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ABSTRACT 

Non-oxide porous ceramics exhibit many unique and superior properties, such as better high-

temperature stability, improved chemical inertness/corrosive resistance, as well as wide band-gap 

semiconducting behavior, which lead to numerous potential applications in catalysis, high 

temperature electronic and photonic devices, and micro-electromechanical systems.
 
Currently, 

most mesoporous non-oxide ceramics (e.g. SiC) are formed by two-step templating methods, 

which are hard to adjust the pore sizes, and require a harmful etching step or a high temperature 

treatment to remove the templates.
 

In this dissertation, we report a novel technique for synthesizing hierarchically mesoporous non-

oxide SiC ceramic from a block copolymer precursor. The copolymer precursors with vairing 

block length were synthesized by reversible addition fragmentation chain transfer polymerization. 

The block copolymers self-assemble into nano-scaled micelles with a core-shell structure in 

toluene. With different operation processes, hollow SiC nanospheres and bulk mesoporous SiC 

ceramics were synthesized after the subsequent pyrolysis of precorsur micelles. The resultant 

SiC ceramics have potential applications in catalysis, solar cells, separation, and purification 

processes.The polymer synthesis and pyrolysis process will investigated by NMR, FTIR, GPC, 

TEM, and TGA/DSC. The morphology and structure of synthesised SiC hollow spheres and 

mesoporous ceramics were analyzed by SEM, TGA/DSC and BET/BJH analysis. 

Besides forming core shell micelles in selective solvent Toluene, we found that PVSZ-b-PS 

could also exhibit this property in the air water interface. By inducing the Langmuir-Blodgett 

deposition, a precursor monolayer with homogeously distributed povinylsilazane particles 
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deposited on silicon wafer synthesized by spreading the diblock copolymer PVSZ-b-PS in the air 

water interface. After the pyrolysis process, orderly arranging SiC nano particles formed from 

the polymer precursor monolayer doped on the surface of silicon wafer, which shows great 

potential as an optoelectronic material. The deposition process and the relationship between 

compress pressure and monolayer morphology were studies, and the structure of monolayer and 

SiC dots were investigated by AFM, SEM. 
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CHAPTER ONE: INTRODUCTION 

1.1 The application of Porous Materials 

As the name implies, porous material is a material containing pores (voids). Porous solids are 

made of a continuously solid phase that forms the basic porous frame (refers as matrix) and a 

fluid phase that forms the pores in the solid.
1
 And the pores of porous materials are classified 

according to their size: pore sizes in the range of 2 nm and below are called micropores, those in 

the range of 2 nm to 50 nm are denoted as mesopores, and those above 50 nm are macropores.
2
 

Also the number of pores (porosity) is another very important property of porous materials. Base 

on that, porous materials can be classified as low porosity, middle porosity or high porosity 

porous materials. Besides these two most significant factors, the distribution, shapes of the pores 

in porous materials also directly relate to porous materials’ ability to perform the desired 

function in a particular application. For example, a material with uniform micropores, such as a 

zeolite, can separate molecules on the basis of their size by selectively adsorbing a small 

molecule from a mixture containing molecules too large to enter its pores.
3
 Figure 1 exhibited 

pores with different shapes and positions.  

http://en.wikipedia.org/wiki/Porosity
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Figure 1 Different types of pores 

Accessibility:  Shape: 

a: Closed pores  c: Cylindrical open 

b, c, d, e, f: Open pores  f: Cylindrical blind 

b, f: Blind pores (dead-end or saccate)  b: ink-bottle-shaped 

e: Through pores  d: funnel shaped 

   g: roughness 

These unique structures bring porous materials many special properties and features that usually 

cannot be achieved by their conventional dense counterparts, like, low density, large specific 

surface area, good energy absorption, and greater specific strength and stiffness. Benefit on these 

merits, porous materials obtained many desirable capabilities, such as flow separation/ filtration 

distribution, sound absorption and noise reduction, dampening, electromagnetic screening, heat 

insulation and fire resistance, heat exchangers, heat radiators, flame retarders, mufflers, damper 

buffers, porous electrodes, catalysts and their carriers, human implants, electromagnetic shields, 
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and light structural materials. And porous materials can be used in many applications, such as, 

the aerospace, electronics and communication, transportation, atomic energy, medical, 

environmental protection, metallurge, machine, construction, and electrochemistry, 

petrochemical and bioengineering industries.
1
 

Besides these traditional applications, there are other novel applications exploiting the porosity 

of the material itself or its ability to host guest species that induce an interesting property, now 

also reveal great potential in the industry application. For example, as the densities of microchip 

device continue to increase and the feature sizes to decrease, the demand of insulators with a 

lower dielectric constant than currently used insulator dense silicon dioxide is emerging. Porous 

materials can provide low dielectric constant materials as demonstrated by the performance of 

films prepared from ordered mesoporous materials.
 [4-7]

 

Another interesting application is porous solids as a host material and organic dyes as guest 

species in the zeolite-dye microlaser. The first lasing molecular sieve is crystalline 

zincophosphate , system’s performance could be affected by altering its size, shape and 

arrangement of the porous crystals.
[8,9] 

The recent development of this concept has reached to 

mesoporous materials acting as the host for laser dyes,
[10,11] 

and the other guest species such as 

complexed Nd3 using as light-emitters.
[12] 

The pores of a crystalline molecular sieve have also been used as a confining reaction 

environment to produce single-walled carbon nanotubes, through the carbonization of occluded 

tripropylamine
[13,14]

. These tubes are merely 0.4 nm in diameter
[13,15]

 and demonstrated one 

dimensional superconductivity
[14,17]

.  
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Another promising application area is diagnostic magnetic resonance imaging (MRI), which 

relies on administering contrast agents to significantly improve the diagnostic value. Gadolinium 

ions, Gd
3+

, perform particularly well as contrast agents, but cannot be administered directly 

owing to their inherent toxicity.
[17]

 Fortunately, the zeolite immobilizes the Gd
3+

 could mitigates 

its toxicity (zeolites themselves are not toxic when introduced in the gastrointestinal tract), while 

still allowing hydration by adsorbed water. And this investigation of this application is almost 

completing and the regulatory process would be commercialized soon.
 [18-20] 

There are a number of significant break-through in the design and processing of novel porous 

materials in the past decade, which was driven by the rapid growth of porous materials’ 

emerging applications, such as, energy conversion and storage, environmentally friendly 

catalysis, sensors, tissue engineering, DNA sequencing, drug delivery, medical diagnosis, cell-

makers, and photonics, some of them have been discussed before. The emergence of such new 

technological applications requires a higher level of control over the porous properties of porous 

structures, which bring great opportunities and challenges to the research of porous materials.
 [21]

 

1.2 The application of porous ceramics 

Ceramic materials offer many distinct advantages over other materials such as polymers or 

metals; the properties of hardness, chemical inertness, thermal shock resistance, corrosion and 

wear resistance, and low density are the qualities that are essential to many applications 
[22, 23]

. 

Porous ceramics combine merits of ceramics and porous materials, such as light weight, low 

density, low thermal conductivity, low dielectric constant, high thermal stability, high specific 

strength, high specific surface area, high porosity, and high permeability, high wear resistance, 
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and high resistance to chemical attack 
[24-26]

. Advanced porous ceramics (also called ceramic 

foams) are being utilized in abroad range of applications in order to mitigate several 

environmental, biological, and transportation related issues facing the society.
 [27] 

1.2.1 Porous Ceramics for Thermal Insulator 

The need for thermal insulation is not only very critical for technological development, but also 

many industrial processes would be impossible without adequate thermal insulation. Thermal 

insulation helps to reduce power consumption of materials during thermal processing and also 

protects the surrounding space from the heat in the processing environment. 
[28]

 

Heat flux across the porous ceramic layer is related to the temperature difference between two 

sides of the layer, the thickness of the layer and the thermal conductivity of the porous ceramic 

layer. The thermal conductivity “k” is a parameter to estimate the heat transfer capability of a 

material: if k is larger, we say the material is a good thermal conductor; when k is small on the 

other hand, the material is then regarded as thermal insulator. Heat transfer in porous ceramics is 

a complicated process which comprises conduction, convection and radiation. However, in many 

cases the latter two items are usually much smaller than conduction so they can be neglected. 

Generally, ceramic materials possess low thermal conductivity which is a key requirement for 

thermal insulators. Moreover, ceramics are not only structurally stable at high temperature but 

they are also chemically stable in harsh environment, thus they can be applied in a wide range of 

high temperature processes. Besides the intrinsic thermal conductivity of the solid monolithic 

material, the porosity (percentage of pores) and microstructure (pore size, wall thickness, etc.) of 
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the porous material also significantly affect the thermal conductivity.
[29]

 These combining 

characters make porous ceramics very promising in thermal insulation application. 

The most well- known application of porous ceramics as thermal protection materials is the U.S 

Space Shuttle. When the spacecraft traveling between the earth and space, either during launch 

or re-entry, it encounter extreme temperature changes while passing through the atmosphere at 

very high speed. Since it is very expensive and energy-intensive to move mass into the space, the 

weight of the space shuttle had to be kept to a minimum stage. The lightweight nature of porous 

ceramic combined with its thermal properties made it attractive for use in some of the tiles 

installed on the shuttle fleet. 
[30-32]

 High-temperature reusable surface insulation tiles made of 

coated silica ceramics, used on the orbiter underside to withstand high temperature below 

1260ºC when the space shuttle reentry the earth. The silica ceramic has 94% porosity, can be 

heated to 1204ºC and then immediately plunged into the cold water and suffer no damages. 

1.2.2 Porous Ceramics for Filtration Purpose 

Porous ceramics are useful filtration components in a number of applications, and they are 

designed to remove the contaminants having sizes of several micrometers down to the nanometer 

range from various fluids. 

Filtration of drinking water reduces the threat of disease caused by bacteria, protozoans, and 

viruses. Additionally, filtration of waste water produced by many industries reduces emissions 

that are harmful to the environment. Sobsey et al. estimated that ceramic and biosand filters were 

potential options for a sustainable water treatment technique.
[33]

 Renalso explained that ceramic 

filters are capable of being produced fairly inexpensively by utilizing clay and an organic pore 
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former such as saw dusts, rice hulls, or starches.
[34] 

Besides, there are research dedicating to 

increase the efficiency of filters by modifying micro filters and incorporating magnesium 

oxyhydroxide to capture negatively charged viruses via adsorption.
[35]

 

Filtration of hot gases occurs in many industrial processes to remove impurities that may harm 

the environment or downstream equipments. As the environment legislation becoming more 

restricted, the requirement of filtration is more extensive and urgent
 [36]

. Filtration used in the 

temperature range of 260-900 ºC is classified as hot gas filtration, and these filters may also face 

pressures up to 8 MPa. 
[36]

 The need for filtration in high temperature and pressure environment 

has lead to the development of porous ceramic filters which possess adequate thermal shock 

resistance and mechanical strength and remove particles at efficiencies (in term of particle sizes 

removed per unit particle) five times higher than cyclones, scrubbers, and electrostatic 

precipitators. Porous ceramics are used as diesel particulate filters (DPFs) to capture the soot 

particles presenting in the exhaust of diesel engines. The similar applications of porous ceramic 

filtration also include recovery of methane from mines, removal of carbon dioxide and hydrogen 

sulfide from nature gas, and recovery of hydrogen in petroleum refinery operation.  

In order to achieve great properties, such as strength and toughness which influence negatively 

by impurities, molten metal, like aluminum, need to undergo a purification/filtration process to 

remove or lower the defects prior to casting. In molten metal and hot gas filtration application, 

the temperature fluctuation during the process will leave the filter material susceptible to thermal 

shock. The mechanical properties of the filter must be high enough to withstand the pressures 

experienced during service, and the properties of the filter must not degrade with increasing 
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temperature. Also, the filter must not corrode over time or react with the liquid or gas that is 

passing through it. Ceramic materials such as cordierite, mullite, alumina, and silicon carbide, 

demonstrate the required thermal, mechanical, and chemical properties that are desirable for high 

temperature. Kennedy et al. introduced filtration ceramic foam filters (CFFs) that are used in the 

casting industry to purify molten metal by removing contaminants that enter the melt during 

processing or are present in the raw materials. 
[37]

 The required pore size for the ceramic filters 

varies depending upon the material being filtered and the end applications of the metal and the 

corresponding purity desired. 
[38]

 In the foundry industry, porous ceramics have already been 

employed to filter super alloys hot metals, including: cast iron, steel, aluminum, and other 

nonferrous metals. 
[39, 40]

 

1.2.3 Porous ceramics for bio-scaffolds in tissue engineering applications 

Bio-scaffolds may be utilized for bone tissue engineering applications in order to facilitate the 

repair of bone that has defects created by illness, injuries or deterioration. 
[41, 42]

 Cells planted 

into porous scaffold, which would grow new tissue into the scaffold as the scaffold itself 

degrades at a similar rate to the new bone formation. To fulfill this target, the scaffold needs to 

meet certain requirements: the structure must be three-dimensional and facilitate cell interaction 

by providing an avenue to transport nutrients and oxygen and to allow tissues and capillaries to 

develop, 
[42-44]

 it requires pores in the scaffold must be completely interconnected, and the 

structure must also be able to support structural loads that are commonly experienced in the 

human body; The scaffold can be customized to contain porosity to achieve the required 

biological and mechanical response; Furthermore, the materials used to fabricate the scaffold 

must be biocompatible, bioactive, or biodegradable. 
[42, 45]

 Ceramic materials calcium phosphates 
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possess the necessary bioactivity to enable bone regrowth while they are lack of adequate 

mechanical properties.
 [41, 45, 46]

 In the biomedical field, advances in porous ceramics have led to 

their use as implant support materials. Bio-technology is using porous ceramics which can be 

made of phosphate ceramics such as hydroxyapatite, to simulate bone. The physical 

characteristics for development of porous ceramics as bone substitutes in biomedical applications 

depend on the porous volume of the biomaterial, as well as the mean pore and interconnection 

sizes. 
[47]

 Also, research has demonstrated the porous ceramics with pore size larger than 100um 

can promote bone growth. 
[48]

 

1.2.4 Porous ceramics for catalyst applications 

Porous ceramics have also been used as support materials for advanced catalysts that can operate 

under harsh conditions due to their high thermal, mechanical, and chemical stabilities. The 

efficiency of catalytic process depends on catalytic activity and selectivity. Both aspects will rely 

on the tailor design of catalytic materials with desired microstructure and active site dispersion. 

Porous ceramics materials offer such possibilities with controlled large and accessible surface 

area of catalyst but avoiding standalone fine particles. In particular, the catalyst supported porous 

materials have been successfully applied in the mass transfer of the catalytic combustion,
 [49, 50]

 

combustion in situ in underground reservoirs for enhanced oil recovery,
 [51]

 efficient heat transfer 

devices 
[52]

 and the reduction of hazardous combustion products.
 [53]

 

Additionally, porous ceramic are also used as chromatography,
 [54]

 sensors,
 [55]

 fuel cell materials,
 

[56]
 and optic–electronic devices.

 [57]
 Recently they have been proposed as three-dimensional 

reinforcement in interpenetrating phase composites.
 [58] 
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1.3 Processing Methods of Porous Ceramics 

Pores can be built into the structure of a ceramic through many processing techniques. The most 

simply way is sintering coarse powders or partially sinter a green ceramic to hinder full 

densification. Other traditional methods also include replica template, sacrificial fugitives and 

direct foaming. 
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Figure 2 Representative fabrication process of porous ceramics 

1.3.1 Partial sintering 

Partial sintering of powder compact has been frequently employed to fabricate porous ceramic 

materials. Particles of powder compact are bonded together by surface diffusion and 

evaporation-condensation processes when heat-treated at high temperatures. A homogeneous 
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porous structure can be formed when sintering is terminated before the powder compact is fully 

densified (see Figure 2a). Pore size and porosity can be controlled by tailoring the size of starting 

powders and the degree of partial sintering, respectively. The method has been commercialized 

for various applications including molten metal filters, aeration filters (gas bubble generation in 

waste water treatment plants), 
[59]

 and water purification membranes. 
[60]

 

1.3.2 Replica template 

The replica technique employs a synthetic or natural template that is infiltrated with a ceramic 

suspension. The first step of a typical template process is impregnating a porous or cellular 

structure template with ceramic suspension, precursor solution, etc. In this process, the 

appropriate viscosity and fluidity of the precursor solution are required so that uniform ceramic 

layer forms over the template walls. During the pyrolysis process, the organic templates are dried 

and decomposed, while the ceramic layers are sintered. Replica templates can obtain porosity 

higher than 90% with cell sizes ranging from a few hundred micrometres to several millimetres. 

[61]
 The templates need to have adequate flexibility, shape recovery ability and homogeneous 

open cell structure. The most frequently used synthetic template is porous polymeric sponge such 

as polyurethane. Natural resources of porous structures such as woods, corals, sea sponge, etc. 

have been also used as replica templates. One particular method, freeze casting, utilizes growing 

ice crystals in ceramic slurry to form the pores in a ceramic body. 

1.3.3 Sacrificial fugitives 

Using sacrificial fugitives as pore forming agents is another most prevalent way to form porous 

ceramics. In this process, sacrificial fugitives were mixed with ceramic raw powder. After 
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evaporating or burning out the fugitives before or during sintering, pores were created within 

ceramics (see Figure 2c). The pore forming agents are generally classified into synthetic organic 

matters (polymer beads, organic fibres, etc.), 
[62-67]

 natural organic matters (potato starch, 

cellulose, cotton, etc.), 
[68-74]

 metallic and inorganic matters (nickel, carbon, fly ash, glass 

particles, etc.), 
[75-80]

 and liquid (water, gel, emulsions, etc.). 
[81–84]

 Porosity is controlled by the 

amount of the agents. And pore shape and size are also respectively affected by the agents’ shape 

and size when their sizes are large in comparison with those of starting powders or matrix grains. 

This approach is particularly useful for producing high open porosity. However, in order to 

obtain uniform and regular distribution of pores, the agents need to be homogeneously mixed 

with ceramic raw powder. Solid fugitives such as organic materials are usually removed through 

pyrolysis, which requires long-term heat treatment and generates a great deal of vaporised, 

sometimes harmful, byproducts. 

1.3.4 Direct foaming 

In direct foaming technique, ceramics suspension is foamed by incorporating air or gas. After 

stabilizing and drying, it is sintered at high temperature to obtain consolidated structure (Figure 

1.1d). By inducing this technique highly porous ceramic materials of up to more than 95% 

porosity can be obtained with low cost and easy production process. Porous ceramics with 

unidirectional channels have been also developed recently by using continuous bubble formation 

in ceramic slurry 
[85, 86]

. Direct foaming is a process where gas bubbles are incorporated into a 

ceramic suspension and once the slurry is set and dried, the ceramic retains the resulting 

spherical pores 
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Tremendous efforts have been devoted on tailoring porous ceramics, bringing improved or 

unique properties and functions. However, each current process of making porous ceramics has 

their own inevitable drawbacks. Partial sintering is hard to predict the micro-structure of final 

porous ceramics product since the amount of additives, green densities, and sintering conditions 

cannot be precisely controlled. To obtain uniform and regular distribution of pores, sacrificial 

agent has to be mixed homogeneously in sacrificial fugitive process. Besides, long-term heat 

treatment is necessary to remove solid sacrificial fugitives which would generate a great deal of 

vaporized even harmful byproducts. For replica template process, the properties of template, like 

flexibility, shape recovery ability and homogeneous open cell structure should be accurately 

standard, which created great complexity in the process. And the biggest problem of direct 

foaming is the thermodynamic instability. In order to reduce the total Gibbs free energy of the 

system, gas bubbles like to coalesce together and result in very large pores in the final porous 

bodies.  

1.4 Porous Ceramics Made from Polymer Precursor 

The traditional method of preparing ceramics is shaping and sintering of fine ceramic powders, 

which referred as powder technology (Figure 3). Because of the very low diffusion rate of the 

ceramic powders, a high temperature (1000 ºC -2500 ºC) sintering process is an inevitable step of 

powder technology to accelerate grain boundary mobility. However, the corresponding particle 

growth would also result in a pronounced particle coarsening and packing inhomogeneities. To 

reduce the large pores or cracks in the ceramic products, oxide sintering additives which would 

form glassy phases under high temperature sintering are required in the producing process. 

Consequently, the glassy phases would lead to the decrease of high temperature properties, like, 
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creep and oxidation resistance. Another limitation of powder technology is induced by the large 

sintering shrinkage of 15-20% linearly limits the geometrical accuracy so that final machining is 

often needed to achieve precise shaping.
 [87]

 

 

Figure 3 The structure illustration of ceramic formed from powder technology 

To overcome these problems, many efforts have been devoted in this area and the most 

significant progress is the developing of polymer-derived ceramics route, forming ceramic 

directly from the decomposition of polymer precursor. Since preceramic polymers can be 

processed or shaped by using conventional polymer forming techniques, like, polymer 

infiltration pyrolysis, injection molding, coating, extrusion, resin transfer molding, ceramic fibers, 

layers, or composite materials can be produced in this route, which cannot be easily obtained 

using the powder technology.
[88] 

With less defects or cracks, polymer derived ceramics exhibit 

enhanced thermo-mechanical properties: high temperature stability, oxidation resistance, creep 

resistance etc. It has been reported that polymer-derived silicon carbonitride (SiCN) ceramics 
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exhibit creep (under compression) and oxidation resistance at temperatures up to 1000 ºC and 

1500 ºC. 
[89, 90]

 The other advantage of polymer derived ceramics route to compete with 

traditional powder technology is from the economic consideration. The relatively low synthesis 

temperature of PDCs (1100 ºC-1300 ºC) requires much lower energy consumption, in 

comparison with classical ceramic powder processing technology, whose synthesis temperature 

is about 1700 ºC-4200 ºC. 

Figure 4 demonstrates a typical route to synthesize ceramics from polymer precursor. In 

principle, it has three steps: First is synthesizing polymer precursors from starting materials, then 

cross-linking the precursors to form pre-ceramic network, after that, the cross-linked precursors 

could be pyrolyzed to form ceramics.  

 

Figure 4 A typical route of synthesizing ceramics from polymer precursor. 

During the past decades, tons of pre-ceramic polymers have been synthesized with sorts of 

structures and compositions to fulfill different electronic, optical, and rheological properties 

requirements. The structure of the synthesized precursors has been simplified by Colombo et al. 

as showing in Figure 5. The backbone group X determines the classes of Si-based polymers, for 

instance, if X = Si, it belongs to poly(organosilanes), X = CH2 means poly(organocarosilanes), X 

= O represents poly(organosiloxanes), poly(organosilazanes) with X= NH, and poly 

(organoborosilazanes) with X = B. The substituents R1 and R2 attached to silicon are the 

functional groups, which affect the chemical and thermal stability of the polymer, their electronic, 
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optical and rheological properties. Moreove, the carbon content in the final ceramic products is 

also controlled by the side groups. 
[88]

 

 

Figure 5 General structural representation of the molecular structure of the preceramic polymer. 

The current under using crosslinking technologies include thermally induced self-crosslinking, 

initiator catalysis and photo polymerization. The thermal self-crosslinking is free of 

contaminations but it requires relatively high temperature (> 175 ºC).While by adding free 

radical initiators, such as 2,5-dimethyl-2,5-(2-ethylhexanoylperoxy) hexane or dicumyl peroxide, 

the crosslink would be completed at 90 ºC for minutes. Photo polymerization is executed by 

inducing photo initiators, like 4, 6-Trimethyl-benzoyl or 2, 2-dimethoxyl-2-phenyl acetophenone, 

then exposing polymer precursor to UV radiation. 
[91]

 

Pyrolysis of cross-linked precursors is the last step to transform pre-ceramic polymers to target 

ceramics, which could be operated by oven, laser, microware, plasma, etc. After pyrolysis at 

above 1000 ºC from different starting polymers, reactive organic moieties (e.g. methyl as well as 

vinyl) and Si-H, Si-OH, or Si-NHx groups are evaporated, and amorphous or crystalline polymer-

derived ceramics, like SiC, SiCO, SiCN, and SiBCN, are synthesized. 

1.5 Motivation 

As we discussed before, porous ceramics are very promising for widespread applications due to 

their uniquely combination features, including high specific surface area, corrosive resistance, 

Si

R2

X

R1
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chemical inertness, and biocompatibility.
[92, 93]

 In the past years, many efforts have been devoted 

to this area, and a variety of porous ceramics have been synthesized, which show great potential 

in biomedication,
[94]

 solar cells,
[95]

 supercapacitor
[96]

 and catalyst.
[97]

 While significant progresses 

have been made, previous work in this field is primarily focused on oxide materials; little 

attention has been paid to non-oxide materials. Compared to oxides, non-oxide ceramics exhibit 

many unique and superior properties, such as better high-temperature stability, improved 

chemical inertness/corrosive resistance, as well as wide band-gap semiconducting behavior,
[98]

 

which lead to numerous potential applications in catalysis, high temperature electronic and 

photonic devices, and micro-electromechanical systems.
[99] 

Currently, most mesoporous non-

oxide ceramics (e.g. SiC) are formed by two-step templating methods, which are hard to adjust 

pore sizes, and require a harmful etching step or a high temperature treatment to remove 

templates.
[99, 100]

 

This thesis developed a new strategy to synthesize porous non-oxide SiC ceramics via the PDC 

technique (Figure 6): First, a di-block copolymer consisting of a precursor block which can be 

converted to a non-oxide ceramic during pyrolysis and a sacrificial block which can be 

completely decomposed during the pyrolysis is synthesized. The copolymer is then dissolved 

into a special solvent, in which the two blocks have different solubility, so that it will self-

assemble into micelles with the sacrificial block forming a core and the precursor block forming 

a shell. The solvent is subsequently removed to condense the micelles into a bulk. Finally, the 

bulk is pyrolyzed at elevated temperatures. The thermal decomposition of the precursor will lead 

to the formation of smaller mesopores; while the removal of the sacrificial core will form larger 

mesopores.  
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Figure 6 Schematic showing the process of porous non-oxide ceramics. 

The harmful etching step or a high temperature treatment has been avoided in this process 

without any hard template included. The pore size and pore volume could be easily adjusted by 

altering the block length of the copolymer. Moreover, with refined starting material and 

synthesized copolymer, very narrow pore distribution could also be achieved. Most importantly, 

the approach can be applied to different material systems to obtain a series of non-oxide porous 

ceramics with diverse electronic, optical, and rheological properties. 
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CHAPTER TWO: SYNTHESIZE COPOLYMER PRECURSOR 

2.1 Introduction 

Polyvinylsilazane as a very promising polymer precursor for silicon nitride-silicon carbide based 

ceramic materials has been widely investigated. After pyrolysis at high temperature up to 1000ºC, 

the crosslinking polymer precursor would transform into amorphous ceramics with really high 

yield (above than 80%). 
[101]

 On the other hand, polystyrene tend to fully decompose around 

450ºC. 
[102]

 So in this chapter, we reported the synthesis of polyvinylsilazane-block-polystyrene 

with different length used for porous ceramics synthesizing according the proposed route. The 

molecular weight and structure of polymer precursors are studied by GPC, FT-IR and NMR. 

Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization is a living radical 

polymerization method. It uses a chain transfer agent (RAFT agent) (Figure 7) to control the 

generated molecular weight and polydispersity. The mechanism is illustrated in Figure 8. 

 

Figure 7 The molecular structure of RAFT agent 

(1) Initiation: The reaction is started by a free-radical source such as AIBN, which 

decomposes to form two fragments (I•) and then react with monomer molecules to form a 

growing polymeric radical with length m, denoted as Pm•. 

(2) Initial equilibrium: A polymeric radical with m monomer units (Pm•) reacts with the 

RAFT agent to form a RAFT adduct radical. This may undergo a fragmentation reaction 

S

Z S
R

http://en.wikipedia.org/wiki/Controlled_radical_polymerization
http://en.wikipedia.org/wiki/Controlled_radical_polymerization
http://en.wikipedia.org/wiki/Azobisisobutyronitrile
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in two directions to yield either the starting species or a radical (R•) and a polymeric 

RAFT agent (S=C (Z) S-Pm). In this reversible step the intermediate RAFT adduct 

radical is capable of losing either the R group (R•) or the polymeric species (Pm•). 

(3) Re-initiation: The leaving group radical (R•) reacts with another monomer species, 

starting another active polymer chain. 

(4) Main RAFT equilibrium: By a process of rapid interchange, the present radicals are 

"shared" by all species that have not yet undergone termination (Pn• and S=C(Z)S-Pn). 

Ideally the radicals are shared equally, causing chains to have equal opportunities for 

growth and a narrow PDI. 

(5) Termination: Active chains react via bi-radical termination to form chains that cannot 

react further. Ideally, the RAFT adduct radical is sufficiently hindered and it does not 

undergo termination reactions. 
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Figure 8 The mechanism of RAFT polymerization 

2.2 Experiments 

2.2.1 Starting Materials 

1. 4-bromomethyl benzoic acid (BrCH2C6H4CO2H ) (97%, Sigma-Aldrich) is used as 

reactant to synthesis RAFT agent 4-Diethylthiocarbamolysulfanylmethyl-Benzoic acid, 

its molecular formula is shown in Figure 9. 
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Figure 9 The molecular structure of 4-bromomethyl benzoic acid 

2. Sodium diethydithiocarbamate trihydrate((C2H5)2NCSSNa·3H2O) from Sigma-Aldrich) 

is also used as reactant to synthesis RAFT agent 4-Diethylthiocarbamolysulfanylmethyl-

Benzoic acid, its molecular formula is shown in Figure 10. 

 

Figure 10 The molecular structure of Sodium diethydithiocarbamate trihydrate 

3. Methanol (CH3OH) (anhydrous, 99.8%, Sigma-Aldrich) is used as solvent to synthesis 

RAFT agent 4-Diethylthiocarbamolysulfanylmethyl-Benzoic acid. 

4. HTT1800 is the reactant to synthesis polysilazane (Kion Corp., a Clariant Business). The 

HTT1800 as received is a clear liquid and the molecule formula is showed in Figure 11. 

 

Figure 11 The molecular structure of polysilazane (HT1800) 
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5. Styrene (C6H5CH=CH2) (ReagentPlus®, contains 4-tert-butylcatechol as stabilizer, ≥99%, 

Sigma-Aldrich) is used as reactant to synthesis polysilazane, its molecular formula is 

shown in Figure 12. 

 

Figure 12 The molecular structure of styrene 

6. 2,2ʹ-azobis(isobutyronitrile) (AIBN) ((CH3)2C(CN)N=NC(CH3)2CN) (99%, Sigma-

Aldrich) is used as initiator to synthesis polysilazane, its molecular formula is shown in 

Figure 13. 

 

Figure 13 The molecular structure of AIBN 

7. Toluene (C6H5CH3) (anhydrous, 99.8%, Sigma-Aldrich) is also used as solvent, its 

molecule formula is showed in Figure 14. 

 

Figure 14 The molecular structure of Toluene 
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2.2.2 Reaction Equation of Synthesis Block Copolymer 

1. The reaction equation of synthesis RAFT agent 4-Diethylthiocarbamolysulfanylmethyl-

Benzoic acid is shown in Figure 15. 

 

Figure 15 The reaction equation of DTBA 

2. The reaction equation of synthesis Poly(vinyl)silazane is shown in Figure 16. 

 

Figure 16 The reaction equation of PVSZ 

3. The reaction equation of synthesis Poly(vinyl)silazane block Polystyrene is shown in 

Figure 17. 
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Figure 17 The reaction equation of PVSZ-b-PS 

2.2.3 Synthesis Route 

1. Synthesis of 4-Diethylthiocarbamolysulfanylmethyl-Benzoic acid: A mixture of 0.01mol 4-

bromomethyl benzoic acid and 0.01mol sodium diethydithiocarbamate trihydrate were 

reacted at 78ºC for 24h in 25mL methanol to produce 4-diethythiocarbonylsulfanylmethyl- 

benzoic acid (DTBA). The residual solvent (methanol) was removed using a rotary 

evaporator under reduced pressure at room temperature. The unreacted monomer and other 

impurities were removed completely by washing in distilled water six times.  

2. Synthesis of Poly(vinyl)silazane: Solution containing 5g (0.0167mol) of the 

vinylcyclicsilazane oligomer (HTT1800, KiON), 93mg (0.00057mol) of 2,20-

azobis(isobutyronitrile) (AIBN), 462mg (0.00163mol) of 4-diethylthiocarbamoly-

sulfanylmethyl-benzoic acid (DTBA) and 3mL toluene were added to a Schlenk tube. The 

solution was degassed through three subsequent freeze-evacuate-thaw cycles. The tube was 
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then sealed and heated at 120ºC in a thermo stated oil bath for 48h. The excess monomer 

and solvent were removed by rotary evaporator under reduced pressure at 60ºC. 

3. Synthesis of Poly(vinyl)silazane-block-Polystyrene Diblock Copolymer: A mixture of 

PVSZ and styrene at different ratio were added to a Schlenk tube with toluene and AIBN. 

The solution was degassed with three freeze-evacuate-thaw cycles and sealing the tube, 

which was then heated under reduced pressure at 120ºC for 4h. The volatiles were removed 

under reduced pressure at 60ºC to give poly(vinyl)silazane-block-polystyrene. The ratio of 

PS to PVSZ is listed in the Table 1. 

Table 1 The ratio of PS to PVSZ in the synthesis of block copolymer 

PVSZ:PS PVSZ (g) Styrene (g) 

1:1.67 3.5 5.83 

1:1 4.4 4.4 

 

2.2 Characterization 

2.2.1 NMR Spectra Measurement 

The nuclear magnetic resonance (NMR) is an indispensable tool to probe the local chemical 

environment of polymer by detecting the specific quantum mechanical magnetic properties of the 

atomic nucleus. The synthesized polyborosilazanes were dissolved in deuterated chloroform 

(99.8 atom % D, Acros Organics, Morris Plains, NJ), and then their liquid 1H-NMR were studied 

using Varian Gemini-500 spectrometer at 11.7T (Oxford, 51mm Unshielded, 1H frequency: 500 
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MHz) and tetramethylsilane (TMS) as internal standard. The acquisition procedures were used 

from the standard experimental parameters found in the sn.par files included in VNMRJ. 

2.2.2 FTIR Spectra Measurement 

Fourier transform infrared spectroscopy (FTIR) is employed by researchers as an important 

technique to obtain information of chemical bonds in a molecule. To detect the formation of 

diblock copolymer, the starting reactors, styrene and polyvinylsilazane, the product PVSZ-b-PS 

were investigated by PerkinElmer FTIR spectrometer (PerkinElmer Inc., Waltham, MA). 

2.2.3 GPC Measurement 

Gel Permeation Chromatography (GPC) is the most common used method to determine 

molecular weight and dispersity. To confirm the synthesis of diblock copolymer, the molecular 

weight of the synthesized PVSZ and PVSZ-b-PS were analyzed by using Gel permeation 

chromatography (GPC, JASCO Inc., Easton, MD). 

2.3 Results and Discussion 

2.3.1 NMR Spectra 

The 
1
H NMR spectra (Figure 18) indicated the presence of unreacted vinyl groups (5.79-6.22 

ppm) and Si-H groups (4.47-4.78 ppm) in poly(vinyl)silazane. The consumption of vinyl groups 

is demonstrated by the decreases in the relative integral ratio of -CH=CH2/Si-H from ca. 1.01 to 

ca. 0.84 compared with the starting HTT1800. The peaks at d=0.98 and 0.29 ppm were assigned 

to N-H groups and methyl protons of the Si-CH3 groups. The two weak singlets at d=3.7 and 

4.05 ppm were assigned to dithiocarbamate (-N(CH2CH3)2) groups at the end of the polymer 

chain [76].  
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Figure 18 
1
H-NMR Spectrum of (a) HTT1800, (b) poly(vinyl)silazane in CDCl3. 

2.3.2 FTIR Spectra 

The structure of obtained block copolymer was characterized by Fourier transform infrared 

spectroscopy (FTIR) (Figure 19). In this FTIR spectrum, the bands at 3378 cm
-1

 and 1159 cm
-1

 

can be assigned to the N-H stretching. The Si-N stretching appears at 872 cm
-1

. The bands at 

1592 and 1404 cm
-1

 represent the C=C stretching vibration. The C-H stretching occurs at 3049 

cm
-1

. The strong absorption band assigned to Si-H vibration appears at 2118 cm
-1

. The 

characteristics band of Si-CH3 groups locates at 1254 cm
-1

, coupled with C-H stretching at 2955 

cm
-1

. The intense increase absorption band observed at 3049 cm
-1

 which was assigned to the 

vinyl group further confirmed the formation of block copolymer PVSZ-b-PS. 



30 

 

 

Figure 19 FTIR spectra of (a) styrene, (b) poly(vinyl)silazane and (c) poly(vinyl)silazane block polystyrene 

2.3.3 GPC Measurement 

The molecular weight of the synthesized PVSZ block was measured using Gel permeation 

chromatography to be 8000 g/mole. The PVSZ block was then used as a RAFT agent to 

polymerize the styrene to form PVSZ-b-PS. The molecular weight of the di-block copolymer 

was measured to be 35,053 g/mole and 56,251 g/mole (Figure 20). 
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Figure 20 (a) GPC traces of (α) poly(vinyl)silazane (Mn = 8000 g/mol; PDI = 1.36), (b) poly(vinyl)silazane-block-

polystyrene (Mn = 35,053 g/mol; PDI = 1.24) and (c) poly(vinyl)silazane-block-polystyrene (Mn = 56,251 g/mol; 

PDI = 1.39). 

2.4 Summary 

In this chapter, the poly(vinyl)silazane with different block ratio and block length were 

successfully synthesized via Reversible Addition-Fragmentation Chain Transfer (RAFT) 

polymerization. The molecular structure of the prepared diblock copolymer was investigated by 

FT-IR and NMR spectra, the molecular weight was measured by GPC, and the synthesis 

mechanism was concluded from these data.  
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CHAPTER THREE: SYNTHESIZE HOLLOW NANOSPHERES  

3.1 Introduction 

Inorganic hollow spheres have attracted extensive attentions due to their low density, high 

specific surface area, and high permeability for gases and liquids. This new class of materials is 

promising for widespread applications, such as drug deliver, acoustic insulation, catalyst carrier, 

waste removal and solar cell photo catalysts.
[103-106] 

The materials can also be used as building 

blocks for fabricating a variety of super-lattice assemblies and hierarchical/terminal 

structures.
[107-111]

 During the past years, a variety of strategies has been developed to prepare the 

hollow spheres, including hard/soft template method,
[112-115] 

emulsion/interfacial polymerization 

process,
[116] 

and heterophase polymerization combined with a sol-gel process.
[117] 

While 

significant progresses have been made, previous work in this field was primarily focused on 

oxide materials; little attention has been paid to non-oxide materials. Compared to oxides, non-

oxide materials exhibit many unique and superior properties, such as better high-temperature 

stability against structural collapse, excellent chemical inertness, as well as wide band-gap 

semiconducting behaviour.
[98]

 A few previous studies on non-oxide materials were limited to the 

traditional template method,
[113-118] 

which cannot be completed in one step and always requires a 

harmful etching step or high-temperature treatment to remove templates, thus limit the 

development and applications of non-oxide hollow spheres. 

In this paper, we report a novel technique of synthesizing non-oxide hollow nanospheres by 

using di-block copolymer precursors. Copolymer precursors have been recently used to 

synthesize nano-structured ceramics and porous materials.
[119-120] 

The proposed strategy is 
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schematically illustrated in Figure 20. First, a di-block copolymer is synthesized, comprising of a 

precursor block which will transform to non-oxide ceramics upon pyrolysis and a sacrificial 

block which will be completely decomposed upon pyrolysis. The copolymer is then self-

assembled into nano-scale micelles with the sacrificial block forming a core and the precursor 

block forming a shell by dissolving it into a selected solvent. Subsequently, the micelles are heat-

treated at a predetermined temperature to cross-link the precursor shell without decomposing the 

sacrificial core; so that the sacrificial core can act as a self-template to support the precursor shell. 

Finally, the cross-linked micelles are pyrolyzed at high temperatures to convert the precursor into 

non-oxide ceramics and to completely decompose the sacrificial core to form a hole.  

 

Figure 21 Synthesis procedure of hollow nanospheres. 

3.2 Experiments 

Synthesis Route of SiC Hollow Nanospheres: 

Step 1: Dissolving the synthesized copolymer PVSZ8000-b-PS35,053 in toluene to form micelle 

solution. The formed micelle solution’s concentration is 40 mg/ml. 

Step 2: Spreading the micelle solution droplets on the silicon wafer by using Fisher Scientific 

pipettor. 

Step 3: Evaporating toluene at 100ºC for 48 hrs. 
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Step 4: Heat treated the silicon wafer at 350ºC for 4 hrs to cross-link the precursor block in high 

purity nitrogen atmosphere. 

Step 5: Pyrolysis the silicon wafer at 800ºC for 2 hrs at the heating rate of 1ºC/min in high purity 

nitrogen atmosphere. 

3.3 Characterization 

3.3.1 Scanning Electron Microscopy 

A scanning electron microscope (SEM) is a type of electron microscope that produces images of 

a sample by scanning it with a focused beam of electrons. The electrons interact with atoms in 

the sample, producing various signals that can be detected and that contain information about the 

sample's surface topography and composition. The outer surface morphology of the spheres was 

observed by Scanning Electron Microscopy (Zeiss ULTRA-55 FEG SEM, Oberkochen, 

Germany). 

3.3.2 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of 

electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes 

through. An image is formed from the interaction of the electrons transmitted through the 

specimen. The core shell structure of the diblock copolymer micelles and the hollow structure of 

synthesized nanosphere are confirmed by transmission electron microscope (TEM, JEOL 1011, 

JEOL Ltd., Tokyo, Japan). 

http://en.wikipedia.org/wiki/Electron_microscope
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Topography
http://en.wikipedia.org/wiki/Microscope
http://en.wikipedia.org/wiki/Electron
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3.3.3 Focused Ion Beam 

Focused ion beam, also known as FIB(FIB-SEM, Zeiss 1540 Crossbeam, Oberkochen, 

Germany). It uses 30 kV gallium liquid metals as ion source and 30 KV electron field emission 

electron beam. The CrossBeam could cut through the specimen and allows the observation of 

subsurface features during the milling process. In this thesis, we use FIB-SEM to mill the 

nanospheres, and observe their inner structures. 

3.4 Results and Discussion 

3.4.1 Forming Core Shell Micelles 

Figure 22 is a typical TEM image of the micelles on the dark carbon support film. It is seen from 

the image that the size of the micelles varies between 70 to 130 nm. The size distribution of the 

micelles is wider than commercially available micelles made of well-defined co-polymer, likely 

due to that the starting material (commercial VSZ) has widely-distributed molar weight and 

varied C=C bond concentrations from monomer to monomer. The image does not reveal the 

core-shell structure, likely due to that the difference in atomic number between PVSZ and PS is 

not big enough to give the phase contrast of electron density.  
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Figure 22 A TEM image of the self-assembled PVSZ-b-PS micelles, small bubbles (size < 10nm) are un-

polymerized monomers. 

3.4.2 Structure Analysis of Hollow Sphere 

The micelles were heat-treated at 800ºC for 2 hrs to convert them into hollow spheres, with 

expectation that the treatment will completely decompose the polystyrene core to form hole and 

transform the poly(vinyl)silazane shell into silicon carbide ceramics. Figure 23 shows a 

representative SEM image of the SiC hollow spheres. It can be seen clearly that the ceramic 

particles take a spherical shape. The size of the spheres varies from 40 to 100 nm, which is much 

smaller than that of the micelles, suggesting the significant shrinkage occurred during pyrolysis. 

The variation in the size of the spheres must result from the variation in the block lengths of the 

copolymer. Such issue can be solved by using well-controlled starting materials. The high 

magnification SEM images reveal that many large particles (size ~100 nm) collapsed during high 

temperature pyrolysis to form donut-shaped structure (the inset at the lower-left corner of Figure 

23); while all small particles remain the spherical shape even after pyrolysis at 800˚C for 2 hrs 
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(the inset at the upper-right corner of Figure 23). The collapse of the larger particles suggests that 

the cross-linked shell is still not strong enough to survive the decomposition of PS when PS core 

is too large. This issue can be solved by increasing cross-linking degree of the precursor block by 

increasing cross-linking time or increasing cross-linking temperature.  

 

Figure 23 SEM image of SiCN hollow nanospheres prepared at 800˚C. 

Figure 24 is a TEM image of the SiCN nanospheres. The two spheres in the image show very 

clear contrast difference between the light grey core and dark grey shell, which suggested the 

hollow structure of the SiCN nanosphere. According to the TEM image, the shell’s thickness of 

the hollow nanosphere (size ~100 nm) is about 25nm.  
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Figure 24 TEM image of SiCN hollow nanospheres prepared at 800˚C. 

To further confirm the hollow structure, focused ion beam (FIB) milling was used to cut some 

spheres to observe the inner structure. Figure 25 is the SEM images of a typical sphere cut to the 

different stages: (a) before cutting, (b) cut to half (1/2), and (c) cut to two third. The images 

reveal that the sphere that was cut through show completely hollow structure although the part of 

outer surface has fallen down because of the FIB processing. The inner cavity exhibits a perfect 

spherical shape with the diameter around 75 nm.  

 

Figure 25 Inner morphology of a SiCN hollow nanosphere prepared by focused ion beam (FIB). 
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Above results have clearly demonstrated that non-oxide hollow nanospheres can be synthesized 

by using the strategy illustrated in Figure 21. The resultant ceramics (referred to as polymer-

derived ceramics, PDCs) possess many unique structures (from amorphous to polycrystalline) 

and properties, such as excellent high temperature stability, well-behaved high temperature 

semiconducting behavior
[121]

 and anomalously high piezoresistivity.
[122]

 Thereby, the hollow 

nanospheres could have widespread applications. One important advantage of the strategy is that 

the size and thickness of the wall can be easily controlled by tailoring the length of the two 

blocks. It is very possible that with well-defined starting chemicals, hollow nanospheres with 

well-controlled structures and morphologies could be synthesized. Due to the availability of a 

large amount of precursors, hollow nanospheres of different materials can be readily made by 

this technique. 

3.5 Summary 

In summary, we report a novel approach for synthesizing SiCN non-oxide hollow nanospheres 

by using PVSZ-b-PS copolymer precursor which self-assembled into micelles. The obtained 

spheres exhibited a close-to-perfect spherical shape and a well-defined cavity. According to the 

forming mechanism, the sphere size and shell thickness could be tuned by designing the ratio and 

the length of the PVSZ and PS blocks. It is believed that the approach can be applied to prepare 

non-oxide hollow spheres of other material systems. Given the unique properties of PDCs, this 

type of hollow spheres could have widespread applications in the field of gas sensor, catalyst, 

solar cell and so on. 
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CHAPTER FOUR: SYNTHESIZE MESOPOROUS CERAMICS  

4.1 Introduction 

Mesoporous inorganic materials (pore size between 2 and 50 nm) are promising for widespread 

applications.
 
Great progress has been made in controlling the structure, morphology and stability 

of mesoporous materials for their applications in catalyst, sensors, and biotechnologies.
[123,124]

 

From the application point of view, mesoporous materials with hierarchical pore structures at 

different length scales are highly desired due to the combination of high surface area and high 

permeability. The most prevalent method of making hierarchically porous ceramics is the 

hard/soft template route, where silica monoliths, colloidal surfactants, polymer foams, inorganic 

salts, emulsions, bubbles and ice crystals are used as templates to create porous structures.
[125] 

In 

addition, phase separation and sol-gel technologies have also been applied for fabricating 

hierarchical pore structures.
[126.127] 

While significant progresses have been made, previous work 

in this field is primarily focused on oxide materials; little attention has been paid to non-oxide 

materials.  

Recently, non-oxide ceramics have been synthesized by thermally decomposing polymeric 

precursors, referred to as polymer-derived ceramics (PDCs). The PDC processing offers the huge 

advantage of process/manufacturing flexibilities over conventional powder metallurgy based 

ceramic methods. Various ceramic components/devices have been made from PDCs.
[128-131]

 The 

PDC technique has also been employed to make nano-structures and porous materials.
[132-137]

 

Herein, we report the synthesis of hierarchically mesoporous non-oxide SiC ceramics via the 

PDC technique. 



41 

 

4.2 Experiments 

Synthesis Route of SiC Mesoporous Ceramcs: 

Step 1: Dissolving the synthesized copolymer PVSZ-b-PS in toluene to form micelle solution. 

The formed micelle solution’s concentration is 40 mg/ml. 

Step 2: Pouring the micelle solution onto a Telflon dish, let the solvent evaporate at 100ºC for 48 

hrs to form a condensed micelle film of ~1 mm in thickness and 10 mm in diameter. 

Step 3: Heat treated the silicon wafer at 200ºC for 2 hrs to cross-link the PVSZ block in a tube 

furnace with flowing nitrogen. 

Step 4: Pyrolyzing the sample at 800ºC for 4 hrs at the heating rate of 1ºC/min to convert to a 

porous ceramic in high purity nitrogen atmosphere. 

4.3 Characterization 

4.3.1 Transmission Electron Microscopy 

The core shell structure of the diblock copolymer micelles was investigated by transmission 

electron microscope (TEM, JEOL 1011, JEOL Ltd., Tokyo, Japan). 

4.3.2 TGA/DSC Measurement 

Thermo-gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) are used to 

measure temperature related properties of materials. TGA determines the mass lost by a sample 

at elevated temperature. DSC measures the heat flow in and out of a sample as a function of time 

and temperature. In this chapter, TGA/DSC was induced to analysis the pyrolysis process to 

form mesoporous ceramics. The thermogravimetric analysis (TGA) was performed on a Perkin-
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Elmer Simultaneous Thermal Analysis STA600 (Waltham, Massachusetts, USA), at a heating rate of 

10 ºC/min to 1000 ºC in an inert atmosphere of Ar (20.0 ml/min). 

4.3.3 FTIR Spectra 

To investigate the chemical bond change and analyze the chemical reactions which relate to 

pyrolysis process, the PVSZ-b-PS micelle films pyrolyzed at different temperatures under 

nitrogen atmosphere were analyzed by by PerkinElmer FTIR spectrometer (PerkinElmer Inc., 

Waltham, MA). 

4.3.4 Scanning Electron Microscopy 

The morphology of the ceramic was observed by Scanning Electron Microscopy (Zeiss ULTRA-

55 FEG SEM, Oberkochen, Germany). 

4.3.5 BET and BJH Analysis 

BET analysis provides precise specific surface area evaluation of materials by nitrogen 

multilayer adsorption measured as a function of relative pressure using a fully automated 

analyser. The technique encompasses external area and pore area evaluations to determine the 

total specific surface area in m
2
/g yielding important information in studying the effects of 

surface porosity and particle size in many applications. BJH analysis can also be employed to 

determine pore area and specific pore volume using adsorption and desorption techniques. This 

technique characterises pore size distribution independent of external area due to particle size of 

the sample. In this thesis, BET/BJH analysis was employed to analysis the pore volume and pore 

size of the synthesized mesoporous ceramics.  
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4.4 Results and Discussion 

4.4.1 Forming Core Shell Micelles 

In our experiments, a drop of diluted micelle solution (~ 5 mg/ml) was placed on a carbon-coated 

copper grid and then dried in air at room temperature. Figure 26 is a TEM image of PVSZ8000-b-

PS27053 micelles. The TEM image does not reveal core-shell structures, likely due to that the 

difference in atomic number between PVSZ and PS is not large enough to give the contrast of 

electron densities. The size of the micelles was measured from the TEM images to be 40 to 90 

nm with an average of ~ 60 nm. 

 

Figure 26 TEM image of the self-assembled PS8000-b-PVSZ27053 micelles. 

Since a great advantage of this synthesis process described in Figure 6 is that the pore size can be 

tailored by changing the length of the two blocks. In order to demonstrate this capability, the 

other synthesized PVSZ-b-PS copolymer with molecular weight of 56,251 (referred as to 

PVSZ8000-b-PS48251) also dissolved into toluene to form micelles. The TEM reveals that the size 
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of the micelles ranging from 50 to 130 nm with an average of ~75 nm. The micelles size 

increases with the increase of the block length of PS. The micelles were condensed into films 

and subsequently pyrolyzed at 800
o
C for 4 hrs to convert to a porous ceramic. 

4.4.2 Investigation of Pyrolysis Process 

The pyrolytic behavior of the micelles was investigated with thermal gravimetric analysis and 

differential scanning calorimetry by measuring the changes in mass and enthalpy simultaneously. 

As shown in Figure 27, the weight loss of the precursor film pyrolysis can be roughly divided 

into four stages: (i) an initial weight loss of ~ 5% occurs in the temperature range from 0 to 

300˚C, which is a result of the cross-linking of PVSZ blocks; (ii) a large weight loss of ~ 30% 

takes place in the temperature range from 300 to 450ºC, which is related to the decomposition of 

PS blocks; (iii) an additional weight loss of ~10% happens in the temperature range from 450 to 

700ºC, which is caused by the decomposition of PVSZ blocks; and (iv) the final weight loss of 

~3% occurs when the temperature above than 700ºC, which is due to the decomposition of PVSZ 

precursor. The DSC thermogram corresponds well with TGA results and shows four exothermic 

peaks at ~200ºC, ~400ºC, ~550ºC and ~750ºC, respectively. The TGA-DSC results suggest that 

the polymer-to-ceramic conversion is completed up to 800ºC. 
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Figure 27 TGA and DCS curves of PVSZ8000-b-PS27053 micelles 

Figure 28 shows the FTIR spectra of PVSZ-b-PS micelle films pyrolyzed at different 

temperatures under nitrogen atmosphere. The spectrum of the film pyrolyzed at 200ºC is similar 

to that of the one without any pyrolysis, except the reduced intensity of the peak related to the Si-

H vibration at 2118 cm
-1

. This suggests the occurrence of the cross-linking reactions via 

hydrosilylation and dehydrocoupling.
[138]

 After being pyrolyzed at 400ºC, the C=C stretching at 

1592 cm
-1

, the vinyl group vibration at 1404 cm
-1

, the C-H vibration at 3049 and 3007 cm
-1

 and 

the Si-H vibration vanish due to the decomposition of PS and the further cross-linking of PVSZ. 

We also observed the diminishing of the Si-N-Si vibration and the Si-N vibration bands at 1165 

and 900 cm
-1

.
[139]

 At the same time, two new bands at 980 and 775 cm
-1

 were observed, which 

are assigned to the Si-C vibrations.
[140]

 These changes can be ascribed to the carbothermal 

reaction between Si-N band and various monomers and oligomers resulted from the 

decomposition of PS.
[120,141]

 When the temperature increases to 600ºC, the Si-N bonds are 

completely converted to the Si-C bonds. After the pyrolysis at 800ºC, the vibration of the Si-CH2 
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groups vanishes too, only the Si-C vibration is observed, demonstrating the formation of silicon 

carbide ceramic. 

 

Figure 28 FT-IR spectra of PVSZ8000-b-PS27053 micelle films after the pyrolysis at different temperature. 

4.4.3 Analysis of Mesoporous Ceramics 

The morphology of the obtained ceramic was observed by scanning electron microscopy (SEM, 

Zeiss Ultra-55 FEG, Oberkochen, Germany). Figure 29 shows the fracture surface of the ceramic. 

The size of the spherical-shaped grains varies from 30 to 60 nm. These values are smaller than 

the size of the micelles observed with TEM (Figure 26), suggesting the significant shrinkage 

during the polymer-to-ceramic conversion. The shrinkage is estimated to be ~ 30%, which is 

similar to that measured for the pyrolysis of bulk PVSZ.
[142]

 The inset at the lower left corner of 

Figure 29 is the SEM image of a typical sphere cut through by focus ion beam. The image 

reveals that the sphere has a hollow structure with a wall thickness of ~18nm. A reasonable 
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amount of pores in a few tens of nanometers can be observed between the spheres (Figure 29), 

which is likely due to the incomplete densification. 

 

Figure 29 SEM image of mesoporous SiC formed by pyrolysis of PVSZ8000-b-PS27053 micelles film at 800˚C, the 

inset is the SEM image of an individual grain cut through by FIB 

The pore structure of the resultant ceramic was characterized by nitrogen adsorption-desorption 

isotherm methods, as shown in Figure 30. The measured pore volume and specific surface area 

are listed in table 2. It is clear that the ceramic exhibits a fairly large pore volume and specific 

surface area. The isotherm curve is a types IV (Brunauer-Deming-Deming-Teller 

classification).
[143]

 The isothermal curve shows a small and a large hysteresis loop in the relative 

pressure range of 0-0.5 and 0.5-1, respectively. This indicates that the ceramic has bimodal pore-

size distributions. The shapes of the two hysteresis loops are also different from each other: the 

one at lower relative pressures is type H3, which is associated with slit-like pores; while the 

other at higher relative pressures is type H2, suggesting the existence of ink-bottle pores. The 

pore distribution (inset in Figure 30) was calculated using BJH (Barret-Joyner-Halenda) method, 
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confirming that the ceramic contains two sets of mesopores: narrowly distributed small pores 

(peak pore ca. 3.5 nm) and broadly distributed large pores (peak pore ca. 8.9 nm). Our results 

also suggest that the ceramic has a hierarchically mesoporous structure.  

 

Figure 30 Nitrogen adsorption-desorption isotherms of obtained mesoporous SiC ceramics. Inset shows the pore size 

distribution 

The relative large ink-bottle pores are likely resulted from the decomposition of the PS cores. On 

the other hand, the relative small slit-like pores are likely from the carbothermal reaction (Figure 

31) between the PVSZ and the PS decomposition products,
[99]

 which are formed within the shell 

of silicon carbide. The proposed formation process of the small pores and final pore structure is 

illustrated schematically in Figure 32.  

Si-N + C-H Si-C + NH3
 

Figure 31 Carbothermal reaction 
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Figure 32 Schematic showing the proposed hierarchically pore structure. 

The pore structure of the ceramic formed from precursor with longer PS block was characterized 

by its nitrogen adsorption and desorption isothermal curve (Figure 33) too. The curve is very 

similar to that shown in Figure 30. The pore distribution calculated using BJH method is inset in 

Figure 33, which shows that the ceramic also has hierarchical mesopore distributions: narrowly 

distributed small pores (peak pore ca. 3.5 nm) and broadly distributed large pores (peak pore ca. 

14.6 nm). 
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Figure 33 Nitrogen adsorption-desorption isotherms of obtained mesoporous SiC ceramics formed by pyrolysis of 

PVSZ8000-b-PS48251 micelles film at 800˚C. Inset shows the pore size distribution 

It is interesting to compare the pore distributions in the ceramics resulted from the two 

precursors. The average size of the small pores in the two ceramics is same. This confirms that 

the formation of the small pores is due to the carbothermal reaction between the Si-N bonds of 

PVSZ and the C-containing monomers released from the thermal decomposition of PS because 

the pore size resulted from the reaction should be determined by the molecular architecture of the 

PVSZ not the amount of the PS. Since the Si-N bonds have been completely consumed during 

the pyrolysis of the PVSZ8000-b-PS27053, the further increase of PS contents in the PSVZ8000-b-

PS48251 should not affect the size of the small pores. However, due to the reduce of the relative 

PVSZ amount in PSVZ8000-b-PS48251, the amount of the small pores in the PSVZ8000-b-PS48251 

derived ceramic should be less than that in the PVSZ8000-b-PS27053 derived one While the large 

pores in the PSVZ8000-b-PS48251 derived ceramic are larger than those in the PVSZ8000-b-PS27053 

derived one, indicating that the large pores are resulted from the decomposition of the PS cores. 
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The isothermal curve reveals a hysteresis loop in the range of 0.5-0.65, which reflected in the 

pore size distribution there is the presence of another kind of pores with a narrow distribution 

(peak pore ca. 6.03 nm). We speculate that this kind of pores is likely due to the collapse of 

micelles with large cores. The collapse can be seen clearly when pyrolyzing individual micelles 

(Figure 34). 

 

Figure 34 SEM image of a collapsed grains 

The pore volume and specific surface area are measured from the isothermal curve and listed in 

table 2. It is surprised that both pore volume and specific area of the ceramic resulted from the 

PSVZ8000-b-PS48251 precursor are smaller than that of the ceramic resulted from the PVSZ8000-b-

PS27053 precursor, even though the former contains larger PS block. This is likely due to the 

collapse of the larger micelles which is much more in the former than the later. 

 

 



52 

 

Table 2 The structure parameters of the samples. 

Samples Vpore (cm
3
/g) SBET (m

2
/g) 

PVSZ8000-b-PS27053 0.1837 48.9030 

PVSZ8000-b-PS48251 0.0879 18.6147 

Vpore is pore volume; SBET is pore specific area calculated by BET method. 

4.4 Summary 

In summary, we report a novel approach for synthesizing hierarchically mesoporous non-oxide 

SiC ceramic by using PVSZ-b-PS copolymer precursors. The obtained SiC ceramic exhibits 

bimodal pore size distribution. We demonstrate that the pore structure can be tailored by varying 

the ratio and the length of the PVSZ and PS blocks. It is believed that the approach can be 

applied to prepare non-oxide mesopores of different material systems. Given the unique 

properties of PDCs, this type of mesoprous ceramics could have widespread applications in the 

field of gas sensor, catalyst, solar cell and so on. 
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CHAPTER FIVE: SYNTHESIZE CERAMIC THIN FILM  

5.1 Introduction 

Because of the superb electrical properties and excellent thermal and chemical stability, silicon 

carbide (SiC) has showed great potential in many applications, especially in high-power, high-

frequency, high-temperature environment. Recently, SiC has also attracted much more attention 

because of its wide bandgap property.
[150]

 When particle size decreases to nanoscale, 

semiconductor materials with indirect bandgap can show the character of direct optical transition, 

which is attributed to the quantum confinement effect. Therefore, study on nanoscale SiC is very 

meaningful for the improvement of SiC application as an optoelectronic material. 

Besides self-assembling into nanostructures in selective solvent and melts,
[144, 145]

 diblock 

copolymer could also exhibit this property at the interface and surface.
[146, 147]

 At the air-water 

interface, diblock copolymers could self-assemble into two dimensional monolayers on the 

nanometer scale order. And this formed monolayer film can be transferred to a solid substrate by 

using the Langmuir-Blodgett (LB) transfer technique.
[148, 149]

 

Herein, we report the synthesis of non-oxide nano SiC ceramics dots via Langmuir Blodgett 

deposition technique, as shown in Figure 35. First, a di-block copolymer consisting of a 

precursor block which can be converted to a non-oxide ceramic during pyrolysis and a sacrificial 

block which can be completely decomposed during the pyrolysis is synthesized. The sacrificial 

block of the synthesized copolymer should have much higher polarity than the precursor block. 

The copolymer is then dissolved into solvent at relative low concentration, and the diluted 

copolymer solution is spreading on the air water interface by using micro syringe. By moving the 
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barrier under control, the distance between the homogenously spreading copolymers would be 

compressed while decreasing the spreading surface area. After the copolymer film reach 

predetermined densities, transfer the micelle monolayer onto solid substrates by using Langmuir 

Blodgett transformation. Finally, the copolymer monolayer is pyrolyzed at elevated temperature 

to completely decompose the sacrificial blocks, leaving isolated ceramic dots formed from 

precursor blocks. 

 

Figure 35 Schematic illustration of a Langmuir film balance with a Wilhelmy plate electrobalance measuring the 

surface pressure, and barriers for reducing the available surface area. 

5.2 Experiments 

5.2.1 Surface Pressure Isotherm 

The surface pressure isotherms have been obtained with Nima KSV-5000 Langmuir-Blodgett 

Teflon trough with two sliding barriers contained in a clean room at T=18ºC. The maximum 

available surface is 220 cm
2
 and can be varied continuously by moving a teflon barrier. The 

https://www.google.com/search?q=Langmuir+Blodgett+transformation&client=firefox-a&hs=XWQ&sa=X&rls=org.mozilla:en-US:official&channel=np&tbm=isch&tbo=u&source=univ&ei=ahGzU7LgO8GYqAb-hYHIAg&ved=0CCEQsAQ&biw=1366&bih=657
https://www.google.com/search?q=Langmuir+Blodgett+transformation&client=firefox-a&hs=XWQ&sa=X&rls=org.mozilla:en-US:official&channel=np&tbm=isch&tbo=u&source=univ&ei=ahGzU7LgO8GYqAb-hYHIAg&ved=0CCEQsAQ&biw=1366&bih=657
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surface pressure Π is measured with a Langmuir balance. Water used for cleaning trough and 

spreading copolymer is deionized water with PH=~7. The operation process followed by these 

steps: Firstly, dissolving the synthesized copolymer in toluene with the concentration about 5.5 

mg/ml. Then deposit 7 μL (using a micro syringe) copolymer solutions in the air-water interface 

in the LB Teflon trough. Before compression, the film is allowed to equilibrate for about 20 

minutes to ensure full evaporation of the solvent and also to allow a re-adjustment of the 

molecules. Compress the film at a constant rate of 50 cm
2
/min to get the Surface pressure-Area 

isotherm.  

5.2.2 Precursor Thin Film Deposition 

The substrates used for film deposition were ~1 cm diameter silicon wafers, sonicate in 

deionized water, ethanol, acetone and the mixture of sulfuric acid and hydrogen peroxide by 

following RCA clean process. The cleaned silicon wafer was submerged beneath the water 

surface prior to depositions, and the concentration of spreading solutions is same as used for the 

isotherms, which is 5.5 mg/ml. Continue compressing the barriers to decrease the spreading 

surface at the speed of 20 cm
2
/min until the surface pressure reach to the target point, the film 

was allowed to equilibrate for a minimum of 10 min, then lift silicon wafer with the deposition 

upstroke speed at 5 mm/min.  

5.2.3 Ceramic Dots Measurement 

The prepared films were pyrolyzed at 800℃ for 4 hrs at a heating rate of 1℃/min in ultra pure 

nitrogen atmosphere to convert the copolymer precursor into SiC ceramic dots. The surface 

morphology of prepared films and ceramic dots were imaged at ambient conditions using a 
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Nanoscope multimode AFM in tapping mode (Veeco Dimension 3100, Digital Instruments, 

Santa Barbara, CA). Cantilevers purchased from AppNano were 125 μm long with a resonance 

frequency of 200-400 kHz. The lateral scan frequency was typically 1-2 Hz. The images were 

only plane fit with no other alterations. Comparable images were obtained for multiple films 

indicating reproducible depositions. Besides this, scanning electron microscopy (SEM, Zeiss 

Ultra-55 FEG, Oberkochen, Germany) which could provide better understanding of surface 

morphology was also induced to observe pyrolyzied ceramic dots film. 

5.3 Results and Discussion 

5.3.1 Air Water Isotherm 

The Surface pressure-Area isotherm of PVSZ-b-PS shows in Figure 36, as it reveals, the surface 

pressure rises steeply as the area decreases. Since both the polystyrene block and 

polyvinylsilazane block are intrinsic hydrophobic,[151] without the sufficient length of 

hydrophilic blocks, the diblock copolymers obtain this feature with the isotherm curve in the air 

water interface.[152] And this reveals that when the diblock copolymer PVSZ-b-PS spread in the 

air water interface, the diblock copolymers are in a flattened, pancake-like structure floating in 

the air water interface without stretching into the water subphase.[142] As we mentioned in the 

experiment part, the synthesized copolymer has longer polystyrene block than polyvinylsilazane 

block. Consequently, the polystyrene block has larger polarity than the polyvinylsilazane block. 

When the block copolymer spread in the air water interface, polyvinylsilazane blocks would coil 

together forming polymer particles while polystyrene blocks would sprawl on the water surface 

to support the polymer particles as revealed in Figure 40. The other most significant 
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characteristic is the changes of the slop with the increase of surface pressure. When the surface 

pressure below than 0.4 mN/m, the isotherm curve is in relative flat shape and the area per 

molecule is about 24 nm2. While the surface pressure beyond 3.5 mN/m, the slop of the isotherm 

curve increases dramatically with the decrease of spreading surface, and the area per molecule 

decreases to 12 nm2. This isotherm feature reveals that when the surface pressure below than 0.4 

mN/m, the diblock copolymers are in stretching status. After the phase transition area (surface 

pressure range from 0.4 to 3.5 mN/m), the diblock copolymers are compressed into a condensing 

phase.  

 

Figure 36 Surface pressure-Area isotherms of PVSZ-b-PS diblock copolymer. 

5.3.2 Phase Transition Analysis 

To investigate the phase morphology of the diblock copolymers at stretching status (surface 

pressure below than 0.4 mN/m), the monolayer of the diblock copolymer was transferred onto a 

silicon wafer at the surface pressure of 0.1 mN/m, and visualized by a tapping mode AFM. 
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Figure 37a shows the AFM image of the copolymer monolayer without any heat treatment at a 

scale of 11μm. At this surface pressure, the polymer particles were homogenously spreading in 

the monolayer matrix with a diameter around 40 nm. Figure 37b is the AFM image of the 

ceramic particles monolayer synthesized from pyrolysis of the copolymer monolayer at 800℃ 

for 4 hrs. The ceramic particles randomly distributed on the silicon wafer with a particle size 

about 25 nm. The shadow on each particle’s right side is caused by shift of the tapping tip when 

it reaches to the ceramic particles. Comparing the ceramic particles’ size with the size of 

copolymer particles, the distribution of the ceramic particles is same with the copolymer particles, 

while the shrinkage during pyrolysis is estimated to be 25%, which is similar to the shrinkage 

during the pyrolysis of bulk polyvinylsilazane. [142] From these observations, we could imply 

that when the dilbock copolymers spread on the air water interface, the polyvinylsilazane blocks 

would coil together to form polymer particles homogenously spreading in the monolayer matrix 

consisted by polystyrene blocks crawling on the water surface. During pyrolysis, the polystyrene 

monolayer matrix totally decomposed, while polyvinylsilazane particles converted into SiC 

ceramic particles homogenously distributed on the surface of silicon wafer. 
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Figure 37 AFM images of PVSZ-b-PS monolayer transferred onto silicon wafer at 0.1mN/m (a) before pyrolysis at 

800℃and (b) after pyrolysis at 800℃. 

According to the isotherm curve, when the surface pressure beyond 0.4 mN/m, the diblock 

copolymers which spread on the water surface start to change from the stretch status into a 

condensed phase. Figure 38 is the 2D and 3D AFM micrographs along with the section analysis 

curve obtained at the surface pressure of 0.5 mN/m. The 2D micrograph shows that lots of large 

ceramic particles with the diameter about 150 nm rise up as the spreading surface decreases. The 

3D micrograph reveals that all the particles are in the same height and same size range, and 

randomly distributed on the silicon wafer matrix. The section analysis curve gives more detail 

information of the particles’ size and height: the average height of ceramic particles is around 13 

nm, and the diameter size is about 150 nm. The distance between the large particles is from 1 to 

2 μm, among these large particles there should be lots of small ones with the diameter about 25 

nm according to the observation of AFM micrograph obtained at the surface pressure of 0.1 

mN/m. Since the two blocks of the copolymer are intrinsic hydrophobic, they could only climb 

into the air subphase when the spreading surface continue to decreases and there is not enough 
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space for all the block copolymers spreading in a flatten pancake structure on the water surface. 

In this way, the pushed out diblock copolymers stack together formed the large micelles which 

could convert into large SiC ceramic dots after sintering at the temperature of 800ºC. 

 

Figure 38 AFM micrographs for SiC dots on silicon wafer prepared at the surface pressure of 0.5mN/m: (a) 2D 

micrograph, (b) 3D micrograph and (C) section analysis. 

As the surface pressure continues to increase with the decrease of the spreading surface, we 

notice a very interesting phenomenon induced by the block copolymer PVSZ-b-PS self 

assembling in the phase transition area (0.4 mN/m < Π < 3.5 mN/m). Figure 39 exhibits the 

AFM micrographs of copolymer precursor monolayer obtained at the surface pressure of 2 
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mN/m and 3 mN/m. At the surface pressure of 2 mN/m, there are more block copolymers being 

pushed out forming into the large micelles because of the limit spreading surface. Some polymer 

micelles array in line to form a dendric structure in the matrix while some of them form short 

strips. As the surface pressure continues to increase, more micelles generate in the matrix and 

elongate the short strips into dendric network. When the surface pressure reaches to 3 mN/m, the 

whole monolayer surface is covered by the dendiric structure network formed by the pushes out 

micelles. 

 

Figure 39 AFM micrographs of copolymer monolayer prepared at different compress pressure: (a) 2 mN/m; (b) 

3mN/m. 

Figure 40 is the SEM images of the copolymer monolayer obtained at the surface pressure of 2 

mN/m after pyrolysis at 800 ºC for 4 hrs. In the low magnificent image (Figure 40a), we 

observed that the large ceramics particles which formed from decomposition of copolymer 

micelles during sintering process orderly arranged and maintained the dendric structure network. 

And the high magnificent SEM image (Figure 40b) reveals that the silicon wafer surface was 
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covered by SiC nanodots with different size and different density. The large ceramic dots emerge 

in the dense packing area with orderly arrangement to form the outlines of the dendric network. 

The difference of packing status also causes the variation of the monolayer thickness: according 

to the ellipsometry test results, the average thickness of the loosely packing monolayer is about 3 

nm. While at the dense packing area, because of the ceramics dots is pretty larger, the average 

thickness is about 6 nm. 

 

Figure 40 SEM images of ceramic dots monolayer prepared at compress pressure of 2 mN/m. 

According to the isotherm curve analysis, the morphology of the diblock copolymers on the 

water surface changes into a dense phase after the transformation process. To investigate the 

morphology of the dense phase, the SiC nanodots monolayer formed from a diblock copolymer 

monolayer which prepared at the surface pressure of 5 mN/m visualized by AFM microscope. In 

this AFM image (Figure 41a), we observed that all the micelle particles are densely packing 

together and orderly arraying along the compression direction. Figure 42b is the Section Analysis 
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of an orderly array SiC particles, it shows that the average height of the ceramic particles is about 

20 nm and the diameter size ranges from 1 to 1.5 μm. Comparing with the results of the sample 

prepared at the surface pressure of 0.5 mN/m, it has large ceramic particles with the height about 

15nm, we found that there are more diblock copolymers have been pushes out of the matrix and 

formed higher micelle particles at the surface pressure of 5 mN/m. And the orderly arrangement 

is due to the limit spreading surface and strong compress force. 

 

Figure 41 (a) AFM micrograph and (b) section analysis of SiC dots on silicon wafer prepared at the surface pressure 

of 5mN/m. 

Based on the above discussions, we could reach the general route of synthesis non-oxide SiC 

nanodots via the PDC technique, as shown in the Figure 42. Firstly, a di-block copolymer 

consisting of a precursor block which can be converted into non-oxide ceramic during pyrolysis 

and a sacrificial block which can be completely decomposed during the pyrolysis is synthesized. 

And the sacrificial block has larger polarity than the precursor block. After dissolving in a 

volatile solvent at very dilute concentration, the diblock copolymers were spread onto the water 

surface by using micro syringe. After a certain time, the solvent subsequently evaporated and the 

copolymers were reorganized in the air water interface. Because of the polarity difference 
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between the two blocks, the precursor blocks coiled together to form the polymer particles which 

spread in the matrix consisted by the stretching sacrificial block floated on the water surface. As 

the surface pressure continually increased, the distance between the copolymers has been 

compressed. Some diblock copolymers were pushed out of the matrix because of the limit 

spreading area, and the extra diblock copolymers stacked on the top of the polymer particles 

forming large polymer micelles. After the surface pressure reaches to a certain point (denoted as 

δ), all the diblock copolymers self assembled into the large copolymer micelles and orderly 

arranged along the compress direction in a dense packing phase. Then transfer the condensed 

monolayer to the top of a silicon wafer by Langmuir Blodgett transformation and pyrolyze it at 

elevated temperature. During the sintering process, the sacrificial blocks will completely 

decomposed leave the isolated nano ceramic particles formed from the precursor blocks. 
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Figure 42 Schematic illustration of a ceramic nanodots membrane formation process. 

5.4 Summary 

In summary, self-assembling the block copolymer precursors at the air water interface can be 

considered as a very promising method for the synthesis of orderly arranged non-oxide ceramic 

nano particles. In this thesis, SiC nano particles deposited on the surface of silicon wafer has 

been successfully synthesized by using the PDCs method and the Langmuir-Blodgett deposition 

from the copolymer precursor PVSZ-b-PS. The size of the self assembled copolymer micelles 

varied with the change of the water surface pressure. The micelles orderly arranged to form 

different morphology on the water surface, like scattering dots, dendric structure and orderly 

dense packing phase. During pyrolysis, the monolayer matrix formed by the stretching 
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polystyrene blocks totally decomposed while the micelles formed from coiling polyvinylsilazane 

blocks converted into non oxide SiC ceramic particles. The average thickness of the synthesized 

SiC ceramic particles monolayer varied from 3 to 6 nm. The size of the ceramic particles and 

their arrangement morphology can be controlled by varying the surface pressure. It is believed 

that the approach can be applied to prepare non-oxide ceramic nano particles of other material 

systems.  
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CHAPTER SIX: CONCLUSION 

In summary, the diblock copolymers (polyvinylsilazane-block-polystyrene) with various 

polystyrene block lengths were synthesized by reversible addition-fragmentation chain transfer 

(RAFT) polymerization from the commercially available monomers HTT1800 and styrene. The 

molecular weight of the copolymers was controlled by the reaction time, the polydiversity was 

managed by the RAFT agent 4-diethythiocarbonylsulfanylmethyl- benzoic acid (DTBA). The 

synthesis process was investigated by NMR and FTIR, and the formation of the diblock 

copolymer PVSZ-b-PS was confirmed by FTIR and GPC. According to the GPC test results, the 

molecular weight of one synthesized diblock copolymers is 35,053 g/mol with polydispersity of 

1.24, referred as PVSZ8000-b-PS27053, the other one is 56,351 g/mole with polydispersity of 1.39, 

referred as PVSZ8000-b-PS48251. 

The two blocks of the synthesized PVSZ-b-PS have different polarity, so the copolymer could 

self-assemblies into core shell structure micelles in a selective solvent. After dissolving in the 

selective solvent toluene, PVSZ-b-PS formed core shell structure micelles with PS block formed 

the core and PVSZ block formed the shell. The structure of micelles was investigated by TEM, 

while there was not clear core shell structure being observed because of the insufficient 

difference in atomic number between PVSZ and PS to give the phase contrast of electron density. 

Spread coating the micelle solution formed from the copolymer PVSZ8000-b-PS48251 on the 

surface of a silicon wafer and pyrolyzing it at elevated temperature 800 ºC for 2 hrs, the hollow 

structure SiC ceramics nanospheres were formed from the core shell structure micelles. The 

ceramic wall of the hollow sphere was formed from the precursor block PVSZ and the cavity 
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was formed from the deposition of polystyrene core. The surface morphology of the hollow 

spheres was investigated by SEM: most of them exhibit almost perfect round shape, while some 

larger ones collapsed and formed donut shape structure. To avoid the collapse happened during 

the pyrolysis process, higher crosslinking temperature or longer crosslinking time is necessary to 

get stronger crosslinking. The hollow structure of the spheres was confirmed by TEM and FIB 

SEM: Under the TEM observation, the nanospheres showed clear contrast difference between 

the light grey core and dark grey shell; the spheres that were cut through by FIB also exhibited 

completely hollow structure, the inner cavity was perfect spherical shape with the diameter 

around 75 nm (diameter of sphere was about 100 nm). 

Besides SiC hollow nanospheres, the self assembling copolymer micelles could also synthesize 

hierarchically mesoporous ceramics, which forms from pouring the micelle solution in Teflon 

container, evaporating the solvent and pyrolysis the green body at 800ºC for 4hrs. The SEM 

observation showed that the ceramic was consisted by spherical-shaped hollow grains varies 

from 30 to 60 nm. The pyrolysis process was investigated by TGA/DSC and FTIR spectra, 

demonstrated the formation of SiC ceramics. And according to the BET/BJH analysis, the 

mesoporous ceramics have bimodal pore distribution: one is slit-like pores with pore size around 

3.5 nm, the other one is ink-bottle pores with pore size about 8.9 nm. Incorporating with the 

TGA/DSC and FTIR analysis results, we imply these ink-bottle pores are formed from the 

decomposition of polystyrene cores while the slit-like pores are formed from the carbothermal 

reactions between PVSZs and the PS decomposition products. At the same time, mesoporous 

SiC with larger pore size distribution also be synthesized from block copolymer precursors 
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which has longer polystyrene blocks. These results demonstrated that the pore size of the 

mesoporous ceramics could be altered with varying block length of the copolymer precursors. 

Besides self-assembling into core shell structure micelles in toluene, we also investigated the 

self-assembling property of copolymers PVSZ-b-PS in the air water interface. Because lack of 

hydrophilic blocks, PVSZ-b-PS could only form a pan cake structure on the water surface: that is 

the stretching polystyrene blocks float on the water surface to support the polymer particles 

formed from the coiling polyvinlysilazane blocks. By using the Langmuir-Blodgett (LB) transfer 

technique, the copolymer monolayer could be deposited on a silicon wafer surface, and form SiC 

nanoparticles after pyrolysis at 800 ˚C. By changing the upstroke surface pressure, monolayers 

with different morphologies obtained. And the morphologies were investigated by AFM and 

SEM, the results demonstrated that orderly arranged SiC nano particles could be synthesized 

from the copolymer precursor of PVSZ-b-PS by using Langmuir-Blodgett deposition.  

Overall, this thesis reported three types SiC ceramics synthesized from diblock copolymer 

PVSZ-b-PS by using PDC synthesizing route. Comparing with the current prevailing hard 

template method, the most attractive characteristic of this route is avoiding the harmful etching 

or high temperature treatment and synthesis the non-oxide ceramics in one step. The three types 

SiC ceramics have different morphology and different applications. The hollow nanospheres 

have great potential in the applications of encapsulation, delivery systems, separation and so on. 

The hierarchically mesoporous SiC ceramics is very promising in the field of gas sensor, catalyst 

and solar cell etc. And the wide band-gap semiconducting behavior of the SiC ceramics brings it 

direct optical transition application when its particle size reaches to nanoscale. So the SiC 
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nanoparticles deposited on the surface of silicon wafer could be a feasible candidate as an 

optoelectronic material. Furthermore, this synthesis approach can be applied to other material 

system to prepare different kinds of non-oxide ceramics. 
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