimental data. 
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2.4.2 Instrumentation 

A schematic of the experimental setup used for XAS measurements is shown in 

Fig. 16. The electrons are accelerated in several steps until they reach a very high 

energy inside the synchrotron ring (e.g. 2800 MeV at the National Synchrotron Light 

Source at Brookhaven National Laboratory, NSLS-I ). 

Then, the electrons that are stored inside the synchrotron ring are forced to 

oscillate using an undulator, which is a set of periodic dipole magnets (left and right) 

that bend the electron beam upward and downward. The accelerated electrons produce 

a very bright white x-ray beam that could be used for a variety of applications in material 

characterization, including XAS. Although only one undulator is shown in Fig. 16, each 

synchrotron has several undulators and several end-stations for different type of 

measurements. 

The white x-ray beam is filtered using a monochromator to obtain the desired 

energy, with a narrow energy width. By changing the angle of the two single crystals 

inside the monochromator, the energy of the x-ray obtained after the monochromator 

could be varied.  There are three ionization chambers that could measure the intensity 

of the x-rays. The first one measures the initial intensity of the x-ray, 0I , and the second 

one measures the signal transmitted through the sample, tI . These two measurements 

are enough to study the sample. 

However, for energy calibration purposes another ionization chamber is used to 

measure the transmitted photon intensity through a reference sample, refI , (e.g. a thin 

foil from the same material under study). Comparing the refI and tI signals, the 
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absorption edge of the reference sample could be measured. This is used in order to 

align the energy of the real sample to that of the bulk sample.  

 

 

Fig. 16: Schematic of the EXAFS and XANES measurement setup including (i) a large 
synchrotron loop accelerating electrons with high speed, (ii) undulators that 
produce a high brilliance white x-ray, (iii) the monochromator that selects the 
x-ray energy to the desired value for the excitation of a given absorption edge, 
(iv) ionization chambers that measure the x-ray intensity before and after 
transmission through the sample and also the reference sample. The inset 
shows a plot of the measured absorption coefficient with two absorption 
edges.  

 

2.4.3 XAS data 

Fig. 17a shows a spectrum of the absorption edge measured for the Pt-L3 edge of 

a platinum foil. Two polynomial lines were used to fit the pre-edge and post-edge in 

order to normalize the data. As it could be seen in eq. (13), the absorption coefficient 

depends on the thickness of the sample. The edge jump also depends on the 

concentration of the given element in the sample. To compensate for these effects, the 

absorption edge is normalized to 1 ( Fig. 17b).  
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Fig. 17: (a) Pt-L3 absorption edge and the pre- and post-edge background fitted to the 
data for normalization. (b) Normalized absorption coefficient, using the 

equation  
)Pre_edge()Post_edge(

)Pre_edge()()(
EE

EEEnormalized −
−

=
µµ .   
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The region between the absorption edge and 150 eV above it, is known as the 

XANES region ( Fig. 17b). In this energy range, the photoelectrons have very low kinetic 

energy (long wavelengths) and therefore, the interference phenomenons are not 

important. The XANES region is the most sensitive to changes in the electronic 

properties of the absorbing atoms such as the density of unoccupied states, charge 

transfer, and oxidation state.  

Beyond ~150 eV above the edge, the effect of photoelectron interference plays a 

crucial role as it is shown in Fig. 15, and this region is called the EXAFS region. As it is 

seen in Fig. 15, the absorption coefficient shows some oscillation after the edge. These 

oscillations could be explained based on the constructive and destructive interference of 

the outgoing and back-scattered photoelectrons (those that are reflected from 

neighboring atoms).    

It is more common to represent the EXAFS data as a function of the wavenumber, 

k, (Fig. 18a) since it appears as the independent parameter in eq. 16. Also, due to the 

decay of the oscillations at higher energies, it is common to weight the signal by k, k2, or 

k3 to emphasize the oscillations at higher energies. Another common representation of 

EXAFS data is in r-space (Fig. 18b) which could be obtained by Fourier transforming 

the k-space data.  
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Fig. 18: K2 weighted EXAFS data of a platinum foil in k- and r-space representations. 
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CHAPTER 3: NANOPARTICLE SYNTHESIS METHODS 

 

3.1 Inverse micelle encapsulation 

Commercial poly-(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock 

copolymers of different molecular weight and PS/PVP ratios were used to synthesize 

size- and shape-selected metal (Pt, Au, Pd, Fe) nanoparticles (NPs)5, 28, 36-39.  

A schematic of the inverse micelle encapsulation synthesis process is shown in 

Fig. 19. Following the method introduced by Spatz et al. 40, PS(x)-b-P2VP(y) diblock 

copolymers are first dissolved in toluene (5 mg/ml) and stirred for about 4 hours. Since 

the PS block (tail) of the polymer is hydrophobic (nonpolar) and the PVP part (core) is 

hydrophilic (polar), inverse micelles are formed in a non-polar solvent such as toluene 

(Fig. 19b). In the next step, a metal precursor (e.g. H2PtCl6·6H2O or HAuCl4.3H2O) with 

the desired ratio of metal precursor to P2VP (0.02 to 0.6) is added to the solution under 

a nitrogen atmosphere (glovebox) and stirred for more than 48 hours. The time required 

to dissolve the metal salt into the polymeric solution depends on the type of metal and 

polymer used and varies from two to seven days. The metal ions bind to the polar core 

of the micelles (Fig. 19c). The size of the NPs can be adjusted by changing the 

molecular weight of the P2VP group or the metal loading of the micelles (metal salt to 

P2VP ratio), resulting in NP sizes ranging from 0.5 to 40 nm.   

To deposit the NPs on planar supports such as Si(111) or TiO2(110) single 

crystals, the substrates were dip coated into the NP solution with a speed of 200 µm/sec 

(Fig. 19d). One monolayer of micelles is stabilized on the substrate surface with a 

hexagonal arrangement (Fig. 19e). The PS part of the polymer keeps the micelles apart 



38 
 

and therefore controls the interparticle distance. This distance can be adjusted by 

changing the length (molecular weight) of the PS part of the polymer. 

 

Fig. 19:  Schematic of the nanoparticle preparation via inverse micelle encapsulation. 
(a) Poly-(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer 
(b) Formation of micelles after dissolving the polymer in toluene. (c) Addition of 
metal atoms to the micelle core upon dissolution of the metal-salt precursor. 
(d) Deposition of one monolayer of micellar NPs on a flat substrate by dip-
coating. (e) Array of micellar NPs deposited on a flat substrate. (f) Polymer 
removal using an O2-plasma treatment, resulting in the formation of a clean 
array of size-selected NPs.  

The same NP solutions can also be used to prepare powder (high surface area) 

samples on nanocrystalline supports such as γ-Al2O3, ZrO2, TiO2. The metal loading 

was adjusted to be 1-2 percent of the support material by weight. The solutions were 

impregnated on the supports by stir drying at 60°C for about 24 hours. 
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All measurements that are reported in this thesis were carried out on ligand-free 

NPs. Two different treatments for the removal of the polymers were used depending on 

the type of support. On the planar (single-crystal) supports the polymer was removed in 

UHV by an O2-plasma treatment (4 × 10-5 mbar, 120 min). The atomic oxygen 

generated by an O2-plasm asource removes the polymer (Fig. 19f) leaving a clean array 

of oxidized NPs on the surface.  

The powder samples were annealed in an oxygen environment (atmospheric 

pressure) at 375-425°C for 24 hours for polymer removal purposes. The complete 

removal of the organic ligands from our samples was corroborated by monitoring the 

carbon signal via XPS, Fig. 20.  
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Fig. 20:  XPS spectra from the C-1s core level region of micellar Pt NPs supported on 
TiO2(110) (S3) acquired before and after O2-plasma exposure at room 
temperature (RT) for 120 min. No residual C was observed on this sample 
after the atomic oxygen treatment.  
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The reduction of our NPs supported on planar substrates was achieved by either 

annealing in vacuum or by hot H2-plasma treatments (1x10-4 mbar at 500°C). Powder 

samples were reduced by annealing in hydrogen from 240°C to 375 °C. An example of 

STM images of micellar Pt NPs supported on TiO2(110), obtained after polymer removal 

and vacuum annealing at 1060 °C, is shown in Fig.  22a.  

 

3.2 Physical vapor deposition via electron beam evaporation 

Metal NPs (e.g. Pt) were also obtained by depositing sub-monolayer coverages of 

metal using an electron beam evaporator41. Electron beam physical vapor deposition 

(EBPVD) is a form of physical vapor deposition in which a target anode is bombarded 

with an electron beam given off by a charged tungsten filament under high vacuum, Fig. 

21. 

The evaporation can be carried out at different sample temperatures, since our 

sample holder can be heated via electron bombardment up to 1300 K and cooled by 

liquid nitrogen to about 100 K.  

To measure the evaporation rate, a quartz microbalance was used. The sample 

was moved away and the microbalance was positioned at the same location. The quartz 

microbalance measures the thickness of the deposited metal based on the change of 

the quartz natural resonance frequency induced by the mass of the material being 

deposited. Certain calibration factors should be used for measuring the thickness of 

different materials, as for example the density and the acoustic impedance of the 

deposited material. 

http://en.wikipedia.org/wiki/Physical_vapor_deposition


41 
 

 

Fig. 21:  Schematic of an electron beam evaporator. The hot filament around the metal 
anode emits electrons toward the metal target which are accelerated since the 
metal target is connected to a positive voltage (~1000V). In this manner, 
material from the heated metal target is sublimated and deposited on the 
sample surface.  

After determining the evaporation rate, the quartz microbalance is moved away 

and the sample is moved back to its original position in front of the evaporator. At this 

point the evaporation on the sample was carried out with similar conditions as those 

used during the microbalance measurements. The base pressure of our molecular 
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beam epitaxy (MBE) chamber was held in the 10-10 mbar range during metal 

evaporation. An example of an STM image obtained from PVD-prepared Pt NPs on 

TiO2(110) is shown in Fig.  22b.  

 

 

Fig.  22: STM images of Pt NPs supported on TiO2(110) synthesized via (a) inverse 
micelle encapsulation and (b) physical vapor deposition. Both images were 
obtained at RT after annealing at 1060°C in vacuum. 
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CHAPTER 4: THERMAL STABILITY AND COARSENING PHENOMENA 
OF METAL NANOPARTICLES AND THE INFLUENCE OF THE 

ENVIRONMENT AND SUPPORT PRE-TREATMENT: Pt/TiO2(110) AND 
Pt/γ-Al2O3 

4.1 Introduction 

The unusual structural, electronic, magnetic, and chemical properties of metal NPs 

have found numerous applications in technologically important areas such as catalysis, 

molecular electronics, and plasmonics.1-4 Nevertheless, in order to take advantage of 

these new material systems in a real-world industrial setting, a thorough understanding 

of the evolution of those properties under different environmental conditions, as for 

example elevated temperatures and exposure to liquid/gas reactants is needed. 

Although new developments in NP synthesis methods provide the capability of 

fabricating NPs in the sub-nanometer size regime, unwanted coarsening phenomena 

commonly lead to the disappearance of the small NP sizes and a broadening of the 

initially narrow size distributions. This is a major drawback in fields such as catalysis, 

because a number of chemical processes are structure sensitive, and thermally-induced 

changes in NP size and shape can result in a dramatic drop of activity due to the loss of 

surface area42, a change in selectivity towards unwanted byproducts, as well as catalyst 

deactivation.43  

The present study provides insight into an important aspect influencing the 

commercial use of oxide-supported metal NPs, namely, their tendency to coarsen at 

elevated temperatures. Despite the fact that in industrially relevant catalytic combustion 

processes NP sintering occurs at elevated temperatures (~ 900 ºC)44-48, most of the 

basic in situ studies published to date describe a much lower temperature regime (~700 
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ºC). We study here coarsening phenomena in PVD and micellar Pt NPs at more realistic 

temperatures, namely, in the temperature regime of 930ºC to 1060ºC. We also pay 

attention to the effect of the substrate pretreatment (morphology and state of reduction) 

on the NP coarsening mechanisms. Our model system, Pt/TiO2, is presently extensively 

used in catalysis applications such as water splitting49, sulfuric acid decomposition47, 

and photo-oxidation reactions.50  

Coarsening phenomena in nanoscale systems have been the subject of intensive 

research efforts since a number of years, with particular emphasis given to the effect of 

the initial NP size and size distribution,51-54 as well as the structure, morphology, and 

stoichiometry of the support.54-58 

The two main coarsening pathways are: (i) Ostwald ripening, in which individual 

atoms or molecules detach from small clusters and diffuse over the support surface until 

they join larger NPs, and (ii) diffusion coalescence, where entire NPs diffuse across the 

support surface until they coarsen with other NPs. Previous literature reports have 

described coarsening phenomena in metal NP systems based on either Ostwald-

ripening, diffusion coalescence, or both mechanisms, a distinction which was proven to 

be strongly dependent on the specific material system under investigation. For instance, 

Thiel et al.54 reported different coarsening trends for Ag islands on a Ag single crystal 

depending on the orientation of substrate surface, with Ostwald-ripening phenomena 

preferentially occuring on Ag(111), and diffusion-coalescence on Ag(100). Additionally, 

the dominant coarsening pathway was also found to be susceptible to changes in the 

annealing temperature, time, and chemical environment, with oxidizing environments 

typically leading to Ostwald ripenning, and reducing atmospheres to diffusion-
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coalescence59. Furthermore, a transition from diffusion-coalescence to Ostwald-ripening 

was described for Cu islands on Cu(100) with increasing temperature from 300 K to 343 

K. On more closely related systems to the one under study here, Ostwald ripening 

phenomena were held responsible for the sintering of Au NPs on TiO2
53-60, while 

diffusion-coalescence processes were found to occur for Pd/TiO2.56, 57, 61 

Numerous previous studies have used the evolution of the NP size or the shape of 

the NP size histogram as an indirect diagnostic tool to get insight into the underlying 

coarsening mechanism, namely, whether it is Ostwald ripening or 

diffusion/coalescence.53, 56, 57, 59, 62-68 Following conventional coarsening models62-67, NP 

size distributions with a tail skewed towards lower NP sizes and a sharp cut-off have 

been commonly assigned to Ostwald ripening processes, while distributions with a long 

tail (log-normal distribution) towards large NP sizes have been attributed to processes 

dominated by NP diffusion and coalescence. Surprisingly, the majority of experimental 

NP size distributions available in the literature are of the log-normal type67, 69, even for 

processes where Ostwald-ripening has been demonstrated to be the main coarsening 

mechanism.59, 68 In the past, such discrepancy was attributed to the limitations of most 

microscopic methods at detecting small NPs, but this is not true for the most recent 

studies. 59, 69 The work by Datye et al.59 demonstrated that the shape of the NP size 

distribution cannot be used to discern different coarsening mechanism, especially in 

cases where Ostwald ripening and diffusion coalescence processes may occur 

simultaneously. In such complex cases, the small NPs that should always be present 

during Ostwald ripening processes could quickly disappear due to their enhanced size-

dependent mobility if the diffusion/coalescence pathway occurs concurrently. 
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Furthermore, in cases where the initial NP size distribution might be of the log-normal 

type, it might take a very long time for a low-size tail to develop in the size histogram, 

even when Ostwald ripening is dominant.  

A better agreement between experimental data and coarsening simulations 

following the Ostwald ripening model was obtained by Parker and Campbell 51-53 

through the incorporation of a size-dependent surface energy in their model and by 

using an exponential function in the formulation of the ripening rates instead of a first-

order approximation of the associated Taylor series. Both modifications lead to less 

asymmetric NP size histograms, although broadening and a low-size tail were still 

observed. Using the mean field approximation, a model for diffusion-coalescence 

processes was introduced by Smoluchowski.62, 63 Assuming a simple power law for the 

NP’s diffusion coefficient, the scaling behavior of this model was studied by Kandel, 66 

and a size histogram with a tail skewed toward larger sizes was found to gradually 

develop over long periods of time.66 However, the former model fails at providing the 

correct description of coarsening phenomena occurring over short periods of time.  

Despite the high level of detail included in the various coarsening models 

available53, 57, 66, relatively little attention has been given to the effect of the morphology 

and stoichiometry of the NP support, the strength of the NP/support bonding, and the 

NP synthesis method.  

In the present work we use a combination of controlled NP preparation, STM, and 

theoretical modeling to address these effects. First, we use bench-mark Pt NPs grown 

by PVD in UHV on pristine TiO2(110) surfaces (sample S1) to illustrate NP mobility, step 

decoration and coarsening phenomena. Secondly, we introduce modifications in the 
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morphology and reducibility of the TiO2 support (polymer-coating followed by an oxygen 

plasma treatment), and study how such modifications relate to the observed changes in 

the coarsening behavior (sample S2). Finally, we discuss the enhanced thermal stability 

of self-assembled and geometrically well-defined metal NPs synthesized by inverse 

micelle encapsulation methods28, 70 (Sample S3). The narrow NP size distributions that 

can be achieved by using the micelle encapsulation synthesis allow us to better follow 

any coarsening phenomena occurring in these samples, since log-normal distributions 

with tails skewed towards high NP sizes are not present on the as-prepared samples.  

Several explanations could be held responsible for the enhanced thermal stability 

of the micellar NPs, such as the possible existence of residual polymeric carbon trapped 

underneath the NPs, or the effect of the O2-plasma pretreatment. To gain further insight 

into the different processes, we have mimicked the micellar NPs by depositing PVD-

grown NPs on polymer-coated TiO2 and subsequently exposing those clusters to atomic 

oxygen (S2). For reference, this sample was then compared with conventional PVD-

grown NPs deposited on pristine TiO2 (S1). 

In addition to the pre-treatment effect, designing NP-support systems that ensure 

the stability of the NPs under reaction conditions, e.g., under a given chemical 

environment and at high temperature, is essential in order to maintain their catalytic 

performance and lifetime in an industrial setting.71 The second part of this study 

describes the role of the annealing environment on the thermal stability and coarsening 

behavior of inverse micelle prepared Pt NPs supported on high surface area γ-Al2O3. 

Our in situ real-time EXAFS measurements were carried out in the presence of O2, H2O, 
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or H2 up to 450°C. Our spectroscopic results are compared to ex situ TEM data 

acquired after the same annealing treatment in the three different environments.  

 

4.2 Sample preparation methods and experimental 

Two samples were synthesized by evaporating submonolayer coverages (0.09 

ML) of Pt on two differently-prepared TiO2(110) substrates at a deposition rate of 

1.5x10-3 ML/s (1 ML is defined as 1.5x1015 atms/cm2) measured by a quartz 

microbalance. Sample 1 (S1) consisted of Pt NPs evaporated at room temperature (RT) 

on pristine TiO2(110) and subsequently annealed in UHV at 830ºC, 930ºC, 1030ºC and 

1060ºC for 10 min. Prior to the Pt deposition, the TiO2(110) crystal was cleaned by 

several cycles of Ar+ sputtering (P[Ar+] = 1×10-6 mbar, 1 keV, 5 μA) for 45 min and 

annealing at 900-1000 °C for 20 min. This procedure was repeated until large (1×2)-

TiO2 terraces were observed by STM. 72 All experiments were conducted on a TiO2(110) 

crystal of dark blue color, which indicates its bulk reduction. Such crystal has sufficient 

conductivity for STM imaging, and displays a bandgap of about 3.2 eV according to our 

scanning tunneling spectroscopy (STS) measurements (Fig. 23). 

In order to test whether the roughness of the substrate (e.g. terrace width, 

presence of defects, etc.) and/or stoichiometry (degree of TiO2 reduction) affects the 

coarsening behavior of the deposited NPs, a second sample (S2) with a polymer-

modified surface [PS(27700)-P2VP(4300) dissolved in toluene] was prepared. The 

same Pt coverage as in S1 (0.09 ML) was evaporated at RT on the polymer-modified 

TiO2(110) support (S2).  
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A third sample was prepared consisting of micellar Pt NPs supported on TiO2(110) 

(S3) synthesized by reverse micelle encapsulation70 as described in detail elsewhere.28, 

73-76 The diblock copolymer used for this synthesis was the same one employed to 

modify the TiO2 surface in S2, with the difference that in the latter case the polymeric 

micelles were loaded with Pt, with a metal salt-to-P2VP weight ratio of 0.6.  

  

Fig. 23:  STS measurements (I-V curve) of a sputtered-annealed reduced TiO2(110) 
surface showing a characteristic ~3.2 eV bandgap. 

Sample 1 was prepared in UHV, while S2 and S3 were introduced into our UHV 

system after substrate functionalization with the PS-P2VP polymer (before Pt NP 

deposition for S2 and after the dip-coating of the micellar Pt NPs for S3). The removal of 

the polymeric ligands from S3 was achieved by an in situ oxygen-plasma treatment (O2 

pressure = 4×10-5 mbar, 120 min) at RT. Sample 2 was subjected to an analogous 

treatment to remove the polymer from the substrate surface after the deposition of Pt in 
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UHV. XPS measurements (Al-Kα, 1486.6 eV) conducted after the latter treatment 

corroborated the complete disappearance of the polymeric C-1s signal from the micellar 

sample (S3). Although the C-1s signal completely disappeared after the O2-plasma for 

S3 (micellar NPs surrounded by a thin polymeric layer), a small C signal was detected 

for S2 (evaporated NPs deposited on a thicker polymer layer) after the first annealing 

treatment at 930°C, which was assigned to polymeric carbon leftover from the TiO2 pre-

treatment likely trapped underneath the NPs. Nevertheless, no C was detected by XPS 

in any of the samples after the subsequent annealing at high temperature (>930°C), 

which is the starting point of our coarsening study.  

After the atomic oxygen exposure, the micellar sample (S3) was isochronally 

annealed in UHV in 100°C intervals from 300°C to 900°C for 20 min and from 1000°C to 

1060°C for 10 min. Sample 2 experienced a thermal treatment identical to that of S1. 

The NPs in S3 are oxidized (PtO2) after the O2-plasma treatment but subsequently 

reduced after annealing above 300ºC.76 

The comparison of the morphology of all three samples directly after NP 

deposition at RT was not possible via STM due to the strong enhancement of the 

roughness of the TiO2 substrate observed after the O2-plasma treatment applied to S2 

and S3 to remove the organic ligands used in the synthesis. Such treatment gives rise 

to TiOx clusters on the support surface which cannot be easily distinguished from small 

Pt NPs based exclusively on morphological measurements. Therefore, the comparison 

of the sintering behavior of all three samples was done after annealing treatments 

above 900ºC, which were found to lead to a flatter TiO2 morphology that could be 

atomically resolved.  
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STM images were acquired at RT after annealing from 930ºC to 1060ºC. An 

electrochemically-etched W tip was used. The tip was cleaned in UHV by Ar+ sputtering 

before each STM session. The base pressure of the STM chamber was 1×10-10 mbar. 

The scanning parameters used were: It = 0.1 nA and Vt= 1.2 V. Due to tip convolution 

effects, the NP diameter obtained by STM overestimates the real diameter56, 57, 77, 78, and 

since the tip shape might also change during the measurements, it cannot be reliably 

used for comparison purposes. Since the measured NP height is independent of the tip 

shape, it is used here as representative size parameter, Table 2. Throughout this 

manuscript, when NPs were observed at TiO2 step-edges, the average height of the top 

and bottom TiO2 terraces was used as height background reference. 

In the second part of this study, γ-Al2O3 supported micellar NPs were prepared for 

EXAFS and TEM measurements. Inverse micelles were created by dissolving 

polystyrene 2-vinylpiridine, [PS(16000)-P2VP(3500)] in toluene. Subsequently, the 

micellar cages were loaded with Pt (H2PtCl6 precursor) with a 0.05 ratio for S4-S6. The 

NP solution was then mixed with nanocrystalline γ-Al2O3 (surface area > 150 m2/g) at a 

loading of 1 % wt. Pt, and allowed to dry in air at 60ºC. Additional details on the sample 

preparation can be found in Refs. 5, 28, 39, 79-81. 

For this part of the study, we have prepared 3 separate but identically synthesized 

samples, and exposed them to three different annealing environments in order to 

explore their influence on the dispersion and thermal stability of the NPs. Samples 4, 5, 

6 were pre-treated in O2 (70% balance by He) at 375°C for 24 h and subsequently 

reduced in situ in H2 (50% balance by He) at 375°C for 30 min. Next, sample S4 was 

annealed in O2 at 450°C for 3 hours and sample S5 was exposed to water vapor at 
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atmospheric pressure using a bubbler and annealed in the presence of water vapor and 

He at 450°C for 3 hours. Finally, sample S6 was annealed in H2 at 450°C for 3 h. At the 

end of each thermal treatment, all three samples were reduced in hydrogen at 375°C 

and the final NP size evaluated in situ via EXAFS (in H2) and ex situ via STEM, both at 

RT. The summary of different treatments for each sample is provided in Table 1.  

Table 1:  Summary of the ex situ and in situ treatments applied to samples S4-S6 

SAMPLE 
Pt NPs/γ-Al2O3 

Ex situ 
pre-treatment 

In situ 
pre-treatment 

In situ 
thermal treatment 

S4 375°C (24h in O2) 375°C (0.5h in H2) 450°C (3h in O2) 

S5 375°C (24h in O2) 375°C (0.5h in H2) 450°C (3h in H2O vapor) 

S6 375°C (24h in O2) 375°C (0.5h in H2) 450°C (3h in H2) 
 

TEM measurements were carried out by A. DeLaRiva in Prof. Datye’s group at the 

University of New Mexico, Albuquerque. HAADF STEM measurements were performed 

on our samples before and after the coarsening investigation to obtain information on 

the NP size. The high absorption of the nanocrystalline alumina support makes 

measurements of very small Pt NPs (<1 nm) difficult, even in the HAADF STEM mode, 

due the poor contrast. TEM measurements were carried out on as-prepared, and 450°C 

H2O, O2, and H2-annealed samples82, to obtain the NP sizes, Table 3. The average NP 

diameters were obtained from measuring the full width at half-maximum of at least 600 

particles per sample.82 The error bars provided for the average TEM diameters are the 

standard deviation of the measured NP diameters.  

EXAFS measurements at the Pt-L3 edge were conducted in situ during the 

different thermal treatments at the NSLS at Brookhaven National Laboratory. The 
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experiments were carried out in fluorescence mode at beamline X19A with the powder 

samples pressed into thin pellets and placed inside a reactor cell with heating and 

cooling capabilities. The furnace was positioned on a motorized stage and the quartz 

tube axis was aligned along the x-ray beam direction. The samples were reduced in situ 

at 375°C in H2 and subsequently annealed in different environments (O2, H2O, and H2) 

up to 450°C for 3 hours. 

The Athena and Artemis programs from the Ifeffit software package were used to 

process and analyze the EXAFS data acquired. 83, 84 A Pt foil measured in reference 

mode was used to align different scans of the NP samples. The Artemis program 83-85 

was used to fit the 1st nearest neighbor (NN1) Pt-Pt component of the EXAFS data. 

Theoretical EXAFS signals were constructed with the FEFF6 program86 using the model 

structure of face centered cubic (fcc) Pt. The crystalline structure of all reduced Pt NPs 

investigated here is consistent with the fcc structure. The influence of the annealing 

environment on NP coarsening is illustrated by comparing reduced samples measured 

in H2 at RT before and after a given annealing treatment in O2, H2O, or H2 (S4-S6). 

 

4.3 Theoretical and simulation methods 

The following models have been applied to simulate the coarsening mechanisms 

of Pt NPs prepared using two distinct synthesis methods (PVD and inverse micelle 

encapsulation) and supported on differently treated TiO2(110) surfaces. Each simulation 

requires two sets of measurements: (i) one initial experimental NP size distribution as 

the starting point of the simulation which is being subjected to a thermal treatment, and 

(ii) a measurement of the final state of the sample after the thermal treatment, which is 
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used to compare with the results of the simulation. Therefore, based on three sets of 

STM images acquired after annealing at 930°C, 1030°C and 1060°C, two sets of 

simulations can be carried out: (i) from 930°C to 1030°C, and (ii) from 1030° to 1060°C. 

The former will be compared with the experimental 1030°C and 1060°C STM size 

histograms, respectively. 

 

4.3.1 Ostwald ripening 

Following the Ostwald-ripening model, atoms detach from small NPs and move 

randomly over the substrate surface until they find another NP to join. It should be 

considered that small NPs lose atoms at a higher rate as compared to larger clusters 

due to size-dependent energetics. As a result of this phenomenon, the larger NPs grow 

in size at the expense of the smaller ones, until the latter completely disappear. The 

overall result is a shift of the NP size distribution to higher values and a decrease in the 

density of NPs on the substrate surface. For an interface-limited Ostwald-ripening 

process, in which the rate limiting step is the detachment of metal atoms from the NP 

perimeter (in contact with the support), the rate of change of the size of a NP with radius 

R is51, 53, 64, 65:  
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, where kB is the Boltzmann constant and R* is a critical NP radius that represents 

the unstable equilibrium size for which the NP radius remains constant due to a 

compensation effect based on the number of incoming atoms arriving to a NP being the 
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same as that of the atoms leaving the NP. E(R) is the difference between the heat of 

adsorption of a metal atom in a NP of radius R and the corresponding bulk sublimation 

enthalpy (HSUB in Fig. 24), Etot is the total energy barrier of the system, and K is a 

parameter that depends on the specific NP material, the vibrational frequency of a 

monomer on the NP, and the contact angle of the metal NP with the support (assumed 

to be 90° here).52, 53, 64, 65  

 

Fig. 24:  Heat of sublimation of Pt atoms (HSUB) calculated using the MBA model and 
adatom formation energy (EAF) calculated by Yang et al.87, using molecular 
dynamics and nudged elastic band calculations for Pt clusters with Wulff 
polyhedral shape. The horizontal dashed line indicates the heat of sublimation 
of bulk Pt. 

Since the surface energy is expected to be size-dependent for NPs smaller than 

~5 nm, the formulation of the heat of sublimation previously used by other groups55-57, 64, 

67 assuming a constant surface energy and giving rise to a 1/R size dependency is not 

valid for the calculations of E(R) in eq. (1). Instead, the modified bond-additivity model 
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(MBA) must be used.51-53 Fig. 24 displays the heats of sublimation that we have 

extracted following the MBA model using Wulff-like NP shapes1, 5, 88-90 instead of 

previously considered pyramidal shapes.51-53 The former shapes are expected to be a 

better representation of the most commonly observed experimental NP geometries.1, 5, 

88, 89  

E(R) was obtained by subtracting the heat of sublimation of bulk Pt (563 kJ/mol) 

from that obtained from the MBA model for the Pt NPs, Fig. 24. 

In addition, the critical radius (R*) in eq. (1) should be defined in a way that 

satisfies the mass conservation pre-requisite, e.g., no atoms are expected to be lost 

during the coarsening process at the particular temperatures considered.90 We have 

ensured mass conservation by setting Σ dVtot/dt=0, where Vtot is the total volume of the 

NPs. This allows us to determine the critical energy E(R*) in eq. (1) following:  
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One important practical challenge in the use of eq. (1) to obtain the time 

dependent R(t) for many NPs is the fact that widely different time scales are involved in 

the coarsening phenomenona. The size reduction of NPs with a radius well below the 

critical radius and the continued reappearance of small clusters occur extremely rapidly 

at elevated temperatures (10-4 – 10-7 s). In order to follow such effects while maintaining 

mass conservation using eq. (18), very fine time steps are needed during the entire 

thermal treatment.90 Such small time steps result in computationally intensive 

calculations, especially for the industrially relevant time scales of coarsening, which are 
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in the order of months to years. To overcome this issue we have introduced a new 

method to reduce the computation time by several orders of magnitude while ensuring 

mass conservation. Our approach is to use numerical methods to find the effective 

critical energy E(R*) that conserves the total mass during the desired time step (as large 

as several seconds). The change in the total volume (∆V) obtained from an initial guess 

of R* is calculated, and a bisection method implemented to find the root of ∆V[E(R*)]. 

Since the change in R* is gradual, the bisection method was found to converge very 

fast, and E(R*) can be calculated within a few iterations. Therefore, instead of running 

the simulation with a very fine time step (e.g. a time step of 10-5 s needs 105 calculations 

for each second of simulation), similar results satisfying mass conservation can be 

achieved by using larger time steps (e.g. 1 s) and doing just a few numerical 

calculations.  

 

4.3.2 Diffusion-coalescence 

In addition to the model discussed above, the possibility of NP diffusion and 

sintering must also be taken in to account. Following the mean field approximation, the 

rate of change of the density of NPs on a substrate is given by:55-57, 62, 63  
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, where DC is the diffusion constant of the NPs55-57, v is the NP volume, and f(v) is 

the density of NPs with volume v. It is assumed that the NPs are distributed randomly 

on the support and that the probability of interparticle collision is proportional to their 

surface density as well as to their mobility.  
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The diffusion constant of the NPs (DC) is proportional to the density of adatoms on 

the NP surface (ρ) and has a 1/r4 size dependence.55-57 However, the previous 

formulations were only valid for the comparison of isothermal experiments.55, 56 In order 

to overcome this shortcoming, we have introduced the following expression for ρ: 
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, where ρ0 is the density of adatoms at infinite T, which is the same as the surface 

density of metal atoms [≈ 1.5×1019 atoms/m2 for the platinum (111) surface]. The 

adatom formation energy barrier (EAF) is the energy needed for an atom to migrate from 

the core of the NP to the surface, and is equal to the heat of sublimation minus the 

binding energy of the adatom to the surface. Here, the size effect is implicitly included in 

EAF(R), and therefore, using the proper EAF(R) is the key to obtain the correct diffusion 

equation. We have used in our simulations the results of molecular dynamics (MD) and 

nudged elastic band (NEB) calculations by Yang et al. 91 for the adatom formation 

energy of clusters with Wulff polyhedral shape, Fig. 24. 

Following the above considerations, a modified description of the diffusion 

coefficient of a NP with radius R is proposed:  
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, where KS is a constant which takes into account the support effect, PtD0 is a pre-

exponential factor, Ω is the atomic volume of Pt, and Ed is the Pt self-diffusion barrier. Ω 

is the Pt atomic volume, and R is the NP radius.  
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Equations (19) and (21) can be used to calculate the time evolution of the NP size 

distribution. We have introduced an efficient matrix-based calculation to simulate eq. 

(19) which is equivalent to its direct integration, but that overcomes the statistical errors 

associated with the random collision method.66 First, a volume vector V is constructed 

containing monotonically increasing values of NP volumes, vi. Then, for a given instant 

of time, the volume histogram vector is constructed, Fi =f(vi), in which each element 

contains the population of NPs with volume vi. In the next step, the diffusion coefficient 

vector Di=D(vi) is calculated, with each element being the diffusion coefficient of a 

cluster with size vi. The time evolution matrix is given by:  

T= FT(DoF) or Tij= Fi(Dj.Fj) (22) 

, where “o” denotes the Hadamard product of the two matrixes. Tij is the collision 

rate of clusters with volume vj moving towards clusters with volume vi. This simple 

matrix multiplication provides all the information needed to determine the time evolution 

of a NP size distribution within a given time step. The change in the population of 

clusters with volume vi after a time step dt is obtained from: 

∑∑ ++=
−= jijk
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, where the first and second terms on the right hand side, represent the first and 

second integrals in eq. (19) 
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4.4 Results 

4.4.1 Pt NPs evaporated on pristine TiO2(110) (STM) 

RT STM images of NPs grown by evaporating 0.09 ML of Pt on pristine 

(sputtered/annealed) TiO2(110) are shown in Fig. 25. The images correspond to a 

sample that was subsequently isochronally annealed in UHV at 930ºC (a,b), 1030ºC 

(c,d), and 1060ºC (e,f) for 10 min. The atomically-resolved (1×2) reconstruction of the 

partially reduced TiO2(110) support can be seen in these images. This surface 

reconstruction is typical of strongly reduced TiO2 crystals.55, 72 Fig. 25 shows the 

presence of Pt NPs over the entire TiO2 surface at 930ºC. However, with increasing 

annealing temperature (>1000ºC), preferential decoration of TiO2 step sites is observed, 

although some NPs still remain on terraces of the support even at 1060ºC. The steps on 

this TiO2 surface are not primarily oriented along [001], which is known to be one of the 

most stable step orientations after high temperature annealing.55 The latter is attributed 

to insufficient annealing time during our experiments to achieve the most stable step 

orientation. 

Histograms of the NP height and interparticle distance obtained from these STM 

images are included in Fig. 26. An increase in the average NP height from 0.5 ± 0.2 nm 

to 1.0 ± 0.3 nm is observed with increasing annealing temperature from 930ºC to 

1060ºC, Fig. 26(a). As expected in coarsening processes, the increase in the NP height 

is accompanied by a parallel decrease in the NP density on the support, Fig. 26(a), and 

an increase in the interparticle distance, Fig. 26(b).  
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Fig. 25:  STM images of 0.09 ML of Pt evaporated on pristine TiO2(110) acquired at RT 
after annealing in UHV at 930°C (a,b), 1030°C (c,d), and 1060°C (e,f) for 10 
min. 
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Fig. 26: Height (a) and interparticle distance (b) histograms obtained from the STM data 
of Pt NPs evaporated on pristine TiO2(110) shown in Fig. 25 after annealing at 
930°C (squares), 1030°C (triangles), and 1060°C (circles).  

As mentioned before, the NP diameter obtained via STM for 3D NPs cannot be 

trusted due to tip-convolution effects.55-57, 77, 78 However, STM measurements provide 

reliable information on the NP height (h) and surface density, parameters that in 

combination with the total evaporated thickness estimated from the quartz microbalance 

can be used to gain insight into the NP shape. By assuming that no material has been 

lost during the different annealing treatments, the total volume of all Pt NPs in our 

sample should be the same at each temperature. This volume can be extracted from 

the quartz microbalance measurements. In order to gain insight into the NP shape 

(aspect ratio φ=height/radius), an initial guess of the shape can be made, for example, 

hemispherical, and the total volume of Pt can be calculated based on the STM-

measured NP height and cluster density. If the latter total STM volume is different from 

the one obtained from the quartz microbalance, it could be concluded that a wrong 
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assumption for the NP shape was made, and that a different aspect ratio must be 

considered. Following this idea, the NP aspect ratio can be adjusted (0<φ<2) for all 

STM measurements at a given temperature in order to satisfy the mass conservation 

criterion. For truncated spherical NPs (of radius R and height <2R), the NP volume is 

obtained from: )
3
11(3 −=

ϕ
π ii hV   

These calculations were done using individual NP heights (hi) measured by STM. 

Table 1 shows the calculated aspect ratios following the above approach after each 

annealing treatment. The aspect ratios represent an average of those from small and 

large NPs present on the support surface at a given temperature. An increase in the 

average aspect ratio is observed with increasing average NP size (height), suggesting 

that NP-support interactions are weaker for the larger NPs. Although this result is 

obtained for truncated spherical NP shapes, it is also expected to be valid for other 

shapes.  

Since the pristine substrate was already annealed at high temperature before Pt 

evaporation, the support is not expected to change significantly upon annealing [the 

original (1×2) reconstruction remains], and the change in the shape of the NPs cannot 

be attributed to morphological changes of the support surface. 

For our 3D NPs, the larger the NPs, the lower will be the influence of interfacial 

effects. A similar effect was reported by Yang et al. 91, since Au NPs larger than 4.6 Å 

deposited on TiO2(110) were found to be less sensitive to the oxygen content on the 

TiO2 surface than smaller NPs. Jak et al.55-57 also described an increase in the aspect 

ratio of Pd NPs supported on TiO2(110) upon annealing treatments in UHV at 672 K.  
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Table 2: Average NP height (h), interparticle distance (IP), density of NPs on the 
support, and aspect ratio extracted from the analysis of RT STM 
measurements acquired after annealing at the indicated temperatures. The 
data displayed correspond to Pt NPs evaporated on (a) pristine TiO2(110), 
(b) polymer-coated TiO2(110), and (c) micellar Pt NPs deposited on 
TiO2(110). The standard deviations are included in parenthesis. 

 Height 
(nm) 

IP distance 
(nm) 

Surface density 
(NP/m2 ×1015) Aspect ratio 

φ 

(a) Pt NPs evaporated on pristine TiO2(110) – S1 

930°C 0.5 (2) 7 (3) 25.6 0.6 

1030°C 0.8 (3) 9 (4) 11.3 0.9 

1060°C 1.0 (3) 12 (5) 7.3 1.0 

(b) Pt NPs evaporated on polymer-coated TiO2(110) – S2 

930°C 0.8 (3) 9 (4) 13.5 0.9 

1030°C 1.0 (4) 11 (5) 7.5 1.0 

1060°C 1.3 (6) 13 (7) 3.8 1.1 

(c) Micellar Pt NPs deposited on pristine TiO2(110) – S3 

1000°C 3.1 (6) 28 (5) 1.3 - 

1060°C 3.0 (7) 31 (7) 1.3 - 
1060°C 2nd 3.0 (9) 30 (7) 1.4 - 

 

4.4.2 Pt NPs evaporated on polymer-modified TiO2(110)  (STM) 

In order to test whether the roughness of the substrate (e.g. terrace width, 

presence of defects, etc.) and/or stoichiometry (degree of TiO2 reduction) can affect the 

mobility of the deposited NPs, we have prepared a second sample in which the clean 

pristine TiO2(110) substrate was initially ex situ coated by a thin layer of the PS-P2VP 

diblock copolymer. Pt NPs (0.09 ML) were evaporated in UHV on the polymer-coated 
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TiO2 surface at RT and subsequently exposed to an O2-plasma treatment and 

isochronal annealing from 930ºC to 1060ºC for 10 min, Fig. 27.  

Although the strong reduction of our bulk TiO2(110) crystal used in these 

experiments was evident from its dark blue color, the former treatment results in a lower 

degree of reduction of the TiO2 surface as compared to the pristine sample. 

Nevertheless, after our high temperature annealing, the same (1×2) reconstruction is 

observed for both samples. The STM images in Fig. 27 reveal a rougher morphology 

(narrow terraces) of the TiO2 surface after the above treatment as compared to pristine 

TiO2, which is characterized by much wider terraces at the same temperatures. 

Moreover, straight TiO2 steps with a preferential [001] orientation are observed in the 

polymer-coated TiO2 sample after O2-plasma and annealing, while rounder steps 

appear on pristine TiO2. 

This result indicates that the initial presence of the polymer and atomic oxygen 

pre-treatment affect the subsequent morphology (terrace width and preferential step 

direction) of the TiO2 surface upon high temperature annealing. Even in the absence of 

NPs, the TiO2 surface is known to form elongated steps along [001] at high temperature 

(>900ºC) in order to accommodate a non-stoichiometric composition without destroying 

the crystalline structure.55 

It is interesting that we do not see these steps on the pristine TiO2 sample after an 

analogous annealing treatment. We attribute the difference to the distinct roughness 

and stoichiometry of both supports. An enhanced roughness is expected for the 

polymer-coated and O2-plasma-treated surface.  
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Fig. 27: STM images of 0.09 ML of Pt evaporated on polymer-coated TiO2(110) taken at 
RT after an O2-plasma treatment and subsequent annealing in UHV at 930°C 
(a,b), 1030°C (c,d), and 1060°C (e,f) for 10 min.  
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Ex situ AFM investigations of the TiO2(110) surface by Jak 55 also revealed 

relatively narrow [001] steps on rough TiO2 surfaces upon air exposure. 

After annealing at 1060ºC [Fig. 27(e,f)], the majority of the NPs on this sample can 

be found at TiO2 steps. Since during Pt evaporation all the steps and defect sites on the 

TiO2 surface were masked by the polymer in this sample, our NPs did not initially form 

by nucleation at steps (strong binding sites). Instead, significant mass transport (Pt 

atoms and/or clusters) must have occurred during the O2-plasma and subsequent 

thermal treatment. In analogy to the case of the Pt NPs evaporated on the pristine 

TiO2(110) surface, the size histogram from this sample reveals an increase in the 

average NP height (from ~0.8 nm at 930ºC to 1.3 nm at 1060ºC) [Fig. 28(a)] and an 

increase in the interparticle distance [Fig. 28(b)] with increasing annealing temperature.  

These effects are accompanied by a decrease in the NP density on the support 

surface, Table 1(b). An increase in the NP aspect ratio is also observed for this sample 

with increasing annealing temperature, indicating the decrease in the binding energy of 

the NPs to the support. As mentioned before, the TiO2 substrate in this sample was 

exposed to air (ex situ polymer coating) before NP deposition, and subsequently O2-

plasma treated in UHV (after Pt NP deposition), leading to an oxidized TiO2 surface. 

However, each subsequent annealing cycle in UHV at high temperature is expected to 

further reduce the TiO2 surface, strengthening thus the binding of the Pt NPs to TiO2, 

since oxygen vacancies have been reported to be preferential binding sites for metal 

NPs.18, 56, 78, 91-95 

However, the increase in the aspect ratio observed (more 3D-like NPs) in spite of 

the increase in the degree of reduction of the support surface (that should have lead to 
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2D NPs) can be understood as a size effect, since the interface effect is not as 

important for the larger NPs formed due to coarsening.  

  

Fig. 28:  (a) Height and (b) interparticle distance histograms obtained from the STM 
data of Pt NPs evaporated on polymer-coated TiO2(110) shown in Fig. 3 after 
an O2-plasma treatment and subsequent annealing at 930°C (squares), 
1030°C (triangles), and 1060°C (circles). The population has been normalized 
for different measurements to have the same area under the curve of 100.  

 

4.4.3 Micellar Pt NPs/TiO2(110) (STM) 

Fig. 29 displays STM images from micellar Pt NPs dip-coated on TiO2(110) (S3) 

after polymer removal by atomic oxygen exposure and subsequent annealing at (a) 

300°C and (b) 1000°C.  

Surprisingly, neither the NP size nor their surface distribution was found to change 

significantly upon annealing at 1000°C, Fig. 29(b). However, a decrease in the 
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roughness of the TiO2 support (induced by the initial O2-plasma treatment) from 0.3 ± 

0.05 nm after annealing at 300°C to 0.07 ± 0.03 nm at 1000°C can be seen. 

 

 

Fig. 29:  In situ STM images (200 nm ×200 nm) of Pt NPs deposited on TiO2(110) after 
an in situ O2-plasma treatment and subsequent annealing in UHV at (a) 300°C 
for 20 min and (b) 1000°C for 10 min. 

The TiO2(110) substrate demonstrates a (1x2) surface reconstruction after high 

temperature annealing (>900°C). Further stepwise annealing from 1010°C to 1060°C, 

Fig. 30(a-f), demonstrated the enhanced thermal stability and low mobility of the 

micellar Pt NPs. Only upon annealing at 1060°C for additional 10 min, were small 

changes in the NP size and in the local NP arrangement noticed, Fig. 30(g,h).  

Fig. 31 shows histograms of the NP height (a) and interparticle distance (b) 

obtained from the analysis of numerous STM images acquired after different in situ 

thermal treatments from 1000°C to 1060°C.  
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Fig. 30:  In situ STM images of Pt NPs deposited on TiO2(110) acquired after O2-
plasma and subsequent annealing in UHV at (a,b) 1010°C, (c,d) 1040°C, (e,f) 
1060°C, and (g,h) 2nd 1060°C, for 10 min at each temperature. The size of the 
images in the left column is (200 x 200 nm) and in the right is (100 x 100 nm).  
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Fig. 31:  Normalized histograms of (a) NP height and (b) interparticle distance obtained 
from STM images acquired after isochronical annealing in 10°C intervals (10 
min) from 1010°C to 1060°C. The lines in (a) are guides for the eye, while the 
data in (b) where fitted using Gaussian curves. For each temperature, the 
above statistics include 300-670 NPs.  

The data in Fig. 31(a) indicate that the average NP height is nearly constant up to 

the first annealing treatment at 1060°C for 10 min (3.4 ± 0.2 nm). 

However, a clear increase in the width of the NP height distribution and bimodal 

shape is observed upon further annealing at the same temperature (1060°C, 20 min), 

with maxima at 3.2 nm and 2.3 nm. In addition, the width of the height distribution 

increased from 0.9 nm at 1000°C to 1.6 nm at 1060°C-2nd. Since NPs larger than the 

original average size were not found on this sample upon annealing (Fig. 31a), the 

bimodal size distribution observed here cannot be attributed to coarsening. Possible 

reasons for such NP size distribution are either Pt desorption after prolonged annealing 

at 1060°C, or intrinsic errors in the determination of the NP height for this sample by 

using as reference either the top or the bottom terraces of the TiO2 substrate for NPs 

located at step edges.  
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Due to the initial hexagonal arrangement of our NPs, this type of sample 

constitutes an ideal model system to investigate NP mobility at high temperature. The 

nearest-neighbor interparticle distance histograms shown in Fig. 31(b) demonstrate that 

our initial NP arrangement is basically preserved after high temperature annealing, with 

an average interparticle distance (peak of the distribution) of 30 ± 2 nm from 1000°C to 

1060°C. If entire NPs were to desorb at high temperature, a shift of the histograms’ 

peak maximum towards higher interparticle distances should have been observed. On 

the other hand, significant NP mobility would have led to a broadening of the 

interparticle distance distribution and a corresponding reduction in the peak height. Only 

small changes in the peak position of ±0.5 nm were detected in the temperature range 

of 1000°C-1060°C. In addition, a small increase in the width (standard deviation) of the 

interparticle distance distribution (from ~7.3 nm at 1000°C to 9.1 nm at 1060°C, 20-min 

anneal) and a decrease in its height (peak population) can be observed above 1040°C. 

This result might indicate a weakening of the NP-support adhesion and the consequent 

onset of NP mobility. Since after our second annealing at 1060°C some smaller NPs 

(~2.3 nm) are present on the sample, the possibility of NPs break-up and local cluster 

mobility is more likely. Despite the observation of some local disorder, the majority of 

our scans still showed clear signs of a hexagonal NP arrangement up to the first thermal 

treatment at 1060°C. 

A striking observation is the formation of TiO2 nanostripes running preferentially 

along the [001] direction in the Pt-decorated samples upon annealing above 1000°C, 

Fig. 30. This phenomenon will be explained in more details in chapter 6.  
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4.4.4 Micellar Pt NPs/ γ-Al2O3   (EXAFS) 

Table 3 shows the size of the Pt NPs, obtained using HAADF-STEM measurement 

for samples S4-S6 after different thermal treatments: (a) as-prepared (all three identical 

samples annealed in O2 at 375°C for 24 h), (b) S4 after annealing in O2+He at 450°C (3 

h), (c) S5 after annealing in H2O+He at 450°C (3 h), and (d) S6 after annealing in H2+He 

at 450°C (3 h). All three samples were reduced in H2 at 375°C (30 min) after the former 

treatments before the subsequent RT EXAFS and STEM analyses.  

The ligand-free as-prepared samples were characterized by an average NP size 

distribution of: 0.5 ± 0.1 nm. Water dosing and subsequent annealing at 450°C in 

H2O+He did not lead to drastic changes in the overall sample morphology, although 

some sintering was observed: 0.8 ± 0.3 nm (S5). On the other hand, a drastic increase 

in the average NP size was observed when the same sample (a different portion of the 

same identical starting sample) was annealed in hydrogen, 1.2 ± 0.3 nm (S6), 

suggesting enhanced atomic/NP mobility in the reducing environment. Surprisingly, 

when the same sample type was annealed in O2, lack of sintering was observed: 0.6 ± 

0.2 nm (S4). 

Fig. 32 displays r-space Fourier-transform EXAFS data of samples S4-S6 

measured at RT in H2 after reduction at 375°C in H2 (30 min) before (labeled as-

prepared) and after in situ thermal treatments at 450°C in O2, H2O vapor, and H2, in 

each case for 3 hours.   
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Fig. 32: Fourier transform magnitudes of k2-weighted Pt-L3 edge EXAFS spectra 
acquired for samples S4-S6 at RT in H2 after an initial common pre-treatment 
in O2 at 375°C followed by reduction at 375°C in H2 and subsequent annealing 
in O2 (S4), H2O (S5) and H2 (S6) at 450°C for 3 hours. All samples were 
reduced in situ at 375°C in H2 before the acquisition of the EXAFS data. A 
representative first-shell fit of the EXAFS data of S6 is included as inset. 

Representative EXAFS data in k-space of S4-S6 measured at RT in H2 after 

annealing (450°C) under different environments, together with similar data from the as-

prepared sample (after reduction in H2 at 375°C) are shown in Fig. 33. 

After the former treatments, all samples were reduced in H2 at 375°C before the 

acquisition of the final RT-EXAFS data in H2 shown in Fig. 32 and Fig. 33. A 

representative 1st-shell fit is shown as inset in Fig. 32, and the results from those fits, 
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including 1st nearest neighbor CNs, Pt-Pt distances and atomic disorder (σ2) are 

included in Table 3. 
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Fig. 33: k2-weighted EXAFS in k-space of similarly prepared samples acquired at RT in 
H2 after annealing at 450°C for 3 hours in different environments: O2 (S4), H2O 
(S5), and H2 (S6).  

After reduction in H2 at 375°C, the as-prepared samples were characterized by 

NN1 = 6.5 ± 0.4. Annealing in oxygen for several hours at 450°C did not induce any 

clear changes in the average NN1, with NN1 = 6.9 ± 0.4 (S4), indicating the stability of 

the NPs in the oxidizing environment. When the same sample (a different portion of the 

same sample) was pre-dosed with water vapor and annealed in a water-containing 

environment (in He), a small change in the overall NP size was observed via EXAFS, 
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with NN1= 7.3 ± 0.3 (S5). In contrast, an identical thermal treatment in H2 was found to 

lead to clear NP sintering, with NN1= 8.3 ± 0.4 (S6). 

Nanoparticle sizes can also be estimated based on the EXAFS NN1 coordination 

numbers (Table 3), following the method presented in Ref. 82 that provides a relation 

between the NP’s weighted average size and the EXAFS 1st NN coordination number. 

Such data are included and compared to volume-weighted STEM diameters in Table 3. 

An overall good agreement between the EXAFS and STEM NP sizes is observed. 

Table 3: First nearest neighbor coordination numbers (NN1), Pt-Pt distances (R), 
atomic disorders (σ2), and NP sizes extracted from EXAFS and STEM data 
(diameter) after sample exposure to different in situ thermal treatments in O2 
(S4), H2O (S5), and H2 (S6). 

SAMPLE 
Pt NPs/γ-Al2O3 

NN1 R (Å) σ2 (Å2) 

TEM NP 
Diameter 

(nm) 

TEM volume- 
weighted NP 

Diameter 
 (nm) 

NP Size 
from  

EXAFS 
(nm) 

S4-S6 in H2 at RT 
after reduction in 
H2 at 375°C 

6.5(4) 2.749(4) 0.0078(4) 0.5(2) 0.6(2) 0.9(1) 

S4 in H2 at RT, 
after annealing at 
450°C in O2+He 

6.9(4) 2.750(3) 0.0073(3) 0.6(2) 0.8(3) 1.0(1) 

S5 in H2 at RT, 
after annealing at 
450°C in H2O+He 

7.3(3) 2.752(2) 0.0066(2) 0.8(3) 1.2(4) 1.1(1) 

S6 in H2 at RT, 
after annealing at 
450°C in H2+He 

8.3(4) 2.743(2) 0.0068(2) 1.2(3) 1.4(3) 1.4(2) 

Pt foil 12 2.763(1) 0.0050(1)    
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This study revealed a clearly distinct coarsening behavior of three identical 

samples after annealing in different environments (S4 in O2, S5 in H2O, S6 in H2).  

Fig. 34 shows XANES data of S5 acquired during the thermal treatment at 450°C 

in H2O vapor. The progressive increase in the intensity of the Pt-L3 absorption peak 

(white line) with increasing annealing time demonstrates the gradual oxidation of the 

NPs, which might explain their partial stabilization, as was the case of the NPs in S4 

after a similar treatment in oxygen. While platinum oxide species are unstable at high 

temperature (~450°C) under ultrahigh vacuum (UHV) or reducing atmospheres, they 

could be formed and stabilized at such temperatures in oxygen environments. 
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Fig. 34:  Pt-L3 XANES absorption peak of sample S5 acquired in situ during a thermal 
treatment at 450°C in H2O vapor+He. The progressive increase in the intensity 
of the absorption peak (or white line) with increasing annealing time (together 
with changes in the EXAFS region) reveal the gradual oxidation of the NPs 
under this environment. For reference, the data of the as-prepared sample 
after reduction in H2 at 375°C are shown.  
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Fig. 35 shows the XANES and EXAFS data obtained at 450°C for samples S4, S5, 

and S6 under O2, H2O, and H2 environments, respectively. From both, the increase in 

the white line intensity, Fig. 35(a), and appearance of a Pt-O contribution in the EXAFS 

spectra at ~2 Å, Fig. 35(b), the formation of stable PtOx species on our samples is 

concluded. Although the increase in the XANES white line intensity in Fig. 35(a) upon 

annealing in O2 or H2O might also be indicative of the presence of chemisorbed oxygen, 

and not PtOx, the presence of PtOx in samples S4 and S5 is evident in the EXAFS 

spectra from the decrease in the Pt-Pt contribution (coordination numbers) concomitant 

with an increase in the Pt-O component.  

Fig. 36 shows the EXAFS spectra, fitted with Pt-Pt and Pt-O components. The fit 

results are shown in Table 4.  

Table 4:  First-nearest neighbor coordination number (NN1), interatomic distance (R) 
and disorder (σ2) parameters of the Pt-Pt and Pt-O contributions extracted 
from in situ EXAFS measurements acquired during thermal treatments in O2 
(S4), H2O (S5), and H2 (S6) at 450°C. 

 

From this analysis, the largest oxide content was obtained for S4 (O2) followed by 

S5 (H2O), while no significant Pt-O contribution was observed for S6 (H2).  

 

SAMPLE 

Pt NPs/γ-Al2O3 

Pt-Pt Pt-O 

NN1 R (Å) σ2 (Å2) NN1 R (Å) σ2 (Å2) 

S4 at 450°C in O2 2.2(2.2) 2.69(3) 0.012(1) 2.1(0.5) 2.03(2) 0.001(3) 

S5 at 450°C in H2O 5.0(2.1) 2.68(3) 0.016(5) 1.2 (0.3) 2.03(2) 0.001(3) 

S6 at 450°C in H2 8.1(0.8) 2.716(7) 0.013(1) - - - 
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Fig. 35: (a) Normalized absorption coefficient corresponding to the Pt-L3 edge and (b) 
k2-weighted Fourier transform magnitudes of Pt L3-edge EXAFS spectra of 
samples S4-S6 acquired at 450°C in O2, H2O and H2.  
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Fig. 36: k2-weighted Fourier transform magnitudes of Pt L3-edge EXAFS spectra 
acquired for samples S4, S5 and S6 at 450°C under different environments. 
The data were fitted with two components: a Pt-Pt scattering path (hatched 
area) and a Pt-O path (filled area). The fit results are shown in Table 4. 
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4.5 Discussion 

4.5.1 STM observations 

The data shown above reveal clear changes in the stability of Pt NPs as a function 

of the preparation method, with micellar Pt NPs being significantly more stable than 

UHV-evaporated NPs on TiO2(110). In addition, in agreement with previous literature 55-

57, 78, 91-93, 95, the coarsening of evaporated Pt NPs appears to be affected by the pre-

treatment underwent by the support, which leads to drastic changes in its morphology 

and stoichiometry (surface reduction). For Pt NPs evaporated in UHV, we have 

observed enhanced coarsening when the NPs were deposited on the polymer pre-

coated TiO2 surface (S2), as compared to pristine (sputtered/annealed) TiO2 (S1), 

indicating weaker NP/support binding in S2. This effect could be partially attributed to 

the distinct pretreatment that the TiO2 support in S2 underwent prior to the evaporation 

of Pt NPs, since due to the initial polymer-coating of the TiO2 surface in S2, the Pt NPs 

were not able to nucleate on stable binding sites such as O-vacancies. In addition, the 

O2-plasma pre-treatment conducted on S2 after Pt evaporation might have affected the 

initial stability of the NPs. As will be discussed below, the O2-treatment does not only 

modify the surface of the TiO2 support, but also that of the Pt NPs, including their 

oxidation state. NP coarsening has been explained in the past due to the formation of 

volatile PtOx species and their re-deposition on the support surface.59 Although the 

larger (~3 nm) micellar Pt NPs (S3) were exposed to the same O2-plasma treatment as 

S2 but did not display any mobility, smaller Pt clusters (S2) are known to experience a 

more facile oxidation and stronger oxygen binding5, 76, and are therefore expected to be 

more affected by the oxygen pre-treatment. Nevertheless, the above arguments can 
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only be used to explain the higher coarsening rate of the Pt NPs on the polymer-coated 

sample below 930°C, but not within the temperature regime employed here to monitor 

coarsening (930°C-1060°C). At such elevated temperatures, the Pt NPs and the TiO2 

surface are reduced for all three samples.  

We consider that the different coarsening trends observed when comparing S1 

and S2 after annealing above 930ºC are due to either strong metal support interactions 

and/or to morphological (rather than chemical) changes induced on TiO2 by the pre-

treatment. It is known that Pt NPs are more prone to become encapsulated by TiO2 on a 

reduced TiO2 substrate 93, and it is possible that the higher extent of TiOx encapsulation 

on the pristine sample (strongly reduced, S1) as compared to the polymer-coated 

sample (more oxidized up to 800ºC, S2) is partially responsible for the higher stability 

against coarsening of S1.93 The morphological differences between the TiO2 surfaces in 

S1 and S2 mentioned above are related to the fact that step edges, known to stabilize 

NPs18, 96, 97, are available on S1 (pristine TiO2) before Pt deposition, while they only form 

on the polymer-coated and O2-plasma treated S2 after high temperature annealing. 

 Jak 55-57 reported a higher growth rate and decoration of steps for Pd NPs 

evaporated on mildly reduced TiO2(110), while Pd evaporation on strongly reduced TiO2 

surfaces gave rise to smaller NPs distributed over the terraces. On the latter surface, 

the NP mobility was so low that a significant fraction of the NPs were not able to reach 

the energetically favorable step sites. Analogous findings were reported for Pt 78, Au 94, 

Cu and Ni on TiO2(110)96. We observed a similar behavior in our samples, since some 

clusters were still seen on the terraces for the Pt/pristine-TiO2 sample at 1060ºC (S1).  
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Datye et al.59 explained the enhanced sintering behavior of Pt NPs in air as 

compared to that under reducing conditions based on the formation of volatile PtOx 

species leading to more favorable interparticle mass transport.  Nevertheless, other 

studies have shown enhanced stability of Pt NPs supported on Υ-Al2O3 under oxygen 

environment for temperatures below 650 °C when the PtOx/oxide support interfaces are 

formed.82 Additionally, the work by Goeke and Dayte’s 69 on the mobility of large Pd 

clusters deposited on SiO2 and Al2O3 revealed an enhanced rate of sintering for 

Pd/Al2O3, even though that system is characterized by stronger metal/support 

interactions than Pd/SiO2. A NP/support combination, where strong metal/support 

interactions are expected (Pt/pristine-TiO2), does not necessarily lead to more stable 

NPs. To the contrary, in such cases, the support may assist the mobility of NPs and 

atoms, leading to more pronounced coarsening patterns at least through the Ostwald-

ripening pathway.  

Fig. 37 shows the percentage of NPs found on terraces and at step edges for all 

Pt NP samples (S1-S3). Both evaporated samples show an increase in the percentage 

of NPs at step edges with increasing annealing temperature, while the micellar sample 

showed the opposite trend. As was discussed before, the micellar NPs are not mobile, 

but their presence on the TiO2 surface leads to changes in its morphology, as for 

example the presence of narrower terraces or formation of TiO2 nanostripes.28, 82 

With increasing annealing temperature, wider terraces and a lower density of step 

edges are observed in all samples, but the mobile evaporated Pt NPs can still reach 

those sites, while the immobile micellar NPs won’t follow the changes in the support 

morphology. 
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Fig. 37: Thermal evolution of the number of Pt NPs present on terraces and at step 
edges for (a) PVD-grown and (b) micellar NP samples..  

Despite the lower number of step edges available, the increase in the number of 

evaporated NPs (S1 and S2) decorating steps after annealing at high temperature is a 

signature of coarsening. Both coarsening mechanisms could result in NP step-edge 

decoration. In an Ostwald-ripening model, the step edges would stabilize the NPs and 

therefore reduce the rate of departing atoms, and eventually favor the growth of NPs at 

those sites in detriment of those at terraces. On the other hand, in a diffusion-

coalescence model, the step edge stabilization would diminish the diffusion of the NPs 

decorating the steps, and therefore, more mobile NPs (e.g. those at terraces) would 

eventually coalesce with the stationary (pinned) NPs at the step edges. Therefore, at 

the elevated temperatures investigated here, coarsening by either Ostwald-ripening, 
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diffusion-coalescence, or a combination of both processes, could be held responsible 

for the step edge decoration of PVD NPs. 

Although the shape of the size histograms has been used in the past to 

differentiate the two fundamental coarsening models (Ostwald-ripening versus diffusion-

coalescence), this approach has been questioned by many authors.59, 60, 69, 98 Howard et 

al.98 have studied the mobility of Pd NPs on TiO2(110) using high temperature STM. 

Although the size histogram obtained after 240 min annealing in UHV at 750 K was 

skewed toward larger sizes (as expected from the diffusion-coalescence mechanism), 

they did not observe a clear evidence for diffusion-coalescence via STM. Instead, their 

real-time STM measurements at 750 K demonstrated that the Ostwald-ripening pathway 

was the main coarsening mechanism. Similar experiments on Au/TiO2(110) by Mitchell 

et al.60 revealed that both coarsening mechanisms are responsible for the sintering 

observed, even though their size histograms displayed a bimodal distribution not 

resembling any of the skewed normal distribution expected for either model.  

In addition, although we see fewer and larger NPs in the polymer-coated sample 

as compared to the pristine sample after annealing, it cannot be necessarily concluded 

that there is less coarsening for the pristine sample within the range of temperatures 

shown in Fig. 25 and Fig. 27. One must also consider that even though the same 

amount of Pt was evaporated on both samples, it is likely that the initial NP size 

distribution before annealing was different. In particular, the presence of the polymer on 

the TiO2 surface of S2 could have led to an initial larger average size distribution which 

could have propagated after annealing, leading to the size differences between S1 and 

S2 observed at 930ºC (see Table 1). In addition to the possible distinct nucleation of Pt 
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atoms and Pt NP growth on reduced TiO2 (pristine sample, S1) as compared to 

polymer-coated TiO2 (S2), coarsening might also have occurred during the subsequent 

O2-plasma treatment underwent by S2 due to the formation of volatile PtOx species. 

Due to the enhanced roughness of the TiO2 support after the latter treatment, the NPs 

could not be resolved, and the coarsening behavior of all samples is only compared 

after annealing at high temperature. 

It should be noted that the initial sample pre-treatment is expected to affect the 

nucleation and growth dynamics of the PVD NPs and therefore, their initial size 

distribution. Nevertheless, the comparison and conclusions drawn here regarding their 

coarsening behavior are not related to their initial size and substrate distribution just 

after RT deposition or after a RT O2-plasma treatment, but after annealing cycles at 

elevated temperature (>930ºC). Under those circumstances, the TiO2 substrate was 

strongly reduced in all cases. Therefore, regardless of the initial NP size distribution, we 

have followed its evolution for all samples after annealing at high temperature using as 

starting point for the comparison STM data acquired at/above 930ºC. Although 

theoretically ideal, it is not possible experimentally to obtain identical initial NP size 

distributions and NP densities on the TiO2 surface after the different surface 

functionalizations described here. To overcome this issue, the simulation approach 

described here could be useful, since the effect of the distinct initial NP size and NP 

density have already been implicitly taken into account within the simulation models. 

Therefore the coarsening behavior of samples with different initial size distributions and 

NP densities could be compared via the fitting parameters Etot and KS. For instance, 

large Etot and small KS values are indicative of a higher resistance towards coarsening. 
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 To the best of our knowledge, real-time (live) STM or TEM measurements of NP 

coarsening at the elevated temperatures employed here (>900°C) have not been 

reported due to instrumentation limitations. The above discussion demonstrates the 

need of having a more reliable method to understand the main coarsening mechanism 

underlying our experimental observations and to obtain coarsening rates. The dominant 

coarsening mechanism is determined here based on simulations of the size histograms 

following two different sintering models. 

Lastly, the enhanced thermal stability of micellar Pt NPs could be attributed to 

possible small amounts of carbon (not detectable by XPS), present underneath the NPs 

or at the NP/support perimeter in the form of TiC compounds. Furthermore, in contrast 

to UHV evaporated NP samples, our size-selected 3D-like spherical NPs samples have 

relatively large interparticle distances, and Pt atoms or small Pt seeds are not present 

between larger NPs, making Ostwald ripening processes less favorable. Also the good 

size distribution of Pt NPs and their large interparticle distances could also hinder 

certain coarsening pathways. As discussed before, the size-dependent heat of 

sublimation is the driving force for the Ostwald ripening pathway. A narrower NP size 

distribution would result in a smaller difference between the rate of atomic detachment 

as compared to that of incoming atoms for any given NP. In addition, the large 

interparticle distances make it more difficult for either NPs (diffusion-calescence 

pathway) or isolated atoms (Ostwald ripening pathway) to diffuse on the surface and 

find another NP. In such case, the rate limiting step in the Ostwald ripening model would 

be the diffusion of atoms across the surface, rather than the detachment of atoms from 

the NPs. This requires a modified simulation model.65, 67 
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4.5.2 Simulation of coarsening mechanisms 

4.5.2.1 Ostwald ripening 

Fig. 38 displays simulations of the evolution of the NP radius for Pt NPs 

evaporated on (a) pristine TiO2 and (b) polymer-coated TiO2 following the Ostwald-

ripening model described in the theoretical methods section above. Each simulation 

uses an experimental size distribution as starting point and calculates the evolution of 

such distribution during a given annealing treatment. Since the NPs are assumed to be 

hemispherical, the values of R in eq. (1) are identical to the NP height (shown in the 

plots). Each experimental thermal treatment consists of three segments: (i) a ramp to 

the target annealing temperature (1030°C or 1060°C) with a rate of 1.5 °C/s, (ii) 

annealing at a constant target temperature for 10 min, and (iii) a second ramp to 

decrease the sample temperature to RT with the same rate as in (i). Each graph in Fig. 

38 shows the initial experimental histogram (full curve with hatched-pattern filled area) 

and the subsequent experimental NP size distribution after the thermal treatment (full 

curve with solid filled area), together with the results from the simulation at 1030ºC (a,b) 

and 1060ºC (c,d) (red solid curves).  

The only fitting parameter was the total energy barrier of the system Etot, varied 

within the range of 100 to 600 kJ/mol. The best fit was selected as such having the 

same NP surface density (number of NPs/surface area) than the experimental data after 

the annealing cycle. 

Although the peak positions of the simulated histograms are similar to the 

experimental data, a common feature in all simulations is their narrower size distribution 

as compared to the experimental results.  
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Fig. 38:  Best fits obtained from Ostwald-ripening simulations of the pristine (a,c) and 
polymer-coated (b,d) Pt/TiO2(110) samples. The hatched and solid filled areas 
are the initial and the final experimental size distributions, respectively. The 
solid line displays the simulated final size distribution obtained after annealing 
treatments in UHV at 1030 °C (a,b) and 1060 °C (c,d). 

The best Etot values extracted from our simulations are shown in Table 2. The 

error bars were defined as the deviation in Etot needed to obtain a 10 % change in the 

NP surface density with respect to the experimental value. The total energy barrier 

obtained for the Pt NPs evaporated on the polymer-coated sample was found to be ~50 

kJ/mol lower than that of the pristine sample, demonstrating a higher coarsening rate. 

Another interesting result is the ~30-40 kJ/mol decrease in Etot for these samples after 
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the second annealing cycle (1060° C). This result is in agreement with the increase in 

the aspect ratio described in the previous section with increasing annealing 

temperature, leading to a decreased NP/support interaction (dewetting) and to a weaker 

support effect for the larger NPs formed at the highest temperatures.  

Table 5:  Total energy barrier (Etot), support effect (KS), and diffusion coefficient (DC) 
obtained from the best fit of the Ostwald-ripening and diffusion-coalescence 
models to our experimental NP size distributions. The experimental data 
correspond to UHV evaporated Pt NPs deposited on pristine and polymer-
coated TiO2(110). The estimated errors are given within parenthesis. 

 Annealing 
temperature (°C) 

Pristine TiO2 
(S1) 

Polymer-coated TiO2 
(S2) 

Ostwald-ripening 
Etot (kJ/mol) 

 1030 575 (10) 525 (15) 

 1060 545 (20) 485 (10) 

Diffusion-coalescence 
KS (10-3 ) 

DC (×10-26 m2/s) 

 1030 1.3×(1.3±1) 
5.5  

4×(1.5±1) 
5.8 

 1060 1.7×(1.7±1) 
4.6 

13×(1.3±1) 
18.0 

 

Considering the heat of sublimation of platinum (563 kJ/mol )99 and the adsorption 

energy of Pt monomers on TiO2(110) 100, 101 (~3.5 eV on O-vacancy sites and ~2.1 eV 

on hollow sites with an average value of ~2.8 eV or 272 kJ/mol) and the diffusion barrier 

of Pt on TiO2(110) 100, 101 (~2.1eV for the [100] direction and ~0.9 eV for ]011[ , with an 

average value of ~1.5 eV or 147 kJ/mol) we could estimate Etot from:  

S
ad

S
msubtot EHHE −+∆=  (24) 

, where ΔHsub is the bulk heat of sublimation and Hm
s
 and Ead

s
 are the diffusion 

barrier and adsorption energy of metal atoms on the support, respectively. According to 
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eq. (24), a typical value for the total energy barrier of Pt on the TiO2 surface is 438 

kJ/mol, and in comparison, all of the Etot values obtained from our simulations are larger. 

It should be however noted that the overall agreement between simulated and 

experimental data is not good for this model. 

 

4.5.2.2 Diffusion-coalescence 

The same thermal treatment described in the previous section was used for the 

diffusion-coalescence simulations. The following constant parameters were used in the 

simulations: D=10-7 m2/s for Pt monomers on Pt(111)99, 102 and ρ0=1.5×1019 m-2. In this 

case, the calculations were done using the NP volume distribution since the volume is 

the independent variable in eq. (19) (see Fig. 39). The volumes were obtained from 

STM measurements of the NP height assuming a hemispherical NP shape. 

In Fig. 40, the simulation results were rescaled from NP volume to NP height to be 

consistent with the STM measurements as well as to allow the direct comparison with 

the results of the Ostwald ripening simulations. The results of the best fits (solid curves), 

together with the initial (full curves with filled hatched area) and final (full curves with 

solid filled area) experimental histograms, are also shown in Fig. 40. The only fit 

parameter used in the simulation is KS. The simulation results are in good agreement 

with the experimental data for both samples, especially after the second annealing 

treatment. The KS values obtained for the pristine and polymer-coated samples are 

shown in Table 2. Since the parameter KS entails support effects (NP pinning and step-

edge stabilization), which normally lead to decreased diffusion rates, it is expected to be 

smaller than 1, as obtained in our simulations (~10-3, Table 2). Despite the initial larger 
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average NP size (at 930 ºC), and similar to our findings based on the Ostwald-ripening 

model, a more pronounced coarsening was evidenced for the polymer-coated sample 

as compared to the pristine sample. In addition, a higher diffusion rate was also 

observed during the second annealing cycle (1060° C).  

 

 

Fig. 39:  Best fits obtained from a diffusion-coalescence simulation for pristine (a,c) and 
polymer-coated (b,d) Pt/TiO2(110) samples. The hatched and solid filled areas 
are the initial and the final experimental size distributions, respectively. The 
solid line displays the simulated final size distribution obtained after annealing 
treatments in UHV at 1030 °C (a,b) and 1060 °C (c,d). Since the independent 
parameter in the diffusion-coalescence model is the NP volume [eq. (19)], the 
calculations were done using NP volume histogram (graph above) and were 
subsequently rescaled to display the NP height in Fig. 40.  
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Fig. 40:  Best fits obtained from a diffusion-coalescence simulation for pristine (a,c) and 
polymer-coated (b,d) Pt/TiO2(110) samples. The hatched and solid filled areas 
are the initial and the final experimental size distributions, respectively. The 
solid line displays the simulated final size distribution obtained after annealing 
treatments in UHV at 1030 °C (a,b) and 1060 °C (c,d). 

In order to conclude which coarsening pathway better describes our experimental 

data, a fit quality parameter (Q) must be defined. Efron’s pseudo-R2 parameters 

(R2
pseudo = Q) were used to evaluate the goodness of the fit of the simulated histograms 

to the experimental data.103 However, due to statistical fluctuations in both, simulated 

and experimental histograms, data smoothing (spline fit) was conducted before the 

comparison.  
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The Efron’s pseudo-R2 (R2
pseudo) parameter was used as a quantitative 

representation of the goodness of the fit of our coarsening simulations (fit quality 

parameter, Q) to the experimental STM data. This description is an extension of the 

regression model based on a “percent variance” interpretation, as described in Ref. 103  

and the equation below: 
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The R2
pseudo

 parameter differs from R2 in linear regressions in the fact that it is not 

constrained between 0 and 1, since in nonlinear models there is no lower limit for R2. 

However, the closer the value of R2
pseudo to 1, the better the fit quality.  

Due to statistical fluctuations in the experimental data, data smoothing (spline fit) 

is needed prior to the comparison of the simulation results to the experimental data. An 

example of the procedure used for the calculation of the fit quality parameter (Q, Table 

3) is illustrated in Fig. 41. First, the experimental and simulated histograms are fitted 

with spline curves (data smoothing), Fig. 41(a,b).  

Subsequently, the spline curves representative of the experimental and simulated 

histograms are compared, Fig. 41(c), and R2
pseudo (Q-factor) obtained following eq. (25). 

The resulting fit quality factors, Q, are given in Table 3 with larger Q values representing 

better agreement between the simulation and experimental data (perfect agreement for 

Q=1). 
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Fig. 41: Spline fits to the experimental STM data (a) and to the Ostwald ripening 
simulation results (b) for a polymer pre-coated sample (S2) annealed at 
1060°C. The graph in (c) compares the smoothed (spline-fit) Ostwald-ripening 
simulation histogram to the smoothened experimental histogram. From the 
latter comparison, the fit quality parameter Q is obtained.  



96 
 

Table 6: Simulation quality factors (Q) for pristine (S1) and polymer pre-coated (S2) 
samples obtained for the Ostwald-ripening and diffusion-coalescence 
coarsening models. 

Sample Temperature (°C) 
Q  

Diffusion-
coalescence 

Q  
Ostwald 
ripening 

Pristine (S1) 
1030 0.57 -0.33 

1060 0.92 0.90 

Polymer pre-coated (S2) 
1030 0.86 0.18 

1060 0.96 0.31 
 

For the polymer pre-coated sample (S2), the quality of the simulation is 

considerably better for the diffusion-coalescence model as compared to the Ostwald 

ripening model during both thermal treatments. This is mainly due to the fact that size 

distributions narrower than those in the experimental data result from the Ostwald 

ripening simulations. Therefore, we conclude that the diffusion-coalescence pathway is 

the dominant coarsening mechanism underwent by the NPs in this sample. A similar 

conclusion can be drawn for the first thermal treatment (1030°C histogram) of the NPs 

supported on the pristine TiO2(110) surface (S1). Nevertheless, for the second thermal 

treatment (1060°C histogram), good agreement between the simulation and 

experimental data was observed for both models. 

However, in this case the total energy barrier obtained from the Ostwald ripening 

model (Etot = 545 kJ/mol) is too large and unphysical as compared to the expected 

theoretical value (Etot ≈ 438 kJ/mol). Therefore, the Ostwald ripening pathway can be 

ruled out. Additionally, the fitting parameters obtained for the diffusion coalescence 

model (KS) are reasonable for all samples and similar to those obtained by Jak et al.56 
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for the Pd/TiO2 system. Accordingly, the diffusion-coalescence pathway is assigned as 

the dominant sintering mechanism during all thermal treatments carried out on PVD-

grown NPs. 

Considering the average NP height (Table 1), KS (Table 2), and the adatom 

formation energy barrier (Fig. 24), the NP diffusion coefficient [DC in eq. (21)] was 

obtained for S1 and S2 for both annealing treatments and reported in Table 2. The 

smallest DC value was found for the pristine sample (S1) during the second thermal 

treatment (1030 ºC to 1060ºC), indicating reduced NP mobility. Interestingly, the values 

of the coarsening parameters obtained from the simulations after annealing at 1030°C 

[support effect (KS)] indicate the higher stability of our Pt NPs as compared to model 

hemispherical NPs. Nevertheless, a decrease in their stability, approaching the 

theoretical values, was observed with increasing annealing temperature. The latter 

effect correlates with the increase in the NP aspect ratio (height to radius) and can be 

understood in terms of substrate de-wetting leading to NP de-stabilization. Carrey et 

al.104 showed that small NPs which were trapped by surface defects were released after 

they had grown to larger sizes. 

In order to directly observe and determine the coarsening mechanism, in situ real-

time microscopic data at temperatures exceeding 900°C will be needed. However, such 

studies cannot be implemented experimentally to date due to instrumentation limitations 

(large drift), justifying thus the present approach.  
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4.5.3 In situ investigation of coarsening phenomena: environmental effects 

As was shown in the results section, the evolution of the morphology of Pt NPs 

supported on nanocrystalline γ-Al2O3 was investigated via ex situ TEM and in situ 

EXAFS. It should be mentioned that EXAFS is a complementary method to TEM, also 

presenting certain valuable advantages: (i) it can be used to extract information on the 

evolution of the NP size (via the atomic coordination numbers) during a given thermal or 

chemical treatment. (ii) EXAFS not only can provide insight into the NP size at a given 

temperature and under a given chemical environment, but also on the structure of the 

NPs5, 105 (e.g. fcc or icosahedral). (iii) EXAFS can provide information on Pt-Pt bond 

lengths for very small NPs5, 106, whose structure cannot be resolved via ex-situ TEM. 

Even in situ bright field TEM measurements on reduced NPs (e.g. in H2) are extremely 

challenging for NPs within this size range (<1 nm) , and have not been reported for the 

material system at hand. (iv) EXAFS can also provide information on the degree of 

internal atomic disorder of the NPs via the “static disorder” parameter.5 (v) EXAFS can 

provide insight into the presence of adsorbates on the NP surface as well as on the 

formation of oxidic species.79, 107, 108 Such information would not be detected via ex situ 

TEM for very small NPs, especially if such oxide shells are highly disordered 

(amorphous). (vi) EXAFS provides ensemble-averaged values from the entire sample, 

while TEM provides local information.  

As can be seen in Table 3, due to the overall small final average size of the NPs in 

our samples (< 1.2 nm according to TEM), the Pt-Pt distances obtained are smaller than 

those of bulk Pt, a contraction which is expected for small NPs. Further, the latter effect 

is observed even though all samples were measured in H2, which has been shown to 
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relax the Pt-Pt bonds5, 79, 106, 109. Additionally, a correlation between the final NP size 

and the magnitude of the EXAFS disorder was observed, with the largest values 

obtained for the as-prepared and O2-annealed samples (0.0073-0.0078 Å2), and the 

smallest values for the H2O and H2 annealed samples (0.0066-0.0068 Å2). For 

comparison, a value of 0.005 Å2 was obtained from the fit of a bulk Pt foil.  

For NPs in S4, no sintering was detected at least up to 450ºC in O2 for 3 hours. An 

initial O2-mediated NP redispersion might contribute to this effect, since coalescence 

phenomena have been shown to be less favorable when the NPs are widely spaced110. 

The presence of PtOx species might contribute to strengthening the binding between the 

Pt NPs and the Al2O3 support, as suggested for O2-annealed Au NPs on SiO2 
71

 and Pd 

on Al2O3 
111. Interestingly, Goeke and Datye 69 previously reported smaller NP sizes for 

Pd NPs synthesized by electron beam evaporation when annealed in O2 at 700ºC as 

compared to identical samples pre-annealed in an inert atmosphere. This effect was 

also assigned to the formation of PdOx species. The same explanation is valid when the 

distinct stability of samples S4 (annealed in O2) and S6 (annealed in H2) is considered, 

with reducing annealing environments favoring the sintering of the inverse micelle 

prepared NPs above 375°C. This oxide formation and NP growth are schematically 

depicted in Fig. 42.  

More importantly, the pre-treatment in O2 is likely to affect the structure, chemical 

state, and density of defects in the Al2O3 surface, which are also expected to influence 

the stability of the NPs.  In fact, the presence of hydroxyl groups on Pt NP/γ-Al2O3 

samples below 580ºC has been reported,80, 112 and OH species may act as anchoring 

sites for the Pt NPs, as previously suggested for Pd/Al2O3 
111 and Au/MgO.113  
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Fig. 42: Schematic representation of the evolution of the structure and chemical state 
of our inverse micelle prepared Pt/γ-Al2O3 samples (S4-S6) under various 
thermal and chemical treatments inferred from the analysis of in situ EXAFS 
and ex situ STEM data. 

For sample S6 this effect adds to the additional partial de-stabilization of the Pt 

NPs expected to occur after reduction of the PtOx species by the H2 treatment at 400ºC, 

since weaker NP/support bonding has been reported for metallic NPs on oxides, as for 

example reduced Pd on Al2O3. 111 Therefore, our results indicate that pre-treatments in 

O2 might be valid alternatives to stabilize as well as to regenerate coarsened catalysts 

via catalysts redispersion, although the possible loss of Pt through the formation of 

volatile PtOx species must also be taken into account.80 Regarding the stabilizing effect 

of hydroxyl groups against NP sintering,113, 114 our EXAFS and TEM data of the sample 

pre-dosed with water and annealed in water vapor at 450°C (S5) demonstrate that such 

pre-treatment contributes to the partial stabilization of the NPs (as compared to S6 

annealed in H2), although it is less efficient than the pre-treatment or annealing in an O2 

atmosphere (S4). 



101 
 

Although NP redispersion has been reported for the Pt/γ-Al2O3 system after 

annealing in oxygen at temperatures below 600°C115-117, treatments at higher 

temperature in the same environment were shown to result in NP sintering115, 116, 118, 119. 

Furthermore, redispersion of metal NPs was only observed for systems characterized 

by strong interactions between the metal oxides formed on the NPs and the oxide 

support. Such phenomenon was found to involve the detachment of metal oxide species 

from the NPs and their subsequent migration to trap sites on the support surface. The 

stronger binding of PtOx to Al2O3, as opposed to metallic Pt, and better wetting of the γ-

Al2O3 surface, is expected to underlie the enhanced thermal stability of our Pt NPs 

during coarsening treatments in oxygen at 450°C (S4 as compared to S6). It should also 

be noted that low metal loadings and high surface area supports are crucial for this 

phenomenon to occur,120 which might be related to the need of available defect sites on 

the support surface to stabilize the redispersed clusters. Sample annealing in reducing 

environments (e.g. hydrogen) leads to the reduction of the oxidized metal species, the 

concomitant weakening of the NP/support bond, and the release of the trapped oxide 

species, resulting in NP sintering115, 116, 121. The latter is observed for samples S6. 

The work described above emphasizes the importance of in situ investigations for 

the understanding of coarsening phenomena at the nanoscale. Furthermore, we have 

illustrated that EXAFS is a powerful technique for monitoring the in situ evolution of the 

structure and size of small NPs under real industrial operation conditions, e.g. under 

high temperature and in the presence of adsorbates. TEM is a great complementary 

technique to EXAFS for these types of studies. 
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4.6 Conclusions 

The thermal stability, mobility, and coarsening of Pt NPs supported on TiO2(110) 

was investigated by combining STM measurements with simulations based on Ostwald 

ripening and diffusion-coalescence models. The effect of the substrate pre-treatment, 

roughness, and degree of reduction on the coarsening of metallic NPs deposited on 

oxide supports was discussed. Evaporated Pt NPs show a stronger binding to the 

strongly reduced pristine TiO2(110) as compared to polymer–coated and O2-plasma 

treated TiO2(110). Furthermore, the support-induced stability appears to be stronger for 

the smaller NPs.  

Modifications to the traditional mathematical description of the diffusion-

coalescence coarsening model were implemented to better describe the temperature 

dependence of the diffusion constant as well as to incorporate physically meaningful 

energetics for adatom formation in NPs. In addition, more efficient computational 

methods to simulate coarsening phenomena following the Ostwald ripening and 

diffusion-coalescence models were developed. The efficiency of such simulation 

methods is essential in order to be able to follow industrially relevant sintering 

processes that are likely to occur over extended periods of time. Our mathematical 

description facilitates the comparison of coarsening phenomena occurring on NP 

samples supported on distinct substrates. Our simulations revealed that the diffusion-

coalescence model provides a considerably better description of our experimental data 

for evaporated NPs (S1, S2) as compared to the Ostwald-ripening model. On the other 

hand, no changes in the NP size distribution were observed for the larger micellar Pt 

NPs after identical thermal treatments. The advantages of the stabilization of NPs within 
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the size range of our micellar Pt NPs (~3 nm at ~1060 °C) should be recognized, since 

such sizes have been reported to be active for certain catalysis applications.122 Thus, 

micellar-based NP fabrication methods may be considered excellent candidates for the 

production of rationally-engineered active and durable nanocatalysts. 

At last, we investigated the thermal stability of inverse micelle prepared Pt NPs 

supported on γ-Al2O3 and demonstrated the applicability of EXAFS as a tool for studying 

NP coarsening at high temperature and under gaseous environments. We found that for 

samples annealed at 450°C under different chemical atmospheres, reducing 

environments (H2) lead to drastic NP sintering, while slight or no coarsening was 

observed upon annealing in water vapor and oxygen, respectively. The formation of 

PtOx species upon O2 annealing and the associated increase in the strength of the 

NP/support bond, possibly involving Pt-OH species, are considered likely explanations 

for the observed effects. Our findings might be of relevance for high temperature 

industrial catalysis applications, since sintered NPs with low surface-to-volume ratios 

have been generally shown to display decreased chemical reactivity. 
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CHAPTER 5: SHAPE DETERMINATION OF NANOPARTICLES AND 
EPITAXIAL RELATION WITH THE UNDERLYING SUPPORT 

 

5.1 Introduction 

Metal nanoparticles are currently being used in a variety of applications in the 

fields of plasmonics, magnetism, and catalysis.1, 3, 5 Since many of the unusual 

electronic, optical, magnetic, and chemical properties of NPs have been shown to be 

size-, shape-, and strain-dependent,5-11 control of these parameters could be used to 

optimize NP performance in a range of applications.10, 19 For example, a good epitaxial 

relationship would lead to significant improvements in the photocatalytic performance of 

the Pt/TiO2 system through the facilitation of electron transfer processes from the 

substrate to the NPs10. Additionally, for small (few-nm) NPs, an epitaxial relationship 

with the substrate could lead to a degree of lattice strain that could otherwise not be 

obtained, which in turn may affect catalytic activity.10, 11 Finally, different epitaxial 

relationships could also affect the faceting of the NPs and thus potentially enhance the 

performance of the nanocatalysts. Therefore, determining and ultimately having the 

ability to tune such orientations could lead to major breakthroughs in this field. However, 

the preparation of high density 3D epitaxial NPs homogeneously dispersed over large 

substrate areas, presents a challenge for most materials systems grown via physical 

vapor deposition , sputtering, and other in situ or ex situ synthesis methods, with most 

systems producing highly anisotropic or island-like structures. 

In addition to fabrication challenges, the investigation of epitaxial NPs presents 

significant characterization challenges. Several attempts have been made to solve the 
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structure of supported metallic NPs via ensemble-averaging methods5, 123, 124. For 

example, using angle-resolved x-ray photoelectron spectroscopy (AR-XPS)123, low-

energy electron diffraction (LEED),123, 125 and x-ray photoelectron diffraction (XPD) 

techniques126, the dominant orientation of PVD-deposited Pt NPs on TiO2(110) was 

found to be {111}. However, in order to evaluate different NP/support epitaxial 

orientations which might coexist within the same sample, spatially resolved non-

averaging techniques such as TEM or STM are required. STM can routinely provide 

atomically-resolved images on flat surfaces127 and large 2D NPs with flat top facets.88, 

128, 129 However, when three dimensional nano-sized features are present on a surface, 

a larger fraction of the tip apex is involved in the imaging process, and tip convolution 

effects smear out the geometrical features of the NPs. In the present work, the use of 

ultra-sharp tips enables partial imaging of select side facets of small (2-6 nm) 3D NPs, 

allowing the determination of their shape. 

Our study illustrates how an ex situ chemical synthesis method, namely, inverse 

micelle encapsulation, can be used to achieve well-defined and tunable 3D NP shapes 

with epitaxial NP/support interfaces, and how the size of the micellar NPs can be used 

to control their final shape and their epitaxial orientation on the underlying support. 

Furthermore, we demonstrate that this method can produce NP shapes that significantly 

deviate from the common bulk-like Wulff equilibrium structures defined for unsupported 

clusters.  

 

http://en.wikipedia.org/wiki/Low-energy_electron_diffraction
http://en.wikipedia.org/wiki/Low-energy_electron_diffraction
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5.2 Experimental 

Self-assembled size-selected Pt NPs were synthesized by micelle encapsulation40. 

Polystyrene-block-poly(2-vinylpyridine) [PS(x)-P2VP(y)] with different molecular weights 

were dissolved in toluene to form reverse micelles. To prepare NPs with a variety of 

sizes, different polymers with atomic weights (x:y) of (27700:4300), (81000:14200), and 

(81000:21000) were used. Subsequently, H2PtCl6 or HAuCl4 was added at a metal 

salt/P2VP concentration ratio ranging from 0.01 to 0.6. The NP size is controlled by the 

length of the polymer head (P2VP) and the metal-salt/P2VP concentration ratio, while 

the interparticle distance is determined by the length of the polymer tail (PS)40, 130. 

Planar samples were prepared using a dip-coating method resulting in a monolayer-

thick film of self-assembled micellar NPs on the substrate. Two Pt and one Au samples 

were investigated. Prior to the NP deposition, single crystal TiO2(110) substrates were 

cleaned in ultrahigh vacuum (UHV) by cycles of Ar+ sputtering (1 keV) at RT and 

annealing at 1000°C. The encapsulating polymer was removed in situ by an O2-plasma 

treatment (4×10-5 mbar, 120 min). XPS measurements of the C-1s core level region 

corroborated the complete removal of the organic ligands. Subsequently, the sample 

was isochronally annealed in UHV in 100°C intervals for 20 min from 300°C to 900°C, 

and for 10 min from 1000°C to 1060°C. This treatment resulted in the reduction of the 

PtOx species formed upon O2-plasma exposure. By varying the molecular weight of the 

encapsulating polymer, metal salt loading and thermal treatment (temperature and 

time), a variety of final NP volumes could be obtained, while keeping individual NPs well 

separated from each other on the TiO2 surface. Fig. 43 describes schematically the NP 

synthesis process. 
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Fig. 43: Schematic representation of the evolution of the structure of micellar NPs 
supported on TiO2 after different chemical and thermal treatments. STM 
images of polymer-free micellar Pt NPs on TiO2(110) acquired at RT after 
annealing at (e) 150ºC and (f) 1000ºC are also shown. The hexagonal NP 
arrangement is observed in (e), but also significant roughness of the TiO2 
support. A flatter and atomically-resolved TiO2 surface with shape-resolved Pt 
NPs is evident in (f). Typical large scale AFM images of micellar NPs prepared 
using two different PS(x)-P2VP(y) polymers with (x: 53000, y: 43800) in (g) 
and (x: 27700, y: 4300) in (h). 
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Different steps in NP synthesis are shown: (a) micelle-encapsulated spherical NPs 

without contact with the support; (b) ligand-free long-range-ordered single grain NPs 

resulting from the exposure to an O2-plasma in UHV. Exposure to air and also O2-

plasma also results in an increase in the roughness of the support. At this stage, the 

NPs make contact with the support but their shape remains spherical.29, 131 (c) 

Reduction and flattening of the TiO2 support after high temperature annealing (1000ºC) 

accompanied by enhanced mobility of metal atoms within the NPs allowing them to 

rearrange and obtain a good interfacial matching. (d) Well faceted NPs with an epitaxial 

relation with the support obtained upon cooling to RT. 

All STM images were acquired at RT after sample annealing at temperatures 

above 1000°C. The chemically-etched tungsten tips used were cleaned in situ via Ar+ 

sputtering. 

 

5.3 Results and discussion 

STM images demonstrating four main NP shape categories are shown in Fig. 44. 

These shapes were observed on TiO2(110) after the micellar NP formation and 

subsequent high temperature annealing. All NPs show pronounced faceting and a clear 

orientation relative to the substrate’s crystalline directions. Based on the observed 

relative angles of the various facets, the orientation of the free and interfacial Pt 

surfaces could be identified, as shown in Fig. 44(e-h). Type A (TA), type B (TB) and 

type D (TD) NPs have flat top facets while type C (TC) has a wedge on top. The 

interfacial facets of each NP category are: {111} for TA, {100} for TB, and {110} for TC 

and TD.   
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Fig. 44: STM images of micellar Pt NPs supported on TiO2(110) acquired at RT after 
annealing at 1000°C. Four main categories of NP shapes are displayed (a-d) 
with the corresponding models (e-h). The facets at the perimeter of TD NPs 
are perpendicular to the NP/support interface. The apparent slopes observed 
around them in (d) are due to tip convolution effects. 
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Although TA and TD NPs have in common a hexagonal top facet, the angles 

between the edges on the top facet are ~125° and ~110° for TD NPs, in contrast with 

120° for TA NPs. In addition, TD NPs have 2-fold rotational symmetry, while TA NPs 

have 3-fold symmetry. NP shapes of TA and TB, although with a much smaller 

height/diameter aspect ratio, were also observed for large NPs synthesized via PVD 

following a seeding growth method along the crystalline orientation of the seed. 88, 128 

 Nevertheless, to the best of our knowledge, TC and TD NPs have not been 

previously reported. Large Pt NPs (~30-100 nm) of TC shape were however fabricated 

via electron beam lithography on SrTiO3(110) substrates.7  

The observations made in Fig. 44 can be understood by the structural evolution of 

the NPs schematically depicted in Fig. 43(a-d). Since the largely metallic core of the 

micelles is originally surrounded by polystyrene (PS) groups, there is no contact 

between the NP core and the oxide support after deposition. Therefore, no preferential 

decoration sites on the support surface are initially available for the micellar NPs. This is 

evidenced by the persistence of the hexagonal NP arrangement obtained after dip-

coating, with an interparticle spacing determined by the length of the encapsulating PS 

groups28, Fig. 43(e),(f). This is in clear contrast with the observations made for PVD 

metal NPs on TiO2, which are known to preferentially nucleate at defect sites such as 

step edges or vacancy sites18, 132. After the removal of the polymer (O2-plasma in UHV), 

the NPs come in contact with the TiO2(110) substrate. Subsequent annealing above 

1000ºC leads to surface- and/or bulk-melting of the NPs, and the minimization of their 

surface energy results in thermodynamically stable shapes. Our STM study, carried out 
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at RT after the former treatment, demonstrates the stabilization of isolated faceted 

single grain Pt and Au NPs with an epitaxial relation with the TiO2(110) support, Fig. 44.  

The NPs shapes, facet configurations, and epitaxial relationship with the TiO2 

support shown here for micellar NPs are not limited to the Pt/TiO2 system, which is 

known for its strong metal-support interaction (SMSI) effect.123, 133 To illustrate this, Fig. 

45 shows similar faceting and epitaxial orientation for identically prepared (micelle-

synthesis) Au NPs on TiO2(110).  

 

Fig. 45: STM images of micellar Au NPs on TiO2(110) acquired at RT after sample 
annealing at 1000ºC. The following NP shapes are shown: (a) TA, (b) TB, and 
(c) tilted TA. The STM cross section of the NP in (c) (along the dotted line) and 
a schematic of the corresponding facets are shown in (d). A Au(211) facet was 
found at the NP/support interface. The inset in (d) shows a model of the 
reconstructed NP shape. 
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Au NPs of TA and TB shapes, similar to the shapes observed for the Pt NPs are 

shown in Fig. 45(a) and Fig. 45(b) respectively. However, Au NPs of type C show a 

different shape than those observed for Pt, namely, they were found to be ~ 19° tilted 

along the TiO2(110)-[001] axis, as shown in Fig. 45(c). The direction in which these NPs 

were sidewise tilted was found to be random and independent from the scanning 

direction selected. The cross section profile of the latter STM image is shown in Fig. 

45(d) (bottom) together with the corresponding model of the NP configuration and facet 

in contact with the TiO2 support, in this case {221}. Another high-index Miller lattice 

orientation, {211}, was previously determined for Au/TiO2 using electron backscattered 

diffraction techniques,124 but not for Pt/TiO2.  

Variations in the ratio of {100}/{111} facet areas ( 111100 / AA ) within each category of 

NP shapes were observed, and examples are shown in Fig. 46. For instance, the {100} 

top facet in TB square NPs, Fig. 44(b) is absent for some NPs, leading to a truncated 

octahedron shape, Fig. 46(b).  

The tip convolution effect is the main obstacle for obtaining reliable information 

about the size, diameter, contact area with the support, or free surface area of small 

NPs using scanning probe microscopy methods such as AFM and STM. Only the 

size/shape information that is obtained from the highest points of the NPs using SPM 

techniques can be considered reliable since they are the least likely to be affected by 

artifacts related to tip convolution effects. The morphological features which can be 

accurately resolved in our four different NP categories are marked by shading in the 

schematics of Fig. 47 (left column) and Fig. 44 (right column).  
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Fig. 46: STM images of micellar Pt NPs on TiO2(110) acquired at RT after annealing at 
1000°C. Examples of variations in the shapes of NPs within a given category 
(TA-TD) based on distinct 111100 / AA ratios are shown (a,c,e,f). NPs of TA and 
TD in (a, c, f) have a lower 111100 / AA ratio than those in Fig. 44(a, b, d), 
respectively. In rare cases, some NPs were found to be rotated by (b) 30° (TA) 
and (d) 45° (TB) with respect to the TiO2(110)-[001] direction.  
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Fig. 47: Morphological features within different types of NP shapes which are not 
affected by tip-convolution effects are shown in (a-d) and highlighted in pink. 
The height of the NPs and the dimensions of the top facet (L1 and L2) in (a-d) 
are used to reconstruct the 3D shape of the NPs (e-h) using a MATLAB code.  
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For NPs in categories TA, TB and TD with a flat top facet, these features include 

the NP height and the lengths of the sides of the top facet (L1 and L2), Fig. 47(a-c). For 

TC, the artifact-free STM data are the NP height and the length of the top wedge, Fig. 

47(d). Using this information and knowing the NP facet orientations, it is possible to 

reconstruct the shape of each NP and obtain relevant geometrical information such as 

the number of atoms and different facets area in each NP. Based on the former 

experimental parameters, a MATLAB code was written to reconstruct the 3D shape of 

our NPs.   

Our first assumption is the absence of high Miller index facets (e.g. 

{330},{221},{441}, etc) on the free surface of  the NPs due to their high surface energy 

as well as the fact that these facets have not been reported for small Pt NPs (<10 nm) 

elsewhere. This leaves us with only {100}, {110} and {111} facets on free surface of 

NPs.   

Examples of the calculated shapes are provided in Fig. 47(e-h). From the 

reconstructed shapes, information regarding the NP volume, number of atoms, and the 

area of different facets (substrate interface, {111}, {100} and {110}) was obtained.   

It should be however noted that despite the finite degree of shape heterogeneity 

reported in Fig. 44, Fig. 45 and Fig. 46 including STM data acquired on three differently 

synthesized Au and Pt NP samples, a single initial narrow NP size distribution was 

found to lead to a relatively well defined particle shape distribution. 

Following Wulff’s theory,134 a variety of equilibrium shapes can be obtained for 

unsupported NPs depending on the surface energy (γ) ratio of different facets (i.e. 

111100 / γγ ), since distinct facets are characterized by different surface energies. These 
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shapes include octahedron, cuboctahedron, truncated cuboctahedron and cubic 

shapes. An example of bulk like Wulff shapes (truncated cuboctahedron) is shown in 

Fig. 48(a) for a surface energy ratio of 1.15.  

Although the Wullf theorem determines the distance of each facet from the center 

of the NP based on the surface energy ratios, it does not provide directly the surface 

area ratios. Fig. 48(a) also shows the 111100 / AA  ratio versus the respective 111100 /γγ  

surface energy ratios obtained from numerical calculations. It should be noted that 

these shapes are obtained based on Wullf’s reconstruction model without considering 

the support effect.  

 Fig. 48(b) (left axis) shows the experimental 111100 / AA  surface area ratio as a 

function of the number of atoms in each NP for the three categories of shapes most 

commonly observed via STM. Accordingly, Fig. 48(a) can be used to extract the 

111100 / γγ ratio of the STM-resolved NPs. This is shown in Fig. 48(b) (right axis). 

Since the majority of the experimental TiO2-supported Pt NPs display shapes 

analogous to those theoretically predicted for unsupported Wulff  model NPs but 

truncated in half, the experimental surface area ratios are expected to be similar to 

those of the Wulff structures.  

The 111100 / AA ratio is 0.25 for a truncated cuboctahedron NP (bulk-like Wulff shape 

typical of large NPs).87, 135, 136 However, different geometrical characteristics were 

observed here for the micellar Pt NPs, with 111100 / AA < 0.25 for TB NPs and > 0.25 for 

TA and TC. The corresponding surface energy ratios are 111100 / γγ > 1.4 for TB NPs, and 

111100 / γγ <1.1 for TA and TC.  
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Fig. 48: (a) Ratios of {100}/{111} surface areas ( 111100 / AA ) as a function of the 
corresponding surface energy ratios ( 111100 /γγ ) following the Wulff theorem. 
Representative model NP shapes are shown as inset. For 111100 / γγ >1.7, no 
{100} facets are present, and the NPs adopt octahedron shapes. For 0.87 < 

111100 /γγ < 1.15, the NPs adopt cuboctahedron and truncated cuboctahedron 
shapes. For 111100 /γγ > 0.58, cubic shapes are found. (b) STM-resolved 

111100 / AA ratios (left axis) and corresponding 111100 /γγ  ratios (right axis) 
obtained from (a) plotted versus the number of atoms within each NP. 
Schematics of the NP shapes observed are included as insets in (b).  
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Since these shapes were obtained for NPs pre-annealed above 1000°C, they are 

considered to be the most thermodynamically stable shapes for this system. The 

observed deviations from bulk-like Wulff structures ( 111100 / γγ =1.18)135-137 might be due 

to finite size effects, interface-induced stress, and adsorbate effects138, 139.  

Fig. 48(b) demonstrates that the majority of TB NPs (>75 %) have less than 3000 

atoms, while the majority of TA NPs (> 75 %) contain 2000 to 6000 atoms. Type C NPs 

are the largest among these three categories, with 75 % of the NPs having more than 

5000 atoms. The range of NP sizes (or number of atoms) giving rise to NPs of TA is 

highlighted by green shading, those of TB by red, and TC by a blue background. These 

data reveal that the dominant shape of the NPs formed via the present micellar 

synthesis method on a given substrate can be controlled by tuning their size distribution. 

Such shape transition was predicted for Pt NPs on MgO with increasing the NP size140. 

Interestingly, all of our NPs have an epitaxial relationship with the underlying 

substrate, since one of the NPs’ symmetry axes is always parallel to the TiO2(110) rows. 

As demonstrated in Fig. 43(e), such epitaxial relation does not exist after NP deposition 

and moderate annealing (150 ºC), and should have been developed as a result of the 

high temperature annealing (1000 ºC). Although in most cases the NPs have two edges 

parallel to the TiO2(110)-[100] rows [Fig. 44 and Fig. 46(a, c, d)], a few examples of NPs 

rotated by 30° [Fig. 46(b)] or 45° [Fig. 46(d)] without any edge parallel to the TiO2(110)-

[100] direction can also be found. However, even for these rare cases, one of the 

symmetry axes of the NPs is parallel to the TiO2(110)-[100] rows, demonstrating the 

existence of an epitaxial relation with the support. Such exceptions were not found for 
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TC Pt NPs, with the top edge being always parallel to the TiO2 rows. Type D Pt NPs 

were very rare and insufficient statistics could be obtained for this category.  

A major difference between our micellar NPs and PVD NPs is the growth 

mechanism. While micellar NPs are deposited on the substrate pre-formed, the 

evaporated NPs grow on the surface via the adsorption of diffusing metal adatoms. 

Therefore, in the latter case, the anisotropy of the substrate surface plays a crucial role 

in determining the growth kinetics and final NP shape. For example, the lowest diffusion 

coefficient for Pt adatoms on stoichiometric TiO2(110) has been found to be along the 

[001] direction100. The latter might be responsible for the more asymmetric NP shapes 

of PVD-prepared NPs, which appear elongated along [001]88, 128 in contrast to 

symmetric shapes observed for our micellar NPs. Metal NPs have been shown to affect 

the surface segregation of oxygen vacancies in TiO2 substrates141. The possible 

existence of different vacancy concentrations underneath the NPs in NP samples 

prepared by PVD versus our micellar method might result in different NP/support 

binding energies and consequently different NP shapes. 

Several procedures have been developed in the past in order to gain control over 

the shape of NPs based on altering the growth rate of different facet orientations6, 142, 

143. Although good shape-selection results from some of these methods, the 

morphologies obtained are mainly dominated by growth kinetics, and such structures 

are not thermodynamically stable. Therefore, they cannot withstand the environmental 

conditions that some applications might require (e.g. high-temperature catalytic 

reactions).47 Micellar Pt NPs show an enhanced stability against coarsening and no 

mobility after severe thermal treatments (>1000°C).28 Therefore, the shapes adopted by 
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these NPs are expected to be the most thermodynamically favored geometries. 

Moreover, since in theoretical calculations the clusters are allowed to relax and to find 

the energy minima, the equilibrium shapes obtained for the micellar NPs are expected 

to be much better models for comparison with theoretical calculations of fcc clusters.144  

As was mentioned in the introduction, not just their epitaxial relation but also the 

specific orientation of the NPs on the support is important for their application in 

catalysis and other fields10. For this reason, the lattice matching and interfacial strain 

was also obtained. In order to explain the epitaxial orientation of the annealed micellar 

NPs on TiO2(110), for a given interfacial Pt plane, the corresponding facets were 

superimposed to the TiO2 surface lattice and rotated about an axis perpendicular to the 

interface. This procedure follows the “coincidence of reciprocal lattice points” method 

(CRLP)145, but has been modified to describe real-space 2D lattices found at the 

NP/support interface.  

A MATLAB code was written to evaluate the overlap of different interfacial Pt 

facets [e.g. (111), (100), (110), etc.] and the TiO2 (110) surface after taking into 

consideration the possible strain of the first Pt interfacial layer. In the calculation of the 

overlap between the Pt atoms and the TiO2 primitive cell, each atom is considered a 

sphere with a radius of r. The overlap between two spheres of radius r located at a 

distance d can be obtained following:  

)32(
3

2 323 ddrrVoverlap +−=
π  (26) 

,where  d<r. Therefore, the total overlap is given by: V = ∑Voverlap. 
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For any desired Pt facet, the MATLAB code rotates the facet along an axis 

perpendicular to the TiO2 surface from θ = 0 to 180° in steps of 0.1°. After each rotation, 

the Pt lattices is strained (expanded or contracted) by εx and εx percent (-14< εx, εy <14 

in 0.1 steps) along the [001] and 0]1[1 directions of TiO2(110), respectively.  The strain 

(ε) is defined as:  

Bulk

laxedBulk

L
LL Re−

=ε  (27) 

, where Lrelaxed and LBulk are the dimensions of the 2D unit cells of the relaxed 

(strained) and bulk-like Pt interfacial facets. An expansion in the interfacial Pt lattice is 

indicated by εx, εy <0, while positive values represent lattice contraction. The x and y 

directions are parallel to the [001] and 0]1[1 directions of TiO2(110), respectively. For 

all combinations of εx, εy, and θ, the total overlap of the interfacial Pt lattice and the 

unreconstructed TiO2 surface was calculated. These calculations were performed using 

the lattice points lying in the range of R < 7a, and the sphere of radius r=0.15a, where a 

is the lattice constant. The lattice constants of Pt and Au are 3.92 Å and 4.08 Å 

respectively.  

Examples of the results of this procedure are given in Fig. 49 and Fig. 50 for 

Pt(100) and Pt(111) facets, respectively. A Pt(100) interfacial facet is representative of 

type B NPs while Pt(111) is representative of hexagonal NPs of type A. 

The parameter R determines the radius of the area of the desired facet used in 

these calculations, and it is shown as a large blue circle surrounding the Pt lattice in Fig. 

49(b, d) and Fig. 50(b, d). It should be noted that the results obtained here are not 
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sensitive to the choice of R and r. For example, a larger (smaller) value of r will only 

result in broader (sharper) peaks in the total overlap curves shown in Fig. 49(a,c) and 

Fig. 50(a,c), but the peak positions would remain the same.  

The optimum rotation angles were found to be zero for all configurations, resulting 

in one edge of the NPs being parallel to the TiO2(110)-[001] direction, as observed in 

our experiments.  

A positive (negative) value of ε represents the contraction (expansion) of the 

interfacial Pt lattice in contact with TiO2. The optimum strain values and rotation angle 

(θ), e.g. those leading to the maximum interfacial overlap of Pt (or Au) and TiO2 lattices, 

are shown in Table 7 and Table 8. 

An analogous analysis carried out for the rotated TA NP in Fig. 46(b) is shown in 

Fig. 49(c,d) and Fig. 50(c,d). Here the rotation angle was fixed to the observed value of 

30° for TA and 45° for TB NPs and the strain values were varied.  

As can be seen, the rotated type A and B NPs display a lower total overlap as 

compared to the regular NPs and are not favorable, although they may show lower 

lattice strain in one or both directions. 

For instance, in Fig. 49(c), εx is smaller for the rotated NP as compared to the 

regular NP, Fig. 49(b), but the maximum overlap obtained, which is equal to the number 

of Pt atoms marked in blue in (d) (37 atoms) is much smaller than the overlap obtained 

for not-rotated TB NPs (61 atoms) (b). The latter explains the rare occurrence of rotated 

NPs of type A and B. Analogous data for the Au NPs investigated are included in Table 

8. 
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Fig. 49: Total overlap between different strained interfacial Pt facets and the TiO2(110) 
surface. In the schematics of (b, d), the TiO2 lattice is shown as grey rods 
separated by 2.94 Å in the [001]-direction and 6.48 Å in ]011[ .The maximum 
overlap was found by changing the values of the strain parameters εx, εy and 
in-plane rotation angle (θ) for a Pt(100) facet. For the purpose of display, εy 
was fixed in (a) to its calculated optimum value (6.4%). For the Pt(100) facet, 
the rotational angles giving rise to the optimum interfacial match were 0°, 90°, 
and 180° for εx= -6.4%. These orientations are in agreement with our STM 
observations. To investigate the epitaxial relation of the rotated NPs, the 
rotation angle (θ) was fixed to the value observed via STM, i.e. 45° for the TB 
NP in (c), Fig. 46(d). The strain coefficients εx and εy were then varied until the 
maximum overlap between the Pt and TiO2 lattices was obtained. The 
maximum overlap for the 45° rotated TB NP was achieved for εx=-0.3% and εy 
=-10.0%.  
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Fig. 50: (a,c) Calculations of the epitaxial relationship between Pt(111) interfacial 
facets in TA NPs and the TiO2(110) support. Pt atoms overlapping with the 
TiO2(110) surface unit cell are drawn in blue and highlighted by open black 
circles. The remaining Pt atoms are drawn in red. The data in (a) and (b) 
correspond to Pt NPs analogous to those in Fig. 44(a) and Fig. 46(a) (TA, not 
rotated). Due to the 6-fold symmetry of the Pt(111) facet, the best overlap 
between both lattices was found at 0°, 60°, 120° and 180°. For better visibility, 
only a cross sectional view of the complete plot is shown in (a). The overlap 
corresponds to a Pt(111) interfacial layer expanded by 6.4% in the [001] 
direction of TiO2(110) and contracted by 10.0% along [11�0], as shown in (b). 
For the rotated TA NP in (c), the rotation angle was kept fixed to the STM-
observed value (θ=30°), and the strain parameters (εx, and εy) were varied 
until a maximum overlap of the Pt(111) interfacial facet and the substrate 
lattice was obtained for εx=1.7% and εy=6.5% (c).  
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Table 7: Epitaxial relation between different strained interfacial Pt facets and the 
TiO2(110) surface, including the corresponding lattice mismatch. The 
number of TiO2 and Pt unit cells giving rise to the obtained overlap is 
represented by the parameter nTiO2:nPt. For example, nTiO2:nPt = 3:2 reflects 
that the overlap between the Pt and TiO2 lattices occurs every 3 surface unit 
cells of TiO2 and 2 of Pt.  

 

The strain values reported here are based on the assumption that the TiO2 

substrate is completely rigid, and only the lattice of the Pt or Au (see Table 7 and Table 

8) overlayer is allowed to relax in order to match the TiO2 structure. The strain values 

obtained from our calculations are physically reasonable, since similar relaxations in the 

Pt lattice (up to ~10 %) were observed via TEM for small Pt NPs supported on Al2O3 

interfaces.146 Interestingly, no deformation of the Al2O3 support underneath the NPs was 

detected via TEM.146 However, if a non-rigid TiO2 interface is considered, significantly 

smaller strain values would be obtained for Pt. In fact, the deformation of the TiO2 lattice 

in contact with Pt NPs has been suggested based on TEM data.10 
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Table 8: Epitaxial relation between different strained interfacial Au facets and the 
TiO2(110) surface, including the corresponding lattice mismatch.  

 

In any case, assuming a flexible or rigid TiO2 support would only affect the 

absolute value of the strain coefficients obtained, but not the rest of the general trends 

discussed above.  

Previous calculations by Muller et al.147 predicted that interfacial strain could affect 

the area of specific facets in small NPs. Furthermore, in some cases, a slight change in 

the NP size was found to lead to discontinuities in the surface energy and unusual 

relative contributions of different facets. Such effect might explain the shape variations 

observed within a given NP category for NPs with nearly identical volume (or total 

number of atoms), Fig. 48. For small supported NPs, interfacial stress likely extends 
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throughout the NP, resulting in a change of the energy of surface facets having a 

component parallel to the direction of the stress vector. Accordingly, top NP facets 

parallel to the interface should be the most affected by the former effect. Similar tensile 

stresses (~6 %) in the TiO2(110)-[001] direction were obtained for the four NP shape 

categories resolved here via STM. Since the lattice of the free Pt surface is naturally 

under tensile stress,148 the addition of interface-induced tensile stress is expected to 

increase the surface energy, and therefore, to decrease the area of the top facets 

parallel to the NP/support interface. This might explain why NPs of type A and C with 

top (111) facets are characterized by 111100 / AA ratios higher than the bulk-like Wulff 

structures, while type B NPs with (100) top and interfacial facets show smaller relative 

111100 / AA ratios. In Fig. 48, the 111100 / AA ratios of TA NPs are centered around 0.3 (

111100 / γγ =1.15) and 0.5 ( 111100 / γγ =1.05). Based on ab-initio calculations, Iddir et al.136 

explained variations in this ratio for Pt NPs supported on SrTiO3 due to a {100} 

hexagonal surface reconstruction. Such surface reconstruction is likely sensitive to 

environmental fluctuations (e.g. presence of adsorbates or encapsulation effects of the 

NPs by the underlying substrate), and reconstructed and non-reconstructed NP 

surfaces could co-exist on one sample, resulting in a category of shapes (TA) with two 

different 111100 / AA ratios. The one with a higher fraction of {100} facets might correspond 

to the reconstructed (or support-encapsulated) surface with the minimum surface 

energy136. 

The Pt/TiO2 system is known to display SMSI effects93 and therefore, Pt NPs 

might be subjected to TiOx
123, 149, 150

 encapsulation or surface alloying effects133 (e.g. 
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Pt3Ti) after annealing at high temperature. However, we do not believe that the shapes 

reported here for Pt NPs can be attributed to SMSI, since similar NP shapes were also 

observed for our micellar Au NPs on TiO2(110) (Fig. 45), even though the latter system 

does not show SMSI.  

The energy barrier between different crystalline configurations is expected to 

increase with increasing NP size, and therefore, smaller NPs are expected to adopt 

their equilibrium shapes at lower temperature.151 Within the size and temperature 

ranges of this study (2 nm < NPs < 6nm, ~1000ºC), the energy barrier appears to be 

small enough to let the NPs stabilize in only a few geometrical configurations, but not 

small enough to allow them to adopt the shape with the interfacial facet that has the 

minimum interfacial energy.  

 

5.4 Conclusions 

In conclusion, we have shown that geometrically well-defined faceted and epitaxial 

Pt and Au NPs can be obtained on TiO2(110) via inverse micelle encapsulation methods 

followed by annealing in vacuum above 1000ºC. Despite the existence of significant 

anisotropic interfacial strain, our NPs were found to be symmetric and of single crystal 

nature. The micellar NPs adopt shapes that have not been previously observed for 

analogous but physical vapor deposited NPs. The epitaxial orientation of the interfacial 

facets observed and rare occurrence of rotated NPs were explained based on 

calculations of lattice mismatch. Moreover, the surface area and related surface energy 

ratios ( 111100 / AA and 111100 / γγ ) in the micellar NPs was found to be different from 

conventional bulk-like Wulff structures. Some of our Pt NPs displayed higher Miller 
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index surfaces such as {110}, and tilted Au NPs with {221} interfacial facets were 

observed.  

Our study demonstrates that the shape of micellar NPs and their interfacial epitaxy 

can be controlled by tuning the NPs size. Such control over the size, shape, 

homogeneous dispersion on the support and interfacial epitaxy represents a significant 

advance in our ability to engineer active elements at the nanoscale such as tunable 

nanoelectronic devices and nanocatalysts. Furthermore, the thermodynamically stable 

morphology of our NPs guarantees the stability of bottom-up-built nanodevices under 

extreme operation conditions, including elevated temperatures, and provides an 

excellent platform for theoretical calculations based on equilibrium NP shapes.  
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CHAPTER 6:  NANOPARTICLE-SUPPORT INTERACTIONS 

 

6.1 Introduction 

The unusual structural, electronic, magnetic, and chemical properties of metallic 

nanostructures have been proven useful for numerous applications in technologically 

important areas such as catalysis, molecular electronics, nanomedicine, energy 

conversion and plasmonics12-17. Nevertheless, in order to take advantage of these new 

material systems in an industrial setting, a thorough understanding of how those 

properties are affected by their environment (support and surrounding adsorbates) as 

well as operation condition (e.g. elevated temperature) is needed.  

Strong metal-support interactions88, 123 are believed to be a key factor determining 

the reactivity of heterogeneous catalysts such as Pt NPs supported on TiO2. The 

present study provides insight into the interaction of micellar metal NPs with oxide 

supports. There are numerous studies showing how different supports could affect the 

shape, electronic structure, catalytic properties and coarsening behavior of NPs.1-3, 29, 56, 

152 However, less is known about the changes brought about by the presence of the 

NPs on the support itself, including its reconstruction and patterning. Here we 

demonstrate that micellar Au and Pt NPs can serve as nucleation centers for the growth 

of [001]-oriented TiO2 nanostripes on the surface of TiO2(110) upon annealing in UHV at 

and above 1000°C. Such surfaces are expected to display a modified reactivity, since 

[001] step edges have been recently shown to give rise to higher photocatalytic activity 

for certain photodegradation reactions as compared to ]111[  steps edges153. Therefore, 

surface engineering methods that provide the ability to tune the density of certain step 



131 
 

edges are desirable. The realization of this idea in an easily scalable manner is 

presented here.  

 

6.2 Experimental 

Size-selected Pt and Au NPs were prepared by a reverse micelle encapsulation 

method 2, 28, 29, 39, 79 using two commercial diblock copolymers, polystyrene-block-poly 

(2-vinylpyridine) [P1: PS(27700)-PVP(4300) and P2: PS(81000)-P2VP(14200)]. Metal 

salts, HAuCl4.3H2O and H2PtCl6.6H2O, were added to separate polymeric solutions 

previously obtained by dissolving 50 mg of the PS-P2VP in 10 ml of toluene. Using this 

synthesis method, the NP size as well as their interparticle distance can be controlled 

independently.2, 28, 29, 39, 79The length of the diblock-copolymer core (P2VP) and the 

metal-salt/P2VP concentration ratio determines the NP size, while the interparticle 

distance can be tuned by modifying the length of the PS tail. In the present case, P2 is 

expected to result in NPs spaced by larger distances as compared to P1, as seen in 

Fig. 51(a) and Fig. 51(b). We have prepared three different samples: samples S1 and 

S2 contain Pt NPs and were synthesized using polymers P1 and P2, respectively, while 

S3 includes Au NPs encapsulated by P2. The metal loadings (metal/P2VP ratio) used 

were 0.6 for S1 and 0.3 for S2 and S3. A self-assembled monolayer of NPs on the 

TiO2(110) substrate was obtained by dip-coating the single crystal into the Au or Pt 

polymeric solutions at a speed of 200 μm/s.  

Upon ex situ NP deposition, the removal of the encapsulating polymer was carried 

out in UHV by an oxygen-plasma treatment (O2 pressure = 4×10-5 mbar, 90-120 min). 

No residual C signal was detected by XPS after this treatment,2, 28, 29, 39, 79 but the NP 
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surface becomes oxidized. Subsequently, the micellar samples were isochronally 

annealed in UHV in 100°C intervals from 300°C to 800°C for 20 min, a treatment which 

stabilizes the NPs against coarsening, followed by isochronal annealing at/above 900°C 

for 10 min, and in 10°C increments from 1000°C to 1060°C. STM images were 

measured at RT after several of the annealing treatments. The tunneling voltage was 

set to 1.2 V and the tunneling current to 0.1 nA.  

 

6.3 Results and discussion 

Fig. 51 displays STM images of TiO2-supported micellar NPs in (a, c-f) S1 and (b) 

S2 acquired after annealing in UHV above 1000°C. The average size of the Pt NPs in 

S1 is ~3.0 nm and their interparticle distance ~ 30 nm, and both parameters remained 

nearly constant after annealing in UHV from 1000°C to 1060°C, Fig. 51(a). Further 

details on the enhanced stability of the Pt/TiO2(110) system are reported in Ref. 28. The 

superior thermal stability of micellar Pt NPs as compared to PVD-grown clusters might 

be assigned to the following factors: (i) coarsening phenomena based on diffusion-

coalescence processes might be minimized for the micelle-based samples due to their 

large and homogeneous interparticle distances and relatively low NP density on the 

support; (ii) the narrower initial NP size distribution in the micellar samples might inhibit 

Ostwald-ripening pathways in which large clusters grow at the expense of smaller NPs; 

(iii) the micellar NPs are exposed to atomic oxygen at RT prior to the thermal treatment, 

which leads to NP oxidation. Even though the PtOx species formed are expected to be 

decomposed at the high annealing temperatures employed here29, 80, the former 
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treatment might contribute to strengthening the initial binding between the Pt NPs and 

the TiO2 support, leading to their subsequent stabilization.   

 

 

Fig. 51: RT STM images of micellar NPs in S1 (a,c-f) and S2 (b), deposited on TiO2 
(110) and acquired after polymer removal by an in situ O2-plasma treatment 
and subsequent isochronal annealing in UHV at 1010 °C (a,b), 1020 °C (c,d), 
1060 °C (e,f).    
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Although our Pt NPs are mostly oxidized after the initial O2-plasma treatment, XPS 

measurements have shown their reduction after annealing in UHV at temperatures 

above 450°C. 29, 80 Nevertheless, due to the low NP coverage in our samples and the 

limitations in the sensitivity of XPS, we cannot rule out the presence of PtOx at the 

NP/support interface. Such species might influence the coarsening behavior of the 

micellar NPs. 

It is also worth mentioning that the present high temperature annealing treatments 

result in surface/bulk melting of our NPs, as evidenced by the faceted shapes and 

epitaxial NP/TiO2 relationship adopted by the NPs upon cooling, Fig. 51f and Ref. 39. 

Since the polymer used in the synthesis of S2 had longer head and tail lengths, 

the resulting Pt NPs where characterized by larger average sizes (~3.7 nm) and larger 

interparticle distances (~40 nm), Fig. 51(b).  

Interestingly, the STM images in Fig. 51 and Fig. 53 reveal the formation of TiO2 

nanostripes on the Pt NP-coated TiO2(110) surface upon annealing. This is in striking 

contrast with the behavior observed on NP-free TiO2 surfaces28, 72 or those decorated 

by PVD NPs after annealing at RT94, moderate temperatures (400 °C-730 °C)56, 78 or 

similar conditions to our experiment41.   

Our TiO2 nanostripes were found to be attached to the NPs and have a 

preferentially growth direction along the [001] orientation of the TiO2(110) substrate. The 

width of these nanostripes was found to be similar to the NP diameter (3-5 nm) and their 

length to be as large as 80 nm. Interestingly, at the highest annealing temperatures 

employed (1040°C and 1060°C), the TiO2 nanostripes start to become detached from 
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the Pt NPs [see white circles in Fig. 51(e) and Fig. 51(f)]. Further annealing lead to the 

growth of wider TiO2 terraces in detriment of the narrow TiO2 nanostripes.  

Such narrow terraces or nanostripes are not observed when the NP-free substrate 

is subjected to the same thermal treatment, Fig. 52(b). 

  

Fig. 52: (100 x 100 nm) In-situ STM images obtained on (a) micellar Pt NPs deposited 
on TiO2(110) and (b) the pristine TiO2(110) substrate after annealing at 
1060°C and 1030°C for 10 min, respectively. The TiO2 substrate appears 
atomically resolved. The circles in (a) highlight the presence of NPs at different 
substrate sites: (1) NPs on the center of TiO2 terraces [blue circles]; (2) NPs 
on steps parallel to the [001] direction [green circles]; (3) NPs at the end of 
TiO2 nanostripes, at ]011[  steps [white circles].  

The average width of the TiO2 terraces on the Pt-decorated samples was ~16 nm 

at 1010°C, ~23 nm at 1060°C (10 min), and increased to ~47 nm at 1060°C (20 min). 

For comparison, at 1030°C, a larger average terrace width of ~ 80 nm was measured 

for the Pt-free TiO2(110) support. 

In addition, the ratio of the length of [001] to ]011[  steps was much higher for the 

Pt-decorated surface (~11) as compared to pristine TiO2 (~2.4), Fig. 52. From the 

analysis of multiple 200 x 200 nm STM images of our Pt/TiO2 system, a strong decrease 
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in the total length of the steps parallel to [001] was observed with increasing annealing 

temperature. Measured lengths ranged from ~2430 nm at 1010°C to ~1730 nm and 

~853 nm for the 10 min and 20 min annealing treatments at 1060°C, respectively. A 

similar analysis revealed significantly shorter lengths for the steps parallel to ]011[ , with 

~227 nm at 1010°C , ~130 nm at 1060°C (10 min), and ~236 nm at 1060°C (20 min). 

Surprisingly, the TiO2 stripes and steps were found to be rather straight, and a 

large population of the TiO2 stripes was found to have one NP at the end. Statistics of 

the location of the Pt NPs in our samples after annealing (averaging 340-690 NPs at 

each temperature) revealed that 45 % of the NPs are located at the end of stripes at 

steps parallel to ]011[  at 1000°C [white circles in Fig. 52(a)], while at 1060°C (20 min) 

they tend to be located on the middle of terraces (40 % versus 25% at this location at 

1000°C). Since the initial NP arrangement was preserved, this result is not attributed to 

the migration of Pt NPs to those step sites, but to the mobility of Ti-O molecules or Ti 

and O atoms in the support. Berko et al.154 reported that Pt atoms activate the 

separation of TixOy compounds, and a preferential atomic diffusion along [001] was 

described. Besides, our data reveal that the bonding between Pt atoms and the TiO2 

substrate is strongest at step sites154. It is noteworthy that sample annealing at our 

highest temperature (1060°C, 20 min) resulted in a rupture of the connection between 

many of our NPs and the TiO2 nanostripes, leading to the increase in the TiO2 terrace 

width. 

The Pt/TiO2 system is characterized by strong metal-support interactions (SMSI) 

123, 133, 149, 150. This includes support-induced changes in the electronic properties of the 
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Pt NPs and Pt encapsulation by ultrathin TiOx layers. Therefore, the formation of the 

TiO2 nanostripes observed here for the Pt/TiO2 system could be intuitively attributed to 

some degree of SMSI effect. However, this possibility is disregarded, since identical 

trends were observed for Au/TiO2, a system which does not show the SMSI effects, Fig. 

53(c,d).  

 

Fig. 53: RT STM images of Pt NPs in S2 (a,b), and Au NPs in S3 (c,d) on TiO2(110) 
acquired after annealing in UHV at 1000°C for 10 min.  
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The main difference between our micellar Au and Pt NPs on TiO2(110) is the fact 

that due to the lower melting temperature of Au, the initial hexagonal NP arrangement 

28, 39 is lost for the Au NPs after annealing at elevated temperatures (>1000°C, Fig. 

53(c,d)), and therefore, the spacing between the TiO2 nanostripes formed is not 

uniform, as is the case for Pt/TiO2.  

Different mechanisms have been reported in the past as responsible for the 

reconstruction of NP-decorated oxide surfaces. For example, by annealing in oxygen 

environments, TiO2 islands were found to grow around PVD Pt and Pd NPs on 

TiO2(110).155, 156 In the former examples, oxygen was found to spill-over from the NPs to 

the support, resulting in the segregation of Ti interstitials from the bulk to the surface of 

the TiO2 crystal and the formation of TiOx islands around the NPs. Nevertheless, 

nanostripes such as those shown in Fig. 51 and Fig. 53 were never obtained, and the 

former effects were observed upon annealing at lower temperatures (< 500°C), and in 

the presence of oxygen. In fact, even in oxygen environments, higher annealing 

temperatures (>550°C), such as those employed in our experiments, were reported to 

inhibit this effect.157 Vapor-liquid-solid (VLS) growth processes158, 159 mediated by the 

metal NPs can also not be held responsible for the growth of the TiO2 nanostripes 

observed here, since such growth requires the presence of titanium vapor, which was 

not available in our experiments. On the other hand, preferential diffusion of TiOx 

species activated by the metal NPs160 cannot explain the formation of our nanostripes, 

since such phenomenon should have led to the formation of stripes on both sides of the 

NPs, which is not observed here. 
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Before discussing the actual growth mechanism of our nanostripes we would like 

to point out the distinct properties of our micellar NPs as compared to more 

conventionally synthesized NPs. While mobile PVD-grown NPs are known to 

preferentially decorate at vacancies and TiO2 step edges, 41, 56, 78, 94  the same does not 

apply to the micellar NPs. This is due to the fact that the micellar NPs are surrounded 

by polymeric ligands upon initial deposition on the TiO2 surface, and that the TiO2 

surface is roughened during the ex situ (air) NP deposition.39 Nevertheless, as can be 

seen in Fig. 51 and Fig. 53 and Ref. 28, a large fraction of the micellar NPs were 

located at step edges after high temperature annealing treatments. Since we have 

shown that the micellar Pt NPs are resistant against diffusion even after extreme 

thermal treatments,28, 39 and since their hexagonal arrangement is still preserved [see 

Fig. 51(a,b)], it can be concluded that rather than the NPs moving toward the step 

edges of TiO2, the step edges moved toward the NPs. To understand this phenomenon, 

the diffusion of Ti and O species in TiO2 and the effect of the bulk and surface 

stoichiometry of our single crystal oxide support should be considered. It has been 

shown that the bulk reduction state of TiO2 plays an important role in the resulting 

surface reconstruction.161 After numerous cycles of Ar+ sputtering and annealing (900-

1000°C) in vacuum, the degree of reduction of our TiO2 single crystal was very high, as 

evidenced by its dark blue color and (1×2) surface reconstruction before NP 

deposition.72, 157, 161 The subsequent dip-coating of the micellar NPs in air followed by 

the in situ O2-plasma treatment (polymer removal) results in the oxidation of the TiO2 

surface. Nevertheless, the succeeding annealing treatments in UHV at high temperature 

(>900°C) are expected to lead to the desorption of surface oxygen, while Ti cations 
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(Ti3+) diffuse inward from the surface to the bulk of the crystal.157, 161, 162 At this time, 

significant changes in the morphology of our TiO2 surface were found to occur, in 

particular, the formation of TiO2 nanostripes.  

Two key aspects of our experimental observation should be considered in order to 

understand the NP-mediated growth mechanism of the TiO2 nanostripes. First, in most 

cases the nanostripes are attached to only one side of the NPs, while conventional TiO2 

growth/reconstruction mechanisms such as those based in spillover effects result in 

islands surrounding the NPs157, 163. If nanostripes were to be obtained from such spill-

over processes, they should have been observed on both sides of a given NP, which is 

not the present case. Second, if the TiO2 nanostripe growth would result from the 

diffusion of Ti adatoms on the TiO2(110) surface, the extremely large aspect ratio of the 

nanostripes observed here would require a very large diffusion anisotropy constant. As 

mentioned before, the width of our nanostripes follows very closely the diameter of the 

NPs, their length reaches several tens of nm in the ]001[ direction, but there is almost no 

nanostripe growth along ]011[ . 

Due to tip-convolution effects inherent to all scanning probe microscopy 

techniques, an exact evaluation of the NPs’ lateral dimensions is not feasible. This is 

especially relevant to the analysis of small NPs with 3D shapes, as some of the ones 

presented here39. Therefore, a quantitative claim regarding the correlation between the 

diameter of our NPs and the width of the stabilized TiO2 nanostripes cannot be made. 

However, the majority of our images suggest that the nanostripe width is either equal to 

or smaller than the diameter of the NPs attached to them. 
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 The former trends would suggest a one-dimensional diffusion phenomenon along 

[001]. Nevertheless, previous ab initio calculations164 and also experimental results165 

do not support this hypothesis. In fact, due to the existence of different diffusion 

mechanisms, the barrier for Ti diffusion was found to be lower along ]011[  than in the 

]001[ direction164. In addition, it was shown that interstitial Ti atoms are more 

energetically favorable than adatoms on the surface,166 and that the energy barrier to go 

subsurface should be easily overcome during our high temperature annealing 

treatments. Therefore, any Ti adatoms which might be present on our surface would not 

have a tendency to diffuse on the surface, but would rather go subsurface instead.  

The above arguments justify our conclusion that neither spill-over effects nor 

preferential diffusion of Ti adatoms on the TiO2 surface are responsible for the growth of 

nanostripes observed here. Instead, we propose a mechanism based on diffusion/mass 

transfer perpendicular to the surface, also involving the stabilization of certain TiO2 step 

edges by the micellar NPs. Previous high temperature (~730°C) STM snapshots of 

pristine TiO2(110) had shown the loss of material upon annealing in vacuum, evidenced 

by the observation of receding step edges.157, 161 

 In the previous studies, the gradual disappearance of the top-most TiO2 terraces 

was assigned to the desorption of oxygen to vacuum and the migration of the titanium 

that is left behind into the bulk.157, 161 Interestingly, this gradual disappearance of TiO2 

rows starts at ]011[  step edges and follows a chain reaction that proceeds along TiO2 

rows in the [001] direction157. This phenomenon, illustrated in Fig. 54, is the most likely 

mechanism behind the nanostripe formation observed in our study.  
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Fig. 54: Schematics showing the formation of nanostripes attached to micellar NPs. 
Upon sample annealing above 1000°C in UHV, oxygen desorbs from the 
TiO2(110) surface to vacuum and Ti3+ goes into the bulk of the crystal. TiO2 
rows along the ]001[ direction shrink in length and in some cases disappear. 
However, the stabilization of ]011[  TiO2 step edges by micellar NPs prevents 
the disruption of the rows attached to the NPs, resulting in the formation of 
nanostripes. The insets in (b) correspond to STM images representative of this 
process. The white scale bars in the STM images correspond to 10 nm.  

Micellar Pt or Au NPs stabilize low coordinated atoms at TiO2(110)- ]011[  step 

edges and therefore, prevent the disintegration of the TiO2 structure that is in contact 

with the NPs along ]011[  steps. While the majority of the top-most TiO2(110)- ]011[  step 
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edges retreat [see arrows in Fig. 54(a)], those attached to NPs remain stable due to the 

passivation of the oxygen desorption sites. The remaining stable TiO2 rows give rise to 

TiO2 nanostripes with a width similar to the diameter of the NPs.  

Interestingly, this is also in agreement with the observation that most of the 

nanostripes are attached just to one side of the NPs, in contrast to spillover 

mechanisms that should have resulted in growth on both sides. A few different 

nanostripe formation possibilities, based on the relative locations of the NPs on the TiO2 

surface, are highlighted in Fig. 54(b). The TiO2 terrace underneath the NP labeled as 1 

has no step edge on its right hand side and therefore, the desorption of oxygen only 

happens on the left side through the ]011[  step edge. This results in the formation of a 

nanostripe on the right side of the NP. In some cases, a few TiO2 rows are protected at 

both ends by NPs, as it is shown between NPs 2 and 3 in Fig. 54(b). Also, the terraces 

with ]011[  step edges on both sides of a NP may disappear completely and not result in 

stripe formation, since both step edges would move toward the NP and vanish entirely, 

as NP4 in Fig. 54(b). This mechanism could also explain the large aspect ratio of the 

nanostripes. In this scenario, the length of the nanostripes is not limited by diffusion 

anisotropy, and only depends on the configuration of the TiO2 terraces in the vicinity of 

the NPs.  

A similar in situ atomic oxygen treatment followed by high temperature heating in 

UHV recently conducted on small PVD-grown Pt NPs (~1.3 nm) did not result in the 

nanostripe formation demonstrated here.41 A possible explanation might be size- 

dependent cluster mobility. The small PVD clusters may be partially stabilized by step 

edges, reducing their mobility along certain substrate orientations, while at the high 



144 
 

annealing temperatures required for the TiO2 reconstruction and nanostripe formation 

(>900ºC), PVD cluster mobility along the step edges might still occur. This would limit 

the step edge pinning needed for the formation of nanostripes. For the larger (~3 

nm) micellar particles, the particle mobility is expected to be reduced, enabling step 

edge pinning at the high temperatures used here. This interpretation is supported by the 

fact that the nanoparticle diffusion coefficient is inversely proportional to its radius 

(D~1/r4), making the larger micellar particles significantly less mobile.41, 56 Additionally, 

intrinsic differences in the shape of the micellar39 (mainly 3D-like) and PVD NPs (mainly 

2D-like) after our in situ treatments might also influence their ability to stabilize certain 

steps edges. Since our preliminary data on PVD-grown NPs targeted smaller NP sizes 

as compared the typical average micellar NP size investigated here, it cannot be ruled 

out that analogously pre-treated but larger PVD NPs might also produce similar 

nanostripe patterns. 

 

6.4  Conclusions 

TiO2 step edges are known to stabilize metal NPs. Here we have shown that the 

opposite trend also occurs, namely, immobile NPs can stabilize step edges. The 

enhanced thermal stability of micellar NPs against coarsening and diffusion have 

allowed us to observe the changes in the underlying support surface around the micellar 

NPs. In contrast to metal surfaces in which the surface reconfiguration/reconstruction 

occurs mainly through surface diffusion of adatoms167, the present example illustrates 

the diffusion of Ti cations perpendicular to the surface into the bulk of TiO2(110) upon 

oxygen desorption at elevated annealing temperatures. The former effect is responsible 
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for the drastic morphological changes observed on our TiO2(110) surface, in particular, 

for the formation of TiO2 nanostripes along [001] stabilized by the micellar NPs. Our 

findings open the possibility of using metallic micellar NPs to pattern oxide surfaces, 

generating uniform arrays of oxide nanostripes with tunable width (related to NP 

diameter), orientation, and inter-stripe distance (related to interparticle distance). Finally, 

it should be noted that our TiO2 nanostripes are highly reduced, since they display a 

(1×2) reconstruction typical of reduced TiO2 surfaces. Since oxygen desorption occurs 

at the TiO2 surface, a lower degree of reduction is expected for the bulk of the TiO2 

substrate. Although a quantification of the sub-surface conductivity cannot be carried 

out based on the experimental tools at hand, a higher electrical conductivity is expected 

for the TiO2 layers closer to the surface as well as for the nanostripes168. Since our 

synthesis method can lead to NPs interconnected by reduced TiO2 nanostripes [Fig. 

1(c,d)], they might hold promise as self-organized NP contacts on higher bandgap TiO2 

substrates. 
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CHAPTER 7: THERMODYNAMIC PROPERTIES OF γ-Al2O3 
SUPPORTED Pt NANOPARTICLES: SIZE, SHAPE, SUPPORT, AND 

ADSORBATE EFFECTS 

 

7.1 Introduction 

Metal NPs display anomalous electronic and thermodynamic properties, including 

metal to non-metal transitions,9, 122 superheating,19 and negative thermal expansion20-23. 

For free NPs, phonon confinement effects and strong modifications of the phonon 

density of states as compared to bulk materials have been reported24-27, 29, 81. In 

addition, for most experimental conditions, there are other factors contributing to this 

unusual behavior (e.g., NP interaction with the support, encapsulating ligands, and/or 

adsorbates), but they are normally discussed in isolation. Furthermore, while it is 

recognized that environmental effects do contribute to the thermodynamics of small 

systems 32, very little is known on how to sort out and control such complex interactions 

at the nanoscale.  

Consensus exists regarding the strong influence of the NP size on the thermal 

properties of nanoscale materials169, but further investigations are required in order to 

understand specific size-dependent trends. It has been suggested that NPs within 

different size regimes must be treated differently. For example, non-monotonic 

variations in the melting point (Tm) of small (< 200 atoms) size-selected clusters have 

been observed,33, 34 and assigned to the interplay of electronic and geometric effects.9 

However, the relative contribution of such effects could not be separated. For larger 

NPs (> 200 atoms), monotonic size-dependent trends in Tm were observed.170 For a 

given material system, the specific thermal behavior was found to be drastically affected 
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by environmental influences such as the presence of a support, an encapsulating 

matrix, the internal defect density within a NP, the structural and chemical nature of the 

NP/support interface, and the presence of ligands or surface adsorbates171-176.  

Recent EXAFS experiments revealed two peculiarities in the thermal properties of 

certain supported metal NPs: (i) a contraction in their nearest neighbor bond lengths at 

elevated temperatures, and (ii) an increase in their Einstein (and, hence, Debye, ΘD) 

temperature with respect to bulk 177, 178.  

For some NP systems, changes in the electronic properties (e.g. discretization of 

the energy levels) of small NPs together with the interaction with the NP support, were 

held responsible for a size-dependent crossover from positive to negative thermal 

expansion observed with decreasing NP size,21, 22, 31 or with increasing sample 

temperature for a given NP size.179 However, most of the experimental data reported 

thus far were collected on NPs exposed to a certain environment, for example, in the 

presence of hydrogen,180 and the role of such adsorbates on their thermodynamic 

properties is yet to be fully understood. It is well known that hydrogen lifts the 

contraction that the bonds of Pt NPs undergo because of low coordination either 

partially5, 22, 37, 181 or almost totally.182 On the other hand, the effective hydrogen 

coverage on the NP surface might vary in the course of an experimental thermal cycle. 

Interestingly, while Pt(111) can be saturated with hydrogen at 85 K and nearly complete 

H desorption has been observed in vacuum above 400 K,183 Pt NPs on Al2O3 have been 

reported to become free of H only above 550 K. 181 An in-depth investigation of the role 

of H desorption from NPs in the thermal expansion or contraction observed 

experimentally under constant H2 flow is still lacking. This study aims to address this 
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issue and to help evaluate the changes in the bond lengths brought about by the 

adsorption of H and their contribution to the negative thermal expansion observed for 

small Pt NPs. 

In addition, reduced melting and Debye temperatures with respect to bulk have 

been generally reported for free-standing as well as supported NP systems.31, 170, 184-190 

By contrast, an increased ΘD relative to the bulk has been reported for a variety of 

supported NP systems 175-178, 191 and unsupported nanocrystalline agglomerates.171, 173, 

192 The wide discrepancy observed for ΘD suggests that many factors are at play. In free 

clusters, enhanced surface energy and the concomitant increase in the surface stress 

causes a lattice contraction at the NP surface, softening of interatomic force constants, 

and a suppression of ΘD and the melting temperature.24 On the other hand, the 

increased ΘD observed for certain systems has been attributed to structural stiffening 

and inhomogeneous internal stress correlated to the NP size, surroundings (e.g. 

adsorbates/surface ligands 171, 173, 174, a matrix encapsulating the NPs, or a support 23, 

175, 176), and to the presence of structural defects and multiple grains in large NPs 192.  

In addition, a correlation between Tm and the NP diameter has been commonly 

observed, with decreasing Tm with decreasing NP size.19 Since for bulk systems Tm is 

proportional to ΘD
2 (Lindemann’s criterion193), the Debye temperature is also expected 

to decrease in clusters relative to the bulk194. Nevertheless, increased ΘD and 

superheating have been observed via a variety of methods (e.g. TEM, X-ray diffraction, 

differential scanning calorimetry, EXAFS, etc.) for several nanoscale material systems, 

including supported or embedded Pt 21, 22, 37, 191, Ag176, and Ge NPs175, 195, 196, as well as 

unsupported nanocrystalline agglomerates such as Ag192, Au192,  ZnS 171, and thiol-
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capped CdS172 and CdTe173 nanocrystals. A comparison between the different 

references is challenging due to the distinct sample preparation and characterization 

conditions, and in some cases, the lack of detail on the specific structure of the systems 

investigated. However, some interesting trends could be extracted from the literature. 

Enhanced thermal stability and superheating was detected for faceted NP shapes with 

good crystallinity and coherent or semi-coherent (nearly epitaxial) interfaces around the 

embedded NPs, or when NPs were coated by a high melting-point matrix.175, 197, 198 On 

the other hand, reduced Tm values were found for NPs randomly embedded (e.g. 

without epitaxial relationships) in similar matrixes. According to previous studies, 

internal defects within the NPs or at the NP/support interface, voids, impurities, grain 

boundaries, as well as low-coordinated surface atoms (for NPs not fully embedded in a 

support matrix) act as nucleation sites for the onset of heterogeneous melting.19 

Therefore, a global understanding of the thermodynamic properties of nanoscale 

materials requires in-depth insight into their geometrical structure, including its 

modifications in the presence of an environment (support and/or adsorbate).  

It is evident that the understanding of thermal, structural, and electronic properties 

of this system is hindered by its complexity, due to the multiple competing factors that 

define its behavior, and a detailed atomic-scale investigation of the origin of these 

anomalies is yet to be undertaken.  

This study focuses on the investigation of the influence of the NP geometry (size 

and shape) and environment (adsorbate and support) on the thermal properties of 

structurally well-defined, free and γ-Al2O3-supported Pt NPs. 



150 
 

For this purpose, we have taken advantage of state-of-the-art nanostructure 

fabrication (micelle encapsulation) and characterization methods (EXAFS, TEM, and 

cluster shape modeling). In particular, we investigated the relationship between 

thermodynamic quantities (ΘD and thermal expansion coefficient) and geometrical 

properties of ligand-free, homogeneous, size- and shape-selected Pt NPs supported on 

γ-Al2O3 using EXAFS.  

 

7.2 Experimental and theoretical methods 

7.2.1 Sample preparation 

Size- and shape-selected Pt NPs were prepared by inverse micelle encapsulation 

methods using poly(styrene)-block-poly(2vinylpyridine) [PS-P2VP] diblock copolymers. 

Briefly, commercially available PS-P2VP diblock-copolymers were dissolved in toluene 

to form inverse micelles, with the P2VP head groups constituting the micelle core. Size-

selected Pt NPs are created by dissolving H2PtCl6 into the polymeric solution. 

Subsequently, the nanocrystalline γ-Al2O3 support (average size ~40 nm) is added. After 

drying, the encapsulating ligands are eliminated by annealing in O2 at 375ºC for 24 

hours.  

Our micellar synthesis normally leads to 3D-like NP structures. Nevertheless, the 

NP shape can be changed from 3D to 2D by decreasing the metal loading into the 

initially spherical polymeric micelles. Further details on the sample preparation method 

and synthesis parameters can be found in Refs. 5, 28, 29, 36, 37, 81  and Table 13. 
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Description of synthesis parameters and size information of micellar Pt NPs 

supported on nanocrystalline γ-Al2O3 are summarized in Table 13. The parameter “L” 

represents the metal-salt to polymer head (P2VP) ratio used in the NP synthesis.  

 

7.2.2 Morphological characterization (TEM) 

The NP sizes (diameter) are obtained by HAADF STEM. TEM measurements 

were carried out by our collaborators at the University of Pittsburgh (Prof. Judith Yang’s 

group in the Department of Chemical and Petroleum Engineering). The TEM samples 

were prepared by making an ethanol suspension of the Pt/γ-Al2O3 powder and placing a 

few drops of this liquid onto an ultrathin C-coated Cu grid, and allowing the sample to 

dry in air. HAADF images of the Pt/γ-Al2O3 samples were acquired under scanning 

mode within a JEM 2100F TEM, operated at 200 kV. The probe size of the STEM is 

about 0.2 nm. The Pt NP diameters were determined by measuring the full width at half 

maximum of the HAADF intensity profile across the individual Pt NPs. The TEM images 

shown here were acquired after the EXAFS measurements. Nanoparticle sintering did 

not take place in the course of the EXAFS measurements, since the samples were 

previously stabilized by a 24-h annealing treatment at the maximum temperature of the 

EXAFS thermal cycle (648 K).  

Fig. 55a shows a representative TEM image of Pt NPs in S1. The corresponding 

NP diameter histogram is displayed in Fig. 55b, and average values for the rest of the 

samples are given in Table 13. Additional TEM images of other samples included in this 

study could be found in Refs. 38, and 5. All of our samples containing small NPs are 

characterized by narrow size distributions according to in-depth TEM analysis, while 
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wider size distributions were observed for some of the larger clusters. Histograms of the 

TEM NP diameters for other samples are shown in Ref. 38.  

 

 

Fig. 55: (a) HAADF STEM image of micellar Pt NPs on γ-Al2O3 (S1) obtained by L. Li, 
and Z. Zhang (Prof. Judith Yang’s group) at the University of Pittsburgh. (b) 
Histogram of the NP diameter distribution. 
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7.2.3 Structural and vibrational characterization (EXAFS)  

EXAFS data were acquired at beamline X18B of the NSLS at Brookhaven National 

Laboratory in transmission mode using the Pt-L3 edge. The EXAFS samples were 

prepared by pressing the Pt/γ-Al2O3 powders into thin pellets which were mounted in a 

sample cell that permitted sample heating, liquid nitrogen cooling via an external PID 

controller, as well as the continuous flow of gases during data acquisition and on-line 

mass spectrometry analysis.  

A bulk Pt foil was measured simultaneously with all samples (in reference mode) 

for energy alignment and calibration purposes. Multiple scans (up to 6) were collected at 

each temperature of interest and averaged in order to improve the signal-to-noise ratio. 

Measurements were done at different temperatures under H2 (50 % H2 balanced with 

He for a total flow rate of 50 ml/min, samples S1-S9 in Table 13) and He (S2) 

atmospheres.  

Data processing and analysis with the IFEFFIT package 199 was conducted by 

analyzing the first shell Pt-Pt contribution for data acquired at all temperatures 

concurrently, as described in Refs. 178 and 200, with the exception that the EXAFS 

Debye-Waller factors were found following the Correlated Debye Model (CDM) 201 

instead of the Einstein model.  

The total bond length disorder, σ , includes configurational, or static ( sσ ) and 

dynamic ( dσ ) contributions: 222
ds σσσ += . The CDM was used to extract both the 

dynamic and static mean-square relative bond length disorders from the analysis of 

temperature-dependent EXAFS data, and through that, ΘD. In the high-temperature 
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approximation, 2
2 ~

D

B
d

T
k
Tk

θ
σ = , with k being the effective force constant, and kB the 

Boltzmann constant202, 203. Hence, the slope of the temperature dependence of 2
dσ  is 

inversely proportional to ΘD
2. 

The static disorder values ( 2
Sσ  ) shown in Table 13 are considered a measure of 

the degree of anisotropy in the internal structure of the NPs (distribution of bond 

lengths), which for small clusters can be intrinsic204 but are also strongly influenced by 

the underlying support.205  

The following parameters were varied in the EXAFS analysis: the corrections to 

the photoelectron energy origin, the nearest neighbor bond lengths, the coordination 

numbers, the third cumulant of the 1NN pair distribution function, and the values of ΘD 

and 2
sσ .200  

We carefully investigated the effect of the energy origin (E0) on the values of the 

structural parameters (distances and third cumulants) extracted from the fits, since they 

correlate. In most of the samples the x-ray absorption near edge structure (XANES) 

portion of the absorption coefficient exhibits a small shift (ca. 1-1.5 eV, depending on 

the sample) toward lower energies with increasing temperature. The same effect was 

observed earlier by Sanchez et al.178 To compensate the effect of this shift on the 

change of the phase of the EXAFS signals we compared two different fitting 

procedures: 1) the correction to the energy origin was varied independently for each 

temperature, and 2) all the data were aligned in energy before extracting the EXAFS 

signals, and subsequently the energy origin correction (same for all data that were 
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analyzed concurrently), was varied during the fitting routine. The best fit results for 

these two approaches were very close (within the uncertainties).  

The Fourier transform parameters used during the EXAFS data analysis are as 

follows: k-range from 2 to 13-19 Å-1 (depending on the sample and temperature), 

Hanning window sills (Δk) for all samples 2 Å-1. In the inset of Fig. 57 (fit to EXAFS data 

of S2) the k-range and the r-range used in the fit were 2-19 Å-1 and 1.5-5.9 Å, 

respectively.  k2-weighting was used in all Fourier transforms.  

Table 9 contains details of the fitting parameters, including the number of relevant 

independent data points and variables used for the analysis of EXAFS spectra acquired 

at different temperatures presented in our article, as well as fit quality factors.  

Table 9: Number of relevant independent data points and variables in the fits of 
temperature-dependent EXAFS data, as well as the values of the reduced χ2 
and r-factor obtained from the fits. 

Sample Number of 
data points 

Number of  
variables Reduced χ2 r-factor 

S1 61.8 14 13.5 0.020 
S2 He 49.2 12 13.7 0.009 
S2 H2 59.6 12 24.8 0.02 

S3 50.8 12 11.5 0.009 
S4 60.7 17 11.7 0.017 
S5 73.6 18 4.2 0.017 
S6 56.6 14 2.7 0.016 
S7 65.3 17 1.6 0.014 
S8 80.0 17 7.6 0.007 
S9 71.8 13 40.8 0.035 

 

Chi-square (χ2) is evaluated by adding the squares of the difference between the 

experimental data and the theory. The reduced χ2 parameter is obtained by dividing χ2 



156 
 

by the number of unused datapoints (number of data points minus number of variables, 

e.g 47.8 for S1 in Table 9). The r-factor is the sum over the absolute difference between 

the data and theory divided by the data value at each point.  

The values of the third cumulants obtained from multiple-data-set fits at different 

temperatures are shown in Table 10.  

Table 10: The best fit values of the third cumulants (in Å3) obtained from multiple-data-
set fits at different temperatures.  

Sample 173-188 K 298 K 408 K 473 K 528 K 648 K 

S1 -0.00009(6) 0.00005(7) -0.00000(9) --- 0.0001(1) 0.0008(2) 

S2 He -0.00003(3) -0.00006(4) --- 0.00004(7) --- 0.0004(2) 

S2 H2 -0.00007(3) -0.00016(5) --- -0.0002(1) --- -0.0001(2) 

S3  0.0000(3) 0.00001(4) --- 0.00005(6) 0.00019(8) 

S4 0.00005(8) -0.0001(1) 0.0000(1) --- 0.000(1) 0.000(2) 

S5 -0.00005(6) -0.0001(1) -0.00002(8) --- -0.0000(1) 0.0000(1) 

S6 -0.00007(3) -0.00002(6) --- 0.00003(8) --- 0.0002(1) 

S7 -0.00006(5) 0.00006(6) 0.00001(7) --- 0.0001(1) -0.0001(1) 

S8 -0.00003(2) -0.00000(3) 0.00000(3) --- 0.00009(4) 0.0001(1) 

S9 -0.00005(2) -0.00002(4) 0.00004(7) --- -0.00005(7) 0.00004(11) 
 

Quantitative determination of the NP shape was carried out by analyzing low 

temperature EXAFS data up to the 4th nearest neighbor contribution, including multiple 

scattering (MS), as described in Ref. 36 and references therein. Degeneracy of single 

and multiple-scattering paths in EXAFS analysis is simply related to the coordination 

number of the nearest neighbors, and can be obtained from the non-linear least squares 

fit of the theoretical EXAFS equation 199. Physically reasonable constraints between the 

fitting variables were applied to maximize the number of degrees of freedom in the fits. 
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The passive electron reduction factor was fixed to that found for the Pt foil reference: 

0.861. Only the most important single and collinear multiple-scattering paths were used 

in the fits through the 4th coordination shell. Among the multiple-scattering paths we 

used double- and triple-scattering paths to the 4th nearest neighbor (4NN) through the 

intervening atom (1st neighbor, or 1NN) along the same line. The total Debye-Waller 

values ( 2σ ) for these paths were constrained to be the same as that of the 4NN Pt-Pt 

pair. In addition, a double-scattering path connecting the central atom, its 1NN, and 

another 1NN in the opposite direction was used in the fit. The disorder parameter of this 

path was varied independently from the others. Distance corrections were constrained 

to vary in accordance with the isotropic lattice expansion or contraction for all paths 

except for the first one, for which the third cumulant of the pair distribution function 

accounting for its asymmetry was varied as well. This approximation is justified by the 

apparent strong structural order in all particles, evident by comparing raw data in R-

space for all the samples and the reference bulk Pt foil (Fig. 57a). Coordination 

numbers of all single scattering paths were varied independently; those of the multiple-

scattering paths were constrained to those of the single scattering paths to the 4NN or 

1NN, depending on the geometry of a particular path. Finally, the same energy 

correction (E0) was used for all paths.  

 As an example, Table 11 displays coordination numbers and distances of each 

coordination shell to the absorbing atom obtained from the multiple scattering analysis 

of EXAFS data acquired for sample S2.  

The possibility of morphological changes in our samples as a function of 

temperature has not been accounted for in our analysis. This approach decreases the 
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number of fitting parameters and is justified by the following arguments: (i) the behavior 

of our raw EXAFS data throughout the entire temperature range is not consistent with a 

size or shape change, (ii) our samples were measured under a hydrogen atmosphere 

that passivates the NPs and stabilizes their shapes, and (iii) the analysis of the 

vibrational properties of our NPs was conducted up to a maximum annealing 

temperature of 375ºC, which is the same temperature used for sample calcination (for 

24 hours) prior to the EXAFS measurements. 

Table 11: Coordination numbers (N), distances of each coordination shell to the 
absorbing atom (r), and bond length disorder parameters ( 2σ ) obtained from 
the multiple scattering analysis of EXAFS data acquired in H2 on reduced 
micellar Pt NPs supported on γ-Al2O3 (sample S2) at 173 K. Uncertainties 
are shown in parentheses. More examples of similar data obtained for some 
of the other samples and bulk Pt are included in Ref. 36. The best fit value 
for the energy origin correction E0 was 9.9 (4) eV, the third cumulant was 
0.00000 (2) Å3, and the disorder parameter of the double-scattering path to 
the 1NN was 0.0033(22) Å2. Only the distance correction to the 1NN was 
varied independently from the others, the rest were constrained with the 
isotropic lattice expansion/contraction factor, ε. The best fit value of ε was 
0.0000(7), and its uncertainty was used to evaluate the error bars of the 
distances to 2NN through 4NN. 

 

 

 

 

 

 

 

 

Sample S2 

Coordination numbers of 1st through 
the 4th nearest neighbor shells, N 

Distance to each shell, r (Å) 
Bond length disorder, σ2 (Å2) 

T=173 K 

N1 
7.7 (4) 

N2 
3.2 (1.0) 

N3 
8.6 (1.7) 

N4 
5.8 (1.1) 

r1(Å) 
2.765 (4) 

r2(Å) 
3.920 (3) 

r3(Å) 
4.801(3) 

r4(Å) 
5.544 (4) 

σ1
2(Å2) 

0.0040 (1) 
σ2

2(Å2) 
0.0049 (11) 

σ3
2(Å2) 

0.0044 (6) 
σ4

2(Å2) 
0.0040 (16) 
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If any changes in the NP morphology (size and/or shape) were to occur at 375ºC, 

they should have already taken place before the EXAFS measurements. Evidence of 

the lack of NP sintering at this annealing temperature can be found in the TEM images 

of analogous samples depicted in Ref. 36. 

 

7.2.4 Nanoparticle shape modeling  

The shapes of our Pt NPs have been resolved by matching structural information 

obtained experimentally via EXAFS (coordination numbers up to the 4th nearest 

neighbor, N1-N4) and TEM (NP diameter, D) to analogous data extracted from a 

database I generated, containing ~4000 model fcc NP shapes. Only closed shell 

clusters were considered in the models. In our analysis, after taking into consideration 

the error bars in the EXAFS coordination numbers as well as the TEM diameters, we 

have found on average only 3 model fcc cluster shapes consistent with all five 

experimental parameters (N1, N2, N3, N4, and D). 

In order to determine the most representative NP shape, we have used volume-

weighted TEM diameters. In general, the use of the volume-weighted diameters is 

preferred when comparing TEM and EXAFS structural information, since EXAFS is a 

volume-weighted technique. Examples of the NP shapes typical of similarly prepared 

but larger micellar Pt NPs resolved by STM can be found in Refs. 5, 38. 

 Table 12 shows examples of the best three model shapes for S2-S5, with 

information on the total number of atoms, the ratio of the number of Pt atoms at the NP 

surface and perimeter to Nt (Ns/Nt), the ratio of the number of Pt atoms in contact with 

the support to Nt (Nc/Nt), and a factor (Q) indicating how much each of the specific 
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model shapes deviates from the experimentally measured EXAFS coordination 

numbers and volume-weighted TEM NP diameter. The shapes with the best Q-factors 

are depicted in a darker color in Table 12 and also in Table 13. The Q- factor has been 

obtained following eq. (28): 

4

22
3

2
2

2
1 DENENENEQ +++

=  (28) 

, where NE1, NE2 and NE3 are normalized errors of the experimental 1st, 2nd and 

3rd coordination numbers, and DE is the normalized error of the TEM diameter. The 

latter errors are calculated following eqs. (29) and (30): 

CNoferroralExperiment
CNModelCNalExperiment

NE
−

=  
(29) 

DoferroralExperiment
DModelDalExperiment

DE
−

=  (30) 
 

, where D is the NP diameter and CN are the respective coordination numbers (N1, 

N2 or N3). In the calculation of the Q factor we have not considered the 4th coordination 

number extracted from EXAFS. As shown by A. Jentys206, either N3 or N4 can be used 

interchangeably to estimate the particle shape, but since N3 is generally larger than N4 

for most shapes of fcc particles (e.g., 24 vs. 12 in the bulk), the former number has 

greater impact on the shape determination. 

A low Q factor indicates a good fit between experimental and model CN and D. As 

can be seen in the Table 12, only one shape provides a Q factor ≤ 1 for samples S2 and 

S4, while as few as 3 shapes satisfy that constraint for S3 and S5, indicating the low 



161 
 

degeneracy in the determination of the cluster shape for samples containing NPs in our 

size range (~0.8-1 nm). For S3, two shapes with identical Q factor were obtained. 

Table 12: Model polyhedron shapes for fcc-Pt NPs providing the best fit to the 
experimental coordination numbers (EXAFS) and volume-weighted NP 
diameters (TEM). The average and volume-weighted TEM diameters, the 
total number of atoms in each NP (Nt), the ratio of the number of Pt atoms at 
the NP surface and perimeter to Nt (Ns/Nt), and the ratio of the number of Pt 
atoms in contact with the support to Nt (Nc/Nt) are given. A factor (Q) 
representing the deviations of the coordination numbers and diameter of 
each of the model shapes with respect to the experimental samples are also 
included. 
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Table 13:  Parameters used for the synthesis of micellar Pt NPs, including polymer type 
(PS-PVP) and the ratio (L) between the metal salt loading and the molecular 
weight of the polymer head (P2VP). Also included are the mean and the 
volume-weighted TEM diameters. By comparing structural information 
obtained via EXAFS (1st-4th NN CNs) and TEM (NP diameters) with a 
database containing fcc-cluster shapes, the ratio of the number of surface 
atoms to the total number of atoms in a NP (Ns/Nt) and the ratio of the 
number of atoms in contact with the substrate to the total number of atoms 
(Nc/Nt) were obtained. The largest facets within each NP were selected as 
facets in contact with the support: (111) for S1-S4, S6, and (100) for S5. The 
static disorders ( 2

sσ ) obtained from the analysis of EXAFS data are also 
shown. The largest values of 2

sσ  were generally observed for the samples 
with the largest NP/support interface (S1 and S4).   

Sample 
Name Polymer L 

TEM 
diameter 

(nm) 

Volume-
weighted TEM 
diameter (nm) 

2
sσ  (Å2) 

 
Model 
cluster 
shapes 

Nt Ns/Nt Nc/Nt 

S1 PS(27700)-
P2VP(4300) 

0.06 0.8 (0.2) 0.9 (0.3) 0.0023(2) 
 

22 0.86 0.55 

S2 PS(27700)-
P2VP(4300) 0.1 0.8 (0.2) 0.9 (0.2) 0.0013(2) 

 
44 0.84 0.23 

S3 PS(27700)-
P2VP(4300) 0.2 1.0 (0.2) 1.2 (0.2) 0.0010(3) 

 
85 0.74 0.18 

S4 PS(16000)-
P2VP(3500) 

0.05 1.0 (0.2) 1.1 (0.2) 0.0028(3) 
 

33 0.82 0.55 

S5 PS(16000)-
P2VP(3500) 0.1 1.0 (0.2) 1.2 (0.3) 0.0019(2) 

 
55 0.75 0.16 

S6 PS(16000)-
P2VP(3500) 0.2 1.0 (0.2) 1.1 (0.3) 0.0015(2) 

 
140 0.64 0.13 

S7 PS(16000)-
P2VP(3500) 0.4 1.8 (1.5) 5.7 (2.2) 0.0015(2)     

S8 PS(27700)-
P2VP(4300) 0.3 3.3 (1.5) 6.0 (2.8) 0.0016(1)     

S9 PS(27700)-
P2VP(4300) 0.6 5.4 (3.0) 15.0 (10.0) 0.0012(1)     
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Table 13 contains information on the total number of atoms within each NP (Nt), 

the ratio of the number of Pt atoms at the NP surface and perimeter to the total number 

of atoms (Ns/Nt), and the ratio of the number of Pt atoms in contact with the support to 

the total number of atoms within a NP (Nc/Nt) extracted from the selected model NP 

shapes.  

Shape determination was not carried out for samples S7-S9 due to the large 

shape degeneracy for NPs with large coordination numbers.  

The distinction between 2D- and 3D-like NPs obtained from the former analysis is 

in agreement with the general trends observed here for the EXAFS static disorders, with 

the highest values corresponding to the 2D NPs (S1 and S4, 0.0023 and 0.0028 Å2, 

respectively), i.e. those with the highest relative number of atoms in contact with the 

support.   

 

7.3 Results  

Examples of EXAFS spectra in k-space measured at different temperatures in He 

(S2) and H2 (S3-S5) are shown in Fig. 56. The decrease in the oscillation magnitude is 

due to the increase in the dynamic disorder at higher temperatures. Also by increasing 

the temperature, the data become noisier at higher k values and therefore, a smaller k-

range must be used for data analysis.  

Fourier-transformed EXAFS spectra from ligand-free micellar Pt NP samples  

supported on γ-Al2O3 acquired in H2 at RT (S1, S2, S8) as well as a bulk Pt sample are 

shown in Fig. 57a. 
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Fig. 56: k2–weighted EXAFS data in k-space for reduced Pt NPs on γ-Al2O3 measured 
in He: (a) S2 and in H2: (b) S3, (c) S4, (d) S5 at different temperatures (from 
173 to 648 K). 

The smaller magnitude observed for smaller NPs (e.g. S2 as compared to S8) is 

due to both lower coordination numbers and higher disorder expected for smaller NPs. 

The effect of temperature on the EXAFS data is shown in Fig. 57b for sample S2 at 

temperatures ranging from 173 K to 648 K. A decrease in the intensity of the EXAFS 

signals with increasing temperature is evident. Such effect can be attributed to an 

increase in the bond length disorder in the framework of Pt atoms, to a decrease in the 

Pt-Pt first nearest neighbor coordination number due to changes in the NP size and/or 

shape, or to both.  
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Fig. 57: (a) k2-weighted EXAFS data in r-space of Pt NPs supported on γ-Al2O3 in 
samples S1, S2, S8 and a bulk Pt foil. All samples were measured in a H2 
atmosphere at RT after NP reduction. The range of the Fourier transform is 2-
11 Å-1. (b) Temperature-dependent EXAFS data in r-space of S2 measured in 
H2. The inset displays the experimental data acquired at 173 K together with 
the corresponding multiple-scattering fit.  
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We can single out the disorder as the dominant factor responsible for this behavior 

when we examine the k-space data, Fig. 56. If the NP size and/or shape were changing 

with temperature, the coordination number effect would be visible for all k-values, since 

it affects the EXAFS signal as a constant multiplicative factor. However, the decrease in 

the intensity of our k-space data is more prominent at the end of the k-range than at the 

beginning. Such observation is in agreement with the disorder effect, since it is 

expected to increase with increasing k. 

A representative multiple-scattering fit of the 173 K spectrum is included as inset in 

Fig. 57b. However due to lower quality of the data at higher temperatures, only first-

shell analysis was done for the temperature-dependent study. Representative fits in r-

space to temperature-dependent data from S5 are shown in Fig. 58. Pt-Pt distances (R) 

in the temperature range of 150 K to 700 K are shown in Fig. 59a for samples S1, S2, 

S7, S8 and for a reference bulk-like Pt foil37. All measurements were carried out under a 

continuous H2 flow, with the exception of sample S2, for which He and H2 environments 

were used [Fig. 59b].  

The data in Fig. 59a, and Fig. 59b correspond to the best fit results of the 

experimental EXAFS spectra obtained for the first nearest neighbor (1NN) Pt-Pt bond 

lengths (R, averaged over all bonds within one NP) at different temperatures. 
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Fig. 58: Fourier transform magnitudes of k2–weighted EXAFS data and 1st-shell 
multiple-data-set fit for sample S5 measured in H2 at 183 K (a), 293 K (b), 408 
K (c), 528 K (d), and 648 K (e). 
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Fig. 59: (a) Temperature-dependent Pt-Pt bond lengths (R) obtained from EXAFS 
measurements on samples S1, S2, S7, S8 and a bulk Pt foil. All samples were 
measured in H2. (b) Pt-Pt distances from S2 measured in He and H2. In (a) 
and (b) solid lines represent linear fits to the experimental data. (c) Calculated 
median of the Pt-Pt bond-lengths of an unsupported clean Pt22 NP (open 
symbols, ab initio MD calculations) and a H-covered Pt22HM NP (solid symbols, 
model for S1) plotted as a function of temperature. Calculations were 
performed by M. Alcántara Ortigoza and G. Shafai in Prof. Talat Rahman’s 
group at the University of Central Florida. Additional details on the calculations 
can be found in Ref. 38. 
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The solid lines in Fig. 59a, b represent a linear fit to the experimental data. From 

the slope of such fit, the average thermal expansion coefficient (α) can be extracted 

from equation below:  

)/(1

0

TR
R

∂∂=α  (31) 

, where R0 is the Pt-Pt distance obtained for each sample at the lowest 

measurement temperature. Due to the enhanced noise of the experimental data of 

sample S1 at high temperature, the Pt-Pt distance shown in Fig. 59a at ~700 K was not 

included in the linear fit. 

Ab initio MD calculations (performed by Dr. M. Alcántara Ortigoza and G. Shafai in 

Prof. Talat Rahman’s group at UCF, Ref. 38) are shown in Fig. 59c. The solid symbols 

in (c) correspond to hydrogen coverages that are thermodynamically stable at the given 

temperature, and the empty symbols show the bond lengths of a clean Pt22 cluster at 

different temperatures. Table 14 shows the experimental and theoretical (DFT) 

normalized average Pt-Pt bond length for different samples. The experimental values 

were obtained at low temperature (172-188 K) as well as RT (300 K), while the 

theoretical values were obtained at 0 K.  

 The thermal expansion coefficients, α , for all samples are shown in Fig. 60a as a 

function of the average 1st NN EXAFS coordination number and in Fig. 60b as a 

function of the average TEM NP diameter. In general, large coordination numbers 

(close to 12 for bulk Pt) are associated with large NPs, and small values with small NPs, 

although NPs with different shapes will also display distinct coordination numbers5.  
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Our data reveal a size-dependent trend in the thermal expansion coefficient, 

namely, a cross-over from positive (S3, S5-S9) to negative (S1, S2, S4) thermal 

expansion with decreasing NP size. The effect of hydrogen chemisorption in the 

thermodynamic properties of our NPs will be discussed in more detail in the following 

section. 

Table 14: Experimental (EXAFS) and theoretical (DFT) average 1st-NN bond lengths of 
Pt NPs with different sizes and shapes given as a fraction of the respective 
bulk values. All experimental samples but S2 were H2-passivated and 
supported on γ-Al2O3. S2 was also measured in He. The NPs analyzed 
theoretically were unsupported and free of adsorbates, with the exception of 
S1, which was also investigated with different H coverages. The 
experimental bulk Pt-Pt reference distances are 2.762 (2) Å at 154 K, 2.765 
(4) Å at 300 K, and 2.78 (1) Å at 700 K. The calculated bulk Pt-Pt distance is 
2.805 Å at 0 K. The DFT calculations were only carried out on Pt NPs 
containing less than 100 atoms.  

Sample 
Name 

Pt-Pt bond lengths relative to bulk 
(EXAFS) 

Pt-Pt bond lengths relative to bulk 
(DFT) 

172-188 K 300 K 648 K 0K 

S1 0.996 0.994 0.992 

0.943 (Pt22) 
0.960 (Pt22H22) 
0.969 (Pt22H25) 
0.979 (Pt22H29) 

S2 0.999 (H2) 
0.996 (He)37 

0.996 (H2) 
0.991 (He) 

0.991 (H2) 
0.982 (He) 0.964  (Pt44) 

S3  0.999 0.995 0.975 (Pt85) 

S4 0.994 0.991 0.986 0.943 (Pt33) 

S5 0.996 0.993 0.990 0.968 (Pt55) 

S6 0.997 0.997 0.992  

S7 0.999 1.001 0.993  

S8 0.999 0.997 0.993  

S9 0.998 0.997 0.993  
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Fig. 60: Average thermal expansion coefficient (α) extracted from the linear fit of the 
EXAFS data shown in Fig. 59a and those from additional samples described in 
Table 13, plotted as a function of (a) the 1st NN coordination number, and (b) 
the average TEM NP diameter. The inset in (a) displays calculated thermal 
expansion coefficients for an unsupported clean (adsorbate-free) Pt22 NP 
(model of S1) and a H-covered Pt22 NP.  

The dynamic correlated mean-square bond length disorders ( 2
dσ ) obtained from 

the fits of the experimental EXAFS data following the correlated Debye model (CDM) 201 
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are shown in Fig. 61a. The slope of the temperature dependence of 2
dσ  in the high 

temperature regime (e.g. >100 °C) is inversely proportional to ΘD
2. Above 100 K, our 

experimental data display a good linear dependence at least up to our maximum 

measurement temperature of ~650 K. Deviations from the linear behavior of 2
dσ  might 

be found in the proximity of the melting temperature207, which, even for small Pt NPs,189  

is expected to be significantly higher than 650 K.  
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Fig. 61: Dynamic contribution ( 2
dσ ) to the total EXAFS Debye-Waller factor obtained for 

micellar Pt NPs on γ-Al2O3 (S1-S5, S7) under H2 flow and analyzed with the 
CDM (solid lines). Symbols correspond to the temperatures at which the 
EXAFS data were measured. For reference, analogous data of a bulk-like Pt 
foil are also shown. In addition, the calculated thermal evolution of the mean 
square bond-projected bond-length fluctuations ( 2

dσ )th of a H-covered Pt22 NP 
(model of S1) for several thermodynamically stable states (Pt22H22, Pt22H25 
and Pt22H29) are also included.  
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Our results indicate that the majority of Pt atoms in our NPs are characterized by 

smaller bond-projected bond-length fluctuations (correlated displacements) than those 

in bulk Pt samples. 

 The Debye temperatures obtained from the CDM analysis of our EXAFS data are 

displayed in Fig. 62a as a function of the TEM NP diameter, and in Fig. 62b as a 

function of the total number of atoms in the NP normalized by the number of atoms at 

the NP surface and perimeter (Nt/Ns). All data correspond to samples passivated by H2 

under identical conditions. Fig. 62b does not include data from the large NPs (S7-S9) 

due to the degeneracy in the model shapes obtained for those samples. 

A bimodal trend in ΘD as a function of the NP diameter is observed in Fig. 62a. For 

NPs ≤ 1 nm, an overall decrease of ΘD was found with decreasing NP size (Fig. 62a) or 

decreased Nt/Ns (Fig. 62b). 

Nevertheless, relative differences were observed for NPs with the same TEM 

diameter but different shape (~0.8 nm S1 and S2, and ~1 nm, S3-S6). For larger NPs (> 

1 nm), decreasing Debye temperatures were observed with increasing NP size (TEM 

diameter), approaching the bulk ΘD value for sizes above 5 nm. Interestingly, ΘD of all 

experimental NP samples was found to exceed that of bulk-Pt. A detailed description of 

possible origins for these intriguing size- and shape-dependent trends is given in the 

discussion section. 
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Fig. 62: Debye temperature extracted from the CDM fit of EXAFS data displayed in 
Fig. 61 as a function of (a) the TEM NP diameter, and (b) the total number of 
atoms in a NP (Nt) normalized by the number of surface atoms (Ns), Nt/Ns. The 
values in (b) were obtained for the model NP shapes that best fitted the 
coordination numbers extracted from the MS analysis of low-temperature 
EXAFS data and the measured TEM NP diameters. The insets in (b) display 
the model NP shapes representative of each sample. The error margins 
reported for the Nt/Ns values reflect the degeneracy of NP shapes obtained as 
best representation of each experimental sample. The Debye temperature of a 
bulk-like Pt foil is also shown for reference (dashed line). In (a), the Debye 
temperatures calculated for Pt22H22 and Pt22 (models for S1) are also shown. 
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Table 15: First nearest-neighbor coordination number (N1), thermal expansion 
coefficient (α), and Debye temperature (ӨD) of samples S1–S9 and of a 
bulk-like Pt foil. All samples were measured in H2. S2 was also measured in 
He.  

 

Sample N1 α (10-6 K-1) ӨD (K) 

S1(H2) 6.8 -9 (7) 249 (6) 

S2 (H2) 8.0 (2) -3 (4) 250 (5) 

S2 (He) 7.8 (3) -15 (4) 240 (6) 

S3 (H2) 8.6 (3) 3 (2) 262 (6) 

S4 (H2) 7.5 (3) -2 (3) 275 (9) 

S5 (H2) 9.0 (3) 3 (2) 284 (7) 

S6 (H2) 9.7 (4) 3(6) 285 (7) 

S7 (H2) 10.4 (4) 2(7) 292 (8) 

S8 (H2) 10.5 (2) 1(3) 287 (4) 

S9 (H2) 9.6 (3) 1(2) 266 (5) 

Pt bulk 12 11 (1) 244 (3) 
 

7.4 Discussion 

7.4.1 Anomalous lattice dynamics and thermal properties of supported, size-
and shape-selected Pt nanoparticles  

The thermal expansion coefficients (α) of the Pt NP samples were estimated from 

the slope of the linear interpolation of the bond length as a function of temperature (Fig. 

59a) and are summarized in Table 15.  

As expected, the Pt foil displays positive thermal expansion. However, all of our 

NP samples were found to have smaller thermal expansion coefficients than bulk Pt 

[α~11x10-6 K-1 is the reference value extracted from EXAFS measurements of a Pt foil, 

or 8.8 x 10-6 K-1 from Ref. 208]. This effect can be partially assigned to the influence of 
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the NP/support interface, since γ-Al2O3 is characterized by a smaller α of ~ 4.5x10-6 K-1. 

209 The latter has also been held responsible for the reduced coefficient of thermal 

expansion measured for superheated Al NPs in Al2O3
210. Furthermore, for identically 

synthesized NPs, Fig. 60 constitutes a clear example of the influence of the NP size and 

geometry on their thermal properties. Interestingly, Fig. 60b reveals a cross-over from 

positive to negative thermal expansion at/below 1 nm. This result is in agreement with 

data from Kang et al.21 and Sanchez et al.22 obtained for 0.9-1.1 nm Pt NPs supported 

on γ-Al2O3 prepared by impregnation-precipitation. According to previous DFT 

calculations for Pt13 on dehydrated γ-Al2O3 (with relatively strong metal/support 

interactions),62 the impregnation-precipitation preparation method is likely to result in 

2D-shaped NPs.  

In our study, the three samples displaying negative thermal expansion coefficients 

include the smallest NPs (S1 and S2, ~0.8 nm with 2D and 3D shape, respectively) and 

a sample with slightly larger NP size but 2D shape (~1 nm, S4). In fact, the largest 

negative thermal expansion coefficient obtained for our micellar Pt NPs in H2 was for 

the 2D NPs in S1 (-9x10-6 K-1), which is comparable with that reported by Kang et al.21 

for 0.9 nm Pt NPs (-13 x 10-6 K-1), also measured in H2.  

Since other samples with average NP size of ~1 nm but 3D shape did not show 

such effect (S3, S5, S6), both, the NP/support interface, and the relative ratio of Pt 

surface atoms with adsorbed H (Ns sites) must be key parameters responsible for the 

anomalous thermodynamic behavior observed.  

Interestingly, Fig. 59b demonstrates that larger negative α values were measured 

for the 3D NPs in S2 on γ-Al2O3 under He (-15 x 10-6 K-1, Table 15) as compared to H2 
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(-3x10-6 K-1, Table 15), clearly confirming that adsorbates on the surface of small NPs 

influence their thermal expansion significantly.  

DFT calculations have shown that clean and unsupported Pt NPs display an 

overall bond length contraction (averaged over all bonds within a NP) of about 6% at 0 

K for Pt22 with respect to bulk Pt.38 However, for the smallest experimental NPs 

measured in H2 (S1), the contraction measured at 172-188 K is only 0.4% (Table 14). 

This cannot be assigned to the difference in the experimental and theoretical 

temperatures, but rather to the presence of H2 (dissociative adsorption) on the 

experimental Pt NPs.  

Ab initio MD calculations conducted by our collaborators (Dr. M. Alcántara 

Ortigoza and G. Shafai in Prof. Talat Rahman’s group at UCF, Ref. 38) had shown that 

the large negative α is not intrinsic to the NPs, since for support- and adsorbate-free Pt 

NPs (e.g. Pt22), a large positive thermal expansion coefficient was obtained.38 The 

extrinsic contribution of H-desorption to the bond-length contraction observed 

experimentally for small Pt NPs with increasing measurement temperature was 

demonstrated theoretically in Fig. 59c38. Since hydrogen lifts the intrinsic contraction 

(due to size effects), any reduction in hydrogen coverage at higher temperatures would 

result in Pt-Pt bond contraction. In other words, due to the hydrogen effect, the Pt-Pt 

bond is expanded at low temperature, and increasing the temperature results in two 

competing phenomena: (i) the increase in Pt-Pt bond length due to intrinsic thermal 

expansion, accompanied by (ii) the decrease in Pt-Pt bond length due to the lower 

hydrogen coverage, expected on the NP surface with increasing temperature. It has 

been shown38 that the effect of the decrease in the hydrogen coverage is ~5 times 
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larger than the standard thermal expansion and therefore, the net effect appears as a 

negative thermal expansion  (e.g. in Pt22Hx, Fig. 59c). More specifically, without taking 

into account the stiff substrate, the temperature-dependent desorption of hydrogen 

already resulted in a calculated negative thermal expansion coefficient about five times 

larger (~ -47 x 10-6 K-1 extracted from Fig. 59c closed symbols) than that measured via 

EXAFS for the supported NPs in S1 (~ -9 x 10-6 K-1), Fig. 60a. With both contributions at 

hand, one could see that the two effects combined can account qualitatively for the 

observed negative α, at least once the onset temperature for H desorption has been 

reached.  

In addition to adsorbate effects and size-dependent changes in the geometry (and 

therefore, electronic properties) of small NPs, NP/support interactions (not included in 

theoretical calculations) also appear to be of significance for the understanding of their 

thermal properties. From our experimental results, it seems that the observed negative 

thermal expansion cannot be explained only based on the reduction in hydrogen 

coverage, and that other factors are involved. As an example, higher negative thermal 

expansion is observed for S2 in the He environment (where no adsorbate effect is 

expected) as compared to the H2 environment, Fig. 59b and Table 15. Such behavior 

may originate from NP-support interactions. An alternative mechanism proposed to 

explain negative thermal expansion for materials characterized by strong bonding 

anisotropy relates to enhanced atomic displacements in the transverse direction to the 

bond 211. Another possibility is the effect of minute oxygen contamination that might be 

present in the He stream (due to small leaks in the tubing not detectable by mass 
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spectrometry), resulting in chemisorbed oxygen on the surface and therefore a change 

in Pt-Pt bond length and thermal expansion coefficient.  

Previous calculations by Vila et al.23 on H-free Pt10 clusters deposited on 

dehydrated γ-Al2O3 revealed a small but negative thermal expansion trend attributed to 

changes in the bond lengths as the NP diffuses on the substrate, which is in clear 

contrast with our collaborator’s MD results38 for the larger, adsorbate-free, but 

unsupported Pt22 NP. The latter emphasizes the important role of the substrate. At the 

same time, these calculations reported significantly smaller Pt-Pt contractions (~3 times 

smaller) than those measured experimentally by the same group,23 which we assign to 

the adsorbate effect described above. Our experimental data also provide evidence for 

the important role of the γ-Al2O3 substrate. For example, sample S4, with similar 

surface/volume ratio and NP/support contact area as S1 (Ns/Nt = 0.82-0.86 and Nc/Nt = 

0.55 for these two samples), but larger average size (~0.8 nm for S1 and ~1 nm for S4), 

showed a lower but still negative thermal expansion coefficient. When samples 

containing small NPs with the same size and analogous surface area for H2-

chemisorption are compared (e.g. S1 and S2, ~0.8 nm, Ns/Nt = 0.84-0.86 Table 13), the 

negative thermal expansion effect was found to be more pronounced for sample S1, 

with the highest NP/support contact area (Ns/Nt = 0.55 for S1, versus Ns/Nt = 0.23 for 

S2). A recent EXAFS study by Sanchez et al.22 revealed clear changes in the thermal 

expansion behavior of Pt NPs prepared by the deposition-impregnation method and 

supported on γ-Al2O3 and carbon substrates, with positive α values reported for the 

clusters deposited on the more weakly interacting C support, and negative α on γ-Al2O3.  
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The specific role of the NP support is yet to be determined, since the calculations 

of our collaborators at UCF (Prof. Rahman’s group)38 were carried out on unsupported 

NPs, and only one support (γ-Al2O3) was used for all experiments. 

 

7.4.2 Debye temperature  

The dynamic bond length disorders ( 2
dσ ) obtained from the fits of the experimental 

EXAFS data following the CDM 201 are shown in Fig. 61. Analysis of the EXAFS data 

obtained for the Pt-foil via the CDM lead to a Debye temperature, ΘD of 244 ± 3 K, 

which is in agreement with literature reports 174. Significantly higher values (249 K-292 

K) are obtained for samples S1-S9. The data in Fig. 61 reveal a striking behavior of our 

NPs in this regard, which will be discussed in greater detail below. The best fit values of 

static disorder, 2
sσ  are shown in Table 13 and the best fit results for the first nearest-

neighbor coordination numbers (N1) and Debye temperature, ΘD are shown in Table 

15.  

Compressive strains might be partially responsible for the enhanced ΘD, due to the 

asymmetry of the effective pair potential, where the short distance branch is steeper 

than the long distance branch (due to the hard-core repulsion), and therefore the Pt-Pt 

bond stiffness should be large in the systems having bonds with large compressive 

strain. It should also be mentioned that the compressive strain present in supported NP 

systems might have different origins, as for example the presence of ligands on the NP 

surface (not the present case), adsorbates, or a support (γ-Al2O3). However, the 
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explanation of the enhanced ΘD observed appears to be more complex than a direct 

correlation with a contraction of Pt-Pt distance.  

This result can be explained to some extent by the fact that EXAFS measurements 

underestimate the relative contribution of low-energy vibrational modes to the total 2
dσ , 

an effect that theoretically has been demonstrated to be significant for small 

unsupported NPs38. EXAFS is only sensitive to the changes in the bond length, and 

therefore, position fluctuations perpendicular to the bonds are neglected. Hence, the 

bond length disorder obtained by EXAFS, 2
dσ , corresponding to the correlated motion of 

atom pairs is essentially different than the crystallographic Debye-Waller factor <x2>, 

which is the mean-square displacement of individual atoms about their equilibrium 

position. Therefore clear differences exist between the calculated <x2>th and ( 2
dσ )th, as it 

is considered in the theory of EXAFS212.  

It has been also shown that the temperature dependence obtained for ( 2
dσ )th are 

clearly different from those of the “real” (uncorrelated) atomic mean square 

displacements, <x2>th. More specifically, smaller slopes of the ( 2
dσ )th versus temperature 

plots were observed for the majority of the clean NPs  as compared to bulk Pt (exp.), 

which is in qualitative agreement with the experimental data in Fig. 61a. However, the 

contrary is true for <x2>th, with larger atomic displacements and slopes for the NPs as 

compared to bulk Pt. It was shown that for all different NPs, ( 2
dσ )th and its slope are 

significantly smaller than <x2>th and its slope38. 

Based on the slope of <x2>th or ( 2
dσ )th, a parameter, Θslope,  is defined in 

correspondence with the Debye temperature of bulk Pt: 
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,where bulkPt
DΘ  is the Debye temperature of bulk Pt (244 K), bulkPt∆  is the slope of 

2
dσ  for bulk Pt derived from EXAFS measurements (1.528 ×10-5 Å2/K)22, and NP∆ is the 

slope of ( 2
dσ )th calculated for the NP.   

Fig. 62a displays, slopeΘ , extracted from the slope of the theoretical ( 2
dσ )th  versus T 

plots of clean Pt22 (S1) and Pt22H22. The Pt22H22 coverage was selected because it is 

stable at the highest temperature investigated (T> 600 K). The error bar corresponds to 

the variations of slopeΘ  with H coverage, considering only those that are 

thermodynamically stable. Overall, the adsorption of hydrogen was found to lead to a 

reduction of slopeΘ for all H coverages studied. Nevertheless, the observed changes were 

non-monotonic, being largest for Pt22H29 ( slopeΘ = 226 K) and smallest for Pt22H25 ( slopeΘ = 

203 K), with Pt22H22 ( slopeΘ = 220 K) in between, Fig. 62a.  

 It is useful to point out that since a number of low-energy vibrational modes 

correspond to shear perturbations of surface atoms213, if the NPs are strongly bound to 

a stiff substrate, the corresponding boundary condition might eliminate some of those 

modes.26, 214 In addition, the presence of a strongly binding support might lead to an 

increase in the phonon gap present for small NPs.54 For instance, the vibrational gap 

increased from 0.2 to 4.2 meV for free versus pseudomorphic Ru(0001)-supported 

single-layer Au13.214, 215 Therefore, for NPs supported on stiff substrates, in which the 

low-energy VDOS might be suppressed, the differences between <x2> and 2
dσ  
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measured via EXAFS might not be as significant as those for the unsupported 

theoretical NPs. Thus, quantitative agreement between theoretical and experimental 

data requires also the consideration of the support in the calculations, which for the 

various NP sizes and shapes investigated in Ref. 38 is beyond computational  

possibilities based on first principle calculations. Moreover, it should be noted that the 

calculation results shown in Fig. 61a of 2
dσ versus T curves for Pt22H22, Pt22H25 and 

Pt22H29 intend to single out the effect of the limited sensitivity of EXAFS to low-E 

vibrational modes, but do not take into consideration the expected changes upon 

gradual desorption of H2 with increasing temperature, since they correspond to a 

constant hydrogen coverage. 

From the slope of the 2
dσ  versus T plot of the EXAFS data in Fig. 61a, a Debye 

temperature was obtained for NPs in the size range of 0.8 to 5.4 nm, Fig. 62. As already 

mentioned, the behavior of the Debye temperature signifies here only the trends in the 

mean square bond length fluctuations.  It neither validates nor refutes the Debye model 

for the vibrational density of states, which has been noted to be unsuitable for 

accurately describing the vibrational properties of  small unsupported NPs (< 500 

atoms,63 <2 nm) due to the 3N-discretization of the vibrational energies214, 216 and the 

observation of an excess vibrational density of states (VDOS) at low phonon energies25. 

The following observations are made based on the analysis of the EXAFS data shown 

in Fig. 62: (i) an overall increase in the Debye temperature of all NP samples with 

respect to bulk Pt; (ii) the distinct thermal properties of small and large Pt NPs. For NPs 

≤ 1 nm, a decrease in DΘ  is observed with decreasing NP size, while for larger NPs (> 

1 nm), the Debye temperature was found to decrease with increasing NP diameter, Fig. 
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62(a). The DΘ value of bulk Pt was not reached for the largest NPs investigated here 

(~5.4 nm). The size-dependency displayed by the NPs with sizes > 1.5 nm is in 

agreement with that reported for superheated NPs with well-ordered (epitaxial) 

NP/support interfaces.19 (iii) For NPs < 1.5 nm, a decrease in DΘ is also obtained with 

increasing relative number of atoms at the NP surface (Ns), Fig. 62b. It should be taken 

into consideration that Ns here includes surface and perimeter atoms (the latter in 

contact with the support). A plausible explanation for this observation is the 

consideration of the low-coordinated surface atoms as defects leading to a suppression 

of DΘ , while the perimeter atoms in contact with the support might have the contrary 

effect. In fact, if the interaction of Pt atoms with γ-Al2O3 is responsible for the large 

experimental DΘ , increasingly large 3D NPs will have a smaller fraction of atoms in 

contact with the support, which would lead to the disappearance of the DΘ -

enhancement (bulk limit). This trend is observed here for the largest NPs investigated 

(S9).  

Although we did not measure the melting temperature of our NPs directly, 

according to eq. (3), similar size-dependent trends are expected for Tm and ΘD 
194:   

2

2222
h

kRπmcT BD
m

Θ
=  (33) 

, with m being the atomic mass, c Lindemann’s constant,193 R the bond length, kB 

the Boltzmann constant, and h the Planck constant.  

In the literature19, the following factors have been discussed to contribute to the 

DΘ  (or Tm) enhancement reported for some nanoscale systems: (i) the presence of a 

matrix (e.g. γ-Al2O3) with a higher melting temperature than that of the NPs (e.g. Pt) or a 
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high melting-temperature coating around the NPs, and/or a support that binds strongly 

the NPs, (ii) a low density of structural defects within the NPs, good crystallinity, and NP 

faceting, (iii) a NP/support interface with a low defect density and if possible, an 

epitaxial relation between the NP/support, and (iv) the absence of a significant number 

of grain boundaries, twinning and other related structural defects. The sample 

preparation method is a key factor controlling the structural features affecting this 

anomalous thermodynamic behavior. Our large NPs (> 1.5 nm) display a trend for the 

Debye temperature analogous to that reported for the melting temperature of melt-spun 

superheated In NPs embedded in Al197 or Pb NPs in Al217, namely, increasing DΘ  with 

decreasing NP size. Interestingly, for the same experimental systems, differently 

prepared samples (ball-milled) with incoherent NP/matrix interfaces displayed the 

opposite trend, namely, decreasing Tm with decreasing NP size.197, 217 These effects 

were explained in terms of an enhanced internal disorder and non-coherent NP/support 

interface for the latter set of samples. Cahn198 attributes superheating effects to a 

constraint in the amplitude of the vibration of atoms at the NP/support interface, 

highlighting the importance of an epitaxial relation between the metal NPs and the 

coating, matrix, or support material. In our case, Fig. 61a might suggest an overall 

stiffening of our NPs because of the reduced bond-projected bond length fluctuations, 

although the data shown correspond to the entire NP, not only to atoms at the 

NP/support interface. On the other hand, it should be kept in mind that our calculations 

suggest that H reduces the slope of ( 2
dσ )th, but they do not include the γ-Al2O3 

substrate, which is expected to increase it and thus play a pivotal role in the 

thermodynamic behavior of supported NPs.  
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Following the preceding ideas, the enhanced Debye temperatures observed for 

our large NPs (1.5 nm < d < 5 nm) and their size dependency appears typical of well 

ordered, faceted NPs with coherent or semi-coherent NP/support interfaces surrounded 

by a high melting-temperature matrix (or support in our case). The crystallinity of our 

large NPs can be seen in the EXAFS spectra included in Fig. 57a (4-6 Å range) (S8) as 

compared to a bulk Pt reference. On the other hand, our small NPs (S1-S6 ≤ 1 nm) 

behave similarly to disordered NPs, for which a decreasing melting temperature was 

observed with decreasing NP size197. Furthermore, when small NPs are considered, not 

just the NP size, but also their shape might strongly affect their Debye temperature. For 

example, we obtained different Debye temperatures for NPs of identical size (~1 nm 

TEM diameter, S3-S6), and a correlation was observed between the number of low 

coordinated atoms at the NP surface and DΘ , with lower DΘ  values for the NPs with the 

highest surface-to-volume ratio, Fig. 62b. This trend can also be explained by the 

adsorbate effect, since the higher the surface-to-volume ratio, the stronger the 

adsorbate effect will be. Our theoretical results on unsupported Pt22HM revealed that the 

adsorption of hydrogen increases the mean square bond length fluctuations and its 

slope [( 2
dσ )th versus T] with respect to the corresponding values of adsorbate-free Pt22, 

leading to a smaller DΘ , Fig. 62a. Nevertheless, it should be noted that the support, 

which is expected to have the opposite effect, still needs to be taken into account. 

Experimentally, it was observed that the flat NPs in S4 displayed a higher DΘ  than 

analogously-sized 3D clusters (S3) with a lower contact area with the γ-Al2O3 substrate. 

This effect reveals the important role played by the NP/support interface in the 

thermodynamic properties of small NPs.  
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Summarizing, our data provide insight into the influence of the geometric structure 

(size and shape) and environment (adsorbates and substrate) in the thermodynamic 

properties of metal nanoparticles. In particular, the important role of H2 desorption in the 

negative thermal expansion experimentally observed for small supported metal clusters 

is discussed. Furthermore, size-dependent changes in the Debye temperature observed 

via EXAFS are explained in terms of the NPs geometrical structure and NP/support 

interface, but also as a function of intrinsic limitations of the experimental technique 

used.   

 

7.5 Conclusions 

A synergistic combination of EXAFS, TEM, NP shape modeling, ab initio total 

energy and molecular dynamics calculations based on DFT have allowed us to gain 

insight into the structure and thermal properties of Pt NPs supported on γ-Al2O3. Our 

main experimental findings are: (i) a size-dependent cross-over from positive to 

negative thermal expansion with decreasing NP size; (ii) the observation of enhanced 

experimental Debye temperatures for small Pt NPs bound to γ-Al2O3; (iii) the different 

vibrational behavior of large and small metal NPs. Small NPs (≤ 1.5 nm) show a general 

decrease in the Debye temperature with decreasing NP size associated with the 

increase in the number of atoms at the NP surface. For large NPs (> 1.5 nm), 

decreasing Debye temperatures are observed with increasing NP size. For the latter 

samples, the existence of a decreasing number of atoms within the NPs in contact with 

the support appears to contribute to the suppression of the matrix-induced ΘD-

enhancement.  
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Our computational investigations revealed that the negative thermal expansion of 

the smallest NPs is not intrinsic, and qualitatively suggests that thermal desorption of 

chemisorbed hydrogen is at least partially responsible for this effect. The comparison of 

the calculated bond-projected ( 2
dσ )th (based on the Correlated Debye Model) and the 

total mean squared atomic displacement, <x2>th for unsupported and adsorbate-free 

NPs revealed smaller slopes in the ( 2
dσ )th vs. T plots. Hence, the relatively small 

experimental 2
dσ  slopes, and therefore, the unusually large Debye temperatures 

obtained experimentally, can be partially assigned to the nature of the experimental 

probe used for its determination, since fluctuations in the bond length perpendicular to 

the bond, which might be present at low energies, are not accessible to EXAFS. 

Furthermore, our calculations traced the observed decrease in the mean square atomic 

displacements or bond-length fluctuations to the possible elimination of low energy 

vibrational modes of the NPs. We have shown that this might occur due to specific 

detection limits of the experimental technique used, by the presence of large gaps in the 

vibrational density of states of the NPs, or due to NP/support interactions. 

In this work we have demonstrated that the lattice dynamics and thermal behavior 

of NPs is affected by their geometric properties and adsorbates.  Our experimental data 

provide important validation for nanothermodynamics theories that, as we have shown 

qualitatively in this work, should incorporate geometrical effects (size and shape) and 

environmental interactions (e.g., adsorbate and support) to adequately describe thermal 

properties at the nanoscale. 
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CHAPTER 8: ELECTRONIC PROPERTIES AND CHARGE TRANSFER 
PHENOMENA IN Pt NANOPARTICLES SUPPORTED ON γ-Al2O3: SIZE, 

SHAPE, SUPPORT,  AND ADSORBATE EFFECTS 

8.1 Introduction 

Striking changes in the physical and chemical properties of small metal NPs have 

been reported9, 19-21, 30, 31, 122, and in some cases assigned to size-dependent 

modifications of their electronic properties, including metal/non-metal transitions, the 

discretization of energy levels, and rehybridization of spd orbitals.9, 18 Nevertheless, in 

addition to intrinsic changes in the NP properties brought about by specific geometrical 

features (e.g. NP size and shape), the role of external influences such as adsorbate and 

support effects must also be taken into consideration.  

Although significant effort has been dedicated to the investigation of geometric and 

environmental effects on the electronic properties of metal NPs23, 204, 218-224, some 

discrepancies still remain in the literature regarding the interpretation of certain 

experimental trends223, 225-228. These are due in part to the challenge of synthesizing 

geometrically well-defined target material systems, the difficulty of separating the 

different influences to a given electronic property (since some correlations exist among 

them), and the complexity of real-world experimental NP supports, making related 

modeling descriptions difficult.  

In situ XANES measurements have been proven valuable for the study of intrinsic 

and extrinsic effects on the electronic properties of NPs,23, 182, 204, 218-223, 226, 229-233 since 

this technique is sensitive to unoccupied electronic states. The following differences 

have been observed when comparing XANES data from nanoscale and bulk systems: 

(i) modifications in the intensity of the absorption edge peak (or white line, WL), (ii) an 
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increase/decrease in the width of the WL, and (iii) a shift in the energy of the absorption 

edge. The extent of these modifications was found to be strongly influenced by extrinsic 

effects. More specifically, changes in L3 and L2 XANES spectra of metals upon 

chemisorption can be explained in terms of orbital hybridization, charge transfer, and 

metal-adsorbate scattering. 

Although general agreement exists on the correlation between the integrated area 

of the adsorption peak and the amount of chemisorbed hydrogen223, 225-228, it is still 

unclear whether the peak energy is influenced by the number of H adsorption sites on 

the NP surface, the presence of co-adsorbates, and the NP size/shape. In the absence 

of adsorbed hydrogen, a narrowing of the electron density of states (DOS) and a shift of 

the d-band center towards the Fermi level (EF) have been theoretically described by 

comparing unsupported Pt6 NPs and Pt(111), highlighting that intrinsic effects must also 

be considered.223  

 In addition to adsorbate effects, the interaction of the NPs with the underlying 

support must also be addressed. This is, however, a difficult task, since due to specifics 

of the most common NP synthesis approaches used, a direct comparison of the 

influence of different supports on NPs of identical geometry (same size and shape) 

cannot normally be conducted, leading to a convolution of support (extrinsic) and 

size/shape (intrinsic) effects. Some groups report a lack of correlation between the 

intensity of the absorption peak, integrated area or energy, and the type of NP 

support182, 229, 234, exclusively assigning the changes observed to adsorbate 

chemisorption. On the other hand, a theoretical study of a Pt6 cluster in a zeolite-LTL 

pore revealed a broadening of the WL for the supported cluster with respect to bare Pt6 
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and a concomitant decrease in the WL intensity in order to maintain the overall density 

of d-states constant204.  

For Pt NPs on carbon nanotubes, the smaller WL of the NPs as compared to bulk 

Pt was assigned to charge redistribution between C-2p and Pt-5d states, which did not 

lead to the loss of charge219. For Pt NPs on SiO2, the observed increase in the WL 

intensity was assigned to charge transfer from Pt to SiO2
219. This is another 

controversial aspect in the literature, since some groups explain the observed changes 

in the XANES data (e.g. energy shift) based on charge transfer phenomena (to/from 

adsorbates or the support), while others on the formation of metal-adsorbate or 

metal/support bonds (charge redistribution) leading to changes in the electron density of 

states near the Fermi level.226, 235 Furthermore, theoretically predicted fluctuating 

cluster-substrate interactions and charge transfer phenomena for Pt10 on γ-Al2O3 were 

correlated with the positive energy shifts experimentally observed with decreasing NP 

size and decreasing measurement temperature. 23 

The present study takes advantage of state-of-the-art nanostructure fabrication, 

and characterization methods to gain deep insight into the role played by the 

geometrical structure of NPs (size and shape), support, and surface adsorbates, on 

their electronic properties. Specifically, we used size- and shape-selected Pt NPs 

(produced via inverse micelle encapsulation methods) supported on γ-Al2O3 combined 

with in situ XANES, and cluster shape modeling. The ability of tuning the d-electron 

density in supported NPs via a rational geometrical design is key for the ultimate control 

of catalytic properties, since reactivity is strongly influenced by the interaction of d-

orbitals of metals with valence orbitals of reactants.  
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8.2 Experimental and theoretical methods 

8.2.1 Sample preparation 

Size- and shape-selected Pt NPs were prepared via micelle encapsulation. 

Poly(styrene)-block-poly(2vinylpyridine) [PS-P2VP] diblock copolymers were dissolved 

in toluene to form inverse micelles. Size-selected Pt NPs are created by dissolving 

H2PtCl6 into the polymeric solution. Subsequently, the nanocrystalline γ-Al2O3 support 

(Alfa Aesar, average crystalline size ~40 nm) is added. The Pt loading is 1 % by weight. 

The encapsulating ligands are eliminated by heating in 50 % O2 balanced by He at 648 

K for 24 hours. Different NP sizes can be obtained by changing the molecular weight of 

the head (P2VP) of the encapsulating polymer, the metal/P2VP ratio (micelle loading), 

and the post-preparation annealing treatment and atmosphere5. Our micellar synthesis 

normally leads to 3D-like NP structures. Nevertheless, the NP shape can be changed 

from 3D to 2D by decreasing the metal loading into the initially spherical polymeric 

micelles. Further details on the sample preparation, synthesis parameters, and TEM 

characterization can be found in Refs. 5, 28, 29, 41, 81 and Table 16.  

 

8.2.2 Structural, and electronic characterization (XAFS) 

Pt L3-edge XAFS data were acquired at beamline X18B of the NSLS at BNL in 

transmission mode. The XAFS samples were prepared by pressing the Pt/γ-Al2O3 

powders into thin pellets which were mounted in a cell described previously,236, 237 that 

permitted sample heating via an external PID controller, liquid nitrogen cooling, as well 

as the continuous flow of gases during data acquisition. A Kapton window in the cell 

allows both in situ x-ray transmission and fluorescence measurements. A bulk Pt foil 
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was measured simultaneously with all samples for energy alignment and calibration 

purposes. Multiple scans were collected at each temperature of interest and averaged 

in order to improve the signal-to-noise ratio. Measurements were made at different 

temperatures under H2 (50 % H2 balanced with He for a total flow rate of 50 ml/min, S1-

S9) and He (S2) atmospheres. The sample measured in He was first reduced in H2 at 

648K. Subsequently, the H2 environment was replaced by He and XAFS data were 

acquired at different temperatures during cooling from 648 K to 173 K.  

Quantitative determination of the average NP shape was carried out by analyzing 

low temperature (166-188 K) EXAFS data up to the 4th nearest neighbor contribution, 

including multiple scattering paths as described in Refs. 5, 41 and references therein. 

The r fitting range was 1.8 Å to 5.7 Å. The shapes of our Pt NPs have been resolved by 

matching structural information obtained experimentally via EXAFS (coordination 

numbers up to the 4th nearest neighbor, N1-N4) and TEM (NP diameter, d) to analogous 

data extracted from a self-generated database containing ~4000 model fcc NP shapes5, 

41. The shape selection procedure is described in chapter 7.  

All of our small NP (diameter < 1.5 nm) samples are characterized by narrow size 

distributions according to in-depth TEM analysis, while wider size distributions were 

observed for the larger clusters (Table 16 and Ref. 41). In order to determine the most 

representative NP shape for each of the samples, we have used volume-weighted 

(small NPs, S1-S6) TEM diameters. In general, the use of the volume-weighted 

diameters (daverage =∑ ∑⋅ wwd /)( , where the weighting factor w is the NP volume which 

is proportional to d3) is preferred when comparing TEM and EXAFS structural 
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information, since EXAFS is a volume-weighted technique. Detailed structural 

characterization of the present samples is given in Ref. 5, 41, and 5. 

Table 16 shows the shapes that best fitted the EXAFS and TEM data for each of 

the samples investigated and contains information on the ratio of the number of Pt 

atoms at the NP surface and perimeter to the total number of atoms within each NP 

(Ns/Nt) and that of the number of Pt atoms in contact with the support to the total 

number of atoms within a NP (Nc/Nt) extracted from the selected model NP shapes. As 

it is described in more detail in Ref. 5, for each of the samples containing small Pt NPs, 

only 2-3 similar shapes were in good agreement with the EXAFS coordination numbers 

and TEM diameter (including the experimental error margins). No shapes are displayed 

in this manuscript for the samples containing large NPs (S7-S9), since a large number 

of cluster shapes are in agreement with the EXAFS coordination numbers and TEM 

diameters200. 

Changes in the morphology of our samples as a function of temperature have not 

been accounted for in our analysis since our EXAFS measurements were conducted up 

to a maximum temperature of 648 K, which is the same temperature used for sample 

calcination (24 h) prior to the in situ spectroscopy analysis. If any changes in the NP 

morphology (size and/or shape) were to occur at 648 K, they should have already taken 

place before the XAFS measurements. 

In order to gain insight into the electronic properties of Pt NPs, we present here 

XANES spectra from the Pt L3 absorption edge. These data provide information on the 

binding energies of 2p electrons (2p3/2 initial state) and the unoccupied “d” electron 

density of states near the Fermi level (d5/2 + d3/2 states). 
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Table 16: Parameters used for the synthesis of micellar Pt NPs, including polymer type 
(PS-PVP) and the ratio (L) between the metal salt loading and the molecular 
weight of the polymer head (P2VP). Also included are the mean TEM 
diameters from Ref. 41. By comparing structural information obtained via 
EXAFS (1st-4th nearest neighbor coordination numbers) and TEM (NP 
diameters) with a database containing fcc-cluster shapes, the ratio of the 
number of surface atoms to the total number of atoms in a NP (Ns/Nt) and 
the ratio of the number of atoms in contact with the substrate to the total 
number of atoms (Nc/Nt) were obtained (see details in Ref. 41). The NP 
shapes obtained for large NPs in S7-S9 are not shown in this table due to 
the large shape degeneracy for the obtained coordination number and TEM 
diameter.  

Sample 
Name 

Polymer L 
TEM 

diameter 
(nm) 

 

Model 
cluster 
shapes 

Nt Ns/Nt Nc/Nt 

S1 
PS(27700)-
P2VP(4300) 

0.06 0.8 ± 0.2 
 

22 0.86 0.55 

S2 
PS(27700)-
P2VP(4300) 

0.1 0.8 ± 0.2 
 

44 0.84 0.23 

S3 
PS(27700)-
P2VP(4300) 

0.2 1.0 ± 0.2 
 

85 0.74 0.18 

S4 
PS(16000)-
P2VP(3500) 

0.05 1.0 ± 0.2 
 

33 0.82 0.55 

S5 
PS(16000)-
P2VP(3500) 

0.1 1.0 ± 0.2 
 

55 0.75 0.16 

S6 
PS(16000)-
P2VP(3500) 

0.2 1.0 ± 0.2 
 

140 0.64 0.13 

S7 
PS(16000)-
P2VP(3500) 

0.4 1.8 ± 1.5     

S8 
PS(27700)-
P2VP(4300) 

0.3 3.3 ± 1.5     

S9 
PS(27700)-
P2VP(4300) 

0.6 5.4 ± 3.0     

 

Since the intensity and integrated area of the Pt-L3 absorption peak are 

considered to be proportional to the density of unoccupied 5d electronic states, they can 
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be used to extract information on d-level electronic charge redistributions238. It should 

be noted that our experimental set-up, along with our calibration procedures, allows us 

to discern relative energy shifts in the XANES peak position with sensitivity of about 0.1 

eV. In order to obtain the peak position, the experimental data were fitted with a spline 

curve. In the following section, we will also provide information on the changes of the 

area of the Pt-L3 absorption peak. Different methods have been used in the literature to 

calculate this area before and after NP/adsorbate exposure182, 222, 223, 226, 227, 229, 239-242. 

Some authors first aligned all the spectra and subsequently calculated their respective 

difference, while others241, 242 used the area of the second feature (peak B in Fig. 69) 

observed in raw (not artificially aligned) ΔXANES spectra as the representative 

parameter.182, 222, 223, 226, 227, 229, 239, 240 We have followed the second approach for the 

calculation of the ΔXANES areas shown within the main text of this manuscript.  

In particular, ΔXANES areas were obtained by subtracting the XANES spectrum of 

the NPs at 648 K from that of the same sample measured at a given lower temperature, 

both in hydrogen. In the literature, some authors have shown similar ΔXANES plots 

using as reference spectra from the Pt foil182, 223, or NPs measured under He223, 226, 239 

or in vacuum182, 222, 227-229, 231. Due to the inherent experimental difficulty of preventing 

the effect of trace oxygen and moisture possibly leading to the oxidization of small Pt 

NPs in conventional XAFS-compatible cells in the absence of H2, we decided to use as 

reference of the adsorbate-free NP state, our highest temperature XANES spectra 

measured under H2,227 since a minimum H coverage on the NP surface is expected 

under those conditions, and lack of chemisorbed oxygen and/or NP oxidation is ensured 

under the continuous H2 flow employed here.  
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8.3 Results 

The effects of the Pt NP size, shape, support, and chemical environment 

(adsorbates) on its electronic properties were investigated in situ via Pt-L3 edge XANES. 

Fig. 63 shows the normalized absorption coefficient corresponding to the Pt-L3 edge of 

Pt NPs with different sizes supported on γ-Al2O3 measured in H2 at RT and also low 

temperature (LT) after in situ NP reduction at 648K. Two main differences were 

observed for the samples containing small NPs with respect to bulk Pt: (i) an increase in 

the width of the absorption peak, (ii) a shift in the absorption peak to higher energy. 

The effect of size and shape of the NPs are shown in Fig. 64, and Fig. 65. The 

insets correspond to the model shapes that best represent the NPs in samples S1-S4. 

By comparing the NPs with the same TEM diameter, the energy shift was found to be 

more significant for the NPs with 2D shape (S1 as compared to S2 and  S4 as 

compared to S3), Fig. 64. In particular, for samples containing NPs of identical average 

size (TEM diameter)5, 41 but different shape, the following energy shifts were measured: 

ΔE = +0.5 eV for S1 with respect to S2 (0.8 ± 0.2 nm), and +0.7 eV for S4 with respect 

to S3 (1.0 ± 0.2 nm) (Fig. 64). 

In addition by comparing the NPs with similar shape but different TEM diameter it 

was found that smaller NPs show larger energy shift (Fig. 65). For instance, S2 and S3 

have the same octahedron shape but different sizes. The energy shift and peak 

broadening are larger for S2 as compared to S3 due to smaller size of S2 as compared 

to S3.  
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Fig. 63: Normalized absorption coefficient, μ(E), versus energy (XANES region) for the 
Pt-L3 edge of Pt NPs. The samples were measured at (a) RT and (b) low 
temperature (173 K for S1 and S2, 180 K for S8 and S9) in H2 after reduction. 
Similar data from a Pt foil (bulk) are also displayed for reference in (a).  
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Fig. 64: Normalized absorption coefficient, μ(E), versus energy (XANES region) for the 

Pt-L3 edge of Pt NPs (~0.8 nm for S1 and S2, ~1 nm for S3 and S4) on γ-
Al2O3. Samples were measured at RT in H2 after reduction. Similar data from a 
Pt foil (bulk) are also shown for reference.  

 Furthermore, for samples of identical shape (2D) but different size, e.g. 0.8 ± 0.2 

nm NPs in S1 and 1.0 nm ± 0.2 in S4, Fig. 65(a), an increase in the width of the 

absorption peak was observed with decreasing NP size. The same was observed for 

the 3D NPs in Fig. 65(b). As expected, no drastic changes were observed in the XANES 

spectra of the samples containing large Pt NPs (S8, S9 > 3 nm) as compared to bulk Pt, 

Fig. 65(c).  
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In order to gain insight into the role of the adsorbate, the same sample S2 was 

measured in H2 and He at low temperature (173 K). As can be seen in Fig. 65(d) in H2, 

a broader absorption feature, higher WL intensity, and a larger energy shift with respect 

to the He data were observed. Complete saturation of the NP surface with H2 is 

expected under these measurement conditions. 

 

Fig. 65: Normalized absorption coefficient, μ(E), versus energy (XANES region) for the 
Pt-L3 edge of Pt NPs on γ-Al2O3. The samples in (a-c) were measured at RT in 
H2 after reduction (S1-S4). Similar data from a Pt foil are also displayed for 
reference. Sample S2 was measured in H2 and He at 173 K (d). 

Fig. 66 displays temperature-dependent XANES data from Pt NPs with different 

sizes and shapes measured under an identical H2 atmosphere: ~ 0.8 nm (S1, S2), ~ 1.0 

nm (S3, S4), ~ 3.3 nm (S8), and ~ 5.4 nm (S9).  
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Fig. 66: Normalized absorption coefficient, μ(E), versus energy (XANES region) for the 
Pt-L3 edge of Pt NPs on γ-Al2O3: (a) S1, (b) S2, (c) S4, (d) S3, (e) S9, (f) S8 . 
Temperature dependent data acquired in H2 from 173 K to 648 K are shown 
for all samples. The insets correspond to model NP shapes representative of 
the NPs in each of the samples. For the large NPs (S8 and S9), a large 
degeneracy of shapes was obtained, and the models shown in (e,f) are only a 
guide of  the possible NP structures. 

 
(a) S1  ~ 0.8 nm (b) S2  ~ 0.8 nm 

(c) S4  ~ 1.0 nm (d) S3  ~ 1.0 nm 

(e) S9  ~ 5.4 nm (f) S8   ~ 3.3 nm 

173 K 

648 K 

173 K 

648 K 

188 K 

648 K 

298 K 

648 K 

180 K 

648 K 

183 K 

648 K 
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The insets correspond to the model NP shapes extracted from the analysis of low-

temperature (173-188 K) EXAFS data. With increasing temperature from 173 K to 648 

K, a decrease in the WL intensity, a shift towards lower energy, and a decrease in the 

line width were observed.  

A linear correlation between the energy shift of the absorption edge peak (with 

respect to bulk Pt) and its total area and the first nearest neighbor coordination number 

(N1) was observed at RT: decreasing values with increasing N1, Fig. 67(a),(b), 

respectively.  

The blue shift of the WL observed for the NP samples relative to the Pt foil is most 

noticeable for S1 (+1.35 eV) but also present for the other samples (+1.25 eV for S4 

and +0.8 for S2). A similar trend was observed when the former energy shifts are 

plotted versus the TEM NP diameter, Fig. 67(c), corroborating that the smallest NPs are 

the most affected by intrinsic (size and shape) as well as extrinsic (adsorbate and 

support) effects. It should be noted that the overall trend is the same if one uses the 

TEM diameter as representative size parameter, Fig. 67(c), or the EXAFS NP size [e.g. 

1st NN CN, Fig. 67(a)], although the dependence is slightly different, with  a more abrupt 

change observed as a function of the NP diameter for NPs below ~1.5 nm. The 

difference is attributed to the fact that the EXAFS data (N1) also contain structural 

information about the NP shape (not only its diameter), which, as will be discussed in 

more detail below, might play a role in the effect observed, via for example NP-support 

charge transfer phenomena for clusters with a large fraction of atoms in contact with the 

support. Analogous XANES data acquired at low-temperature (166 K-188 K) in H2 are 

presented in Fig. 68.  
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Fig. 67:  Shift in the energy of the Pt-L3 absorption edge of Pt NPs on γ-Al2O3 with 

respect to a bulk Pt reference as a function of: (a) the 1st nearest neighbor 
coordination number (N1), (c) the TEM NP diameter from Ref. 41 (b) Evolution 
of the ΔXANES area (peak B) of NPs with different sizes as a function of N1. 
The ΔXANES plots were obtained by subtracting XANES spectra measured 
under H2 at 648 K (nearly adsorbate-free) from those measured at RT under 
H2 (nearly H-saturated). 
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Fig. 68: Shift in the energy of the Pt-L3 absorption edge of Pt NPs on γ-Al2O3 with 
respect to a bulk Pt reference as a function of: (a) the 1st nearest neighbor 
(NN) coordination number (N1) and (c) the TEM NP diameter from Ref. 41 (b) 
Evolution of the ΔXANES area (peak B) of NPs with different sizes as a 
function of N1. The ΔXANES plots were obtained by subtracting XANES 
spectra measured in H2 at 648 K (nearly adsorbate-free) from those measured 
at low temperature under H2 (H-saturated). The minimum low temperature 
achieved in our experimental setup was slightly different for different samples: 
173K (S1, S2), 188K (S4), 183K (S5, S6), 166 K (S7), 180 K (S8,S9). 
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In order to gain further insight into the role of adsorbed hydrogen on the electronic 

properties of our small fcc Pt NPs, ΔXANES plots were constructed. Fig. 69(a) displays 

XANES data from NPs with different sizes measured in H2 at RT after subtraction of the 

648 K spectrum of the respective NP sample. As was shown in our recent work41, 

significant H2 desorption was predicted above 450 K (upon heating in an H2 

atmosphere), and therefore, it is reasonable to assume that the XANES data measured 

at 648 K are the ones least affected by chemisorbed hydrogen, and can therefore be 

used as reference as the state of the NPs with the minimum hydrogen coverage. Fig. 

69(a) provides information on the H2 effect and effective hydrogen coverage on the 

surface of NPs of different sizes, with increasing spectral area with decreasing NP size. 

Quantitative analysis of these data will be shown later. Similar ΔXANES plots are 

included in Fig. 69(b) and (c), but in those cases the 648 K XANES spectra were 

subtracted from the data acquired in H2 at different temperatures for samples S1 (b) and 

S9 (c) (the smallest and largest NPs). It should be noted that although the spectral 

features change drastically with temperature in the EXAFS region, XANES data are not 

strongly affected by thermal effects204, and therefore, comparisons such as the one 

described above are justified.  

For the small NPs in S1, a clear trend of increasing spectral area with decreasing 

measurement temperature was detected, which correlates with the higher hydrogen 

coverage at the lowest measurement temperatures. As expected, due to the 

significantly lower surface to volume ratio of the NPs in S9, the adsorbate effect in Fig. 

69(c) is small.  
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Fig. 69: Difference XANES spectra (ΔXANES) from the Pt-L3 absorption edge of Pt 

NPs on γ-Al2O3 displayed as a function of the NP size (a), and the 
measurement temperature for NPs in S1 (b) and S9 (c).  All measurements  
were conducted in a H2 environment.  In all plots, the 648 K data are 
subtracted from those acquired at lower temperatures [RT in (a) and variable 
temperatures in (b) and (c)] in order to deconvolute the adsorbate effect, since 
no significant H2 effect is expected at 648 K.  
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To evaluate the relative contribution of NP-adsorbate and NP-support charge 

transfer and redistribution phenomena, we have used structural information obtained 

from the model NP shapes that best represent our samples (see Table 16). In particular, 

the relative number of atoms at the NP surface (Ns/Nt) and that of atoms in contact with 

the support (Nc/Nt) are considered. Fig. 70(a) summarizes the evolution of the absolute 

energy of the absorption peak with increasing measurement temperature for several of 

our samples. The decrease in the energy shift observed for the small NPs (e.g. S1, S2, 

S4) with increasing annealing temperature is at least partially assigned to the loss of H2. 

The difference in the energy of the Pt-L3 XANES absorption peak of our Pt NPs at RT 

with respect to the measurement at 648 K (lowest H coverage) versus Ns/Nt is shown in 

Fig. 70(b). The highest relative energy shifts were obtained for the NPs with the largest 

number of low-coordinated surface atoms (S1, S2). Analogous energy shift data 

comparing low-temperature (166 K-188 K) spectra and 648 K spectra measured in H2 

are included in Fig. 71a. A similar result is obtained when the integrated ΔXANES peak 

area is considered, Fig. 71b. 

As was mentioned before, the energy shifts observed at 648 K for the NP samples 

with respect to bulk Pt might be considered nearly independent of adsorbate effects 

(lowest effective residual hydrogen coverage due to the low sticking coefficient of 

hydrogen at this temperature), allowing us to decouple two extrinsic environmental 

factors, adsorbate and support effects.  
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Fig. 70: (a) Temperature dependence of the absorption peak energy (Pt-L3) of a 

selected set of Pt NPs on γ-Al2O3 samples: S1, S2, S4-S9. All samples were 
measured in H2 after reduction. (b) Shift in the Pt-L3 absorption peak energy of 
NPs with different sizes measured in H2 at RT with respect to data from the 
same samples acquired at 648 K plotted versus the relative number of surface 
atoms in each NP (Ns/Nt). A bulk Pt foil has been used as reference. (c) 
Energy shift of the Pt-L3 absorption edge of Pt NPs measured at 648 K with 
respect to bulk Pt (RT) versus the relative number of atoms within the NPs in 
contact with the NP support (Nc/Nt). All samples were measured in H2 after NP 
reduction. 
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Fig. 71: (a) Energy shift (LT-648 K) versus Ns/Nt. (b) ΔXANES (LT-648 K) peak B area 
versus Ns/Nt, and (c) versus the number of broken bonds at the NP surface 
normalized by the total number of atoms within the NP (Nt) for S1-S6.  
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When the high temperature energy shifts (with respect to the Pt foil) are plotted 

versus the relative number of atoms within our NPs in contact with the support (Nc/Nt), 

Fig. 70(c), a linear correlation is observed, with the largest shifts being associated to the 

samples with 2D shapes, e.g., those with the largest interfacial areas (S1, S4). 

To extract additional information on the adsorbate (hydrogen) effect, the evolution 

of the ΔXANES area of our Pt NP samples with increasing annealing temperature is 

shown in Fig. 72(a). The peak areas displayed here correspond to the feature labeled 

as “peak B” in the inset of Fig. 72(a). A linear trend was observed for all samples, with 

decreasing area with increasing temperature, i.e., with decreasing H coverage. In 

addition, a size-dependent trend was also observed, since different slopes were 

obtained for NPs with different average size, with the largest slopes corresponding to 

the smallest NPs (S1, S2). An analogous linear trend was observed when the former 

areas were normalized by the relative number of atoms at the NP surface (Ns/Nt). Fig. 

72(b) displays the former peak B area of samples S1-S5 normalized by Ns/Nt and by the 

peak B area of S6 (largest NPs available with well-defined shape) measured at 183 K to 

ensure the maximum initial H2 coverage. After the former normalization, (carried out 

only for the narrowly size distributed NPs with well-defined average shape) the data 

sets corresponding to samples of different geometry do not overlap. For example, even 

at the lowest measurement temperature, when complete saturation of the NP surface 

with hydrogen is expected, three different normalized areas corresponding to three 

different maximum hydrogen saturation coverages were obtained. The different 

maximum hydrogen saturation coverages are associated to samples with different total 

number of atoms according to our model shapes, with the largest NPs shown (S5 with 
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85 atoms and S6 with 140 atoms) having the lowest maximum H coverage, namely one 

hydrogen atom per surface Pt atom for S6.  

 
Fig. 72: (a) Evolution of the ΔXANES peak B area (see inset for definition of peak B) of 

NPs with different sizes as a function of temperature. All samples were 
measured in H2 after NP reduction. (b) the area of the ΔXANES peak B 
normalized by Ns/Nt and by the area of peak B of S6 measured at 183 K (1H 
for each surface Pt atom for larger NPs). The Ns/Nt normalization 
compensates for the fact that larger NPs have a lower number of atoms at 
their surface affected by H adsorption. ΔXANES (RT – 648 K) peak B area 
versus (c) the relative number of atoms at the NP surface (Ns/Nt), and (d) the 
relative number of broken bonds at the NP surface (broken/Nt). The broken 
bonds reflect the presence of Pt atoms at the NP surface with coordination 
less than 12. The inset in (a) displays a typical ΔXANES spectra and the 
shaded area corresponds to peak B. 
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The same size-dependent trend is observed at higher temperatures, when partial 

H desorption sets in. Our normalized data suggest up to about 3 times higher H per Pt 

ratios for the smallest NPs investigated (S1 and S2) as compared to the larger clusters 

(S5 and S6), and extended Pt surface. 

Furthermore, if the area of peak B in ΔXANES plots comparing RT to 648 K H2 

data is plotted versus Ns/Nt [Fig. 72(c)] or versus the normalized number of broken 

bonds at the NP surface [12-(total number of Pt-Pt bonds/total number of Pt atoms)], 

Fig. 72(d), a progressive increase in the area is observed with increasing number of 

surface atoms and with decreasing coordination of the atoms at the NP surface (or 

increasing number of broken bonds). 

 Since by subtracting data from the same NPs in H2 at high temperature from low 

or RT data we can gain insight into the role of the adsorbate, the findings in Fig. 72 

unveil a direct correlation not only between the maximum hydrogen coverage and the 

number of atoms at the NP surface, Fig. 72(a), but also indicate that samples with 

specific shapes characterized by low average atomic coordination at the surface, i.e. 

with a larger fraction of broken bonds, are able to stabilize higher hydrogen coverages, 

Fig. 72 (b) and Fig. 72(d). These results are in agreement with previous theoretical 

calculations and will be discussed in more detail below.219, 243-245 

 

8.4 Discussion 

Clear changes in the electronic properties of our Pt NPs as compared to bulk Pt 

could be experimentally observed via XANES, in particular, a positive shift in the peak 

energy and an increase in the integrated intensity of the absorption peak. The origin of 
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these effects has been the subject of intense debate in the literature204, 222, 225, 229, 231, 233, 

234, 241, 246-250. While some references attribute the former effects mainly to the interaction 

of atoms in the Pt NPs with hydrogen, others also involve the NP support. We suggest 

that some of this discrepancy is due to the difficulty of separating the different 

contributions to the XANES spectra in the absence of geometrically well-defined NPs 

with good crystallinity and narrow size distributions, as well as to the challenge of using 

a unique synthesis approach to generate small NPs with either 2D or 3D shape on the 

same support in order to evaluate the role of the NP/support interface. Our micellar 

synthesis has been proven ideal for the generation of size- and shape-selected metal 

NPs in the sub-2 nm size regime with tunable shape, being thus suitable for the above 

investigations and subsequent direct comparison with first principle theories. 

A difference between analogously-sized NPs with different shape (e.g. S1 and S2) 

is the strength of the peak observed at 11.58 keV (marked with a dashed vertical line in 

Fig. 64), being stronger for the flatter NPs. A correlation between such feature and the 

internal degree of crystalline order in NPs of different sizes has been discussed in the 

literature204, 251, and it was found to be strongly suppressed in poorly ordered NPs or in 

NPs of very small size.  

It should be noted that in our study the WL intensity was found to only minimally 

change with decreasing NP size (see Fig. 63). This is in contrast to the results of Lei et 

al.223 for Pt NPs with sizes ranging from 1.4 to 9 nm, but in agreement with Ankudinov et 

al.204, since the latter only reported strong WL intensity variations for very small NPs (≤ 

5 atoms), while our smallest NPs have about 22 atoms. Nevertheless, a small difference 

in the WL intensity was observed when comparing NPs of roughly the same TEM 
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diameter (e.g. S1 and S2 or S3 and S4) but different shape (2D versus 3D). In 

particular, planar structures were found to show slightly higher WL intensities. This is in 

accord with previous theoretical predictions204. The same group also observed nearly 

constant WL intensities for 3D close-packed and polytetrahedral NPs of different sizes 

(Pt13, Pt19, Pt43), which was assigned to a fixed Pt-5d charge count.204, 225 

 

8.4.1 Adsorbate effects 

Strong correlations are expected for size- and adsorbate-effects, since with 

decreasing NP size there is an increase in the number of surface atoms available for 

hydrogen chemisorption. Temperature-dependent XANES data can be used to 

decouple these effects, as for a given NP size, high temperature data (e.g. our 648 K 

data) are expected to be only minimally influenced by adsorbate effects due to the much 

lower onset temperature for hydrogen desorption41. It should be noted that under our 

experimental conditions (1 atm, 50% H2 + 50 % He) the presence of trace amounts of 

hydrogen at 648 K cannot be completely ruled out. However, as can be seen in Fig. 

70(a), the position of the XANES peak of the small NPs does not change above 528 K, 

suggesting that the possible residual hydrogen coverage on the NP surface (if any) has 

already reached its minimum value at that temperature, which is below the 648 K used 

in our study as reference for the adsorbate-free state of the NPs.  

As illustrated in Fig. 67, positive energy shifts as well as an increase in the total 

integrated XANES peak area beyond the edge were observed with decreasing NP size 

(TEM diameter) or decreasing 1st NN coordination number (EXAFS). Moreover, there is 

a correlation between the relative energy shift of the XANES peak at RT, Fig. 70(b) [as 
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well as at 173-188 K for H-saturated NPs, Fig. 71(a)] with respect to 648 K and the 

number of atoms at the NP surface (Ns/Nt). The latter finding illustrates that at least part 

of the energy shift and peak area enhancement are not intrinsic to the specific NP sizes, 

but due to the chemisorption of hydrogen. This aspect is corroborated based on the 

comparison of S2 measured in He and H2 at 173 K, Fig. 65(d). Since S2 is 

characterized by 3D NPs with a large number of surface atoms (Ns/Nt = 0.84), it 

constitutes a good example of a NP geometry where adsorbate effects are expected to 

be dominant. A much smaller spectral area and nearly no energy shift (ΔE~0.1 eV, 

within our error margin) were observed in He, while an energy shift of +0.8 eV with 

respect to bulk Pt was measured under H2, emphasizing the extrinsic nature of the 

effect observed. Our data thus reveal that the H2 effect dominates the trends observed.  

Regarding the hydrogen effect on Pt NPs and XANES, it is known that hydrogen 

adsorption relaxs the Pt-Pt lattice, the effect can be thought of consisting of two parts: (i) 

geometrical relaxations of Pt NPs induced by H2, and (ii) electronic structure changes 

caused by the formation of H-Pt bonds.  Both of these effects may lead to energy shifts 

of the XANES absorption features.  

The effect of tensile strain (an expansion of Pt-Pt bond length) on the d-DOS  is 

characterized by a shift in the occupied d-DOS center away from EF and a suppression 

of the unoccupied portion near EF
252. However, it has been shown that the effect of H2 is 

mostly of electronic nature (extrinsic effect) rather than an intrinsic effect based on the 

expansion of the Pt-Pt lattice252. The blue shift obtained for the unoccupied d-band 

center due to hydrogen adsorbates has been found to depend on the NP size, with 
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larger shifts obtained for smaller NPs.252 This is in agreement with the observed relative 

energy shift of the XANES absorption peaks of S1 and S2, Fig. 67(a).  

Theoretically, the increased peak area and positive energy shift described above 

for the small Pt NPs in hydrogen reflect a decrease in the density of electronic states 

near the Fermi level, e.g. the transfer of charge from the NPs to either the support,227, 

246, 253-255 to hydrogen for the formation of Pt-H bonds (via the creation of anti-bonding 

states above EF),222, 223, 229, 234 or to both. DFT calculations have shown that there is a 

net charge transfer from Pt to hydrogen atoms252. Thus, the remarkable hydrogen effect 

on the electronic structure of Pt NPs can be attributed to charge transfer from the Pt 

NPs to hydrogen. However, not all hydrogen atoms receive electrons from the Pt atoms, 

but primarily those adsorbed at corner and edge sites252. Additionally, the calculated 

hydrogen adsorption energy has been found to be larger for lower hydrogen coverages, 

since fewer low coordination sites are available for the higher hydrogen coverages. By 

comparing similar hydrogen coverages, the hydrogen adsorption energy has been 

found to strongly depend on the NP size, with stronger binding of hydrogen to the 

smaller NPs252. This has been assigned to the presence of a larger number of sites with 

low coordination in the smaller NPs252.  

Quantitative information on the amount of adsorbed hydrogen on Pt NPs has been 

extracted from the integrated area of the ΔXANES absorption peak182, 222, 226, 229, 234, 255, 

and a linear correlation between the peak area and the H/Pt ratio established. In the 

present work, the evolution of the absorption peak energy and integrated ΔXANES 

(peak B) area with temperature shows a marked size-effect, Fig. 70(a) and Fig. 72(a). 

For all samples measured in H2, a progressive decrease in the spectral area was 
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observed with increasing temperature for the small NP sizes (≤ 1nm), while such effect 

was found to be much less pronounced for the larger clusters. Charge transfer 

phenomena should be more prominent at low temperature due to the overlap of metal, 

adsorbate, and support orbitals. The larger WL intensity observed at low temperature 

for the small NPs, constitutes an indication of a decrease in the total charge within the 

NPs, which has been transferred to either the hydrogen adsorbate or the support. As 

can be seen in Fig. 69, Fig. 70(b), and Fig. 72(a),(b), the adsorbate effect is dominant. 

In particular, for the samples measured in H2, the increase in the measurement 

temperature is expected to lead to a decrease in the effective H2 coverage on the NP 

surface, which in turn results in a decrease in the energy shifts, height of the absorption 

peak WL, and integrated area. As shown in the theory section, higher charge transfer is 

expected from metal to hydrogen for Pt atoms with lower coordination numbers. Also, a 

larger amount of charge transfer should affect the XANES region by inducing larger 

energy shifts and broadening. Therefore, the smaller NPs would be more affected by 

hydrogen adsorbates due to: (i) their higher surface/bulk ratio, (ii) larger number of H 

adsorbate atoms per surface Pt atom, and (iii) larger amount of charge transfer between 

each H and Pt atom. 

Additional information on the role of the NP geometry (size and shape) on the 

binding of hydrogen can be extracted from Fig. 72(c),(d). The correlation observed 

between the number of surface atoms and the ΔXANES peak B area comparing H-

covered NPs (RT data) to nearly adsorbate-free NPs (648 K) of different structures, Fig. 

72(c), reveals higher hydrogen coverages at RT on the NPs with the highest number of 

surface atoms (Ns/Nt). The same trend was observed at all investigated temperatures, 
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including 165-175 K, where the complete saturation of the NP surface with hydrogen is 

expected. After the normalization of the integrated peak areas by the relative number of 

surface atoms in each sample and the peak B area of the largest NPs investigated with 

well-defined geometry (S6), Fig. 72(b), clear size-dependent differences can be seen. In 

particular, the maximum hydrogen coverage stable on the NPs at any given 

temperature was found to be strongly dependent on the NP geometry. Our data also 

suggest that the one H per one Pt atom normalization factor based on H saturation 

coverages on Pt(111) surfaces, commonly used to describe dispersion in NP 

samples226, cannot be reliably used to extract quantitative information of the absolute 

hydrogen coverage per surface atom within small NPs. Indeed, up to 3 H atoms per Pt 

atom at the NP surface were obtained at the lowest investigated temperatures [166-188 

K, Fig. 72(b)]. Previous groups reported saturation of the NP surface with 1.2 H per Pt 

atom at RT15,23, and others used the integrated ΔXANES area at RT in He as 

normalization factor in the calculation of relative fractional hydrogen coverages at higher 

temperatures.226 Nevertheless, our data indicate that higher H saturation coverages 

might be obtained at and below RT, and that the 1:1 H/Pt ratio commonly used in 

Langmuir adsorption measurements256 likely underestimates the amount of H that can 

be stabilized on the surface of a small Pt NP (≤1 nm) with a large fraction of low-

coordinated sites (e.g. steps, corners and edges). This observation is in agreement with 

experimental data from Bus et al.228 reporting H/Pt ratios higher than 1 for Pt NPs and 

Kip et al.257 for Pt, Rh and Ir NPs on Al2O3 and SiO2 (from RT measurements). It is 

worth mentioning that in the former references the H/Pt ratios were obtained based on 

the total number of Pt atoms in a NP and not the actual number of surface atoms, as it 
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is considered here. Therefore, even higher H/Pt ratios are expected for the surface 

atoms. Furthermore, our experimental data also demonstrate that the maximum H 

saturation coverage is strongly size-dependent, and so is the strength of the Pt-H bond 

upon sample heating. In addition, the largest ΔXANES areas (e.g. largest H coverage) 

were not only measured for the NP shapes with the highest number of low coordinated 

surface atoms, Fig. 72(c), but also for those with the largest number of broken bonds at 

the NP surface, Fig. 72(d). This indicates that more hydrogen atoms can be adsorbed 

on corner and edge atoms within a NP as compared to higher-coordinated atoms on a 

Pt(111) surface. Theoretically, H/Pt saturation ratios of up to 4:1 have been predicted 

for small Pt NPs with different structures243, 244, and higher average hydrogen adsorption 

energies were obtained for small clusters as compared to bulk. Upon hydrogen 

saturation, Pt12H30 structures were reported on a NaY zeolite 258 based on DFT 

calculations. Furthermore, a decrease in the hydrogen desorption energy with 

increasing coverage was observed, reflecting the lower reactivity of the clusters with 

higher surface hydrogen coverages.243, 252 A size-effect was also described in the 

literature, with a nearly linear increase in the number of H atoms chemisorbed on small 

Pt NPs with increasing NP size (<10 atoms).224, 252 Simple theoretical models such as 

the Langmuir model could not reproduce the hydrogen coverage dependence displayed 

by our experimental system, Fig. 72(a). This is assigned to three important factors: (i) 

we do not have a single hydrogen desorption site (e.g. corners, faces, edges), and 

therefore, not a single desorption energy in our complex nanoscale system, (ii) the 

desorption energy at a given site might be different for NPs of different sizes, (iii) the 

desorption energy might be coverage dependent, and adsorbate-adsorbate interactions 
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must be considered. These aspects will require future theoretical work and is beyond 

the scope of the present study.   

 

8.4.2 Support effects 

In our experimental work, the relative contribution of the NP support to the 

electronic properties of our NPs can be inferred from the comparison of samples with 

identical TEM diameter but different shape (2D versus 3D), Fig. 65(a,b). As was 

described before, larger energy shifts were observed for the flatter NPs, which are the 

ones with the highest contact area with the support. It should be mentioned that 

contrary to the case of NPs prepared by conventional impregnation-precipitation 

synthesis methods, where the final NP geometry is strongly influenced by the nature of 

the support, our micellar synthesis allows us to create different NP geometries on the 

same substrate (γ-Al2O3) by changing the metal loading within a given micellar cage. 

This allows us to compare the electronic properties of 2D and 3D NPs on the same 

substrate and to separate size from support effects. 

Even though with the data at hand we cannot completely exclude the presence of 

any residual H atoms on the NP surface at 648 K under our experimental conditions, we 

can still gain insight into the support effect by comparing samples with nearly the same 

Ns/Nt ratio (same adsorbate effect) but clearly distinct Nc/Nt. For a given NP diameter, 

the samples with the highest energy shifts (S1 and S4) are also the ones with the 

highest Nc/Nt ratio (0.55 for S1 and S4 versus 0.18-0.23 for S2 and S3), suggesting a 

correlation between the NP/support contact area and the magnitude of the XANES peak 

shift and charge transfer or charge redistribution effect. For example, since the Ns/Nt 
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ratios (relative number of surface atoms) for S1 and S2 are nearly identical (0.84-0.86), 

a similar NP/adsorbate interaction is expected, and the energy shift difference observed 

while comparing these two samples (ΔE~0.5 eV) must be largely attributed to distinct 

NP/support interactions. This trend is also illustrated in Fig. 70(c), where the energy 

shifts measured at high temperature are shown versus Nc/Nt. As discussed before, this 

high temperature data are expected to be the least influenced by adsorbate effects.  

To explain the blue shift observed at high temperature where the NPs are almost 

adsorbate free, the support effect should be taken into account. Assuming that a 

support such as γ-Al2O3 may induce a charge transfer similar to that induced upon 

hydrogen adsorption (from the Pt NP to γ-Al2O3), larger blue shifts would be expected 

for NPs with a larger fraction of atoms in contact with the support. The correlation 

between the Pt-L3 peak energy shift of our samples with respect to bulk Pt at 648K and 

Nc/Nt (contact area with the support) is demonstrated in Fig. 70(c). This postulation 

suggests that the experimental trends are not intrinsic to the specific NP geometries, but 

strongly influenced by environmental effects, in the latter case, by support effects.  

In the literature, electronic effects underlying metal-support interactions have been 

described based on different models. For example, for Pt NPs supported on LTL zeolite 

and on SiO2, no net charge transfer was reported.239, 240, 255 Instead, modification of the 

valence orbitals of the metal by the Madelung potential of the support had to be 

considered. 239, 240, 255 On the other hand, the transfer of charge from interfacial Pt atoms 

to defects in Al2O3
 was proposed in Refs. 255, 259.  Furthermore, ab initio calculations 

by Cooper et al.253 for Pt(111) films on α-Al2O3 revealed the transfer of charge from Pt 

to the support when the surface is O-terminated, and in the opposite direction when it is 
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Al-terminated. Due to the sample pre-treatment used in our study (prolonged annealing 

in O2), an oxygen-terminated (hydroxyl) Al2O3 surface is expected, and the direction of 

the charge transfer inferred here based on the XANES data of the 2D NPs (from Pt to 

Al2O3)  is in agreement with the previous calculations for Pt thin films. A broadening of 

the Pt-L3 WL due to the interaction of small Pt NPs with LTL-zeolite supports was also 

previously shown. 204 Nevertheless, other groups reported no support effects on the 

peak area229. In our study, the support effect is evident in the extent of the energy shifts 

(with respect to bulk Pt).  

Our experimental and theoretical findings illustrate the crucial role of not just 

geometrical effects, but also environmental influences such as adsorbates and the NP 

support in the electronic properties of small Pt NPs. This level of understanding might 

be leveraged in order to tune related material properties, as for example, catalytic 

reactivity. For instance after evaluating how the support affects a desired catalytic 

reaction, the shape of the NPs could be tuned to be 2D or 3D in order to maximize or 

minimize the NP interface with the support and therefore to optimize the reactivity or 

selectivity. Also by increasing the number of atoms at corners and edges, the binding 

energy and also the coverage of adsorbates could be increased, affecting both the 

reaction onset temperature and the turn over frequency. The approach used in this 

study provides a comprehensive mean to evaluate the size and shape of NPs as well as 

to deconvolute different effects induced by support or the particular shape of the NPs. 
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8.5 Conclusions 

A synergistic combination of XANES and NP shape modeling based on EXAFS 

data has allowed us to gain insight into the correlations between the structure (size and 

shape) and environment (adsorbate and support) of γ-Al2O3-supported Pt NPs 

(XANES). Our data reveal that the size-dependent trends observed in the electronic 

properties of Pt NPs are not exclusively intrinsic due to the specific NP geometry, but 

largely due to extrinsic parameters such as the chemisorption of H2 and NP/support 

interactions, which are strongly affected by the NP shape and NP/support contact area. 
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CHAPTER 9: EVOLUTION OF THE STRUCTURE AND CHEMICAL 
STATE OF Pd NANOPARTICLES DURING THE IN SITU CATALYTIC 

REDUCTION OF NO WITH H2 

 

9.1 Introduction 

Although in the last two decades significant progress has been made towards the 

understanding of the structure and chemical composition of supported NPs in the as-

prepared state and after reaction state,2, 5, 12, 138, 260-267 much less is known about their in 

situ (operando) structural and chemical features, and how they evolve in the course of a 

chemical reaction.108, 139, 268-274 Reaction-induced morphological changes in NPs need to 

be considered, since they might lead to a decrease/increase in the relative area of the 

most catalytically active surface sites, as well as to changes in the chemical state of the 

active metal catalysts.269-274 

The present study targets the in situ catalytic reduction of NO. This structure-

sensitive reaction is of enormous industrial and environmental relevance, since NOx 

emissions have significant adverse effects on the environment (acidification of rain and 

the generation of smog), as well as on humans (respiratory infections) and therefore, 

remediation through catalysis is critical.275-281 The most common routes for the removal 

of NO are the selective catalytic reduction (SCR) with ammonia, CO, H2 and 

hydrocarbons, as well as the direct decomposition.261, 279, 282-307 

The present work focuses on the reduction of NO with H2 (H2-SCR).308-310 This 

reaction is not as selective for N2 as, for instance, ammonia, but has potential 

technological applications due to its lower onset temperature, and the fact that H2 is 

readily available in exhaust streams (from the water-gas-shift reaction or from 
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hydrocarbons).284 Noble metal-based catalysts are generally preferred for the H2-SCR 

of NO because of their high selectivity and reduced operation temperatures.302, 311-314 

Although Rh is overall catalytically better than Pd for NO-SCRs, the lower cost, higher 

abundance, and low-temperature activity of Pd have made it a material of choice in 

industrial applications.312, 315-322 A vast amount of literature is available describing the 

conversion and selectivity of various combinations of metal catalyst, support, and 

reducing agent.261, 279, 282-284 However, much less attention has been paid to the 

optimization of the structure and oxidation state of the active catalysts, its evolution 

under reaction conditions, and its influence on catalytic performance.323, 324 

Nevertheless, previous work has revealed the important role of the oxidation state of 

metal catalysts in their activity, selectivity, and stability for NO-SCRs. For example, 

oxidized Rh catalysts are more active for H2-SCR than metallic Rh,325 and NO 

adsorption on Cu catalysts is faster on the oxidized surface, contrary to the faster 

adsorption reported on the reduced surfaces of other materials such as chromia or 

manganese oxides.261 Additional examples discussing the reactivity of oxidized Pd 

species formed under reaction conditions can be found for CH4-SCR reactions carried 

out in the presence of oxygen.304, 326, 327 The nature of the support has also been found 

to influence catalytic performance either by stabilizing the NPs against coarsening, by 

providing additional active reaction sites, or by influencing the chemical state of the 

supported catalysts.113, 320-322 On acidic supports, oxidative redispersion of PdO over the 

support was observed, while larger PdO clusters were found on non-acidic 

substrates.304, 326 Dispersed Pd2+ cations were reported to constitute the active phase in 

CH4-SCR NO reduction in the presence of O2,327-329 while NO was found to dissociate 
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on Pd0 sites during H2-SCR NO reduction with O2 in the reactant stream.330 

Furthermore, enhanced selectivities were observed when the Pd nanocatalysts were 

deposited on acidic zeolites or sulfated ZrO2 supports.331 In addition, exposure of zeolite 

and perovskite-supported Pd NPs to O2 and NO was found to result in the formation of 

highly mobile cationic Pd species.326, 332-334 Finally, the size of the NPs was also shown 

to affect their reactivity.335-341 For example, N2O was not formed over small Pd NPs on 

SiO2, but was present when larger clusters where used as catalysts.340  

It is evident from the above description that a detailed knowledge of the correlation 

between the structure (size, shape, and dispersion on a support), chemical state of the 

active species, and their reactivity is indispensable for the rational design of efficient 

and highly selective nanocatalysts. In the present work, the H2-SCR NO reduction over 

ZrO2-supported Pd NPs has been investigated in situ via XAFS spectroscopy and mass 

spectrometry, complemented with ex situ TEM. XAFS allows element-specific structural 

and chemical analysis under operando conditions, and is therefore the ideal technique 

to investigate the microscopic morphology of the catalysts at work, and to gain insight 

into the structure and reaction mechanisms guiding the reduction of NO. 

 

9.2 Experimental 

9.2.1 Sample preparation and characterization 

The Pd NPs were synthesized by inverse micelle encapsulation. Micellar 

nanocages were prepared by dissolving a non-polar/polar diblock copolymer 

[polystyrene-block-poly(2-vinylpyridine), PS-P2VP] in toluene and subsequently loaded 

with a metal precursor (C4H6O4Pd) to create encapsulated NPs. Adjusting the polymer 
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head length (P2VP) and metal precursor-polymer head ratio (L) enables the control of 

the particle size. The Pd NPs in our investigation were prepared by loading PS(16000)-

P2VP(3500) copolymers with a metal precursor/P2VP ratio L of 0.05. Subsequently, the 

NPs were impregnated on commercially available nanocrystalline (powder) ZrO2 

supports (~ 20 nm average grain size) by dissolving the support in the polymeric 

solution. The polymeric ligands are removed by annealing in an O2 environment at 

375°C for 24 h. After this treatment, the NPs are free of carbon as verified by XPS. The 

Pd loading was 1% by weight. TEM measurements were carried out by our 

collaborators, Prof. Judith Yang’s group, in the Department of Chemical and Petroleum 

engineering, at the University of Pittsburgh. For the TEM measurements, the Pd/ZrO2 

powders were dissolved in ethanol and subsequently drop-coated onto a carbon-coated 

Cu grid and dried in air.  

 

9.2.2 Reactivity data 

The catalytic performance of our ZrO2-supported Pd nanocatalysts for the 

reduction of NO was determined using a packed-bed mass flow reactor interfaced to a 

quadrupole mass spectrometer. The reactants (1% NO, 1% H2) were introduced 

employing low flow mass flow controllers and were balanced with He to provide a total 

flow of 25 ml/min. The catalyst bed was stepwise annealed up to 240°C in order to 

determine the temperature dependent conversion of NO and reaction selectivity via 

mass spectrometry. Reactivity data were acquired at each temperature under steady-

state conditions. Prior to exposing the Pd NPs to the reactants, they were reduced for 1 

h in a hydrogen atmosphere (40 % H2 balanced with He) at 240°C.  
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9.2.3 Structural and chemical analysis (EXAFS, XANES)  

EXAFS and XANES spectroscopy measurements were performed at the NSLS at 

BNL (beamline X18B). The experimental set-up consisted of a home-built packed-bed 

mass flow reactor cell compatible with in situ transmission XAFS measurement and 

interfaced to a quadrupole mass spectrometer for the evaluation of catalytic reactivity.  

A minimum of three Pd K-edge EXAFS spectra were acquired before and after the 

in situ reduction of the Pd catalysts as well as at various temperatures during the H2-

SCR reaction (25-240°C). The ATHENA software was used for averaging and aligning 

the spectra with the simultaneously-acquired bulk Pd foil reference spectra. The smooth 

isolated atom background was removed using the AUTOBK algorithm.83, 84, 342 The 

Fourier transformation of the (k, k2, k3)-weighted EXAFS data was performed via the 

Artemis software package, and the resulting radial distributions were fitted (first shell) 

with a theoretical model calculated for fcc-palladium with the FEFF6 code.86, 343 Typical 

k-ranges were 2.5-10 Å-1 and r-ranges 1.5-3.0 Å. The best fit for the passive electron 

reduction factor of the bulk Pd reference spectrum, was 0.84 and was kept constant 

during the analysis of all NP samples. The structural parameters extracted from the fits 

of the EXAFS data of our Pd/ZrO2 catalysts under different reaction conditions are 

summarized in the Table 17 together with fit quality factors. 

 

9.3 Results  

9.3.1 Structure, and morphological (TEM) 

TEM measurements were carried out by our collaborators Prof. Judith Yang’s 

group, at the University of Pittsburgh on our ZrO2-supported Pd NPs after (a) O2-
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annealing at 375°C (as-prepared), and (b) the H2-SCR NO reduction reaction up to 

240°C108. Detailed statistics of the average NP size and size distribution of this sample 

could not be carried out via HAADF STEM due to the poor Z-contrast between the Pd 

NPs and the nanocrystalline ZrO2 support. However, based on the analysis of a small 

set of particles (~20-30) observed in bright field images, the average size of the NPs 

was estimated to be 5.3 ± 1.5 nm before the reaction (as-prepared sample), and 6.5 ± 

2.3 nm after the reaction. Overall, the particles were found to be rather flat, with an 

average width/height ratio of ~2.2 before the reaction, and ~2.6 after the reaction, 

suggesting a strong NP-support interaction after our initial annealing pre-treatment at 

375°C. 

 

9.3.2 Catalytic reactivity 

The temperature dependence of the conversion of NO over the ZrO2-supported Pd 

NPs under steady-state reaction conditions is shown in Fig. 73. The onset reaction 

temperature (defined as the 50% conversion temperature, T50) was found to be 140°C, 

and a 100% conversion was reached at 150°C. The reaction products observed for the 

H2-SCR of NO are nitrous oxide (N2O), nitrogen (N2), ammonia (NH3), and water. These 

products are obtained through the following pathways:  

NO + H2 → 1/2 N2 + H2O  (34) 

NO + 1/2 H2 → 1/2 N2O + 1/2 H2O  (35) 

NO + 5/2 H2 → NH3 + H2O  (36) 
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No traces of nitrogen dioxide (NO2) were detected in the course of the reaction. 

The product selectivity is presented in Fig. 73. At the onset of the NO conversion, a high 

selectivity (>70%) toward N2O is observed, but it rapidly decreases with increasing 

temperature to a saturation level of about 15%.  
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Fig. 73: Conversion and selectivity data as a function of temperature for the steady 
state H2-SCR NO reduction over micellar Pd NPs supported on ZrO2. 

Simultaneously, the selectivity toward N2 shows the opposite trend; a strong 

increase from less than 30% at the onset temperature for NO conversion to a maximum 

saturation level of ~85% at 150°C. Above 180°C, the third reaction pathway sets in, and 

a small fraction of NH3 (< 2%) is observed.  
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9.3.3  Evolution of the structure and chemical composition of Pd NP catalysts 
under operando condition (XANES, EXAFS) 

Pd K-edge XANES spectra of ZrO2-supported Pd NPs, acquired in situ under 

different reaction conditions together with reference spectra for bulk metallic Pd and 

PdO are shown in Fig. 74. The K-edge XANES probes the electronic transition from 1s 

to 5p orbitals and is sensitive to the chemical state of the Pd atoms. After the removal of 

the encapsulating polymeric ligands in oxygen at high temperature, the XANES 

spectrum of the NPs (labeled as-prepared) shows a strong resemblance with the 

reference spectrum for bulk PdO, indicating the oxidation of the NPs. 

After the subsequent reduction treatment in H2 at 240°C, the complete 

decomposition of the Pd oxides and the appearance of metallic Pd features are 

observed in the XANES spectrum measured at RT. The characteristic near-edge peaks, 

however, show a distinct shift to lower energy. Upon initial sample exposure to the 

reactants (NO and H2) at RT, the metallic features remain, but shift slightly back to 

higher energies. Additionally, the latter spectrum also exhibits a small feature at ~24.37 

keV indicating the presence of cationic Pd species (Pdδ+). The latter contribution 

becomes more pronounced as the temperature is further increased to 90°C and 120°C. 

Simultaneously, the intensity of the metallic peak at ~24.39 keV decreases significantly.  

These effects are more clearly shown in Fig. 75, where the ΔXANES spectra of 

our NPs measured at different temperatures under NO + H2 flow are shown.  

The ΔXANES values displayed in Fig. 75 correspond to the difference between the 

Pd-K edge XANES spectrum of our NPs measured at the temperatures indicated and 

that of bulk metallic Pd measured at RT.  
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Fig. 74:: Pd-K edge XANES spectra recorded after polymer removal (in O2 at 375°C, 
as-prepared), after reduction (in H2 at 240°C), and at different temperatures 
during the H2-SCR NO reduction. Reference spectra for PdO and bulk Pd are 
shown as well. 
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Fig. 75: ΔXANES spectra obtained at various stages of the H2-SCR NO reduction. The 
data correspond to XANES spectra acquired at different temperatures from 
which the spectrum of the bulk-like Pd foil measured at RT has been 
subtracted.  

Our data reveal that a Pdδ+ state, similar to the Pd2+ state in bulk PdO, appears 

upon introducing the reactant mixture at 25ºC, showing its maximum contribution at 

120°C. This change correlates with the gradual decrease of the metallic state with 

increasing temperature up to 120°C. However, the metallic features remain present 

even at 120°C, as can be seen in Fig. 74 and in the EXAFS spectra shown in Fig. 76.  

At 150°C, the XANES spectrum in Fig. 74 changes drastically, becoming nearly 

identical to that of pure metallic Pd. However, no shift of the metallic Pd0 feature to lower 
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energy is observed with respect to the bulk Pd spectrum. The return to the metallic state 

is also evidenced by the nearly featureless ΔXANES spectrum observed in Fig. 75 at 

150ºC. As the reaction temperature is further increased up to 240°C, no additional 

changes are observed, and the XANES spectra of the NPs remain very similar to those 

of bulk metallic Pd.  

The Fourier transformed k2-weighted Pd K-edge EXAFS data of the Pd NPs 

acquired in situ under different reaction conditions are displayed in Fig. 76 along with 

reference data for bulk metallic Pd and bulk PdO. Comparing the as-prepared spectrum 

with the PdO reference reveals that the Pd NPs are almost completely oxidized after the 

polymer removal treatment, in good agreement with our XANES results. Upon reduction 

in H2, the radial distribution exhibits a large resemblance with the metallic Pd state, but 

with a clear shift of the main features to higher distances. Upon the introduction of the 

reactants (NO + H2) and the subsequent increase in temperature, the EXAFS spectra 

continue to exhibit characteristic metallic features, although the expansion of the Pd-Pd 

lattice has disappeared.  

Furthermore, the intensity of the main metallic Pd peak in the radial distribution at 

2.5 Å (phase uncorrected) is considerably reduced at 120°C, while the characteristic 

metallic Pd feature at 2 Å (phase uncorrected) did not decrease, hinting at the presence 

of an overlapping additional scatter pair at a shorter distance than the Pd-Pd.  

Further, after the initial reduction pre-treatment in H2, none of the characteristic 

features of Pd-oxide at 1.6, 2.7 and 3.1 Å (phase uncorrected) are observed throughout 

the entire reaction cycle.326 Guided by the analysis of the XANES data we attribute the 

second component to a Pd-X signal, where X stands for a low Z scatterer, i.e. N or O. 
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Fig. 76: k2-weighted Fourier transform Pd K-edge EXAFS spectra (r-space) taken after 
reduction and during various stages of the H2-SCR NO reduction. Bulk Pd and 
PdO spectra are shown as reference. The k-range for the Fourier transform 
was 2.5 Å-1< k <10 Å-1. 
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The EXAFS data were fitted with two theoretical contributions: one originating from 

Pd in a metallic environment (Pd-Pd), and a second component corresponding to 

cationic Pd atoms (Pd-X) with a large starting value of the Pd-X distance of 2.5 Å, which 

was subsequently varied in the fit. A representative fit is shown in Fig. 77(a) for EXAFS 

data acquired at 120°C under reaction conditions. The fits yield information on the 1st 

nearest neighbor (NN1) coordination numbers [NPd-Pd, NPd-X, Fig. 77(b)] and the 

corresponding distances [dPd-Pd, dPd-X, Fig. 77(c)] for each spectrum. The details on the 

fit results and related fit quality parameters are presented in Table 17.  

The respective values for the H2-reduced NPs (i.e. the starting configuration) and 

a bulk Pd reference are shown by the dashed lines. After NP reduction in H2, a Pd-Pd 

coordination of 10.8 ± 0.9 and a distance of 2.82 ± 0.01 Å were obtained. When the 

reactants are first injected into the gaseous stream, the Pd-Pd 1st NN coordination 

slightly decreases, while the average Pd-Pd distance returns to its bulk-like value of 

2.74 Å. 

With increasing reaction temperature, the coordination number further decreases 

to 5.6 ± 2.0 at 120°C. Despite the presence of a reducing reaction environment, a small 

cationic Pd-X contribution appears after the introduction of the reactants at RT (2.55 ± 

0.08 Å), concomitant with the decrease of the initial H2 flow from 50% H2 in He to 1% H2 

+ 1% NO in He. 

According to the changes observed in the EXAFS spectra, the relative content of 

the latter component was found to increase with increasing temperature up to 120°C. 

We will elaborate on the origin of this component in the discussion below.  
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Table 17: Summary of the EXAFS results acquired on micellar Pd NPs supported on 
ZrO2: 1st NN coordination numbers [NPd-Pd, NPd-O], the corresponding 
distances [dPd-Pd, dPd-O], and Debye Waller factors [σ²Pd-Pd, σ²Pd-O]. In 
addition, fit quality parameters such as the R-factor and reduced χ² are also 
given, together with the k- and r-ranges. Fit uncertainties are presented in 
parentheses. 

 
N 

Pd-Pd 
 

N 
Pd-O 

 

d 
Pd-Pd 

(Å) 

d 
Pd-O 
(Å) 

σ² 
Pd-Pd 

(Å²) 

σ² 
Pd-O 
(Å²) 

r-range 
(Å) 

k-range 
(Å-1) 

R 
factor 

Red. 
χ² 

Reduced 
25°C 

10.7 
(0.9) - 

2.823 
(0.005) - 

0.0085 
(0.0007) - 1.85-3 1.5-12 0.008 7.6 

25°C 
(NO+H2) 

8.0 
(2.4) 

3.1 
(3.9) 

2.738 
(0.015) 

2.555 
(0.061) 

0.0061 
(0.0032) 

0.0043 
(0.0217) 

1.5-3.1 1.5-10 0.020 30 

90°C 
(NO+H2) 

7.5 
(2.9) 

1.5 
(2.9) 

2.734 
(0.022) 

2.478 
(0.089) 

0.0060 
(0.0036) 

0.0000 
(0.0271) 1.5-3.0 2.0-10 0.010 65 

120°C 
(NO+H2) 

4.6 
(1.4) 

2.6 
(2.0) 

2.731 
(0.026) 

2.607 
(0.047) 

0.0060 
(0.0029) 

0.0000 
(0.0115) 

1.5-3.0 1.5-11 0.020 29 

150°C 
(NO+H2) 

12.0 
(1.9) - 

2.739 
(0.012) - 

0.0108 
(0.0018) - 1.7-3.0 2.0-10 0.022 72 

210°C 
(NO+H2) 

10.0 
(1.7) 

- 2.748 
(0.011) 

- 0.0082 
(0.0017) 

- 1.7-3.0 2.0-10 0.017 51 

240°C 
(NO+H2) 

11.8 
(1.4) - 

2.736 
(0.008) - 

0.0099 
(0.0013) - 1.7-3.0 2.0-10 0.010 19 

25°C 
(H2) 

12.7 
(1.7) 

- 2.815 
(0.008) 

- 0.0084 
(0.0013) 

- 1.5-3.0 1.5-10 0.018 7.4 

 

At 150°C, the Pd-X contribution disappears and the Pd-Pd coordination number 

shows a sudden increase to 12.0 ± 1.9, consistent with the return to the pure metallic 

state as indicated by XANES. Above 150°C, the coordination number remains constant 

within the uncertainty. After the introduction of the reactants, the average Pd-Pd 

distance was found to be rather stable throughout the entire reaction cycle as shown in 

Fig. 77(c). 
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Fig. 77: (a) Fourier transform Pd K-edge EXAFS spectrum (r-space) recorded at 
120°C, along with the total fit and the Pd-Pd and Pd-X contribution. (b) 
Dependence of the 1st NN coordination number on the reaction temperature 
during the H2-SCR NO reduction over Pd NPs supported on ZrO2: the Pd-Pd 
and the Pd-X contribution obtained from the fitting of in situ EXAFS spectra are 
shown. The dashed gray line indicates the Pd-Pd coordination number after 
NP reduction in H2 and before reactant exposure. (c) Pd-Pd bond distance as 
a function of temperature. The dashed gray line indicates the Pd-Pd distance 
after NP reduction in H2, while the dashed blue line corresponds to the bulk 
value.  
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9.4 Discussion 

The onset temperature T50 for the reduction of NO with H2 over micellar Pd NPs 

supported on ZrO2 was found to be 140°C. Once the conversion reaches 100 %, the 

activity remains stable with increasing temperature up to 240°C. At the onset of the 

reaction, the catalyst shows low selectivity toward N2, with N2O being the main reaction 

product. The N2 selectivity was found to increase with increasing reaction temperature 

reaching ~80% at 150°C when 100% NO conversion is achieved. No changes were 

observed in the selectivity of our catalysts above 150°C. Our Pd NPs have a 

considerably lower onset reaction temperature as compared to Pd(111), where NO 

conversion was only observed above 200°C.344 Interestingly, Pd/Al2O3 catalysts from 

Yang et al.318 showed already 100% NO conversion (with pure H2) at 70°C, but the N2 

selectivity remained below 50%. Barrera et al.345 reported onset temperatures of 80-

175°C for Pd/Al2O3-La2O3 catalysts, although their N2 selectivity did not exceed 60%. 

Granger et al. 302 described onset reaction temperatures of ~100°C for Pd/Al2O3 

catalysts, with 50% N2 selectivity only above 300°C, with the parallel production of NH3 

resulting in a decrease in activity.302 Similar Pd catalysts supported on LaCoO3 

exhibited a higher onset temperature (160°C), but showed a stable activity at high 

temperature, with a N2 selectivity above 50% at 200°C.320 Overall, our catalysts show a 

stable selectivity and activity pattern. Interestingly, a relatively low amount of NH3 is 

produced throughout our entire reaction cycle (<2%), even at high temperatures. 

Significant NH3 formation is often associated with H2-rich reaction conditions and as 

such, our low NH3 production might be at least partially due to our relatively low H2 

concentration (i.e. NO:H2 of 1:1). However, even in experiments with stoichiometric 
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concentrations, considerable NH3 formation is reported in the literature for similar 

catalysts302, 320, indicating that the specific nature of our micelle-based catalysts (size, 

shape, substrate dispersion and support) also plays a major role in the observed 

selectivity.320 According to previous studies, the conversion and selectivity of H2-SCR 

catalysts might be further improved by fine-tuning the inlet concentrations. For instance, 

reaction conditions involving excess H2 are known to result in an increase of the NO 

conversion, but they also facilitate the production of undesired NH3.344 In order to 

suppress the formation of ammonia, additional oxygen is often fed to the reactant 

stream, or a second metal added to the catalyst formulation. However, such 

modifications might also heavily compromise the overall activity, selectivity and 

temperature window of operation.302, 318, 319, 321, 322 The optimization of the inlet reactant 

concentrations and catalyst composition will the subject of future research for our 

micelle-based materials. 

Contrary to the majority of the previous works, where the structural and chemical 

composition of the catalysts was only available in the as-prepared and reacted states, 

our in situ XAFS investigation allows to follow its evolution in the course of the NO 

reduction. This enables to establish structure, chemical state, and reactivity correlations. 

Prior to the reactant exposure, our Pd NPs were reduced in H2 (240°C), which leads to a 

clear lattice expansion due to the formation of Pd hydride species.220 The observed 

expansion in the Pd-Pd distances of ~3.1 % is in agreement with previous studies.346-348 

The large (~11) 1st NN coordination number obtained by EXAFS for the reduced NPs 

evidences the presence of large metallic Pd NPs, in agreement with our TEM data (~5.3 

nm average NP size).200, 220 Upon the introduction of the reactants (NO + H2) at RT, the 
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average Pd-Pd distance was found to decrease significantly, returning to the bulk Pd 

value, and suggesting the complete decomposition of the hydride. Furthermore, our 

XANES data clearly reveal the appearance of a large fraction of a Pdδ+ component (Fig. 

75 and Pd-X component in Fig. 77), along with a concomitant strong suppression of the 

Pd0 contribution. With increasing temperature, the relative content of the Pdδ+ 

component increases significantly at the expense of the Pd0 contribution, as can be 

deduced from the ΔXANES spectra in Fig. 75. The Pdδ+ or Pd-X contribution observed 

cannot be simply attributed to the formation of Pd-O bonds in a palladium oxide phase. 

In fact, the EXAFS spectra measured at the corresponding temperatures do not exhibit 

the features characteristic of PdO (i.e. the peaks at 1.65, 2.70 and 3.15 Å in the phase-

shift uncorrected radial distribution of Fig. 76).326,334, 349  

The fits of our EXAFS data acquired below 150°C reveal the existence of a Pd-X 

component with an average bond length of ~2.55 ± 0.08 Å. Based on available 

literature, this bond can be assigned to a long Pd-O bond, for example, due to the 

adsorption of H2O. In fact, distances between 2.37 and 2.59 Å have been reported for 

Pd(OH)2.
350, 351 A related possibility for a long Pd-O bond was proposed by  

Koningsberger and Gates267, who reported large metal-O distances (2.5-2.7 Å) for 

atoms within NPs in contact with O from the underlying oxide support when the samples 

were treated in H2 below 350°C or when the supports were hydroxylated.  Hydrogen is 

suggested to reduce the charge on the metal, which leads to a longer metal-support O 

distance. Our experimental findings can be explained following the former idea, since 

our samples were measured at low temperature (<240ºC) in a reactant stream 

containing H2 and under water-rich experimental conditions which are expected to lead 
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to the hydroxylation of the oxide support. Following Koningsberger and Gates267, we 

tentatively identify the location of hydrogen atoms at the NP/support interface, likely in 

the form of OH- species. Such model explains the observation of cationic Pd in the 

XANES data and the long Pd-X pair in EXAFS. 

Our XAFS data reveal that a large fraction of the Pd atoms in our NPs reside in a 

non-metallic environment (Pdδ+) under reactant exposure in the temperature range from 

25°C to 120ºC. This is evidenced by the increase in the intensity of the XANES 

absorption peak (Pdδ+) and the decrease in the metallic Pd-Pd scattering which is 

accompanied by an increase of the additional Pd-X component, [Fig. 77(b)]. In addition, 

a strong decrease in the Pd-Pd coordination number is observed in parallel with the 

appearance of the Pd-X bonding. These effects suggest that our NPs undergo 

significant chemical and morphological changes at these temperatures. It should also 

be considered that due to the initial large size of our Pd NPs (~5 nm according to TEM), 

the volume-averaged EXAFS technique is not very sensitive to changes in the NP 

surface, and therefore, the strong modifications in the EXAFS spectra reported here 

must reflect drastic changes in the morphology and/or chemical composition of the NPs 

affecting a large number of atoms. The reactant-mediated structural changes extracted 

from the analysis of our EXAFS spectra might be attributed to the encapsulation of the 

Pd NPs by the ZrO2 support. However, this effect is not consistent with our data, i.e. 

there is no concomitant deactivation, and Pd-Zr bonds are not observed. Furthermore, 

ZrO2 decomposition has only been reported above 500°C.352,29 A second possibility is 

the NO-induced disruption and redispersion of the Pd particles over the support, leading 

to individual ions or small clusters on the ZrO2 surface. The low Pd-Pd CN obtained at 
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120ºC and the detection of an additional interface/surface component [Pd-X] can be 

easily explained if Pd redispersion is considered. The phenomenon of NP redispersion 

on oxide supports has been previously reported by a number of groups, including NO-

induced redispersion of Pd NPs.326, 327, 332-334, 353, 354 For example, Okumura et al.326 

demonstrated that the oxidation of Pd NPs at high temperature leads to NP 

disintegration and the formation of dispersed PdO. The acidic nature of the support, 

giving rise to a strong interaction with the more basic PdO was found to underlie this 

effect. The oxidative redispersion of Pd NPs by NO adsorption at RT on Pd0 was proven 

by Che et al.78 and Aylor et al.333, 354 They showed the decomposition of NO upon 

adsorption on the Pd crystallites and their subsequent oxidation: 

2NO(ads) → N2O + O  (37) 

Pd0 + O → Pd2+O2-    (38) 

The resulting Pd ions are known to be highly mobile due to the strong interaction 

with the acidic support, which facilitates their redispersion over the support surface as 

single ions or small clusters333, 334, 354  The O2- ions produced in process (38) might not 

remain bonded to the Pd2+ cations, but may react with H2, leading to Pd-OH complexes 

(e.g. Pd-OH2, with a Pd-O distance in agreement with our EXAFS observation).333, 354 In 

fact, it was shown that protons are required to stabilize the Pd2+ ions on zeolite 

surfaces.328, 355 These can be provided by an acidic support or by H2, in the form of OH 

groups.355 The ZrO2 used in the present study is only weakly acidic and therefore, the 

H2 available within the reactant stream or that initially absorbed in the Pd NPs (spilling 

over to the support), might play an important role in the stabilization of the Pd2+ ions.356, 
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357 We note that the time scale (48 h) for the complete dispersion of 2 nm Pd crystallites 

under NO exposure reported by Che et al.354, is consistent with the progressive 

redispersion observed for our NPs with increasing annealing temperature (RT to 

120°C).  

 As the NO conversion reaches 100% at 150°C, both XANES and EXAFS data 

show a pure metallic Pd spectrum. Consequently, the Pd-X contribution has completely 

vanished at this temperature (see Fig. 76). Moreover, the Pd-Pd coordination number of 

~12 ± 2 at 150°C demonstrates the formation of large Pd0 clusters. The reduction and 

aggregation of the Pd2+ ions into stable metallic particles during NO conversion is likely 

to be a consequence of the desorption of the oxidative species (N2O and H2O) and was 

previously shown to occur in a H2 atmosphere during the NO reduction with CH4 above 

330°C.327, 334  Furthermore, if our Pdδ+ species were stabilized at OH defects on the 

ZrO2 surface, their stability will depend on the relative coverage of such species on the 

ZrO2 surface under the different reaction conditions, which is expected to decrease with 

increasing annealing temperature.358 The favorable role of OH species on the 

stabilization of small PVD-grown metal NPs supported on oxides against coarsening 

has been previously reported.113, 359, 360 

The reduction and agglomeration of the Pd NPs in the present study above 120°C 

correlates with the shift of the reaction selectivity from N2O toward N2. This is in 

accordance with previous results indicating that the formation of N2 is mainly governed 

by metallic Pd sites.302, 327, 330, 345, 361, 362 Accordingly, our in situ XAFS data indicate that 

the active catalyst for the selective reduction of NO using H2 are large (~5 nm) metallic 

NPs.  
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Further increasing the reaction temperature up to 240°C has no significant impact 

on the reactivity and selectivity of our Pd NPs, aside from the minor additional 

generation of NH3. Above 150°C, the XANES and EXAFS spectra remain nearly 

identical, indicating the lack of significant structural changes in our samples at these 

temperatures (see Fig. 76). This is reflected in the Pd-Pd coordination numbers and the 

Pd-Pd distances, which are constant within the uncertainty. Furthermore, based on a 

comparison of the initial (after reduction in H2 but before the reaction) and final (after the 

reaction, i.e. after the NP disruption and subsequent re-agglomeration) Pd-Pd 1st NN 

CN numbers, the average particle size was found to remain nearly constant, although a 

slight increase might have occurred. Nevertheless, the increase in the CNs observed 

after the reaction is within the error bars. The analysis of the TEM data also revealed 

similar NP size distributions before and after the reaction, with a possible increase in the 

NP diameter after the reaction, which is also within the error margin of the 

corresponding NP size distribution,  

 After exposing our Pd NPs to the reactants for an extended period of time (18h) at 

240°C, no decrease in catalytic activity was observed. This evidences that our catalysts 

did not suffer from poisoning by oxides or N-containing intermediates.  

The evolution of the structure, morphology, and chemical state of our Pd 

nanocatalysts at different stages of the H2-SCR NO reduction is summarized in Fig. 78: 

(i) the initial oxidized state, (ii) the reduced particles with absorbed H, (iii) the exposure 

to the reactants at 90°C with the subsequent redispersion and stabilization of cationic 

Pd species, which are likely to be formed upon interaction of Pd with OH- groups on the 

ZrO2 support, (iv) the maximum redispersion at 120°C, (v) the change in the chemical 
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state of the NPs back to metallic coinciding with their agglomeration and the conversion 

of NO to N2O and N2 at 150°C and (vi) at 240°C.   

 

Fig. 78: Schematic representation of the structure and chemical state of our Pd 
nanocatalysts at various stages of the H2-SCR NO reduction. 

 

9.5 Conclusions 

The evolution of the structure and oxidation state of ZrO2-supported Pd 

nanocatalysts during the in situ reduction of NO with H2 has been monitored using XAS 

spectroscopy. Our results show that our catalysts undergo significant structural and 

chemical changes. In particular, cationic Pd species are detected upon the introduction 

of the reactants. Furthermore, the redispersion of the Pd NPs on the ZrO2 surface and 

the formation of small Pd clusters or ions was observed upon the introduction of the 

reactants (NO + H2) at RT until the onset temperature for NO reduction was reached 

(120°C). This phenomenon is the result of the interaction of NO with surface atoms in 
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the initially metallic Pd clusters supported on ZrO2. EXAFS data indicates the formation 

of Pdδ+ species at the expense of Pd0 from RT to 120°C. Nevertheless, our EXAFS data 

indicate that PdOx species are not formed, but that the cationic Pd species are likely 

stabilized at OH defects on the ZrO2 surface. Possibly due to the redispersion 

phenomenon, a high selectivity for N2O was detected at the onset of the NO reduction 

reaction (≥120°C). As the reaction temperature increases (>150°C), the selectivity shifts 

mainly toward N2 (~80%). Concomitant with the onset of the NO reduction reaction, the 

disappearance of the Pdδ+ species and formation of larger metallic Pd aggregates are 

observed, evidencing that metallic Pd constitutes the active phase for the H2-reduction 

of NO over Pd NPs on ZrO2.  

In conclusion, our results emphasize the importance of in situ structural and 

chemical information under operando conditions for the understanding of the 

mechanisms governing catalytic reactivity. The significant morphological changes 

observed in the current study can be exploited to tailor the next generation of selective 

catalysts. 
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