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ABSTRACT 

 
The interaction of optical waves with material systems often results in complex, 

seemingly random fields. Because the fluctuations of such fields are typically difficult to 

analyze, they are regarded as noise to be suppressed. Nevertheless, in many cases the 

fluctuations of the field result from a linear and deterministic, albeit complicated, interaction 

between the optical field and the scattering system. As a result, linear systems theory (LST) can 

be used to frame the scattering problem and highlight situations in which useful information 

can be extracted from the fluctuations of the scattered field. 

Three fundamental problems can be posed in LST regardless of the nature of the 

system: one direct and two inverse problems. The direct problem attempts to predict the 

response of a known system to a known input. The problem may be simple enough to admit 

analytical solutions as in the case of homogeneous materials, phase and amplitude screens, and 

weakly scattering materials; or the problem may require the use of numerical techniques. 

This dissertation will focus on the two inverse problems, namely the determination of 

either the excitation field or the scattering system. Traditionally, the excitation determination 

problem has relied on designing optical systems that respond to the property of interest in a 

simple, easily quantified way. For example, gratings can be used to map wavelength onto 

direction of propagation while waveplates and polarizers can map polarization properties onto 

intensity. The primary difficulty with directly applying the concepts of LST to scattering systems 
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is that, while the outputs are still combinations of the inputs, they are not ``simple'' 

combinations such as Fourier transforms or spatially dispersed spectral components of the 

input spectrum. Instead, the scattered field can be thought of as a massive sampling and mixing 

of the excitation field. This dissertation will show that such complicated sampling functions can 

be characterized and that the corresponding scattering medium can then be used as an optical 

device such as a lens, polarimeter, or spectrometer. 

The second inverse problem, system determination, is often more difficult because the 

problem itself may be ill-posed. For scattering systems that are dominated by low-order 

scattering, the statistical properties of the scattered light may serve as a fingerprint for material 

discrimination; however, in many situations, the statistical properties of the output do not 

depend on the material properties. Rather than analyzing the scattered field from one 

realization of the random interaction, several measurement techniques have been developed 

that attempt to extract information about the material system from modifications of the 

scattered field in response to changes in either the excitation or the intrinsic dynamics of the 

medium itself. One such technique is dynamic light scattering. This dissertation includes an 

extension to this method that allows for a polarimetric measurement of the scattered light 

using a reference beam with controllable polarization. Another system determination problem 

relates to imaging the reflectivity of a target that is being randomly illuminated. It will be 

demonstrated that an approach based on the correlation between the integrated scattered 

intensity and the corresponding illumination intensity distribution can prove superior to 

standard imaging microscopy. 
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1. CHAPTER 1: INTRODUCTION 

Classical electrodynamics regards light as a fluctuating electromagnetic field subject to 

Maxwell's equations. This interpretation leads to a wave equation that describes the 

propagation of the light through both free space and some material systems. Naturally, once 

we have described the field propagation, we can also describe the evolution of other properties 

of light such as intensity, polarization, and coherence. Often, we discuss the results of 

propagation as a transfer from one spatial location to another. The essential idea of a transfer 

function is that the input to the system is deterministically mapped onto the output of the 

system, though the mapping may vary spatially, temporally, and spectrally. For traditional 

optical systems using lenses, gratings, and so on, the view of transfer functions has found wide 

application through Fourier optics, but it is of less apparent use for scattering systems [1]. 

The general case of the transfer through a linear medium can be written as  

 ( ) ( ) ( ) tddtEtTtE in

t

out ′′′∫∫
∞

∞−∞−
',,',,',=,, rrrrr ωωω


  (1.1) 

where T  is a matrix of transfer functions that take a field at a given time t', location 'r , and 

frequency ω  and map it onto another field at a later time t, location r , and the same 

frequency. We will refer to the collection of measured transfer functions, T , as the 

transmission matrix (TM) of the material. Systems that can be described by Equation 1.1 form 

the basis for linear systems theory (LST). 
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For simple systems, analytical formulas may be used to describe the transformation T . 

A lens serves as a good example; Fourier optics allows the propagation of a field from any plane 

before the lens to any plane after the lens to be described quite simply. In effect, each 

combination of input plane, output plane, and lens focal length is a different system; however, 

a single expression describes all of the possible combinations. Analytical descriptions of the 

transmission through random systems do not exist in many cases. The transmission is still 

deterministic for a single realization of the randomness, but the transmission function must 

either be calculated for the exact configuration of the medium or directly measured because it 

depends on the properties of the input in a complicated, seemingly random way.  

Three fundamental problems can be posed in LST regardless of the nature of the 

system, one direct problem and two inverse problems. The direct problem attempts to predict 

the response of a known system to a known input. The problem may be simple enough to 

admit analytical solutions as in the case of homogeneous materials, phase and amplitude 

screens, and weakly scattering materials, or the problem may require numerical techniques to 

find a solution for the particular system. There are, of course, many different techniques and 

levels of approximation that have been developed and applied to the direct problem depending 

on which property of the output is of interest. A sort of corollary to the direct problem is that if 

the input to the linear system can be controlled specific outputs can be selected. In the context 

of optics, recent experiments have demonstrated focusing light through strongly scattering 

media as one application of the forward problem [2,3]. 

The formulation of inverse problems refer to finding either the excitation field or the 
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scattering system. Traditionally, the excitation determination problem has relied on designing 

optical systems that respond to the property of interest in a simple, easily quantified way. For 

example, gratings can be used to map wavelength onto direction of propagation, and 

waveplates and polarizers map polarimetric properties onto intensity. The primary difficulty 

with directly applying the concepts of TM to scattering systems is that, while the outputs are 

still combinations of the inputs, they are not ``simple'' combinations such as Fourier transforms 

or spatially dispersed spectral components of the input spectrum. In one of the most commonly 

considered scattering situations, the Gaussian scattering regime, it is relatively easy to show 

that the statistical properties of the scattered field depend only on the geometry of the 

scattering experiment and the wavelength of light, so many properties of the input field are 

seemingly lost because of the complexity of the scattering. However, experiments have shown 

that when the TM of a scattering material is known, it can be used to measure spectral and 

polarization properties of input fields[4–6] 

The system determination problem is more difficult for a random material because the 

problem may be ill-posed and the exact configuration of the medium, contained in its TM, is 

often not interesting. As we will discuss in Chapter 2, even the statistical properties of the 

output often do not depend on the material properties. However, not all random materials will 

produce output fields whose statistics are unrelated to the material itself. In Chapter 3, we will 

experimentally demonstrate the use of the polarization statistics of scattered laser light to 

distinguish different scattering systems from one another. We will also discuss measurement 

techniques that do not attempt to extract information about the material directly from the 
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scattered field but rather from the fluctuations of the scattered field. For example, dynamic 

light scattering may be used to determine the diffusion coefficient of a suspension of particles; 

digital speckle interferometry measures local changes in the scattered field to infer strain 

induced displacements in a sample. We will present a new dynamic light scattering technique 

that allows for a polarimetric characterization of light by measuring intensity fluctuations after 

mixing the scattered light with a reference beam that has controllable polarization. 

In most common treatments of scattering, a material system is illuminated by a 

non-random input, i.e. monochromatic laser light. It is also possible to use a randomly 

fluctuating input field to illuminate a sample and then integrate the transmitted or reflected 

light for each realization of the illumination. An image of the sample is then formed by 

correlating the integrated signal with the random illumination patterns. Such correlation 

imaging (CI) techniques may offer advantages over traditional imaging at low light levels 

because the detection system integrates all of the collected light onto a single detector rather 

than spreading it over a detector array. We will carefully examine and compare the 

performance of CI with traditional imaging modalities under different types of random 

illuminations.  

Finally, in Chapter 5, we will discuss and present several examples of using random 

materials as measurement devices to estimate the spectral and polarimetric properties of an 

unknown input. The light scattered from a random material can be thought of as a complicated 

sampling of the input field. If the sampling function, that is the TM of the material, is known, 

then the properties of the input field can be recovered from the scattered light. The TM is 
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learned though a calibration process rather than being set by the choice of optical components, 

as a result, much of the work of estimating the input field is shifted from the optical 

components to computational post-processing. One interesting result of this is that the analysis 

of the scattered light can be adjusted after the light is collected in order to optimize the 

measurement. Also, because the volume of interaction necessary for the scattering process to 

randomize the input field may be very small, measurement devices based on the analysis of 

scattered light can be very compact. 

While the random fluctuations of optical fields are often regarded as simply noise to be 

suppressed, often they contain a wealth of information. This dissertation seeks to highlight 

situations where randomness may be beneficially exploited, such as imaging in low light levels 

or making extremely compact and robust optical elements. 

  



6 
 

2. CHAPTER 2: STATISTICS OF RANDOM FIELDS 

 The scattered field from the most commonly considered class of scattering materials has 

a uniform phase distribution and a random strength [7,8]. Often the input field is both spatially 

and temporally coherent, but the resulting output is only temporally coherent because the 

transfer function is spatially incoherent. For spatially and temporally coherent inputs, the 

scattered field is often referred to as a speckle pattern [8]. Also, the statistical properties of the 

output are usually stationary with respect to the location of the input. 

The output field at an observation point r can be described as the superposition of many 

fields created by scattering within the medium as  

 )),,,((exp),,(=)),,((exp),,(=),,( ttAttatE ii
i

ωθωωφωω rrrrr


∑  (2.1) 

where ),,( tai ωr  is the field amplitude at the frequency ω  contributed by the i th  scattering 

center to the total field at the observation point r, and ),,( ti ωφ r  is the phase of the 

contributed field. The time dependence accounts for the coherence properties of the incident 

light and any dynamics of the medium. The field amplitude is not expressed directly in terms of 

the incident field because the scattering centers can also rescatter light from another scattering 

center, so the exact dependence of ia
  on the input field may be very complicated. 

To proceed further, we need to make some assumptions about the distribution of the 

ia
 's and iφ 's. The most common set of assumptions to make are that (i) the scattering strength 

and phase of the each scattering center are independent of the properties of the other 

scattering centers, (ii) the scattering strength and phase for a given scattering center are 
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independent of one another, and (iii) the phases are uniformly distributed over the interval (0, 

2π ) [7,8]. We should point out that the scattering centers are not necessarily individual 

components of the scattering medium; several individual components can function together as 

a single effective scatterer or the scattering could result from continuous refractive index 

fluctuations. Also, because we are assuming a uniform phase distribution, we need to consider 

a medium in which the light is scattered multiple times before reaching the observation point 

or is scattered from a large number of scattering centers. Unless otherwise stated, we will be 

further assuming that the scattering medium is static is time so that any temporal dependence 

in ia
  and iφ  is due to the incident light and not motion of the scattering centers. 

Under the assumptions given, we can calculate the expectation value and standard 

deviation of the field as well as its probability distribution function. For the sake of 

convenience, we will only write the equations for one eigen polarization state of the field 

generated from a temporally coherent source. We begin by separating the field at the 

observation point into real and imaginary components.  

 )),,(cos(),,(),,( ttAtER ωθωω rrr =  (2.2) 

 )),,((sin),,(=),,( ttAtEI ωθωω rrr  (2.3) 

Because the scattering amplitudes and phases are assumed to be independent, the 

expectation value of the products in Equations 2.2 and 2.3 will simply be the product of the 

expectation value of the field and the expectation value of the trig function. Further, the 

argument of the trig functions is a uniform random variable over the interval (0, 2π ), therefore 

the expectation value is zero.  
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 0=)),,((cos),,(=),,( ttAtER ωθωω rrr   (2.4) 

 0=)),,((sin),,(=),,( ttAtEI ωθωω rrr  (2.5) 

Since the real and imaginary parts of the field are zero mean random variables, their 

variances are simply given by their second moments.  

 

)/2,,(=

)),,((cos)),,((cos),,(),,()),,((cos),,(=

)),,((cos),,()),,((cos),,(=

),,(=

2

,

22

22

ta

tttatatta

ttatta

tE

i
i

jiji
jiji

ii
i

jj
j

ii
i

RR

ω

ωφωφωωωφω

ωφωωφω

ωσ

r

rrrrrr

rrrr

r

∑

∑∑∑

∑∑

≠

+
(2.6) 

The expectation value of the )),,((cos)),,((cos tt ji ωφωφ rr  term factorizes because the 

cosines are functions of independent random variables. The variance of the imaginary 

component is the same as the real component. It can also be shown that E R  and E I  are 

uncorrelated in a manner similar to that used in Equation 2.6. 

In the regime of heavy multiple scattering the real and imaginary components of the 

electric field are due to a large number of independent contributions, so their distribution tends 

to a Gaussian by the Central Limit Theorem. The joint probability density function for a bivariate 

Gaussian distribution with zero mean, uncorrelated members with the identical variances is  

 ),)/2((exp
2

1=),( 222
2 σ

πσ IRIR EEEEp +−  (2.7) 

where 2σ  is given by Equation 2.6  [9]. 
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The field cannot be measured directly by optical detectors; the time averaged intensity 

is usually the only experimentally accessible quantity. Therefore, it will be more convenient to 

transform Equation 2.7 into a form that contains the magnitude of the electric field and its 

phase. Using the notation from Equation 2.2, we get  

 )./2(exp
2

=),( 22
2 σ

πσ
θ AAAp −  (2.8) 

We can see by inspection that the lines of constant probability given by Equation 2.8 are 

circles centered at the origin; for that reason, variables whose joint probability obey Equation 

2.8 are said to obey circular Gaussian statistics—even though Equation 2.8 is a Rayleigh 

distribution, not a Gaussian distribution. The marginal probability distributions can be obtained 

by integrating Equation 2.8 with respect to the appropriate variable.  

 )/2(exp=)/2(exp
2

=)( 22
2

22
2

2

0

σ
σ

θσ
πσ

π

AAdAAAp −−∫  (2.9) 

 
π

σ
πσ

θ
2
1=)/2(exp

2
=)( 22

2
0

dAAAp −∫
∞

 (2.10) 

So, we can see that not only are the real and imaginary components uncorrelated, but 

because )()(=),( θθ pApAp  they are also independent. 

As noted before, we can only measure the time averaged intensity for optical fields. 

Fortunately, the intensity is a simple function of the field amplitude, and it's statistical 

properties can be derived from the probability distributions of the field. The intensity resulting 

from Equation 2.1 is  
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 .),,(=),,(),,(=),,( 2

TT
tAtEtEtI ωωωω rrrr ∗⋅  (2.11) 

Making the substitution that IA =  in Equation 2.9 and again using the appropriate change 

of variables, we immediately arrive at  

 ),/(exp1=)/2(exp
2

1=)(
2

1=)( 2
2

II
I

IIp
I

Ip AI −− σ
σ

 (2.12) 

where Ap  is the marginal probability distribution for the field given in Equation 2.9, and I  is 

the average intensity of the speckle pattern. Speckle patterns whose intensities follow the 

distribution in Equation 2.12 are generally referred to as "fully developed" speckle patterns [8]. 

One property of fully developed speckle patterns is that their contrast, the ratio of their 

standard deviation to their mean, is 1. 

Having established the intensity distribution of the scattered field under certain 

assumptions, it is also interesting to know the "size" of the speckles in the speckle pattern. The 

speckle size is usually defined from the first zero of the autocorrelation function of the speckle 

pattern. For the fully developed speckle patterns that have been discussed so far, the speckle 

size is  

 ,=
d
zx λ

∆  (2.13) 

where λ  is the wavelength of the incident light, z  is the separation between the scattering 

medium and the observation plane, and d  is the width of the illuminating beam. Equation 

2.12 and Equation 2.13 show very remarkable results; the speckle pattern is a direct result of 

the interaction of the incident light with the scattering medium, but the fringe spacing and 
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fringe intensity distribution, if you will, of the interference pattern of the scattered light are not 

influenced by the properties of the scatterers at all. Of course, it is only the statistical properties 

of the speckle pattern that are independent of the medium; the actual realization of speckle 

pattern itself is very sensitive to the precise placement and properties of each scatterer that 

give rise to the pattern [10–12]. 

While the preceding discussion was carried out in the spatial domain, the spatial 

coordinate could simply be replaced with the temporal coordinate to frame the development in 

terms of dynamic random media and temporal speckles. 

Thus far, we have only considered scalar inputs and outputs, but the generalization to 

vectorial inputs and outputs is straight forward with our assumptions. For scalar outputs, 

orthogonally polarized inputs will each give rise to a fully developed speckle pattern. If the 

input is temporally and spatially coherent, which implies fully polarized, the speckle pattern 

resulting from each input polarization eigen state will add in field to produce a resulting speckle 

pattern with the statistical properties discussed previously in this section. 

If we allow vectorial outputs, the orthogonally polarized output eigen states will be 

independent of one another both in field strength and phase. Since they are derived from a 

coherent source, however, the phase difference between them at each point will be constant. 

The resulting speckle patterns will add in field to produce a speckle pattern that is fully 

polarized at each point, but they do not interfere because they are orthogonally polarized. As a 

result, the intensity of the vectorial speckle pattern will be the result of two uncorrelated 

speckle patterns added on an intensity basis. Because of the intensity addition, the statistics of 
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the vectorial pattern will deviate from those developed in this section in a known manner; 

specifically, the intensity will the the sum of two independent random exponentials and the 

contrast will be 2/1  [8]. 

The assumption that the resulting scattered field had a uniform, random phase 

distribution made developing the statistical properties of the output field rather easy. Other 

types of intensity distributions are possible if the assumptions made at the beginning of the 

derivation are violated. For example, in low order scattering, the phase may not be uniformly 

distributed across the entire primary interval. Similar calculations can be carried out for 

non-uniform phase distributions, although some expressions, such as )(Ap , may not have 

closed form solutions [8]. Also, the extension to vectorial fields becomes considerably more 

complicated because there may be correlations between orthogonally polarized output fields. 

Physically, the non-uniform phase distribution means that the scattering does not 

completely remove the spatial coherence of the input, which may be a benefit or a detriment 

depending on the specific application. In either case, the statistical properties of the scattered 

field will have not reached the point of being independent of the properties of the scattering 

medium, so any theoretical development will depend on the specific properties, such as 

scatterer concentration, of the medium being considered. 

The theoretical development of the statistics of random fields seems rather 

discouraging because the statistics depend primarily on the detection geometry rather than the 

properties of the material that gave rise to the random field. In spite of that, random fields 

have been successfully utilized for both of the inverse problems in LST. Some methods for the 
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material determination problem will be discussed first, followed by the input determination 

problem.  



14 
 

3. CHAPTER 3: MEDIA CHARACTERIZATION 

 Methods that seek to recover information about the medium that gave rise to the 

scattered random field typically do not attempt to quantify the TM of the material. While the 

TM is directly related to the composition and configuration of the random material, it is difficult 

to extract that information from the scattered field. Instead, the material characterization 

inverse problem looks for information related to differences in the transfer between two media 

or fluctuations in the transfer of one medium. 

We will focus on three categories of changes in the random material. The first will be 

random systems that produce partially developed random fields. Because the field statistics are 

not universal in nature, they may serve as a fingerprint for the material. Second, we will discuss 

two related techniques for determining the microscopic dynamics in the bulk of a material, 

dynamic light scattering (DLS) and diffusing wave spectroscopy (DWS). As time progresses, the 

random system changes and thus alters the entire TM; we will refer to these changes as global 

dynamics of the TM. We will demonstrate an extension to the DLS and DWS measurements that 

allows for a polarimetric measurement of the scattered light using a reference beam with 

controllable polarization.  

We will discuss techniques that measure macroscopic changes in the surface of a 

material. The two methods, digital speckle photography (DSP) and digital speckle 

interferometry (DSI) examine spatially resolved changes in a surface, so we will refer to these 

changes as local dynamics of the TM. DSP and DSI are also interesting because they use the TM 

concept in a reflection geometry. Finally, if the TM of the material does not change, the 
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scattered field can be made dynamic by changing the input field. Random inputs can be used to 

form an image of the TM from correlations of the scattered intensity with the input intensities. 

It will be shown that such correlation images can be superior to tradational images in low light 

situations. 

3.1 Statistics of Transfer Matrices 

In the Chapter 1, we introduced the TM of a random medium, T , using the equation 

( ) ( ) ( ) .',,',,',=,, tddtEtTtE in

t

out ′′′∫∫
∞

∞−∞−
rrrrr ωωω


 

We then argued that, sometimes, T  does not relate to actual material system itself because 

of the scattering process causes the spatial and temporal flucuations of the TM to be Gaussian 

distributed. However, a field that is partially developed has not yet achieved circular Gaussian 

statistics, and thus universal, field statistics. Therefore some properties of the material should 

still be discernible from the direct measurement of the field. Unfortunately, the measured field 

will depend on those parameters in a very complex way, so it remains difficult to directly 

determine the material properties themselves; however, partially developed fields can allow 

discrimination between different materials based on differences in the statistics associated with 

their TM's. 

There are many potential field parameters that could be used to distinguish between 

different materials: scattered intensity contrast, polarization diversity of the scattered field, and 

different characteristic length scales of the scattered field. We studied the possibility of using 

the polarization statistics of light scattered from the surface of a composite material to monitor 
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its structual modifications. Specifically, we demonstrated that one can distinguish asphalts laid 

with different pressures. Essentially, we have reduced the complicated random system to a TM 

that is in fact an effective Jones matrix that will alter, or not, the incident state of polarization. 

The asphalt system is way too complicated and not much useful informaton can be determined 

from a single realization of the TM, However, by examining the statistics of the TM’s for many 

realizations of the complex random media, we have been able to identify systematic differences 

between them. 

While the material systems are similar, there are several factors that could cause them 

to interact differently with an incident field. For instance, asphalt contains volatile chemicals 

that will out gas as the asphalt ages, and thus alter the composition of the asphalt and possibly 

how it interacts with light. Also, the material in the asphalt will deform under the pressure, so 

different methods of laying the asphalt are likely to result in different porosities and scattering 

path length distributions. 

To simulate two different laying conditions, asphalt was placed in a holder and pressed 

with either 400 psi or 40 psi. The samples were then illuminated with vertically polarized laser 

light while the polarization state of a single, scattered speckle was measured; a picture of the 

set-up is shown in Figure 3.1. To change the speckle seen by the polarimeter, the sample was 

rotated. Many speckles were recorded in order to measure the spread of the scattered 

polarization states accurately, and typical results are shown in Figure 3.2. To better simulate 

real world situations, we performed measurements on wet asphalt and asphalt obscured by 

sand in addition to uncovered asphalt. 
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Figure 3.1: Illumination and detection set-up for measuring scattering from 
asphalt samples. 

The Poincare sphere provides a convenient way to visualize the state of polarization of a 

light field. The Stokes vector, [I,Q,U,V], is defined in terms of measured intensities as  

 
yx III +=

 

yx IIQ −=
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(3.1) 

 

The subscripts on the intensities describe the orientation of a polarizer through which 

the intensity is measured. The L and R subscripts indicate left and right circular polarizers, 

respectively. Since I  is simply the sum of two intensity measurements through orthogonal 

polarizers, it gives the total intensity of the light but no polarization information. The remaining 

laser
polarimeter camera
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terms, Q , U , and V , fully describe the polarization state of the light when normalized with 

I . 

 
Figure 3.2: Spread of polarization states after scattering from asphalt. -Q 
polarized light was incident on the sample. 

The distribution of points shown on the Poincare sphere can be characterized by 

statistics of various orders [13]. In particular, we calculated the first order statistics, the average 

values of the components of the Stokes vectors, and the second order moments, the average of 

the squares of the values of the Stokes vectors. The Stokes vector element correaltions are 

essentially intensity-intensity correlations similar to the correlations used in intensity 

interferometry or dynamic light scattering, for example. Of course many other statistical 

parameters, such as moments of the cross terms, could be used. Because all of the results are 

centered about the incident state, -Q, we can use the ratio 〉〈〉〈 VVUU /  to characterize how 

symmetric the spread of measured cloud is about the mean. The brackets denote averaging. 

The results of our measurements are shown in Table 3.1, below. 
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Table 3.1: Polarimetric properties of different asphalt samples. 

 
For the clean, dry samples, the measurements indicate that the states of polarization 

scattered by the highly compressed sample deviate further from the incident state of 

polarization because they have a smaller Q , so the scattered light is more depolarized in a 

global sense. Also interesting to note is that the polarization states of the less compressed 

sample spread more anisotropically than the more compressed sample. 

In this case, the measurement seems to sample the surface of the sample but not the 

volume; the TM of the various samples was dominated by surface effects. When the samples 

are obscured by water or sand, the different compression levels become difficult to distinguish 

based on our measurements; however, the three surface types, asphalt, water, and sand, are 

distinguishable from one another based on the average properties of the scattered light, which 

is to say based on the average properties of their TM's. A different wavelength of light might 

have interacted more with the bulk of the material and thus would have allowed the TM’s of 

the obscured materials to still show an impact on the scattered polarization states. However, 

this experiment still clearly demonstrated that when the properties of the TM's are not 

universal in nature, they can serve as a fingerprint for the material. 

40 psi, clean 400 psi, clean 40 psi, wet 400 psi, wet 40 psi, sand 400 psi ,sand

-0.814 -0.774 -0.816 -0.819 -0.659 -0.674

0.701 0.656 0.709 0.711 0.553 0.555

0.862 1.025 1.037 1.025 1.105 1.102

Q

QQ

VVUU /
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3.2 Global Transfer Matrix Dynamics 

 While the statistical properties of random fields can yield some information about the 

materials that gave rise to them if the field has non-universal statistics, certain properties of the 

material can be learned even if the scattered field is fully developed. Specifically, to obtain 

information about the dynamics of the medium, but not about any specific realization of the 

medium, the dynamics of the random field are of interest. 

3.2.1 Dynamic Light Scattering And Diffusive Wave Spectroscopy 

Fields that fluctuate in time are easy to generate with dynamic media, and two related 

techniques, DLS and DWS, have been developed to analyze such fields [14–22]. The 

experimental set-ups for both DLS and DWS are the same; polarized laser light is incident on a 

scattering sample. The light scattered by the sample at an angle θ  passes through another 

polarizer and is then collected by a detector. The difference between the two techniques is the 

nature of the sample as shown in Figure 3.3. 

 
Figure 3.3: (a) The scattered field in DLS is composed of single scattering 
contributions from many particles. (b) The scattered field in DWS is due to 
diffusive, multiple scattering. 
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DLS, also known as quasi-elastic light scattering, assumes that the scattered field is the 

sum of single scattering contributions from many independent particles, and that the phases of 

the contributions are uniformly distributed over the interval 0 to 2π . These two restraints, that 

the scattered contributions have a uniform phase distribution so that the field is fully 

developed and that only single scattering be present in the field, make controlling the 

concentration of the scatterers quite important. DWS, on the other hand, assumes that the 

detected light has been multiply scattered and can be considered to be diffuse light. 

In either case, the autocorrelation of the detected intensity is calculated, and the 

correlation decay time 0τ  is related to the motion of the scatterers in the sample. The motion 

of the scatterers is generally related to the experimentally inaccessible field autocorrelation, 

but because the scattered field is fully developed, the Siegert relation, Equation 3.2, is used to 

relate the calculated intensity autocorrelation to the field autocorrelation as  

 ,
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where E(τ ) and I(τ ) are the field and it's corresponding intensity at some delay τ  relative to 

an initial measurement and β  is an experimental parameter, less than 1, given by the ratio of 

the speckle area to the detector area [14]. The Siegert relation relies on the assumption that 

the scattered fields are zero mean Gaussian variables, which is an acceptable assumption when 

the total field is due to scattering from many independent sources. 

The primary difference between DLS and DWS is in how the motion of the sample is 

related to the autocorrelation. In DLS, the autocorrelation can be interpreted in two, equivalent 
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ways via the Wiener-Khinchine theorem [15]. The first is that the measured intensity does not 

decorrelate until the scattering particles have traveled distances comparable to the 

wavelength. Under the assumption that the scatterers are undergoing diffusion and knowing 

the incident wavelength, the diffusion constant, D, of the sample can be measured from the 

time needed for the field to decorrelate [16]. 

Alternatively, because the scatterers are moving, they will cause a Doppler shift in the 

frequency of the scattered light. The width of the scattered spectrum can be used to measure 

the speeds at which the particles are moving and thus the diffusion constant of the medium via 

the field autocorrelation function. This also means that DLS experiments can be performed by 

measuring the scattered spectrum directly [14–16], however, because of the added 

experimental complexity, spectral measurements are generally not done [15]. The measured 

spectrum and the field autocorrelation are related by  

 ,)(),(=),( (1) τωττθωθ diexpgS ∫
∞

∞−

 (3.3) 

where ),((1) τθg  is the autocorrelation of the field scattered into the angle θ . Once the field 

and intensity autocorrelations are known, the diffusion constant, D, of the material can be 

found from  

 ),)(2(|)(|1=),( 22(2) τθττθ DqexpCg A −+  (3.4) 

where ),((2) τθg  is the autocorrelation of the intensity scattered into the angle θ , 

/2)()/(4= θλπ sinnq o  is the difference between the incident and scattered wave vectors, and 
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)(τAC  is the autocorrelation of the particle scattering amplitudes and can be determined from 

(1)g . 

DWS considers the medium to be divided into a number of independent scattering 

paths of varying lengths [17–19,22]. The light is thought of using a photon picture, where the 

photons travel the different paths before reaching the detector. The field autocorrelation can 

be calculated from  

 ,)]/)(/(2[)()( *

0

(1) dslsexpsPg oτττ −∝ ∫
∞

 (3.5) 

where )1/(= 2
oo Dkτ  with oo nk λπ /2= , *l  is the transport mean free path, and )(sP  is the 

probability that the light traveled a path of length s  in the medium. For the particular 

experimental geometry used, )(sP  is calculated assuming diffusive transport of the light. The 

appropriate D is then selected to provide the best fit between the measured and theoretical 

autocorrelation functions [20,21]. The pathlength distribution )(sP  constitutes the building 

block of the TM and if fluctuates about some mean value due to the dynamics of scattering 

centers. The fluctuations in )(sP  cause the TM, and thus the scattered intensity, to vary in 

time. As a result, the temporal variations of the TM relate to the diffusion coefficent of the 

scatterers even though each particular realization of the TM tells us nothing about the medium. 

Recent research has been done to extend DWS to systems with long decorrelation 

times [20,21], multi-layered media [11], and increase measurement speed [23]. 
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3.2.2 Fluctuation Polarimetry 

DLS can be extended to quantify the aspect ratio of spheroidal particles as well as the 

size [24–30]. The detection set-up is modified such that the scattering sample is viewed through 

a polarizing beam splitter and both of the resulting polarization channels are measured 

simultaneously [24–28]. In [29,30], the polarization channels are measured sequentially, and a 

third measurement with the polarizer oriented at o45  is added to project the orthogonal 

polarization channels onto a common axis. In all cases, the first and second moments of the 

measured signals, including the cross moment if the polarization channels are measured 

simultaneously, are calculated and used to infer the shape information for the scattering 

particles via an assumed analytical or numerical description of the particle scattering. 

By measuring the correlations between intensity fluctuations in different polarization 

states, the extensions of DLS essentially measure the degree of polarization (DOP) of the 

scattered light. The relationship between intensity fluctuations and DOP was originally 

recognized in 1960 as an extension to intensity interferometry [31,32]. It is anticipated that 

more specific and accurate information about the scattering polarizability (particle shape and 

orientation for instance) could be gained from measuring the state of polarizaton (SOP) as well. 

We have recently developed a method for determining both the degree and state of 

polarization of a randomly fluctuating field by interfering it with an uncorrelated reference 

beam [33]. 

Consider a fluctuating, partially polarized E-field where the directions corresponding to 

the major and minor axes of the polarization ellipse are denoted by x and y, respectively. Note 
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that, in general, the polarization ellipse may be oriented at an angle ψ  with respect to the 

laboratory frame. Denoting the polarized and unpolarized components of the field with P and 

U, respectively, the field at a point r may be written as [34] 
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where 2/)()( πφφ ±= tt xy , depending on the handedness of the SOP. In Equation 3.6, xP and 

iU , with i = x,y, are independent random variables which in many cases are Rayleigh 

distributed, and iϕ  and xφ are uncorrelated, random phases [8]. yP  is perfectly correlated 

with xP  since the SOP is not changing in time. The mean frequency of oscillation of the electric 

field is ω . Equation 3.6 can be regarded as the coherent superposition of four “speckle” fields 

with their amplitudes and phases fluctuating in both space and time [8]; however, the phase of 

a given speckle is approximately constant when its amplitude is non-zero. The time of constant 

phase is referred to at the lifetime of the speckle. The relative strengths of the P and U 

components of the superposition determine the intensity statistics of the combined speckle 

pattern. 

Usually, the P’s and U’s are considered to be slowly varying envelopes relative to ω/1 , 

such that one can measure the “short-time” average, I~ , that removes the oscillation at ω  

but not the fluctuations of the envelope, i.e., 2),(),(~ ttI rFr ≈ (see page 100 in [9]). This is often, 

and somewhat misleadingly, referred to as the “instantaneous” intensity, a convention that we 
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will, however, follow for the rest of this Letter. We will omit the tilde from all subsequent 

intensities. 

For E-fields whose components are Gaussian random variables, the second moment of 

the intensity fluctuations at a point r is given by [34] 

 2/),()1()),(( 222 tIDtI rr +=∆ , (3.7) 

where D is the DOP, ),( tI r is the average intensity of the light at the point r, 

),(),(),( tItItI rrr −=∆ , and denotes “long-time” averaging. This relationships means that 

the contrast of the intensity fluctuations (i.e. the second moment normalized to the mean) is, in 

fact, given by the amount of correlation between the orthogonal E-field components, i.e., the 

DOP. This is analogous to determining D by measuring the fluctuations in two, orthogonally 

polarized channels at the same time, as is frequently done, and calculating the cross-correlation 

between the measurements. 

Unfortunately, it is not possible to determine the SOP from the fluctuations of the 

instantaneous intensity. This is because the SOP depends on the phase between the polarized 

E-field components, which would require time resolution better than ω/1 to measure directly 

in the intensity fluctuations. We can, however, go further if we bring in a reference field, R. We 

will choose the reference to have a non-fluctuating intensity with the same mean frequency as 

F. For simplicity, this reference will be a linearly polarized field whose orientation, α , can be 

controlled at will. Most importantly, because of the random nature of the phases in Equation 

3.6, this reference can be incoherent with respect to the fluctuating field, meaning that no 
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stable interference is observed when R and F, or any component of F, are superposed. 

Nevertheless, during the lifetime of a single speckle, the two fields are able to interfere. If the 

fluctuating field is fully polarized along the same direction as the reference, the resulting 

intensity statistics follow a Rician distribution [8]. In general, the statistics are more 

complicated because the intensity fluctuations arising from the polarized components of the 

fluctuating field will be partially correlated based on the SOP of the fluctuating field. However, 

as we will show below, the full polarimetric description for the field F can be recovered by 

measuring the intensity statistics of the superposition as the polarization orientation of the 

reference field is changed.  

If the intensity of the linearly polarized reference field is 2R , the instantaneous 

intensities along the major and minor axes of polarization ellipse of F will be denoted as 
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The instantaneous intensity of the fluctuating field can be decomposed into four parts: a 

polarized and an unpolarized intensity along both x and y-axes. These following relations will 

hold for the intensities: 
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The first two equations simply mean that the (un)polarized component of the intensity is the 

sum of the (un)polarized intensities along both axes of the polarization ellipse [34]. The third 

relation defines the square of the ellipticity of the polarization ellipse, which is constant during 

the measurement. Consequently, 10 ≤≤ A  since the semi-minor axis of an ellipse is by 

definition non-negative and smaller than the semi-major axis. The unpolarized intensities, 

though, must be equally divided between the two axes upon long-term averaging as shown in 

the last relation in Equation 3.9; however, the ratio of the instantaneous unpolarized intensities 

is unbounded because they fluctuate in an uncorrelated manner [34]. 

In the superposition of R and F fields, the instantaneous intensity can be expressed as  
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where yxi , = . Since the phases in Equation 3.10 are random, the first moment of )(αI  is 

simply  

 22)( RF +=αI  (3.11) 
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and, using Equation 3.9, the second moment is given by 
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Finally, using the calculated moments one can evaluate the contrast of the intensity 

fluctuations as 

 ( ) )(/)()( 2 ααα IIC ∆=  (3.13) 

Equation 3.12 constitutes the main result of our derivation; it shows that the intensity 

fluctuations of the superposition depend on D, A, and ψ , which provide all of the single point 

polarimetric information, up to the handedness of the polarization ellipse. The exact form of 

Equation 3.12 relies on the Gaussian nature of the fields (we used 22 2 XX =  with 

22 , ii UPX = ) however, similar relationships can be derived for fluctuations obeying other 

distributions.
 

The first term in Equation 3.12 shows that we recover Equation 3.7 when the reference 

is not present, as expected. The second term in Equation 3.12 highlights the interferometric 

nature of the measurement at short time scales; it is the “interferometric gain” that comes 

from mixing the reference and fluctuating fields [1]. While C decreases as R/1  for FR >> , 

the actual magnitude of the intensity fluctuations increases as R . The ability to alter the 

strength of the intensity fluctuations in a controllable manner may prove very useful for 

measurements on weak fields. 
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Determining the unknown Stokes vector from the values of the measured contrasts 

requires the use of numerical techniques because, while closed-form solutions for the variables 

in Equation 3.12 exist, the equations are transcendental. Fortunately, the solution domain is 

finite with [ ]1,0∈A , [ )πψ ,0∈ , and [ ]1,0∈D . In principle, D can be determined by simply 

measuring the intensity fluctuations without the reference field and then applying Equation 3.7, 

thus reducing the problem dimensionality. 

The Stokes vector may be defined in terms of [A, D, ψ ]  
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where χ  is the ellipticity angle [35]. The uniqueness of the calculated Stokes can also be 

demonstrated by noting that Equation 3.12 has the form )(sin),(),( 2 αψ −+ DAHDAG . If 

there is any another combination of A and D such that )','(),( DAGDAG =  and 

)','(),( DAHDAH = , then an identical )(αC  would be obtained for multiple polarization 

states. However, the only non-trivial solution to these two equalities is AA /1'=  and 

DD −=' , both of which are non-physical. As a result, we can concluded that )(αC  is in fact 

uniquely determined by A and D, and that finding the A and D that produce the best fit to the 

measured data will yield the correct SOP. 

The concept was tested experimentally on a fluctuating field created using two rotating 

diffusers illuminated by a laser beam. To minimize the effects of detector averaging, a polarizer 
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was placed after one of the diffusers while the other was blocked, and then the rotation rate of 

the unblocked diffuser was adjusted to ensure that the intensity of the scattered light followed 

a negative exponential distribution. Both diffusers were adjusted in the same manner. A 

polarizer and quarter waveplate were placed after one of the diffusers to create a fully 

polarized fluctuating field. The other diffuser created an unpolarized fluctuating field that was 

added the polarized fluctuating field to control D. The reference field was obtained by diverting 

a small part of the initial beam before the diffusers, and the total fluctuating intensity, i.e. the 

intensity of the overlapped polarized, unpolarized, and reference fields was measured using a 

photodiode. The set-up is shown in Figure 3.4. 

 
Figure 3.4: The set-up used to test the fluctuation polarimetry theory. The 
abbreviations are ND for neutral density filter, Pol for polarizer, QWP for quarter 
waveplate, and HWP for half waveplate. 

Figure 3.5 clearly shows a strong dependence of the contrast on the SOP of the 

fluctuating field, rather than just its DOP. Each of the experimental contrasts was calculated by 

recording approximately 500 intensity speckles. The variation between contrasts from different 

realizations of 500 speckles is smaller than the symbols in the figure. The contrasts calculated 
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from the measured intensity fluctuations (dots) and from Equation 3.13 (lines) are shown for 

several different fluctuating fields. The lines were obtained by finding the D, A, and initial θ  

that produced the best fit to experimental contrasts. After determining D, A, and θ , Equation 

3.14 was used to calculate the normalized Stokes vectors for each case, and the results are 

shown for the corresponding plots in Figure 3.5. The measured Stokes vectors are in good 

agreement with standard measurements using a polarizer and quarter waveplate. 

While Equation 3.7 cannot be applied to our measured intensity fluctuations because 

the reference field makes the underlying statistics of the total field non-Gaussian, it is still 

instructive in understanding the results shown here. In our experiment, the DOP’s of both the 

fluctuating and the reference fields are constant, but the DOP of the total field depends on the 

orientation of the reference field with respect to the polarization ellipse of the fluctuating field. 

For example, if the fluctuating field is linearly polarized, then the total field remains fully 

polarized when the reference field is aligned with the fluctuating field. As the orientation of the 

reference field is changed, however, the DOP of the total field, and thus the resulting intensity 

fluctuations, decreases because the two fields are incoherent with one another. 

We have demonstrated a method for extracting the state of polarization of a fluctuating 

field from the first two moments of the distribution of intensity fluctuations after mixing the 

fluctuating field with an uncorrelated reference field. The short-term interferences between 

these fields influence the intensity fluctuations in a manner that depends on the state of 

polarization of the fluctuating field. Analyzing the residual state of polarization of optical fields 

is of interest for a number of sensing applications that rely on light scattering. Our technique 
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may prove to be particularly interesting for DLS and DWS measurements where the intensity 

fluctuations of scattered light are already being measured. Most polarimetric techniques 

require either discarding part of the light of interest due to the use of polarimetric filters or 

splitting the light among multiple detectors; however, by adding a reference and measuring the 

intensity fluctuations of the mixed field, the SOP of the signal can be determined without 

splitting or discarding any of the signal light. In addition, because the method is interferometric 

in nature it may especially appropriate for measurements of weakly scattering systems. 

 

Figure 3.5. The experimental (red dots) and theoretical (blue line) intensity 
contrasts for (a) vertically polarized, (b) partially vertically polarized with 

455.0≈D , (c) elliptically polarized, and (d) unpolarized fluctuating fields as a 
function of the orientation of a linearly polarized reference field. All of the plots 
are on the same scale. The DOP and Stokes vector for the best fit to the 
experimental contrasts are indicated for each plot.  
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3.3 Local Transfer Matrix Dynamics 

 We will now turn from correlations of temporal varying TM’s to consider TM’s that 

fluctuate in the spatial domain.  

3.3.1 Digital Speckle Photography And Digital Speckle Interferometry 

One of the earliest practical techniques for utilizing the random scattering from 

materials was digital speckle photography (DSP) [36]. DSP attempts to characterize in-plane 

deformations of a surface as a strain is applied to it. The set-up needed to characterize the 

deformations is comparatively simple, see Figure 3.6. A rough surface is coherently illuminated 

by a quasi-monochromatic point source or an expanded laser beam. The surface is imaged onto 

a detector array, so that when the surface is illuminated, the speckle pattern at the surface is 

recorded. 

 
Figure 3.6: Basic set-up to perform speckle photography. A surface is coherently 
illuminated by a point source or laser. The speckle pattern at the surface is 
imaged onto a detector array by a lens system. 

The analysis is performed by recording the speckle pattern generated by the surface in 

an unstressed state. Strain is then applied to the surface, and a new speckle pattern is 
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recorded. Under the assumption that the surface did not change too much when the stress was 

applied, the cross-correlation can be used to describe the shifts between the two patterns. The 

cross-correlation for two fully developed speckle patterns is given by  

 ,|)()(|)()(=)()( 2
2

*
21122112211 〉〈〉+〉〈〈〉〈 xxxxxx EEIIII  (3.15) 

 with  
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*
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where 1I  and 2I  are the speckle patterns for the stressed and unstressed surface, the E 's 

are the corresponding field distributions, and *  denotes the complex conjugate [36]. Because 

the speckles on the surface of the material are being imaged, their movements give the 

movement of the underlying surface directly. 

Cross-correlating the speckle patterns will only give a net shift of the stressed pattern 

with respect to the unstressed pattern, which is not the quantity of interest. So, the two 

patterns are divided into sections as shown in Figure 3.7, and each section is then 

cross-correlated with the corresponding section in the other image. Individual speckles are not 

tracked because they can be annihilated and new speckles created as the speckle pattern 

moves [37]. The shifts of all of the sections are then combined into a flow field map to visualize 

the deformations of the entire surface. 

DSP also provides additional information about the surface deformations because the 

value of the correlation function is determined. If the speckle pattern undergoes a pure 

translation, then it will be fully correlated with itself; however, shears or local rotations of the 

speckle pattern will cause some decorrelation between the speckle patterns. The decorrelated 
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areas correspond to plastic regions of the test sample, which are more prone to mechanical 

failure [36]. 

Slightly after the introduction of DSP, digital speckle interferometry (DSI) was 

introduced. DSI was originally used to measure out of plane displacements, but has been 

generalized to measure surface displacements in all directions [36]. DSI is similar to DSP in that 

a test surface is illuminated with a coherent light source and the resulting speckle pattern is 

recorded; however, in DSI the speckle pattern generated by the test surface is interfered with a 

reference beam. The reference is generally a plane wave, a speckle pattern generated from a 

master surface, or a second beam illuminating the test sample (for measuring in plane 

displacements). A basic set-up for measuring out of plane displacements is shown in Figure 3.8. 

 
Figure 3.7: Cross-correlating sections of two speckle fields gives the local shift of 
the speckle patterns. The local shifts can be used to generate a flow map of the 
surface to visualize the local in-plane shifts. 

In most cases, the reference surface is assumed to constant during the measurement. 

The test surface is loaded and a new speckle pattern is recorded for each load level. The 
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structure of the speckle pattern is assumed to be unchanged when small loads are applied to 

the surface, but the phase difference between the test and reference beams will change due to 

small, strain-induced changes in the surface height. The measured intensity will be  

 )),((cos2= hIIIII testreftestref ∆+++ φφ  (3.17) 

where refI  is the intensity of the reference, testI  is the intensity from the test surface, φ  is 

the phase difference between the unstressed test surface and the reference, and )( h∆φ  is the 

added phase due to the change in the surface height. The phase can be determined by adding 

known shifts to the reference, by using a piezoelectric transducer to shift the reference for 

example [36]. 

 

 
Figure 3.8: Basic set-up to perform speckle interferometry. A surface is 
coherently illuminated by a point source or laser. The speckle pattern generated 
by the surface is interfered with a reference beam or a speckle pattern 
generated by a reference surface. The speckle pattern at the surface is imaged 
onto a detector array by a lens system. 

DSI can also be used to measure in plane displacements of the test surface. Figure 3.9 

shows a simple version of the measurement set-up. The test surface is illuminated by two plane 
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waves at an equal angle, θ , from the average surface normal. When the test surface is 

strained, the phase change due to out of plane displacements will be equal in both beams and 

thus not cause a change in the measured intensity. Similarly, in-plane displacements that are 

perpendicular to the plane containing the illumination beams will not produce a phase shift; 

however, in-plane displacements in the plane containing the illumination beams will produce a 

change in the interference pattern. The phase shift is given by  

 ),(sin4= θ
λ
πφ x∆∆  (3.18) 

 where x∆  is the magnitude of the shift, and λ  is the wavelength of the illumination. 

 
Figure 3.9: Experimental geometry for measuring in plane surface displacements. 
The test surface is illuminated by two plane waves at an equal angle θ  from the 
average surface normal. 

Several, more complicated schemes for measuring in plane displacements in all 

directions have been developed. They consist primarily of using two, orthogonal pairs of beams 

either sequentially with a single detector or simultaneously with two detectors and the beam 

pairs orthogonally polarized. Measurement devices have also been constructed combining in 

plane and out of plane measurements to measure the total displacement of the surface. For a 

thorough review of DSI and DSP see [36]. 
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3.3.2 Correlation Imaging 

While DSP and DSI have been extensively developed and have generated commercial 

products, a number of other applications of randomly scattered light to characterize the 

scattering material have been discussed and demonstrated on the laboratory scale. Several 

types of microscopy systems illuminate a sample with a random field and measure the 

scattered field. Aperture correlation microscopy does this to achieve confocal microscopy axial, 

ideally with reduced measurement time [38]. A random illumination is used in double pass 

fashion to act like an effective array of confocal pinholes [38,39]. Mertz uses fluctuating 

illumination to improve sectioning in a wide field microscope by forming a fluorescence image 

based on the rms fluctuations of the returned signal [40,41]. 

The techniques in the last paragraph all form an image directly using spatially resolved 

detection and so require modestly high photon fluxes for good imaging performance. Another 

class of imaging systems uses random illumination patterns integrated onto a bucket detector. 

The image is then formed using either compressive sensing techniques or correlating the 

integrated signal with the random process formed by each pixel through the series of random 

illuminations [42–44]. 

Compressive sensing based techniques offer an advantage over traditional imaging in 

that images of reasonable quality can be formed from an undersampled version of the desired 

image, thus reducing requirements on data acquisition and storage [43]. Correlation imaging 

(CI) research is often justified either to elucidate the relationship between classical and 

quantum correlations or by the simplicity of the detection scheme [44–47]. We will 
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demonstrate that CI using classical correlations can offer improved imaging performance over 

traditional imaging in situations of low brightness illumination and low target reflectivity 

because of the integration of the scattered light onto the single detector. 

The imaging performance of CI systems has been studied extensively assuming thermal 

illumination, usually with the assumption that the field’s correlation properties follow a 

Gaussian-Schell model [47–50]. The Gaussian-Schell model allows theoretical results to be 

derived for various system performance measures, such as resolution and SNR. The detected 

field is quantized to account for detector shot noise, but other noise sources are generally 

neglected. The field is treated classically for purposes of reflecting off of the target and being 

absorbed by the detector, that is to say that both processes are treated as a multiplicative 

factor that reduces the average intensity but does not introduce any additional intensity 

fluctuations. However, in the limit of low fluxes, the partitioning of the photon stream during 

reflection and absorption, due to sub-unity reflectivity and quantum efficiency, respectively, 

can significantly reduce the correlation between the detected intensity and the random 

illumination patterns. 

We used numerical experiments to evaluate the performance of CI against traditional 

imaging in low flux situations. The process of generating the numerical data uses three different 

types of illumination and is outlined in Figure 3.10. An ensemble average is generated by using 

10,000 realizations for each type of illumination. First, the illumination is realized using a fully 

developed speckle pattern of intensities generated in the far-field of a two dimensional array of 

point sources having random initial phases. 
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Another random intensity pattern was generated using random distribution of points 

that were convolved with a Gaussian blur function. The width of the Gaussian blur was chosen 

such that the spatial autocorrelation of the intensity pattern is very similar to that of the 

speckle patterns. In CI, the spatial autocorrelation of the illumination intensity governs the 

resolution of the image. Equation 3.19 shows the value of the correlation function at the point 

x,  

 ∫∝ 'dRtItIC
tpp xxxxx )'(),'(),()(  (3.19)  

Ip is the intensity pattern illuminating the sample and R is the sample reflectivity or 

transmittance, and the brackets are averages over time [51]. The bracketed quantity in 

Equation 3.19 represents the average size of a spot in the random illumination, and the highest 

resolution image is achieved when this quantity decreases quickly as a function of x’ [8]. 

Of course, because the number of points in each illumination pattern is controllable, the 

spatial density of nonzero intensities can also be controlled. In this numerical experiment, the 

second and third types of illumination use densities of 1% and 20%, respectively. 

The numerical experiment was conducted following the major steps described in Figure 

3.10. To facilitate the comparison between different imagining scenarios, each random 

illumination pattern is normalized such that the integrated area of each illumination spot is 

unity; this is of course only approximately true for the fully developed speckles since they are 

irregularly shaped and often connected. The normalization was chosen such that the values 

could be interpreted as the distribution of energy in that spot. The normalized illumination 

pattern is then multiplied by a factor to represent the average number of photons in a speckle. 
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Finally, the average number of photons was used as the rate parameter for a Poisson 

distribution. The Poisson sampled image represents the incident photon stream for a given 

illumination pattern. 

We examined two different illumination levels. The first was such that, on average, 

there is one photon per speckle per pattern. Illuminating with one photon per speckle, under 

the three different types if illumination described before, results in different photon fluxes 

incident on the target. Since the results of imaging with a CCD are expected to depend on the 

integrated photon flux per pixel, the correlation images would be then compared to CCD 

images of different quality. To facilitate the comparison to standard imaging, we also set the 

photon fluxes to be the same for each illumination type. 

Next, the photon stream is partitioned using the reflectivity of the sample. For each 

photon, a Bernoulli trial is performed with probability of success given by the sample reflectivity 

at that point. The result is, of course, that the reflected photon stream at each point is the 

incident photon stream sampled by a binomial random variable. 

Finally, the reflected photon stream is detected. The detection process is handled as 

another binomial random sampling with a probability of each reflected photon being absorbed 

given by the detector’s quantum efficiency.  

We considered four different detection scenarios under realistic conditions. The first is 

spatially resolved detection by a cooled CCD camera. The quantum efficiency of the camera was 

0.9. In the low light level regime, the camera’s read noise is a significant source of noise, so 

each pixel is given an additive Gaussian random variable with a mean and variance of 15 counts. 
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Because the CCD resolution is matched to the target, which is higher than that of the 

correlation images, the second case considered is the CCD image blurred with the same 

Gaussian spot used for some of the illumination patterns. The blurring matches the resolution 

of the CCD to the correlation images while suppressing the noise in the image. 

 
Figure 3.10: Steps taken in the numerical experiment to compare CI with 
traditional, spatially-resolved CCD based imaging. 
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The third detector scenario uses a single photon avalanche photodiode (SPAD) with a 

quantum efficiency of 0.5. In this case, for the simulated photon fluxes, the dominant source of 

noise is dark counts, so 15 dark counts were added at random to the integrated signal. The 

fourth case is that of an ideal photon counter with no dark counts and unity quantum efficiency 

so that the impact of a non-ideal detector may be seen more clearly.  

All of the quantum efficiency and noise parameters are typical for the performance of 

currently available detectors. For the purposes of noise calculations, we assume that data 

collection takes 1 second, which is within the capabilities of current micromirror arrays. 

We used six different targets to evaluate the performance of the different illumination and 

detection conditions. One target consisted of five stripes with reflectivities of 0.2, 0.4, 0.6, 0.8, 

and 1, respectively, as illustrated in Figure 3.11(d). Because CI should be influenced by the total 

area of the target, we have also considered targets consisting of individual stripes imaged one 

at a time. Each stripe had a width of 5 pixels, a length of 40 pixels, and a separation of 20 pixels. 

The Gaussian illumination spots had a standard deviation of 2 pixels and were truncated at a 

diameter of 8 pixels. Typical realizations of different types of illumination patterns are shown in 

Figure 3.11(a)-(c). 
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Figure 3.11: Single realizations of the random illumination patterns for (a) fully 
developed speckle pattern, (b) and (c) Gaussian spots covering 20% and 1% of 
the illuminated area, respectively. (d) Target consisting of five stripes with 
reflectivities of 0.2, 0.4, 0.6, 0.8, and 1. The single stripe targets used stripes of 
the same dimensions located at the position of the top stripe in (d). 

 
Two metrics are used to quantify the quality of the images. The first is the contrast of 

the targets defined as  
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where S(x) is the signal at the location x, i.e., either the detected intensity or the value of the 

correlation, and the brackets represent an average taken over the area, A, of a stripe. The 

contrast is a measure of how much the image is fluctuating over the target area but does not 

indicate how easily the targets can be differentiated from the background. The second 

descriptor is the visibility of the targets defined as 
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The B subscript indicates averaging over the background area. The visibility measures the 

separation between the target and the background signals normalized to the fluctuations in the 

(a) (b) (c) (d)
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background. 

The results for the illumination patterns having the same photon flux are summarized in 

Table 3.2. The columns for the CCD performance are averaged over the three illumination 

patterns because, as expected, there was little variation of the performance of the CCD based 

on the type of random illumination. One of the most striking results relates to the visibilities of 

the 1% coverage illumination targets. The visibility of CI at low light levels improves as the 

number of active illumination spots in the pattern decreases even though the total number of 

photons is the same. We attribute this behavior both to the reduced number of random 

processes contributing to the integrated intensity and to the fact that for a constant total 

number of photons per pattern, the number of photons per spot increases as the number of 

active spots decreases. 

The fluctuations of the incident photon stream are the result of two processes. The first 

is the random nature of the photon arrival times, which follows a Poisson distribution for 

constant intensity sources. These fluctuations are referred to as shot noise or photon noise. The 

second source of fluctuations is due to the varying intensity of the incident illumination that will 

be used to form the correlation image; these fluctuations are referred to as wave noise, 

although they are actually part of the signal. Typically, the strength of the shot noise and the 

wave noise have a different dependence on the average photon flux that causes wave noise to 

dominate at high flux levels and shot noise to dominate at low flux levels. The relative 

importance of the two noise sources as a function of photon flux is the key to understanding 

why the 1% coverage illumination patterns produce the greatest visibilities of the three 
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correlation images. As the number of photons per illumination spot increases, the fluctuations 

in the spot intensity become dominated by the wave noise, which is actually the signal. 

The visibility of the correlation image CI will not improve significantly with the number 

of photons once the intensity fluctuations are dominated by wave noise. The visibility of the 

CCD image, on the other hand, should increase linearly with the number of detected photons 

because the background areas in the CCD image only suffer from read noise, which is 

independent of the signal level. Typically, the only way to improve the visibility of CI is to 

reduce the fluctuations of the correlation in the background by increasing the number of 

illumination patterns. However, we have shown that the visibility of CI depends strongly on the 

nature of the random illumination, and that the visibility can be improved significantly by 

reducing the amount of the target illuminated at any given time. 

From the data in Table 3.2, it is not apparent how much of the improvement in the CI 

visibility is due to changing the coverage area of the illumination and how much is due to the 

change in the unwanted noise in the illumination that changing the coverage area causes. If, 

instead of fixing the number of photons per pattern, we maintain constant the number of 

photons per speckle in order to keep the noise characteristics the same, we find that the CI 

visibility is only weakly dependent on the coverage of the illumination. Also, we note that, due 

to the increased number of photons used to form the image, the standard imaging quickly 

dominates the correlation imaging CI as the speckle volume fraction increases. At low volume 

fractions, however, the visibility of the correlation image is superior, as in the previous case, as 

shown in Table 3.3. 
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Table 3.2: Visibility and contrast when a single stripe target is imaged using CI 
and a conventional CCD with a constant number of photons per illumination 
pattern. R is the stripe’s reflectivity, and N is the number of photons reflected 
from the stripe. CCD is calculated from the spatially resolved detection of the 
reflected photons, and Blurred is from the same image but with the Gaussian 
blur kernel applied as described in the text. The results in the “CCD” and 
“Blurred” columns represent the average for the three types of illumination. The 
remaining columns contain the results corresponding to the bucket detectors. 
“Ideal” indicates an ideal photon counter while “SPAD” denotes the single 
photon avalanche photodiode. In the CI case, the performance depends on the 
illumination. “Speckle”, “20%”, and “1%” correspond to the three types of 
illumination discussed in text: fully developed speckle patterns and the Gaussian 
spots with 20% and 1% coverage, respectively. 

 
 

Contrast (lower is better)

R N CCD Blurred Ideal, 
20%

SPAD, 
20%

Ideal, 
1%

SPAD, 
1%

Ideal, 
speckle

SPAD, 
speckle

0.2 1229 0.214 0.065 0.247 0.291 0.156 0.204 0.325 0.404

0.4 2450 0.191 0.084 0.207 0.230 0.167 0.178 0.241 0.329

0.6 3685 0.178 0.119 0.187 0.206 0.163 0.161 0.210 0.285

0.8 4890 0.164 0.135 0.174 0.185 0.161 0.169 0.182 0.241

1.0 6155 0.153 0.148 0.176 0.178 0.156 0.160 0.174 0.223

Visibility (higher is better)

R N CCD Blurred Ideal, 
20%

SPAD, 
20%

Ideal, 
1%

SPAD, 
1%

Ideal, 
speckle

SPAD, 
speckle

0.2 1229 1.425 6.050 7.445 5.323 32.877 31.580 3.382 2.313

0.4 2450 2.773 11.949 10.856 7.988 35.964 36.931 4.823 3.434

0.6 3685 4.162 17.861 12.775 9.576 37.060 38.586 5.139 3.673

0.8 4890 5.547 23.951 14.267 11.179 37.656 40.082 6.079 4.300

1.0 6155 7.003 30.101 15.459 11.575 37.930 40.557 6.862 5.289
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Table 3.3: Visibility for imaging the single stripe targets with an average of one 
photon per illumination spot. The meaning of the headings is the same as in 
Table 3.2. 

 
Figures 3.12 and 3.13 illustrate images formed under the conventional spatially resolved 

“Blurred” conditions and the images formed by the “SPAD” for the stripes having reflectivities R 

= 1 and R = 0.2, respectively. The much better visibility of the correlation images is largely due 

to the sparseness of the reflected photon stream, since for both the illumination patterns and 

the reflected photons are often both zero valued. The low photon flux does result in many 

weaker, spurious correlations all over the image rather than a more uniform background. The 

CCD images, on the other hand, are dominated by the read noise of the electronics, which is 

approximately one order of magnitude larger than the average photon flux per pixel for R = 1. 

Visibility (higher is better)

R N,
1%

CCD,
1%

Blurred,
1%

Ideal, 
20%

SPAD, 
20%

Ideal, 
1%

SPAD, 
1%

Ideal, 
speckle

SPAD, 
speckle

0.2 1229 -0.049 -0.164 7.445 5.323 12.368 7.766 7.060 5.889

0.4 2450 0.026 0.145 10.856 7.988 18.907 11.862 10.104 7.927

0.6 3685 0.089 0.409 12.775 9.576 21.690 13.595 11.978 9.782

0.8 4890 0.168 0.767 14.267 11.179 24.991 16.955 13.549 10.336

1.0 6155 0.214 0.928 15.459 11.575 26.510 18.916 14.772 12.345
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Figure 3.12: (a) “Blurred” CCD image and (b) correlation image of a stripe with 
R=1, illuminated with 10,000 realizations of the 1% coverage illumination having 
one photon per spot on average. The total number of photons reflected towards 
the detectors is 292. 

 
Figure 3.13: (a) “Blurred” CCD image and (b) correlation image of a stripe with 
R=0.2, illuminated with 10,000 realizations of the 1% coverage illumination 
having one photon per spot on average. The total number of photons reflected 
towards the detectors is 49. 
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Table 3.4: Visibility parameter when the random illumination has 20% coverage 
and an average of one photon per spot. The number of stripes in the target is 
either 1 or 5 as indicated. 

 
Based on the results of our numerical experiments, correlation imaging seems to offer 

attractive properties in low brightness imaging situations; however, it does have some unusual 

features. The first particularity is that the visibility of a correlation image is dependent on the 

area of the target as opposed to traditional spatially resolved imaging procedures. This is 

evident from the data shown in Table 3.4. When imaging all five stripes at the same time, the 

visibility of each of the stripes in the correlation image decreases noticeably. This is due to the 

increased number of random processes that contribute to the integrated signal, making the 

integrated intensity less correlated with any given process. 

The second feature specific to CI at low light levels is that the calculated correlations 

become non-linear with respect to the target reflectivity as shown in Figure 3.14. The mean 

intensity of the stripes in the CCD images always changes linearly with the number of detected 

photons, but at low light levels the stripes become very difficult to distinguish from the 

background. Also, the fixed read noise causes the slope of the CCD’s response to vary with the 

number of photons in the image. 

Visibility (higher is better)

R CCD,1 CCD, 5 Blurred,1 Blurred, 5 Ideal, 1 Ideal, 5 SPAD, 1 SPAD ,5

0.2 1.454 1.435 6.2209 6.434 7.445 2.363 5.323 1.800

0.4 2.886 2.995 12.584 12.534 10.856 4.101 7.988 3.168

0.6 4.243 4.496 18.360 19.516 12.775 5.759 9.576 4.298

0.8 5.691 5.957 24.913 25.453 14.267 8.187 11.179 6.033

1.0 7.277 7.236 31.405 31.251 15.459 9.205 11.575 6.762
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Figure 3.14: Plot of the mean value for each stripe as seen in the CCD and CI 
images for the three illumination conditions, normalized to the mean for the R = 
1 stripe, when (a) the total number of photons in the image and (b) the number 
of photons per speckle are constant. In (a) the CCD output changes very similarly 
under the three illumination conditions, but CI result becomes nonlinear as the 
number of speckles per pattern decreases. In (b), the correlation changes 
similarly for each type of illumination, but the CCD, while still linear, varies 
depending on the total photon flux because of the fixed level of the read noise. 
The lines only serve as guides. 

To summarize, there are experimental circumstances in which correlation imaging may 

perform better than conventional spatially resolved imaging techniques. Specifically, it would 

be interesting to explore the CI approach for imaging weakly reflecting samples, as indicated by 

the high visibilities values, more than two orders of magnitude larger than the CCD visibilities, 

shown in Table 3.3. To that end, we are implementing a CI microscope. The set-up of the 

microscope is shown in Figure 3.15. A spatial light modulator is used to impose a spatially 

varying polarization onto a laser beam which is converted to an intensity modulation by a 

polarizer. Relay optics are used to image the SLM onto the back focal plane of a 60x microscope 

objective. The magnification of the SLM on the sample is controlled by adjusting this relay 

system. Figure 3.16 shows some preliminary data obtained using the experimental system. The 
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target is a microscope calibration slide with 2μm wide stripes that have a center-to-center 

spacing of 10μm. The illumination patterns have a spot size in the sample plane of 

approximately 2μm and 5% coverage.  

 
Figure 3.15: Schematic of a CI microscope. The SLM is used to create a spatially 
varying polarization state on the laser beam, and a polarizer is used to turn the 
polarization into a spatially varying intensity pattern. The intensity pattern is 
projected onto a sample through a microscope objective, and the reflected light 
is either imaged onto a CCD or integrated on a photodiode.  

The ability of CI to form reasonable images with much higher visibility than CCD images at low 

light levels suggests that correlation imaging may be especially beneficial for examining media 

of biological origin which have notoriously weak reflectivities. This could enable label-free 

imaging of biological targets without the use of dyes, external markers, or the need for high 

photon fluxes. In the context of fluorescent microscopy, being able to image with low photon 

fluxes can help reduce the effects of photobleaching and phototoxicity in time series 

measurements [52]. Successful implementation of CI microscopy can therefore open new 

possibilities for real-time, in-vivo, and non-invasive examination of biological processes at 

cellular levels. 
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Figure 3.16: (a) Correlation image and (b) standard CCD image taken of a 
microscope calibration target. The stripes are approximately 2μm wide and 
spaced by 10μm. The size of the illumination spots in the target plane are 
approximately 2μm. 
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4. CHAPTER 4: OUTPUT FIELD MANIPULATION 

 The TM of a material can be directly measured; knowledge of the transfer function 

allows the input light to be structured such that, in combination with the medium, desirable net 

effects, such as focusing, can be produced. There are two primary methods for measuring the 

TM: seaching for the TM via a brute force manipulation of an input wavefront and field 

measurements of the transmitted light. Both techniques will be discussed as well as some of 

their experimental demonstrations. 

4.1 Searching for Transfer Matrices 

 If the TM associated with a scattering medium does not vary temporally, then each 

input field corresponds to a particular output field. The most direct way to produce a particular 

output is first solve the inverse problem to find the corresponding input, and then illuminate 

the medium with that input. Of course, solving the inverse problem using Maxwell’s equations 

requires extensive and usually unavailable knowledge of the random medium. Alternatively, the 

inverse problem can be solved experimentaly. One method of doing so is called phase 

conjugation. The desired output is created using sources, and the field that is transmitted from 

the sources to the other side of the medium is recorded. Once the transmitted field is recorded, 

it can be phase conjugated and sent back through the medium to produce the desire output, 

i.e. the one which had been initially created with sources. This technique is useful in radio 

frequency communication systems where the amplitude and phase of a field can be readily 

measured and will be discussed in more detail in Section 4.2. 
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In the optical regime, phase conjugation of a known wavefront can now be 

accomplished without too much difficulty using a spatial light modulator (SLM), but measuring 

a wavefront still requires an interferometric set-up. Sometimes, however, introducing a 

reference field may not be possible and an empirical approach is necessary. For instance, an 

algorithm for efficiently searching the input space to find an input that produces the desired 

output has recently been demonstrated by constantly measuring the output and using it as a 

feedback to drive the search as depicted in Figure 4.1  [2]. 

 
Figure 4.1: An output can be chosen by varying the input field and having a 
detector report the output. A blind search where the feedback is only used to 
determine if the desired output has been produced could take a significant 
amount of time to complete, but if the feedback is used intelligently, the search 
time can be decreased dramatically. 

The basis of the technique is that the phases of the scattered waves in Equation 2.1 

have two contributions: one from the material, which is constant, and another from the 

incident wavefront, which can be controlled to cause constructive interference with the other 

scattered waves, as shown below. 

 ,)],(),,([exp),(),,(=),( rrrrrrrr ′′+′′′∫ dEaE inc ωψωφωωω


 (4.1) 
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where )],,([exp),,( ωφω rrrr ′′a  transfers the input field incident at r′  to r  and 

)],([exp),( ωψω rr ′′incE  is the incident field at r′ . Figure 4.2 show the idea schematically. 

 
Figure 4.2: Bases of focusing via random media. (a) Scalar field in the output 
plane is the result of contributions from each input point. The phase of each 
contribution can be controlled to maximize the resulting summation as indicated 
in green. (b) Field after manipulating the incident wavefront. 

Figure 4.2(a) shows the field at some point in the plane where the scattered field is to 

be controlled. It is made up of contributions from each point on the input side of the medium. 

The contributions each gain a net phase, φ , by propagating through the medium and sum to 

yield a field with properties described in Section 4.2. However, if the phase of a given section of 

the input wavefront, ψ , is adjusted through π2 , that section's contribution to the sum rotates 

through π2  as well. Because there are very many input points r′  contributing to the 

resulting field, changes to one specific contribution will not appreciably affect the resultant; 

therefore, the phase of a particular section can be changed to cause that section’s contribution 

to the scattered field to align with the original resultant vector. If the maximum (or minimum) 

of the resultant can accurately be determined as the phase of one section of the input is 
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changed, then the input contributions can be sequentially aligned with the original resultant 

field, as shown in Figure 4.2(b), thereby greatly increasing the intensity at that point compared 

to the intensity generated by a plane wave. Conceptually, they search the space of input 

wavefronts to find one for which the random medium’s TM yields the desired output. 

To verify this idea, a spatial light modulator was used to control the wavefront of a 

He-Ne laser beam. The modified wavefront was then passed through a scattering sample, and 

the resulting speckle patter was recorded with a camera. The experimental set-up used is 

shown in Figure 4.3. The camera image was used in a feedback loop to monitor the intensity at 

one point and drive the SLM to maximize the intensity [2]. 

Focusing of light into five points arranged at the corners of a pentagon was also 

demonstrated. The achieved enhancement of the intensity at the focus spot that varied 

between 60 and 1000 times the average background before optimization. The large variation 

was attributed to the differing temporal stabilities of the scattering samples that used; also, the 

enhancement was a linear function of the number of regions used to shape the wavefront [2]. 

In an extension to the focusing work, light was focused onto a fluorophore embedded in 

a scattering medium [53]. The fluorophore was obscured by up to 32 µ m of ZnO pigment and 

could not be detected visually. In the new geometry, the shaped wavefront focused the 

incident light onto the fluorophore, and the fluorescence signal was used to drive the feedback 

loop. For the case of a single fluorophore, the technique works well and achieved 

enhancements of the fluorescence signal of approximately 20 relative to the unoptimized case. 

In addition, the location of the fluorophore did not need to be known. Subsequently, this 
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experiment formed the basis of proposed microscopy [54] and endoscopy [55,56] techniques. 

Recently, several groups demonstrated almost simultaneously that pulsed light could be 

focused in time as well as space by finding the appropriate wavefront [57–59]. 

 
Figure 4.3: Set-up for controlling the field generated by scattering from a random 
medium. 

Because the work presented in [2,53] finds the appropriate incident wavefront to create 

a desired intensity pattern after propagating through the scattering medium rather than 

measuring the TM of the medium directly, the search must be performed for each desired 

output. While a number of schemes to increase the speed of the search have been 

proposed [60], the ability to generate new patterns on the fly will always be hampered by the 

need to perform the search. In an extension to the work in [2] by another group, portions of an 

SLM have been used as a reference wave to determine the TM of a disordered sample rather 

than searching for the input wavefront that will correspond to a desired output [3]. The 

procedure of scanning the phase of one part of the SLM at a time is the same; however, the 

measured speckle patterns are then considered to be the interference of the reference portion 
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of the SLM with the controlled portion after propagation through the medium. Once the 

transfer is known, the desired output is decomposed into a combination of the measured 

outputs, for which the corresponding inputs are known. Light can be focused into arbitrary 

patterns by constructing an input wavefront from the wavefronts used to measure the TM, so 

no additional measurements are needed. Imaging a sparse scene through a diffusive random 

medium was also experimentally demonstrated [3]. Subsequently, the same group 

demonstrated the transmission of complex scenes through a random material as well [61]. 

Interestingly, imaging based on scattered intensity from a random object was shown 

experimentally with good results several years ago, although the object to be imaged had to be 

present during the calibration [62]. The work presented in [2] has also become the basis of a 

proposed endoscopic technique [63]. 

Imaging was shown to be theoretically possible, though technically very challenging, 

using intensity correlations nearly twenty years ago [64–67]. While [3] and [61] did not 

accomplished imaging directly through the correlation of speckle patterns, their focusing and 

imaging demonstrations have the same, rather severe, limitations. Imaging through a 

disordered material requires a large number of reference speckle patterns and has a limited 

depth of field. The imaged wavefront will be the one in the same plane as the reference speckle 

patterns, so if the object is not actually in that plane sharp imaging will not be possible. Also, 

the scattering medium must be quite stable because the reference speckle patterns are an 

interference phenomenon; even small reconfigurations of the scattering medium will cause 

speckle patterns of the same object taken before and after the reconfiguration to be 
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uncorrelated with one another. From the theory of DWS, the characteristic decorrelation time 

of the medium is proportional to 2)/*( Ll , where L is the thickness of the medium and l* is 

the scattering mean free path [18]. 

4.2 Measuring Transfer Matrices 

We have already discussed TM measurements in the optical regime at the end of the 

previous section. The primary difference between measuring a TM and searching for an input 

that, after being acted on an unknown TM, produces the desired output is that when the TM is 

measured, new outputs can be generated without additional measurements. While imaging 

and focusing with random materials have only recently been demonstrated in the optical 

regime, they have been done for quite some time in the radio frequency regime and acoustics. 

The basic problem, shown below in Figure 4.4, is that a set of transmitters and a set of receivers 

are separated by or embedded in a multiply scattering medium; this geometry is known as 

multiple-input multiple-output (MIMO) in the communication field. 

In a homogeneous medium, the transmitters are able to send out phase shifted copies 

of a signal that will interfere constructively in a certain direction, allowing them to focus their 

power towards the receivers. Similarly, the receivers can combine the detected signals with 

phase shifts to selectively measure in a certain direction [68]. With a scattering medium 

between them, if the transmitters try to transmit a signal to the receivers in the same way they 

would if the medium were not present, the multiple scattering would spread the signal in time 

and diffuse the power through out space. 
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Figure 4.4: An array of transmitters and an array of receivers separated by a 
homogeneous material (a) or a randomly scattering material (b). In the 
homogeneous case, the transmitters are able to focus their power onto the 
receivers, but the scattering medium dissipates their power. 

By knowing the TM of the random material, however, the transmitters can again work 

as they did in free space. The receivers sequentially emit a short pulse while the antennas 

record the multiply scattered field as shown in Figure 4.5(a). The recorded field gives the 

transfer function associated with the material for that input, in this case, the Green's function 

of propagation. Once the transmitters have these training fields, they can emit phase 

conjugated waveforms that will focus on to the receivers after propagation though the medium 

as depicted in Figure 4.5(b), thus allowing them to direct their energy towards the receivers 

once again [69–71]. 

Phase conjugation allows for more than simply transmitting as though the medium were 

not there; the multiply scattering medium can actually enhance the ability of the antennas to 

transmit data to the receivers using phase conjugation [68,72–74]. In a homogeneous medium, 

multiple transmitters can direct a signal towards a receiver, but, neglecting phase delays, all of 

the receivers measure the same signal. Thus, if the transmitters tried to combine multiple 

signals, the receivers would not be able to separate them; in the language of linear algebra, the 

receivers would have one equation with multiple unknowns. The scattering medium, on the 
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other hand, allows groups of transmitters to send multiple signals, one to each receiver, 

simultaneously. Because the training fields that focus on to each receiver individually are 

known, the transmitters simply need to emit the phase conjugate of the sum of the appropriate 

training fields. After propagating through the medium, each component of the input 

summation will focus onto its respective receiver. In effect, the scattering medium acts like a 

group of independent communication channels and enhances the capacity of the 

communication system [68–75]. 

 
Figure 4.5: (a) An antenna sends a pulse through a scattering medium while 
other antennas record the scattered field. (b) The recording antennas send the 
phase conjugate of the previously recorded pulse back through the medium. 
After propagating through the medium, the signal focuses onto the original 
antenna. 
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5. CHAPTER 5: INPUT FIELD CHARACTERIZATION USING MEASURED 
TRANSFER MATRICES 

 
 We have seen how the TM allows us to manipulate the light scattered from a random 

material, and the work in [3] has shown that imaging through a random material, or in other 

words determining the incident wavefront, is possible if the TM of the material is known as a 

function of the wavefront. The TM can be used to quantify many other properties of the light as 

well. 

5.1 Polarimetry 

 While imaging an object through a scattering medium may be difficult, there are other 

applications, such as polarimetry, that do not require a large number of reference speckle 

patterns because the quantity of interest has fewer degrees of freedom. Much as the imaging 

idea relied on measuring the response of the random medium to ``point'' sources and then 

viewing the object as a collection of such sources, polarimetry requires measuring the response 

of the medium to different states of polarization and then decomposing an unknown state into 

the reference states. 

Measuring the state of polarization of an unknown field was first demonstrated by 

correlating the speckle pattern produced by the unknown field with several reference speckle 

patterns [5]. The correlation of the unknown field's speckle pattern with the reference patterns 

in effect gives the contribution of each of the reference states to the unknown. However, since 

the scattered intensities, not the fields, are correlated, the speckle patterns need to be fully 
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developed in order to relate the intensity correlations to the field correlations via the Siegert 

relation. 

Recently, polarimetry has been demonstrated by measuring the transfer functions of a 

randomly scattering material, instead of through correlations [4]. The transfer method 

demonstration does not require any special assumptions about the nature of the random field, 

meaning that it is valid even for partially developed random fields. Also, since spatial 

correlations are not used, the new demonstration is capable of quantifying spatially varying 

input fields [76]. 

The motivation for a TM based polarimeter is the same as the wavefront shaping 

experiment; the field at a given point after the scattering medium is a sum of many scattered 

contributions from the front side of the medium with appropriate scalings and rephasings; 

however, in this case the input field is a vector field. 

To see more fully how the technique works, consider a slab scattering material 

illuminated by an arbitrary, monochromatic wave front with a uniform state of polarization at 

each point with nonzero intensity, as depicted in Figure 5.1. Locations on the input face of the 

slab are denoted by ix , and locations through out the volume where the scattered fields can 

reach are denoted by ir . 

Let ),( kjiT xr  be the transfer of the field incident on the point kx  to the point jr  

along scattering path i, then the total field at the detector, detr  is obtained by adding the 

contributions of all scattering paths through the medium which end at the detector.  
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Figure 5.1: Light scattering inside a random slab. 

If the polarization of the incident field is uniform across the face of the slab then a 

polarization unit vector can be factored out of the sums. In factoring out a polarization unit 

vector, we are not quite factorizing the scattering process because we leave the intensity 

distribution of the incident field with the description of the scattering.  

 incdetdettotE err )(=)( α


 (5.2) 

Equation 5.2 makes it clear that the medium is essentially functioning as a spatially 

varying polarization transformation for the incident polarization state. If the matrix )(rα  can 

be determined, then by combining the measurements performed at several different locations, 

the incident Stokes' vector can be estimated. A brief examination of )(rα  shows that not all of 

the elements of the matrix are needed because the output field contains complete information 

about the incident field in both of its components. Therefore, by measuring the scattered light 

through a polarizer and neglecting the global phase, the remaining elements of )(rα  can be 

measured at each point in the output plane using standard techniques used to calibrate Stokes 

polarimeters [4]. 
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Because we can easily measure intensities rather than fields, Equation 5.2 is more useful 

when expressed as intensities but also more cumbersome to work with. Fortunately, because 

the scattering medium, and therefore the interferences inside it, is fixed, we can work directly 

with the measured intensities. The measurement of a Stokes vector, S , can be ideally depicted 

as SMI ⋅= , where I  represents the column vector of intensity measurements from each of 

the speckles being used in the analysis. M  is the measurement matrix of the polarimeter and 

is determined by α  by viewing α  as a combination of waveplates and polarizers. Each row 

of M  is the first row of the Mueller matrix for the corresponding speckle, so it couples the 

polarization state into the measured intensity. 

If each speckle used in the analysis samples the input field differently, then M  is 

invertible, and the incident Stokes vector can be estimated as  

 .= 1 IMS ⋅−  (5.3) 

If more than four different speckles are used, the TM is not invertible because the 

system is overdetermined, i.e., it has more rows than columns, and a pseudoinverse of M  

must be used instead. Noise in the measurements will result in the measurements being 

inconsistent, so the least squares solution for the Stokes vector, given by the Morse-Penrose 

pseudoinverse, is usually found. 

There are a few interesting points to be noted about this type of polarization 

measurement. First, because )(rα , or equivalently M , essentially represents a mapping 

between the incident and the measurement coordinate systems, see Figure 5.2, the orientation 

of the measurement polarizer does not matter; the orientation of the measurement system is 
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given by the calibration states rather than the orientation of the measurement system. Second, 

because the spatial distribution of amplitude and phase only factors out of Equation 5.2 for a 

uniform distribution, simple calibration schemes will require that the field to be measured and 

the calibration field have the same intensity distribution and wavefront to be valid. If either the 

intensity or phase distributions vary, the contributions of the scattering paths to the final field 

will not be the same for the calibration fields and the field to be measured; in effect, the 

unknown field will interact with a different realization of the scattering material than the 

calibration fields. 

An example of data collected with this kind of a system is shown in Figure 5.3. The 

illumination was a uniform state of polarization with an expected Stokes vector of (Q,U,V) = 

(0.577,-0.577,-0.577). In the figure, each of the blue dots is a calculation of the incident state 

using 40 speckles as a single, overdetermined polarimeter. Because there is no reason to form 

any particular group of speckles into a polarimeter, many different groups can be formed and 

the polarization analysis repeated many times. The geometric center of the cloud of white 

points is shown as a white dot located at (Q,U,V) = (0.62,-0.59,-0.52). 

Equation 5.1 seems to imply that random materials can only analyze uniform 

polarization states because of the interferences in the medium; however, the geometry shown 

in Figure 5.2 is capable of measuring fields with a spatially varying state of polarization [76]. 

Essentially, the random medium is a thin layer of scatterers covering an imaging fiber bundle 

that encode the polarization state into intensity scattered into the fibers. The thin layer of 

scattering material covering the input face of the fiber bundle ensures minimal spreading of the 
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local incident polarization over the fiber face, and the waveguide structure minimizes cross talk 

during propagation to the detection electronics. Groups of neighboring fibers can be used to 

perform a local polarization analysis. 

 
Figure 5.2: Geometry of a spatially resolved TM based polarimeter. A thin layer 
of scattering material is applied to the face of an imaging fiber bundle to allow 
access to local states of polarization. 

 

 
Figure 5.3: Example data collected with TM based polarimetry concept. 

To test the performance of the polarimeter with a scene containing rapid variation in 

the polarization state, a checker pattern with sharp changes in polarization state at the edges of 

the checkers was imposed on an input beam. The U component of the Stokes vector measured 

for the checker pattern is shown in Figure 5.4. The white box in Figure 5.4(b) shows the 

approximate area measured by the fiber polarimeter, 148x163 mµ . The Q component is 0 and 
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nearly uniform, the V component is not uniform but is the inverse of the U component and 

looks very similar to the images shown. The main features of the checker pattern are recovered 

by the fiber polarimeter, but the impact of spatial averaging is also present due to the rapid 

variation of the polarization state. This image was performed using groups of four fibers 

selected from an 18 mµ  diameter circle centered on the location of the shown data. The 

extent of spatial averaging could be controlled by adjusting the size of the measurement area 

during processing until only the four closest elements in the area are included in the sampling 

area. 

Due to the large number of speckles available for analysis, this technique offers many 

different adjustable parameters in the analysis: the number and orientations of the analyzers 

(i.e. speckles) in each polarimeter, the method of analysis used (data reduction matrix, Fourier 

transform, etc), and the spatial resolution used to analyze the unknown field. 

Performing polarimetry with random scattering carries a few important restrictions. 

Although traditional polarization optics are not needed for the measurement, the wavefronts of 

the unknown and the reference fields must be the same for the speckle patterns to be 

correlated. Also, the scattering medium must be mechanically stable for both the calibration 

and measurement. 

Implementing a polarimeter using a scattering material followed by a wave guide offers 

several desirable features. The spatial resolution is comparable to traditional polarimetric 

techniques; however, the resolution of this method can be traded off with the measurement 

precision to optimize the analysis of the unknown field in post processing. Figure 5.5 shows the 



71 
 

data from Figure 5.3 processed using 4, 8, 24, and 40 speckles as a single polarimeter. The 

average state recovered does not shift, but the spread of the recovered states decreases 

dramatically. Also, the wavelength to be analyzed is chosen by the calibration wavelength, so 

examining sources of various colors does not require any adjustments to the measurement 

device itself. The working wavelength range of the device is determined by the spectral 

response of the fiber bundle and detector, which is very broad compared to traditional 

polarization optics. The parallel nature of the measurement means that its temporal resolution 

can be quite high. Finally, the polarimeter performs a full polarization analysis with a probe that 

is very simple and compact. We expect the concept to find applications in microscopy, 

endoscopy [5], and any other area where simultaneous sampling of many points is required. 

 
Figure 5.4: The U component of the Stokes vector for a checker pattern 
generated by a SLM. (a)The measurement made by the fiber polarimeter. (b)The 
measurement made using a polarizer and CCD array. The white box indicates the 
approximate area measured by the fiber polarimeter. 
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Figure 5.5: Polarimetric data processed using groups of 4, 8, 24, and 40 speckles 
per polarimeter. 

5.2 Spectroscopy 

 Another application of the transfer matrix method is for spectral measurements. The 

spectral transmission of the random material will vary across the face of the material because 

speckle patterns generated by different wavelengths will be uncorrelated with one another. 

Using a tunable source, the spectral transmission at each detector location can be measured. 

The total field will be of the form 

 .),(),,(=)( ωωω ddEaE intot rrrrr ′′′∫∫  (5.4) 

As with the polarization measurement, if the spectrum is uniform across the input, a 

spectral vector can be factored out of the spatial integral. When the material is exposed to the 

unknown spectrum, the random material will sample the spectrum in many different ways and 

the resulting intensity of each sampling will be recorded. The unknown spectrum can be 

calculated by solving a system of linear equations using a spectral calibration of the medium [6]. 

We have demonstrated that spectrally resolved polarimetric information can be 

measured using the TM of a disordered material [77]. Some spectra measured from the 

scattered produced by a random material and a traditional spectrometer are shown in Figure 

5.6. Because of the finite number of calibration spectra that can be used in a real experiment, 
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the integral in Equation 5.4 is approximated with a sum; the TM used for the measurement 

shown in Figure 5.6 was measured every 3nm. As can be seen, the measured spectra agree 

quite well with one another. The polarimetric aspect of the measurement was similar to the 

results already shown.  

 
Figure 5.6: Some example spectra measured using a conventional spectrometer 
(red line) and a random material (blue line). 

Naturally, the spectral measurement can be extended to measure spatially varying 

spectra in the same manner as in [3]. We demonstrated this concept using an LCD monitor, 

imaged onto the system shown in Figure 5.2, as a source of spatially varying spectra. Calibration 

data were taken for the red and green outputs of the monitor, and then a pattern of red and 

green stripes was displayed on the monitor. A representative set of data is shown in Figure 5.7.  

Characterizing the input to a random system and controlling the output from the system 

both involve measuring the TM of the medium as a function of the parameter of the light to be 

measured or controlled. However, the number of elements of the TM that need to be 

measured vary considerably depending on the number of degrees of freedom in the input. For 

example, to measure an input spectrum, we have to measure one element of the material's TM 

for each component of the spectrum; however, for polarimetry, we only need to measure four, 
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well-chosen elements of the TM because any polarization state can be decomposed into those 

elements. 

 
Figure 5.7: An example of a spatially varying spectrum measured using a random 
material. 
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6. CHAPTER 6: SUMMARY OF ORIGINAL CONTRIBUTIONS AND 

CONCLUSIONS 

Linear systems theory (LST) has been a powerful tool in the development of optics. In 

the view of LST, when an illumination field excites a material system, the interaction of the field 

with the medium deterministically produces an output field. The medium can then be 

characterized by a transfer matrix (TM) that connects the input and output fields. Three 

fundamental problems can be posed in LST: (i) the determination of the medium’s properties 

based on knowledge of the inputs and outputs, (ii) the determination of the output’s properties 

based on knowledge of the inputs and the medium, and (iii) the determination of the input’s 

properties based on knowledge of the medium and the outputs. 

While several topics in this dissertation were motivated by recent research related to 

the second LST problem, specifically controlling the output of a random scattering system, we 

have largely focused on the first and third questions. 

In the case of random media, the first problem produced mixed results. It was shown in 

Chapter 2 that scattered fields with contributions from many independent scatterers have 

universal statistical properties, independent of the scattering medium. In some cases however, 

the scattered field does not develop universal statistics and can be used as a fingerprint for the 

medium, as discussed in Chapter 3. As a practical example, we sought to distinguish between 

asphalt samples that had been pressed with different pressures and in some cases had their 

surfaces obscured with sand or water. The samples were illuminated with a linearly polarized 

laser beam, and the distribution of backscatted polarization states was measured. Based on the 
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polarization statistics of the backscattered light, we showed that the asphalt samples could be 

distinguished from one another and that asphalt covered with sand or water could be 

distingushed from the unobscured asphalt. 

Even in the case where the light scattered from the sample does have universal 

statistics, useful information about the scattering system may be contained in the dynamics of 

the scattered light. The field distribution that results from scattering depends on the specific 

realization of the scattering system; if the system is dynamic, the scattered field will have 

temporal as well as spatial fluctutions. We discussed two measurement techniques, dynamic 

light scattering and diffusive wave spectroscopy, that seek to relate the temporal 

autocorrelation of the light scattered from particles in suspensions to the diffusion coefficient 

of the scatterers. 

In the course of studying fluctuating fields, such as those occuring in dynamic light 

scattering, we developed a new theory for determining the state of polarization of the 

scattered field from the intensity fluctuations of the scattered field mixed with a local oscillator 

as a function of the oscillator’s state of polarization, and presented a proof of concept 

experiment utilizing the pseudothermal light created by rotating diffusers. This novel 

fluctuation polarimetry was also discussed in Chapter 3. As noted, the relationship between the 

degree of polarization (DOP) and the contrast of intensity fluctuations was discovered by 

generalizing the analysis of intensity interferometry to electromagnetic fields [31]. The 

demonstrated technique is advantageous in that it requires little change to current 
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measurement set-ups, does not discard any of the scattered light, and because of its 

interferometric nature, may be used to amplify the signal from weakly scattering systems. 

Random fields also emerge from the interaction with material systems that are not 

intrinsicly dynamic. For example, speckle interferometry techniques attempt to quantify local 

changes in the spatial distribution of the scattered light as a test object is slowly placed under a 

load. For small shifts, the local shifts in the scattered light can be related to local shifts in the 

test object. 

Another approach to material determination considers probing the material with 

randomly fluctuating fields. This technique is utilized in aperture correlation microscopies 

(ACM) and correlation imaging (CI). The primary difference between ACM and CI is that the 

former records the scattered light using a spatially resolved detector whereas CI integrates the 

scattered light using a bucket detector. In CI, the image is then formed by correlating the 

integrated signal with the random illumination patterns. The correlation image yields the 

material’s reflectivity or transmissivity, depending on the experimental geometry, because the 

correlation image essentially tells how much of the integrated signal is due to each portion of 

the random illumination. We studied in detail the quality of correlation images compared to 

traditional imaging. Typical CI techniques use fully developed speckle patterns to probe the 

medium, but by projecting the surface of an amplitude-only spatial light modulator onto the 

sample plane, we are able to create arbitrary random illuminations. For the random 

illumination patterns used to generate the correlation images, we examined typical fully 

developed speckle patterns as well as patterns generated by randomly generating illumination 
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spots with a Gaussian intensity profiles. In addition to considering the effects of different types 

of random illumination, we were able to account for the additional randomness due to the 

partioning the photon stream caused by subunity target reflectivity and detector quantum 

efficiency. All these aspects are critical for situations chracterized by low illumination levels, 

specific to biological microscopies, and have not been previously considered. 

Our results demonstrate that, at low photon fluxes, the imaging characteristics of a 

correlation imager can be substantially better than that achieved with a standard CCD based 

imaging. The comprehensive critical analysis of these imaging modalities indicates that the 

performance of a spatially-resolved imager is essentially independent of the type of 

illumination but sensitive to the total number of photons. On the other hand, he quality of 

correlation imaging procedure depends on the on the total area of the target and the CI 

outcome can be controlled by the type illuminiation used. These findings were were then used 

to design a multifunctional imaging setup for implementing correlation imaging strategies. 

Preliminary data obtained with this new type of correlation imaging microscope were also 

presented. This constitutes a testbed to experimentally validate the performance of different 

correlation imaging modalities, some of which were not dicussed here.  

The second LST problem, the direct calculation of the scattered field based on 

knowledge of the input and the medium, implies that knowing TM of a particular medium 

allows the selection specific outputs by controlling the input. Other researchers have 

demonstrated this idea by focusing light through a random material, which may have 
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applications in photodynamic therapies. Properties besides the output intensity distribution, 

such as the polarization states or spectrum, could also be controlled. 

Motivated by the research on controlling the scattered light from a random medium, we 

investigated how knowledge of TM’s allows one to infer properties of the input field based on 

the scattered light and discussed our results in Chapter 5. By their nature, random media 

produce many different samplings or mixings of the input field, but unlike more traditional 

optical elements, random materials sample all properties of the input field. As a result, 

disordered materials could be expected to be able to serve in place of many different types of 

traditional optical components or systems if the appropriate subsets of the TM were known or 

learned though a calibration proceedure [66]. We have demonstrated that random materials 

may be calibrated both polarimetrically and spectropolarimetrically, and that they may be used 

to measure unknown fields. We have shown for the first time that in realistic situations a 

random medium can be used to perform spatially resolved measurements of the polarimetric 

and spectroscopic properties of an unknown field. Our experiments demonstrated a full Stokes 

polarimeter on the end of an imaging fiber bundle with a diameter of approximately 150μm 

and a spatial resolution of 18μm. Moreover, we have also demonstrated that spectroscopic 

measurments can be symultaneously performed using the same setup. Such 

spectropolarimetric measurements achieved a spectral resolution of 3nm over a 60nm band 

and 1.5nm over a 30nm band while simultaneoulsy determining the Stokes vector of the 

incoming radiation. 
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Interestingly, the property of the input field that is estimated by a random material 

depends only on the subset of the TM that is used in the analysis, meaning that scattering from 

one realization of a material can reveal many different properties about the input by simply 

changing the calibration data used to analyze the measured data rather than changing the 

physical interaction. That is quite different from regular optical systems where the decision to 

measure a property of the field has the be made before the measurement is taken. It should be 

noted that the other properties of the unknown light must be the same as that of the 

calibration light. For example, it is possible to measure the spectral response of a material; 

however, the material may also have a polarimetic response. In that case, either a full 

spectropolarimetric measurement must be made or the polarimetric properties of the spectral 

calibration source must match those of the unknown source. With that caveat, the potential for 

adaptive measurements based on sampling performed by random media may have unique 

applications. 

This dissertation covered several examples of measurements that use the properties of random 

fields rather than simply overcome the inherent fluctuations resulting from the interaction of 

optical fields with complex material systems. Some of the novel techniques described here may 

find use in challenging measurement scenarios involving weak light-matter interactions and 

low-light level scattering. 
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