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ABSTRACT

Digital processing of signals f may start from sampling on a discrete set Γ, f 7−→
(
f(γn)

)
γn∈Γ

.

The sampling theory is one of the most basic and fascinating topics in applied mathematics and

in engineering sciences. The most well known form is the uniform sampling theorem for ban-

dlimited/wavelet signals, that gives a framework for converting analog signals into sequences of

numbers. Over the past decade, the sampling theory has undergone a strong revival and the stan-

dard sampling paradigm is extended to non-bandlimited signals including signals in reproducing

kernel spaces (RKSs), signals with finite rate of innovation (FRI) and sparse signals, and to non-

traditional sampling methods, such as phaseless sampling.

In this dissertation, we first consider the sampling and Galerkin reconstruction in a reproducing

kernel space. The fidelity measure of perceptual signals, such as acoustic and visual signals, might

not be well measured by least squares. In the first part of this dissertation, we introduce a fidelity

measure depending on a given sampling scheme and propose a Galerkin method in Banach space

setting for signal reconstruction. We show that the proposed Galerkin method provides a quasi-

optimal approximation, and the corresponding Galerkin equations could be solved by an iterative

approximation-projection algorithm in a reproducing kernel subspace of Lp.

A spatially distributed network contains a large amount of agents with limited sensing, data pro-

cessing, and communication capabilities. Recent technological advances have opened up possibil-

ities to deploy spatially distributed networks for signal sampling and reconstruction. We introduce

a graph structure for a distributed sampling and reconstruction system by coupling agents in a

spatially distributed network with innovative positions of signals. We split a distributed sampling

and reconstruction system into a family of overlapping smaller subsystems, and we show that the

stability of the sensing matrix holds if and only if its quasi-restrictions to those subsystems have
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uniform stability. This new stability criterion could be pivotal for the design of a robust distributed

sampling and reconstruction system against supplement, replacement and impairment of agents,

as we only need to check the uniform stability of affected subsystems. We also propose an ex-

ponentially convergent distributed algorithm for signal reconstruction, that provides a suboptimal

approximation to the original signal in the presence of bounded sampling noises.

Phase retrieval (Phaseless Sampling and Reconstruction) arises in various fields of science and

engineering. It consists of reconstructing a signal of interest from its magnitude measurements.

Sampling in shift-invariant spaces is a realistic model for signals with smooth spectrum. We con-

sider phaseless sampling and reconstruction of real-valued signals in a shift-invariant space from

their magnitude measurements on the whole Euclidean space and from their phaseless samples

taken on a discrete set with finite sampling density. We find an equivalence between nonseparabil-

ity of signals in a shift-invariant space and their phase retrievability with phaseless samples taken

on the whole Euclidean space. We also introduce an undirected graph to a signal and use con-

nectivity of the graph to characterize the nonseparability of high-dimensional signals. Under the

local complement property assumption on a shift-invariant space, we find a discrete set with finite

sampling density such that signals in shift-invariant spaces, that are determined by their magni-

tude measurements on the whole Euclidean space, can be reconstructed in a stable way from their

phaseless samples taken on that discrete set. We also propose a reconstruction algorithm which

provides a suboptimal approximation to the original signal when its noisy phaseless samples are

available only.
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CHAPTER 1: INTRODUCTION

Digital processing of signals f may start from sampling on a discrete set Γ,

f 7−→
(
f(γn)

)
γn∈Γ

(1.1)

[13, 131, 158, 159]. The sampling theory is one of the most basic and fascinating topics in ap-

plied mathematics and in engineering sciences. The celebrated Whittaker-Shannon-Kotelnikov’s

sampling theorem states that a bandlimited signal can be recovered from its samples taken at a

rate greater than twice the bandwidth [131, 163]. In last two decades, that paradigm for ban-

dlimited signals has been extended to represent signals in a shift-invariant space [13, 17, 158],

signals with finite rate of innovation [62, 115, 121, 141, 143, 159], signals in a reproducing kernel

space [46, 75, 87, 116, 117], and to non-traditional sampling methods, such as dynamic sampling,

phaseless sampling, random sampling and mobile sampling [8, 17, 29, 127].

1.1 Sampling and galerkin reconstruction in reproducing kernel spaces

A fundamental problem in sampling theory is how to obtain a good approximation of the signal f

when only the noisy sampling data
(
f(γn) + ε(γn)

)
γn∈Γ

is available [3, 13, 141, 158]. The above

problem is well studied and many algorithms, such as the frame algorithm and the approximation-

projection algorithm, have been proposed [11, 47, 64, 70, 116, 141, 148].

A conventional way to reconstruct signals f in a linear space V from their sampling data is to solve

a minimization problem

Rf := argminh∈V ‖h− f‖, (1.2)
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where the fidelity measure ‖h−f‖ depends only on the sampling data of h−f on Γ. Typical exam-

ples of fidelity measures in the bandlimited setting are weighted sampling energy
∑

γn∈Γwn|f(γn)−

h(γn)|2 and weighted pre-reconstruction energy ‖
∑

γn∈Γ wn(f(γn)−h(γn))sinc(·− γn)‖2, where

wn are positive weights appropriately selected.

The fidelity of perceptual signals, such as acoustic and visual signals, might not be well measured

by some weighted square errors [42, 162]. In Chapter 2, we introduce a general fidelity mea-

surement associated with a linear operator S on a Banach space V , that depends on the sampling

scheme (1.1). Then the minimization problem (1.2) becomes

Rf := argminh∈V ‖Sh− Sf‖V . (1.3)

The operator S in the above minimization problem can be selected as

Sf :=
∑
γn∈Γ

wnf(γn)sinc(· − γn)

for the bandlimited setting, and

Sf :=
∑
γn∈Γ

wnf(γn)K(·, γn)

for the reproducing kernel space setting.

The nonlinear minimization problem (1.3) does not give a tractable signal reconstruction. Observe

that

‖Sh− Sf‖V = sup
‖g‖V ∗=1,g∈V ∗

|〈Sh− Sf, g〉|,

where 〈·, ·〉 is the standard dual product between elements in V and its dual V ∗. So we propose a

Galerkin method (2.3) and (2.4) in Banach space setting for signal reconstruction in Chapter 2.
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We also apply the Galerkin reconstruction (2.3) and (2.4) for signals in a reproducing kernel space

(RKS) of the form

VK,p :=
{
T0f : f ∈ Lp

}
= {f ∈ Lp : T0f = f}, 1 ≤ p ≤ ∞, (1.4)

where T0 is an idempotent integral operator with kernel K,

T0f(x) :=

∫
Rd
K(x, y)f(y)dy, f ∈ Lp. (1.5)

The RKS of the form (1.4) has rich geometric structure, lots of flexibility and technical suitability

for sampling. It has been used for modeling bandlimited signals, wavelet (spline) signals, and

signals with finite rate of innovation [13, 116, 117, 143, 158].

For the sampling scheme (1.1) on VK,p, take a disjoint covering

{In ⊂ B(γn, δ) : γn ∈ Γ}

of B(Γ, δ) := ∪γ∈ΓB(γ, δ) = ∪γ∈Γ{x : |x− γ| ≤ δ}, and define

SΓ,δf(x) :=
∑
γn∈Γ

|In|f(γn)K(x, γn), f ∈ VK,p, (1.6)

where δ > 0. The operator SΓ,δ depends only on the sampling scheme (1.1). We call it a pre-

reconstruction operator, as SΓ,δf(x) is a good approximation to f(x) when δ is sufficiently small

and x ∈ B(Γ, δ) is away from the complement of B(Γ, δ), see Figure 1.1. Plotted on the left in

Figure 1.1 is a bandlimited signal f0 =
∑

i αisinc(· − i) with αi ∈ [−1, 1] randomly selected. On

the right is the difference between f0 and its pre-reconstruction h0 = SΓ,δf0, where δ = 1 and Γ :=

{γk, k = 1, 2, · · · , 80} is a nonuniform sampling set with γ1 = −40 and γk−γk−1 ∈ [0.9, 1.1], 2 ≤
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k ≤ 80, being randomly selected. In this figure, the maximal amplitude max−38≤t≤38 |f0(t)| of the

signal f0 is 1.7498, while the maximal pre-reconstruction error max−38≤t≤38 |h0(t) − f0(t)| on

[−38, 38] ⊂ B(Γ, 1) is 0.6708.

Figure 1.1: A bandlimited signal f0 and the the difference between f0 and its pre-reconstruction
h0 = SΓ,δf0

Due to the above approximation property of the pre-reconstruction operator SΓ,δ, we propose the

following iterative approximation-projection algorithm

g0 ∈ U and gm+1 = gm − PU,ŨSΓ,δgm + g0, m ≥ 0, (1.7)

to solve the Galerkin reconstruction (2.3) and (2.4), where PU,Ũ is an oblique projection for the

trial-test space pair (U, Ũ). The above algorithm is shown in Theorem 2.12 to have exponential

convergence, c.f. [11, 16, 69, 116, 151].

1.2 Spatially distributed sampling and reconstruction

A spatially distributed system (SDS) contains a large amount of agents with limited sensing, data

processing, and communication capabilities [4, 44, 165, 166]. Recent technological advances have
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opened up possibilities to deploy spatially distributed systems for signal sampling and reconstruc-

tion. Comparing with traditional centralized systems that have a powerful central processor and re-

liable communications between agents and the central processor, an SDS could give unprecedented

capabilities especially when creating a data exchange network requires significant efforts (due to

physical barriers such as interference), or when establishing a centralized processor presents the

daunting challenge of processing all the information (such as big-data problems). In Chapter 3, we

introduce a graph structure for a distributed sampling and reconstruction system. For a distributed

sampling and reconstruction system, the robustness of signal reconstruction could be reduced to

the stability of its sensing matrix. In Chapter 3, we split a distributed sampling and reconstruc-

tion system into a family of overlapping smaller subsystems, and we show that the stability of

the sensing matrix holds if and only if its quasi-restrictions to those subsystems have uniform sta-

bility. Later in Chapter 3, we propose an exponential convergent distributed algorithm for signal

reconstruction, that provides a suboptimal approximation to the original signal in the presence of

bounded sampling noises.

1.3 Phaseless sampling and reconstruction in shift-invariant spaces

Phase retrieval plays important roles in signal/image/speech processing ([72, 73, 89, 91, 94, 101,

114, 128, 132]). It consists of reconstructing a signal of interest from its magnitude measurements.

The underlying recovery problem is possible to solve only if we have additional information about

the signal.

The phase retrieval problem of finite-dimensional signals has received considerable attention in

recent years, see [19, 20, 34, 37, 161] and references therein, but there are still lots of open

mathematical and engineering questions unanswered. In the finite-dimensional setting, a fun-

damental problem is whether and how a (sparse) vector x ∈ Rd (or Cd) can be reconstructed
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from its magnitude measurements y = |Ax|, where A is a measurement matrix. The phase

retrievability has been characterized via the measurement matrix A ([20, 23, 161]), and many

algorithms have been proposed to reconstruct the vector x from its magnitude measurements y

([34, 35, 37, 72, 76, 119, 120, 123, 132]).

The phase retrieval problem in an infinite-dimensional space is different from a finite-dimensional

setting. There are several papers devoted to that topic ([5, 6, 7, 33, 110, 125, 126, 133, 154, 164]).

Thakur proved in [154] that real-valued bandlimited signals could be reconstructed from their

phaseless samples taken at more than twice the Nyquist rate. The above result was extended

to complex-valued bandlimited signals by Pohl, Yang and Boche in [126] with samples taken at

more than four times the Nyquist rate. Recently, the phase retrievability of signals living in a

principal shift-invariant space was studied by Shenoy, Mulleti and Seelamantula in [133] when

only magnitude measurements of their frequency are available.

The concept of shift-invariant spaces arose in sampling theory, wavelet theory, approximation the-

ory and signal processing, see [13, 17, 30, 54, 55, 98, 109, 158] and references therein. Sampling

in shift-invariant spaces is well studied as it is a realistic model for modelling signals with smooth

spectrum, and a suitable model for taking into account the real acquisition and reconstruction de-

vices and the numerical implementation, see [10, 13, 17, 64, 145, 148, 158] and the extensive list

of references therein.

Sampling in shift-invariant spaces is a realistic model for signals with smooth spectrum. In Chap-

ter 4 and 5, we consider phaseless sampling and reconstruction of real-valued signals in a shift-

invariant space from their magnitude measurements on the whole Euclidean space and from their

phaseless samples taken on a discrete set with finite sampling density. We introduce an undirected

graph to a signal and use connectivity of the graph to characterize whether the signal can be de-

termined, up to a sign, by its magnitude measurements on the whole Euclidean space. Under the
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local complement property assumption on a shift-invariant space, we find a discrete set with finite

sampling density such that signals in the shift-invariant space, that are determined by their magni-

tude measurements on the whole Euclidean space, can be reconstructed in a stable way from their

phaseless samples taken on that discrete set. In this paper, we also propose a reconstruction algo-

rithm which provides a suboptimal approximation to the original signal when its noisy phaseless

samples are available only. Finally, numerical simulations are performed to demonstrate the robust

reconstruction of spline signals from their noisy phaseless samples.
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CHAPTER 2: SAMPLING AND GALERKIN RECONSTRUCTION IN

REPRODUCING KERNEL SPACES

In this chapter, we introduce a fidelity measure depending on a given sampling scheme and propose

a Galerkin method in Banach space setting for signal reconstruction. We show that the proposed

Galerkin method provides a quasi-optimal approximation, and the corresponding Galerkin equa-

tions could be solved by an iterative approximation-projection algorithm in a reproducing kernel

subspace of Lp. Also we present detailed analysis and numerical simulations of the Galerkin

method for reconstructing signals with finite rate of innovation.

2.1 Galerkin reconstruction in Banach spaces

In this section, we consider numerical stability and quasi-optimality of a (sub-)Galerkin recon-

struction in a Banach space setting. First we introduce admissibility of operators for a trial-test

space pair (U, Ũ).

Definition 2.1. Let (U, V,B) be a triple of Banach spaces with U ⊂ V ⊂ B, and let Ũ ⊂ B∗. We

say that a bounded linear operator S : V → V is admissible for the trial-test space pair (U, Ũ) if

there exist positive constants D1 and D2 such that

sup
g∈Ũ ,‖g‖≤1

|〈Sf, g〉| ≥ D1‖f‖ for all f ∈ U, (2.1)

and

sup
g∈Ũ ,‖g‖≤1

|〈Sf, g〉| ≤ D2‖f‖ for all f ∈ V. (2.2)

The above admissibility concept in a Hilbert space setting is a frame-like requirement, which was

8



introduced in [2, Definition 3.2]. In our model for sampling, S is the pre-reconstruction operator

SΓ,δ in (2.11), and the triple of Banach spaces contains the reconstruction space U , the reproducing

kernel space VK,p in (1.4) and the space Lp.

Next we introduce a general notion of Galerkin reconstructions.

Definition 2.2. Let S : V → V be a bounded linear operator, and (U, Ũ) be a trial-test space pair.

We say that a linear operator R : V → U is a Galerkin reconstruction if

Rh = h, h ∈ U (2.3)

and

〈SRf, g〉 = 〈Sf, g〉, f ∈ V and g ∈ Ũ ; (2.4)

and a sub-Galerkin reconstruction if (2.3) holds and

sup
g∈Ũ ,‖g‖≤1

|〈SRf, g〉| ≤ D3 sup
g∈Ũ ,‖g‖≤1

|〈Sf, g〉|, f ∈ V, (2.5)

for some D3 > 0.

In the following theorem, we establish numerical stability and quasi-optimality of (sub-)Galerkin

reconstructions associated with admissible operators.

Theorem 2.3. Let V, U, Ũ be as in Definition 2.1, and S be admissible for the pair (U, Ũ) with

bounds D1 and D2. If R : V → U is a sub-Galerkin reconstruction with bound D3, then

(i) R is numerically stable,

‖Rf‖ ≤ D2D3

D1

‖f‖, f ∈ V ; and
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(ii) R is quasi-optimal,

‖Rf − f‖ ≤ D1 +D2D3

D1

inf
h∈U
‖f − h‖, f ∈ V.

Proof. (i) For f ∈ V , we obtain from (2.1), (2.2) and (2.5) that

D1‖Rf‖ ≤ sup
g∈Ũ ,‖g‖≤1

|〈SRf, g〉| ≤ D3 sup
g∈Ũ ,‖g‖≤1

|〈Sf, g〉| ≤ D2D3‖f‖.

This proves numerical stability of the reconstruction operator R.

(ii) For f ∈ V and h ∈ U ,

‖f −Rf‖ ≤ ‖f − h‖+ ‖h−Rf‖

= ‖f − h‖+ ‖R(f − h)‖ ≤ D1 +D2D3

D1

‖f − h‖,

where we have used the facts that R is a sub-Galerkin reconstruction and has numerical stability.

Then quasi-optimality of the reconstruction operator R holds by taking infinimum over h ∈ U .

By Theorem 2.3, the existence of a quasi-optimal approximation reduces to finding a sub-Galerkin

reconstruction. Now we show that such a sub-Galerkin reconstruction always exists when U and

Ũ are finite-dimensional.

Theorem 2.4. Let V, U, Ũ be as in Definition 2.1, and S be admissible for the pair (U, Ũ). If U

and Ũ are finite-dimensional, then there is a sub-Galerkin reconstruction.

Proof. Let {fi}mi=1 and {gi}ni=1 be bases of U and Ũ respectively. From the admissibility of S it

follows immediately that (〈Sfi, gj〉)1≤i≤m,1≤j≤n has full rank m. Without loss of generality, we
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assume that B := (〈Sfi, gj〉)1≤i,j≤m is nonsingular. Let Ũ∗ be the space spanned by {gj}mj=1. By

the non-singularity of the matrix B, there is a positive constant C0 such that

C0‖h‖ ≤ sup
g∈Ũ∗,‖g‖≤1

|〈Sh, g〉|, h ∈ U. (2.6)

Write B−1 = (bij)1≤i,j≤m, and define linear operator R by

Rf :=
m∑

i,j=1

〈Sf, gi〉bijfj, f ∈ V.

One may easily verify that R satisfies (2.3), and Rf solves the Galerkin equations

〈SRf, g〉 = 〈Sf, g〉, g ∈ Ũ∗ (2.7)

for any f ∈ V . Therefore

sup
g∈Ũ ,‖g‖≤1

|〈SRf, g〉| ≤ D2‖Rf‖ ≤
D2

C0

sup
g∈Ũ∗,‖g‖≤1

|〈SRf, g〉|

=
D2

C0

sup
g∈Ũ∗,‖g‖≤1

|〈Sf, g〉|

≤ D2

C0

sup
g∈Ũ ,‖g‖≤1

|〈Sf, g〉|, f ∈ V,

by (2.6), (2.7) and the admissibility of S.

For the case that U and Ũ have the same dimension, we have

Corollary 2.5. Let V, U, Ũ be as in Definition 2.1, and S be admissible for the pair (U, Ũ). If

dimensions of U and Ũ are the same, then for f ∈ V , the unique solution of Galerkin equations

〈SRf, g〉 = 〈Sf, g〉, g ∈ Ũ , (2.8)
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defines a Galerkin reconstruction.

In a Hilbert space setting, we can establish the following result for least squares solutions.

Corollary 2.6. Let V be a Hilbert space, U and Ũ be linear subspaces of V , and let S be ad-

missible for the pair (U, Ũ). If U and Ũ are finite-dimensional, then the least squares solution of

Galerkin equations (2.8),

Rf := argminh∈U sup
g∈Ũ ,‖g‖≤1

|〈S(h− f), g〉|, f ∈ V,

defines a sub-Galerkin reconstruction with bound D3 ≤ 1.

We remark that the above conclusion on least squares solutions with Ũ = U has been established

by Adcock, Gataric and Hansen for non-uniform sampling [1, 2].

2.2 Admissible pre-reconstruction operator in reproducing kernel spaces

In this section, we discuss admissibility of the pre-reconstruction operator SΓ,δ in (2.11). To do so,

we introduce the residue E(U, F ) of signals in a linear space U ⊂ Lp outside a measurable set F ,

E(U, F ) := sup
0 6=f∈U

‖f‖Lp(Rd\F )

‖f‖p
,

where ‖ · ‖Lp(E) is the p-norm on a measurable set E. The reader may refer to [1, 90, 96] for some

applications of residues of bandlimited signals.
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2.2.1 Reproducing kernel spaces

We are interested in reproducing kernel spaces (RKSs) of the form (1.4), which has been introduced

in Section 1.1. The RKS of the form (1.4) has rich geometric structure, lots of flexibility and

technical suitability for sampling. It has been used for modeling bandlimited signals, wavelet

(spline) signals, and signals with finite rate of innovation [13, 116, 117, 143, 158].

To consider sampling and reconstruction in VK,p of the form (1.4), we always assume that the

kernel K of the space VK,p satisfies

‖K‖W := max
{

sup
x∈Rd
‖K(x, ·)‖1, sup

y∈Rd
‖K(·, y)‖1

}
<∞ (2.9)

and

lim
δ→0
‖ωδ(K)‖W = 0, (2.10)

where

ωδ(K)(x, y) := sup
|x′|,|y′|≤δ

|K(x+ x′, y + y′)−K(x, y)|.

Under the above hypothesis, the integral operator T0 in (1.5) is a bounded operator on Lp,

‖T0f‖p ≤ ‖K‖W‖f‖p, f ∈ Lp.

More importantly, its range space VK,p is a reproducing kernel space [116]. The model space (2.26)

for FRI signals to live in is a reproducing kernel space of the form (1.4) with kernel K satisfying

(2.9) and (2.10), see Theorem 2.16.
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2.2.2 Admissible pre-reconstruction operator SΓ,δ

For the sampling scheme (1.1) on VK,p in (1.4), take a disjoint covering

{In ⊂ B(γn, δ) : γn ∈ Γ}

of B(Γ, δ) := ∪γ∈ΓB(γ, δ) = ∪γ∈Γ{x : |x− γ| ≤ δ}, and define

SΓ,δf(x) :=
∑
γn∈Γ

|In|f(γn)K(x, γn), f ∈ VK,p, (2.11)

where δ > 0. The operator SΓ,δ depends only on the sampling scheme (1.1). We call it a pre-

reconstruction operator, as SΓ,δf(x) is a good approximation to f(x) when δ is sufficiently small

and x ∈ B(Γ, δ) is away from the complement of B(Γ, δ), see Figure 1.1.

Theorem 2.7. Let VK,p and SΓ,δ be as in (1.4) and (2.11) respectively. Assume that U ⊂ VK,p and

Ũ ⊂ Lp/(p−1). If

sup
g∈Ũ ,‖g‖p/(p−1)≤1

|〈f, g〉| ≥ D4‖f‖p, f ∈ U (2.12)

for some constant D4 satisfying

r0 := D−1
4

(
E(U,B(Γ, δ))‖K‖W + ‖ωδ(K)‖W

(
1 + ‖K‖W + ‖ωδ(K)‖W

))
< 1, (2.13)

then SΓ,δ is admissible for the pair (U, Ũ).

To prove Theorem 2.7, we need the following technical lemma.

Lemma 2.8. Let VK,p and SΓ,δ be as in (1.4) and (2.11) respectively. Then

‖SΓ,δf‖p ≤
(
‖K‖W + ‖ωδ(K)‖W

)(
1 + ‖ωδ(K)‖W

)
‖f‖p, f ∈ VK,p.
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Proof. Let {In} be the disjoint covering of B(Γ, δ) in (2.11). For f ∈ VK,p, write

SΓ,δf(x) =
∑
n

∫
In

∫
Rd
K(x, γn)K(γn, z)f(z)dzdy

=
∑
n

∫
In

∫
Rd

{
K(x, y)K(y, z) + (K(x, γn)−K(x, y))

×K(y, z) +K(x, y)(K(γn, z)−K(y, z))

+(K(x, γn)−K(x, y))(K(γn, z)−K(y, z))
}
f(z)dzdy

=: I + II + III + IV. (2.14)

Observe that

‖I‖p =
∥∥∥∫

B(Γ,δ)

K(·, y)f(y)dy
∥∥∥
p
≤ ‖K‖W‖f‖p,

‖II‖p ≤
∥∥∥∫

Rd
ωδ(K)(·, y)|f(y)|dy

∥∥∥
p
≤ ‖ωδ(K)‖W‖f‖p,

‖III‖p ≤
∥∥∥∫

Rd

∫
Rd
|K(·, y)|ωδ(K)(y, z)|f(z)|dzdy

∥∥∥
p

≤ ‖K‖W‖ωδ(K)‖W‖f‖p,

and

‖IV ‖p ≤
∥∥∥∫

Rd

∫
Rd
ωδ(K)(·, y)ωδ(K)(y, z)|f(z)|dzdy

∥∥∥
p

≤ ‖ωδ(K)‖2
W‖f‖p.

Combining the above four estimates with (2.14) completes the proof.

Next, we continue our proofs of Theorems 2.7.

Proof. The upper bound estimate (2.2) for the operator SΓ,δ follows immediately from Lemma 2.8.
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Define

T ∗0 g(x) :=

∫
Rd
K(y, x)g(y)dy, g ∈ Lp/(p−1).

For f ∈ U and g ∈ Ũ ⊂ Lp/(p−1) with ‖g‖p/(p−1) ≤ 1, we obtain

|〈SΓ,δf, g〉 − 〈f, g〉| ≤
∣∣∣ ∫

Rd\B(Γ,δ)

f(x)T ∗0 g(x)dx
∣∣∣

+
∣∣∣∑

n

∫
In

f(γn)(T ∗0 g)(γn)− f(x)(T ∗0 g)(x)dx
∣∣∣

≤ ‖K‖W‖f‖Lp(Rd\B(Γ,δ))

+‖ωδ(K)‖W
(
1 + ‖K‖W + ‖ωδ(K)‖W

)
‖f‖p, (2.15)

where {In} is the disjoint covering ofB(Γ, δ) in (2.11). This together with (2.12) and (2.13) proves

the lower bound estimate (2.1) for the operator SΓ,δ.

Given a sampling set Γ, we say that the sampling scheme (1.1) has weighted `p-stability on U if

there exist positive constants C1, C2 and δ such that

C1‖f‖p ≤
(∑
γn∈Γ

|In||f(γn)|p
)1/p

≤ C2‖f‖p, f ∈ U,

if 1 ≤ p <∞, and

C1‖f‖∞ ≤ sup
γn∈Γ
|f(γn)| ≤ C2‖f‖∞, f ∈ U,

if p = ∞, where {In ⊂ B(γn, δ), γn ∈ Γ} is a disjoint covering of the δ-neighborhood B(Γ, δ)

of the sampling set Γ. Weighted stability of a sampling scheme is an important concept for the

robustness and uniqueness of signal reconstructions, see [13, 16, 26, 67, 116, 141, 150, 151, 158]

and references here.

In the next theorem, we show that weighted stability of the sampling scheme (1.1) follows from

16



admissibility of the pre-reconstruction operator in (2.11).

Theorem 2.9. Let VK,p and SΓ,δ be as in (1.4) and (2.11) respectively. Assume that U ⊂ VK,p and

Ũ ⊂ Lp/(p−1). If SΓ,δ is admissible for the pair (U, Ũ), then the sampling scheme (1.1) on Γ has

weighted `p-stability on U .

Proof. Take f ∈ V . Following the argument used in Lemma 2.8, we obtain

(
‖K‖W + ‖ωδ(K)‖W

)−1‖SΓ,δf‖p ≤
(∑

n

|In||f(ωn)|p
)1/p

≤
(
1 + ‖ωδ(K)‖W

)
‖f‖p

for 1 ≤ p <∞, and

(
‖K‖W + ‖ωδ(K)‖W

)−1‖SΓ,δf‖∞ ≤ sup
n
|f(ωn)| ≤ ‖f‖∞

for p =∞. The above two estimates together with admissibility of the operator SΓ,δ complete the

proof.

By the regularity assumption (2.10) on the reproducing kernel K, the second requirement (2.13)

in Theorem 2.7 is satisfied if δ is sufficiently small and B(Γ, δ) is the whole Euclidean space Rd.

For the case that B(Γ, δ) contains an open domain F0 but not necessarily the whole space Rd, we

obtain the following samplability result from Theorems 2.7 and 2.9.

Corollary 2.10. Let U ⊂ VK,p and D4 be as in Theorem 2.7. Assume that F0 is an open domain

satisfying E(U, F0)‖K‖W < D4. If Γ is a sampling set with B(Γ, δ) ⊃ F0 for some sufficiently

small δ > 0, then signals in U are uniquely determined by their samples taken on Γ.

The samplability of various signals is well-studied, see, e.g., [2, 69, 81] for band-limited signals,

[13, 158] for signals in a shift-invariant space, [143, 141] for signals with finite rate of innovation,

and [87, 116] for signals in a reproducing kernel space.
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2.3 Galerkin reconstruction and iterative approximation-projection algorithm

The next topic of this section is how to solve the Galerkin reconstruction (2.3) and (2.4) for signals

in a reproducing kernel space (RKS) of the form (1.4).

Due to the above approximation property of the pre-reconstruction operator SΓ,δ, we propose the

following iterative approximation-projection algorithm

g0 ∈ U and gm+1 = gm − PU,ŨSΓ,δgm + g0, m ≥ 0, (2.16)

to solve the Galerkin reconstruction (2.4) and (2.3), where PU,Ũ is an oblique projection for the

trial-test space pair (U, Ũ). The above algorithm is shown in Theorem 2.12 to have exponential

convergence, c.f. [11, 16, 69, 116, 151].

In this section, we apply the iterative approximation-projection algorithm (2.16) to define a unique

Galerkin reconstruction associated with the pre-reconstruction operator SΓ,δ.

To define the iterative approximation-projection algorithm (2.16), we recall the oblique projection

for a pair (U, Ũ) of Banach spaces.

Definition 2.11. Given U ⊂ VK,p and Ũ ⊂ Lp/(p−1), a bounded operator PU,Ũ : VK,p → U is said

to be an oblique projection for the pair (U, Ũ) if

PU,Ũh = h, h ∈ U, (2.17)

and

〈PU,Ũf, g〉 = 〈f, g〉, f ∈ VK,p, g ∈ Ũ . (2.18)

In Hilbert space setting, an oblique projection PU,Ũ exists when cosine of the subspace angle
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between U and Ũ⊥ is positive [3, 26, 67, 153]. Following the argument used in Theorem 2.4,

we can show that if U and Ũ have the same dimension and satisfy the first requirement (2.12) of

Theorem 2.7, then there is an oblique projection PU,Ũ for the pair (U, Ũ).

In the next theorem, we prove that the iterative approximation-projection algorithm (2.16) associ-

ated with the oblique projection PU,Ũ has exponential convergence, c.f. Remark 2.20.

Theorem 2.12. Let VK,p, SΓ,δ and r0 ∈ (0, 1) be as in (1.4), (2.11) and (2.13) respectively. Assume

that U ⊂ VK,p and Ũ ⊂ Lp/(p−1) satisfy (2.12) and (2.13), and an oblique projection PU,Ũ asso-

ciated with the pair (U, Ũ) exists. Then for any g0 ∈ U , the sequence gm,m ≥ 0, in the iterative

algorithm (2.16) converges to some g∞ ∈ U ,

‖gm − g∞‖p ≤
rm+1

0

1− r0

‖g0‖p, m ≥ 0. (2.19)

Moreover, if g0 = PU,ŨSΓ,δh+ g̃ for some h, g̃ ∈ U , then

‖g∞ − h‖p ≤
‖g̃‖p

1− r0

. (2.20)

Proof. Combining (2.12), (2.18) and (2.15), we obtain

‖PU,ŨSΓ,δf − f‖p ≤ D−1
4 sup

g∈Ũ ,‖g‖p/(p−1)≤1

|〈PU,ŨSΓ,δf − f, g〉|

= D−1
4 sup

g∈Ũ ,‖g‖p/(p−1)≤1

|〈SΓ,δf − f, g〉|

≤ r0‖f‖p, f ∈ U. (2.21)

Observe from (2.16) that

gm+1 − gm = (I − PU,ŨSΓ,δ)(gm − gm−1), m ≥ 1.
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This together with (2.21) proves (2.19).

Now we prove (2.20). Taking limit in (2.16) leads to the following consistence condition

PU,ŨSΓ,δg∞ = g0. (2.22)

Replacing g0 in (2.22) by PU,ŨSΓ,δh+ g̃ gives

PU,ŨSΓ,δ(g∞ − h) = g̃.

This together with (2.21) completes the proof.

The algorithm (2.16) has been widely used to reconstruct various signals. The reader may refer

to [69, 151] for band-limited signals, [11, 16] for signals in a shift-invariant space, and [116] for

signals in a reproducing kernel space.

Applying exponential convergence of the iterative approximation-projection algorithm (2.16), we

can define a unique Galerkin reconstruction.

Theorem 2.13. Let VK,p, SΓ,δ, U, Ũ and PU,Ũ be as in Theorem 2.12. Then Galerkin equations

〈SΓ,δh, g〉 = 〈SΓ,δf, g〉, g ∈ Ũ , (2.23)

have a unique solution h ∈ U for f ∈ VK,p. Moreover, the mapping f → h defines a Galerkin

reconstruction.

Proof. Take f ∈ VK,p, set g0 = PU,ŨSΓ,δf , and let g∞ ∈ U be the limit of gm,m ≥ 0, in the
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iterative algorithm (2.16). The existence of such a limit follows from Theorem 2.12. Taking limit

in (2.16) leads to

PU,ŨSΓ,δf = PU,ŨSΓ,δg∞. (2.24)

Then for any g ∈ Ũ ,

〈SΓ,δg∞, g〉 = 〈PU,ŨSΓ,δg∞, g〉 = 〈PU,ŨSΓ,δf, g〉 = 〈SΓ,δf, g〉 (2.25)

by (2.18) and (2.24). This proves that g∞ is a solution of Galerkin equations (2.23).

Next, we show that g∞ is the unique solution of Galerkin equations (2.23). Let h ∈ U be another

solution. Then

〈PU,ŨSΓ,δ(h− g∞), g〉 = 〈SΓ,δ(h− g∞), g〉 = 0.

This together with (2.12) implies that

PU,ŨSΓ,δ(h− g∞) = 0.

Recall from (2.21) that PU,ŨSΓ,δ is invertible on U . Then h = g∞ and the uniqueness follows.

Observe that any f ∈ U satisfies Galerkin equations (2.23). This together with (2.25) proves that

the unique solution of Galerkin equations (2.23) defines a Galerkin reconstruction.

We finish this section with a remark on the iterative approximation-projection algorithm (2.16).

Remark 2.14. Given δ > 0, a sampling set Γ and probability measures µn supported on In, we
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define

S̃Γ,δf(x) =
∑
γn∈Γ

|In|f(γn)

∫
In

K(x, y)dµn(y), f ∈ VK,p,

where {In ⊂ B(γ, δ), γn ∈ Γ} is a disjoint covering of B(Γ, δ). The operator S̃Γ,δ just defined

becomes the pre-reconstruction operator SΓ,δ in (2.11) when µn are point measures supported on

γn, and the pre-reconstruction operator

SΓ,δf(x) =
∑
ωn∈Γ

f(γn)

∫
In

K(x, y)dy, f ∈ VK,p

when µn are normalized Lebsegue measure supported on In. Following the argument used in

Theorem 2.7 and Theorem 2.12, we can show that the approximation-projection algorithm (2.16)

with SΓ,δ replaced by S̃Γ,δ has exponential convergence if

D−1
4

(
E(U,B(Γ, δ))‖K‖W + ‖ω2δ(K)‖W

(
1 + ‖K‖W + ‖ω2δ(K)‖W

))
< 1,

c.f., the second requirement (2.13) in Theorem 2.7.

2.4 Sampling signals with finite rate of innovation

A signal with finite rate of innovation (FRI) has finitely many degrees of freedom per unit of time

[62, 115, 121, 143, 141, 159]. Define the Wiener amalgam space by

W1 :=
{
φ, ‖φ‖W1 :=

∑
k∈Z

sup
0≤x≤1

|φ(x+ k)| <∞
}
.
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It is observed in [143] that lots of FRI signals live in a space of the form

V2(Φ) :=
{∑

i∈Z

ciφi(· − i),
∑
i∈Z

|ci|2 <∞
}
, (2.26)

where the generator Φ := (φi)i∈Z satisfies

‖Φ‖W1 :=
∥∥ sup
i∈Z
|φi|
∥∥
W1 <∞ and lim

δ→0

∥∥ sup
i∈Z

ωδ(φi)
∥∥
W1 = 0. (2.27)

For Φ := (φi)i∈Z and Φ̃ := (φ̃j)j∈Z satisfying (2.27), define their correlation matrix by

AΦ,Φ̃ :=
(
〈φi(· − i), φ̃j(· − j)〉

)
i,j∈Z. (2.28)

In this section, we always assume that AΦ,Φ̃ has bounded inverse on `2. Write (AΦ,Φ̃)−1 =

(bij)i,j∈Z. Applying Wiener’s lemma for Baskakov-Gohberg-Sjöstrand class, one may verify that

the space V2(Φ) for FRI signals to live in is the range space VKΦ,Φ̃,2
of an idempotent integral

operator with kernel

KΦ,Φ̃(x, y) :=
∑
i,j∈Z

φi(x− i)bjiφ̃j(y − j) (2.29)

satisfying (2.9) and (2.10), see Theorem 2.16.

Let C1 contain all infinite matrices A :=
(
aij
)
i,j∈Z with

‖A‖C1 :=
∑
k∈Z

(
sup
i−j=k

|aij|
)
<∞.

To prove Theorem 2.16, we recall Wiener’s lemma for the Baskakov-Gohberg-Sjöstrand class C1,

see [24, 77, 83, 137, 142, 147] and references therein.

Lemma 2.15. If A ∈ C1 has bounded inverse on `2, then its inverse A−1 belongs to C1 too.
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Theorem 2.16. Let Φ and Φ̃ satisfy (2.27), and the correlation matrixAΦ,Φ̃ in (2.28) have bounded

inverse on `2. Then

V2(Φ) = VKΦ,Φ̃,2

for the kernel KΦ,Φ̃ in (2.29), which satisfies (2.9) and (2.10).

Proof. By direct calculation, we have

‖AΦ,Φ̃‖C1 ≤ ‖Φ‖W1‖Φ̃‖W1 .

Thus the inverse of the correlation matrix AΦ,Φ̃ belongs to the Baskakov-Gohberg-Sjöstrand class

by Lemma 2.15. One may then verify immediately that the kernel KΦ,Φ̃ in (2.29) satisfies all

requirements of the theorem.

Given a sampling set Γ = {γn}Nn=1 ordered as γ1 < γ2 < · · · < γN , define

SΦ,Φ̃,Γf(x) :=
N∑
n=1

γn+1 − γn−1

2
f(γn)KΦ,Φ̃(x, γn), f ∈ V2(Φ), (2.30)

where γ0 = γ1 and γN+1 = γN . In the next theorem, we establish the equivalence between admis-

sibility of the operator SΦ,Φ̃,Γ and its corresponding Galerkin reconstruction in a finite-dimensional

space, c.f. Corollary 2.5, and Theorems 2.7 and 2.13.

Theorem 2.17. For L ≥ 1, define

V2,L(Φ) :=
{ L∑
i=−L

ciφi(· − i),
L∑

i=−L

|ci|2 <∞
}

(2.31)

and

V2,L(Φ̃) :=
{ L∑
i=−L

diφ̃i(· − i),
L∑

i=−L

|di|2 <∞
}
. (2.32)
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Assume that Φ, Φ̃ satisfy (2.27), and the correlation matrix AΦ,Φ̃ in (2.28) has bounded inverse on

`2. Then the following statements are equivalent:

(i) The L× L matrix

AΦ,Φ̃,Γ :=
( N∑
n=1

γn+1 − γn−1

2
φi(γn − i)φ̃j(γn − j)

)
−L≤i,j≤L

(2.33)

is nonsingular.

(ii) SΦ,Φ̃,Γ is admissible for the pair (V2,L(Φ), V2,L(Φ̃)).

(iii) For any f ∈ V2(Φ), Galerkin equations

〈SΦ,Φ̃,Γh, g〉 = 〈SΦ,Φ̃,Γf, g〉, g ∈ V2,L(Φ̃) (2.34)

have a unique solution h in V2,L(Φ).

(iv) For any g ∈ V2(Φ̃), dual Galerkin equations

〈SΦ,Φ̃,Γf, h̃〉 = 〈SΦ,Φ̃,Γf, g〉, f ∈ V2,L(Φ)

have a unique solution h̃ in V2,L(Φ̃).

Proof. For h =
∑L

i=−L ciφi(· − i) ∈ V2,L(Φ) and g =
∑L

j=−L djφ̃j(· − j) ∈ V2,L(Φ̃), we obtain

〈SΦ,Φ̃,Γh, g〉 =
L∑

i,j=−L

( N∑
n=1

γn+1 − γn−1

2
φi(γn − i)〈KΦ,Φ̃(t, γn), φ̃j(t− j)〉

)
cidj

=
L∑

i,j=−L

( N∑
n=1

γn+1 − γn−1

2
φi(γn − i)φ̃j(γn − j)

)
cidj

= cTAΦ,Φ̃,Γd, (2.35)
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where c = (ci)−L≤i≤L and d = (dj)−L≤j≤L. By the invertibility assumption on AΦ,Φ̃, {φi(· −

i),−L ≤ i ≤ L} and {φ̃i(·−i),−L ≤ i ≤ L} are Riesz bases of V2,L(Φ) and V2,L(Φ̃) respectively.

This together with (2.35) proves the desired equivalent statements.

To solve the Galerkin equations (2.34) by the iterative approximation-projection algorithm (2.16),

we need an oblique projection for the pair (V2,L(Φ), V2,L(Φ̃)).

Theorem 2.18. Let L ≥ 1, and let Φ and Φ̃ satisfy (2.27). Assume that the correlation matrixAΦ,Φ̃

in (2.28) has bounded inverse on `2. Then the principal submatrix

AΦ,Φ̃,L :=
(
〈φi(· − i), φ̃j(· − j)〉

)
−L≤i,j≤L (2.36)

of the correlation matrix AΦ,Φ̃ is nonsingular if and only if there exists a unique oblique projection

for the pair (V2,L(Φ), V2,L(Φ̃)). Moreover, the oblique projection could be defined by

PΦ,Φ̃,Lf :=
∑

−L≤i,j≤L

〈f, φ̃i(· − i)〉b̃ijφj(· − j), f ∈ V2(Φ), (2.37)

where (AΦ,Φ̃,L)−1 = (b̃ij)−L≤i,j≤L.

Proof. The sufficiency is obvious. Now we prove the necessity. Suppose, to the contrary, that

AΦ,Φ̃,L in (2.36) is singular. Take a nonzero vector e = (ei)−L≤i≤L in the null space N((AΦ,Φ̃,L)T )

and a nonzero linear functional J on V2(Φ) such that J (h) = 0 for all h ∈ V2,L(Φ). Define

Q(f) := J (f)
∑
−L≤i≤L

eiφi(· − i), f ∈ V2(Φ).

Then Q is a nonzero linear operator from V2(Φ) to V2,L(Φ),

Qh = 0, h ∈ V2,L(Φ)
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and

〈Qf, g〉 = J (f)
∑

−L≤i,j≤L

ei〈φi(· − i), φ̃j(· − j)〉dj = 0,

where g =
∑
−L≤j≤L djφ̃j(· − j) ∈ V2,L(Φ̃). This contradicts to the uniqueness of oblique projec-

tions.

We conclude this section by examining exponential convergence of an iterative algorithm for the

recovery of signals with finite rate of innovation. Replacing PU,Ũ and SΓ,δ in the iterative algorithm

(2.16) by PΦ,Φ̃,L and SΦ,Φ̃,Γ respectively, it becomes

gm+1 = gm −
N∑
n=1

L∑
i,j=−L

γn+1 − γn−1

2
gm(γn)φ̃i(γn − i)b̃ijφj(· − j) + g0, m ≥ 0, (2.38)

with g0 ∈ V2,L(Φ). The above iterative algorithm has exponential convergence when

‖AΦ,Φ̃,Γ(AΦ,Φ̃,L)−1 − I‖ < 1. (2.39)

Theorem 2.19. Let Φ and Φ̃ satisfy (2.27). Assume that AΦ,Φ̃,L is nonsingular. If (2.39) holds,

then the iterative algorithm (2.38) has exponential convergence. Moreover, it recovers the original

signal h ∈ V2,L(Φ) when

g0 =
N∑
n=1

L∑
i,j=−L

γn+1 − γn−1

2
h(γn)φ̃i(γn − i)b̃ijφj(· − j).

Proof. Write gm =
∑
−L≤i≤L cm(i)φi(·−i) and set cm = (cm(i))−L≤i≤L. Then we can reformulate

the iterative algorithm (2.38) as

cTm+1 = cTm − cTmAΦ,Φ̃,Γ(AΦ,Φ̃,L)−1 + cT0 , m ≥ 0.
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This together with (2.39) proves the desired conclusions.

2.5 Numerical simulations

In this section, we present several examples to illustrate our Galerkin reconstruction of signals with

finite rate of innovation.

Let Θ := {θi} be either ΘO := {0} (the identical zero set), or ΘI with θi being randomly selected

in [−0.2, 0.2]. Set

Φ0 = {φ0(· − θi)}i∈Z,

where the generating function φ0 is either (i) the sinc function sinc(t) := sinπt
πt

, or (ii) the Gaus-

sian function gauss(t) := exp(−3t2/2), or (iii) the cubic B-spline spline(t), see Figure 2.1 for

examples of signals in V2(Φ0).

Plotted in Figure 2.1 are bandlimited signals x(sinc, 0) =
∑

i αisinc(t−i) with (1+|i|)αi ∈ [−1, 1]

randomly selected (top left), x(sinc, 1) =
∑

i βisinc(t − i) with βi = (1 + |i|)−1 cos(πi/8) (top

right), x(sinc, 2) =
∑

i αisinc(t− i− θi) (bottom left) and x(sinc, 3) =
∑

i βisinc(t− i− θi) with

θi ∈ [−0.2, 0.2] randomly selected (bottom right).

In our numerical simulations, reconstructed signals live in the space

V2,L(Φ0) =
{ L∑
i=−L

ciφ0(t− i− θi) :
L∑

i=−L

|ci|2 <∞
}
, L ≥ 1,

and sampling schemes are

• Nonuniform sampling on ΓN := {γk, |k| ≤ L+2}, where γ−L−3 = −L−2 and γk−γk−1 ∈
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Figure 2.1: Original bandlimited signals

[0.9, 1.1], |k| ≤ L+ 2, are randomly selected.

• Jittered sampling on ΓJ := {γk := k+δk, |k| ≤ L+2}, where δk ∈ [−0.1, 0.1] are randomly

selected.

• Adaptive sampling on ΓC := {γk ∈ [−L − 2, L + 2]} of a bounded signal x ∈ V2(Φ) via

crossing time encoding machine (C-TEM), where x(t) 6= ‖x‖∞ sin(πt) for all t ∈ [−L −

2, L+ 2] except t = γk for some k, see Figure 2.2 [71, 78, 104].

Plotted in top of Figure 2.2 is the signal x(sinc, 0) in Figure 2.1 and the crossing signal ‖x(sinc, 0)‖∞ sin πt

on [−L−2, L+ 2], and the bottom part of Figure 2.2 is the sampling data of x(sinc, 0) on the sam-

pling set ΓC ⊂ [−L− 2, L+ 2], where L = 30.
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Figure 2.2: Signal x(sinc, 0) and sample data via C-TEM

To reconstruct signals via our Galerkin method, take

Φ̃0 = {φ̃0} with φ̃0 = χ[−1/2,1/2).

Then the equation (2.34) to determine the Galerkin reconstruction

GΦ0,Φ̃0,Γ
f :=

L∑
i=−L

ciφ0(· − i− θi) ∈ V2,L(Φ0)

can be reformulated as follows:

L∑
i=−L

( N∑
n=1

γn+1 − γn−1

2
φ0(γn − i− θi)φ̃0(γn − j)

)
ci

=
N∑
n=1

γn+1 − γn−1

2
f(γn)φ̃0(γn − j),−L ≤ j ≤ L, (2.40)

where f ∈ V2(Φ0) and Γ := {γn}Nn=1 is either the nonuniform sampling set ΓN , or the jittered

sampling set ΓJ , or the adaptive C-TEM sampling set ΓC . Considering the bandlimited signal
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Figure 2.3: Comparison between pre-reconstructed signal and Galerkin reconstruction.

x(sinc, 0) described in Figure 2.1, we present some numerical results for its pre-reconstruction in

V2(Φ0) and Galerkin reconstruction in V2,L(Φ0) in Figure 2.3. We see that a pre-reconstruction may

provide a reasonable approximation, while a Galerkin reconstruction could recover the original sig-

nal almost perfectly in the sampling interval. In Figure 2.3, plotted on the top left is the difference

between the signal x(sinc, 0) in Figure 2.1 and its pre-reconstructed signal SΦ0,Φ̃0,ΓN
x(sinc, 0),

while on the top right is the difference between x(sinc, 0) and its Galerkin reconstruction

GΦ0,Φ̃0,ΓN
x(sinc, 0). Shown in the middle are differences x(sinc, 0)−SΦ0,Φ̃0,ΓJ

x(sinc, 0) (left) and

x(sinc, 0) − GΦ0,Φ̃0,ΓJ
x(sinc, 0) (right) associated with jittered sampling. Listed below are differ-
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ences x(sinc, 0)−SΦ0,Φ̃0,ΓC
x(sinc, 0) (left) and x(sinc, 0)−GΦ0,Φ̃0,ΓC

x(sinc, 0) (right) associated

with adaptive C-TEM sampling.

For Φ0 = {φ0(· − θi)}, let signals x(φ0, l) ∈ V2(Φ0), 0 ≤ l ≤ 3, be as x(sinc, l) in Figure 2.1 with

the sinc function replaced by the function φ0. In Figure 2.4, we illustrate their best approximation

in V2,L(Φ0) and solutions of the Galerkin system (2.40) with f replaced by x(φ0, l), 0 ≤ l ≤ 3,

respectively. We observe that given a signal in V2(Φ0), its Galerkin reconstruction in V2,L(Φ0)

could almost match its best approximation in V2,L(Φ0), except near the boundary of the sampling

interval. The boundary effect is viewable especially when φ0 has slow decay at infinity.

Figure 2.4: Comparison of best approximation and Galerkin reconstructions associated with oper-

ators SΦ0,Φ̃0,Γ

Presented in Figure 2.4 are differences between best approximations of signals x(φ0, 0) in V2,30(Φ0)
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and their Galerkin reconstructions associated with operators SΦ0,Φ̃0,Γ
, where on the above, φ0 =

sinc, Γ = ΓN (left) and Γ = ΓJ (right), while on the bottom Γ = ΓN , φ0 = gauss (left) and

φ0 = spline (right).

Given signals x(φ0, l), 0 ≤ l ≤ 3, let yL(φ0, l) be their best approximators in V2,L(Φ0), and denote

by

e(φ0, l) = ‖x(φ0, l)− yL(φ0, l)‖

their best approximation error in V2,L(Φ0). For Γ = ΓN or ΓJ or ΓC , set

εΓ(φ0, l) = ‖zL(Γ, φ0, l)− yL(φ0, l)‖,

where zL(Γ, φ0, l) is obtained from solving Galerkin system (2.40) with f replaced by x(φ0, l). For

signals x(φ0, l), 0 ≤ l ≤ 3, and sampling sets Γ = ΓN ,ΓJ and ΓC , Galerkin reconstruction (2.40)

provides quasi-optimal approximation in V2,L(Φ0), and the quasi-optimal constant in Theorem 2.3

is well behaved,
‖zL(Γ, φ0, l)− x(φ0, l)‖
‖yL(φ0, l)− x(φ0, l)‖

≤ 1 +
εΓ(φ0, l)

e(φ0, l)
≤ 3

2
,

see Table 2.1 for numerical results with abbrievated notations.
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Table 2.1: Quasi-optimality of Galerkin reconstructions for bandlimited/Gauss/spline signals

L 10 15 20 25 30

e(sinc, 0) 0.2176 0.1711 0.1388 0.1166 0.1024

εN(sinc, 0) 0.0795 0.0668 0.0197 0.0201 0.0294

εJ(sinc, 0) 0.0770 0.0668 0.0201 0.0214 0.0290

εC(sinc, 0) 0.0789 0.0715 0.0239 0.0263 0.0325

e(sinc, 1) 0.2600 0.2124 0.1816 0.1457 0.1303

εN(sinc, 1) 0.0344 0.0809 0.0370 0.0294 0.0431

εJ(sinc, 1) 0.0353 0.0806 0.0372 0.0301 0.0433

εC(sinc, 1) 0.0363 0.0831 0.0379 0.0319 0.0442

e(sinc, 2) 0.2095 0.1703 0.1365 0.1167 0.1007

εN(sinc, 2) 0.0619 0.0618 0.0256 0.0163 0.0281

εJ(sinc, 2) 0.0596 0.0618 0.0260 0.0177 0.0275

εC(sinc, 2) 0.0608 0.0664 0.0284 0.0226 0.0308

e(sinc, 3) 0.2655 0.2180 0.1863 0.1477 0.1322

εN(sinc, 3) 0.0461 0.0810 0.0374 0.0258 0.0406

εJ(sinc, 3) 0.0446 0.0809 0.0375 0.0265 0.0401

εC(sinc, 3) 0.0474 0.0837 0.0392 0.0298 0.0418

e(gauss, 0) 0.2055 0.1682 0.1398 0.1250 0.1086

εN(gauss, 0) 0.0437 0.0515 0.0270 0.0158 0.0093

εJ(gauss, 0) 0.0439 0.0523 0.0259 0.0160 0.0096

εC(gauss, 0) 0.0433 0.0527 0.0270 0.0181 0.0108

e(spline, 0) 0.1482 0.1325 0.1110 0.0924 0.0664

εN(spline, 0) 0.0405 0.0298 0.0204 0.0266 0.0176

εJ(spline, 0) 0.0403 0.0299 0.0204 0.0281 0.0184

εC(spline, 0) 0.0407 0.0292 0.0209 0.0279 0.0181
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Numerical stability of Galerkin reconstruction (2.40) could be reflected by the condition number

condΓ,Θ(φ0) of the square matrix

AΦ0,Φ̃0,Γ
=
( N∑
n=1

γn+1 − γn−1

2
φ0(γn − i− θi)φ̃0(γn − j)

)
−L≤i,j≤L

.

Some numerical results of condition numbers condΓ,Θ(φ0) with Γ = ΓN or ΓJ , and Θ = ΘO or

ΘI , are presented in Table 2.2 with abbreviated notations.

Table 2.2: Stability of Galerkin reconstructions for nonuniform/jittered sampling

L 10 15 20 25 30

condN,O(sinc) 1.2059 1.2367 1.3458 1.4273 1.2904

condN,I(sinc) 1.9190 1.8946 1.9828 2.0635 2.0421

condN,O(gauss) 3.0162 2.7000 2.7908 3.3314 2.8362

condN,I(gauss) 3.2850 3.1447 3.1421 4.0283 3.4391

condN,O(spline) 3.7677 3.7534 3.0534 3.1400 4.1708

condN,I(spline) 4.4768 5.2417 3.3507 3.5354 5.0292

condJ,O(sinc) 1.3737 1.4164 1.4105 1.4149 1.3763

condJ,I(sinc) 1.9723 1.9351 2.3328 2.2037 2.1744

condJ,O(gauss) 2.7066 2.7074 2.6936 2.6957 2.7190

condJ,I(gauss) 3.0847 3.1591 3.0696 3.0197 3.0878

condJ,O(spline) 3.1052 3.2109 3.2218 3.3257 3.2331

condJ,I(spline) 3.5570 3.7388 3.7140 3.9172 4.1830

For the robust (sub-)Galerkin reconstruction, the generating function φ̃0 of the test space V2,L(Φ̃0)

should be so chosen that the corresponding matrice AΦ0,Φ̃0,Γ
is well-conditioned, c.f. Theorem 2.3.
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We conclude this sections with two more remarks.

Remark 2.20. The iterative approximation-projection algorithm (2.38) could have better perfor-

mance on solving Galerkin equations (2.40), especially while matrices AΦ0,Φ̃0,Γ
have large condi-

tion number, which is the case when the sampling set Γ and/or the shifting set Θ are not chosen

appropriately.

Remark 2.21. For the admissibility of the pre-reconstruction operator SΓ,δ, the test space Ũ must

have its dimension larger than or equal to the one of the reconstruction space U . For U = V2,L(Φ0)

and Ũ = V2,L̃(Φ̃0) with L̃ ≥ L, least square solutions of the linear system (2.40) with−L ≤ j ≤ L

replaced by−L̃ ≤ j ≤ L̃ defines a sub-Galerkin reconstruction
∑L

i=−L ciφ0(·− i−θi) ∈ V2,L(Φ0)

by Corollary 2.6, where f ∈ V2(Φ0) and Γ := ΓN ,ΓJ ,ΓC . Our numerical simulations show that

the above sub-Galerkin reconstructions for different L̃ ≥ L have comparable approximation errors.
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CHAPTER 3: SPATIALLY DISTRIBUTED SAMPLING AND

RECONSTRUCTION

A spatially distributed system contains a large amount of agents with limited sensing, data process-

ing, and communication capabilities. Recent technological advances have opened up possibilities

to deploy spatially distributed systems for signal sampling and reconstruction. In this chapter,

we use a graph structure to describe a distributed sampling and reconstruction system by cou-

pling agents in a spatially distributed system with innovative positions of signals. For a distributed

sampling and reconstruction system, the robustness could be reduced to the stability of its sens-

ing matrix. In a traditional centralized sampling and reconstruction system, the stability of the

sensing matrix could be verified by its central processor, but the above procedure is infeasible in a

distributed sampling and reconstruction system as it is decentralized. In this chapter, we split a dis-

tributed sampling and reconstruction system into a family of overlapping smaller subsystems, and

we show that the stability of the sensing matrix holds if and only if its quasi-restrictions to those

subsystems have uniform stability. This new stability criterion could be pivotal for the design of

a robust distributed sampling and reconstruction system against supplement, replacement and im-

pairment of agents, as we only need to check the uniform stability of affected subsystems. Here

we also propose an exponentially convergent distributed algorithm for signal reconstruction, that

provides a suboptimal approximation to the original signal in the presence of bounded sampling

noises.

3.1 Spatially distributed systems

Spatially distributed systems (SDS) have been widely used in (underwater) multivehicle and multi-

robot networks, wireless sensor networks, smart grids, etc ([4, 44, 50, 165, 166]). Comparing with
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traditional centralized systems that have a powerful central processor and reliable communication

between agents and the central processor, an SDS could give unprecedented capabilities especially

when creating a data exchange network requires significant efforts (due to physical barriers such

as interference), or when establishing a centralized processor presents the daunting challenge of

processing all the information (such as big-data problems). In this section, we consider SDSs for

signal sampling and reconstruction, and we describe the topology of an SDS by an undirected

(in)finite graph

G := (G,S), (3.1)

where a vertex represents an agent and an edge between two vertices means that a direct commu-

nication link exists.

Let G be the graph in (3.1) to describe our SDS. Let G be connected and simple (i.e., undirected,

unweighted, no graph loops nor multiple edges), which can be interpreted as follows:

• Agents in the SDS can communicate across the entire network, but they have direct commu-

nication links only to adjacent agents.

• Direct communication links between agents are bidirectional.

• Agents have the same communication specification.

• The communication component is not used for data transmission within an agent.

• No multiple direct communication channels between agents exists.

In this section, we recall geodesic distance on the graph G to measure communication cost between

agents. Then we consider doubling and polynomial growth properties of the counting measure on

the graph G, and we introduce Beurling dimension and sampling density of the SDS. For a discrete

sampling set in the d-dimensional Euclidean space, the reader may refer to [51, 63] for its Beurling
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dimension and to [13, 116, 141, 158] for its sampling density. Finally, we introduce a special

family of balls to cover the graph G, which will be used in Section 3.6 for the consensus of our

proposed distributed algorithm.

3.1.1 Geodesic distance and communication cost

For a connected simple graph G := (G,S), let ρG(λ, λ) = 0 for λ ∈ G, and ρG(λ, λ′) be the

number of edges in a shortest path connecting two distinct vertices λ, λ′ ∈ G. The above function

ρG onG×G is known as geodesic distance on the graph G ([48]). It is nonnegative and symmetric:

(i) ρG(λ, λ′) ≥ 0 for all λ, λ′ ∈ G;

(ii) ρG(λ, λ′) = ρG(λ
′, λ) for all λ, λ′ ∈ G.

And it satisfies identity of indiscernibles and the triangle inequality:

(iii) ρG(λ, λ′) = 0 if and only if λ = λ′;

(iv) ρG(λ, λ′) ≤ ρG(λ, λ
′′) + ρG(λ

′′, λ′) for all λ, λ′, λ′′ ∈ G.

Given two nonadjacent agents λ and λ′ ∈ G, the distance ρG(λ, λ′) can be used to measure the

communication cost between these two agents if the communication is processed through their

shortest path.
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3.1.2 Counting measure, Beurling dimension and sampling density

For a connected simple graph G := (G,S), denote its counting measure by µG ,

µG(F ) := ](F ) for F ⊂ G.

Definition 3.1. The counting measure µG is said to be a doubling measure if there exists a positive

number D0(G) such that

µG(BG(λ, 2r)) ≤ D0(G)µG(BG(λ, r)) for all λ ∈ G and r ≥ 0, (3.2)

where

BG(λ, r) := {λ′ ∈ G, ρG(λ, λ′) ≤ r}

is the closed ball with center λ and radius r.

The doubling property of the counting measure µG can be interpreted as numbers of agents in r-

neighborhood and (2r)-neighborhood of any agent are comparable. The doubling constant of µG

is the minimal constant D0(G) ≥ 1 for (3.2) to hold ([49, 58]). It dominates the maximal vertex

degree of the graph G,

deg(G) ≤ D0(G), (3.3)

because

deg(G) = max
λ∈G

#{λ′ ∈ G, (λ, λ′) ∈ S} ≤ max
λ∈G

#(BG(λ, 1)
)
≤ D0(G).

We remark that for a finite graph G, its doubling constant D0(G) could be much larger than its

maximal vertex degree deg(G). For instance, a tree with one branch for the first L levels and two

branches for the next L levels has 3 as its maximal vertex degree and (2L+1 + L − 1)/(L + 1) as
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its doubling constant, see Figure 3.1 with L = 3.

Figure 3.1: A tree with large doubling constant but limited maximal vertex degree.

The counting measure on an infinite graph is not necessarily a doubling measure. However, the

counting measure on a finite graph is a doubling measure and its doubling constant could depend

on the local topology and size of the graph, cf. the tree in Figure 3.1. In this paper, the graph G to

describe our SDS is assumed to have its counting measure with the doubling property (3.2).

Assumption 1: The counting measure µG of the graph G is a doubling measure,

D0(G) <∞. (3.4)

Therefore the maximal vertex degree of graph G is finite,

deg(G) <∞,

which could be understood as that there are limited direct communication channels for every agent

in the SDS.

Definition 3.2. The counting measure µG is said to have polynomial growth if there exist positive
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constants D1(G) and d(G) such that

µG(BG(λ, r)) ≤ D1(G)(1 + r)d(G) for all λ ∈ G and r ≥ 0. (3.5)

For the graph G associated with an SDS, we may consider minimal constants d(G) and D1(G) in

(3.5) as Beurling dimension and sampling density of the SDS respectively. We remark that

d(G) ≥ 1, (3.6)

because

sup
λ∈G

µG(BG(λ, r)) ≥ 1 + r for all 0 ≤ r ≤ diam(G),

where diam(G) := supλ,λ′∈G ρG(λ, λ
′) is the diameter of the graph G.

Applying (3.2) repeatedly leads to the following general doubling property:

µG(BG(λ, sr)) ≤ (D0(G))dlog2 seµG(BG(λ, r)) ≤ D0(G)slog2 D0(G)µG(BG(λ, r))

for all λ ∈ G, s ≥ 1 and r ≥ 0. Thus

µG(BG(λ, r)) ≤ D0(G)(1 + r)log2 D0(G)µG

(
BG

(
λ,

r

1 + r

))
= D0(G)(1 + r)log2D0(G), r ≥ 0.

This shows that a doubling measure has polynomial growth.

Proposition 3.3. If the counting measure µG on a connected simple graph G is a doubling measure,

then it has polynomial growth.

For a connected simple graph G, its maximal vertex degree is finite if the counting measure µG

has polynomial growth, but the converse is not true. We observe that if the maximal vertex degree
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deg(G) is finite, then the counting measure µG has exponential growth,

µG(BG(λ, r)) ≤
(deg(G))r+1 − 1

deg(G)− 1
for all λ ∈ G and r ≥ 0. (3.7)

3.1.3 Spatially distributed subsystems

For a connected simple graph G := (G,S), take a maximal N -disjoint subset GN ⊂ G, 0 ≤ N ∈

R, such that

BG(λ,N)∩ (∪λm∈GN BG(λm, N)
)
6= ∅ for all λ ∈ G, (3.8)

and

BG(λm, N)∩BG(λm′ , N) = ∅ for all λm, λm′ ∈ GN . (3.9)

For 0 ≤ N < 1, it follows from (3.8) that GN = G. For N ≥ 1, there are many subsets GN of

vertices satisfying (3.8) and (3.9). For instance, we can construct GN = {λm}m≥1 as follows: take

a λ1 ∈ G and define λm, m ≥ 2, recursively by

λm = argmin
λ∈Am

ρG(λ, λ1),

where Am = {λ ∈ G, BG(λ,N) ∩BG(λm′ , N) = ∅, 1 ≤ m′ ≤ m− 1}.

For a setGN satisfying (3.8) and (3.9), the family of balls {BG(λm, N ′), λm ∈ GN} withN ′ ≥ 2N

provides a finite covering for G.

Proposition 3.4. Let G := (G,S) be a connected simple graph and µG have the doubling property

(3.4) with constant D0(G). If GN satisfies (3.8) and (3.9), then

1 ≤ inf
λ∈G

Σλm∈GNχBG(λm,N ′)(λ) ≤ sup
λ∈G

Σλm∈GNχBG(λm,N ′)(λ) ≤ (D0(G))dlog2(2N ′/N+1)e (3.10)
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for all N ′ ≥ 2N .

Proof. For any λ ∈ G, take λm ∈ GN with BG(λ,N) ∩BG(λm, N) 6= ∅. Then

ρG(λ, λm) ≤ ρG(λ, λ
′) + ρG(λ

′, λm) ≤ 2N,

where λ′ is a vertex in BG(λ,N) ∩BG(λm, N). This proves that for any N ′ ≥ 2N , balls

{BG(λm, N ′), λm ∈ GN} provide a covering for G,

G ⊂
⋃

λm∈GN

BG(λm, N
′), (3.11)

and hence the first inequality in (3.10) follows.

Now we prove the last inequality in (3.10). Take λ ∈ G. For any λm, λm′ ∈ GN ∩BG(λ,N ′),

ρG(λ
′, λm′) ≤ ρG(λ

′, λm) + ρG(λm, λ) + ρG(λ, λm′) ≤ 2N ′ +N

for all λ′ ∈ B(λm, N), which implies that

BG(λm, N) ⊂ BG(λm′ , 2N
′ +N). (3.12)

Hence

∑
λm∈GN

χBG(λm,N ′)(λ)≤
µG(∪λm∈GN∩BG(λ,N ′)BG(λm, N))

infλm∈GN∩BG(λ,N ′) µG(BG(λm, N))

≤ sup
λm∈GN∩BG(λ,N ′)

µG(BG(λm, 2N
′ +N))

µG(BG(λm, N))
≤ (D0(G))dlog2(2N ′/N+1)e,

(3.13)
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where the first inequality holds as BG(λm, N), λm ∈ VN , are disjoint, the second one is true by

(3.12), and the third inequality follows from the doubling assumption (3.2).

For N ′ ≥ 0, define a family of spatially distributed subsystems

Gλ,N ′ := (BG(λ,N
′), Sλ,N ′)

with fusion agents λ ∈ GN , where (λ′, λ′′) ∈ Sλ,N ′ if λ′, λ′′ ∈ BG(λ,N
′) and (λ′, λ′′) ∈ S.

Then the maximal N -disjoint property of the set GN means that the N -neighboring subsystems

Gλm,N , λm ∈ GN , have no common agent. On the other hand, it follows from Proposition 3.4

that for any N ′ ≥ 2N , every agent in our SDS is in at least one and at most finitely many of the

N ′-neighboring subsystems Gλm,N ′ , λm ∈ GN . The above idea to split the SDS into subsystems

of small sizes is crucial in our proposed distributed algorithm in Section 3.6 for stable signal

reconstruction.

3.2 Signals on the graph V

The spatial signals with the following parametric representation,

f :=
∑
i∈V

c(i)ϕi, (3.14)

where amplitudes c(i), i ∈ V , are bounded, and generators ϕi, i ∈ V , are essentially supported in

a spatial neighborhood of the innovative position i. The above family of spatial signals appears in

magnetic resonance spectrum, mass spectrometry, global positioning system, cellular radio, ultra

wide-band communication, electrocardiogram, and many engineering applications, see [60, 143,

159] and references therein.
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In our work, we associate every innovative position i ∈ V with some anchor agents λ ∈ G, and

denote the set of such associations (i, λ) by T . These associations can be easily understood as

agents within certain (spatial) range of every innovative position. With the above associations, we

describe our distributed sampling and reconstruction system (DSRS) by an undirected (in)finite

graph

H := (G ∪ V, S ∪ T ∪ T ∗), (3.15)

where T ∗ = {(λ, i) ∈ G× V, (i, λ) ∈ T}, see Figure 3.2. The above graph description of a DSRS

plays a crucial role for us to study signal sampling and reconstruction.

Given a DSRS described by the above graphH, set

E := {(i, i′) ∈ V × V, i 6= i′ and (i, λ), (i′, λ) ∈ T for some λ ∈ G}. (3.16)

We then generate a graph structure

V := (V,E) (3.17)

for signals in (3.14), where an edge between two distinct innovative positions in V means that a

common anchor agent exists. The above graph structure for signals is different from the conven-

tional one in most of the literature, where the graph is usually preassigned. The reader may refer

to [124, 130, 136] and Remark 3.12.
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Figure 3.2: The graph structureH for a DSRS.

Presented in Figure 3.2 is the graph structure H = (G ∪ V, S ∪ T ∪ T ∗) in (3.15) to describe a

DSRS, where vertices in G and V are plotted in red circles and blue triangles, and edges in S, T

and E are in black solid lines, green solid lines and red dashed lines respectively.

Let V be the set of innovative positions of signals f in (3.14), and G = (G,S) be the graph in (3.1)

to represent our SDS. We build the graph H in (3.15) to describe our DSRS by associating every

innovative position in V with some anchor agents in G. In this paper, we consider DSRS with the

following properties.

Assumption 2: There is a direct communication link between distinct anchor agents of an innova-

tive position,

(λ1, λ2) ∈ S if (i, λ1) and (i, λ2) ∈ T for some i ∈ V. (3.18)
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Assumption 3: There are finitely many innovative positions for any anchor agent,

L := sup
λ∈G

#{i ∈ V, (i, λ) ∈ T} <∞. (3.19)

Assumption 4: Any agent has an anchor agent within bounded distance,

M := sup
λ∈G

inf{ρG(λ, λ′), (i, λ′) ∈ T for some i ∈ V } <∞. (3.20)

The graphH associated with the above DSRS is a connected simple graph. Moreover, we have the

following important properties about shortest paths between different vertices inH.

Proposition 3.5. Let the graph H in (3.15) satisfy (3.18). Then all intermediate vertices in the

shortest paths inH to connect distinct vertices inH belong to the subgraph G.

Proof. By the structure of the graph H, it suffices to show that the shortest path in H to con-

nect distinct vertices λ, λ′ ∈ G must be a path in its subgraph G. Suppose on the contrary that

λu1 · · ·uk−1ukuk+1 · · ·unλ′ is a shortest path in H of length ρH(λ, λ′) with vertex uk along the

path belonging to V . Then uk−1 and uk+1 are anchor agents of uk in G.

For the case that uk−1 and uk+1 are distinct anchor agents of the innovative position uk, (uk−1, uk+1) ∈

S by (3.18). Hence λu1 · · ·uk−1uk+1 · · ·unλ′ is a path of length ρH(λ, λ′)− 1 to connect vertices

λ and λ′, which is a contradiction.

Similarly for the case that uk−1 and uk+1 are the same, λu1 · · ·uk−1uk+2 · · ·unλ′ is a path of length

ρH(λ, λ′)− 2 to connect vertices λ and λ′. This is a contradiction.
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By Proposition 3.5,

ρH(λ, λ′) = ρG(λ, λ
′) for all λ, λ′ ∈ G, (3.21)

and

ρH(i, i′) = 2 + inf
λ,λ′∈G

{ρG(λ, λ′) : (i, λ), (i′, λ′) ∈ T} for all distinct i, i′ ∈ V, (3.22)

where ρH is the geodesic distance for the graphH.

Let V be the graph in (3.17), where there is an edge between two distinct innovative positions if

they share a common anchor agent. One may easily verify that the graph V is undirected and its

maximal vertex degree is finite,

deg(V) ≤ L sup
i∈V

#{λ ∈ G, (i, λ) ∈ T} ≤ L(deg(G) + 1) (3.23)

by (3.3), (3.4), (3.18) and (3.19).

We cannot define a geodesic distance on V as in Subsection 3.1.1, since the graph V is unconnected

in general. With the help of the graphH to describe our DSRS, we define a distance ρ on the graph

V .

Proposition 3.6. LetH be the graph in (3.15). Define a function ρ : V × V 7−→ R by

ρ(i, i′) =

 0 if i = i′

ρH(i, i′)− 1 if i 6= i′.
(3.24)

If the graphH satisfies (3.18), then ρ is a distance on the graph V:

(i) ρ(i, i′) ≥ 0 for all i, i′ ∈ V ;
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(ii) ρ(i, i′) = ρ(i′, i) for all i, i′ ∈ V ;

(iii) ρ(i, i′) = 0 if and only if i = i′; and

(iv) ρ(i, i′) ≤ ρ(i, i′′) + ρ(i′′, i′) for all i, i′, i′′ ∈ V .

Proof. The non-negativity and symmetry is obvious, while the identity of indiscernibles holds

since there is no edge assigned inH between two distinct vertices in V .

Now we prove the triangle inequality

ρ(i, i′) ≤ ρ(i, i′′) + ρ(i′′, i′) for distinct vertices i, i′, i′′ ∈ V. (3.25)

Let m = ρ(i, i′′) and n = ρ(i′′, i′). Take a path iv1 . . . vmi
′′ of length m+ 1 to connect i and i′′, and

another path i′′u1 . . . uni
′ of length n+ 1 to connect i′′ and i′. If vm = u1, then iv1 . . . vmu2 · · ·uni′

is a path of length m+ n to connect vertices i and i′, which implies that

ρ(i, i′) ≤ m+ n− 1 < ρ(i, i′′) + ρ(i′′, i′). (3.26)

If vm 6= u1, then (vm, u1) is an edge in the graph G (and then also in the graphH) by (3.18). Thus

iv1 . . . vmu1u2 · · ·uni′ is a path of length m+ n+ 1 to connect vertices i and i′, and

ρ(i, i′) ≤ m+ n = ρ(i, i′′) + ρ(i′′, i′). (3.27)

Combining (3.26) and (3.27) proves (3.25).

Clearly, the above distance between two endpoints of an edge in V is one. Denote the closed ball
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with center i ∈ V and radius r by

B(i, r) = {i′ ∈ V, ρ(i, i′) ≤ r},

and the counting measure on V by µ. We say that µ is a doubling measure if

µ(B(i, 2r)) ≤ D0µ(B(i, r)) for all i ∈ V and r ≥ 0, (3.28)

and it has polynomial growth if

µ(B(i, r)) ≤ D1(1 + r)d for all i ∈ V and r ≥ 0, (3.29)

where D0, D1 and d are positive constants. The minimal constant D0 for (3.28) to hold is known

as the doubling constant, and the minimal constants d and D1 in (3.29) are called dimension and

maximal rate of innovation for signals on the graph V respectively. The concept of rate of in-

novation was introduced in [159] and later extended in [143, 150]. The reader may refer to

[28, 29, 62, 111, 121, 135, 141, 143, 150, 159] and references therein for sampling and recon-

struction of signals with finite rate of innovation.

In the next two propositions, we show that the counting measure µ on V has the doubling property

(respectively, the polynomial growth property) if and only if the counting measure µG on G does.

Proposition 3.7. Let G andH satisfy Assumptions 1 – 4. If µG is a doubling measure with constant

D0(G), then

µ(B(i, 2r)) ≤ L(D0(G))2
((deg(G))2M+3 − 1

deg(G)− 1

)
µ(B(i, r)) for all i ∈ V and r ≥ 0. (3.30)
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Conversely, if µ is a doubling measure with constant D0, then

µG(BG(λ, 2r)) ≤ LD2
0

((deg(G))2M+3 − 1

deg(G)− 1

)2

µG(BG(λ, r)) for all λ ∈ G and r ≥ 0. (3.31)

To prove Proposition 3.7, we need two lemmas comparing measures of balls in graphs G and V .

Lemma 3.8. IfH satisfies (3.18) and (3.19), then

µ(B(i, r)) ≤ LµG(BG(λ, r)) for any λ ∈ G with (i, λ) ∈ T. (3.32)

Proof. Let i′ ∈ B(i, r) with i′ 6= i. By Proposition 3.5, there exists a path λ1 . . . λn of length

ρ(i, i′)− 1 in the graph G such that (i, λ1), (i′, λn) ∈ T . Then

ρG(λ, λn) ≤ ρG(λ, λ1) + ρG(λ1, λn) ≤ ρ(i, i′) ≤ r

as either λ1 = λ or (λ, λ1) is an edge in G by (3.18). This shows that for any innovative position

i′ ∈ B(i, r) there exists an anchor agent λn in the ball BG(λ, r). This observation together with

(3.19) proves (3.32).

Lemma 3.9. IfH satisfies (3.4), (3.18) and (3.20), then

µG(BG(λ, r)) ≤
(

sup
λ′∈G

µG(BG(λ
′, 2M + 2))

)
µ(B(i, r +M + 1)) (3.33)

for any λ ∈ G and r ≥M + 1, where (i, λ′) ∈ T and λ′ ∈ BG(λ,M).

Proof. Let λ1 = λ and take Λ = {λm}m≥1 such that (i) BG(λm,M + 1) ⊂ BG(λ, r) for all

λm ∈ Λ; (ii) BG(λm,M + 1)
⋂
BG(λm′ ,M + 1) = ∅ for all distinct vertices λm, λm′ ∈ Λ; and

(iii) BG(λ̃,M + 1)
⋂(⋃

λm∈Λ BG(λm,M + 1)
)
6= ∅ for all λ̃ ∈ BG(λ, r). The set Λ could be
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considered as a maximal (M + 1)-disjoint subset of BG(λ, r). Following the argument used in the

proof of Proposition 3.4, {BG(λm, 2(M + 1))}λm∈Λ forms a covering of the ball B(λ, r), which

implies that

µG(BG(λ, r)) ≤
(

sup
λm∈Λ

µG(BG(λm, 2M + 2))
)

#Λ ≤
(

sup
λ′∈G

µG(BG(λ
′, 2M + 2))

)
#Λ. (3.34)

For λm ∈ Λ, define

Vλm = {i′ ∈ V, (i′, λ̃) ∈ T for some λ̃ ∈ BG(λm,M)}.

Then it follows from (3.20) that

#Vλm ≥ 1 for all λm ∈ Λ. (3.35)

Observe that the distance of anchor agents associated with innovative positions in distinct Vλm is

at least 2 by the second requirement (ii) for the set Λ. This together with the assumption (3.18)

implies that

Vλm ∩ Vλm′ = ∅ for distinct λm, λm′ ∈ Λ. (3.36)

Combining (3.34), (3.35) and (3.36) leads to

µG(BG(λ, r)) ≤
(

sup
λ′∈G

µG(BG(λ
′, 2M + 2))

)
#
(
∪λm∈Λ Vλm

)
. (3.37)

Take i ∈ V with (i, λ′) ∈ T for some λ′ ∈ BG(λ,M), and i′ ∈ Vλm , λm ∈ Λ. Then

ρH(i, λ) ≤ ρH(i, λ′) + ρH(λ′, λ) ≤M + 1,
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and

ρH(i′, λ) ≤ ρH(i′, λ̃) + ρH(λ̃, λ) ≤ r + 1,

where λ̃ ∈ BG(λm,M) and (i′, λ̃) ∈ T . Thus

ρ(i, i′) ≤ r +M + 1. (3.38)

Then the desired estimate (3.33) follows from (3.37) and (3.38).

Here, we begin our proof of Proposition 3.7.

Proof. First we prove the doubling property (3.30) for the measure µ. Take i ∈ V . Then for

r ≥ 2(M + 1) it follows from Lemmas 3.8 and 3.9 that

µ(B(i, 2r)) ≤ LµG(BG(λ, 2r)) ≤ L(D0(G))2µG(BG(λ, r/2))

≤ KL(D0(G))2µ(B(i, r/2 +M + 1)) ≤ KL(D0(G))2µ(B(i, r)), (3.39)

where λ ∈ G is a vertex with (i, λ) ∈ T and

K := sup
λ′∈G

µG(BG(λ
′, 2M + 2)) ≤ ((deg(G))2M+3 − 1

deg(G)− 1
(3.40)

by (3.7). From the doubling property (3.2) for the measure µG , we obtain

µ(B(i, 2r)) ≤ KLD0(G) ≤ KLD0(G)µ(B(i, r)) for 0 ≤ r ≤ 2(M + 1). (3.41)

Then the doubling property (3.30) follows from (3.39), (3.40) and (3.41).

Next we prove the doubling property (3.31) for the measure µG . Let λ′ ∈ BG(λ,M) with (i, λ′) ∈
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T for some i ∈ V . The existence of such λ′ follows from assumption (3.20). From Lemmas 3.8

and 3.9, we obtain

µG(BG(λ, 2r)) ≤ Kµ(B(i, 2r +M + 1)) ≤ D2
0Kµ

(
B
(
i,
r

2
+

(M + 1)

4

))
≤ D2

0LKµG

(
BG

(
λ′,

r

2
+
M + 1

4

))
≤ D2

0LKµG

(
BG

(
λ,
r

2
+
M + 1

4
+M

))
≤ D2

0LKµG(BG(λ, r)) (3.42)

for r ≥ 3M , and

µG(BG(λ, 2r)) ≤ Kµ(B(i, 7M)) ≤ D2
0Kµ(B(i, 2M))

≤ D2
0LKµG(BG(λ

′, 2M)) ≤ D2
0LK

2µG(BG(λ, r)) (3.43)

for 0 ≤ r ≤ 3M − 1. Combining (3.40), (3.42) and (3.43) proves (3.31).

Proposition 3.10. Let G and H satisfy Assumptions 1 – 4. If µG has polynomial growth with

Beurling dimension d(G) and sampling density D1(G), then

µ(B(i, r)) ≤ LD1(G)(1 + r)d(G) for all i ∈ V and r ≥ 0. (3.44)

Conversely, if µ has polynomial growth with dimension d and maximal rate of innovation D1, then

µG(BG(λ, r)) ≤ 2d
((deg(G))2M+3 − 1

deg(G)− 1

)
D1(1 + r)d for all λ ∈ G and r ≥ 0. (3.45)

Proof. The polynomial growth property (3.44) for the measure µ follows immediately from Lemma

3.8.
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The polynomial growth property (3.45) for the measure µG holds because

µG(BG(λ, r)) ≤
(deg(G))M − 1

deg(G)− 1
, 0 ≤ r ≤M − 1

by (3.7), and

µG(BG(λ, r)) ≤ D1

((deg(G))2M+3 − 1

deg(G)− 1

)
(r +M + 2)d

≤ 2dD1

((deg(G))2M+3 − 1

deg(G)− 1

)
(r + 1)d, r ≥M,

by (3.40) and Lemma 3.9.

By (3.6), Propositions 3.7 and 3.10, we conclude that signals in (3.14) have their dimension d

being the same as the Beurling dimension d(G), and their maximal rate D1 of innovation being

approximately proportional to the sampling density D1(G).

Theorem 3.11. Let G andH satisfy Assumptions 1 – 4. Then

d(G) = d ≥ 1 (3.46)

and

L−1D1 ≤ D1(G) ≤ 2d
((deg(G))2M+3 − 1

deg(G)− 1

)
D1. (3.47)

We finish this section with a remark about signals on our graph V , cf. [124, 130, 136].

Remark 3.12. Signals on the graph V are analog in nature, while signals on graphs in most of the

literature are discrete ([124, 130, 136]). Let pλ and pi be the physical positions of the agent λ ∈ G
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and innovative position i ∈ V , respectively. If there exist positive constants A and B such that

A
∑
i∈V

|c(i)|2 ≤
∑
i∈V

|f(pi)|2 +
∑
λ∈G

|f(pλ)|2 ≤ B
∑
i∈V

|c(i)|2

for all signals f with the parametric representation (3.14), then we can establish a one-to-one

correspondence between the analog signal f and the discrete signal F on the graphH, where

F (u) = f(pu), u ∈ G ∪ V.

The above family of discrete signals F forms a linear space, which could be a Paley-Wiener space

associated with some positive-semidefinite operator (such as Laplacian) on the graphH. Using the

above correspondence, our theory for signal sampling and reconstruction applies by assuming that

the impulse response ψλ of every agent λ ∈ G is supported on pu, u ∈ G ∪ V .

3.3 Sensing matrices with polynomial off-diagonal decay

Let H be the connected simple graph in (3.15) to describe our DSRS. Define sensing matrix S of

our DSRS by

S := (〈ϕi, ψλ〉)λ∈G,i∈V . (3.48)

The sensing matrix S is stored by agents in a distributed manner. Due to the storage limitation,

each agent in our SDS stores its corresponding row (and perhaps also its neighboring rows) in the

sensing matrix S, but it does not have the whole matrix available. Agents in our SDS have limited

acquisition ability and they could essentially catch signals not far from their physical locations. So

the sensing matrix S has certain polynomial off-diagonal decay, i.e., there exist positive constants
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D and α such that

|〈ϕi, ψλ〉| ≤ D(1 + ρH(λ, i))−α for all λ ∈ G and i ∈ V, (3.49)

where ρH is the geodesic distance on the graph H. For most DSRSs in applications, such as

multivehicle and multirobot networks and wireless sensor networks, the signal generated at any

innovative position could be detected by its anchor agents and some of their neighboring agents,

but not by agents in the SDS far away. Thus the sensing matrix S may have finite bandwidth s ≥ 0,

〈ϕi, ψλ〉 = 0 if ρH(λ, i) > s. (3.50)

The above global requirements (3.49) and (3.50) could be fulfilled in a distributed manner.

We assume in this paper that the sensing matrix S in (3.48) satisfies

S ∈ Jα(G,V) for some α > d, (3.51)

where

Jα(G,V) :=
{
A := (a(λ, i))λ∈G,i∈V , ‖A‖Jα(G,V) <∞

}
(3.52)

is the Jaffard class Jα(G,V) of matrices with polynomial off-diagonal decay, and

‖A‖Jα(G,V) := sup
λ∈G,i∈V

(1 + ρH(λ, i))α|a(λ, i)|, α ≥ 0. (3.53)

The reader may refer to [84, 85, 93, 140, 142, 147] for matrices with various off-diagonal decay.

We observe that a matrix in Jα(G,V), α > d, defines a bounded operator from `p(V ) to `p(G), 1 ≤

p ≤ ∞.
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Proposition 3.13. Let G and H satisfy Assumptions 1 – 4, V be as in (3.17), and let µG have

polynomial growth with Beurling dimension d and sampling density D1(G). If A ∈ Jα(G,V) for

some α > d, then

‖Ac‖p ≤
D1(G)Lα

α− d
‖A‖Jα(G,V)‖c‖p for all c ∈ `p, 1 ≤ p ≤ ∞. (3.54)

To prove Proposition 3.13, we need a technical lemma.

Lemma 3.14. Let G be a connected simple graph. If its counting measure has polynomial growth

(3.5), then

sup
λ∈G

∑
ρG(λ,λ′)≥s

(1 + ρG(λ, λ
′))−α ≤ D1(G)α

α− d
(s+ 1)−α+d (3.55)

for all α > d and nonnegative integers s, where d and D1(G) are the Beurling dimension and

sampling density respectively.
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Proof. Take λ ∈ G and α > d. Then

∑
ρG(λ,λ′)≥s

(1 + ρG(λ, λ
′))−α =

∑
n≥s

(n+ 1)−α
( ∑
ρG(λ,λ′)=n

1
)

=
∑
n≥s

(n+ 1)−α
(
µG
(
BG(λ, n)

)
− µG

(
BG(λ, n− 1)

))
= lim

K→∞

[
(K + 1)−αµG(BG(λ,K)) +

K−1∑
n=s

µG
(
BG(λ, n)

)
((n+ 1)−α − (n+ 2)−α)

− (s+ 1)−αµG
(
BG(λ, s− 1)

)]
≤
∑
n≥s

µG(BG(λ, n))((n+ 1)−α − (n+ 2)−α
)

≤ D1(G)
∞∑
n=s

(n+ 1)d((n+ 1)−α − (n+ 2)−α
)

= D1(G)
(

(s+ 1)−α+d − (s+ 1)d(s+ 2)−α +
∞∑

n=s+1

(n+ 1)d
(
(n+ 1)−α − (n+ 2)−α

))
= D1(G)

(
(s+ 1)−α+d +

∞∑
n=s+1

(n+ 1)−α
(
(n+ 1)d − nd

))
≤ D1(G)

(
(s+ 1)−α+d + d

∫ ∞
s+1

td−α−1dt
)

=
D1(G)α

α− d
(s+ 1)−α+d, (3.56)

where the fourth inequality follows from (3.5), and the seventh one is true as (n + 1)d − nd ≤

d(n+ 1)d−1 for n ≥ 1 and d ≥ 1.

Now we continue our proof of Proposition 3.13.
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Proof. Take A ∈ Jα(G,V) and c := (c(i))i∈V ∈ `p, 1 < p <∞. Then

‖Ac‖pp ≤ ‖A‖
p
Jα(G,V)

∑
λ∈G

(∑
i∈V

(1 + ρH(λ, i))−α|c(i)|
)p

≤ ‖A‖pJα(G,V)

∑
λ∈G

(∑
i∈V

(1 + ρH(λ, i))−
α
q (1 + ρH(λ, i))−

α
p |c(i)|

)p
≤ ‖A‖pJα(G,V)

∑
λ∈G

(∑
i′∈V

(1 + ρH(λ, i′))−α
)p−1(∑

i∈V

(1 + ρH(λ, i))−α|c(i)|p
)

≤ ‖A‖pJα(G,V)‖c‖
p
p

(
sup
λ′∈G

∑
i′∈V

(1 + ρH(λ′, i′))−α
)p−1(

sup
i′∈V

∑
λ′∈G

(1 + ρH(λ′, i′))−α
)
,

(3.57)

where the first inequality follows by (3.53), and the second inequality follows by Hölder’s inequal-

ity.

For any λ′ ∈ G and i′ ∈ V , it follows from Proposition 3.5 that

ρG(λ
′, λ′′) + 1 ≥ ρH(λ′, i′) ≥ ρG(λ

′, λ′′) for all λ′′ ∈ G with (i′, λ′′) ∈ T. (3.58)

By (3.19), (3.46), (3.58) and Lemma 3.14, we obtain

∑
i′∈V

(1 + ρH(λ′, i′))−α≤
∑
λ′′∈G

( ∑
(i′,λ′′)∈T

1
)

(1 + ρG(λ
′, λ′′))−α

≤ L
∑
λ′′∈G

(1 + ρG(λ
′, λ′′))−α ≤ LD1(G)α

α− d
for any λ′ ∈ G, (3.59)

and

∑
λ′∈G

(1 + ρH(λ′, i′))−α ≤
∑
λ′∈G

(1 + ρG(λ
′, λ′′))−α ≤ D1(G)α

α− d
for any i′ ∈ V, (3.60)

where λ′′ ∈ G satisfies (i′, λ′′) ∈ T . Combining (3.57), (3.59) and (3.60) proves (3.54) for 1 <
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p <∞.

We can use similar argument to prove (3.54) for p = 1,∞.

For a DSRS with its sensing matrix in Jα(G,V), we obtain from (3.66) and Proposition 3.13 that

a signal with bounded amplitude vector generates a bounded sampling data vector.

Define band matrix approximations of a matrix A = (a(λ, i))λ∈G,i∈V by

As := (as(λ, i))λ∈G,i∈V , s ≥ 0, (3.61)

where

as(λ, i) =

 a(λ, i) if ρH(λ, i) ≤ s

0 if ρH(λ, i) > s.

We say a matrix A has bandwidth s if A = As. Clearly, any matrix A with bounded entries and

bandwidth s belongs to Jaffard class Jα(G,V),

‖A‖Jα(G,V) ≤ (s+ 1)α‖A‖J0(G,V) for all α ≥ 0.

In our DSRS, the sensing matrix S has bandwidth s means that any agent can only detect signals at

innovative positions within their geodesic distance less than or equal to s. In the next proposition,

we show that matrices in the Jaffard class can be well approximated by band matrices.

Proposition 3.15. Let graphs G, H, V , d and D1(G) be as in Proposition 3.13. If A ∈ Jα(G,V)

for some α > d, then

‖(A−As)c‖p ≤
D1(G)Lα

α− d
(s+ 1)−α+d‖A‖Jα(G,V)‖c‖p for all c ∈ `p, 1 ≤ p ≤ ∞, (3.62)

where As, s ≥ 1, are band matrices in (3.61).
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Proof. Following the proof of Proposition 3.13, we obtain

‖(A−As)c‖p ≤ ‖A‖Jα(G,V)

(
sup
λ′∈G

∑
ρH(λ′,i′)>s

(1 + ρH(λ′, i′))−α
)1−1/p

×
(

sup
i′∈V

∑
ρH(λ′,i′)>s

(1 + ρH(λ′, i′))−α
)1/p

‖c‖p, (3.63)

where c ∈ `p, 1 ≤ p ≤ ∞. Applying similar argument used to prove (3.55), (3.59) and (3.60), we

have

sup
λ′∈G

∑
ρH(λ′,i′)>s

(1 + ρH(λ′, i′))−α ≤ L sup
λ′∈G

∑
ρG(λ′,λ′′)≥s

(1 + ρG(λ
′, λ′′))−α ≤ D1(G)Lα

α− d
(s+ 1)−α+d

(3.64)

and

sup
i′∈V

∑
ρH(λ′,i′)>s

(1 + ρH(λ′, i′))−α ≤ D1(G)α

α− d
(s+ 1)−α+d. (3.65)

Then the approximation error estimate (3.62) follows from (3.63), (3.64) and (3.65).

The above band matrix approximation property will be used later in the establishment of a lo-

cal stability criterion in Section 3.5 and exponential convergence of a distributed reconstruction

algorithm in Section 3.6.

3.4 Robustness of distributed sampling and reconstruction systems

Let S be the sensing matrix associated with our DSRS that has the polynomial off-diagonal decay

property satisfy (3.51). The sensing matrix S characterizes the sampling procedure of signals.

Applying the sensing matrix S, we obtain the sample vector y = (〈f, ψλ〉)λ∈G of the signal f from

its amplitude vector c := (c(i))i∈V ,

y = Sc. (3.66)
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Under the assumptions (3.49) and (3.50), it is shown in Proposition 3.13 that a signal f with

bounded amplitude vector c generates a bounded sample vector y. Thus there exists a positive

constant C such that

‖y‖∞ ≤ C‖c‖∞ for all c ∈ `∞,

where for 1 ≤ p ≤ ∞, `p is the space of all p-summable sequences with norm ‖ · ‖p.

A fundamental problem in sampling theory is the robustness of signal reconstruction in the pres-

ence of sampling noises ([28, 66, 111, 112, 116, 122, 138]). In this paper, we consider the scenario

that the sampling data y = Sc is corrupted by bounded deterministic/random noise ηηη = (η(λ))λ∈G,

z = Sc + ηηη (3.67)

([148, 162]). We say that a reconstruction algorithm ∆ is a perfect reconstruction in noiseless

environment if

∆(Sc) = c for all c ∈ `∞. (3.68)

In this section, we first study robustness of the DSRS in term of the `∞-stability. For the robust-

ness of our DSRS, one desires that the signal reconstructed by some (non)linear algorithm ∆ is

a suboptimal approximation to the original signal, in the sense that the differences between their

corresponding amplitude vectors ∆(z) and c are bounded by a multiple of noise level δ = ‖ηηη‖∞,

i.e.,

‖∆(z)− c‖∞ ≤ Cδ (3.69)

for some absolute constant C ([3, 13, 42]).

Given the noisy sampling vector z in (3.67), solve the following nonlinear problem of maximal
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sampling error ([31, 32]),

∆∞(z) := argmind∈`∞ ‖Sd− z‖∞. (3.70)

Observe from (3.67) and (3.70) that

‖S∆∞(z)− Sc‖∞ ≤ ‖S∆∞(z)− z‖∞ + ‖ηηη‖∞ ≤ ‖Sc− z‖∞ + ‖ηηη‖∞ ≤ 2‖ηηη‖∞.

Thus the solution of the `∞-minimization problem (3.70) gives a suboptimal approximation to the

true amplitude vector c if the sensing matrix S of the DSRS has `∞-stability ([13, 150, 158]).

Proposition 3.16. Let G and H satisfy Assumptions 1 – 4, V be as in (3.17), µG have polynomial

growth with Beurling dimension d, and let S satisfy (3.51). Then there is a reconstruction algo-

rithm ∆ with the suboptimal approximation property (3.69) and the perfect reconstruction property

(3.68) if and only if S has `∞-stability.

The sufficiency in Proposition 3.16 holds by taking ∆ = ∆∞ in (3.70), while the necessity follows

by applying (3.69) to ηηη = Sd with d ∈ `∞.

The `∞-stability of a matrix can not be verified in a distributed manner, up to our knowledge. In

the next theorem, we circumvent such a verification problem by reducing `∞-stability of a matrix

in Jaffard class to its `2-stability, for which a distributed verifiable criterion will be provided in

Section 3.5.

Theorem 3.17. Let G,H,V and d be as in Proposition 3.16, and let A ∈ Jα(G,V) for some

α > d. If A has `2-stability, then it has `p-stability for all 1 ≤ p ≤ ∞.

To prove Theorem 3.17, we need Theorem 3.19 and the following lemma about families Jα(G,V)

and Jα(V) of matrices.
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Lemma 3.18. Let G,H,V and d be as in Proposition 3.16. Then

(i) ‖AC‖Jα(G,V) ≤ 2α+1LD1(G)α
α−d ‖A‖Jα(G,V)‖C‖Jα(V) for all A ∈ Jα(G,V) and C ∈ Jα(V).

(ii) ‖ATB‖Jα(V) ≤ 2α+1D1(G)α
α−d ‖A‖Jα(G,V)‖B‖Jα(G,V) for all A,B ∈ Jα(G,V).

Proof. Take A ∈ Jα(G,V) and C ∈ Jα(V). Observe from (3.18) that

ρH(λ, i) ≤ ρH(λ, i′) + ρ(i′, i) for all λ ∈ G and i, i′ ∈ V.

Similar to the argument used in the proof of Proposition 3.20, we obtain

‖AC‖Jα(G,V) ≤ 2α‖A‖Jα(G,V)‖C‖Jα(V)

(
sup
i∈V

∑
i′∈V

(1 + ρ(i′, i))−α + sup
λ∈G

∑
i′∈V

(1 + ρH(λ, i′))−α
)
.

This together with (3.47), (3.64) and (3.75) proves the first conclusion.

Recall that

ρ(i, i′) ≤ ρH(λ, i) + ρH(λ, i′) for all λ ∈ G and i, i′ ∈ V. (3.71)

Then for A,B ∈ Jα(G,V), we obtain from (3.65) and (3.71) that

‖ATB‖Jα(V) ≤ 2α+1‖A‖Jα(G,V)‖B‖Jα(G,V) sup
i∈V

∑
λ∈G

(1 + ρH(λ, i))−α

≤ 2α+1D1(G)α

α− d
‖A‖Jα(G,V)‖B‖Jα(G,V).

This completes the proof of the second conclusion.

Now we prove Theorem 3.17.
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Proof. Take A ∈ Jα(G,V) that has `2-stability. Then ATA has bounded inverse on `2. Observe

that ATA ∈ Jα(V) by Lemma 3.18. Therefore (ATA)−1 ∈ Jα(V) and A(ATA)−1 ∈ Jα(G,V)

by Theorem 3.19 and Lemma 3.18. Hence for any c ∈ `p,

‖c‖p = ‖(ATA)−1ATAc‖p ≤
D1(G)Lα

α− d
‖A(ATA)−1‖Jα(G,V)‖Ac‖p

and

‖Ac‖p ≤
D1(G)Lα

α− d
‖A‖Jα(G,V)‖c‖p

by Proposition 3.13 and the dual property between sequences `p and `p/(p−1). The `p-stability for

the matrix A then follows.

The reader may refer to [9, 134, 147] for equivalence of `p-stability of localized matrices for

different 1 ≤ p ≤ ∞. The lower and upper `p-stability bounds of the matrix A depend on its

`2-stability bounds and local features of the graphH. From the proof of Theorem 3.17, we observe

that they depend only on the `2-stability bounds, Jα(G,V)-norm of the matrix A, maximal vertex

degree deg(G), the Beurling dimension d, the sampling density D1(G), and the constants L and

M in (3.19) and (3.20). So the sensing matrix of our DSRS may have its `p-stability bounds

independent of the size of the DSRS.

For the graph V in (3.17) and the distance ρ in (3.24), define

Jα(V) :=
{
A := (a(i, i′))i,i′∈V , ‖A‖Jα(V) <∞

}
, (3.72)

where

‖A‖Jα(V) := sup
i,i′∈V

(1 + ρ(i, i′))α|a(i, i′)|, α ≥ 0. (3.73)

The proof of Theorem 3.17 depends highly on the following Wiener’s lemma for the matrix algebra
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Jα(V), α > d.

Theorem 3.19. Let V be as in (3.17) and its counting measure µ satisfy (3.29). If A ∈ Jα(V), α >

d, and A−1 is bounded on `2, then A−1 ∈ Jα(V) too.

To prove Wiener’s lemma (Theorem 3.19) for Jα(V), α > d, we first show that it is a Banach

algebra of matrices.

Proposition 3.20. Let V be an undirected graph with the counting measure µ having polynomial

growth (3.29). Then for any α > d, Jα(V) is a Banach algebra of matrices:

(i) ‖βC‖Jα(V) = |β|‖C‖Jα(V);

(ii) ‖C + D‖Jα(V) ≤ ‖C‖Jα(V) + ‖D‖Jα(V);

(iii) ‖CD‖Jα(V) ≤ 2α+1D1α
α−d ‖C‖Jα(V)‖D‖Jα(V); and

(iv) ‖Dc‖2 ≤ D1α
α−d‖D‖Jα(V)‖c‖2

for any scalar β, vector c ∈ `2 and matrices C,D ∈ Jα(V).

Proof. The first two conclusions follow immediately from (3.72) and (3.73).

Now we prove the third conclusion. Take C,D ∈ Jα(V). Then

‖CD‖Jα(V) ≤ 2α‖C‖Jα(V)‖D‖Jα(V) sup
i,i′∈V

( ∑
ρ(i,i′′)≥ρ(i,i′)/2

(1 + ρ(i′′, i′))−α

+
∑

ρ(i′′,i′)≥ρ(i,i′)/2

(1 + ρ(i, i′′))−α
)
. (3.74)
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Following the argument used in the proofs of Lemma 3.14, we have

sup
i∈V

∑
ρ(i,i′)≥s

(1 + ρ(i, i′))−α ≤ D1α

α− d
(s+ 1)−α+d, 0 ≤ s ∈ Z. (3.75)

Combining (3.74) and (3.75) proves the third conclusion.

Following the proof of Proposition 3.13 and applying (3.75) instead of (3.59) and (3.60), we obtain

the fourth conclusion.

Now, we prove Theorem 3.19.

Proof. Following the argument in [140], it suffices to establish the following differential norm

inequality:

‖C2‖Jα(V) ≤ 2α+d/2+2D
1/2
1 (D1α/(α− d))1−θ(‖C‖Jα(V))

2−θ(‖C‖B2)θ (3.76)

holds for all C ∈ Jα(V), where θ = (2α− 2d)/(2α− d) ∈ (0, 1).

Write C = (c(i, i′))i,i′∈V . Then

‖C2‖Jα(V) ≤ 2α‖C‖Jα(V)

(
sup
i,i′∈V

∑
ρ(i,i′′)≥ρ(i,i′)/2

|c(i′′, i′)|+ sup
i,i′∈V

∑
ρ(i′′,i′)≥ρ(i,i′)/2

|c(i, i′′)|
)

≤ 2α‖C‖Jα(V)

(
sup
i′∈V

∑
i′′∈V

|c(i′′, i′)|+ sup
i∈V

∑
i′′∈V

|c(i, i′′)|
)
. (3.77)

Set

τ :=
(D1α‖C‖Jα(V)

(α− d)‖C‖B2

)2/(2α−d)

≥ 1 (3.78)
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by Proposition 3.20. For i′ ∈ V , we obtain

∑
i′′∈V

|c(i′′, i′)| ≤
( ∑
ρ(i′′,i′)≤τ

|c(i′′, i′)|2
)1/2( ∑

ρ(i′′,i′)≤τ

1
)1/2

+ ‖C‖Jα(V)

∑
ρ(i′′,i′)>τ

(1 + ρ(i′′, i′))−α

≤D1/2
1 ‖C‖B2(1 + bτc)d/2 +D1α(α− d)−1‖C‖Jα(V)(1 + bτc)−α+d

≤ 2d/2+1D
1/2
1 (D1α/(α− d))d/(2α−d)(‖C‖Jα(V))

1−θ(‖C‖B2)θ, (3.79)

where the second inequality holds by (3.75) and the last inequality follows from (3.78). Similarly,

for i ∈ V we have

∑
i′′∈V

|c(i′, i′′)| ≤ 2d/2+1D
1/2
1 (D1α/(α− d))d/(2α−d)(‖C‖Jα(V))

1−θ(‖C‖B2)θ. (3.80)

Combining (3.77), (3.79) and (3.80) proves (3.76). This completes the proof of Theorem 3.19.

Wiener’s lemma has been established for infinite matrices, pseudodifferential operators, and inte-

gral operators satisfying various off-diagonal decay conditions ([18, 68, 82, 84, 85, 93, 140, 142,

144, 147]). It has been shown to be crucial for well-localization of dual Gabor/wavelet frames,

fast implementation in numerical analysis, local reconstruction in sampling theory, local features

of spatially distributed optimization, etc. The reader may refer to the survey papers [83, 103] for

historical remarks, motivation and recent advances.

The Wiener’s lemma (Theorem 3.19) is also used to establish the sub-optimal approximation prop-

erty (3.69) for the “least squares” solution ∆2(z) in (3.96), for which a distributed algorithm is

proposed in Section 3.6.

Theorem 3.21. Let G,H and V be as in Proposition 3.16. Assume that the sensing matrix S
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satisfies (3.51) and it has `2-stability. Then there exists a positive constant C such that

‖∆2(z)− c‖∞ ≤ C‖ηηη‖∞ for all c, ηηη ∈ `∞, (3.81)

where z = Sc + ηηη.

Proof. The conclusion (3.81) follows immediately from Proposition 3.13, Theorem 3.19 and Lemma

3.18.

3.5 Stability criterion for distributed sampling and reconstruction system

LetH be the connected simple graph in (3.15) to describe our DSRS. Given λ′ ∈ G and a positive

integer N , define truncation operators χNλ′,G and χNλ′,V by

χNλ′,G : `p(G) 3 (d(λ))λ∈G 7−→
(
d(λ)χBH(λ′,N)∩G(λ)

)
λ∈G ∈ `

p(G)

and

χNλ′,V : `p(V ) 3 (c(i))i∈V 7−→
(
c(i)χBH(λ′,N)∩V (i)

)
i∈V ∈ `

p(V ),

where 1 ≤ p ≤ ∞ and

BH(u, r) := {v ∈ G ∪ V, ρH(u, v) ≤ r}

is the closed ball inH with center u ∈ H and radius r ≥ 0.

For any matrix A ∈ Jα(G,V) with `2-stability, we observe that its quasi-main submatrices χ2N
λ AχNλ , λ ∈

G, of size O(Nd) have uniform `2-stability for large N .

Theorem 3.22. Let G and H satisfy Assumptions 1 – 4, V be as in (3.17), µG have polynomial

growth with Beurling dimension d and sampling density D1(G), and let A ∈ Jα(G,V) for some
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α > d. If A has `2-stability with lower bound A‖A‖Jα(G,V), then

‖χ2N
λ,GAχ

N
λ,V c‖2 ≥

A

2
‖A‖Jα(G,V)‖χNλ,V c‖2, c ∈ `2 (3.82)

for all λ ∈ G and all integers N satisfying

2D1(G)N−α+d
√
Lα/(α− d) ≤ A. (3.83)

Proof. Observe from Proposition 3.5 that

BH(γ, r) ∩G = {γ′ ∈ G, ρG(γ, γ′) ≤ r}, γ ∈ G.

and

BH(i, r) ∩ V = {i′ ∈ V, ρ(i, i′) ≤ max(r − 1, 0)}, i ∈ V.

Take c = (c(i))i∈V supported in BH(λ,N) ∩ V and write Ac = (d(λ′))λ′∈G. Then

‖Ac‖2 ≥ A‖A‖Jα(G,V)‖c‖2 (3.84)

and

∑
ρH(λ′,λ)>2N

|d(λ′)|2 ≤ LD1(G)N−α+d‖A‖2
Jα(G,V)

×
∑

ρH(λ′,λ)>2N

∑
i∈BH(λ,N)∩V

(1 + ρH(λ′, i))−α|c(i)|2

≤
(
D1(G)

)2
LN−2α+2dα(α− d)−1‖A‖2

Jα(G,V)‖c‖2
2, (3.85)
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where the first inequality holds as

ρH(λ′, i′) ≥ ρH(λ′, λ)− ρH(i′, λ) > N

for all λ′ 6∈ BH(λ, 2N) and i′ ∈ BH(λ,N), and the last inequality follows from (3.65). Combining

(3.84) and (3.85) proves (3.82).

The above theorem provides a guideline to design a distributed algorithm for signal reconstruction,

see Section 3.6. Surprisingly, the converse of Theorem 3.22 is true, cf. the stability criterion in

[146, Theorem 2.1] for convolution-dominated matrices.

Theorem 3.23. Let G,H,V be as in Theorem 3.22, and A ∈ Jα(G,V) for some α > d. If there

exist a positive constant A0 and an integer N0 ≥ 3 such that

A0 ≥ 4(D0(G))2D1(G)LN
−min(α−d,1)
0 ×



(
4α

3(α−d)
+ 2(α−1)(α−d)

α−d−1

)
if α > d+ 1(10(d+1)

3
+ 2d lnN0

)
if α = d+ 1(

4α
3(α−d)

+ 4d
d+1−α

)
if α < d+ 1,

(3.86)

and for all λ ∈ G,

‖χ2N0
λ,GAχ

N0
λ,V c‖2 ≥ A0‖A‖Jα(G,V)‖χN0

λ,V c‖2, c ∈ `2, (3.87)

then A has `2-stability,

‖Ac‖2 ≥
A0‖A‖Jα(G,V)

12(D0(G))2
‖c‖2, c ∈ `2. (3.88)

Here, we will prove the following strong version of Theorem 3.23.

Theorem 3.24. Let G,H,V and A be as in Theorem 3.23. If there exists a positive constant A0, an

integer N0 ≥ 3, and a maximal N0

4
-disjoint subset GN0/4 such that (3.86) is true and (3.87) hold
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for all λm ∈ GN0/4, then A satisfies (3.88).

Proof. Let ψ0 be the trapezoid function,

ψ0(t) =


1 if |t| ≤ 1/2

2− 2|t| if 1/2 < |t| ≤ 1

0 if |t| > 1.

(3.89)

For λ ∈ G, define multiplication operators ΨN
λ,V and ΨN

λ,G by

ΨN
λ,V : (c(i))i∈V 7−→

(
ψ0(ρH(λ, i)/N)c(i)

)
i∈V , (3.90)

ΨN
λ,G : (d(λ′))λ′∈G 7−→

(
ψ0(ρH(λ, λ′)/N)d(λ′)

)
λ′∈G. (3.91)

Observe that

ANΨN
λ,V = ANχ

N
λ,V ΨN

λ,V = χ2N
λ,GANχ

N
λ,V ΨN

λ,V , N ≥ 0,

where AN is a band approximation of the matrix A in (3.61). Then for all λm ∈ GN0/4, it follows

from Proposition 3.15 and our local stability assumption (3.87) that

‖AN0ΨN0
λm,V

c‖2 ≥ ‖χ2N0
λm,G

AχN0
λm,V

ΨN0
λm,V

c‖2 − ‖χ2N0
λm,G

(A−AN0)ΨN0
λm,V

c‖2

≥
(
A0 −

D1(G)Lα

α− d
N−α+d

0

)
‖A‖Jα(G,V)‖ΨN0

λm,V
c‖2, c ∈ `2.

74



Therefore

( ∑
λm∈GN0/4

‖AN0ΨN0
λm,V

c‖2
2

)1/2

≥
(
A0 −

D1(G)Lα

α− d
N−α+d

0

)
‖A‖Jα(G,V)

( ∑
λm∈GN0/4

‖ΨN0
λm,V

c‖2
2

)1/2

≥
(A0

3
− D1(G)Lα

3(α− d)
N−α+d

0

)
‖A‖Jα(G,V)‖c‖2, (3.92)

where the last inequality holds because for all i ∈ V ,

∑
λm∈GN0/4

|ψ0(ρH(λm, i)/N0)|2 ≥
(N0 − 2

N0

)2 ∑
λm∈GN0/4

χBH(λm,N0/2+1)(i) ≥
1

9

by (3.89), Proposition 3.4 and the assumption that N0 ≥ 3.

Next, we estimate commutators

AN0ΨN0
λm,V

−ΨN0
λm,G

AN0 = (AN0ΨN0
λm,V

−ΨN0
λm,G

AN0)χ2N0
λm,V

, λm ∈ GN0/4.

Take c = (c(i))i∈V ∈ `2. Then

∑
λm∈GN0/4

‖(AN0ΨN0
λm,V

−ΨN0
λm,G

AN0)c‖2
2

≤ ‖A‖2
Jα(G,V)

∑
λm∈GN0/4

∑
λ∈G

{ ∑
ρH(λ,i)≤N0

(1 + ρH(λ, i))−α

×
∣∣∣ψ0

(ρH(λ, λm)

N0

)
− ψ0

(ρH(i, λm)

N0

)∣∣∣χBH(λm,2N0)∩V (i)|c(i)|
}2

≤ 4(D0(G))4N−2
0 ‖A‖2

Jα(G,V)

(
sup
i∈V

∑
λ∈BH(i,N0)∩G

(1 + ρH(λ, i))−αρH(λ, i)
)

×
(

sup
λ∈G

∑
i∈BH(λ,N0)∩V

(1 + ρH(λ, i))−αρH(λ, i)
)
‖c‖2

2, (3.93)
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where the last inequality follows from Propositions 3.4 and 3.5, and

|ψ0(t)− ψ0(t′)| ≤ 2|t− t′| for all t, t′ ∈ R.

Following the argument used in (3.55), we have

sup
i∈V

∑
λ∈BH(i,N0)∩G

(1 + ρH(λ, i))−αρH(λ, i)

≤ sup
λ′∈G

∑
ρG(λ,λ′)≤N0

(1 + ρG(λ, λ
′))−α+1

≤ D1(G)(N0 + 1)−α+d+1 + (α− 1)D1(G)

N0−1∑
n=0

(n+ 1)−α+d

≤ D1(G)(N0 + 1)−α+d+1 +D1(G)(α− 1)
(

1 +

∫ N0

1

t−α+ddt
)

≤


D1(G)(α−1)(α−d)

α−d−1
if α > d+ 1

D1(G)(1 + d+ d lnN0) if α = d+ 1

2d+1−αD1(G)d
d+1−α Nd+1−α

0 if α < d+ 1

(3.94)

and

sup
λ∈G

∑
i∈BH(λ,N0)∩V

(1 + ρH(λ, i))−αρH(λ, i)

≤ L sup
λ∈G

∑
λ′∈BG(λ,N0)

(1 + ρG(λ, λ
′))−α+1

≤


D1(G)L(α−1)(α−d)

α−d−1
if α > d+ 1

D1(G)L(1 + d+ d lnN0) if α = d+ 1

2d+1−αD1(G)dL
d+1−α Nd+1−α

0 if α < d+ 1.

(3.95)
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Therefore,

(D0(G))2‖AN0c‖2 ≥
( ∑
λm∈GN0/4

‖ΨN0
λm,G

AN0c‖2
2

)1/2

≥
( ∑
λm∈GN0/4

‖AN0ΨN0
λm,V

c‖2
2

)1/2

−
( ∑
λm∈GN0/4

‖(AN0ΨN0
λm,V

−ΨN0
λm,G

AN0)c‖2
2

)1/2

≥
A0‖A‖Jα(G,V)

3
‖c‖2 −D1(G)L‖A‖Jα(G,V)N

−min(α−d,1)
0 ‖c‖2

×



(
α

3(α−d)
+ 2(D0(G))2(α−1)(α−d)

α−d−1

)
if α > d+ 1(

d+1
3

+ 2(D0(G))2(1 + d+ d lnN0)
)

if α = d+ 1(
α

3(α−d)
+ 4(D0(G))2d

d+1−α

)
if α < d+ 1,

where the first inequality holds by Proposition 3.4, and the third inequality follows from (3.92) and

(3.93). This together with Proposition 3.15 completes the proof.

Observe that the right hand side of (3.86) could be arbitrarily small when N0 is sufficiently large.

This together with Theorem 3.22 implies that the requirements (3.86) and (3.87) are necessary

for the `2-stability property of any matrix in Jα(G,V). As shown in the example below, the term

N
−min(α−d,1)
0 in (3.86) cannot be replaced by N−β0 with high order β > 1 even if the matrix A has

finite bandwidth.

Example 3.25. Let A0 = (a0(i−j))i,j∈Z be the bi-infinite Toeplitz matrix with symbol
∑

k∈Z a0(k)e−ikξ =

1 − e−iξ. Then A0 belongs to the Jaffard class Jα(Z,Z) for all α ≥ 0 and it does not have `2-

stability. On the other hand, for any λ ∈ G = V = Z and N0 ≥ 1,

inf
‖χN0
λ,V c‖2=1

‖χ2N0
λ,GA0χ

N0
λ,V c‖2 = inf

‖χN0
λ,V c‖2=1

‖A0χ
N0
λ,V c‖2

= inf
|d1|2+···+|d2N0+1|2=1

√
|d1|2 + |d1 − d2|2 + · · ·+ |d2N0 − d2N0+1|2 + |d2N0+1|2

= 2 sin
π

4N0 + 4
≥ 1

2
N−1

0 ,
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where the last equality follows from [100, Lemma 1 of Chapter 9].

For our DSRS with sensing matrix S having the polynomial off-diagonal decay property (3.51),

the uniform stability property (3.87) could be verified by finding minimal eigenvalues of its quasi-

main submatrices χN0
λ,V S

Tχ2N0
λ,GSχ

N0
λ,V , λ ∈ G, of size aboutO(Nd

0 ). The above verification could be

implemented on agents in the DSRS via its computing and communication abilities. This provides

a practical tool to verify `2-stability of a DSRS and to design a robust (dynamic) DSRS against

supplement, replacement and impairment of agents.

3.6 Exponential convergence of a distributed reconstruction algorithm

In this section, we consider signal reconstructions in a distributed manner, under the assump-

tion that the sensing matrix S of our DSRS has `2-stability. For centralized signal reconstruction

systems, there are many robust algorithms, such as the frame algorithm and the approximation-

projection algorithm, to approximate signals from their (non)linear noisy sampling data ([11, 42,

47, 64, 70, 116, 141, 148]). In this paper, we develop a distributed algorithm to find the suboptimal

approximation

∆2(z) := (STS)−1STz (3.96)

to the original signal f in (3.14). For the case that our DSRS has finitely many agents (which is the

case in most of practical applications), the suboptimal approximation ∆2(z) in (3.96) is the unique

least squares solution,

∆2(z) = argmind∈`2 ‖Sd− z‖2
2 = argmind∈`2

∑
λ∈G

fλ(d, z), (3.97)
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where d = (d(i))i∈V , z = (z(λ))λ∈G, and

fλ(d, z) =
∣∣∣∑
i∈V

〈ϕi, ψλ〉d(i)− z(λ)
∣∣∣2, λ ∈ G. (3.98)

As our SDS has strict constraints in its data processing power and communication bandwidth, we

need develop distributed algorithms to solve the optimization problem

min
∑
λ∈G

fλ(d, z). (3.99)

For the case that G = V and the sensing matrix S is strictly diagonally dominant, the Jacobi

iterative method,


d1(λ) = 0

dn+1(λ) = (〈ϕλ, ψλ〉)−1
(∑

i 6=λ〈ϕi, ψλ〉dn(i)− z(λ)
)

= argmint∈R fλ(dn;t,λ, z), λ ∈ G = V, n ≥ 1,

is a distributed algorithm to solve the minimization problem (3.99), where dn;t,λ is obtained from

dn = (dn(i))i∈V by replacing its λ-component dn(λ) with t. The reader may refer to [27, 39,

102, 108, 118] and references therein for historical remarks, motivations, applications and recent

advances on distributed algorithms, especially for the case that G = V .

In our DSRS, the set G of agents is not necessarily the same as the set V of innovative positions,

and even for the case that the sets G and V are the same, the sensing matrix S need not be strictly

diagonally dominant in general. In this paper, we introduce a distributed algorithm (3.132) and

(3.133) to approximate ∆2(z) in (3.96), when the sensing matrix S has `2-stability and satisfies

the requirements (3.48) and (3.49). In the above distributed algorithm for signal reconstruction,

each agent in the SDS collects noisy observations of neighboring agents, then interacts with its

neighbors per iteration, and continues the above recursive procedure until arriving at an accurate
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approximation to the solution ∆2(z) in (3.96). More importantly, we show in Theorems 3.26

and 3.28 that the proposed distributed algorithm (3.132) and (3.133) converges exponentially to

the solution ∆2(z) in (3.96). The establishment for the above convergence is virtually based on

Wiener’s lemma for localized matrices ([84, 85, 93, 140, 142, 147]) and on the observation that

our sensing matrices are quasi-diagonal block dominated.

In our DSRS, agents could essentially catch signals not far from their locations. So one may expect

that a signal near any innovative position should substantially be determined by sampling data of

neighboring agents, while data from distant agents should have (almost) no influence in the recon-

struction. The most desirable method to meet the above expectation is local exact reconstruction,

which could be implemented in a distributed manner without iterations ([12, 86, 145, 152]). In

such a linear reconstruction procedure, there is a left-inverse T of the sensing matrix S with finite

bandwidth,

TS = I.

For our DSRS, such a left-inverse T with finite bandwidth may not exist and/or it is difficult to

find even it exists. We observe that

S† := (STS)−1ST

is a left-inverse well approximated by matrices with finite bandwidth, and

d2 = S†z (3.100)

is a suboptimal approximation, where z is given in (3.67). However, it is infeasible to find the

pseudo-inverse S†, because the DSRS does not have a central processor and it has huge amounts

of agents and large number of innovative positions. In this section, we introduce a distributed

algorithm to find the suboptimal approximation d2 in (3.100).
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Let H be the connected simple graph in (3.15) to describe our DSRS, and the sensing matrix

S ∈ Jα(G,V), α > d, have `2-stability. Then d2 in (3.100) is the unique solution to the “normal”

equation

STSd2 = STz. (3.101)

As principal submatrices χNλ,V S
TSχNλ,V of the positive definite matrix STS are uniformly stable,

we solve localized linear systems

χNλ,V S
TSχNλ,V dλ,N = χNλ,V S

Tz, λ ∈ G, (3.102)

of sizeO(Nd), whose solutions dλ,N are supported in the ballBH(λ,N)∩V . One of crucial results

of this paper is that for large integer N , the solution dλ,N provides a reasonable approximation of

the “least squares” solution d2 inside the half ball BH(λ,N/2) ∩ V , see (3.105) in Proposition

3.26. However, the above local approximation can not be implemented distributedly in the DSRS,

as only agents on the graph G have computing and telecommunication ability. So we propose to

compute

wλ,N := χNλ,GSχ
N
λ,V (χNλ,V S

TSχNλ,V )−1dλ,N = χNλ,GSχ
N
λ,V (χNλ,V S

TSχNλ,V )−2χNλ,V S
Tz (3.103)

instead, which approximates

wLS := S(STS)−1d2 (3.104)

inside BG(λ,N/2) ∩G, see (3.106) in the proposition below.

Proposition 3.26. Let G and H satisfy Assumptions 1 – 4, V be as in (3.17), and let the sensing

matrix S ∈ Jα(G,V), α > d, have `2-stability with lower stability bound A‖S‖Jα(G,V). Take an
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integer N satisfying (3.83), and set

θ =
2α− 2d

2α− d
∈ (0, 1) and r0 = 1− A2(α− d)2

2α+1D1D1(G)α2
.

Then

‖χN/2λ,V (dλ,N − d2)‖∞ ≤ D3(N + 1)−α+d‖d2‖∞ (3.105)

and

‖χN/2λ,G (wλ,N −wLS)‖∞ ≤ D4(N + 1)−α+d‖d2‖∞, (3.106)

where D3 = 22α−d+1αD1D2

α−d , D4 =
(23α−d+3αL2D1(G)D2

2

α−d + LD2

)
‖S‖−1

Jα(G,V), and

D2 =
∞∑
n=0

(22α+d/2+4D3
1α

2

r1−θ
0 (α− d)2

) 2−θ
(1−θ)2

nlog
(2−θ)
2

rn0 . (3.107)

To prove Proposition 3.26, we need the following critical estimate.

Proposition 3.27. Let G,H, V and S be as in Proposition 3.26. Then

‖(χNλ,V STSχNλ,V )−1‖Jα(V) ≤
2−α−1(α− d)2D2

α2D1D1(G)‖S‖2
Jα(G,V)

, (3.108)

where D2 is the constant in (3.107).

Proof. Let Jλ,N := χNλ,V S
TSχNλ,V . By Lemma 3.18, we have

‖Jλ,N‖Jα(V) ≤
2α+1D1(G)α

α− d
‖S‖2

Jα(G,V). (3.109)
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This together with Propositions 3.20 implies that

A2‖S‖2
Jα(G,V)‖χNλ,V x‖2

2 ≤ ‖SχNλ,V x‖2
2 = 〈Jλ,Nx,x〉 ≤

2α+1α2D1D1(G)

(α− d)2
‖S‖2

Jα(G,V)‖χNλ,V x‖2
2

for all x ∈ `2. Hence

Jλ,N =
2α+1α2D1D1(G)

(α− d)2
‖S‖2

Jα(G,V)(IBH(λ,N)∩V −Bλ,N) (3.110)

for some Bλ,N satisfying

‖Bλ,N‖B2 ≤ r0 (3.111)

and

‖Bλ,N‖Jα(V) ≤ ‖IBH(λ,N)∩V ‖Jα(V) +
2−α−1(α− d)2‖Jλ,N‖Jα(V)

α2D1D1(G)‖S‖2
Jα(G,V)

≤ 1 +
α− d
αD1

≤ 2, (3.112)

where IBH(λ,N)∩V is the identity matrix on BH(λ,N) ∩ V . Then following the argument in [140]

and applying (3.76) with C replaced by Bλ,N and V by BH(λ,N) ∩ V , we obtain the following

estimate

‖(Bλ,N)n‖Jα(V) ≤
(D 1

1−θ ‖Bλ,N‖Jα(V)

‖Bλ,N‖B2

) 2−θ
1−θn

log2(2−θ)

‖Bλ,N‖nB2 for all n ≥ 1,

where D = 22α+d/2+3D
1/2
1 (D1α/(α− d))2−θ. This together with (3.111) and (3.112) leads to

‖(Bk,N)n‖Jα(V) ≤ (2D
1

1−θ /r0)
2−θ
1−θn

log2(2−θ)
rn0 for all n ≥ 1. (3.113)

Observe that

‖(Jλ,N)−1‖Jα(V) ≤
2−α−1(α− d)2

α2D1D1(G)‖S‖2
Jα(G,V)

(
1 +

∞∑
n=1

‖(Bλ,N)n‖Jα(V)

)
(3.114)
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by (3.110). Combining (3.113) and (3.114) completes the proof.

Proof of Proposition 3.26. Observe from (3.101) and (3.102) that

χ
N/2
λ,V (dλ,N − d2) = χ

N/2
λ,V (χNλ,V S

TSχNλ,V )−1χNλ,V S
TS(I− χNλ,V )d2.

This together with (3.75), Lemma 3.18, and Propositions 3.20 and 3.27 implies that

‖χN/2λ,V (dλ,N − d2)‖∞ ≤ ‖(χNλ,V STSχNλ,V )−1χNλ,V S
TS‖Jα(V) ×(

sup
i∈BH(λ,N/2)∩V

∑
j /∈BH(λ,N)∩V

(1 + ρH(i, j))−α
)
‖d2‖∞

≤ 2α+1D1α

α− d
‖(χNλ,V STSχNλ,V )−1‖Jα(V)‖STS‖Jα(V) ×(

sup
i∈V

∑
ρH(i,j)>N/2

(1 + ρH(i, j))−α
)
‖d2‖∞

≤ 2α+1D2

(
sup
i∈V

∑
ρH(i,j)>N/2

(1 + ρH(i, j))−α
)
‖d2‖∞

≤ 2α+1D1D2α

α− d

(N
2

+ 1
)−α+d

‖d2‖∞ ≤ D3(N + 1)−α+d‖d2‖∞.

This proves the estimate (3.105).

Now we prove (3.106). Set yLS = (STS)−1d2. By (3.75),

‖yLS‖∞ ≤
D1α

α− d
‖(STS)−1‖Jα(V)‖d2‖∞. (3.115)

Moreover, following the proof of Proposition 3.27 gives

‖(STS)−1‖Jα(V) ≤
2−α−1(α− d)2D2

α2D1D1(G)‖S‖2
Jα(G,V)

. (3.116)
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Write

χ
N/2
λ,G (wλ,N −wLS) = χ

N/2
λ,G (χNλ,GSχ

N
λ,V )(χNλ,V S

TSχNλ,V )−2χNλ,V S
TS(I − χNλ,V )d2

+χ
N/2
λ,G (χNλ,GSχ

N
λ,V )(χNλ,V S

TSχNλ,V )−1χNλ,V S
TS(I − χNλ,V )yLS

−χN/2λ,GS(I − χNλ,V )yLS

=: I + II + III. (3.117)

Using (3.64), (3.115), (3.116), Lemma 3.18, and Propositions 3.20 and 3.27, we obtain

‖I‖∞ ≤ ‖(χNλ,GSχNλ,V )(χNλ,V S
TSχNλ,V )−2χNλ,V S

TS‖Jα(G,V) ×(
sup

λ′∈BH(λ,N/2)∩G

∑
i/∈BH(λ,N)∩V

(1 + ρH(λ′, i))−α
)
‖d2‖∞

≤ 22α+2LD2
2

‖S‖Jα(G,V)

(
sup
λ′∈G

∑
ρH(λ′,i)>N/2

(1 + ρH(λ′, i))−α
)
‖d2‖∞

≤ 23α−d+2αL2D1(G)D2
2

(α− d)‖S‖Jα(G,V)

(N + 1)−α+d‖d2‖∞,

‖II‖∞ ≤ 23α−d+2α2L2(D1(G))2D2

(α− d)2
‖S‖Jα(G,V)(N + 1)−α+d‖yLS‖∞

≤ 22α−d+1αL2D1(G)D2
2

(α− d)‖S‖Jα(G,V)

(N + 1)−α+d‖d2‖∞,

and

‖III‖∞ ≤ LD2

‖S‖Jα(G,V)

(N + 1)−α+d‖d2‖∞.

These together with (3.117) prove (3.106).

Take a maximal N
4

-disjoint subset GN/4 ⊂ G satisfying (3.8) and (3.9). We patch wλ,N , λ ∈ GN/4,
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in (3.103) together to generate a linear approximation

w∗N =
∑

λ∈GN/4

ΘΘΘλ,Nχ
N/2
λ,Gwλ,N (3.118)

of the bounded vector wLS , where ΘΘΘλ,N is a diagonal matrix with diagonal entries

θλ,N(λ′′) =
χBG(λ,N/2)(λ

′′)∑
λ′∈GN/4 χBG(λ′,N/2)(λ′′)

, λ′′ ∈ G.

The above approximation is well-defined as {BG(λ′, N/2), λ′ ∈ GN/4} is a finite covering of G

by (3.21) and Proposition 3.4. Moreover, we obtain from Proposition 3.26 that

‖w∗N −wLS‖∞ =
∥∥∥ ∑
λ∈GN/4

ΘΘΘλ,Nχ
N/2
λ,G (wλ,N −wLS)

∥∥∥
∞

≤ sup
λ′′∈G

∑
λ∈GN/4

θλ,N(λ′′)‖χN/2λ,G (wλ,N −wLS)‖∞

≤ D4(N + 1)−α+d‖d2‖∞. (3.119)

Therefore, the moving consensus w∗N of wλ,N , λ ∈ GN/4, provides a good approximation to wLS

in (3.104) for large N . In addition, w∗N depends on the observation z linearly,

w∗N = RNS
Tz (3.120)

for some matrix RN with bandwidth 2N and

‖RN‖Jα(G,V) ≤ D5 :=
(α− d)2LD2

2

α2D1D1(G)‖S‖3
Jα(G,V)

. (3.121)
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Given noisy samples z, we may use w∗N in (3.120) as the first approximation of wLS ,

w1 = RNS
Tz (3.122)

and recursively define

wn+1 = wn + w1 −RNS
TSSTwn, n ≥ 1. (3.123)

In the next theorem, we show that the above sequence wn, n ≥ 1, converges exponentially to some

bounded vector w, not necessarily wLS , satisfying the consistent condition

STw = STwLS = d2. (3.124)

Theorem 3.28. Let G,H and V be as in Proposition 3.26, and let wn, n ≥ 1, be as in (3.122) and

(3.123). Suppose that N satisfies (3.83) and

r1 :=
D1(G)D4Lα

α− d
‖S‖Jα(G,V)(N + 1)−α+d < 1. (3.125)

Set

D6 =
22α+2αL3(D1(G))2D2

2

(α− d)(1− r1)D1‖S‖Jα(G,V)

.

Then wn and STwn, n ≥ 1, converge exponentially to a bounded vector w in (3.124) and the

“least squares” solution d2 in (3.100) respectively,

‖wn −w‖∞ ≤ D6r
n
1‖d2‖∞ (3.126)

and

‖STwn − d2‖∞ ≤
D1(G)D6Lα

α− d
‖S‖Jα(G,V)r

n
1‖d2‖∞, n ≥ 1. (3.127)
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Proof. Let

un = ST (wn −wLS) = STwn − d2 and vn = Sun, n ≥ 1. (3.128)

Then,

un+1 = un − STRNS
TSun = ST

(
S(STS)−2STvn −RNS

Tvn
)

by (3.122), (3.123) and (3.128). Therefore,

‖un+1‖∞ ≤ D1(G)Lα

α− d
‖S‖Jα(G,V)‖RNS

Tvn − S(STS)−2STvn‖∞

≤ D1(G)D4Lα

α− d
‖S‖Jα(G,V)(N + 1)−α+d‖(STS)−1STvn‖∞

= r1‖un‖∞ ≤ · · · ≤ rn1‖ST (RNS
TS− S(STS)−1)d2‖∞

≤ rn+1
1 ‖d2‖∞, (3.129)

where the second inequality follows from (3.119) with d2 replaced by (STS)−1STvn, and the last

inequality holds by (3.119) and Proposition 3.13.

Observe that

wn+1 −wn = −RNS
TSun. (3.130)

Using (3.121), Proposition 3.13 and Lemma 3.18 gives

‖wn+1 −wn‖∞ ≤
22α+2αL3(D1(G))2D2

2

(α− d)D1‖S‖Jα(G,V)

‖un‖∞. (3.131)

This together with (3.129) proves the exponential convergence (3.126).

The conclusion (3.124) follows from (3.128) by taking limit n→∞.

The error estimate (3.127) between the “least squareS” solution d2 and its sub-optimal approxima-

tion STwn, n ≥ 1, follows from (3.126) and Proposition 3.13.
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By the above theorem, each agent should have minimal storage, computing, and telecommuni-

cation capabilities. Furthermore, the algorithm (3.122) and (3.123) will have faster convergence

(hence less delay for signal reconstruction) by selecting large N when agents have larger storage,

more computing power, and higher telecommunication capabilities. In addition, no iteration is

needed for sufficiently large N , and the reconstructed signal is approximately to the one obtained

by the finite-section method, cf. [47] and simulations in Section 3.7.

The iterative algorithm (3.122) and (3.123) can be recast as follows:

w1 = RNS
Tz and e1 = w1 −RNS

TSSTw1, (3.132)

and  wn+1 = wn + en

en+1 = en −RNS
TSSTen, n ≥ 1.

(3.133)

Next, we present a distributed implementation of the algorithm (3.132) and (3.133) when S has

bandwidth s. Select a threshold ε and an integer N ≥ s satisfying (3.125). Write



ST = (a(i, λ))i∈V,λ∈G

RNS
T = (bN(λ, λ′))λ,λ′∈G

RNS
TSST = (cN(λ, λ′))λ,λ′∈G

z = (z(λ))λ∈G,

and

wn = (wn(λ))λ∈G and en = (en(λ))λ∈G, n ≥ 1.

We assume that any agent λ ∈ G stores vectors a(i, λ′),bN(λ, λ′), cN(λ, λ′) and z(λ′), where

(i, λ) ∈ T and λ′ ∈ BG(λ, 2N + 3s). The following is the distributed implementation of the

algorithm (3.132) and (3.133) for an agent λ ∈ G.
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Distributed algorithm (3.132) and (3.133) for signal reconstruction:

1. Input a(i, λ′),bN(λ, λ′), cN(λ, λ′) and z(λ′), where (i, λ) ∈ T and λ′ ∈ BG(λ, 2N + 3s).

2. Input stop criterion ε > 0 and maximal number of iteration steps K.

3. Compute w(λ) =
∑

λ′∈BG(λ,2N+s) bN(λ, λ′)z(λ′).

4. Communicate with neighboring agents inBG(λ, 2N+3s) to obtain data w(λ′), λ′ ∈ BG(λ, 2N+

3s).

5. Evaluate the sampling error term e(λ) = w(λ)−
∑

λ′∈BG(λ,2N+3s) cN(λ, λ′)w(λ′).

6. Communicate with neighboring agents in BG(λ, 2N + 3s) to obtain error data e(λ′), λ′ ∈

BG(λ, 2N + 3s).

7. for n = 2 to K do

7a. Compute δ = maxλ′∈BG(λ,2N+3s) |e(λ′)|.

7b. Stop if δ ≤ ε, else do

7c. Update w(λ) = w(λ) + e(λ).

7d. Update e(λ) = e(λ)−
∑

λ′∈BG(λ,2N+3s) cN(λ, λ′)e(λ′).

7e. Communicate with neighboring agents located in BG(λ, 2N + 3s) to obtain error data

e(λ′), λ′ ∈ BG(λ, 2N + 3s).

end for

We conclude this section by discussing the complexity of the distributed algorithm (3.132) and

(3.133), which depends essentially on N . In its implementation, the data storage requirement for

each agent is about (L+ 3)(2N + 3s+ 1)d. In each iteration, the computational cost for each agent
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is about O(Nd) mainly used for updating the error e. The communication cost for each agent is

about O(Nd+β) if the communication between distant agents λ, λ′ ∈ G, processed through their

shortest path, has its cost being proportional to (ρG(λ, λ
′))β for some β ≥ 1. By Theorem 3.28,

the number of iteration steps needed to reach the accuracy ε is about O(ln(1/ε)/ lnN). Therefore

the total computational and communication cost for each agent are about O(ln(1/ε)Nd/ lnN) and

O(ln(1/ε)Nd+β/ lnN), respectively.

3.7 Numerical simulations

In this section, we present two simulations to demonstrate the distributed algorithm (3.132) and

(3.133) for stable signal reconstruction.

Agents in the first simulation are almost uniformly deployed on the circle of radius R/5, and their

locations are at

λl :=
R

5

(
cos

2πθl
R

, sin
2πθl
R

)
, 1 ≤ l ≤ R,

where R ≥ 1 and θl ∈ l + [−1/4, 1/4] are randomly selected. Every agent in the SDS has a direct

communication channel to its two adjacent agents. Then the graph Gc = (Gc, Sc) to describe the

SDS is a cycle graph, where Gc = {λ1, . . . , λR} and Sc =
{

(λ1, λ2), . . . , (λR−1, λR), (λR, λ1),

(λ1, λR), (λR, λR−1), . . . , (λ2, λ1)
}

. Take innovative positions

pi := ri

(
cos

2πi

R
, sin

2πi

R

)
, 1 ≤ i ≤ R,

deployed almost uniformly near the circle of radius R/5, where ri ∈ R/5 + [−1/4, 1/4] are

randomly selected. Given any innovative position pi, 1 ≤ i ≤ R, it has three anchor agents λi, λi−1

and λi+1, where λ0 = λR and λR+1 = λ1. Set Vc = {pi, 1 ≤ i ≤ R} and Tc = {(pi, λi−j), i =

1, . . . , R and j = 0,±1}. Then Hc = (Gc ∩ Vc, Sc ∪ Tc ∪ T ∗c ) is the graph to describe the DSRS,
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see Figure 3.3.

Figure 3.3: The DSRS in the first simulation in Section 3.7

Presented in Figure 3.3 is the graphHc = (Gc ∩ Vc, Sc ∪Tc ∪T ∗c ) to describe the DSRS in the first

simulation, where vertices in Gc, edges in Sc, vertices in Vc and edges in Tc ∪ T ∗c are plotted in red

circles, black lines, blue triangles and green lines, respectively.

Let ϕ(t) := exp(−(t21 + t22)/2) for t = (t1, t2). Gaussian signals

f(t) =
R∑
i=1

c(i)ϕ(t− pi) (3.134)

to be sampled and reconstructed have their amplitudes c(i) ∈ [0, 1] being randomly chosen, see the

left image of Figure 3.4.
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Figure 3.4: Original signal and difference between it and its reconstruction

Plotted in Figure 3.4 on the left is the signal f in (3.134) withR = 80. On the right is the difference

between the signal f and the reconstructed signal fn,N,δ with n = 10, N = 6 and δ = 0.05.

In the first simulation, we consider ideal sampling procedure. Thus for the agent λl, 1 ≤ l ≤ R,

the noisy sampling data acquired is

yδ(l) =
R∑
i=1

c(i)ϕ(λl − pi) + η(l), (3.135)

where η(l) ∈ [−δ, δ] are randomly generated with bounded noise level δ > 0.

Our first simulation shows that the distributed algorithm (3.132) and (3.133) converges for N ≥ 5

and the convergence rate is almost independent of the network sizeR, cf. the upper bound estimate

in (3.127).

Let fn,N,δ(t) :=
∑R

i=1 cn,N,δ(i)ϕ(t−pi) be the reconstructed signal in the n-th iteration by apply-

ing the distributed algorithm (3.132) and (3.133) from the noisy sampling data in (3.135), see the
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right image of Figure 3.4. Define maximal reconstruction errors

ε(n,N, δ) :=

 max1≤i≤R |c(i)| if n = 0,

max1≤i≤R |cn,N,δ(i)− c(i)| if n ≥ 1.

Presented in Table 3.1 is the average of reconstruction errors ε(n,N, δ) with 500 trials in noiseless

environment (δ = 0), where the network size R is 80. It indicates that the proposed distributed

algorithm (3.132) and (3.133) has faster convergence rate for largerN ≥ 5, and we only need three

iteration steps to have a near perfect reconstruction from its noiseless samples when N = 10.

Table 3.1: Maximal reconstruction errors ε(n,N, δ) with δ = 0

n \ N 5 6 7 8 9 10

0 0.9874 0.9881 0.9878 0.9876 0.9877 0.9884

1 0.9875 0.4463 0.3073 0.1940 0.1055 0.0523

2 0.6626 0.2046 0.0794 0.0271 0.0124 0.0024

3 0.3624 0.0926 0.0240 0.0045 0.0014 0.0001

4 0.2535 0.0443 0.0068 0.0006 0.0001 0.0000

5 0.1742 0.0206 0.0018 0.0001 0.0000 0.0000

6 0.1169 0.0093 0.0005 0.0000 0.0000 0.0000

7 0.0840 0.0042 0.0001 0.0000 0.0000 0.0000

8 0.0579 0.0017 0.0000 0.0000 0.0000 0.0000

9 0.0411 0.0007 0.0000 0.0000 0.0000 0.0000

10 0.0289 0.0003 0.0000 0.0000 0.0000 0.0000

The robustness of the proposed algorithm (3.132) and (3.133) against sampling noises is tested and
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confirmed, see Figure 3.4. Moreover, it is observed that the maximal reconstruction error ε(n,N, δ)

with large n depends almost linearly on the noise level δ, cf. the sub-optimal approximation

property in Theorem 3.21.

In the next simulation, agents are uniformly deployed on two concentric circles and each agent

has direct communication channels to its three adjacent agents. Then the graph Gp = (Gp, Sp) to

describe our SDS is a prism graph with vertices having physical locations,

µl :=


R
10

(
cos 4πθl

R
, sin 4πθl

R

)
if 1 ≤ l ≤ R

2(
R
10

+ 1
)(

cos 4πθl
R
, sin 4πθl

R

)
if R

2
+ 1 ≤ l ≤ R,

whereR ≥ 2 and θl ∈ l+[−1/4, 1/4], 1 ≤ l ≤ R, are randomly selected. The innovative positions

qi := ri
(

cos
4πi

R
, sin

4πi

R

)
, 1 ≤ i ≤ R

2
,

have four anchor agents µi, µi+1, µi+R/2 and µi+R/2+1, where µ0 = µR/2, µR+1 = µR/2+1, and

ri ∈ R
10

+ [1
4
, 3

4
] are randomly selected. Set Vp = {qi, 1 ≤ i ≤ R

2
} and Tp = {(qi, µi+j), i =

1, . . . , R
2

and j = 0, 1, R
2
, R

2
+ 1}. Thus the graph Hp = (Gp ∩ Vp, Sp ∪ Tp ∪ T ∗p ) to describe our

DSRS is a connected simple graph, see the left image of Figure 3.5.
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Figure 3.5: Complete and incomplete DSRS

Presented in Figure 3.5 on the left is the graphHp = (Gp∩Vp, Sp∪Tp∪T ∗p ) to describe the DSRS,

where vertices in Gp and Vp are in red circles and blue triangles, and edges in Sp and Tp∪T ∗p are in

black solid lines and green solid lines, respectively. On the right is a subgraph of Hp, where some

agents are completely dysfunctional and some have communication channels to one or two of their

nearby agents clogged.

Following the first simulation, we consider the ideal sampling procedure of signals,

g(t) =

R/2∑
i=1

d(i)ϕ(t− qi), (3.136)

where d(i) ∈ [0, 1], 1 ≤ i ≤ R/2, are randomly selected, see the left image of Figure 3.6.
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Figure 3.6: Reconstruction with incomplete DSRS (with dysfunctional agents).

Plotted in Figure 3.6 on the left is the signal g in (3.136) with R = 160. On the right is the

difference between the signal g and its approximation gn,N,δ, where n = 4, N = 6, δ = 0.05, and

agents located at µ1, µ87 are completely dysfunctional, while agents located at µ11, µ51, µ91 have

their partial communication channels clogged.

Then the noisy sampling data acquired by the agent µl, 1 ≤ l ≤ R, is

yδ(l) =

R/2∑
i=1

d(i)ϕ(µl − qi) + η(l), (3.137)

where η(l) ∈ [−δ, δ] are randomly selected with bounded noise level δ > 0. Applying the dis-

tributed algorithm (3.132) and (3.133), we obtain approximations

gn,N,δ(t) =

R/2∑
i=1

dn,N,δ(i)ϕ(t− qi), n ≥ 1, (3.138)

of the signal g in (3.136). Our simulations illustrate that the distributed algorithm (3.132) and

(3.133) converges for N ≥ 3 and the signal g can be reconstructed near perfectly from its noiseless
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samples in 12 steps for N = 3, 7 steps for N = 4, 5 steps for N = 5, 4 steps for N = 6, and 3

steps for N = 7, cf. Table 3.1 in the first simulation.

The robustness of the proposed distributed algorithm (3.132) and (3.133) against sampling noises

and dysfunctions of agents in the DSRS is tested and confirmed, see the right graph of Figure 3.5

and the right image of Figure 3.6.
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CHAPTER 4: PHASE RETRIEVAL IN SHIFT-INVARIANT SPACES

Phase retrieval arises in various fields of science and engineering. In this chapter, we consider an

infinite-dimensional phase retrieval problem (also known as phaseless sampling and reconstruction

problem) for real-valued signals in a principal shift-invariant space

V (φ) :=
{∑
k∈Z

c(k)φ(t− k) : c(k) ∈ R
}
, (4.1)

where the generator φ is a real-valued continuous function with compact support. Our model of

the generator φ is the B-spline BN of order N ≥ 1 ([157, 160]), which is obtained by convolving

the indicator function χ[0,1) on the unit interval N times,

BN = χ[0,1) ∗ · · · ∗ χ[0,1)︸ ︷︷ ︸
N

. (4.2)

Let

N = min
N2,N1∈Z

{N2 −N1, φ vanishes outside [N1, N2]} (4.3)

be the support length of the generator φ, which is the same as the orderN for the B-spline generator

BN .

We consider an infinite-dimensional phase retrieval problem to reconstruct real-valued signals liv-

ing in a shift-invariant space from their phaseless samples taken either on the whole line or on a

discrete set with finite sampling rate. We find an equivalence between nonseparability of signals

in a shift-invariant space and their phase retrievability with phaseless samples taken on the whole

line. For spline signals of order N , we show that they can be well approximated, up to a sign,

from their noisy phaseless samples taken on a set with sampling rate 2N − 1. We also propose a

robust algorithm to reconstruct nonseparable signals in a shift-invariant space from their phaseless
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samples corrupted by bounded noises.

4.1 Phase retrievability and nonseparability

Let φ be a real-valued generator of the shift-invariant space V (φ), and N be its support length

given in (4.3). Without loss of generality, we assume that

φ(t) = 0 for all t 6∈ [0, N ], (4.4)

otherwise replacing φ by φ(· − N0) for some N0 ∈ Z. Clearly, not all signals in V (φ) are deter-

mined, up to a sign, from their magnitude measurements on R. For instance, signals φ(t)±φ(t−N)

have same magnitude measurements |φ(t)|+ |φ(t−N)| on the real line, but they are not the same

even up to a sign. Then a natural question is whether a signal in V (φ) is determined, up to a sign,

from its magnitude measurements.

Theorem 4.1. Let φ be a real-valued continuous function with compact support and V (φ) in (4.1)

be the shift-invariant space generated by φ. Then a signal f ∈ V (φ) is determined, up to a sign,

by its magnitude measurements |f(t)|, t ∈ R, if and only if there does not exist nonzero signals f1

and f2 in V (φ) such that

f = f1 + f2 and f1f2 = 0. (4.5)

We call signals that satisfy (4.5) to be nonseparable. A separable signal f ∈ V (φ) can be written as

the sum of two nonzero signals f1, f2 ∈ V (φ) with their supports being essentially disjoint. Then

it is not determined, up to a sign, from its magnitude measurements as

|f1(t)− f2(t)| = |f1(t) + f2(t)| = |f1(t)|+ |f2(t)|, t ∈ R.
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Instead of proving the Theorem 4.1, we provide the proof of its generalization.

Theorem 4.2. Let V be a linear space of real-valued continuous signals on R. Then a signal

f ∈ V is determined, up to a sign, by its magnitude measurements |f(t)|, t ∈ R, if and only if it is

nonseparable.

Proof. (=⇒) Suppose, on the contrary, that there exist nonzero signals f1, f2 ∈ V such that

f = f1 + f2 and f1f2 = 0. Set g = f1− f2 ∈ V . Then g 6= ±f and |g| = |f | = |f1|+ |f2|. This is

a contradiction.

(⇐=) Assume that f is nonseparable and g ∈ V satisfies |g| = |f |. Set g1 := (f + g)/2 and

g2 := (f − g)/2 ∈ V . Then f = g1 + g2 and g1g2 = 0. This together with the assumption on f

implies that either g1 = 0 or g2 = 0. Hence g = ±f and the sufficiency is proved.

We remark that the Paley-Wiener space for bandlimited signals to live in is a shift-invariant space

generated by the sinc function sinπt
πt

with infinite support, and the phase retrieval problem in the

Paley-Wiener space was discussed in [126, 154]. Observe that any bandlimited signal does not

have a decomposition of the form (4.5), as it is analytic on the real line. Therefore by Theorem

4.1, we have the following corollary, cf. [154, Theorem 1].

Corollary 4.3. Any real-valued bandlimited signal is determined, up to a sign, by its magnitude

measurements on the real line.

The next question to be considered in this section is to find the set of all nonseparable signals in a

shift-invariant space V (φ). Let us start from the simplest case that N = 1 (i.e., the generator φ is

supported on [0, 1]). In this case, one can verify that a signal f ∈ V (φ) is nonseparable if and only

if there exists an integer k0 such that

f(t) = c(k0)φ(t− k0) for some c(k0) ∈ R. (4.6)
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For the case that the generator φ has its support length

N ≥ 2, (4.7)

we have the following characterization to nonseparable signals in the shift-invariant space V (φ).

Before characterizing the nonseparability (and hence phase retrievability by Theorem 4.1) of sig-

nals in a shift-invariant space, let us consider nonseparability of piecewise linear signals.

Example 4.4. Due to the interpolation property of the B-spline B2 of order 2, piecewise linear

signals f ∈ V (B2) have the following expansion,

f(t) =
∑
k∈Z

f(k + 1)B2(t− k).

Therefore f ∈ V (B2) is separable if and only if there exist integers k0 < k1 < k2 such that

f(k0)f(k2) 6= 0 and f(k1) = 0. Thus the separable signal

f =
∑

k≤k1−2

f(k + 1)B2(t− k) +
∑
k≥k1

f(k + 1)B2(t− k) =: f1 + f2,

is the sum of two nonzero signals f1, f2 ∈ V (B2) supported in (−∞, k1] and [k1,∞) respectively.

Phase retrieval of signals in a shift-invariant space is an infinite-dimensional problem with high

nonlinearity. In this section, we show in Theorem 4.5 and Corollary 4.8 that a nonseparable spline

signal in V (BN) is determined, up to a sign, from its phaseless samples taken on the shift-invariant

set

Y1 := X + Z, (4.8)

where N ≥ 2 and X contains 2N − 1 distinct points in (0, 1).
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Theorem 4.5. Let φ be a real-valued continuous function satisfying (4.4) and (4.7),X := {xm, 1 ≤

m ≤ 2N − 1} ⊂ (0, 1), and let f(t) =
∑

k∈Z c(k)φ(t − k) be a nonzero real-valued signal in

V (φ). If all N ×N submatrices of

Φ =
(
φ(xm + n)

)
1≤m≤2N−1,0≤n≤N−1

(4.9)

are nonsingular, then the following statements are equivalent.

(i) The signal f is nonseparable.

(ii)
∑N−2

l=0 |c(k + l)|2 6= 0 for all K−(f) − N + 1 < k < K+(f) + 1, where K−(f) =

inf{k, c(k) 6= 0} and K+(f) = sup{k, c(k) 6= 0}.

(iii) The signal f is determined, up to a sign, from its phaseless samples |f(t)|, t ∈ X +Z, taken

on the shift-invariant set X + Z.

In the above theorem, the implication (iii)=⇒(i) holds by Theorem 4.1, while the implication

(i)=⇒(ii) follows essentially from the support property (4.4) and (4.7) of the generating function

φ. The technical part of the proof is the implication (ii)=⇒(iii), where we apply [20, Theorem 2.8]

on phase retrievability of finite-dimensional signals.

Proof. The implication iii)=⇒i) follows immediately from Theorem 4.1. Then it remains to prove

i)=⇒ii) and ii)=⇒iii).

i)=⇒ii): Set K± = K±(f). For K− + 1−N < k < K− + 1 or K+ + 1−N < k < K+ + 1, the

conclusion
∑N−2

l=0 |c(k + l)|2 6= 0 follows from the definitions of K− and K+. Then it remains to
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establish the statement ii) for K− < k < K+ + 2−N . Suppose, on the contrary, that

N−2∑
l=0

|c(k1 + l)|2 = 0 (4.10)

for someK− < k1 < K+−N+2. Set f1(t) :=
∑k1−1

l=K−
c(l)φ(t−l) and f2(t) :=

∑K+

l=k1+N−1 c(l)φ(t−

l). Then

f = f1 + f2 and f1f2 = 0 (4.11)

by (4.10) and the observation that f1 and f2 are supported in (−∞, k1 +N−1] and [k1 +N−1,∞)

respectively. Clearly, f1 and f2 are nonzero signals in V (φ). This together with (4.11) implies that

f is separable, which contradicts to the assumption i).

ii)=⇒iii): To prove this implication, we need a lemma.

Lemma 4.6. Let φ andX be as in Theorem 4.5. Then for any l ∈ Z and signal g(t) =
∑

k∈Z d(k)φ(t−

k) ∈ V (φ), coefficients d(k), l−N+1 ≤ k ≤ l, are completely determined, up to a sign, by phase-

less samples |g(xm + l)|, xm ∈ X , of the signal g.

The above lemma follows immediately from [20, Theorem 2.8] and the observation that

g(xm + l) =
l∑

k=l−N+1

d(k)φ(xm + l − k), xm ∈ X.

Take a particular integer K− − 1 < k0 < K+ + 1 with c(k0) 6= 0. Without loss of generality, we

assume that

c(k0) > 0, (4.12)

otherwise replacing f by −f .

Using (4.12) and applying Lemma 4.6 with g and l replaced by f and k0 respectively, we conclude
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that c(k0 −N + 1), · · · , c(k0) are completely determined by phaseless samples |f(X +k0)| of the

signal f on X + k0. Now we prove the following claim:

c(k), k ≤ k0, are determined by |f(X + k)|, k ≤ k0 (4.13)

by induction. Inductively we assume that c(k), k0 − p − N + 1 ≤ k ≤ k0, are determined from

|f(X +k)|, k0− p ≤ k ≤ k0. The inductive proof is complete if k0− p−N + 1 ≤ K−. Otherwise

k0 − p−N + 1 > K− and

N−2∑
l=0

|c(k0 − p−N + l + 1)|2 6= 0 (4.14)

by the assumption ii). Applying Lemma 4.6 with g and k0 replaced by f and k0 − p − 1 respec-

tively, we conclude that c(k0 −N − p), · · · , c(k0 − p− 1) are determined, up to a global phase,

by |f(X + k0 − p − 1)|. This together with (4.14) and the inductive hypothesis implies that

c(k0 −N − p), · · · , c(k0 − p− 1) are completely determined by |f(X+k)|, k0−p−1 ≤ k ≤ k0.

Thus the inductive argument can proceed.

Using the similar argument, we can show that c(k), k ≥ k0 are determined by |f(X + k)|, k ≥ k0.

This together with (4.13) completes the proof.

The nonsingularity ofN×N submatrices of the matrix Φ in (4.9) is also known as its full sparkness

([61, 8]). The full sparkness of the matrix Φ in (4.9) implies that φ has linearly independent shifts,

i.e., the linear map from sequences to signals in V (φ),

(c(k))∞k=−∞ 7−→
∞∑

k=−∞

c(k)φ(t− k),

is one-to-one ([98, 145]). Conversely, if φ has linearly independent shifts and it is a continuous
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solution of the refinement equation ([54, 109]),

φ(t) =
N∑
n=0

a(n)φ(2t− n) and

∫
R
φ(t)dt = 1, (4.15)

where
∑N

n=0 a(n) = 2, then Φ in (4.9) is of full spark for almost all (x1, . . . , x2N−1) ∈ (0, 1)2N−1,

see [145, Theorem A.2]. This together with Theorem 4.5 implies the following result for wavelet

signals, cf. [154, Theorem 1] and Corollary 4.3 for bandlimited signals.

Corollary 4.7. Let φ be a continuous solution of the refinement equation (4.15) with linearly

independent shifts. Then any nonseparable signal in V (φ) is determined, up to a sign, from its

magnitude measurements on R.

For the refinement equation (4.15), under the assumption that

N∑
n=0

a(n)zn = (1 + z)Q(z) (4.16)

for some polynomial Q having positive coefficients and its zeros with strictly negative real part,

the corresponding matrix Φ in (4.9) is of full spark whenever xm ∈ (0, 1), 1 ≤ m ≤ 2N − 1,

are distinct ([79, 80]). It is well known that the B-spline BN of order N satisfies the refinement

equation (4.15) with Q(z) in (4.16) given by 2−N+1(1 + z)N−1. This together with Theorem 4.5

implies the following result for spline signals, cf. Corollary 4.8.

Corollary 4.8. LetX contain 2N−1 distinct points in (0, 1). Then any nonseparable spline signal

in V (BN) is determined, up to a sign, from its phaseless samples taken on the shift-invariant set

X + Z.
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For a signal f =
∑

k∈Z c(k)φ(t− k) ∈ V (φ), define

Sf = inf
K−(f)−N+1<k<K+(f)+1

N−2∑
l=0

|c(k + l)|2. (4.17)

By the second statement in Theorem 4.5, we obtain that Sf = 0 if f is separable, and that Sf > 0

if f is a nonseparable signal with finite duration. So the quantities Sf can be used to measure

absolute and relative distances of a signal f to the set of all separable signals in V (φ), cf. Theorem

4.14.

Given a signal f ∈ V (φ), the last question to be addressed in this section is to find all signals

g ∈ V (φ) such that g and f have the same magnitude measurements on the real line, cf. [6]. By

the second statement in Theorem 4.5, any signal f ∈ V (φ) can be uniquely written as the sum

of nonseparable signals fi ∈ V (φ), i ∈ I , with their supporting intervals [ai, a
′
i] being essentially

mutually disjoint, i.e.,

f =
∑
i∈I

fi (4.18)

and

[ai, a
′
i) ∩ [aj, a

′
j) = ∅ for all distinct i, j ∈ I, (4.19)

see Lemma 4.10. Clearly signals g =
∑

i∈I εifi with εi ∈ {−1, 1}, i ∈ I , have the same magnitude

measurements as the signal f has. We show that the converse is true in the following theorem.

Theorem 4.9. Let φ be a real-valued continuous function satisfying (4.4), (4.7) and (4.9). Assume

that f ∈ V (φ) has a decomposition (4.18) and (4.19) of nonseparable signals. Then g ∈ V (φ)

satisfies |g(t)| = |f(t)|, t ∈ R, if and only if there exists εi ∈ {−1, 1}, i ∈ I , such that g =∑
i∈I εifi.

The sufficiency follows as fi, i ∈ I , have mutually disjoint supports. To prove the necessity, we

need a lemma.

107



Lemma 4.10. Let φ be as in Theorem 4.9. Then for any nonzero signal f ∈ V (φ), there exist

nonseparable signals fi ∈ V (φ), i ∈ I , satisfying (4.18) and (4.19). Moreover the decomposition

(4.18) and (4.19) is unique.

Proof. Write f =
∑

k∈Z c(k)φ(· − k) and set

L :=
{
l ∈ Z : (c(l), . . . , c(l +N − 2)) 6= 0

}
. (4.20)

Then there exist bi, b′i ∈ Z ∪ {−∞,+∞}, i ∈ I , such that

L :=
⋃
i∈I

(
(bi, b

′
i) ∩ Z

)
(4.21)

and

[bi, b
′
i), i ∈ I, are mutually disjoint. (4.22)

Hence

c(k) = 0 for all k 6∈ ∪i∈I(bi +N − 2, b′i). (4.23)

Define

fi =
∑

bi+N−2<k<b′i

c(k)φ(· − k), i ∈ I. (4.24)

Then the decomposition (4.18) holds by (4.23) and (4.24), and the mutually disjoint property (4.19)

follows from (4.22) and the observation that fi, i ∈ I , have supporting intervals [bi +N − 1, bi′ +

N − 1]. Observe from (4.21) that K+(fi) = b′i − 1 and K−(fi) = bi + N − 1, i ∈ I . This

together with Theorem 4.5 implies that fi, i ∈ I , are nonseparable. Therefore fi, i ∈ I , in (4.24)

are nonseparable signals satisfying (4.18) and (4.19).

Now it remains to prove uniqueness of the decomposition (4.18) and (4.19). Suppose that gj ∈
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V (φ), j ∈ J , are nonseparable signals with their supporting intervals [aj, a
′
j] satisfying

f =
∑
j∈J

gj (4.25)

and

[aj, a
′
j) ∩ [aj′ , a

′
j′) = ∅ for all distinct j, j′ ∈ J. (4.26)

Then it suffices to prove that J = I and for any j ∈ J there exists a unique i ∈ I such that gj = fi,

where fi, i ∈ I , are given in (4.24). By (4.4), (4.7), (4.25) and (4.26), we have

gj =
∑

aj−1<k<a′j−N+1

c(k)φ(· − k) (4.27)

and

c(k) = 0 for all k 6∈ ∪j∈J(aj − 1, a′j −N + 1). (4.28)

Applying (4.27), (4.28) and Theorem 4.5, we obtain

L = ∪j∈J
(
(aj −N + 1, a′j −N + 1) ∩ Z

)
, (4.29)

where the set L is given in (4.20). This together with (4.26) leads to another decomposition of the

set L that satisfies (4.21) and (4.23). Due to the uniqueness of such a decomposition, we have that

J = I and for any j ∈ J there exists a unique i ∈ I such that (aj, a
′
j) = (bi +N − 1, b′i +N − 1),

where bi, b′i, i ∈ I , are given in (4.21). This together with (4.27) completes the proof.

Now we start the proof of Theorem 4.9.

Proof of Theorem 4.9. Without loss of generality, we assume that f 6= 0. Write g =
∑

k∈Z d(k)φ(t−
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k) and f =
∑

k∈Z c(k)φ(t− k). By Lemma 4.6, for any l ∈ Z there exists δl ∈ {−1, 1} such that

d(l + n) = δlc(l + n), 0 ≤ n ≤ N − 1. (4.30)

Set L := {l ∈ Z : (c(l), . . . , c(l +N − 2)) 6= 0} as in (4.21). Then it follows from (4.30) that

δl−1 = δl for all l ∈ L. (4.31)

As in (4.21), we write L as the union of open intervals (ai, a
′
i)∩Z, i ∈ I , with [ai, a

′
i), i ∈ I , being

mutually disjoint. Thus δl = δl′ for all l, l′ ∈ (ai − 1, a′i) ∩ Z, which implies that the existence of

εi ∈ {−1, 1} with

d(k) = εic(k) for all ai +N − 2 < k < a′i. (4.32)

By (4.23) and (4.30), we have

d(k) = 0 for all k 6∈ ∪i∈I
(
(ai +N − 2, a′i) ∩ Z

)
. (4.33)

Therefore the conclusion g =
∑

i∈I εifi follows from (4.24), (4.32), (4.33) and Lemma 4.10.

4.2 Phaseless non-uniform sampling in a shift-invariant space

A set Λ ⊂ R is said to have sampling rate D(Λ) if

D(Λ) = lim
b−a→∞

#(Λ ∩ [a, b])

b− a
, (4.34)

where #(E) is the cardinality of a set E. Then the sufficiency in Theorem 4.1 can be recast as

any nonseparable signal in V (φ) can be reconstructed, up to a sign, from its phaseless samples on
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R, which has infinite sampling rate D(R) = +∞. For the case that the generator φ satisfies (4.4),

(4.7) and (4.9), it follows from Theorem 4.5 that any nonseparable signal in V (φ) can be fully

recovered, up to a sign, from its phaseless samples taken on the shift-invariant subset X + Z of R.

We observe that the set X + Z in Theorem 4.5 has finite sampling rate 2N − 1, which is larger

than the sampling rate 2 required for recovering bandlimited signals [154, Theorem 1]. A natural

question is whether we can find the minimal sampling rate.

Theorem 4.11. Let φ be a real-valued continuous function satisfying (4.4), (4.7) and (4.9), and

let Λ be a discrete set with sampling rate D(Λ). If all nonseparable signals in V (φ) can be

determined, up to a sign, from their phaseless samples taken on the set Λ, then the sampling rate

D(Λ) is at least one,

D(Λ) ≥ 1. (4.35)

Now, we continue our proof of Theorem 4.11.

Proof. By (5.13), it suffices to prove that

#(Λ ∩ [a, b]) ≥ b− a−N + 1

for all integers a and b with b− a ≥ N . Suppose, on the contrary, that

#(Λ ∩ [a0, b0]) < b0 − a0 −N + 1 (4.36)

for some integers a0 and b0. Let

N =
{
f(t) :=

b0−N∑
k=a0

c(k)φ(t− k), f(y) = 0 for all y ∈ Λ
}
.

ThenN contains some nonzero signals in V (φ), because any signals inN are supported in [a0, b0],
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and the homogenous linear system

b0−N∑
k=a0

c(k)φ(y − k) = 0, y ∈ Λ ∩ [a0, b0]

of size (#(Λ ∩ [a0, b0]))× (b0 − a0 −N + 1) has a nontrivial solution by (4.36).

Take a nonzero signal f ∈ N with minimal support length. By the assumption on the set Λ, it

must be separable as it is a nonzero signal having zero magnitude measurements on Λ. Therefore

by Theorem 4.5 there exist nonzero signals f1 and f2 ∈ V (φ) and an integer k0 ∈ (a0, b0) such that

f = f1 + f2, f1 vanishes outside [k0, b0] and f2 vanishes outside [a0, k0]. This implies that both f1

and f2 are nonzero signals in N , which contradicts to the minimal support assumption on f .

The lower bound estimate (4.35) is smaller than the sampling rate required for recovering ban-

dlimited signals [154, Theorem 1]. We believe that the lower bound estimate (4.35) for minimal

sampling rate can be improved. However as indicated in the example below, it is optimal if the

requirement (4.9) on the generator φ is dropped.

Example 4.12. Let ϕ0 be a continuous function supported in [0, 1/2] and set ϕN(t) = ϕ0(t) −

ϕ0(t−N +1/2), N ≥ 1. Similar to (4.6), one may verify that a signal f in V (ϕN) is nonseparable

if and only if there exists k0 ∈ Z such that f(t) = c(k0)ϕN(t− k0) for some c(k0) ∈ R. Given any

t0 ∈ (0, 1/2) with ϕ0(t0) 6= 0, the set t0 + Z has one, the lower bound in (4.35), as its sampling

rate. Moreover, one may verify that all nonseparable signals in V (ϕN) can be reconstructed, up to

a sign, from their phaseless samples taken on t0 + Z.

The set Y1 in (4.8) has sampling rate 2N − 1, which is larger than the sampling rate 2 needed for

the phase retrievability of signals in the Paley-Wiener space [154, Theorem 1]. Let

N = min
N2,N1∈Z

{N2 −N1, φ vanishes outside [N1, N2]} (4.37)
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be the support length of the generator φ, which is the same as the order N for the B-spline gener-

ator BN . Recall from Theorem 4.5 that any nonseparable signal in V (φ) can be fully recovered,

up to a sign, from its phaseless samples taken on a discrete set with sampling rate 2N − 1. A

question is whether we can find a discrete set Λ with sampling rate less than 2N − 1 such that all

nonseparable signals in V (φ) can be recovered from their phaseless samples on Λ. Under proper

assumptions on the generator φ, we also interest in learning paring down the sampling density. For

the nonseparable signal in a shift-invariant space V (φ), we already have some promising results

that it can be recovered, up to a sign, from its phaseless samples taken on a nonuniform set

Y∞ := X ∪ (Γ + Z+) ∪ (Γ∗ + Z−) (4.38)

with sampling rate N , where Z± is the set of all positive/negative integers, and the sets Γ =

{γ1, . . . , γN} and Γ∗ = {γ∗1 , . . . , γ∗N} are contained in X = {x1, . . . , x2N−1} ⊂ (0, 1).

I am not going to include the result in this dissertation. Instead, I will briefly discuss an example

of phaseless oversampling.

Example 4.13. (Continuation of Example 4.4) Let k0 ∈ Z and f ∈ V (B2) be a nonseparable

piecewise linear signal. One may verify that 3 distinct points k0 +x1, k0 +x2, k0 +x3 ∈ k0 +(0, 1)

are enough to determine f(k0) and f(k0 + 1) (hence f(t), t ∈ k0 + [0, 1]), up to a phase, from

phaseless samples |f(k0 + x1)|, |f(k0 + x2)| and |f(k0 + x3)|. Particularly, solving

|f(k0)(1− xi) + xif(k0 + 1)|2 = |f(k0 + xi)|2, i = 1, 2, 3
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gives

|f(k0)|2 =

∣∣∣∣∣∣∣∣∣∣
|f(k0 + x1)|2 x1(1− x1) x2

1

|f(k0 + x2)|2 x2(1− x2) x2
2

|f(k0 + x3)|2 x3(1− x3) x2
3

∣∣∣∣∣∣∣∣∣∣
(x2 − x1)(x3 − x1)(x3 − x2)

,

2f(k0)f(k0 + 1) =

∣∣∣∣∣∣∣∣∣∣
(1− x1)2 |f(k0 + x1)|2 x2

1

(1− x2)2 |f(k0 + x2)|2 x2
2

(1− x3)2 |f(k0 + x3)|2 x2
3

∣∣∣∣∣∣∣∣∣∣
(x2 − x1)(x3 − x1)(x3 − x2)

,

and

|f(k0 + 1)|2 =

∣∣∣∣∣∣∣∣∣∣
(1− x1)2 x1(1− x1) |f(k0 + x1)|2

(1− x2)2 x2(1− x2) |f(k0 + x2)|2

(1− x3)2 x3(1− x3) |f(k0 + x3)|2

∣∣∣∣∣∣∣∣∣∣
(x2 − x1)(x3 − x1)(x3 − x2)

.

For the case that at least one of two evaluations f(k0) and f(k0 + 1) is nonzero,

f(k0 + 2) =

 0 if f(k0 + 1) = 0

f(k0 + 1) +4+
k0

if f(k0 + 1) 6= 0,
(4.39)

where the first equality follows from nonseparability of the signal f , the second one is obtained by

solving the equations

|f(k0 + 1)(1− xi) + xif(k0 + 2)|2 = |f(k0 + 1 + xi)|2, i = 1, 2, (4.40)
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and

4+
k0

=
x2

1(|f(k0 + 1 + x2)|2 − |f(k0 + 1)|2)

2x1x2(x1 − x2)f(k0 + 1)

−x
2
2|f(k0 + 1 + x1)|2 − |f(k0 + 1)|2)

2x1x2(x1 − x2)f(k0 + 1)
.

From (4.39) we see that two distinct points k0 + 1 + x1, k0 + 1 + x2 ∈ k0 + 1 + (0, 1) could

sufficiently determine f(t), k0 + 1 ≤ t ≤ k0 + 2.

For the case that f(k0 + 1) = f(k0) = 0, solving (4.40) yields

|f(k0 + 2)|2 =
|f(x1 + k0 + 1)|2 + |f(x2 + k0 + 1)|2

x2
1 + x2

2

.

Then either f(t) = 0 for all t ∈ [k0, k0 +2] or the phase of the signal f on [k0, k0 +2] is determined

up to the sign of nonzero evaluation f(k0 + 2). Therefore, we can continue the above procedure to

determine the signal f on [k0,∞) if there are two distinct points in intervals k + (0, 1) for every

k ≥ k0 + 1 ∈ Z\{k0}.

Using the similar argument, we can prove by induction on k < k0 that the signal f(t), t ∈ [k,∞),

can be determined, up to a sign, by its phaseless samples taken on l − 1 + x1 and l − 1 + x2,

k ≤ l < k0. By now, we conclude that a nonseparable signal in V (B2) could be determined, up

to a sign, by its phaseless samples on ({x1, x2} + Z) ∪ {x3 + k0}, where x1, x2, x3 ∈ (0, 1) are

distinct and k0 ∈ Z. We remark that the additional point x3 +k0 in the above phase retrievability is

necessary in general. For instance, signals f(t) ≡ 1/3 and g(t) =
∑

k∈Z(−1)kB2(t− k) in V (B2)

have the same magnitude measurements on {1/3, 2/3}+ Z, but f 6= ±g.
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4.3 Stable reconstruction from phaseless samples in a shift-invariant space

Stability of phase retrieval is of central importance, as phaseless samples in lots of engineering

applications are often corrupted. Stability of phase retrieval is of paramount importance. The

reader may refer to [21, 22, 23, 65] for phase retrieval in the finite-dimensional setting and [149]

for nonlinear frames.

In this section, we consider the scenario that the available data

zεεε(γ) = |f(γ)|2 + εεε(γ), γ ∈ X + Z, (4.41)

are phaseless samples of a signal

f =
∑
k∈Z

c(k)φ(t− k) ∈ V (φ) (4.42)

taken on the set X + Z corrupted by additive noises εεε = (εεε(γ))γ∈X+Z, where εεε has the bounded

noise level

‖εεε‖∞ = sup{|εεε(γ)| : γ ∈ X + Z}.

Based on the constructive proof of Theorem 4.5, we propose an algorithm to find an approximation

fεεε(t) =
∑
k∈Z

cεεε(k)φ(t− k) ∈ V (φ), (4.43)

when the noisy phaseless samples in (4.41) are available.

The proposed MAPS algorithm consists of the following three parts: (i) solving the minimization

problem (4.45) to obtain local approximations cεεε,k′ , k
′ ∈ Z, of δk′c on k′ + [−L + 1, 0], up to a

phase δk′ ∈ {−1, 1}, cf. [72, 76, 119, 127]; (ii) adjusting phases to obtain local approximations
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δεεε,k′cεεε,k′ to either c or −c on k′ + [−L+ 1, 0]; and (iii) sewing δεεε,k′cεεε,k′ , k′ ∈ Z, together to get an

approximation cεεε to either c or −c. The above MAPS algorithm can be implemented as follows:

Algorithm 1 MAPS Algorithm
Inputs: the shift-invariant sampling set X; support length of the generator L; noisy phaseless
sampling data

(
zεεε(y)

)
y∈X+Z.

Instructions:
1) Local minimization: For any k′ ∈ Z, let

cεεε,k′ = (cεεε,k′(k))k∈Z, (4.44)

have zero components except that cεεε,k′(k), k′−L+1 ≤ k ≤ k′, are solutions of the minimization
problem

min
2L−1∑
m=1

∣∣∣∣∣∣∣∣
k′∑

k=k′−L+1

c(k)φ(xm,k′ − k)
∣∣∣−√zεεε(xm,k′)

∣∣∣∣∣
2

, (4.45)

where xm ∈ X and xm,k′ = xm + k′, 1 ≤ m ≤ 2L− 1.
2) Adjust Phase: For k′ ∈ Z, multiply cεεε,k′ by δεεε,k′ ∈ {−1, 1} so that

〈δεεε,k′cεεε,k′ , δεεε,k′+1cεεε,k′+1〉 ≥ 0 for all k′ ∈ Z. (4.46)

3) Sewing:

cεεε(k) =
1

L

k+L−1∑
k′=k

δεεε,k′cεεε,k′(k), k ∈ Z, (4.47)

to obtain an approximation of amplitude vector c(k), k ∈ Z.
Outputs: Amplitude vector (cεεε(k))k∈Z, and the reconstructed signal fεεε =

∑
k∈Z cεεε(k)φ(· − k).

From the above implementation, we see that the MAPS algorithm can be used to reconstruct signals

in V (φ) almost in real time from their phaseless samples, cf. [41, 145] and references therein

on local and distributed reconstruction. Moreover, the MAPS algorithm has linear complexity

O(K2−K1) to reconstruct nonseparable signals f =
∑K2

k=K1
c(k)φ(· − k) ∈ V (φ) approximately,

up to a sign, from their noisy phaseless samples on (X +Z)∩ [K1, K2 +L]. In realistic model for

sampling in shift-invariant space, the generator φ does not have large supporting length L. Hence

the minimization problem (4.45) of size L can be solved by many algorithms available in a stable

117



way ([34, 35, 37, 72, 132]).

In the noiseless sampling environment (i.e., εεε = 0), the proposed MAPS algorithm provides a

perfect reconstruction of a nonseparable signal, up to a sign. In a noisy sampling environment, we

show in the following theorem that the MAPS algorithm (4.44)–(4.47) provides, up to a sign, a

stable approximation to the original nonseparable signal f .

Theorem 4.14. Let φ and X be as in Theorem 4.5, f(t) =
∑∞

k=−∞ c(k)φ(t − k) in (4.42) be a

nonseparable real-valued signal with Sf in (4.17) being positive, and let fεεε(t) =
∑

k∈Z cεεε(k)φ(t−

k) be the signal in (5.31) reconstructed by the MAPS algorithm (4.44)–(4.47). If

‖εεε‖∞ ≤
Sf

48L‖(ΦL)−1‖2
, (4.48)

then there exists δ ∈ {−1, 1} such that

|cεεε(k)− δc(k)| ≤ ‖(ΦL)−1‖
L

√
8L‖εεε‖∞ (4.49)

for all k ∈ Z, where ‖A‖ = sup‖x‖2=1 ‖Ax‖2 for a matrix A and

‖(ΦL)−1‖ = sup
m0<...<mL−1

∥∥∥((φ(xml + n)
)

0≤l,n≤L−1

)−1∥∥∥. (4.50)

To prove Theorem 4.14, we first show that cεεε,k′ obtained in the first step approximates the original

vector c on [k′L+ 1−N, k′L], up to a phase.

Proposition 4.15. Let c, εεε be as in Theorem 4.14. Then for any k′ ∈ Z, there exists δk′ ∈ {−1, 1}

such that
k′∑

k=k′−L+1

|cεεε,k′(k)− δk′c(k)|2 ≤ 8L‖(ΦN)−1‖2‖εεε‖∞. (4.51)
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Proof. Set xm,k′ = xm + k′, 1 ≤ m ≤ 2L− 1. Then

2L−1∑
m=1

(∣∣∣ k′∑
k=k′−L+1

cεεε,k′(k)φ(xm,k′ − k)
∣∣∣− ∣∣∣ k′∑

k=k′−L+1

c(k)φ(xm,k′ − k)
∣∣∣)2

≤ 2
2L−1∑
m=1

(∣∣∣ k′∑
k=k′−L+1

c0
εεε,k′(k)φ(xm,k′ − k)

∣∣∣−√zεεε(xm,k′)

)2

+2
2L−1∑
m=0

(√
zεεε(xm,k′)−

∣∣∣ k′∑
k=k′−L+1

c(k)φ(xm,k′ − k)
∣∣∣)2

≤ 4
2L−1∑
m=1

∣∣∣|f(xm,k′)| −
√
zεεε(xm,k′)

∣∣∣2 ≤ 8L‖εεε‖∞,

where the second inequality holds by (4.45), and the third estimate follows from the triangle in-

equality

|
√
x2 + y − |x|| ≤

√
|y| (4.52)

for all x ≥ 0 and y ≥ −x2. Therefore there exists δk′ ∈ {−1, 1} such that

2L−1∑
m=1

( k′∑
k=k′−L+1

cεεε,k′(k)φ(xm,k′ − k)− δk′
k′∑

k=k′−L+1

c(k)φ(xm,k′ − k)
)2

≤ 8L‖εεε‖∞.

This completes the proof.

To prove Theorem 4.14, we adjust phases of cεεε,k′ , k′ ∈ Z, obtained in the first step.

Proposition 4.16. Let δk′ ∈ {−1, 1}, k′ ∈ Z, be as in Proposition 4.15. If (4.48) holds for some

δεεε,k′ , k
′ ∈ Z, then

δεεε,k′δεεε,k′+1 = δk′δk′+1 (4.53)

for all k′ ∈ Z with
∑0

k=−L+2 |c(k + k′)|2 6= 0.
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Proof. For any k′ ∈ Z,

∣∣∣〈δk′cεεε,k′ , δk′+1cεεε,k′+1〉 −
k′∑

k=k′−L+2

|c(k)|2
∣∣∣ ≤ k′∑

k=k−L+2

|δk′cεεε,k′(k)− c(k)||c(k)|

+
k′∑

k=k′−L+2

|δk′+1cεεε,k′+1(k)− c(k)||c(k)|+
k′∑

k=k′−L+2

|δk′cε,k′(k)− c(k)| × |δk′+1cε,k′+1(k)− c(k))|

≤ 4
√

2L‖εεε‖∞‖(ΦN)−1‖
( k′∑
k=k′−L+2

|c(k)|2
)1/2

+ 8L‖(ΦN)−1‖2‖εεε‖∞ <

k′∑
k=k′−L+2

|c(k)|2,

where the second estimate follows from Proposition 4.15, and the last inequality holds by the

assumption (4.48) on the noise level ‖εεε‖∞. Therefore the vectors δk′c1
εεε,k′ and δk′c1

εεε,k′+1 have positive

inner product. This together with (4.46) proves (4.53).

Now we are ready to state the proof of Theorem 4.14.

Proof of Theorem 4.14. Set K± = K±(f). By Theorem 4.5 and Proposition 4.16, there exists

δ ∈ {−1, 1} such that

δεεε,k′ = δδk′ (4.54)

for all k′ ∈ (K− − 1, K+ + L). For k ∈ Z, we obtain from (4.46), (4.47), (4.54) and Proposition

4.15 that

|cεεε(k)− δc(k)| ≤1

L

k+L−1∑
k′=k

|cεεε,k′(k)− δk′c(k)|+ 1

L

k+L−1∑
k′=k

|δk′δεεε,k′ − δ||c(k)| ≤ ‖(ΦN)−1‖
L

√
8L‖εεε‖∞.

This completes the proof.

Define a signal reconstruction error of the MAPS algorithm by E(εεε) = minδ∈{−1,1} ‖fεεε(t) −
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δf(t)‖∞. Then there exists a positive constant C by Theorem 4.14 such that

E(εεε) ≤ L‖φ‖∞ min
δ∈{−1,1}

max
k∈Z
|cεεε(k)− δc(k)| ≤ C

√
‖εεε‖∞. (4.55)

This together with (4.48) implies that there is no resonance phenomenon for the phaseless sam-

pling and reconstruction model (4.41) if the noisy level is sufficiently small. Moreover, numerical

simulations in the next section show that the upper bound estimate in (4.55) for the reconstruction

error E(εεε) is suboptimal as it is about of the order
√
‖εεε‖∞.

4.4 Numerical simulations

In this section, we demonstrate the performance of the MAPS algorithm (4.44) – (4.47) on recon-

structing a cubic spline signal

f(t) =
∑
k∈Z

c(k)B4(t− k) (4.56)

with finite duration, where B4 is the cubic B-spline in (4.2). Our noisy phaseless samples are taken

on XK + Z,

zεεε(γ) = |f(γ)|2 + ‖f‖2
∞ε(γ) ≥ 0, γ ∈ XK + Z, (4.57)

where ε(γ) ∈ [−ε, ε] are randomly selected with noise level ε > 0, and

XK =
{ m

K + 1
, 1 ≤ m ≤ K

}
, K ≥ 7. (4.58)

The set XK with K = 7 can be used as the set X in (4.9) and also in Theorem 4.5.

In our simulations,

c(k) ∈ [−1, 1] \ [−0.1, 0.1], K1 ≤ k ≤ K2, (4.59)

121



are randomly selected. Denote the signal reconstructed by the MAPS algorithm from the noisy

phaseless samples (4.57) by

fε(t) =
∑
k∈Z

cε(k)B4(t− k), (4.60)

cf. Theorem 4.14. Define an amplitude reconstruction error by

e(ε) := min
δ∈{−1,1}

max
k∈Z
|cε(k)− δc(k)|. (4.61)

As B4(t) ≥ 0 and
∑

k∈ZB4(t− k) = 1 for all t ∈ R, we have

E(ε) := min
δ∈{−1,1}

max
t∈R
|fε(t)− δf(t)| ≤ e(ε), (4.62)

cf. (4.55). For the phaseless sampling and reconstruction model (4.57) with small noise level ε,

it follows from Theorem 4.14 that the maximal ampltitude reconstruction error e(ε) in (4.61) and

maximal signal reconstruction error E(ε) in (4.62) are O(
√
ε). It is confirmed in the numerical

simulations for nonseparable cubic spline signals, see Figures 4.1.
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Figure 4.1: Nonseparable cubic spline signal and the reconstruction differences by MAPS

Plotted on the top left is a nonseparable cubic spline f with K1 = 5, K2 = 32 and c(k), k ∈ Z, in

(4.59). On the top right is the difference between the above signal f and the signal fε reconstructed

by the MAPS algorithm from the noisy samples (4.57) with ε = 10−5 and K = 7, where the

amplitude reconstruction error e(ε) is 0.0014. Plotted on the bottom left is the success rate against

noisy level − log10 |ε| to recover a nonseparable cubic spline f by the MAPS algorithm for 1000

trails, with c(k), k ∈ Z, randomly selected as in (4.59) and odd integers 7 ≤ K ≤ 15. On the

bottom right is the average error log10 e(ε) against noisy level − log10 |ε| in the logarithmic scale

for a nonseparable cubic spline f running our MAPS algorithm for 1000 trails, where the error

e(ε) is counted in the average only when phases are saved successfully.

The MAPS algorithm may not recover a nonseparable signal in a shift-invariant space if the noise
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level ε is not sufficiently small. Presented in Figure 4.1 is the success rate in percentage and the

average amplitude error after 1000 trials for different noisy levels ε, where the MAPS algorithm

to recover cubic spline signals f in (4.56) with c(k), k ∈ Z, in (4.59) and noisy samples in (4.57)

is considered to save the phase successfully if e(ε) < 0.1. In the simulation, a successful recovery

implies that cε(k) and c(k), K1 ≤ k ≤ K2, have same signs,

cε(k)c(k) > 0 for all K1 ≤ k ≤ K2.

The success rate of the MAPS algorithm can be improved if we have phaseless samples on a

discrete set with high sampling rate. Presented in Figure 4.1 is the success rate in percentage to

recover splines f in (4.56), up to a sign, from noisy phaseless samples taken on XK +Z, 7 ≤ K ≤

15, where the noise level ε, the original signal f and the success threshold are the same as before.

In addition to the improvement on success rate, our simulations also indicate that the amplitude

reconstruction error in (4.61) decreases when the sampling rate K increases, cf. [14, Theorem 3]

for oversampling in a shift-invariant space.

The MAPS algorithm is applicable even if the original signal f is separable. Denote by gε the

signal constructed from the MAPS algorithm. Our simulations show that the reconstruction error

inf |g|=|f | ‖gε − g‖∞ is about O(
√
ε), cf. (4.62), and hence the signal gε provides a good approxi-

mation to a signal g in Theorem 4.9, not necessarily the original signal f itself.
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Figure 4.2: Separable cubic spline signal and the reconstruction error by MAPS

Plotted on the left is the original cubic spline f (in blue) and the constructed signal gε (in red)

via the MAPS algorithm, where K1 = 5, K2 = 32, ε = 10−5 and c(k) ∈ [−1, 1], 5 ≤ k ≤ 32.

On the right is the difference |gε − g| between the signal gε and a signal g in Theorem 4.9. The

corresponding reconstruction error inf |g|=|f | ‖gε − g‖∞ is 0.0066. Presented in Figure 4.2 is the

performance of the MAPS algorithm when the amplitude coefficients of the original cubic spline

f in (4.56) satisfy c(k) ∈ [−1, 1] for all K1 ≤ k ≤ K2, cf. (4.59).
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CHAPTER 5: PHASELESS SAMPLING AND RECONSTRUCTION OF

REAL-VALUED SIGNALS IN SHIFT-INVARIANT SPACES

In Chapter 4, we consider the phase retrieval of real-valued signal f on R in a shift-invariant space.

In this chapter, we will consider the phaseless sampling and reconstruction problem whether a

real-valued signal f on Rd(d ≥ 2), is determined, up to a sign, by its magnitude measurements

|f(x)| on Rd or a subset X ⊂ Rd. The above problem is ill-posed inherently and it could be solved

only if we have some extra information about the signal f .

The additional knowledge about the signals in this paper is that they live in a shift-invariant space

V (φ) :=
{∑
k∈Zd

c(k)φ(x− k) : c(k) ∈ R for all k ∈ Zd
}

(5.1)

generated by a real-valued continuous function φwith compact support. Shift-invariant spaces have

been used in wavelet analysis and approximation theory, and sampling in shift-invariant spaces

is a realistic model for signals with smooth spectrum, see [13, 17, 30, 55, 98] and references

therein. Typical examples of shift-invariant spaces include those generated by refinable functions

([54, 109]) and box splines MΞ, which are defined by

∫
Rd
g(x)MΞ(x)dx =

∫
Rs
g(Ξy)dy, g ∈ L2(Rd), (5.2)

where Ξ ∈ Zd×s is a matrix with full rank d ([57, 157, 160]).

The phaseless sampling and reconstruction problem of one-dimensional signals in shift-invariant

spaces has been studied in [40, 125, 126, 133, 154]. Thakur proved in [154] that one-dimensional

real-valued signals in a Paley-Wiener space, the shift-invariant space generated by the sinc function
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sinπt
πt

, could be reconstructed from their phaseless samples taken at more than twice the Nyquist

rate. Reconstruction of one-dimensional signals in a shift-invariant space was studied in [133]

when frequency magnitude measurements are available. Not all signals in a shift-invariant space

generated by a compactly supported function are determined, up to a sign, by their magnitude

measurements on the whole line. In Chapter 4, the set of signals that can be determined by their

magnitude measurements on the real line R is fully characterized, and a fast algorithm is proposed

to reconstruct signals in a shift-invariant space from their phaseless samples taken on a discrete set

with finite sampling density. Up to our knowledge, there is no literature available on the phaseless

sampling and reconstruction of high-dimensional signals in a shift-invariant space, which is the

core of this chapter.

The phaseless sampling and reconstruction of signals in a shift-invariant space is an infinite-

dimensional phase retrieval problem, which has received considerable attention in recent years

[5, 6, 7, 33, 40, 110, 125, 126, 133, 154].

5.1 Phase retrievability, nonseparability, connectivity

The phase retrievability of a real-valued signal on Rd is whether it is determined, up to a sign, by

its magnitude measurements. It is characterized in Theorem 4.1.

The question arisen is how to determine the nonseparability of a signal in a shift-invariant space. To

answer the above question, we need the one-to-one correspondence between an amplitude vector

c and a signal f in the shift-invariant space V (φ),

c := (c(k))k∈Zd 7−→
∑
k∈Zd

c(k)φ(· − k) =: f ∈ V (φ), (5.3)

which is known as the global linear independence of the generator φ [25, 98, 129]. For d = 1,
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the nonseparability of a signal in a shift-invariant space is characterized in [40] that its amplitude

vector does not have consecutive zeros. However, there is no corresponding notion of consecutive

zeros in the high-dimensional setting (d ≥ 2). To characterize the nonseparability of signals on Rd,

d ≥ 1, we introduce an undirected graph for a signal in the shift-invariant space V (φ) generated

by a real-valued continuous function φ with compact support.

Definition 5.1. For any f(x) =
∑

k∈Zd c(k)φ(x− k) ∈ V (φ), define an undirected graph

Gf := (Vf , Ef ), (5.4)

where the vertex set

Vf = {k ∈ Zd : c(k) 6= 0}

contains supports of the amplitude vector of the signal f , and

Ef =
{

(k, k′) ∈ Vf × Vf : k 6= k′ and φ(x− k)φ(x− k′) 6= 0 for some x ∈ Rd
}

is the edge set associated with the signal f .

The graph Gf in (5.4) is well-defined for any signal f in the shift-invariant space V (φ) when φ has

the global linear independence. Moreover,

(k, k′) ∈ Ef if and only if k − k′ ∈ Λφ, (5.5)

where Λφ contains all k ∈ Zd such that

Sk := {x ∈ Rd : φ(x)φ(x− k) 6= 0} 6= ∅. (5.6)

In the following theorem, we show that connectivity of the graph Gf is a necessary condition for
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the nonseparability of the signal f ∈ V (φ).

Theorem 5.2. Let φ be a compactly supported continuous function on Rd with global linear inde-

pendence, and V (φ) be the shift-invariant space (5.1) generated by φ. If f ∈ V (φ) is nonseparable,

then the graph Gf in (5.4) is connected.

Before stating sufficiency for the connectivity of the graph Gf , we recall a concept of local linear

independence on an open set.

Definition 5.3. Let φ be a continuous function with compact support and A be an open set. We

say that φ has local linear independence on A if
∑

k∈Zd c(k)φ(x − k) = 0 for all x ∈ A implies

that c(k) = 0 for all k ∈ Zd satisfying φ(x− k) 6≡ 0 on A.

The global linear independence of a compactly supported function φ can be interpreted as its local

linear independence on Rd ([25, 139]). Define

ΦA(x) :=
(
φ(x− k)

)
k∈KA

, x ∈ A (5.7)

and

KA := {k ∈ Zd : φ(· − k) 6≡ 0 on A}. (5.8)

One may verify that φ has local linear independence on A if and only if the dimension of the linear

space spanned by ΦA(x), x ∈ A, is the cardinality of the set KA. The above characterization can

be used to verify the local linear independence on a bounded open set, especially when φ has the

explicit expression. For instance, one may verify that the generator φ0 in Example 5.6 below has

local linear independence on (0, 1), but it is locally linearly dependent on (0, 1/2) and (1/2, 1).

Proof. Suppose, on the contrary, that Gf is disconnected. Let W be the set of vertices in a con-

nected component of the graph Gf . Then W 6= ∅, Vf\W 6= ∅, and there are no edges between
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vertices in W and Vf\W . Write

f =
∑
k∈Zd

c(k)φ(· − k) =
∑
k∈Vf

c(k)φ(· − k)

=
∑
k∈W

c(k)φ(· − k) +
∑

k∈Vf\W

c(k)φ(· − k) =: f1 + f2 (5.9)

where c(k) ∈ R, k ∈ Zd. From the global linear independence on φ and nontriviality of the sets

W and Vf\W , we obtain

f1 6= 0 and f2 6= 0. (5.10)

Combining (5.9) and (5.10) with nonseparability of the signal f , we obtain that f1(x0)f2(x0) 6= 0

for some x0 ∈ Rd. Then by the global linear independence of φ, there exist k ∈ W and k′ ∈ Vf\W

such that φ(x0 − k) 6= 0 and φ(x0 − k′) 6= 0. Hence (k, k′) is an edge between k ∈ W and

k′ ∈ Vf\W , which contradicts to the construction of the set W .

The local linear independence on any open set and global linear independence are equivalent to

each other for some compactly supported functions, such as box splines and one-dimensional re-

finable functions ([52, 53, 56, 97, 145]). In the following theorem, we show that the converse in

Theorem 5.2 is true if the generator φ is assumed to have local linear independence on any open

set.

Theorem 5.4. Let φ be a compactly supported continuous function on Rd with local linear inde-

pendence on any open set, and f be a signal in the shift-invariant space V (φ). If the graph Gf in

(5.4) is connected, then f is nonseparable.

For d = 1, we have

(k, k′) ∈ Ef if and only if |k − k′| ≤ L− 1, (5.11)

provided that the support of φ is [0, L] for some L ≥ 1. This together with Theorems 5.2 and
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5.4 leads to the following result, which is established in [40] under different assumptions on the

generator φ.

Corollary 5.5. Let φ be a compactly supported continuous function on R, and f =
∑

k∈Z c(k)φ(·−

k) ∈ V (φ). If φ has local linear independence on any open set and its supporting set is [0, L] where

1 ≤ L ∈ Z, then f is nonseparable if and only if
∑L−2

l=0 |c(k + l)|2 6= 0 for all K−(f) − L + 1 <

k < K+(f) + 1, where K−(f) = inf{k : c(k) 6= 0} and K+(f) = sup{k : c(k) 6= 0}.

As demonstrated by the following example, the connectivity of the graph Gf is not sufficient for

the signal f to be nonseparable if the local linear independence assumption on the generator φ is

dropped.

Example 5.6. Define φ0(t) = h(4t−1)+h(4t−3)+h(4t−5)−h(4t−7), where h(t) = max(1−

|t|, 0) is the hat function supported on [−1, 1]. One may easily verify that φ0 is a continuous

function having global linear independence. Set

f1(t) =
∑
k∈Z

φ0(t− k) and f2(t) =
∑
k∈Z

(−1)kφ0(t− k).

Then f1 and f2 are nonzero signals in V (φ0) supported on [0, 1/2]+Z and [1/2, 1]+Z respectively,

and f1(t)f2(t) = 0 for all t ∈ R. Hence f1±2f2 have the same magnitude measurements |f1|+2|f2|

on the real line but they are different, even up to a sign, i.e., f1 + 2f2 6≡ ±(f1 − 2f2). On the other

hand, one may verify that their associated graphs Gf1±2f2 are connected.

Consider a continuous solution φ of a refinement equation

φ(x) =
N∑
n=0

a(n)φ(2x− n) and

∫
R
φ(x)dx = 1 (5.12)

with global linear independence, where
∑N

n=0 a(n) = 2 and N ≥ 1 ([54, 109]). The B-spline BN
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of order N , which is obtained by convolving the indicator function χ[0,1) on the unit interval N

times, satisfies the above refinement equation ([157, 160]). The function φ in (5.12) has support

[0, N ] and it has local linear independence on any open set if and only if it has global linear

independence ([45, 99, 105, 113, 145]). Therefore we have the following result for wavelet signals

by Theorems 5.2 and 5.4, which is also established in [40] with a different approach.

Corollary 5.7. Let φ satisfy the refinement equation (5.12) and have global linear independence.

Then f ∈ V (φ) is nonseparable if and only if the graph Gf in (5.4) is connected.

The local linear independence requirement in Theorem 5.4 can be verified for box splines MΞ in

(5.2). It is known that the box spline MΞ has local linear independence on any open set if and only

if it has global linear independence if and only if all d×d submatrices of Ξ have determinants being

either 0 or ±1 ([52, 53, 56, 97]). The reader may refer to [57] for more properties and applications

of box splines. As applications of Theorems 5.2 and 5.4, we have the following result for box

spline signals.

Corollary 5.8. Let Ξ ∈ Zd×s be a matrix of full rank d such that all of its d× d submatrices have

determinants being either 0 or ±1. Then f ∈ V (MΞ) is nonseparable if and only if the graph Gf

in (5.4) is connected.

5.2 Phaseless sampling and reconstruction

In this section, we consider the problem whether a signal in the shift-invariant space V (φ) is

determined, up to a sign, by its phaseless samples taken on a discrete set with finite sampling

density. Here we define the sampling density of a discrete set X ⊂ Rd by

D(X) := D+(X) = D−(X)
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if its upper sampling density D+(X) and lower sampling density D−(X) are the same [?, 41, ?],

where

D+(X) := lim sup
R→+∞

sup
x∈Rd

#(X ∩B(x,R))

Rd
(5.13)

and

D−(X) := lim inf
R→+∞

inf
x∈Rd

#(X ∩B(x,R))

Rd
. (5.14)

One may easily verify that a shift-invariant setX = Γ+Zd generated by a finite set Γ has sampling

density #Γ.

To determine a signal, up to a sign, by its phaseless samples taken on a discrete set, a necessary

condition is that the signal is nonseparable (hence phase retrievable). In the next theorem, we show

that the above requirement is also sufficient.

Theorem 5.9. Let φ be a compactly supported continuous function and V (φ) be the shift-invariant

space in (5.1) generated by φ. Then there exists a discrete set Γ ⊂ (0, 1)d such that any nonsepa-

rable signal f ∈ V (φ) is determined, up to a sign, by its phaseless samples on the set Γ + Zd with

finite sampling density.

A linear space V on Rd is said to be locally finite-dimensional if it has finite-dimensional restriction

on any bounded open set. The shift-invariant space in (5.1) generated by a compactly supported

function φ is locally finite-dimensional. The reader may refer to [15] and references therein on

locally finite-dimensional spaces. In this section, we will prove the following generalization of

Theorem 5.9.

Theorem 5.10. Let V be a locally finite-dimensional shift-invariant space of functions on Rd. Then

there exists a finite set Γ ⊂ (0, 1)d such that any nonseparable signal f ∈ V is determined, up to

a sign, by its phaseless samples on Γ + Zd.
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Proof. Let A = (0, 1)d and V |A be the space containing restrictions of all signals in V on A. By

the shift-invariance, it suffices to find a set Γ ⊂ A and functions dγ(x), γ ∈ Γ, such that

|f(x)|2 =
∑
γ∈Γ

dγ(x)|f(γ)|2, x ∈ A (5.15)

hold for all f ∈ V . By the assumption on V , V |A is finite-dimensional. Let gn ∈ V, 1 ≤ n ≤ N ,

be a basis for V |A, and W be the linear space spanned by symmetric matrices

G(x) :=
(
gn(x)gn′(x)

)
1≤n,n′≤N , x ∈ A.

Then there exists a finite set Γ ⊂ A with cardinality at most N(N + 1)/2 such that G(γ), γ ∈ Γ,

are a basis for the space W . This implies that for any x ∈ A there exist dγ(x), γ ∈ Γ, such that

G(x) =
∑
γ∈Γ

dγ(x)G(γ), x ∈ A.

For any f ∈ V , we write f(x) =
∑N

n=1 cngn(x), x ∈ A. Then

|f(x)|2 =
∣∣∣ N∑
n=1

cngn(x)
∣∣∣2 =

N∑
n,n′=1

cncn′gn(x)gn′(x)

=
N∑

n,n′=1

cncn′
(∑
γ∈Γ

dγ(x)gn(γ)gn′(γ)
)

=
∑
γ∈Γ

dγ(x)|f(γ)|2, x ∈ A.

This proves (5.15) and hence completes the proof.

Given a compactly supported function φ and a bounded open set A, let

WA be the linear space spanned by ΦA(x)(ΦA(x))T , x ∈ A, (5.16)

134



where ΦA is given in (5.7). Observe that for any bounded set A, the space WA spanned by outer

products ΦA(x)(ΦA(x))T , x ∈ A, is of finite dimension. Therefore there exists a finite set Γ ⊂ A

such that outer products ΦA(γ)(ΦA(γ))T , γ ∈ Γ, are a basis of the linear space WA. In the proof

of Theorem 5.9, we use A = (0, 1)d and apply the above procedure to select the finite set Γ. With

the above selection of the set Γ,

#Γ = dimW(0,1)d , (5.17)

and |f(x)|2, x ∈ Rd, are determined by |f(γ)|2, γ ∈ Γ + Zd.

As symmetric matrices in the spaceW(0,1)d are of size #K(0,1)d , we have the following result about

the sampling density.

Corollary 5.11. Let φ and V (φ) be as in Theorem 5.9. Then any nonseparable signal f ∈ V (φ)

is determined, up to a sign, by its phaseless samples on a shift-invariant set Γ + Zd with sampling

density

D(Γ + Zd) ≤ dimW(0,1)d ≤
1

2
#K(0,1)d(#K(0,1)d + 1),

where K(0,1)d is in (5.8).

The explicit construction of a discrete set with finite sampling density in Theorem 5.9 does not

provide an algorithm to reconstruct a nonseparable signal from its phaseless samples taken on

that discrete set. Considering the phaseless reconstruction of signals in a shift-invariant space, we

introduce a local complement property on a set.

Definition 5.12. We say that the shift-invariant space V (φ) has local complement property on a

set A if for any A′ ⊂ A, there does not exist f, g ∈ V (φ) such that f, g 6≡ 0 on A, but f(x) = 0 for

all x ∈ A′ and g(y) = 0 for all y ∈ A\A′.

The local complement property on Rd is the complement property in [40] for ideal sampling func-

tionals on V (φ), cf. the complement property for frames in Hilbert/Banach spaces ([7, 20, 23, 33]).
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Local complement property is closely related to local phase retrievability. In fact, following the

argument in [40], the shift-invariant space V (φ) has the local complement property on A if and

only if all signals in V (φ) is local phase retrievable on A, i.e., for any f, g ∈ V (φ) satisfying

|g(x)| = |f(x)|, x ∈ A, there exists δ ∈ {−1, 1} such that g(x) = δf(x) for all x ∈ A. More

discussions on the local complement property are given in Appendix 5.5.

Theorem 5.13. LetA1, · · · , AM be bounded open sets and φ be a compactly supported continuous

function such that φ has local linear independence on Am, 1 ≤ m ≤M , and

Sk ∩
(
∪Mm=1 (Am + Zd)

)
6= ∅ (5.18)

for all k ∈ Zd with Sk in (5.6) being nonempty. If the shift-invariant space V (φ) has local com-

plement property on Am, 1 ≤ m ≤ M , then there exists a finite set Γ ⊂ ∪Mm=1Am such that the

following statements are equivalent for any signal f ∈ V (φ):

(i) The signal f is determined, up to a sign, by its magnitude measurements on Rd.

(ii) The graph Gf in (5.4) is connected.

(iii) The signal f is determined, up to a sign, by its phaseless samples |f(y)|, y ∈ Γ + Zd.

The implication (i)=⇒(ii) has been established in Theorem 5.2 and the implication (iii)=⇒(i) is

obvious. Write f =
∑

k∈Zd c(k)φ(· − k). To prove (ii)=⇒(iii), we first determine c(k), k ∈

KAm + l, up to a sign δl,m ∈ {−1, 1}, by phaseless samples |f(γ + l)|, γ ∈ Γ, and then we use

the connectivity of the graph Gf to adjust phases δl,m, 1 ≤ m ≤ M, l ∈ Zd. Finally we sew those

pieces together to recover amplitudes c(k), k ∈ Zd, and the signal f . Comparing with the proof

of Theorem 5.9, we remark that our proof of Theorem 5.13 is constructive and a reconstruction

algorithm can be developed.
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Proof. The implication (iii)=⇒(i) is trivial. By (5.18), local linear independence of φ on Am, 1 ≤

m ≤ M , and shift-invariance of the linear space V (φ), we obtain that the generator φ has the

global linear independence. Then the implication (i)=⇒(ii) follows from Theorem 5.2.

Now it remains to prove (ii)=⇒(iii). Let Γm, 1 ≤ m ≤M , be finite sets constructed in Proposition

5.25 with the set A and the space V replaced by Am and V (φ) respectively, and set Γ = ∪Mm=1Γm.

Let f, g ∈ V (φ) satisfy

|g(y)| = |f(y)| for all y ∈ Γ + Zd. (5.19)

Then it suffices to prove that

g = δf (5.20)

for some δ ∈ {−1, 1}. Take l ∈ Zd and 1 ≤ m ≤M . By Proposition 5.25 and the shift-invariance

of the linear space V (φ), we have

|g(x+ l)| = |f(x+ l)|, x ∈ Am.

This, together with the shift-invariance of the linear space V (φ) and local complement property on

Am, implies the existence of δl,m ∈ {−1, 1} such that

g(x) = δl,mf(x), x ∈ Am + l. (5.21)

Write f =
∑

k∈Zd c(k)φ(· − k) and g =
∑

k∈Zd d(k)φ(· − k) ∈ V (φ). Then it follows from (5.21)

and local linear independence of the generator φ on Am that

d(k′ + l) = δl,mc(k
′ + l), k′ ∈ KAm , (5.22)

where KAm is given in (5.8).
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By (5.22), the proof of (5.20) reduces to showing

δl,m = δ (5.23)

for all l ∈ Zd and 1 ≤ m ≤M so that k′ + l ∈ Vf for some k′ ∈ KAm . Recall that c(k) 6= 0 for all

k ∈ Vf . Then by (5.22) there exist δk ∈ {−1, 1} for all k ∈ Vf such that

δl,m = δk

for all l ∈ Zd and 1 ≤ m ≤ M so that k = k′ + l ∈ Vf for some k′ ∈ KAm . Thus it suffices to

prove that

δk = δk̃ for all k, k̃ ∈ Vf . (5.24)

By the connectivity of the graph Gf , the proof of (5.24) reduces further to proving

δk = δk̃ (5.25)

for all edges (k, k̃) of the graph Gf . For an edge (k, k̃) of the graph Gf , we have that

S := {x ∈ Rd : φ(x− k)φ(x− k̃) 6= 0} 6= ∅.

Then there exist 1 ≤ m ≤M by (5.6) and (5.18) such that S∩(Am+k) 6= ∅. Thus k, k̃ ∈ KAm+k,

which together with (5.22) and (5.24) implies that δk = δk,m = δk̃. Hence (5.25) holds. This

completes the proof.

For the case that the generator φ has local linear independence on any open set, we can find open

sets Am, 1 ≤ m ≤M , such that (5.18) holds and V (φ) has local complement property on Am, 1 ≤

m ≤ M , see Proposition 5.28. Then from Theorem 5.13 we obtain the following corollary, cf.
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Theorem 5.4 and Corollaries 5.7 and 5.8.

Corollary 5.14. Let φ be a compactly supported continuous function with local linear indepen-

dence on any open set. Then there exists a finite set Γ such that any nonseparable signal is deter-

mined, up to a sign, by its phaseless samples taken on the set Γ + Zd with finite sampling density.

Take N = (N1, . . . , Nd)
T with Ni ≥ 2, 1 ≤ i ≤ d, and let BNi be the B-spline of order Ni

([57, 157, 160]). Define the box spline function of tensor-product type

BN(x) := BN1(x1)× · · · ×BNd(xd), x = (x1, . . . , xd)
T ∈ Rd. (5.26)

As the restriction of a signal in V (BN) on (0, 1)d is a polynomial of finite degree, the space V (BN)

has local complement property on (0, 1)d. Applying Theorem 5.13 with M = 1 and A1 = (0, 1)d,

we have the following result for tensor-product splines, which is given in [40] for d = 1.

Corollary 5.15. LetXi contain 2Ni−1 distinct points in (0, 1), 1 ≤ i ≤ d. Then any nonseparable

signal f ∈ V (BN) is determined, up to a sign, by its phaseless samples on the setX1×. . .×Xd+Zd

with sampling density
∏d

i=1(2Ni − 1).

Proof. As restrictions of signals in V (BN) on (0, 1)d are polynomials of finite degrees, the space

V (BN) has the local complement property on (0, 1)d. Set n = (n, . . . , n) for n ∈ Z. It is

observed that the function Φ(0,1)d in (5.7) is a vector-valued polynomial of degree N − 1, and

its outer product Φ(0,1)d(x)Φ(0,1)d(x)T , x ∈ (0, 1)d is a matrix-valued polynomial of degree 2N −

2. Recall that Xi is the discrete set containing 2Ni − 1 distinct points in (0, 1), 1 ≤ i ≤ d.

Therefore Φ(0,1)d(y)Φ(0,1)d(y)T , y ∈ X1 × · · · ×Xd, is a spanning set of the linear space spanned

by Φ(0,1)d(x)Φ(0,1)d(x)T , x ∈ (0, 1)d. This together with Theorem 5.13 completes the proof.

In the proof of Theorem 5.13, the discrete sampling set Γ is chosen to be the union of Γm ⊂
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Am, 1 ≤ m ≤M ,

Γ = ∪Mm=1Γm, (5.27)

so that outer products ΦAm(γ)(ΦAm(γ))T , γ ∈ Γm, are a basis (or a spanning set) of the linear

space WAm . Therefore we have the following result from Theorem 5.13.

Corollary 5.16. Let φ and Am, 1 ≤ m ≤ M , be as in Theorem 5.13. Then any nonseparable

signal f ∈ V (φ) is determined, up to a sign, by its phaseless samples on a shift-invariant set

Γ + Zd with sampling density

D(Γ + Zd) ≤
M∑
m=1

dimWAm ≤
1

2

M∑
m=1

#KAm(#KAm + 1).

The discrete set Γ+Zd chosen in Corollary 5.16 may have larger sampling density than dimW(0,1)d

in Corollary 5.11. Based on the constructive proof in Theorem 5.13, a robust reconstruction algo-

rithm is developed in Section 5.4. However, we have difficulties to find a reconstruction algorithm

from the phaseless samples taken on the set given in Corollary 5.11.

Definition 5.17. We say thatM = {am ∈ Rd, 1 ≤ m ≤ M} is a phase retrievable frame for Rd

if any vector x ∈ Rd is determined, up to a sign, by its measurements |〈x, am〉|, am ∈M, and that

M is a minimal phase retrieval frame for Rd if any true subset of M is not a phase retrievable

frame.

After the careful examination on the proof of Theorem 5.13, we can select a subset Γ′ of Γ such

that all nonseparable signals f can be reconstructed from its phaseless samples taken on Γ′ + Zd

in a robust manner.

Theorem 5.18. Let Am, 1 ≤ m ≤M , and φ be as in Theorem 5.13. Assume that there exist Γ′m ⊂

Am such that ΦAm(γ′), γ′ ∈ Γ′m, is a phase retrievable frame for R#KAm . Then any nonseparable
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signal f ∈ V (φ) is determined, up to a sign, by its phaseless samples |f(y)|, y ∈ Γ′ + Zd, where

Γ′ = ∪Mm=1Γ′m. (5.28)

Proof. Let f =
∑

k∈Zd c(k)φ(· − k) and g =
∑

k∈Zd d(k)φ(· − k) satisfy

|g(y)| = |f(y)| for all y ∈ Γ′ + Zd,

where Γ′ = ∪Mm=1Γ′m is given in (5.28). Take l ∈ Zd and 1 ≤ m ≤M . Then

∣∣∣ ∑
k∈KAm+l

d(k)φ(γ′ + l − k)
∣∣∣ =

∣∣∣ ∑
k∈KAm+l

c(k)φ(γ′ + l − k)
∣∣∣ for all γ′ ∈ Γ′m.

By the assumption on ΦAm(γ′), γ′ ∈ Γ′m, 1 ≤ m ≤M , there exists δl,m ∈ {1,−1} such that

d(k) = δl,mc(k), k ∈ KAm + l.

Following the same argument as the one used for the implication (ii)=⇒(iii) in Theorem 5.13, we

can find δ ∈ {−1, 1} such that δl,m = δ for all l ∈ Zd and 1 ≤ m ≤ M . This completes the

proof.

In Theorem 5.18, the requirement on the sampling set is a bit weaker than the one in Theorem 5.13,

as for the sampling set Γ = ∪Mm=1Γm in (5.27), ΦAm(γ), γ ∈ Γm, is a phase retrievable frame for

R#KAm , cf. Theorem 5.26. We remark that the phase retrieval frame property for ΦA(γ′), γ′ ∈ Γ′,

may not imply that their out products ΦA(γ′)(ΦA(γ′))T , γ′ ∈ Γ′, form a basis (or a spanning set)

of WA in (5.16), as shown in the following example.
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Example 5.19. Let

φ1(x) =



x3/2 if 0 ≤ x < 1

−x3 + 3x2 − 2x+ 1/2 if 1 ≤ x < 2

x3/2− 3x2 + 5x− 3/2 if 2 ≤ x < 3

0 otherwise,

and set Φ1(x) = (φ1(x), φ1(x+ 1), φ1(x+ 2))T , 0 ≤ x < 1. Then

Φ1(x) =
1

2


0

1

1

+


0

1

−1

x+
1

2


1

−2

1

x3,

and

Φ1(x)Φ1(x)T =
1

4


0 0 0

0 1 1

0 1 1

+


0 0 0

0 1 0

0 0 −1

x+


0 0 0

0 1 −1

0 −1 1

x2

+
1

4


0 1 1

1 −4 −1

1 −1 2

x3 +
1

2


0 1 −1

1 −4 3

−1 3 −2

x4 +
1

4


1 −2 1

−2 4 −2

1 −2 1

x6.

Therefore the space spanned by Φ1(x), 0 < x < 1, is R3, and the space W(0,1) spanned by

Φ1(x)Φ1(x)T , 0 < x < 1, is the 6-dimensional linear space of symmetric matrices of size 3 × 3.
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On the other hand, any 3× 3 square submatrices of

(
Φ1(0) Φ1

(1

5

)
Φ1

(2

5

)
Φ1

(3

5

)
Φ1

(4

5

))
=

1

250


0 1 8 27 64

125 173 209 221 197

125 76 33 2 −11


is nonsingular, which implies that Φ1(m/5), 0 ≤ m ≤ 4, forms a phase retrieval frame for R3, but

their out products do not form a spanning set of the 6-dimensional space W(0,1).

The problem how to pare down a phase retrieval frame to a minimal phase retrieval frame will

be discussed in our future work. Using the pare-down technique, we may find a discrete set X

with smaller sampling density such that nonseparable signals in the shift-invariant space can be

reconstructed from their phaseless samples taken on X .

5.3 Stability of phaseless sampling and reconstruction

Stability is of paramount importance in the phaseless sampling and reconstruction problem. Con-

sider the scenario that phaseless samples of a signal

f =
∑
k∈Zd

c(k)φ(· − k) ∈ V (φ) (5.29)

taken on a shift-invariant set Γ + Zd are corrupted by the additive noise,

zε(y) = |f(y)|+ ε(y), y ∈ Γ + Zd, (5.30)
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where ε = (ε(y))y∈Γ+Zd has the bounded noise level ‖ε‖∞ = maxy∈Γ+Zd |ε(y)|, and Γ = ∪Mm=1Γm

is either as in (5.27) or in (5.28). In this section, we construct an approximation

fε =
∑
k∈Zd

cε(k)φ(· − k) ∈ V (φ), (5.31)

up to a sign, to the original signal f in (5.29) when the noisy phaseless samples (5.30) are available

only.

Let

Ωm = {k ∈ Zd : φ(γ − k) 6= 0 for some γ ∈ Γm}, 1 ≤ m ≤M, (5.32)

and define the hard threshold function Hη, η ≥ 0, by

Hη(t) =

 t if |t| ≥ η

0 if |t| < η.

Based on the constructive proofs of Theorems 5.13 and 5.18, we propose the following four-step

approach with its implementation discussed in Section 5.4.
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1. Select a phase adjustment threshold value M0 ≥ 0 and an amplitude threshold value

η =
√
M0.

2. For l ∈ Zd and 1 ≤ m ≤M , let

cε,l;m = (cε,l;m(k))k∈Zd (5.33)

take zero components except that cε,l;m(k), k ∈ l + Ωm, are solutions of the local

minimization problem

min
c(k),k∈l+Ωm

∑
γ∈Γm

∣∣∣∣∣∣∣∣ ∑
k∈l+Ωm

c(k)φ(γ + l − k)
∣∣∣− zε(γ + l)

∣∣∣∣∣
2

. (5.34)

3. Adjust phases of cε,l;m appropriately so that the resulting vectors δl,mcε,l;m with δl,m ∈

{−1, 1} satisfy

〈δl,mcε,l;m, δl′,m′cε,l′;m′〉 ≥ −M0 (5.35)

for all l, l′ ∈ Zd and 1 ≤ m,m′ ≤M .

4. Sew vectors δl,mcε,l;m, l ∈ Zd, 1 ≤ m ≤M , together to obtain

dε(k) =

∑M
m=1

∑
l∈Zd δl,mcε,l;m(k)∑M

m=1

∑
l∈Zd χl+Ωm(k)

, k ∈ Zd. (5.36)

5. Threshold the vector dε = (dε(k))k∈Zd ,

cε(k) = Hη(dε(k)), k ∈ Zd (5.37)

to construct the approximation fε in (5.31).

145



In the next theorem, we show that the above approach provides a suboptimal approximation to the

original signal in a noisy phaseless sampling environment.

Theorem 5.20. Let A1, · · · , AM be bounded open sets satisfying (5.18), φ be a compactly sup-

ported continuous function such that φ has local linear independence on Am, 1 ≤ m ≤ M , and

let Γm ⊂ Am be so chosen that ΦAm(γ), γ ∈ Γm, is a phase retrievable frame for R#KAm . Assume

that the graph Gf = (Vf , Ef ) of the original signal f =
∑

k∈Zd c(k)φ(· − k) is connected and

F0 := inf
k∈Vf
|c(k)|2 > 0. (5.38)

Set Γ = ∪Mm=1Γm and

∥∥Φ−1
∥∥

2
= sup

Θm⊂Γm,1≤m≤M

(
min

(
sup
‖d‖2=1

‖ΦΘmd‖−1
2 ,

sup
‖d‖2=1

‖ΦΓm\Θmd‖−1
2

))−1

, (5.39)

where ΦΘm = (φ(γ−k))γ∈Θm,k∈Ωm for Θm ⊂ Γm. If the phase adjustment threshold valueM0 ≥ 0

and the noise level ‖ε‖∞ := supy∈Γ+Zd |ε(y)| satisfy

M0 ≤
2F0

9
, (5.40)

and

8#Γ‖Φ−1‖2
2‖ε‖2

∞ ≤M0, (5.41)

then the signal fε =
∑

k∈Zd cε(k)φ(· − k) ∈ V (φ) reconstructed from the proposed approach

(5.33)–(5.37) satisfies

|cε(k)− δc(k)| ≤ 2
√

#Γ‖Φ−1‖2‖ε‖∞, k ∈ Vf (5.42)
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and

cε(k) = c(k) = 0, k 6∈ Vf , (5.43)

where δ ∈ {−1, 1}.

Given Γ ⊂ Rd and f =
∑

k∈Zd c(k)φ(· − k), we define

G̃f,Γ = (Vf , Ef,Γ), (5.44)

where (k, k′) ∈ Ef,Γ only if φ(y− k)φ(y− k′) 6= 0 for some y ∈ Γ +Zd. To prove Theorem 5.20,

we need a lemma about the graph Gf .

Lemma 5.21. Let φ, Am and Γm, 1 ≤ m ≤ M , be as in Theorem 5.20. Set Γ = ∪Mm=1Γm. Then

for any f ∈ V (φ), the graph Gf in (5.4) and G̃f,Γ in (5.44) are the same,

Gf = G̃f,Γ. (5.45)

Proof. Clearly it suffices to prove that an edge in Gf is also an edge in G̃f,Γ. Suppose, on the

contrary, that there exists an edge (k, k′) in Gf such that

φ(y − k)φ(y − k′) = 0 for all y ∈ ∪Mm=1Γm + Zd. (5.46)

Define

S = {x ∈ Rd : φ(x− k)φ(x− k′) 6= 0} 6= ∅. (5.47)

By (5.18), there exist l0 ∈ Zd and 1 ≤ m0 ≤M such that

S ∩ (Am0 + l0) 6= ∅. (5.48)
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Set g±(x) = φ(x+ l0 − k)± φ(x+ l0 − k′), x ∈ Am0 . Then it follows from (5.46) that

|g±(γ)| = |φ(γ + l0 − k)|+ |φ(γ + l0 − k′)|, γ ∈ Γm0 .

By the construction of the set Γm0 , we get either g+ = g− or g+ = −g− on Am0 . Therefore either

φ(x + l0 − k) ≡ 0 on Am0 or φ(x + l0 − k′) ≡ 0 on Am0 . This contradicts to the construction of

set S in (5.47) and (5.48).

Now, we continue the proof of Theorem 5.20.

Proof. Take l ∈ Zd and 1 ≤ m ≤M . For γ ∈ Γm there exists δ̃γ,l;m ∈ {−1, 1} such that

( ∑
γ∈Γm

∣∣∣∣∣ ∑
k∈l+Ωm

(cε,l;m(k)− δ̃γ,l;mc(k))φ(γ + l − k)

∣∣∣∣∣
2)1/2

=

( ∑
γ∈Γm

∣∣∣∣∣∣∣∣ ∑
k∈l+Ωm

cε,l;m(k)φ(γ + l − k)
∣∣∣

−
∣∣∣ ∑
k∈l+Ωm

c(k)φ(γ + l − k)
∣∣∣∣∣∣∣∣

2)1/2

≤

( ∑
γ∈Γm

∣∣∣∣∣∣∣∣ ∑
k∈l+Ωm

cε,l;m(k)φ(γ + l − k)
∣∣∣− zε(γ + l)

∣∣∣∣∣
2)1/2

+

( ∑
γ∈Γm

∣∣∣∣∣∣∣∣ ∑
k∈l+Ωm

c(k)φ(γ + l − k)
∣∣∣− zε(γ + l)

∣∣∣∣∣
2)1/2

≤ 2

( ∑
γ∈Γm

∣∣∣∣∣∣∣∣ ∑
k∈l+Ωm

c(k)φ(γ + l − k)
∣∣∣− zε(γ + l)

∣∣∣∣∣
2)1/2

≤ 2
√

#Γm‖ε‖∞ ≤ 2
√

#Γ‖ε‖∞, (5.49)
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where the second inequality holds by (5.34) and the last inequality follows from

zε(γ + l) =
∣∣∣ ∑
k∈l+Ωm

c(k)φ(γ + l − k)
∣∣∣+ ε(γ + l), γ ∈ Γm.

From the phase retrievable frame property for
(
φ(γ − k)

)
k∈KAm

, γ ∈ Γm, we obtain that

Ωm = KAm , 1 ≤ m ≤M. (5.50)

Let A1,m = {γ ∈ Γm : δ̃γ,l;m = 1}. This together with (5.50) and the phase retrievable frame

assumption that either
(
φ(γ − k)

)
k∈Ωm

, γ ∈ A1,m or
(
φ(γ − k)

)
k∈Ωm

, γ ∈ Γm\A1,m is a spanning

set for R#Ωm . This together with (5.49) implies that

( ∑
k∈l+Ωm

∣∣cε,l;m(k)− δ̃l,mc(k)
∣∣2)1/2

≤ 2‖Φ−1‖2

√
#Γ‖ε‖∞ (5.51)

for some sign δ̃l,m ∈ {−1, 1}.

Now we show that phases of cε,l;m, l ∈ Zd, 1 ≤ m ≤ M , can be adjusted so that (5.35) holds.

Let δ̃l,m, l ∈ Zd, 1 ≤ m ≤ M , be as in (5.51). Then for any l, l′ ∈ Zd and 1 ≤ m,m′ ≤ M , set
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Ωl,m;l′,m′ = (Ωm + l) ∩ (Ωm′ + l′). Then

〈δ̃l,mcε,l;m, δ̃l′,m′cε,l′;m′〉 =
∑

k∈Ωl,m;l′,m′

δ̃l,mδ̃l′,m′cε,l;m(k)cε,l′;m′(k)

≥
∑

k∈Ωl,m;l′,m′

|c(k)|2 −
∑

k∈Ωl,m;l′,m′

|c(k)||δ̃l′,m′cε,l′;m′(k)− c(k)|

−
∑

k∈Ωl,m;l′,m′

|δ̃l,mcε,l;m(k)− c(k)||c(k))|

−
∑

k∈Ωl,m;l′,m′

|δ̃l,mcε,l;m(k)− c(k)||δ̃l′,m′cε,l′;m′(k)− c(k)|

≥ −1

2

∑
k∈Ωl,m;l′,m′

(
|δ̃l′,m′cε,l′;m′(k)− c(k)|2 + |δ̃l,mcε,l;m(k)− c(k)|2

)
−

∑
k∈Ωl,m;l′,m′

|δ̃l,mcε,l;m(k)− c(k)||δ̃l′,m′cε,l′;m′(k)− c(k)|

≥ −8‖Φ−1‖2
2#Γ‖ε‖2

∞ ≥ −M0, (5.52)

where the third inequality follows from (5.51) and the last inequality holds by the assumption

(5.41) on the noise level ‖ε‖∞ and the threshold value M0.

The phase adjustments in (5.35) for cε,l;m, l ∈ Zd, 1 ≤ m ≤M , are not unique. Next we show that

they are essentially the phase adjustments in (5.52), i.e., for any phase adjustments δl,m ∈ {−1, 1}

in (5.35) there exists δ ∈ {−1, 1} such that

δl,mc(k) = δδ̃l,mc(k) for all k ∈ l + Ωm, l ∈ Zd, 1 ≤ m ≤M. (5.53)

To prove (5.53), we claim that

δ̃l,m/δl,m = δl′,m′/δ̃l′,m′ (5.54)

for all (l,m) and (l′,m′) with Ωl,m;l′,m′ ∩ Vf 6= ∅. Suppose on the contrary that (5.54) does not
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hold. Then

〈δl,mcε,l;m, δl′,m′cε,l′;m′〉 = −〈δ̃l,mcε,l;m, δ̃l′,m′cε,l′;m′〉.

Therefore

〈δl,mcε,l;m, δl′,m′cε,l′;m〉

≤ −
∑

k∈Ωl,m;l′,m′

|c(k)|2 +
∑

k∈Ωl,m;l′,m′

|c(k)||δ̃l′,m′cε,l′;m′(k)− c(k)|

+
∑

k∈Ωl,m;l′,m′

|δ̃l,mcε,l;m(k)− c(k)||c(k))|

+
∑

k∈Ωl,m;l′,m′

|δ̃l,mcε,l;m(k)− c(k)||δ̃l′,m′cε,l′;m′(k)− c(k)|

≤ −
∑

k∈Ωl,m;l′,m′

|c(k)|2 + 4
√

#Γ‖Φ−1‖2

( ∑
k∈Ωl,m;l′,m′

|c(k)|2
)1/2

‖ε‖∞

+4#Γ‖Φ−1‖2
2‖ε‖2

∞

≤ −
∑

k∈Ωl,m;l′,m′

|c(k)|2 +
(

2M0

∑
k∈Ωl,m;l′,m′

|c(k)|2
)1/2

+
M0

2
< −M0,

where the second inequality follows from (5.51), and the third and fourth inequalities hold by

(5.38), (5.40) and (5.41). This contradicts to the requirement (5.35) for the phase adjustment and

hence completes the proof of the Claim (5.54).

By (5.54), for any k ∈ Vf there exists δk ∈ {−1, 1} such that

δl,mc(k) = δkδ̃l,mc(k) for all k ∈ l + Ωm. (5.55)

Let (k1, k2) be an edge in Gf . By Lemma 5.21 there exist l ∈ Zd and 1 ≤ m ≤ M such that

k1, k2 ∈ Ωm + l. Therefore

δl,mc(k1) = δk1 δ̃l,mc(k1) and δl,mc(k2) = δk2 δ̃l,mc(k2)
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by (5.55). This implies that δk1 = δk2 for any edge (k1, k2) in Gf . Combining it with the connec-

tivity of the graph Gf , we can find δ ∈ {−1, 1} such that

δk = δ for all k ∈ Vf . (5.56)

Combining (5.55) and (5.56) proves (5.53).

By (5.51) and (5.53), we obtain

|dε(k)− δc(k)| ≤
∑M

m=1

∑
l∈Zd |δl,mcε,l;m(k)− δc(k)|∑M
m=1

∑
l∈Zd χl+Ωm(k)

=

∑M
m=1

∑
l∈Zd |cε,l;m(k)− δ̃l,mc(k)|∑M

m=1

∑
l∈Zd χl+Ωm(k)

≤ 2
√

#Γ‖Φ−1‖2‖ε‖∞, k ∈ Zd. (5.57)

This together with (5.40) and (5.41) implies that

|dε(k)| ≥ 3

2

√
M0 for all k ∈ Vf , (5.58)

and

|dε(k)| ≤ 1

2

√
M0 for all k 6∈ Vf . (5.59)

Combining (5.37), (5.57), (5.58) and (5.59) completes the proof of the desired error estimates

(5.42) and (5.43).

By Theorem 5.20, the reconstructed signal fε in (5.31) provides a suboptimal approximation, up

to a sign, to the original signal f in (5.29),

‖fε − δf‖∞ ≤ 2
√

#Γ‖Φ−1‖2

(
sup
x∈Rd

∑
k∈Zd

∣∣φ(x− k)
∣∣)‖ε‖∞ (5.60)
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and

sup
y∈Γ+Zd

∣∣|fε(y)| − |f(y)|
∣∣ ≤ 2

√
#Γ‖Φ−1‖2

(
sup
x∈Rd

∑
k∈Zd

∣∣φ(x− k)
∣∣)‖ε‖∞. (5.61)

By (5.38), (5.40), (5.41) and (5.42), a vertex in the graph Gf is also a vertex of the graph Gfε . This

together with (5.4) and (5.43) implies that the graphs Gf and Gfε associated with the original signal

f and the reconstructed signal fε are the same, i.e.,

Gf = Gfε .

The selection of the threshold value M0 ≥ 0 is imperative to find an approximation to the original

signal from its phaseless samples. In the noiseless environment, we may take M0 = 0 and the

proposed approach leads to a perfect reconstruction, i.e., fε = ±f , when f is nonseparable. In

practical applications, the noise level is usually positive and the phase adjustment threshold value

M0 needs to be appropriately selected. For instance, we may require that (5.40) and (5.41) are

satisfied if we have some prior information about the amplitude vector of the original signal. From

the proof of Theorem 5.20 and also the simulations in the next section, it is observed that phases

can not be adjusted to satisfy (5.35) if the threshold value M0 is far below square of noise level

‖ε‖∞ (for instance, (5.41) is not satisfied), while the phase adjustment (5.35) in the algorithm is

not essentially determined and hence the reconstructed signal is not a good approximation of the

original signal if the threshold value M0 is much larger than the square of minimal magnitude of

amplitude vector of the original signal (for instance, (5.40) is not satisfied).

Remark 5.22. By Theorem 5.20, there is no resonance phenomenon in the sense that

inf
δ∈{−1,1}

‖fε − δf‖∞ ≤ C‖ε‖∞ (5.62)
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if the noise level is far below the minimal magnitude of amplitude vector of the original signal, i.e.,

‖ε‖∞ ≤ C0 inf
k∈Vf
|c(k)| (5.63)

for some sufficiently small constant C0. The phaseless sampling and reconstruction problem is ill-

posed if the noise level is high. For instance, the estimate (5.62) is not satisfied for the following

nonseparable spline signal of order 2,

fα(x) = B2(x) + αB2(x− 1) +B2(x− 2) ∈ V (B2),

if ‖ε‖∞ ≥ 2α/(1 + α), where α ∈ (0, 1) is sufficiently small. The reasons are that the signal

f̃α(x) = B2(x) + αB2(x− 1)−B2(x− 2) ∈ V (B2) satisfies

min
δ∈{−1,1}

‖fα − δf̃α‖∞ = 2 and
∥∥|fα| − |f̃α|∥∥∞ =

2α

1 + α
.

5.4 Reconstruction algorithm and numerical simulations

Consider the scenario that phaseless samples of a signal f =
∑

k∈Zd c(k)φ(· − k) ∈ V (φ) taken

on a finite set Γ +K ⊂ Γ + Zd are corrupted by the additive noise,

zε(y) = |f(y)|+ ε(y), y ∈ Γ +K, (5.64)

where ε(y) ∈ [−ε, ε], y ∈ Γ + K, for some ε ≥ 0, and Γ = ∪Mm=1Γm is either as in (5.27) or in

(5.28). Define

fK =
∑
k∈K̃

c(k)φ(· − k), (5.65)
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where K̃ = ∪l∈K ∪Mm=1 (l + Ωm) and Ωm, 1 ≤ m ≤ M , are as in (5.32). Then the noisy data

zε(y), y ∈ Γ +K, in (5.64) is

zε(y) = |fK(y)|+ ε(y) ≥ 0, y ∈ Γ +K. (5.66)

Based on (5.66) and the four-step approach in Section 5.3, we propose an algorithm to find an

approximation fε of the form

fε =
∑
k∈K̃

cε(k)φ(· − k) ∈ V (φ), (5.67)

up to a sign, to the original signal f in (5.65) when the noisy phaseless samples (5.64) are available

only. The algorithm contains four parts: minimiztion, adjusting phases, sewing and thresholding,

and we call it the MAPSET algorithm. In this section, we also demonstrate the performance of

the proposed MAPSET algorithm on reconstructing box spline signals from their noisy phaseless

samples on discrete sets.

5.4.1 Nonseparable spline signals of tensor-product type

LetB(3,3) be the tensor product of one-dimensional quadratic splineB3, see (5.26). ForA = (0, 1)2

and φ = B(3,3), the vector-valued function ΦA in (5.7) and the set KA in (5.8) become

Φ(0,1)2(s, t) =
(
bi(s)bj(t)

)
(i,j)∈K(0,1)2

, (s, t) ∈ (0, 1)2 (5.68)

and K(0,1)2 = {(i, j) : −2 ≤ i, j ≤ 0} respectively, where b0(s) = s2/2, b−1(s) = (−2s2 + 2s +

1)/2 and b−2(s) = (1 − s)2/2, 0 ≤ s ≤ 1. One may verify that the space spanned by the outer

155



Algorithm 2 MAPSET Algorithm
Inputs: finite set K ⊂ Zd; sampling set Γ = ∪Mm=1Γm either in (5.27) or in (5.28); noisy
phaseless sampling data

(
zε(y)

)
y∈Γ+K

; index set K̃ = ∪l∈K ∪Mm=1 (l+Ωm) ⊂ Zd; and the phase
adjustment threshold value M0.
Initials: Start from zero vectors cε,l;m =

(
cε,l;m(k)

)
k∈K̃ , l ∈ K, 1 ≤ m ≤M .

Instructions:
1) Local minimization: For l ∈ K and 1 ≤ m ≤M , replace cε,l;m(k), k ∈ l+Ωm, by a solution
of the local minimization problem

min
c(k),k∈l+Ωm

∑
γ∈Γm

∣∣∣∣∣∣∣∣ ∑
k∈l+Ωm

c(k)φ(γ + l − k)
∣∣∣− zε(γ + l)

∣∣∣∣∣
2

.

2) Phase adjustment: For l ∈ K and 1 ≤ m ≤ M , multiply cε,l;m by δl,m ∈ {−1, 1} so that
〈δl,mcε,l;m, δl′,m′cε,l′;m′〉 ≥ −M0 for all l, l′ ∈ K and 1 ≤ m,m′ ≤M .
3) Sewing local approximations:

dε(k) =

∑M
m=1

∑
l∈K δl,mcε,l;m(k)∑M

m=1

∑
l∈K χl+Ωm(k)

, k ∈ K̃.

4) Hard thresholding:

cε(k) =

{
dε(k) if |dε(k)| ≥

√
M0

0 else
, k ∈ K̃.

Outputs: Amplitude vector (cε(k))k∈K̃ , and the reconstructed signal fε =
∑

k∈K̃ cε(k)φ(· − k).

products of Φ(0,1)2(s, t), (s, t) ∈ (0, 1)2, has dimension 25, and the set

Γ0 = {(i, j)/6, 1 ≤ i, j ≤ 5} ⊂ (0, 1)2 (5.69)

with cardinality 25 satisfies (5.27), see Figure 5.1. For the above uniformly distributed set Γ0, the

corresponding ‖Φ−1‖2 in (5.39) is 2.7962× 103.

As Φ(0,1)2(s, t), (s, t) ∈ (0, 1)2, is a 9-dimensional vector-valued polynomial about smtn, 0 ≤

m,n ≤ 2, the shift-invariant space generated by B(3,3) has local complement property on (0, 1)2.

Observe that the matrix
(
Φ(0,1)2(si, ti)

)
1≤i≤9

has full rank 9 for almost all (si, ti) ∈ (0, 1)2, 1 ≤
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i ≤ 9. Hence
(
Φ(0,1)2(si, ti)

)
1≤i≤17

is a phase retrieval frame for almost all (si, ti) ∈ (0, 1)2, 1 ≤

i ≤ 17, but the corresponding ‖Φ−1‖2 in (5.39) are relatively large from our calculation. So we

use a randomly distributed set Γ1 ⊂ (0, 1)2 with cardinality 19 in our simulations, see Figure 5.1.

The above set satisfies (5.28) and the corresponding ‖Φ−1‖2 in (5.39) is 3.2995× 104.

Figure 5.1: Uniform and randomly distributed sampling set

Plotted in Figure 5.1 on the left is a uniformly distributed set Γ0 satisfying (5.27), while on the

right is a randomly distributed set Γ1 satisfying (5.28). The corresponding ‖Φ−1‖2 in (5.39) to the

above sets are 2.7962× 103 (left) and 3.2995× 104 (right), respectively.

In our simulations, the available data zε(y) = |f(y)| + ε(y) ≥ 0, y ∈ Γ + K, are noisy phaseless

samples of a spline signal

f(s, t) =
∑

0≤m≤K1,0≤n≤K2

c(m,n)B(3,3)(s−m, t− n), (5.70)

taken on Γ + K, where K = [0, K1] × [0, K2] for some positive integers K1, K2 ≥ 1, Γ is either

the uniform set Γ0 or the random set Γ1 in Figure 5.1, amplitudes of the signal f ,

c(m,n) ∈ [−1, 1]\[−0.1, 0.1], 0 ≤ m ≤ K1, 0 ≤ n ≤ K2, (5.71)
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are randomly chosen, and the additive noises ε(y) ∈ [−ε, ε], y ∈ Γ + K, with noise level ε ≥ 0

are randomly selected. Denote the signal reconstructed by the proposed MAPSET algorithm with

phase adjustment threshold value M0 = 0.01, cf. (5.40) with F0 = 0.01, by

fε(s, t) =
∑

−2≤m≤K1,−2≤n≤K2

cε(m,n)B(3,3)(s−m, t− n). (5.72)

Define the maximal amplitude error of the MAPSET algorithm by

e(ε) := min
δ∈{−1,1}

max
−2≤m≤K1,−2≤n≤K2

|cε(m,n)− δc(m,n)|. (5.73)

As the original spline signal f in (5.70) is nonseparable, the conclusions (5.42) and (5.43) guar-

antee that the reconstruction signal fε provides a suboptimal approximation, up to a sign, to the

original signal f if ‖Φ−1‖2ε is much smaller than a multiple of
√
M0, where M0 is the phase ad-

justment threshold value. Our numerical simulations indicate that the MAPSET algorithm saves

phases successfully in 100 trials and the maximal amplitude error e(ε) in (5.73) is about O(ε),

provided that ε ≤ 2 × 10−3 for Γ = Γ0 and ε ≤ 7 × 10−4 for Γ = Γ1, where
√
M0/‖Φ−1‖2 are

3.5763× 10−5 and 3.0307× 10−6 respectively.

Figure 5.2: Nonseparable spine signal of tensor-product type and reconstruction differences with

uniform and randomly distributed sampling set in Figure 5.1 via MAPSET
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Presented in Figure 5.2 on the left is a nonseparable spline signal in (5.70) with K1 = K2 = 9. In

the middle and on the right are the difference between the above spline signal f and the signal fε

reconstructed by the MAPSET algorithm with noise level ε = 10−4 and sampling set Γ being Γ0

and Γ1 in Figure 5.1, respectively. The maximal amplitude errors e(ε) in (5.73) are 0.0014 (middle)

and 0.0030 (right), and the reconstruction errors minδ∈{−1,1} ‖fε−δf‖∞ are 7.2567×10−4 (middle)

and 0.0015 (right), respectively.

The signal fε reconstructed from the MAPSET algorithm may not provide a good approximation,

up to a sign, to the original signal f if the noise level ε is larger than a multiple of
√
M0/‖Φ−1‖2,

cf. (5.41) in Theorem 5.20. Our numerical simulations indicate that the MAPSET algorithm

sometimes fails to save the phase of the original signal f when ε ≥ 3 × 10−3 for Γ = Γ0 and

ε ≥ 8× 10−4 for Γ = Γ1.

5.4.2 Nonseparable spline signals of non-tensor product type

Let MΞZ be the box spline function in (5.2) with ΞZ =

 1 1 0 1

0 0 1 1

, see [57]. Unlike the

spline function B(3,3) of tensor-product type, the shift-invariant space spanned by MΞZ does not

have the local complement property on (0, 1)2, cf. Section 5.4.1. Set AU := {(s, t) : 0 < s <

t < 1} and AL := {(s, t) : 0 < t < s < 1}. One may verify that the triangle regions AU and AL

satisfy (5.18), and the shift-invariant space spanned by MΞZ has local complement property on AU

and on AL.

For A = AU and φ = MΞZ , the function ΦAU (s, t) in (5.7) is a 5-dimensional vector-valued

polynomial about s2, (t− s)2, s, t− s, 1, and the set KAU in (5.8) is

{(0, 0), (−1, 0), (−2, 0), (−1,−1), (−2,−1)}.
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Hence the space spanned by the outer products of ΦAU (s, t) has dimension 13, and we can select

a set Γ2,U ⊂ AU with cardinality 13 to satisfy (5.27), see Figure 5.3. Similarly, for the lower

triangle region AL, a sampling set Γ2,L with cardinality 13 can be chosen to satisfy (5.27). For our

simulations, we use

Γ2 = Γ2,U ∪ Γ2,L

as the sampling set contained in AU ∪ AL ⊂ (0, 1)2, see Figure 5.3.

Figure 5.3: Sampling sets for box spline signals of nontensor product type

Plotted in Figure 5.3 on the left are the sampling sets Γ2,U ⊂ AU (in the red star) and Γ2,L ⊂ AL (in

the blue dot). Plotted on the right are the random sets Γ3,U ⊂ AU (in the red star) and Γ3,L ⊂ AL

(in the blue dot) that have cardinality 9. The corresponding ‖Φ−1‖2 in (5.39) to the above sets is

87.9420 (left) and 761.2227 (right) respectively.

Recall that ΦAU (s, t) is a vector-valued polynomial about s2, (t−s)2, s, t−s and 1. Then the matrix

(ΦAU (si, ti))1≤i≤5 has full rank 5 for almost all (si, ti) ∈ AU , 1 ≤ i ≤ 5, and (ΦAU (si, ti))1≤i≤9 is

a phase retrieval frame for almost all (si, ti) ∈ AU , 1 ≤ i ≤ 9. So we can use randomly distributed
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sets Γ3,U ⊂ AU and Γ3,L ⊂ AL with cardinality 9 that satisfy (5.28), see Figure 5.3. Set

Γ3 = Γ3,U ∪ Γ3,L.

For the above set Γ3, the corresponding ‖Φ−1‖2 in (5.39) is 761.2227.

In our simulations, the available data zε(y) = |f(y)| + ε(y) ≥ 0, y ∈ Γ + K, are noisy phaseless

samples of a spline signal

f(s, t) =
∑

0≤m≤K1,0≤n≤K2

c(m,n)MΞZ (s−m, t− n), (5.74)

taken on Γ + K, where K = [0, K1] × [0, K2] for some 1 ≤ K1, K2 ∈ Z, Γ is either Γ2 or Γ3 in

Figure 5.3, amplitudes of the signal f are as in (5.71), and the additive noises ε(y) ∈ [−ε, ε], y ∈

Γ + K, with noise level ε ≥ 0 are randomly selected. Denote the signal reconstructed by the

proposed MAPSET algorithm with phase adjustment threshold value M0 = 0.01 by

fε(s, t) =
∑

−2≤m≤K1,−1≤n≤K2

cε(m,n)MΞZ (s−m, t− n). (5.75)

As in Section 5.4.1, the reconstruction signal fε provides an approximation, up to a sign, to the

original signal f . Our numerical simulations indicate that the MAPSET algorithm saves phases in

1000 trials and the reconstruction error e(ε) is about O(ε), provided that ε ≤ 8× 10−3 for Γ = Γ2

and ε ≤ 4× 10−3 for Γ = Γ3, where
√
M0/‖Φ−1‖2 are 0.0011 and 1.3137× 10−4 respectively.
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Figure 5.4: A nonseparable spline signal of the form (5.74) and reconstruction differences via

MAPSET

Presented in Figure 5.4 on the left is a nonseparable spline signal of the form (5.74), where K =

[0, 9]× [0, 8], and in the middle and on the right are the difference between the above signal f and

the signal fε reconstructed by the MAPSET algorithm with noise level ε = 10−4 and the sampling

set Γ being Γ2 and Γ3 in Figure 5.3, respectively. The maximal amplitude errors e(ε) in (5.73) are

2.4922×10−4 (middle) and 3.8975×10−4 (right). The reconstruction errors minδ∈{−1,1} ‖fε−δf‖∞

are 1.9660× 10−4 (middle) and 2.9216× 10−4 (right).

As in Section 5.4.1, the MAPSET algorithm may not yield a good approximation to the original

signal if the noise level ε is not sufficient small. Our numerical results indicate that the MAPSET

algorithm sometimes fails to save the phase of the original signal f when ε ≥ 9× 10−3 for Γ = Γ2

and ε ≥ 5× 10−3 for Γ = Γ3.

5.5 Local complement property

A linear space V on Rd is said to be locally finite-dimensional if it has finite-dimensional restric-

tions on any bounded open set. Examples of locally finite-dimensional spaces include the space of

polynomials of finite degrees, the shift-invariant space generated by finitely many compactly sup-
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ported functions, and their linear subspaces. The reader may refer to [15] and references therein

on locally finite-dimensional spaces. In this section, we consider the local complement property

for a locally finite-dimensional space, cf. Definition 5.12.

Definition 5.23. Let V be a linear space of real-valued continuous functions on Rd, and A ⊂ Rd.

We say that V has local complement property on A if for any A′ ⊂ A there does not exist f, g ∈ V

such that f, g 6≡ 0 on A, f ≡ 0 on A′ and g ≡ 0 on A\A′.

In the following theorem, we establish the equivalence between the local complement property on

a bounded open set and complement property for ideal sampling functionals on a finite subset, cf.

[40].

Theorem 5.24. Let A be a bounded open set and V be a locally finite-dimensional space of real-

valued continuous signals on Rd. Then V has the local complement property on A if and only if

there exists a finite set Γ ⊂ A such that for any Γ′ ⊂ Γ either there does not exist f ∈ V satisfying

f 6≡ 0 on A and f(γ′) = 0, γ′ ∈ Γ′, (5.76)

or there does not exist g ∈ V satisfying

g 6≡ 0 on A and g(γ) = 0, γ ∈ Γ\Γ′. (5.77)

The necessity is obvious and the sufficiency follows from the following proposition.

Proposition 5.25. Let A and V be as in Theorem 5.24. Then there exist a finite set Γ ⊂ A and

functions dγ(x), γ ∈ Γ, such that

|f(x)|2 =
∑
γ∈Γ

dγ(x)|f(γ)|2, x ∈ A (5.78)
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hold for all f ∈ V .

Proof. Let gn, 1 ≤ n ≤ N , be a basis of the space V |A, and W be the linear space spanned by

symmetric matrices G(x) :=
(
gn(x)gn′(x)

)
1≤n,n′≤N , x ∈ A. Then there exists a finite set Γ ⊂ A

such that G(γ), γ ∈ Γ, is a basis (or a spanning set) for the space W . With the above set Γ, we can

follow the proof of Theorem 5.10 to prove (5.78).

Let gn, 1 ≤ n ≤ N , be a basis of the space V |A, and Γ be as in the proof of Proposition 5.25. By

Theorem 5.24 and [20, Theorem 2.8], we have the following criterion that can be used to verify

the local complement property on a bounded open set A in finite steps.

Theorem 5.26. The linear space V has the local complement property on A if and only if for any

Γ′ ⊂ Γ, either (gn(γ′))1≤n≤N , γ
′ ∈ Γ′ form a frame for RN or (gn(γ))1≤n≤N , γ ∈ Γ\Γ′ form a

frame for RN .

The local complement property for different open sets can be equivalent. Following the argument

used in the proof of Theorem 5.24, we have

Proposition 5.27. Let A be a bounded open set and V be a locally finite-dimensional space with

the local complement property on A. If B is a bounded open subset of A such that signals g and

f satisfying |g(x)| = |f(x)| on B have the same magnitude measurements on A, then V has local

complement property on B.

The conclusion in the above proposition is not true in general. For instance, the shift-invariant

space V (φ0) in Example 5.6 has the local complement property on (0, 1/2), but not on its supset

(0, 1).

A linear space may have the local complement property on a bounded open A, but not on some of

its open subsets. For instance, one may verify that V (φ1) has the local complement property on
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(0, 1) and on (−1/2, 1/2), but not on their intersection (0, 1/2), where φ1 = φ0(2·) and φ0 is given

in Example 5.6.

We finish the appendix with a proposition about local linear independence and local complement

property.

Proposition 5.28. Let φ be a compactly supported continuous function with local linear indepen-

dence on any open set. Then there exist Am, 1 ≤ m ≤M , such that (5.18) holds and V (φ) has the

local complement property on Am, 1 ≤ m ≤M .

Proof. Let Sk, k ∈ Zd, be as in (5.6). For a set T ⊂ Zd, define ST = ∩k∈TSk. We say that T

is maximal if ST 6= ∅ and ST ′ = ∅ for all T ′ % T . From the definition, there are finitely many

maximal sets T1, . . . , TM , and denote the corresponding sets by Am := STm , 1 ≤ m ≤M .

Clearly (5.18) holds for the above selected open sets as

∪Mm=1Tm = {k ∈ Zd : Sk 6= ∅}.

Then it remains to prove that V (φ) has local complement property on Am, 1 ≤ m ≤ M . Assume

that f, g ∈ V (φ) satisfy |f(x)| = |g(x)| for all x ∈ Am, which implies that (f+g)(x)(f−g)(x) =

0 for all x ∈ Am. Write f + g =
∑

k∈Zd c(k)φ(· − k) and f − g =
∑

k∈Zd d(k)φ(· − k). Set

B1 = {x ∈ Am : (f + g)(x) 6= 0} and B2 = {x ∈ Am : (f − g)(x) 6= 0}. Then either f − g = 0

on B1, or f + g = 0 on B2, or f − g = f + g = 0 on Am. Hence either c(k) = d(k) for all

k ∈ Tm or c(k) = −d(k) on k ∈ Tm by the local independence on B1, or B2 or Am. Therefore

either f = g on Am, or f = −g on Am, or f = g = 0 on Am. This completes the proof.
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