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ABSTRACT

This dissertation addresses the problem of influence maaton in social networks. In-
fluence maximization is applicable to many types of reallevproblems, including modeling con-
tagion, technology adoption, and viral marketing. Here wengine an advertisement domain in
which the overarching goal is to find the influential nodes soeial network, based on the network
structure and the interactions, as targets of advertisenidre assumption is that advertisement
budget limits prevent us from sending the advertisemenvéoydody in the network. Therefore,
a wise selection of the people can be beneficial in increabmgroduct adoption. To model these
social systems, agent-based modeling, a powerful toohtostudy of phenomena that are difficult
to observe within the confines of the laboratory, is used.

To analyze marketing scenarios, this dissertation prapaseew method for propagating
information through a social system and demonstrates h@antbe used to develop a product
advertisement strategy in a simulated market. We condredésire of agents toward purchasing
an item as a random variable and solve the influence maxiimizptoblem in steady state using
an optimization method to assign the advertisement of a@viglproducts to appropriate messenger
agents. Our market simulation 1) accounts for the effectgafip membership on agent attitudes
2) has a network structure that is similar to realistic hurspgstems 3) models inter-product pref-
erence correlations that can be learned from market dataré3ults on synthetic data show that
this method is significantly better than network analysishoéds based on centrality measures.

The optimized influence maximization (OIM) described ahdwes some limitations. For
instance, it relies on a global estimation of the interacamong agents in the network, rendering
it incapable of handling large networks. Although OIM is abfe of finding the influential nodes
in the social network in an optimized way and targeting themafdvertising, in large networks,
performing the matrix operations required to find the optiedli solution is intractable.

To overcome this limitation, we then propose a hierarchidalence maximization (HIM)



algorithm for scaling influence maximization to larger netis. In the hierarchical method the
network is partitioned into multiple smaller networks thah be solved exactly with optimization
techniques, assuming a generalized IC model, to identifndidate set of seed nodes. The candi-
date nodes are used to create a distance-preserving alstrsion of the network that maintains
an aggregate influence model between partitions. The blidgtidtion for the advertising dictates
the algorithm’s stopping point. On synthetic datasets, hemsthat our method comes close to the
optimal node selection, at substantially lower runtimegos

We present results from applying the HIM algorithm to realrla datasets collected from
social media sites with large numbers of users (Epiniorast&ot, and WikiVote) and compare
it with two benchmarks, PMIA and DegreeDiscount, to exantireescalability and performance.
Our experimental results reveal that HIM scales to largéwvaiks but is outperformed by degree-
based algorithms in highly-connected networks. Howevék] iderforms well in modular net-
works where the communities are clearly separable withlsmatber of cross-community edges.
This finding suggests that for practical applications itseful to account for network properties

when selecting an influence maximization method.
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CHAPTER 1: INTRODUCTION

1.1 Overview and Motivation

The qift of persuasion is a powerful and highly-sought aftkitl, as evidenced by the
fact that individual self-help books in this area, the mashéus beinddow to Win Friends and
Influence Peoplg@ublished in 1936, remain popular. The rise of social medi#ets and click-
through advertisement opened the door for relatively sgrallips to influence large numbers of
people. Combined with modern data analysis techniques pib$sible to create a detailed social
simulation of the population of interest, but the problemvbiom to influence remains as an open
research question. Particularly in advertisement, imohsnate mass marketing techniques can
lead to negative information cascades about product gualien if cost efficiency is not an issue.
This problem can be framed as a network influence propagatadriem; previous work in this area
has looked at diverse domains such as information propagatithe Flickr social network [16]
and identifying important blogs for marketing [6].

Advertising in today’s market is no longer viewed as a matfeimply convincing a poten-
tial customer to buy the product but of convincing their aboietwork to adopt a lifestyle choice.
It is well known that social ties between users play an imgodrtole in dictating their behavior.
One of the ways this can occur is through social influence &vadyehavior or idea can propagate
between friends. By considering factors such as homophiyssible unobserved confounding
variables, it is possible to examine these behavior cdroglsiin a social network statistically [3].
The aim of viral marketing strategies is to leverage thes@bier correlations to create informa-
tion cascades in which a large number of customers imitatechremaller set of informed people,
who are initially convinced by targeting marketing schemes

Marketing with a limited budget can be viewed as a specidlizrsion of the influence

maximization problem in which the aim is to advertise to tpémal set of seed nodes to modify



opinion in the network, based on a known influence propagatiodel. Commonly used prop-
agation models such as LTM (Linear Threshold Model) and I@h\i¢pendent Cascade Model)
assume that a node’s adoption probability is conditionedh@nopinions of the local network
neighborhood [54]. Much of the previous influence maximaatvork [21, 18, 100] uses these
two interaction models.

Since the original LT model and IC model, other generalizediels have been proposed
for different domains and specialized applications. Fatance, the decreasing cascade model
generalizes models used in the sociology and economics caoities where a behavior spreads
in a cascading function according to a probabilistic rukgibning with a set of nodes that adopt
the behavior [54]. In contrast with the original IC model,tire decreasing cascade model the
probability of influence propagation from an active node a$ constant. Similarly, generalized
versions of the linear threshold model have been introddead, [79], [11]). The simplicity of
these propagation models facilitates theoretical analyst does not realistically model specific
marketing considerations such as the interactions betagegrtisements of multiple products and
the effects of community membership on product adoption.

To address these problems, first we developed a model of gradoption in social net-
works that accounts for these factors, along with a convéixnigation formulation for calculating
the best marketing strategy assuming a limited budget. éfbesial factors can emerge from dif-
ferent independent variables such as ties between friemdisi@ighbors, social status, and the
economic circumstance of the agents. We believe that inetiark all these factors affect the cus-
tomers’ susceptibility to influence and their ability to irghce others. As an example, [5] analyzes
the effect of social status on the influence factor of peopl&acebook. Having a more realistic
model is particularly useful for overcoming negative adigement effects in which the customers
refrain from purchasing any products after being bombavd#dmildly derogatory advertisement
from multiple advertisers trying to push their own produdtss critical to model the propagation

of negative influence as well since it propagates and canrbagsdr and more contagious than
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positive influence in affecting people’s decisions [17].

In this thesis, we use social simulation to facilitate thelgtof phenomena that are difficult
to study within the confines of the laboratory. Although athslations need to be validated with
other types of experimental results, agent-based sinoaktire one tool for studying effects that
occur on a long time scale over large groups of people. Inth@sis, we present a paradigm for
studying the impact of social factors, on task-orientedigsoand on influence propagation.

Social simulations have been used to address many typegstigos including how social
ties and connections influence the propagation of inforongi37], the spread of epidemics [78]
and the emergence of social conventions [26]. Here in onioseaf the work, we examine the
impact of social phenomena such as stereotype on the suaftthe network. The social system
is simulated using an adaptive network that modifies itttine based on the agents’ experiences.
In our experiments, we quantify how the network structufecs$ group formation and task ac-
complishment of agent teams. In contrast to previous woik {ffat investigated the impact of
group membership on stereotype formation here we focusemtpact of stereotype bias on link
creation and, consequently, group formation.

Group membership influences many aspects of our lives,dim@uour self-identities, ac-
tivities, and associates; it affects not only what we do ahd we do it with, but what we think of
ourselves and the people around us. It can also give risetteaypical thinking in which group
differences are magnified and the importance of individ@ailations are discounted. Thinking
categorically about people simplifies and streamlines #rsgn perception process [67], facili-
tating information processing by allowing the perceiverety on previously stored knowledge
in place of incoming information [45]. Stereotypes based@alatively enduring characteristics,
such as race, religion, and gender, have an enormous @tiemterror [45] and can give rise to
performance impairments [71].

We hypothesize that stereotypes formed independentlyabfireup differences can result

in negative effects for the collective system and there#dfect the propagation of influence as
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well. However, studying the long-term effects of stereetypan be difficult, especially to quantify
the effects over a population rather than an individual.etee describe an agent-based simulation
for evaluating the impact of stereotypes on the performahtask-oriented groups. Understanding
the role that stereotypes play in group formation can refkigtiag theory while providing insight
into the efficacy of methods for combating the adverse effeftstereotypes on behavior and
decision-making.

To examine the effect of stereotypes on the social intevacind the network structure,
we base our simulation on a model of multi-agent team forond85] since task-oriented groups
share many characteristics with teams, although lackinghared training experience. In our
simulation, the population of agents is connected by a boetavork that is locally updated over
time by unoccupied agents depending on their preferencésredypes are represented as an
acquired preference model based on prior experience arehalide agent features. In multi-
agent environments, stereotypes have been used to pragide modeling of other agents [27, 28]
and also to bootstrap the trust evaluation of unknown agéifs In contrast, we examine the
case of non-informative stereotypes; stereotypes affiecagjents’ preferences for forming social
attachments but do not affect the agents’ willingness ditglbd cooperate with other agents.

Moreover, in investigating the influential nodes in the aboietwork, we incorporated the
stereotype model in our social simulation model to presembie realistic model of the interaction
between people. We assumed that these group formationsnhotffect the structure of the
network to alter the pattern of influence propagation bub &t they play an important role in
affecting the decision making of people in adopting a sped&havior or selecting a specific

product in the market.



1.2 Contributions

Our main focus in this thesis is to investigate the influenogagation in a social network
and identify the influential people in a connected sociavoek as targets for advertising.

In our first contribution, we present a mathematical analg§ihow influence propagation
occurs over time and propose a new optimization techniquedéntifying effective messenger
agents in the network that outperforms other network amatpgethods while accounting for real-
istic factors such as group membership and product prefereorrelation. Following the work of
Hung et al. [47, 48], optimization is used along with an as@pf the expected long-term system
behavior to assign the advertisement of the available mtsda appropriate agents in the network.
In contrast with previous work on identifying influential s for marketing purposes (e.g., [42]
and [8]), in this thesis we model the effects of realisticigbfactors such as group membership on
product adoption. In the analysis presented in [47, 48] tamterinsurgency messaging tactics,
there exists a single random variable representing thedétof agents toward counterinsurgency,
but in our work, we use a vector of random variables whichesgnts the desire of each agent
toward any single product. This consideration combineth wioduct demand correlations in the
market make the analysis and optimization more compligdmeidultimately our approach has the
promise of being applicable to a wider variety of social eyss.

The main limitation of this and similar types of optimizatiapproaches is that they in-
volve matrix inversion which is slightly less thah N?) and is the limiting factor preventing these
algorithms from scaling to larger networks. As a result, im second contribution, we propose a
hierarchical influence maximization approach that adwescadivide and conquer’—-the network
is partitioned into multiple smaller networks that can bé/ed exactly with optimization tech-
niques, assuming a generalized IC model, to identify a citeiset of seed nodes. The candidate
nodes are used to create a distance-preserving abstraictrvef the network that maintains an ag-

gregate influence model between partitions. Here we dematagtow this abstraction technique



can be used to create a scalable algorithm Hierarchicaleimée Maximization (HIM) for maxi-

mizing steady-state product adoption by customers coaddnt a social network. Moreover, we
present a theorem which shows that the realistic sociaésystodel has a fixed-point, validating
the strategy of optimizing product adoption at the steadigestSince social factors play an impor-
tant role in the propagation of influence among connecteglpeae investigated the effects of
one of the most common social factors, stereotype bias. imf@stigation prompted the use of a

more complex interaction model in the influence maximizapooblem.

1.3 Organization of the thesis

This document is organized as follows. Chapter 2 provides/arnview of the related work
in social simulation models, agent-based models, and mflienaximization in social networks.
Chapter 3 presents our proposed model for stereotypes itragant systems and the impact of
stereotypes on group formation. Chapter 4 introduces dlureince maximization techniques,
including the optimization based method and a hierarchegétnsion, as well as summarizing
the operation of the realistic product adoption model. Tveduation of our proposed methods
vs. other centrality based network analysis techniquesbeaiound in Sections 4.4.3 and 4.5.6.

Chapter 6 concludes the document.



CHAPTER 2: RELATED WORK

In this chapter, we introduce the context of this researcltdaering the most relevant
recent research results. First we provide an overview admmial systems modeling which focuses
on the two main approaches, agent-based modeling and kakiabed modeling. Next we present
the related work on stereotype modeling. In addition, wes@né some of the works in network
structures and group formation. Finally, we target therdiiere on the influence maximization

problem and we present some of the prominent works on this.top

2.1 Modeling Social Systems

In this section, we review the two main methodologies, afgpased modeling (ABM) and
variable-based modeling (VBM), commonly used to modelaagystems. Our research utilizes
an agent-based model of human communities to examine tlp gftects on task completion and
product adoption. We discuss the strengths and weaknekbeshomodeling methodologies to

illustrate why ABM is well suited for this particular prolste

2.1.1 Agent-based Modeling

Agent-based modeling (ABM), with its focus on representingjogical agents and their
interaction [74], provides a powerful way to study the bebewf heterogeneous agents in a dy-
namic environment over an extended period of time [30, 10| A8M is a simulated multi-agent
system capable of capturing key theoretical elements ofssuial or psychological procesin
an ABM, each agent usually represents a simplified, absteasion of a human being, that acts
according to a set of theoretically postulated behaviasks. These rules may involve simple

heuristics or more complicated mechanisms that includmileg, constructing internal represen-

1See [43] for a review of simulation approaches in social pejagy



tations of the world, or other computational models of decisnaking [91]. In this work we use
this approach to analyze a phenomenon, stereotype biashwehdifficult to study accurately in
real world. Using an agent-based model allows us evaluateftact of different system parame-
ters on network structure, team formation, and the globdbpmance of the agents.

The advantages of this approach can be listed as [91]:

e We are able to envision the large-scale consequences aktlead assumptions when the
behaviors are performed in the context of many other agemtstaerated dynamically over

an extended period of time.

e We are capable of bridging between the micro level of indigicagent behaviors and inter-

actions to the macro level of the overall patterns that tesydopulation-level effects.

e In contract to real-world, we have the capability of settihg values of parameters in our

multi-agent model to arbitrary values.

e We have the flexibility of testing our theories in the real ldorvith a much better vision of

what we are looking for and how to interpret our findings.

Pioneering models presented by Schelling [85, 86] and Kaind Hamilton [50] were
among the first examples of the use of agent-based simuafiimrsocial modeling. Since then,
agent-based modeling has been utilized in many differeldsfiacluding economics [96, 97, 98],

psychology [7], ecology [40], sociology [68, 83, 76, 31]ddriology [94].

2.1.2 Variable-Based Modeling

In the traditional modeling approach employed by socialchsjogists, variable-based
modeling (VBM), the focus is on relations among variablest, on interactions among agents,

in contrast to the agent-oriented ABM. With the theoretiaaalysis of VBM, it is difficult to



model dynamic networks of agents, agent learning or/antligga, or non-linear interactions be-
tween agents [10]. Especially, in analyzing social and psiagical phenomena, where the result
of repeated interactions between multiple individuals@vee matters, VBM is not able to model
and capture the types of complex, dynamic, and interactivegsses [91, 31]. Also, in contrast
to ABM which offers an applied statistical approach, VBMeas# the generative or mechanistic
explanation [91].

For this research, we opted to use ABM over VBM in order to gtiueb aspects of stereo-
type bias: 1) the effect of repeated interactions on netwuoticture and 2) the impact of network
structure on group formation. These two phenomena are s8dy epantified and modeled using
VBM, making ABM the better approach. For a general concdptueoduction to ABM and its

uses in social psychology, please see [31, 103, 30, 81, 7].

2.2 Stereotypes

The related work on stereotype modeling spans diverse arelasling human decision-
making [32], intelligent tutoring systems [51], trust areputation [64, 63, 14, 15], and general
multi-agent systems [13, 27, 28]. Although stereotypesteadross cultures, the actual stereotypic
beliefs can differ significantly [22].

The judgments we make about one person’s behavior are nkedg to influence judg-
ments of the same or a different person who performs the saavior at a later time, even
when the traits were only associated with particular adbotsnot attributed to them [95]. These
judgments could be simply based on the ethnicity, persquaaance or attributes of other peo-
ple [49]. Here, in this work we are concerned about modeluggments which simply rely on
visible attributes.

Not only do stereotypes affect our own perceptions and juelds) but also they are propa-

gated from person to person in a social network [66] wheredlséereotypes persist over time [84].



This propagation of stereotypical information in a netwdoklowed by the expectancies it engen-
ders about what a specific group as a whole is like [41], mtat/ais to model stereotype bias as
affecting the entire social network. Our agent-based satian considers the impact the stereotype
has on the network and accounts for that as well as the effecidividual agent decision making.
By updating the connections of the social network among gleas based on the experience of the
agent’s neighbors, we capture the concept of propagatistecéotypical information in a network
and its remaining within the community.

Recently, there has been interest in incorporating stgpeoimodeling into multi-agent
systems. [13] used stereotypes to bootstrap their evahgtif new and unknown partners in open,
dynamic multi-agent systems. In their model, similar tetwiork, the agents interact in ad-hoc
groups and use the stereotypical information as an additemurce of information to evaluate the
trustworthiness of the other unknown agents. But unlikeuinveork, the stereotypical information
directly affects the judgment of agents in selecting pagnehereas here it has a long-term effect
on the social network but is not utilized directly in the godormation mechanism.

Denzinger and Hamdan [27, 28] enhanced the prediction adrayents’ behaviors by
applying stereotype models. They tested their model on pralylem and the results showed sub-
stantial benefits in using stereotypical knowledge. Thernomelement of these works is the use
of similar or frequent patterns of agents to build steremtyknowledge for other unknown agents
or behaviors in the system. But, as mentioned earlier, tisare assurance about the beneficial or
destructive effects of the stereotypes on the structurkeo$dcial network and consequent effects
of these structural changes on other social activitiesgioeip formation and teamwork.

In the area of trust and reputation, Casare et al. [14, 1&]jdoiced a new type of reputation
called “stereotype reputation” which is based on the sgrgudices and computed with no direct
interaction among agents. The StereoTrust computationdkeimpresented in [63] and [64], uses
real-life stereotypes and the biases people perceive femhgxperiences to build a trust model in

online environments about risky transactions. In contraist model does not directly affect the
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agent’s decision-making but has the subtler effect of nyaalifthe pool of neighboring agents.

To model social stereotyping, some of the previous work h#éized connectionist net-
works. Connectionism spread from cognitive psychologyadmia psychology [72, 73] as social
psychologists found that connectionist models of neurakcepts are directly relevant to social
constructs [93]. Smith and DeCoster [93, 92] proposed arrecticonnectionist network model
to simulate phenomena related to person perception anghgrased stereotyping. They demon-
strated that a connectionist memory could learn a groupatygoe when presented with a number
of input patterns representing individual group memberyur agent-based simulation, stereo-
typic value judgments are learned using linear regresb@sed on an initial set of training experi-
ences and held fixed for the remainder of the simulation. iQuet al. [80] proposed a distributed
connectionist network model to examine the effects of afstype change and development. Fi-
nally, Van Rooy [99] created a connectionist agent-basedefto simulate stereotype effects in a
social network. They model the effects of social influencabgounting for variables on both the
individual and aggregate level of social systems. In cattnath this work, they do not consider

the the dynamic nature of the social network.

2.3 Network Structure and Group Formation

In synthetic systems, individual robots or agents, wileafheed to form coalitions to ac-
complish complicated tasks which they are not able to actismplone [39]. The execution of
complex tasks may require cooperation among agents aneeffgrouping strategies to accom-
plish the task successfully [89]. To achieve efficiency snperformance, an agent system should
employ a reasonable organizational design [46]. As thergzgéion of a multi-agent system is
the collection of roles, relationships, and authority stilwes which govern its behavior [46], our
research focuses on the effect of stereotype on this org@mizand network structure and its

conseqguences on task-oriented group formation. The existef dynamic environments, such as

11



in [33], and partial observation of agents in the systeng.(¢1]), makes group formation more
challenging and vulnerable to social forces such as stgrediias and prejudice.

An important aspect of social systems is information prapiag, which is significantly
affected by network structure, and in turn affects groupnfation and the emergence of social
conventions. [26] analyzes the effect of network structorine emergence of social conventions
in multi-agent systems. The results show that complex grapdke the system much more efficient
than regular graphs with the same average number of linkegubs and that scale-free networks
make the system as efficient as fully connected graphs. A$iaton et al. [37, 38], analyzed
local belief sharing of agents in a peer-to peer network gidnpact on dynamics of information
propagation in large heterogeneous teams. Their work showsthe dynamics of information
propagation is vulnerable to small amounts of anomalowsimétion maliciously injected in the
system. In our work, the stereotypical judgments of agerdpgmate through the network while

the agents adapt their connections based on their neighbonections.

2.4 Influence Maximization Problem in Marketing

Social ties between users play an important role in diggatireir behavior. One of the
ways this can occur is through social influence where a behaviidea can propagate between
friends. In [3], the authors examine the statistical catieh between the actions of friends in a
social network by considering factors such as homophily poskible unobserved confounding
variables. Hence it follows that it is not only important tdvartise to your customer but also to
your potential customer’s friends.

Influence maximization was first studied as an algorithmabjpem by Domingos et al. [29]
who viewed the market as a social network and modeled thersyas a Markov random field.
Later, Kempe et al. [53] formulated influence maximizati@aadiscrete optimization problem

and proved that a greedy node selection approach obtaimstepaavithin 63% of optimal for this
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NP-hard problem. In [54], the behavior spreads in a casgddshion according to a probabilistic
rule, beginning with a set of initially active nodes. To itigninfluential agents, they select a
set of individuals to target for initial activation, suchatithe cascade beginning with this active
set is as large as possible in expectation. [57] find inflaéntbdes in a complex social network
by formulating the likelihood for information diffusion th the activation time sequence data
over all nodes; they propose an iterative method to searctnéoprobabilities that maximize this
likelihood. Although this was an important theoreticalukestheir proposed greedy algorithm was
neither fast nor particularly scalable to larger networks.

This motivated work on potential speedups; examples oflimésof research include in-
novations such as the use of a shortest-path based influascade model [56] or a lazy-forward
optimization algorithm [61], in order to reduce the numbkewaluations on the influence spread
of nodes. [20] made improvements upon existing greedy #lgos to further reduce run-time
and also proposed new degree discount heuristics that wapmluence spread. Clever heuristics
have been used very successfully to speed computationhrtt®t.T model (e.g., the PMIA algo-
rithm [18]) and also the IC model [100]. In this dissertatiorstead of using the original cascade
models by Kempe et al. we introduce a cascade model that miscfar product interactions and
community differences in influence propagation.

As an alternative to greedy algorithms that reach approtdrealutions using graph the-
ory (e.g., [58, 55]), Dayama et al. [25] formulate the problas a continuous-time deterministic
optimal control problem and uses a mean-field approach. ammonly, the problem is framed
as identifying a set of initial nodes that can trigger larghdvior cascades that spread through
the network. This set of nodes can then be identified eithegysobabilistic approaches [4, 57]
or optimization-based techniques. For instance, [47, @&}ttinfluence maximization as a con-
vex optimization problem; this is feasible for influencimgal communities but does not scale to
larger scale problems. Due to the matrix computation reguénts, these approaches fail when

the number of agents in the system increases.
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Apolloni et al. [4] examine the spread of information thrbuygersonal conversations by
proposing a probabilistic model to determine whether twapbe will converse about a particular
topic based on their similarity and familiarity. On the athend, [82] propose a learning method
for ranking influential nodes and perform behavioral analg$ topic propagation; they compare
the results with conventional heuristics that do not cogrsiiffusion phenomena. Ghanem et
al. [36] investigate the difference in the relative time plkeoallocate to their friends versus that
which their friends allocate to them, and propose a measurthis difference in time allocation.
The distribution of this measure is used to identify claggesocial agents through agglomerative
hierarchical clustering. They demonstrate their appraactwo large social networks obtained
from Facebook. The characteristics of these datasets esemted in [104].

First, we present one approach for framing and solving thienigation problem using
convex programming. The optimization problem can also heeslausing greedy algorithms (e.g.,
[58, 55]) that find approximate solutions using graph the{$] also utilized greedy algorithms
to identify the influential nodes. Intelligent heuristicgncbe used to improve the scalability of
influence maximization [19]. [20] made improvements upoistaxg greedy algorithms to further
reduce run-time and proposed new degree discount heartbtt improve influence spread. In
[24], authors take a mean-field approach and formulate tbbl@m as a continuous-time deter-
ministic optimal control problem.

The effects of network topology on influence propagationehbgen studied in several
domains, including technology diffusion, strategy adaptin game-theoretic settings, and the
admission of new products in the market [53]. It has been daestnated that the way information
spreads is affected by the topology of the interaction nekj05] and also that there exists a
relationship between a person’s social group and his/hreopal behavior [90].

Proposed models for investigating how ideas and influengeggate through the network
have been applied to many domains, including technologysidn, strategy adoption in game-

theoretic settings, and the admission of new products imtheket [53]. For viral marketing,
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influential nodes can be identified either by following iatetion data or probabilistic strategies.
For example, Hartline et al. [42] solve a revenue maximizaproblem to investigate effective
marketing strategies. [106] presented a targeted madketethod based on the interaction of
subgroups in social network. Similar to this work, Baghiesje and Parekh leverage purchasing
homophily in social networks [8]. But instead of finding irdhtial nodes, they base their adver-
tising strategy on the profile information of users. Achngyideep market penetration can be an
important aspect of marketing; Shakarian and Damon presentl marketing strategy for select-
ing the seed nodes that guarantees the spread of the word emtine network [88]. Our work
differs from related work in that our model not only consg&lsocial factors but also incorporates
the negative effect of competing product advertisemendstla@ correlation between demand for
different products. Our optimization approach is largemafiected by the additional complexity
since these factors only impact the long-term expectedevaha not the actual solution method.

Outside of social network marketing approaches, theret exeésy marketing methods
based on personalization techniques for delivering acbegnients [52] or news [6].

Some researchers (e.g., [62, 12]) focus on the adversapataof competing against other
advertisers. In this case, the assumption is that the askeis unable to unilaterally select nodes.
In [11] a natural and mathematically tractable model is@nésd for the diffusion of multiple inno-
vations in a network. Our work assumes that influential n@gtegartitioned between advertisers

in an adversarial offline process.
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CHAPTER 3: STEREOTYPE EFFECT ON GROUP FORMATION

Agent-based simulations can be an important tool for madedocial systems, enabling
researchers to examine phenomena that are difficult to stomgyrically. In this dissertation, we
introduce an agent-based simulation for investigatingrtipact of social factors on the formation
and evolution of task-oriented groups. Task-oriented gsoare created explicitly to perform a
task, and all members derive benefits from task completioowever, even in cases when all
group members act in a way that is locally optimal for task ptation, social forces that have
mild effects on choice of associates can have a measurapéetran task completion performance.
In this dissertation, we show how our simulation can be usedddel the impact of stereotypes
on group formation. The effects of stereotype bias on a ksgstem are notoriously difficult
to study due to problems with subject self-reporting anéiing experimental manipulations. In
our model, stereotypes are based on observable featuaesedefrom prior experience, and only
affect an agent’s link formation preferences. Even witragguming stereotypes affect the agents’
willingness or ability to complete tasks, the long-term nificdtions that stereotypes have on the
agents’ social network impair the agents’ ability to fornoigps with sufficient diversity of skills,
as compared to agents who form links randomly. An intergdiimding is that this effect holds
even in cases where stereotype preference and skill egestge completely uncorrelated. When
stereotype affects the formation of social networks and/oek structure modifies the outcome of
group formation, stereotype bias can have long-lastingeguences on a populations’ ability to

form effective groups.

3.1 Problem Statement

To explore the impact of stereotype on group formation artd/oik evolution, we have

selected a simple multi-agent system model first introdumeaston and desJardins [35] and
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used in [33, 39] to govern team formation. Since task-oeémroups are similar to teams, this is
a reasonable method for modeling the task performance ofpgoehavior on shared utility tasks
in absence or existence of stereotypes. Also since this hasdames an adaptive network, it is
well suited for analyzing longer term effects of stereotijzes.

In this model, there is a population &f agents represented by the set {a4,...,an}.
Each agent can be considered as a unique node in the soei@rrkeind the connection between
the agents is modeled by an adjacency makfjxwheree;; = 1 indicates an undirected edge
between ageni; anda;, and the degree of ageat is defined asl; = ZanA e;;. Each agent
is assigned randomly a single uniformly selected skill giby o; € [1, o] whereo is the total
number of available skills. Accomplishing each task reggia coalition of agents with the appro-
priate skills. Tasks are globally advertised fotime steps at fixed intervajs. If a coalition of
satisfactory agents does not form for a task in designatgéps, the task will disappear from the
environment and marked as unaccomplished. The paraméteéhe model indicates the urgency
of task accomplishment. When this parameter’s value is t@w tasks in the environment are
advertised more frequently and thus need to be accomplisisezt.

Each taskT}, has a size|7}|, that denotes the number of skills required to accomplish
the task and &7 |-dimensional vector of required skill&r, , which are selected uniformly from
[1,0]. Also, M, C A indicates the set of team associated With When a coalition has formed
with the full complement of skills required for the tagkfime steps are required for the group to
complete the task. After time steps the task is marked as accomplished and the agettte o
task will be released into the environment to look for nevksas

During the team formation process, each agentan be in one of three states, defined
as: UNCOMMITTED, COMMITTED, or ACTIVE. UNCOMMITTED denotgthe state where an
agent has not been assigned to a task and is seeking a newAtasigent in the COMMITTED
state has been assigned to a task but is still waiting forgimagents with the right skills to join the

group. Finally, an ACTIVE agent is currently working on akagth a complete group possessing
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the right complement of skills. All members of a completeugr@t a specific task, e.g.;, will
remaina time steps in ACTIVE state to complete the task.

On each iteration, agents are updated in random order taol @avgi bias toward task as-
signment. UNCOMMITTED agents have the opportunity to adhpir local connectivity (with
probability of ;) or can attempt to join one of existing incomplete groupguFé 3.1 shows the

block diagram of the overall updating process for UNCOMMHL agents.

Uncommitted
Agent

Update the
Network

Accomplish

a Task
Initiatea |,
l Team - IP,
Join a Team (€
[: (1-1P)

Figure 3.1: Complete updating process for each UNCOMMIT Tgient

3.1.1 Group Formation

To implement the group formation process, we simply follbvwe group formation algo-
rithm used to allocate agents to teams in [33]. In this wohle group formation algorithm is
identical in both cases of having or not having the steraofypudgment among the agents. The
difference between these two cases lies in the network ungdalgorithm which will be discussed
in the following section.

According to Figure 3.1, when an agent decides to form a gmsiead of updating its
network, it either chooses to initiate a new group and be teedommitted member of the group
or to join one of the existing groups and assist the compietiothe group. Selecting between

these two cases is dependent on the probaliltyfor agenta;.
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Probability I P; is proportional to the number of immediate UNCOMMITTED nigigrs

defined as follows:
Zang eijI(Sia UNCOMM'TTED)

IP, =
Za,-gA €ij

: 3.1

wherel(z,y) = 1 whenz = y and 0 otherwise.

In this case, when the agent has more neighbors in UNCOMMDO §Eatus, there is a
higher chance for it to initiate a team by itself. Agents andyceligible to join task-oriented
groups in their local neighborhood, where there is at least lmk between the agent and the
group members. This eligibility criterion makes the defomtof Equation 3.1 more meaningful
as the higher number of UNCOMMITTED agents is equivalent teduced opportunity to be
admitted into an existing group. The algorithm used by amtge initiate or join a group is

presented in Algorithm 1.

Algorithm 1 Group formation algorithm
forall Tx C T do
if |M| = 0ands; = UNCOMMITTED then
r < UniformRandom(|0, 1])
if r < IP;then
if 3r € Ry, : r = o, then
Mk — Mk U {az}
s; + COMMITTED
end if
end if
else ifda; : e;; = 1,a; € M; ands; = UNCOMMITTED then
if 3r € Ry, : r = o; and ris unfillecthen
Mk “— Mk U {az}
s; + COMMITTED
end if
end if
end for
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3.1.2 Network Adaptation

In the scenario with no stereotype bias, to adapt the netatodcture, the agents modify
their local connectivity based on the notion of preferdrattachment [2]. Therefore, the proba-
bility of connecting to a given node is proportional to thatle’s degree. As mentioned before, at
each iteration the agent can opt to adapt its connectivitip probability 7;. Modifying its local
connectivity does not increase the degree of the initiatiggnt since the agent severs one of its
existing connections at random and forms a new connection.

To form a new connection, an agent considers the set of ighbers’ neighbors designated
asN? = {an, : €;; = 1,e;, = 1,e;mn = 0,m # i}. The adapting agent,, selects a target agent,
a; C N?, to link to based on the following probability distribution

d;

—_ 2
S (3.2)

P(CI,Z' —>aj) =

whered is the degree of agents.

The results in [33] and [39] show that this simple algoritham de used to adapt a wide
variety of random network topologies to produce networled #re efficient at information propa-
gation and result in scale-free networks similar to thosgeoked in human societies. Our model
uses this same method for updating the network for groupdtiam in the baseline (non stereotype

bias).

3.2 Learning the Stereotype Model

As noted in a review of the stereotype literature [45], sigrees are beliefs about the mem-
bers of a group according to their attributes and featurelkad been shown that the stereotypes
operate as a source of expectancies about what a group adeisvlike as well as what attributes
individual group members are likely to possess [41]. Stypmminfluences can be viewed as a

judgment about the members of a specific group based orvedlaginduring characteristics rather
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than their real characteristics.

Here, we represent a stereotype as a func#on 7 — S, mapping a feature vector
of agents,7, to a stereotypical impression of agents in forming frigmgs, S, which we will
designate as the stereotype value judgment. This valuesepis the agents’ judgments on other
groups and is only based on observable features rather kilsnos prior task performance.

In most contexts, humans possess two types of informatiautathers: 1) informa-
tion about the individual’s attributes and 2) the personisgtterm membership in stereotyped
groups [41]. Therefore, to learn the stereotype model, ithelation offers these two sources of
information,7 and its corresponding which are related to the agents’ group membership, for a
specific period of time. In our simulation, this initial legmg period lasts fof time steps and helps
the collaborating agents gain experience about the at#isbof different groups of agents. Note
that membership in these groups is permanent and not reatied agent’s history of participation
in short-term task-oriented groups.

During the initial period, the whole process is the same agéist of simulation with the
difference that there exist no network updating. Therefameording to Figure 3.1, an uncom-
mitted agent with probability?; either decides to do nothing or accomplish a task. Here,yn an
collaboration, agents will be provided by the feature veofaheir team members and their cor-
responding stereotype value judgment. These featurergemial stereotype value judgments are
derived from the group membership of agents which was séteabéginning of the simulation.
Hence, at the end of the initial period each collaboratedhialgas a stack of feature vectors and
their corresponding stereotype value judgments which Welhea”experience” of that agent. It is
clear that the size of this stack is different from agent terd@nd it is related to the number of
collaborations they had.

In our work, we propose that each agent,can use linear regression to build its own judg-
mental function,F; based on its own experience, and consequently to estineastdieotype value

. — I
of another agent;, according to the observable features of that agént,Note that after initial

21



learning period, each agent builds its own linear functidmalv is only based on its collaboration
experience and is different from others. Therefore, afterinitial learning period/ time steps,
the estimated stereotype value of agenby agentu; will be uniquely calculated a§;j = ]—}(\7;).

In our model, this stereotype value judgment affects theneotion of agents during the

network adaptation phase, as we will describe in the folhgygection.

3.2.1 Network Adaptation with Stereotype Value Judgments

In the stereotype case, the group formation algorithm issdrae as described in Algo-
rithm 1 but the network adaptation is based on the learneddatige. If an agent decides to adapt
its local network, again with probabilit; , it will do so based on its own stereotype model. To
adapt the local connectivity network, each agent usesarnésl model to make stereotype value
judgment on other neighboring agents. This network adiaptatocess consists of selecting a link
to sever and forming a new link.

Specifically, the agent; first searches for its immediate neighbor that has the lostesto-
type value judgment;, and severs that link. The agent then searches for a new agertarget
for link formation. To form this link, it searches its immadtk neighbors and the neighbors of
neighbors. First the agent selects the neighbor with thiedsigstereotype value judgmednt,, for
a referral as this agent is likely to be a popular agent inetgimborhood. Then the adapting agent,
a;, Will establish a new connection wiih,, one of the most popular neighbors®f, assuming

that it is not already connected.
Qp = AIZq, e N2, —0 MAX Sik-

Note that all of these selections are the result of the stypeo/alue judgment model that ageit

has about the other agents in its neighborhood.
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3.2.2 Experimental Setup

We conducted a set of simulation experiments to evaluateffeets of stereotype value
judgments on the interaction network structure and coresstfyuon group formation in a simulated
society of agents. Although there exist several specidlpregramming languages and tool kits
for agent-based simulations such as NetLogo [102], Re@&@3$t MASON [65], Swarm [75], we
opted to use Matlab to design and model our system due to fHeeatamplementing the learning
aspect of the system. While in [34] the claim that networkigtire has significant impact on
team formation in networked multi-agent systems, our erpants were designed to reveal the
potential impact of stereotype bias on task-oriented gfoupation within social systems. Note
that stereotype bias only affects network structure andyrentp formation; the agents always join
available groups formed by their network neighbors whenthar skills are needed.

The parameters of the group formation model for all the rumssummarized in Ta-
ble 4.4(a). In task generation, each task is created witmdorma number of components less
than or equal tar and a vector of uniformly-distributed skill requirementghwthe same size. To
generate the agent society, each agent is assigned a spkitlifia feature vector, and a class label.
The agents’ skills are randomly generated from availabiéssKnspired by [13], four different
long-lasting groups with different feature vector distitions are used as the basis for stereotype
value judgments. Agents are assigned a six-dimensioniréegector, with each dimension rep-
resenting an observable attribute, and a hidden stereetipe judgment drawn from Gaussian
distribution assigned to the group. Table 5.1(b), showstlkean and standard deviations of the
Gaussian distributions and the observable feature vestigreed to each group. The binary ob-
servable feature vectors are slightly noisy. To indicat éRistence of an attribute, a random
number is selected from distributig¥i(0.9, 0.05) to be close to 1 and to indicate the lack of an at-
tribute this number is selected from distributidif0.1, 0.05) to be close to zero. During the initial

training period, heré = 2000 iterations, agents are allowed to observe the hidden $ygrevalue
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judgment of other agents to learn the classifier that will fedfor the rest of the agent’s lifetime.
During the remainder of the simulation (5000 iterationkg agent uses the learned classifier to
make its own stereotype value judgments about others.

In these experiments all the runs start with a random gednggiph (RGG) as the initial
network topology among the agents. A RGG is generated byorahyddistributing all the agents
in a unit square and connecting two agents if their distaadeds than or equal to a specified
threshold/ [23]. The random network we generated is a modified versiagh@RGG, proposed
by [33]. In this versiond is selected as a minimal distance among the agents to gaartatt all
the agents have at least one link to other agents.

When the initial network is generated, the group format®aliowed for an initial period
with no adaptatior{/ = 2000). During these initial training steps, the agents can forougs
and participate in task completion to gain experiencesalorking with other agents. Therefore,
the network topology remains static during the= 2000 iterations and after this training period
the agents start updating their interaction network asrdextin 3.1.2 and 3.2.1 in two cases of
having and not having stereotypical judgment among thetagespectively.

In this set of experiments our main focus is on the effect af t@wntrol parameterg, and
o, on the team formation and task performance when the sygrieat judgment exists among the
agents. Simulation parametey which indicates the task interval, controls the frequeoiciask
injection in the environment and the load of task accomptisht while parameter controls the
complexity of tasks in case of number of required skills. Tésults are conducted in a way to
show how the effect of stereotypical judgment can vary ifed#nt situations such as having more
complicated tasks in the environment or having more taskstomplish.

All experiments are based on the average of 10 differentwithsa different initial network

for each run.
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Table 3.1: Parameter settings

(a) Experimental parameters

Parameter Value Descriptions
N 120 Total number of agents
o 6, 10 Total number of skills
o' 10 Time steps for task advertisement
«a 4 Agents’ active time
m 2,10 Task interval
|T| max 10  Number of skills required for a task
Nrterations 5000 Number of iterations
Nrnitial 2000 Number of learning iterations

(b) Stereotype groups and feature vectors

Group Mean Value StDev f1 fo f3 fa fs fe

G1 0.9 0.05 X X

G2 0.6 0.15 X X

G3 0.4 0.15 X X

G4 0.3 0.1 X X X
3.2.3 Results

3.2.3.1 Global Performance

The global performance of the system, like [33], is caladads follows:

TSuccess ullyDone
Per formance = Jully

) 3.3
TTotal ( )

which is the proportion of successfully accomplished tatikgled by the total number of intro-
duced tasks in the environment. Figure 4.4 shows the glar&dpnance of the system with stereo-
types and without stereotypes (nantdldin) by iteration. For the stereotype condition we tested
the performance of the social system once with learnedatigres GtLin), where the agents based
their stereotypical judgments on their learned model, aradavith no learning$tNL), where the
agents had perfect knowledge about the assigned judgmieret @Bother agents. The results of
these three different algorithms are shown and comparedrfigrtwo different values of.. To

select values ofi, we set this parameter to even numbers in the intervéitiaf] and calculated
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the performance. As there exists no significant differeretevben the performance value in high

values ofy and also no significant difference in low valuesgtherefore we picked valuesand

10 as the representative of the performance result at low agtdValues of task interval, respec-

tively. Also we did the same process for parametéut we only show the results for = 10 as it

is representing moderate complex tasks; not too complexeiept the agents to have successful

accomplishment and not too simple to be done easily.
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Figure 3.2: The performance of task-oriented groups (witth\&ithout stereotypes) vs. iterations
shown for two different values qf and a fixed value of = 10. The performance is significantly
lower in both stereotype conditions and drops dramaticahgn,. is increased.

As it is shown, the performance of the system in [Hain condition is noticeably higher

than the two stereotype bias conditions. The significancthefdifference between thelain
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and two conditions with stereotypes was measured with tdest’s T test and was found to be

statistically significant at thee = 0.05 significance level. There was no significant difference
between learned stereotypes or those based on perfectédagevl The same pattern of results
occurred withy = 10 but with a dramatic drop in the task performance, resultiogifthe less

frequent injection of tasks into the system.
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Figure 3.3: The relative performance of task-oriented gsqwith and without stereotypes) vs. the
iterations for two different values ¢f and a fixed value of = 10. In the case with no stereotype
bias, the performance of the overall social system expeg®a higher rate of increase with more
iterations as compared to the cases with stereotype.

In addition to general performance, we calculated theiveladterformance as well. The

relative performance is the comparison between the glo&ddpnance at any iteration with the
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measurement at the end of the initial period to evaluatetipeovement of the agents collaboration
over the time compared to the starting point.

Figure 3.3 shows this evaluation for different conditionse same as Figure 4.4, the value
of o is fixed to 10, and results are shown for two different valdgslout other values of, followed
a similar pattern. The experiments show thatfo# 2, in the Plain condition the performance
of the system increases almost 70% in comparison with thialiperformance after the learning
period. In the stereotype condition this improvement isyaround 50%. The main effect of
the stereotype is to adapt the network toward a sparse rlestructure with a dramatic increase
in isolate nodes. This drop in performance is even more pmooed with fewer total agents.
Also the increase in the value drops performance as the number of advertised taskeates
dramatically. Also we conclude that the task injection oamother words, the load of the tasks
in the system is independent of the stereotype effect asggom@ghis value keeps the pattern of

systems’s performance the same in difference algorithms.

3.2.3.2 Local Performance

Equation 3.3 can be used to compute a global performanceatia@i of the social system
but sometimes it is instructive to also examine individuadfprmances or local performance. Ac-
cording to [33], the local performance can be calculatedgihe successful rate of agentsH)

defined as:

NSuccessfulJoined
SR = , 3.4
NJoined ( )

where Ngccess rutjoined 1S the number of successful teams joined by an agent divigietiébtotal
teams joinedV,;,..q. Here theN;,;..q Value is calculated as the total number of teams that agent
initiated by itself summed to the ones it joined. Figure 314v8s the average of successful rate
value (SR) of all agents for different valuesiofindo for all the conditions.

The results show that by freezing the parametéo value 2 and changing (figure on
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right), the successful rate value decreases dramaticalyiacreases. This pattern occurs in all
three cases but in the stereotype condition this value rsuffeore from the increase of. As
the number of skills required to accomplish the tasks irsgeafinding the right collaboration of
agents becomes more critical and ignoring agents due &osygre bias becomes more destructive.
The other values qgi (not shown) almost follow the same trend and it shows thatgimg the task
injection and load of the work does not significantly effdo® successful rate of the agents on

average.
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Figure 3.4: The effect of parametersando on successful rate of agents in the environment. The
figure on top fixedu = 2 and varied ther for all three approaches with and without stereotypes.
The figure on the bottom, shows the variationuadnd fixed values of = 6 ando = 10

Moreover, when we freeze the valueofind change the parametei(figure on left) we
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can see that for low number of required skills = 6) the successful rate is not really dependent
on the frequency of task advertising. But when éhi@creases to 10, the successful rate decreases
slightly. In all results the successful rate of the sterpetgonditions is lower than the non stereo-
type condition. Here, the same as the performance resultaweonclude that the load work of
the system has not significant effect on the team formatidwis i reasonable as during the team
formation and making decision to join a group, the agentsataansider other remaining tasks

in the environment. What plays a significant role is theire¢hatkill and their connection with any
current group members at the task therefore, when the nuohbeguired skill increases, fulfilling

all these requirements gets harder and harder and condgomeakes the ratio of unsuccessful

tasks higher.

3.2.3.3 Linear Regression Learning

To evaluate the performance of the applied linear regrasaiethod at learning stereotype
value judgments, we calculate the Mean Square Error (MSE&)dmn the estimation of learning
model (StLin) and the model with ideal knowledge (StNL). Tasult is shown in Figures 3.5 and
3.6 for different values ofi ando parameters, respectively.

In Figure 3.5, we can see that increasinmcreases the error in estimating the true stereo-
type value of the agents; fewer tasks and collaborationscesithe amount of training data accu-
mulated, resulting in a less accurate model. In these sesdiéno is fixed to 10, the difference
between the error in different parameter setting. tecomes less significantly different. In other
words, when the number of required skills increases, thatageve a reduced chance of group
formation. This case is magnified in the stereotype conaliiod not offset by the increased fre-
guency of tasks.

In Figure 3.6, the MSE result has been shown for two diffek@hties ofy while the o
parameter is modified. These results indicate that with ladrigalue ofu, the error is increased in

conditions wherer is equal to 2, 4, or 6 but whenis set too > 8 there is no difference created
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by the frequency of task advertisement.
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Figure 3.5: Mean Square Error of the stereotypical valugruents of agents with and without
learning based on changing theparameter § = 120). The result is shown for two different
values ofo (¢ = 6 on top andr = 10 on the bottom) with varying parameter

3.2.3.4 Network Structure

Here, we examine the network structure to determine theugwal of the agent society.
Figure 3.7 shows the Fiedler-embedding [44] of networkshim final connectivity network of
N = 200 agents with and without stereotype value judgments. Ther@id shape differences
show the profile of agents. As it is clear in tRéain scenario the number of isolated nodes is

less than the scenario with stereotype knowledge. Alsodatain scenario there is no difference
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between the profiles, therefore we can see all type of profildg isolated nodes and nodes with
high degree. On the other hand in the stereotype condit®aglents in group 3 and 4 were more

likely to become isolated and fail to use their capabilitatcomplish more tasks.

0.09
0.08 -
0.07 -
0.06 Sigma=2
- = = Sigma=4
0.05 | —O— Sigma=6 i
g) il Sigma=8
—_—— S =
0.04 H S!gma 10 i
Sigma=12
““““ Sigma=14
0.03 1
ocozff  _ammm===—TT |
———————
P
o0.01 -/ N
U _ _
P i e S e S e i e e e S i e e ; adnsinshahadnasinhadndndn oA Antnaiuhe)
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
Iterations (Mu=2)
0.14
0.12 |
—f— Sigma=2
O] =——@— Sigma=4 i
- = = Sigma=6
——@— Sigma=8
0.9 Sigma=10
72} Lo Sigma=12 k
= o —g— Sigma=14
0.04
| 0 "¢¢¢¢¢3¢¢¢3333333¢¢¢¢3¢¢¢¢33¢¢¢333333333
]

2 o] 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
Iterations (Mu=10)

Figure 3.6: Mean Square Error of the stereotype value estmaf agents based on changing the
o parameter = 120). The result is shown for two different values pf(x = 2 on top and
1 = 10 on the bottom) with varying parameter

The degree-based strategy moves the structure toward &ienilgr to a scale-free network

whereas with stereotype value judgments the network bespnogressively more star-shaped.
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Figure 3.7: Fiedler embedding of the final network strucurenon-stereotype (left) and stereo-
type (right) based network evolutio®( = 200). There are more isolated nodes in Class 3 and
Class 4 when we have stereotypical judgments.

3.2.3.5 Effects of Rapid Attachment Modification

Here we examine the effects of modifying the paramétathe probability of updating the
network, on the performance of the system, both with andowittstereotypes. We varied this
parameter from 0.1 to 0.9 with a step size 0.2. Figure 3.8 shbe performance during 5000
iterations in both strategies. As shown in the figure, théoperance does not change significantly
with P values before a certain threshold. After that thresholelperformance drops dramatically,
as the agents spend more time updating the network than atisbing tasks. This threshold is
dependent on the total agents and number of skills requirtteienvironment. In both conditions
the task performance drops By = 0.7 but in the stereotype conditions the system performance
falls at an earlier iteration, after the information tramssion efficiency of the network has been
sabotaged by the network adaptations caused by stereotypejudgments.

Cumulatively, these experiments illustrate that stengetyias can negatively impact the
ability of a community to effectively form task-orientedogips, if the agents make long-term net-
work modifications based on stereotype value judgmentssd lwang-term network modifications
can be seen as representing the cumulative result of marle siianges in people’s daily rou-
tines, based on stereotype bias. Our agent-based modtalies how the manifestation of these

network changes can appear later in a group formation afkdasomplishment, even if they
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have imperceptible effects in situations that do not rexjamordination. These network struc-
ture changes have more pronounced effects when the tastsmbenore complicated (requiring
a larger pool of skills) and efficient group work is more @dti. Whether these judgments are
learned (based on previous experience) or are directlydo@san observable value does not seem

to have a significant impact in our agent-based simulation.
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Figure 3.8: The effect of the network adaptation probabift

3.3 Summary

In this chapter we introduced an agent-based simulatioedamining the effects of stereo-
types on task-oriented group formation and network evoitutiWe demonstrate that stereotype
value judgments can have a negative impact on task perfaenanen in the mild case when the
agents’ willingness and ability to cooperate is not impaird8y modifying the social network
from which groups are formed in a systematically suboptimay, the stereotype-driven agents
eliminate the skill diversity required for successful goslby driving the network toward specific
topological configurations that are ill-suited for the tagke results show that making connections
with agents solely based on group membership yields a spaseork with many isolated nodes.

Due to the technical challenges of investigating the l@rgateffects of stereotype across
populations, we suggest our agent-based simulation métteodseful tool for investigating these

research questions.
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CHAPTER 4: INFLUENCE MAXIMIZATION TECHNIQUES FOR
ADVERTISING

The question of how to influence people in a large social systea perennial problem
in marketing, politics, and publishing. It differs from neopersonal inter-agent interactions that
occur in negotiation and argumentation since network gire@and group membership often pay a
more significant role than the content of what is being sagking the messenger more important
than the message. In this part of the thesis, we propose a e#wodhfor propagating information
through a social system and demonstrate how it can be usesl/&bop a product advertisement
strategy in a simulated market. In the following sectionswiledescribe our market model, our

interaction model, and the synthetic data has been geddmtevaluation.

4.1 Market Model

To explore the efficiency of the proposed marketing methoel have extended a multi-
agent system model, inspired by [47] and [48], to simulatecias system of potential customers.
In this model, there is a population of agents, represented by the set= {ay,...,ay}, that
consists of two types of agentsl = Ar U Ap). The first type of agent, defined ady = {a, |
a, is Mutableand 1 < r < R}, are theRegularagents, who are the potential customers. These
agents have a changing attitude on purchasing productsaarttednfluenced by theroductagents
who represent salespeople offering one specific produ&sd hgents have an immutable attitude
toward a specific product and are defined4s:= {a, | a; is Immutableind 1 < p < P}. Figure
4.1 provides an illustration of the market model.

EachRegularagent can be considered as a unique node in the social netwarkected
by directed weighted links based on the underlying intésastwith other agents. The connection

between th&egularagents is modeled by an adjacency mafifixwheree;; = 1 is the weight of a
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directed edge from agent to agentz,;. The in-node and out-node degrees of ageiare the sum
of all in-node and out-node weights, respectively, (= D _a;CAp G andd’,, = D a,CAp €ij)- This
network is assumed to follow a power law degree distribuliiked many human networks, and is

generated synthetically as we will explaine in Section 4.2.

Ap

Figure 4.1: The model of the social system. There exist tyes$yf agentRegularagenty Ag)
andProductagents(Ap). A static network exists amorigegularagents, and our problem is to
find effective connections between tReoduct(sellers) andRegularagents (customers) in order
to influence the customers to buy produd®egularagents also can belong to different groups in
their society(G,, ), which modifies the local influence propagation properties.

We model the desire of an agent, to buy an item or consume a specific productas a
random variable denoted hy, € [—1 1]. As there exisP items in the environment, each agent is
assigned a vector of random variabla%, representing the attitude or desire of the agent toward
all of the products in the market.

Within the social network there are different groupsRegularagents; these groups could

represent demographic groups or other types of subcultudgents from the same group are
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more effective at influencing each other. To model this, thaad system contains: different
long-lasting groupsi#4, . . ., G,,, and each ageritis designated with a group membershif,

Here, we do not attempt to capture a rich social-culturableint model of these interac-
tions, but rather view the model simply as a functibn G; — S;, mapping the group label of
agents(;, to a social impressiors;, that affects link formation and influence propagation,ckhi
we designate as the group value judgment. This value repgetiee agents’ judgments on other
groups and is based on observable group label of the agéet thian real characteristics of the
person. We assume that the impression of different groupdéen learnt by agents beforehand
therefore each agent has a unique vector of judgment vahotsd as?i = S51,5,...,5,, to
indicate the judgment of each agent on different groupserstmulated society.

Moreover, in real life there is a correlation between the deenand of different products in
the market. The desire of customers for a specific produetaged to his/her desire toward other
similar products. To model this correlation and consideeftect in our formulation, we designate
a matrixM that identifies the relationship between demands amongihkae items and can be

shown as:

mir ... Mp

mp; ... Mpp
wherem;; indicates the probability of having desire toward itg@ssuming the agent already has
a desire for item. We assume that this matrix is known beforehand and has bedgled by the
advertisement companies by tracking the users and apphgegmodeling.
In the market, the companies are trying to select a set ofexdions between thé, agents

and A agents, in such a way to maximize the long term desire of teatagor the products. We
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define a simple decision variahle;, where

1 Product; connects tdRegularagenti,

0 otherwise

Note that the links betweeRroductagents andRegularagents are directed links from
products to agents and not in the opposite direction, artdPitealuctagents will never connect to
otherProductagents. In the social simulation, each agent interacts avitither agent in a pair-
wise fashion that is modeled as a Poisson process with ratddpendent of all other agents. By
assuming a Poisson process of interaction, we are clairhatghere is at most one interaction at
any given time. Here, the probability of interaction betwegents:; anda; is shown byp,; and
is defined as a fraction of the connection weight betweerethgents over the total connections

that ageni makes with the other agents. Therefore,

;

diij 7’7.] S AR
out
Pij = w0 i€ Ap,j € Ap (4.2)
0 otherwise

whered’ , is the out-node degree ofRegularagent: and theThresholdparameter is the total
number of links thaProductagent can make witRegularagents. The bounds drhresholdare a
natural consequence of the limited budget of companiesvaréiding their products.

At each interaction there is a chance for agents to influeach ether and change their
desire vector for purchasing or consuming a product. Inhaéé interactionBroductagents, the
immutable agents, are the only agents who do not changedtigurde and have a fixed desire

vector. The probability that ageptnfluences agentis denoted ag;; and is calculated based on
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the out-node degree of agenas:

dejji Z)] € AR
az] — out (43)

cte 1€ Ag,j € Ap

Figure 4.2 shows a simple example of how to calcutgt@ndoy;;.

The other important parameter in the agent influence prasess which determines how
much ageng will influence agent. This parameter is derived from a Gaussian distribution as-
signed to the membership group of agégriased on the experience of agentith this group.
Therefore, this value can easily be extracted from the pusly defined vectoﬁ-.

As a final note, in this model the agents can access the falpmformation:

1. the links connecting agents that possess a history ofita@sactions. Each agent is aware

of its connections with neighbors and their weights;
2. the group membership of neighboring agents and othestsalembers of the community.

The ultimate goal of our marketing problem is to recognizeittfluential agents in the graph and

defineu;;s in a way to get the maximum benefit of the product advertising.

4.2 Synthetic Data

To evaluate the performance of proposed methods on idergiinfluential agents in a
variety of networks, we simulate the creation of agent netwdormed by the combined forces
of homophily and group membership. Since social communifeen form a scale-free network,
whose degree distribution follows a power law [9], we modelagent networks using the network
generation method described in [101]. Note that this nétvamly connects the regular agents
(a; € Ag). The connection between tiReoductandRegularagents is identified later in a way to

optimize the efficiency of the product marketing.
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Figure 4.2: An illustration of how the probability of intextéon (p) and the probability of influenc-
ing others(«v) is calculated between tHeegularagents.

Following the network data generation method in [87], wettarthe link density of the
network using a parametdd, and value homophily between agents using a parandtiefThe

effects of value homophily are simulated as follows:

1. At each step, a link is either added between two existirdpam®r a new node is created
based on the link density parameté)( In general, linking existing nodes results in a

higher average degree than adding a new node.

2. To add a new link, first, we randomly select a node as thecequdes;, and a sink node,
a; (a;,a; € Ag), based on the homophily valuéh), which governs the propensity of nodes
with similar group memberships to link. Nodg is selected among all the candidate nodes
in the correct group, based on the degree of the node. Nodhshigher degree have a

higher chance to be selected.

3. Ifaprior link exists between agentanda;, selecting them for link formation will increase

the weight of their link by one.
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Table 4.1: Agent Network Generator

Agent Network Generator (numNodes, numLabels, Id, dh)
i=0
E =NULL
while i < numNodeslo
sampler from uniform distribution/ (0, 1)
if r < ldthen
connectNodd{,numLabelglh)
else
addNodedg,numLabelglh)
1=1+1
end if
end while
returnkE

Group membership also governs the process of reciprodafdmation. Once the link
generation process starts and the source and sink nodebdmvaselected, we add a directed link
from nodeq; to nodea; by default, under the assumption that the first selectedtagiated the
interaction. The group value judgment of the second nodemswhether a reciprocal link is
formed or not. We use an evaluation functiby(,S) to map an observed group val§do a binary
evaluation of interaction (positive or negative). We assuhat all agents use the same evaluation

function, which is: 1: §>05
Fo(S) = -
—1: <05

The result of this process is to create clusters of agents thi#& same group labels within the
network, since group membership affects both the proliglodithe initial interaction (through the
homophily parameter) and also the reciprocal link fornratio

To generate a new node, we first select a group label basedmfoenugroup distribution
and assign that group label to the node. Then we add linksdegtwhe new node and one of the

existing nodes as we described above. The algorithm forrgéng the static network is outlined
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in Table 4.1.

4.3 Dynamics in the Market

As explained in Section 4.1, the ageéistdesire toward produgt, is modeled as a random
variable that assumes a scalar value after each intergatjpre [—1 1]) . Therefore, since there
exist P different products, each agent has a vector of random \Ias'aﬁ-, which indicates the
desire of the agent toward all the available products in etarkollowing Hung et al. [47, 48],
we model the desire dynamic of all agents as a Markov chairrevtie state of the system is a
matrix of all agents’ desire vectors at a particular itenat and the state transitions are calculated
probabilistically from the pair-wise interaction betwesggents connected in a network. The state
of the system at thé'" iteration is a vector of random variables, denotedXdg) € RNP*!

(created through a concatenationdivectors of sizeP) and expressed as:

_)
[(Xn (k)]
4.3.1 Generalized ICM

The independent cascade model presented by Kempe et. adl¢fiBes the interaction
between agents as a cascade process which at each stepetitey/ractivated nodes have a chance
to activate their neighbors independently. Although theglel has been successfully used in many

domains, it has the following limitations in the marketingna&in:

1. In ICM the probability of interaction between agents ither equal tol or 0 depending
on what group of agents get activated at each time step. Wimaa gets activated the
probability of interaction between that node and its neagklswitches td in the next time

step, while it is equal t0 at any other time step. This condition cannot simulate ttentzy
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in real-world interactions in which an agent purchases aycband then after some time

influences its friends’ perception of the product.

2. In the IC model, in the case of interactions between awatetil node and its neighbors,
the probability of influencing or activating a neighbor isiadyy situation as well. Either
the neighbor is completely persuaded and becomes activatddnies any influence and
remains deactivated. This is not true in real world intecas where partial influence is

more common.

3. The influence propagation in IC model assumes progreasivweation—once an agent gets
activated or influenced, it cannot change its mind or switchariother state. Therefore, it
remains activated for the rest of the simulation. This aggion implies that a costumer is
unable to change his mind after choosing a product in the@fR]. Again this assumption
does not match with the real world situation where consurtanschange their mind at any
time and switch back to their previous decision repeatetignce, the IC model cannot

represent the situation in real business market accurately

As a result, in this section a generalized version of ICM iedu have a more realistic
interaction model based on the model introduced in [69, 48 dynamics of the model at each

iterationk proceed as described in [69, 48]:

1. Agenti initiates the interaction on a uniform probability distrtton over all agents. Then
agent; selects another agent among its neighbors with probabilityNote that the desire
dynamic can occur with probabilit% (pi; + pji) as agent’s attitude can change whether it

initiates the interaction or is selected by aggnt

2. Conditioned on the interaction 6&indj:
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e With propagabilitya;;, agent: will change its desire:

X, (k+1) = e MX; (B) + (1 - ) MX; (k)
(4.4)

Xk + 1) = X;(k)

Recall thafM is the pre-defined matrix indicating the correlation betwte demands

of different products.

e With probability of (1 — «;;), agent: is not influenced by the other agent:

X, (k+1) = X, (k)

Xk +1) = X;(h)

(4.5)

It is worth to note that in above interaction model, if wesgt= 0, M = I and restricp;;s
to be equal td right after activation of any node and equabtthe rest of the time, the model can
be degraded to IC model. Also as the values of desire vectongeto[—1 1], thez;,s € [0 1]
andz;,s € [—1 0] should be quantized tband0 respectively to have the similar representation of

activation and deactivation in IC model.

4.3.2 Interaction and Influence

In this work, we define interactions as any kind of informatar belief sharing between
two agents about the available products in the market. Qutiese interactions, there is a pos-
sibility for one agent to influence the desire of the other.oAs explained in Section 4.1, this
possibility is modeled by parametey; when agent initiates the interaction with agept Also, in
this interaction, we assume that the influenced agent walmesome fraction of its existing desire.
This fraction is different for any single agentvhile interacting with ageni, but remains fixed,

and is denoted as; € [0 1]. The dynamics of the model at each iteratioproceed as follows:

44



1. Agenti initiates the interaction on a uniform probability distrtton over all agents. Then
agent: selects another agent among its neighbors with probabilityNote that the desire
dynamic can occur with probabilit% (pi; + pji) as agent’s attitude can change whether it

initiates the interaction or is selected by aggnt
2. Conditioned on the interaction 6&indj:

e With propagabilitya;;, agent: will change its desire:

X, (k+1) = £ MX; (B) + (1 - ) MX; ()
(4.6)

Xk + 1) = X;(k)

Recall thafM is the pre-defined matrix indicating the correlation betwte demands

of different products.
e With probability of (1 — «;), agent: is not influenced by the other agent:

X, (k+1) =X, (k)
(4.7)

— —
X;(k +1) = X;(k)
To analyze Equation 4.6 in detail, we rewrite the matrix gkdtion for agent as follows:

P
>y (Egmip + (1 — €55) x)

X(k+1) = : (4.8)

P
>y mpy (Emi + (1= &) wjg)

A closer look at each row c{%(k + 1)) reveals that the desire of ageribward a product
depends on own previous desire, a fraction of the other ag#gdire toward that product, and the

desire of both agents toward other available products imtagket. This is an interesting result
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showing how our proposed model can express the complexitgatfworld markets and capture

the dependency of demand for different products [60].

4.4 Optimization Technique for IM

4.4.1 Expected Long-term Desire

In this work, we determine the long-term desire of the ag@artproducts in the system to
find the optimized connection between fPi@ductagents andRegularagents. In other words, we
hypothesize that by examining the expected value of thelgtetate systertiX(k)), we are able to
optimize the marketing strategy and identify the most inftis¢ nodes in the network. Therefore
our goal in this section is to calculate the expectationamat the system state since it captures all
the interactions and the dependencies between the dem#mel@ioducts.

The conditional expected value of the desire vector of agena single pair-wise interac-

tion between agentsand;j, when the current state of the system is observed:

E[X;(k + )X (k), ] = (1 = i) Xi(k) + aiy [, MXi(k) + (1 = ) MX; (k)
= (1= ) Xi(k) + asjeM X, (k) + s (1 = 235)M (k)

= [oygesM + (1 — a)T] Xi(k) +ay(1 - ) MX(k)  (4.9)
By defining matrixW (i, j) = «;;(1 — £;;) M, we rewrite Equation 4.9 in the form of:
BIX:(k + DIX(k), 5] = Xi(k) + Wi, )X (k) = [W(i.) + oy (L= M) Xi(k)  (4.20)

Therefore, based on the probability of interaction betwwemagents ﬁ(pij + pji)), the
desire ofRegularagents dynamically changes as specified in Equation 4.% viorthwhile to

mention that matrid¥V is a factor of matriXM, and it has the same dimensiongtk P. Rewriting
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the dynamics oﬁ in this way indicates that the desire vector of ageat iteration(k + 1)
is equivalent to its own desire plus the weighted desire ehag at iterationk, minus its own
weighted desire at that iteration. This finding shows thagpite of having the extra matrixi,
extracted from the marketing situation, and a complicatatn of the agents’ desire vector, the
computation model simply follows [47], although the optmaiion approach must account for
multiple product interactions.

We substitutéW (i, j) + a;;(I — M) = S(i, j), whereS(i, j) again is dimensio®® x P.

Then, Equation 4.10 can be simplified as follows:
E[Xi(k -+ DIX(k), 1] = Xi(k) = S(i, ) Xalk) + Wi, /)X (k) (4.11)

Next, we write the expected value of agéstdesire vector at iteratiofk + 1) over all the
possible interactions it initiates or is subject to by othgents’ actions, conditioned on the state of

the system at. Recall that the interaction betweeand; occurs with probability}v (pij + pji)-

E[X,(k + 1)[X (k)] = X(k) — > %(pij +p31) 86, ) X (k)

J

+Z (b3 + p3s) Wi, ) X; (k) (4.12)

Now, we want to express the expected desire of all agentsratiiin(k + 1) conditioned
on all agents’ previous desire. This step relies on both dlaes lof interacting expectations and

linearity of expectations. Assembling a vector of all ezgrfor eachi results in:

E[X(k+ 1)|X(k)] = X (k) + QX (k) (4.13)
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whereQ is a block matrix and each component@fc RY*¥, considering Equation 4.12, is:

;

% (pij + ;i) W (i, 5) i€ Ap,j € Aandi # j

— LS (pij +;i)S(i, ) i€ Ap,j€ Aandi = j
Q=4 T (4.14)
+(pij + i) W (i, 5)

0 1€ Ap,j e A

\

Finally, by calculating the expected value of Equation 4ah8 using the linearity of ex-

pectations, we have:
E[EX(k+ DX (k)] = EX(k +1)] = EX(k)] + Q E[X(k) (4.15)

We definel x (k) € RVP*! as the expected value vectorXfk). Therefore, the above
equation is simplified as:

Ux(k+1) = Tx(k) +Q HIx(k) (4.16)

Since we are seeking the expected valuX¢f) at steady state, the above equation when oo

reduces to:

Hx(00) = T x(00) + Q T x(00) = Q HWx (00 (4.17)

In order to solve this system of equations efficiently, weategose the matrices:

r

A B
Q= and 7/ x (co0) = (4.18)
0 0 p
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HereA ¢ RFP*EP s the sub-matrix representing the expected interactiomsgRegular
agents whileB € REP*P* represents the the expected interactions betviRegularagents and

Productagents. Figure 4.3 shows the breakdown of mafix

Number of Regular Agents Number of Products

> &
>€

.

v

N

sjuady Jejn8ay jo Jaquinn

Q=] o o w o

Qr+1)1 Qr+n2  **  Qmwinr Qr+n(r+1) " Qmeinn

QN1 Qn2 o Qnr Qn(r+1) e Qun
v

Figure 4.3: Q matrix is a block matrix with siz€ x N where N is the total number of agents
(R + P) and each block has the size Bfx P. MatricesA and B are the non-zero part of this
matrix which represent the interactions amd®egularagents and interactions betweleagular
agents andProducts respectively.

$19Npo.d 40 Jaquiny

Moreover, /g and 1/ p are vectors representing the expected long-term desRegfilar
agents andProductagents, respectively, at iteratidn — oo. Note that vectorﬁ p IS known
since theProductagents, the advertisers, are the immutable agents, who cieaege their desire.

Solving for 7/ yields the vector of expected long-term desire for all ragalgents, for a given
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set of influence-probabilities on a deterministic socidinoek.

AR +BUp=0=r=A"(-Bip) (4.19)

Now based on this analytical view of the system, we define amagation method in
following section to maximize the product sales througklirgent selection of th€roductagent

linkages.

4.4.2 Node Selection Method

Using the analysis from the previous section, we can idetiié influential nodes in the
network and connect the products to those agents in a wayndndmizes the long-term desire of
the agents in the social system. Here, we define the objdativtion as the maximization of the
weighted average of the expected long-term desire of alRggularagents in the network toward

all the products as:

MaLy, Z Z(pi.ﬁR,i) (4.20)

1<k<Pi€Agr
7R,i is the part ofﬁR that belongs to agemnt andp; parameter is simply a weight we can assign
to agents based on their importance in the network. In the chgquivaleni; = 1 for all the
agents, the above function reduces to the arithmetic mete@&xpected long-term desire vectors
for all agents.

The goal of our proposed method is to assign a fixed numberaafuctagents with limited
number of connections to a networkiRégularagents in a way to optimize the objective function
presented above. In Equation 4.19, matkixand vector//p are known since the static network
among théRegularagents and the fixed desire vector of the products are botkirknde define the
matrix B based on parameters of;s. We substitute the probability of interactign;, occurring

between agentsand; in matrix Q, by Equation 4.2 of the model.
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The partitioning of matrixQ in Equation 4.18 and the size of matricAsand B (Fig-
ure 4.3), indicates that the elements of maBiare all off the diagonal. Therefore substituting the
values ofp;; andp;; of Equation 4.2 into Equation 4.18,; = + u;;W (i, j) = u ® M. Here,u
contains all the variables and influence parameterszamdlicates the Kronecker product [70].

Therefore, by rewriting Equation 4.19 as:
Hr = A7 ® M]Vec(fip) (4.21)
and using the following identity
[u@M] Vec(pp) = Vec(M fip u),

Equation 4.19 becomegr = A~Wec(M jip u), which is solved using convex optimization
methods. Therefore the optimal assignmentPodduct agents toRegular agents is obtained

through the following optimization problem:

maximize ||A~'Vec(M jip 1)l

subjectto z;, € [-11], Vi € Ag, (4.22)
Z u;; = cte.
JEAR

To solve this optimization problem we used the CVX toolboMaitlab which is useful for convex

programming and minimized the dual of our objective funttio

4.4.3 Experimental Setup

We conducted a set of simulation experiments to evaluateftbetiveness of our proposed

node selection method on marketing the items in a simulaieidlssystem with a static network.
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The parameters of the model for all the runs are summarizddlte 4.4(a). All the results are
computed over an average of 30 runs with Fiularagents and 18roductagents.

In this work, we model four long-lasting groups:{; . . . , G4), with different feature vector
distributions in our social simulation. Moreover, a growgue judgment(s;), assigned to each
group, is drawn from Gaussian distribution. We assumedttieaggroup model has been learned
by agents based on their previous experiences, each ageis ban fixed value judgment toward
each group of agents and that value has been selected baterlassigned Gaussian distribution
of the model. Consequently, this group value judgment tffdoe connection of agents during
the network generation phase, as we described before. Fdl{l®) shows the mean and standard
deviations of the Gaussian distributions assigned to eemlpg Note that the membership in each
group is permanent for all agents and cannot be changedgdinercourse of one simulation.

In the Regularand Productagent interaction, parametexsande are fixed for any inter-
action and are presented in Table 4.4(a). We assume that plaeameters can be calculated by
advertising companies based on user modeling. ghealues for this type of interaction are

calculated using Equation 4.2 and are parametric.

Table 4.2: Parameter settings

(a) Experimental parameters (b) Group model
Parameter Value Descriptions Group Mean Value StDev

R 100 Number oRegularagents Gl 0.9 0.05

P 10 Number ofProductagents G2 0.6 0.15
Threshold 2 Number of links between P and R agents G3 0.4 0.15

€ 0.4 Influence factor between P and R agents G4 0.3 0.1

«a 0.6 Probability of influence between P and R agents
Nrterations 10000 Number of iterations

NRun 30 Number of runs

Finally, the remaining part of the social system setup igmat, which models the corre-
lation between the demand for different products. This im&rgenerated uniformly with random

numbers betweeft) 1] and, as it has a probabilistic interpretation, the sum ofvéilges in each
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row, showing the total demand for one item, is equal to one.

4.4.4 Results
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Figure 4.4: The average of agents’ expected desire vs.dataiins. The average is across all the
products and over 30 different runs. Our proposed methodhealsighest average in comparison
to other methods which shows its capability as a method fgetad advertisement in a social

system.

We compare our optimization-based algorithm with a set ofredity-based measures com-
monly used in social network analysis for identifying infiti@l nodes based on network struc-

ture [53]. The comparison methods are:

Degree Assuming that high-degree nodes are influential nodes iméteork is a standard ap-
proach for social network analysis. Here, we calculategtibability of joining aRegular
agent based on the out-degree of the agents and attach&dotthgctagents according to
preferential attachment. Therefore, nodes with highereke@ad an increased chance of

being selected as an advertising target.
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ClosenessThis is another commonly used influence measure in sociplzged on the assump-
tion that a node with short paths to other nodes has a higlaercetto influence them. Here,
we averaged the shortest paths of a node to all the other nottes network and sorted the
nodes according to this measure. Nodes with shorter avgratpehad a higher chance of

being selected as a target.

BetweennessThis centrality metric measures the number of times a nodea on the geodesics
connecting all the other nodes in the network. Nodes witthighest value of betweenness

had the greatest probability of being selected.
Random Finally, we consider selecting the nodes uniformly at rands a baseline.

To evaluate these methods, we started the simulation witiniaal desire vector set to
0.02 for all agents, and simulated 10000 iterations of agestactions. The entire process of
interaction and influence is governed based on the previmusulas given in Section 4.3.2 and
extracted parameters from the network. At each iterati@calculated the average of the expected
desire value of agents toward all products. Figure 4.4 shbigsresult for 100 agents and 10
advertisements. As explained before, the desire vectBraductagents are fixed for all products;
in our simulation is was set to 1 for the product itself an@ 05 for all other products (e.gus =
[—0.051 —0.05... —0.05]). The results for this condition show that the proposed ntetheates
a higher total product desire in the social system and is rmoceessful than other methods at

selecting influential nodes.
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Figure 4.5: The average of agents’ expected desire vstidaga In this simulation, the negative
effect of advertising products against other products le@ lincreased. This result demonstrates
that our proposed method is more robust to the commonly dogucondition where increasing
the desire toward one item has a higher negative effect amebiee of agent toward other products.

55



To test the robustness of our algorithm we modified the desiceor ofProductagents and
increased the negative effect of advertisements over gitoglucts by factor of three (e.gi; =
[—0.151 —0.15... — 0.15]). The result of this simulation is shown in Figure 4.5. We cae s
that in this case the average desire of agents has droppeddtitally for all methods except the
proposed algorithm. Even in the cases of having high negefiect toward other products, this
algorithm can adapt the node selection in a way to keep theedaflsagents high and sell more
products.

To estimate the performance of algorithms in selling thedpots toRegularagents, we
assumed that agents with expected desire higher than dadhdesill purchase the product. Fig-
ure 4.6 shows the average of total purchased items by agéhtthe purchasing threshold a91.
Again, we see that our proposed algorithm is the most sutdessthod in advertising and selling

products.
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Figure 4.6: The number of sold items vs. different adveartjsnethods. The assumption is that an
agent with expected desire greater than 0.01 will purchiasetoduct. Different colors in each
bar indicates the number of sold items of each advertiseduats. As there exist ten different
products, the bar is divided into ten parts.
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4.5 Hierarchical Influence Maximization

Maximizing product adoption within a customer social netswander a constrained adver-
tising budget is an important special case of the generaleénfie maximization problem. Spe-
cialized optimization techniques that account for productelations and community effects can
outperform network-based techniques that do not modebotens that arise from marketing mul-
tiple products to the same consumer base. However, it canféasible to use exact optimization
methods that utilize expensive matrix operations on langgéworks without parallel computation
techniques. In this section, we present a hierarchicalenfte maximization approach for product
marketing that constructs an abstraction hierarchy fdiregéhe optimization technique present-
ing in Section 4.4 to larger networks. An exact solution immpated on smaller partitions of the
network, and a candidate set of influential nodes is progagapward to an abstract represen-
tation of the original network that maintains distance infation. This process of abstraction,
solution, and propagation is repeated until the resultiogfract network is small enough to be
solved exactly.

Our proposed hierarchical approach operates as follows:

1. Create a local network for each node consisting of itshieags and neighbors of neighbors;

2. Model the effect of the outside network by assigning auairhode for each boundary node

to abstract activity outside the local partition;

3. Update the interaction parameters to the virtual nodedas the model and the network

connections;

4. Create a candidate set of influential nodes for each l@talark using convex optimization

to maximize steady state product adoption;

5. Propagate the candidate set upward to a higher-level sifaaition and link the abstract

nodes based on their shortest paths in the previous network;

57



6. Repeat the abstraction process until the resulting m&tisssmall enough to be optimized

as a single partition; the resulting set of candidate noslésein targeted for advertisement.

Figure 4.7 demonstrates the process of the algorithm witethierarchies. The selected nodes at
each local neighborhood, colored in red, are moved to thermpprarchy and reconnected based
on shortest path distances from the lower-level. The saw®eps is repeated at the next hierarchy
to select more influential nodes. The procedure termindtdsedast hierarchy when the number
of influential nodes finally is smaller than the advertisingiget.

Using these assumptions about customer product adoptioantgs, we devised a new
scalable optimization technique, Hierarchical Influencaxivhization (HIM). The pseudocode of
our proposed HIM algorithm is presented in Table 4.3. HeralrimE represents the connection
matrix amongRegularagents, and matricd2 and A contain all thep;;’s andc;;'s of the market
model, respectively. In other words, all the interactiond afluence probabilities between two
pairs ofRegularagents, A ), are embedded in the elements of these matrisgentcontains all
the information abouRegularand Productagent characteristics including desire vectog,’s(),
and influence tag vector?,?’s with size P, wherel;, indicates the number of times that agéehas
been selected as an influential node for progudthe algorithm receives as input all the available
data on the agents and the model, and the output of the dgoistthe/ matrix that contains the
assignments af;;'s and shows the final connection matrix between all the petsdand influential

seed nodes.
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Figure 4.7: At each hierarchical levell;) local neighborhoods are created and influential nodes
(red) are selected using an optimization technique. Ndudiave been selected at least once as
an influential node are transferred to the next level of tleeanchy. At the higher levels, the con-
nection between selected nodes is defined using the shpatiastlistance in the original network.
The process is repeated until the final set of influential saglsmaller than the total advertising

budget.

The level of the hierarchy is indicated by parametewhich increments until the stopping
criteria are satisfied. At each hierarchy), we iterate over all the nodess] in the network of that
hierarchy, 1), and list the neighboring agents around each node. Thegaflthe neighborhood,
denoted with parameter indicates the granularity of analysis. Based on radjwge partition the

network into subsectionsEf?), and update the probability matricd,and A for that subsection.
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HIM selects the influential agents in that local netwai#!, using an optimization technique and
tags them for future use. The process of node selection iitled in detail in 4.5.2. Then
we add these influential nodes to the set of influential nodas lave been identified in other

neighborhoods in the same hierarchy.

Table 4.3: HIM Algorithm

HIM (Agent, E, P, A, Ag, Hinue, 7)
H=0
Ef = E
N = | Ap|
While stopCriteriado
H=H+1
infList = NULL
fori=1toN do
neighborList = FindNeighborList (r, E)
EX = Subgraph (neighborLisE#)
E = AddOutsideWorldEZ , Ef)
(P;, A;) = UpdateMat EH, P, A, neighborList)
L = Optimize Agent E, P;, A))
infList = infList (J L
Agent = UpdateAgent (infList)
end for
N = |infList|
U = MakeU (Agent)
stopCriteria = UpdateCriteria (infList])
E = UpdateHierarchy (infList)
end while
returnU

45.1 Outside World Effect

When a local neighborhood is detached from the complete orkfwhere exist some
boundary nodes which are connected to nodes outside thkebwelgpod. These connections that

fall outside of the neighborhood can potentially affectdlesire vector of agents within the neigh-
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borhood. One possible approach is to ignore these effedteally consider the nodes inside the
partition. In this work, we account for these effects by editing a virtual node to each bound-
ary node. This virtual node is the representative of all soolgtside the neighborhood that are
connected to the boundary node. Figure 4.8 illustrateshikraction of outside world effect and

shows how the model's parameters are calculated betwebarbeaadary and virtual node.
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Figure 4.8: The network on the left is an example of a neighdod around node the network on
the right is the equivalent network with virtual nodes reggreting the outside world effect. Here
w can be any interaction parameter such as link’s weightr e. The direction of the interaction
with the virtual node is based on the type of links the boupdeade has with the nodes outside
the neighborhood. The value of the parameter is the avensgyeatl similar types of interactions
with outside world.

45.2 Node Selection

The process of selecting influential nodes is repeated &t ls@carchy and at each local
neighborhood surrounding node Following previous works [47, 48, 69], we model the desire
dynamic of all agents as a Markov chain where the state ofated heighborhood is a matrix of
all existing agents’ desire vectors at a particular iterati and the state transitions are calculated
probabilistically from the pair-wise interaction betwesgents connected in a network. The state

of the local network around agenat thek' iteration is a vector of random variables, denoted as
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X;(k) € RV#:P*1 (created through a concatenationdf vectors of size”) and expressed as:

X (k)]

Using the method described in Section 4.4 for calculatiregekpectation of all agents’
desire vector according to the possibility of an interattiove calculate the expected long-term
desire of the agents in each local network around aggemd this calculation results in the following

formulation:

EXi(k+1)] = E[X;(k)] + Qi E[X;(k)] (4.23)

whereQ); is a block matrix representing the interactions amBegularagents in the neighborhood

and interactions between tRegularagents and all thBroducts

4.5.3 Convergence

In the previous section, we showed how Equation 4.23 canlbedat the steady state and
in a global fashion, without giving any guarantee that tla¢esbf the system actually reaches the
steady state. Here, by using Brouwer fixed-point theorerh {88 prove that each local neighbor-
hood has a fixed-point and solving Equation 4.23 at steady ista valid choice.

The Brouwer fixed-point theorem states that:

Theorem 1 Every continuous function from a closed ball of a Euclidepace to itself has a fixed

point.

According to the calculation of Equation 4.28[X;(k + 1)] is a continuous function as it is the

sum of two continuous ones. Also sin?e(k +1) in Equation 4.6 is a bounded function|ial 1],
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its expectation £[X;(k + 1)]) will be bounded as well. As a result we have a bounded, coatis
function which is guaranteed a fixed point by the Brouwer fipetht theorem. Consequently,
we can follow all the calculations of [69] and solve our pexalwith the proposed optimization
algorithm to find the assignment ofis in a way to maximize the long-term expected desire vector

of agents toward all the products in the market.

4.5.4 Update Hierarchy

When we proceed from one hierarchy to the next one, the selextdes which are prop-
agated to the upper hierarchy are not necessarily adjatkatefore, we need to define the inter-
action model between them based on their position in theneaork. TheUpdate Hierarchy
function is responsible for building the proper network ection and interaction model for the
next hierarchy based on the selected influential nodes megulierarchy. These nodes were prop-
agated to the higher hierarchy by being selected as infelembdes in at least one local neigh-
borhood. It is possible for a node to be present in multipkeifieans and be selected more than
once.

Note that the selected nodes are unlikely to be adjacentsniodéhe actual networlg.
Therefore we need to find a way to form their connections testrant £;. To do so, we look
at the shortest path between these nodes in netwaakd use that to calculate the weight of the
edges inE*. In the B network the weight of the link between two selected nodelségroduct
of the weights of the shortest path between these two nodigiprevious hierarchy. Also the
probabilities of interaction and influence between two iefitial nodes is set to be the product of

the probabilities along the shortest path between them.

455 Termination Criteria

To terminate the loop, we establish two different critenidhie UpdateCriteria function.

This function checks the stopping criteria based on thd tEhtae hierarchy and the list of influen-
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tial nodes. One criterion is based on the maximum numbewefden the hierarchy and the other
is based on the ratio of the selected influential nodes anddwertising budget. According to the
stopC'riteria output, the algorithm decides whether to proceed to a hilgieearchy or to stop the

search, returning the currebt matrix to be used as the advertising assignment.

4.5.6 Experimental Setup

We conducted a set of simulation experiments to evaluateftaetiveness of our proposed
node selection method on marketing items in a simulatecksgstem with a static network. The
parameters of the interaction model for all the runs are sarz@d in Table 4.4(a). All the results
are computed over an average of 100 runs which represenifferedt simulations on each of ten
network structures.

In the Regularand Productagent interactions, parametersande are fixed for a given
interaction and are presented in Table 4.4(a). We assunétse parameters can be calculated
by advertising companies based on user modeling. pJhealues for this type of interaction are
calculated using Equation 4.2 and are parametric. Tablg}ptovides the parameters for our
HIM algorithm (neighborhood radius and the maximum hidngrievel). The remaining part of
the social system setup is given by mafiik which models the correlation between the demand
for different products. This matrix is generated uniformiigh random numbers betweéhl] and,
as it has a probabilistic interpretation, the sum of theesin each row, showing the total demand

for an item, is equal to one.

45.7 Results

We compare our hierarchical algorithm with the originaliopzation method (named
OIM) described in [69] and a set of centrality-based measaoenmonly used in social network
analysis for identifying influential nodes based on netwairlacture [53]. The comparison meth-

ods are:
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Table 4.4: Parameter settings

(a) Market Model Parameters (b) HIM Parameters
Parameter Value Descriptions Parameter Value Description
Threshold 2 Number of links between P and R agents r 3 Neighborhood radius
€ 0.4 Influence factor between P and R agents Hmax 5 Max level of hierarchy
«a 0.8 Probability of influence between P and R agents
R Variable  Number oRegularagents
P 10 Number ofProductagents
Nrterations 60,000 Number of iterations
NRun 10 Number of runs
Nnet 10 Number of different networks

e OIM: The Optimized Influence Maximization method, described esti®n 4.4, finds the

influential nodes globally by using a convex optimizatiortinogl over the entire network.

e Degree:Assuming that high-degree nodes are influential nodes indtweork, we calculated
the probability of advertising to Regularagent based on the out-degree of the agents and
linked theProductagents according to a preferential attachment model. Tdrerenodes

with higher degree had an increased chance of being selestaa advertising target.

e Betweenness:This centrality metric measures the number of times a nogeas on the
geodesics connecting all the other nodes in the network.ebledth the highest value of

betweenness had the greatest chance of being selectedrdiuiantial node.

e PageRank: On the assumption that the nodes with the greatest PageRank lsave a
higher chance of influencing the other nodes, we based thmpildy of node selection on

its PageRank value.
e Random: In this baseline, we simply select the nodes uniformly atican.

To evaluate these methods, we started the simulation wilhitéad desire vector set t0 for

all agents, and simulated 60000 iterations of agent intiewas: The entire process of interaction
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and influence is governed by Equations 4.6 and 4.7 (Secti&a)4.At each iteration, we calcu-
lated the average of the expected desire value of the agemésd all products. This average is
calculated over 100 runs (10 simulations on 10 differentvodt structures). Note that the desire
vector of Productagents remain fixed for all products; in our simulation it veas$ to 1 for the
product itself and-0.1 for all other products (e.gu; = [1 —0.1 —0.1... —0.1]). We used the

same network generation technique described earlier fogrgéing customer networks.

45.7.1 Performance

To compare the performance of these methods, the averagetegpdesire value of the
agents in a network with 150 agents has been shown over tirRgiune 4.9. Here we selected
150 agents as an optimal number of agents to compare allgbetaims together. With a lower
number of agents the assignment of 10 products can notrdbesthe potential differences among
the methods while with a higher number of agents OIM suffepsnfscalability issues and the
convex optimization method was not feasible due to nearutamgnteraction matrix. In Figure
4.9, by using the marketing-specific optimization methamtsaflocating the advertising budget,
the desire value of the agents toward all products increasesost, resulting in the largest number
of sales. Although HIM sacrificed some performance in fa@oalability, it clearly outperforms
the centrality measurement methods. The locally-optirekdction approach of HIM results in a
slightly lower performance compared to globally optimaMDI

Figure 4.10 shows the final average value of the expectededesagents in the last it-
eration for different number dRegularagents. Although OIM with global optimization method
outperforms HIM and other centrality measurement methivd@sjncapable of scaling up to 300
and more agents in the network due to near singular interaatiatrix. HIM with the ability to
scale up linearly to higher number of nodes provides a suiorapand yet practical solution in

selecting the influential nodes in large networks.
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Figure 4.9: The average of agents’ expected desire vs. nuoflterations, calculated across all
products and over 100 runs (10 different runs on 10 diffenetworks). The optimization methods
have the highest average in comparison to the centralitysamement heuristics. As the HIM
algorithm is a sub-optimal method, its performance is lkas the global optimization method.
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Figure 4.10: The average of the final expected desire vefoifferent numbers oRRegular
agents and 1@roduct agents. The optimization based methods (OIM and HIM) otibpers the
other methods in selecting the seed nodes. While OIM is mareessful than HIM in selecting
the influential nodes, it is unable to scale-up to networkbd 8900 agents and higher.
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Table 4.5: Runtime comparison between OIM and HIM

Number of agents OIM HIM

50 10.67s 74.09s

100 94.76s 160.80s
150 290.67s 208.97s
200 897.51s 354.35s

45.7.2 Runtime

Table 4.5 shows a runtime comparison between the two oimiz methods, HIM (hi-
erarchical) and OIM (original). In small networks the rumé& of the global optimization method
is less than the hierarchical but as the size of network grdas/isun time increases exponentially
while the run time of the HIM increases at a slower rate. Ting luntime of OIM for the networks
larger than 200 nodes, makes the algorithm impractical haliriig influential nodes in very large

networks.

4.5.7.3 Jaccard Similarity

To analyze the differences between the algorithms’ se@eaif influential nodes, we use
the Jaccard similarity measurement. This measurementdslated by dividing the intersection
of two selected sets by the union of these sets. Figure 4ddsstinis measurement for all pairs of
algorithms. The OIM and HIM algorithms have the highest fanity compared to the other meth-
ods with a similarity value 06.47. The other pairs of methods have very low similarities, itasy
in dark squares in the figure. Not surprisingly, Random hasdast similar node selection to other
methods. This shows that HIM finds many of the same nodes awitfieal OIM algorithm, with

a much lower runtime cost.

68



Random

Degree
Betweenness

HIM

om

PageRank

Figure 4.11: The average Jaccard similarity measuremeiigeln different methods, calculated
over 100 runs (10 runs on 10 different networks). Lighterssga denote greater similarity between
a pair of algorithms. Note that HIM’s selection of nodes islyeclose to OIM’s optimal selection.

4.5.8 Summary

In this section, we present a general hierarchical apprt@dpplying optimization tech-
niques to influence maximization and demonstrate its usprfmtuct marketing. The advantage
our method has over network-only seed selection techniguigst it can account for item cor-
relations and community effects on the product adoptioe. r&ur method comes close to the
optimal node selection, at substantially lower runtima£o®ne possible extension of this work is
to generalize the market simulation to explicitly model #uversarial effects between competing
advertisers as a Stackelberg competition. Also in this weekassumed that the probability of
interaction and influence between two agents is small, cosapa the size of the network, which
results in the agents sticking to a decision for a reasonadried of time. However if the network
is smaller or the probability of interaction increasesy¢hean be large fluctuations in the agents’
desire vector. Applying a parameter to the model which fetbe agents to retain their decisions

for a minimum period, regardless of external interactionsld ameliorate this issue. [62].
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CHAPTER 5: EVALUATION OF HIM ON SOCIAL MEDIA DATASETS

5.1 Increasing the Number of Benchmarks

In the previous chapter we only evaluated our algorithmragjazentrality measurement
methods such as betweenness and degree. Although our pdopliorithms were successful
against these centrality measurements, we need to contpaitd bther influence maximization
approaches that have been successful with the LTM and IClgggiation models. For our evalua-
tion, we selected two state of the art influence maximizati@thods, Prefix excluding Maximum

Influence Arborescence (PMIA) and DegreeDiscount, whicldegcribe in the next two sections.

5.1.1 PMIA Algorithm

This scalable heuristic algorithm has been presented byg\Wwhal [100] and with its sub-
modular approach, it looks at the network locally with calesing the local neighborhood around
each node based on the influence radius parameter. The rdluaius parameter is an adjustable
parameter to control the balance between the running tirdglaninfluence spread of the algo-
rithm. PMIA algorithm finds the influence pattern in a locab@arescence and then ultimately,
estimates the influence propagation in the network. To oomkedge, this algorithm is the best

scalable solution to the influence maximization problendmlI

5.1.2 DegreeDiscount Algorithm

Degree is frequently used for selecting seeds in influencamization. Experimental
results have shown that selecting vertices with maximumessgas seeds results in larger influence
spread than other heuristics, but is still not as large amtheence spread produced by the greedy
algorithms.

The DegreeDiscountIC heuristic algorithm, presented bgrCét al. [20], matches the
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performance of the greedy algorithms for the IC model, walé® improving upon the pure degree
heuristic in other cascade models. It basically refines dyeae method by discounting the degree

of the nodes whenever their neighbor has already been eélastan influential node.

5.2 Using Real-world Datasets

One of the goals of this work was to run the proposed algosthetworks extracted from
social media datasets. Therefore, in addition to the syictdataset, we also examined the per-
formance and scalability of the HIM algorithm on real-wonletworks from the Stanford Network
Analysis Project (SNAP) library. The advantage of having+«orld datasets is the huge size of
their networks in addition to the realistic structure of tietwork which has emerged from user
interactions. Based on our model, among all datasets alaitan SNAP website, the ones with
directed links are the best for evaluating our method. Wéueted our method on the following

datasets:

e WikiVote is a network that contains all the Wikipedia voting data frdme inception of
Wikipedia till January 2008. Nodes in the network repres#ikipedia users and a directed

edge from nodé to nodej represents that uséxoted on usey.

e Epinions is a who-trust-whom online social network from a generalstoner review site
Epinions.com. In this network nodes are members of the sleaadirected edge frofito j

meansg; trusts: (and thus has influence tg).

e SlashDotsis a technology-related news website known for its spec#fer community. The
website features user-submitted and editor-evaluatdthtdogy oriented news. In 2002
Slashdot introduced the Slashdot Zoo feature which allasesaito tag each other as friends
or foes. The network cotains friend/foe links between thersi®f Slashdot. The network

was obtained in February 2009.
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Table 5.1: Statistics of the Real-world Networks

(a) Before Pre-processing (b) After Pre-processing
Dataset WikiVote SlashDot Epinion WikiVote SlashDot Epinion
#Nodes 7K 82K 76K 2k 72K 20K
#Edges 100K 950K 509K 38K 840K 3700
Average Degree 14.6 134 6.7 31.1 10.5 28.9
Maximal Degree 1167 3079 3079 714 5059 256
Diameter 7 11 14 7 13 2

In all the experiments, we applied a pre-processing praeettuthe networks to extract
a connected network. As a result, all the isolated nodes hi@ndary nodes (nodes with the
degree of one) have been removed from the network. Tablda)Zahd 5.1(b) summarize the

statistics of these real world networks before and afteptkeprocessing stages, respectively.

5.3 Solving the Optimization Problem

In solving our optimization problem presented in equatio?24 we experimented with
different toolboxes and approaches. All the experimenfais@resented in the previous sections
and on the synthetic dataset, have used the CVX toolbox femgpthe optimization problem
in the OIM algorithm. CVX is a Matlab-based modeling systean donvex optimization freely
available for download (http://cvxr.com/cvx/).

To deal with large datasets, we adopted a new software padka§K, to solve our op-
timization problem. The GLPK (GNU Linear Programming KiBgkage is intended for solving
large-scale linear programming (LP), mixed integer prograng (MIP), which is exactly what is
required for this problem. GLPK is a set of routines writtarANSI C and organized in the form
of a callable library which is also free to download on weltdi#twww.gnu.org/software/glpk/) .

The main advantages of using GLPK can be summarized as:

e It runs faster and can handle large matrices allowing usdease the size of local neigh-
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borhood and consider larger thresholds for the degree @&sod

¢ Instead of solving the problem as convex optimization ana/eding the continuous out-
put produced by the slow CVX toolbox to binary, the problensadved as integer linear

programming with simplex method. This eliminates the gmsicessing requirement.

5.4 Experiments

This section presents results from running our algorithtus fhe benchmarks mentioned
in Section 5.1 on the real-world datasets described in @eé&ti2. It was only possible to run the
OIM algorithm on the smaller WikiVote dataset with 2K nodegedo the large run time require-
ments on the other datasets. Also recall that in previousosescwe were not able to run OIM on
the synthetic networks with more than 200 nodes but heretaaer usage of the GLPK package
for optimization, it was possible to run OIM on a 2K node netikvo

The parameters used in this section, especially the HIMmpeters, are the same as the
parameters presented in section 4.5.6. The only differemtiee number of products and the
advertising budget which are equal to 10 and 50, respeygti®édo, running the algorithms on 10
different synthetic networks generated with the same parars was superfluous as we worked
with a deterministic real-world data.

Although using a hierarchical approach in this work redubesproblem of dealing with
huge interaction matrices, as we cut the network locallyaratalculation is performed on a small
section of the network, but still in some cases with high degrodes, HIM is unable to process
the inverse matrix in the optimization module. Especiatiyeal world datasets this issue can be
problematic since real social networks often possess aeadfinigh degree hub nodes and even
a local cut of these nodes and its neighbors is almost el the whole network. In addition
to creating huge interaction matrices, these nodes wilterstar-shape subgraphs which results in

an infeasible answer for the optimization part.
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There are a couple of solutions for dealing with these vegh ldegree nodes: 1) ignore
high degree nodes when we scan through the network and makasgumption that the high
connectivity of this node guarantees the future processiigis node while we are looking at the
neighbors of other nodes; or 2) ignore some neighbors ohtide and reduce the number of nodes
in the local network to a reasonable number. This selectiomeighbors can be based on different
strategies. Here, we chose the first approach in dealingkafe nodes. Therefore, in all networks
we ignored the nodes with degrees higher théh Examining the average degree of all datasets
presented in Table 5.1(b) shows that this choice prevems matrices and star-shaped subgraphs
while yielding a high percentage of nodes to process. Byguiis heuristic, the following results
have been generated for WikiVote and Epinion datasets.

Figure 5.1 gives the average expected desire value forealiglents over time f@00K it-
erations of the simulated market. In this result, the OIMbalm has the highest value while HIM
algorithm follows it closely. The performance trend of thiBvHalgorithm is that it approaches to
the global optimization method. The DegreeDiscount h&ariBMIA, and PageRank algorithms

are very close to each other with no significant difference.
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Figure 5.1: The average of agents’ expected desire vs. nuaibterations in the WikiVote
dataset, calculated across all products and over 10 diffeoas, over 300K iterations. The pre-
processed dataset consists of 2K nodes, and the simulaéi®num over 300K iterations. The op-
timization methods have the highest average in comparesthretrest of benchmarks. As the HIM
algorithm is a sub-optimal method, its performance is lbss the global optimization method.
During the pre-processing step the isolated and boundatgsloave been removed.

While our algorithms outperform the other benchmarks onWhii\ote dataset, on the
Epinion dataset the Degree based algorithms perform bétigure 5.2 shows the results for all
the benchmarks and the HIM algorithm. Although the HIM parfance is better than PMIA and
PageRank, it does not beat the degree based algorithms.

Also Figure 5.3 summarizes the final expected desire valuagents for different algo-
rithms and for different datasets. It should be noted thatdlw value of desire vector is a con-
sequence of having huge networks in which the decision ofitage multiplied bye and «, the

parameters that are extracted from the network and areddatthe degree of nodes.
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Figure 5.2: The average desire value of the agents in thedfpilataset over 300K iterations. The
pre-processed dataset consists of 20K nodes. During peegsing the isolated and boundary
nodes have been removed.

Based on our results on the Epininon dataset (and after\dbgehe same trend for the
SlashDot network) we performed further analysis to idgrttie characteristics of Epinion dataset
that make its results different from the WikiVote and symithelatasets in order to explain the
high performance of the degree based algorithms. Tablef®®sthe quantile analysis of the
pre-processed datasets reporting the maximum degree 5¥h€50%, ...) lowest degree nodes
of the network. Based on this analysis we will see that wihigeWikiVote network is a very small
network compared to other two datasets, the max degreelmhgsare higher than the others. Also
the maximum degree of the whole network, compared to the euofimodes is much higher than
the Epinion and SlashDot networks. Hence we conclude tligngtwork is a more connected

network with a more uniform degree distribution.
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Figure 5.3: The final expected desire value of the agentseaetidl of the simulation for the
different methods and datasets. The OIM algorithm couldbeotun on the Epinion dataset as a
results of its huge network.

Table 5.2: Quantile Analysis on Pre-processed Datasets

Dataset 0% 25% 50% T75% 100%

WikiVote 3 25 44 7925 714
Epinion 0 6 11 33 2684
SlashDot 3 4 7 17 5061

Figures 5.4, 5.5, and 5.6 show the degree histogram of oasef®t In the Epinion and
SlashDot datasets we have a small number of nodes with vgiydeigrees while most of the nodes
have a degree below 10 in the network. Therefore in theses gasbave a sparse network in which
few nodes serve as hubs and the rest of the nodes have fewctionsehat aren’t necessarily even
connected to the high degree nodes. By applying the hegisfiignoring high degree nodes,
we not only missed counting these important nodes in thear&thut also have no other way to
consider them and the ultimately what is selected in the Hidwrthm is the list of unimportant

connections with low degrees and no potential to propadténfluence in the network. On the
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other hand the degree-based algorithms target these hgghedaodes and the algorithms work
the best as there are no other important nodes in the netivarkave the potential of distributing
the advertisements. In contrast, in the networks such ag/Mditéor the synthetic networks where
the degree of nodes is more uniform HIM works well as the naddke middle bins are more
numerous and better connected to the entire network. Alsartbreases the chance of not having

star shaped subgraphs which jeopardize the optimizatmcess.
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Figure 5.4: The degree histogram of the WikiVote dataseg X-axis shows the logarithmic scale
of degree and the curve shows the kernel density estimdtiahis dataset the majority of nodes
lie in the middle range and have a degree between 50 to 100.
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Figure 5.5: The degree histogram of the Epinion dataset.x¥dpas shows the logarithmic scale
of degree and the curve shows the kernel density estimdtidhis dataset the network is so sparse
with the majority of nodes possessing a degree less than 10.

Based on the results we have found, we used a degree-basestibéo select the nodes
considered by our optimization approach. Here, we selabiedop1% of high degree nodes in
the Epinion dataset and created a subgraph based on thestlpath among these nodes, the same
as the procedure we perform in the upper hierarchies in HiMthan we ran the OIM algorithm
over the whole processed network. Figure 5.7 shows thetres@IM and other benchmarks on
this preprocessed network. The result shows that in this ttesOIM outperforms the rest of the

benchmarks as it has the best selection among those filtecesn
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Figure 5.6: The degree histogram of the SlashDot datasetx¥xis shows the logarithmic scale
of degree and the curve shows the kernel density estimaltiothis dataset, the same as Epinion
dataset, the network is so sparse with the majority of nodesgssing a degree less than 10.

The conclusion is that HIM algorithm can be used to improvaadulity factor on the
networks with semi-uniform degree distribution. In casethwparse networks our suggestion is
to filter the nodes first and then based on the size of the ppedesetwork, apply OIM or HIM to

select the influential nodes based on the advertising budget
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Figure 5.7: The average of agents’ expected desire vs. nuphiierations in the Epinion dataset,

calculated across all products and over 10 different ruves, 800K iterations. The pre-processing
consists of selecting thE% top degree nodes and forming a subgraph based on the shiatlest

between these nodes. The optimization methods have th@é&dstmance in comparison to the
other benchmarks.
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CHAPTER 6: CONCLUSION

In this dissertation, we address the problem of influenceimization in social networks
for the purpose of advertising. In an advertising domaim,gmal is to find the influential nodes in
a social network as targets of advertisement based on therestructure, the interactions among
the agents in the network, and the limited advertising budgée adopted agent-based modeling
to model such a social system as it is a a powerful tool for tindysof phenomena that are difficult
to study within the confines of the laboratory. We also atte@po model the market, the inter-
actions and propagation of influence, and the product aoloptiore realistically by incorporating
factors such as product correlation and group membershggents. We summarize the major

contributions in the following section.

6.1 Summary of Contributions

e Generalized Interaction Model:

— We presented an interaction model which is the generalizesion of the Independent
Cascade Model (ICM). This generalized version gives moxdiliy in incorporating
more complex interaction scenarios. The advantages of engrglized ICM can be

listed as:

1. Once the agent gets activated, it is capable of activatingfluencing all other
neighbors at any time afterwards. This is not the case in |OMre& agents can
influence their neighbors only one time step after their oativation.

2. Influencing the neighbors is not a binary situation as M i@ which the neighbors
completely agree or completely disagree with the influegpeigent. In this model

agents can have a partial influence on their friends’ opinion

3. The influence propagation is not assumed to be a progeeastivation. Agents
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can change their mind at any time based on their interactiindifferent neigh-

bors and hence with different opinions.

o Simulated Market Model:

— Here we proposed a dynamic market model where agents caatdahwith each other
and affect the decision of their network neighbors. Buyersthe available products in
the market are represented as agents with an assignedwssoe The elements of the
desire vector are random variables showing the desire agbats toward purchasing
each available product and can be changed whenever agtsrcinwith each other.

Our market model has the following advantages:
1. Provides the capability of having multiple products ia tharket.
2. Represents budget limitations for advertising avadadsbducts in the market.

3. Includes the purchasing history and the correlatiorrrioduct purchases into the
advertising decision. Our model also considers the effesbaial factors, such as

group membership, on the buyer’s purchase decision.
e Optimized Selection of Influential Nodes:

— Inthis thesis we have presented an optimization technmseléect the influential nodes
in a social network based on the stricture of the networkdyreamic of the interac-
tions, and the restriction of advertising budget. We sohesiroblem at steady-state
assuming that the assignment of advertising would be optirakithe interactions and

decision makings converge.
e Hierarchical Selection of Influential Nodes:

— We presented a hierarchical approach for solving the infleenaximization problem

and finding the influential nodes in a social network. Thisrapph examines the net-
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work locally and finds the optimized selection of nodes inheaeighborhood; in some
types of networks it outperforms other benchmarks. The r@tagges of this approach

can be listed as follows:

1. The hierarchical approach gives the flexibility to use ap§imization method in
finding the influential node and any selection strategy in imgpvhe influential
nodes from one hierarchy to another.

2. Since this algorithm looks at the network locally, it ggugs the scalability to deal
with huge networks.

3. It can easily be configured for different advertisemerddais by adjusting the

number of selected nodes propagated between hierarchies.

6.2 Future Work

The approaches proposed in this work have certain limiati@nd can be improved in

many ways. We describe some attempts in the following suilosesc

6.2.1 Limitation: Dynamic Networks

In this thesis all the processing and experiments were osttte networks where we had
all the nodes and connections fixed. Since our optimizagohriique is based on the steady-state
of the network, using the static network is fair. But one [laessolution is to solve the optimization
problem in real-time when nodes can enter and leave the nletWtavould be interesting to find a

way to solve the problem of finding influential nodes in comEgstems in real time.

6.2.2 Improvement: Adding Learning Model

Having a learning model which is able to learn the featuresftiiential nodes would be

another interesting topic which could add value to this wdrkthis work we don’t use learning
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techniques to generalize the common features of influemtidés in the network. Having learning
ability can potentially boost the performance and redueetn time of the node selection process.
Possible challenges of learning methods include samphiegraining set and performing feature

extraction based on the local network neighborhood.

6.2.3 Improvement: Adversarial Market Model

In the simulated market presented in this work, we did nobantfor the adversarial mar-
keting situation. Although adopting one product can desgdae interest of the user toward all
other available products, there is no accommodation farasges where the products are compet-
ing with each other or scenarios in which the sequence ofraidgment is also important. One
possible extension of this work is to design those markkésdi Stackelberg competition and add

proper constraints into the optimization problem as well.

6.2.4 Improvement: Add Memory for the Agents

In this work, we assumed that the probability of interacteord influence between two
agents is small, compared to the size of the network, whishlt® in the agents sticking to a
decision for a reasonable period of time. However if the oekws smaller or the probability
of interaction increases, there can be large fluctuationkaragents’ desire vector and decision
making. Applying a parameter to the model which forces thenggyto retain their decisions for
a minimum period of simulation time, regardless of extein&dractions, would ameliorate this
issue and make the simulation more realistic. Adding thedpater will change the interaction

model and all optimization calculations but would add matkue to the current simulation.
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