

University of Central Florida

Electronic Theses and Dissertations, 2004-2019

2005

# The Use And Development Of Laser Microdissection To Separate Spermatozoa From Epithelial Cells For Str Analysis

Christine Sanders University of Central Florida

Part of the Chemistry Commons

Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

#### **STARS Citation**

Sanders, Christine, "The Use And Development Of Laser Microdissection To Separate Spermatozoa From Epithelial Cells For Str Analysis" (2005). *Electronic Theses and Dissertations, 2004-2019.* 614. https://stars.library.ucf.edu/etd/614



## THE USE AND DEVELOPMENT OF LASER MICRODISSECTION TO SEPARATE SPERMATOZOA FROM EPITHELIAL CELLS FOR STR ANALYSIS

by

## CHRISTINE THAI SANDERS B.A. University of California, San Diego, 1991

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Chemistry in the College of Arts and Sciences at the University of Central Florida Orlando, Florida

Fall Term 2005

© 2005 Christine Thai Sanders

## ABSTRACT

Short Tandem Repeat (STR) analysis has become a valuable tool in identifying the source of biological stains, particularly from the investigation of sexual assault crimes. Difficulties in analysis arise primarily in the interpretation of mixed genotypes when cell separation of the sexual assailant's sperm from the victim's cells is incomplete. The forensic community continues to seek improvements in cell separation methods from mixtures for DNA typing. This report describes the use of laser microdissection (LMD) for the separation of pure populations of spermatozoa from two-donor cell mixtures. In this study, cell separation was demonstrated by microscopic identification of histologically stained spermatozoa and female buccal cell mixtures, and STR analysis of DNA obtained from the separated sperm cells. Clear profiles of the male donor were obtained with the absence of any additional alleles from the female donor. Five histological stains were evaluated for use with LMD and DNA analysis: hematoxylin/eosin, nuclear fast red/picroindigocarmine, methyl green, Wright's stain, and acridine orange. Hematoxylin/eosin out-performed all other stains however nuclear fast red/picroindigocarmine could be used satisfactorily with STR analysis. In addition, three DNA isolation methods were evaluated for LMD collected cells: QIAamp® (Qiagen), microLYSIS® (Microzone Ltd.) and Lyse-N-Go<sup>™</sup> (Pierce Chemical Co.). MicroLYSIS performed poorly, yielding low levels of PCR product. Lyse-N-Go<sup>™</sup> extraction was effective for the recovery of DNA from LMD collected sperm cells while QIAamp® isolation performed best for the recovery of DNA from LMD collected epithelial cells. LMD is shown to be an effective, lowmanipulation separation method that enables the recovery of sperm while excluding epithelial cell DNA.

I would like to dedicate this work to my husband, Bob. I greatly appreciate the support you have given me and believing in my research. I know it has been a long process. I thank you for encouraging me to accomplish my goals. I love you with all my heart!

## ACKNOWLEDGMENTS

I would like to acknowledge Dr. Daniel Peterson at the Rosalind Franklin University of Medicine and Science for allowing me to follow my own interests while supporting me in his laboratory and all his support and guidance. In addition, I would like to thank Nick Sanchez and the Los Angeles Police Department for providing specimens and contributing to the capillary electrophoresis analysis.

This project was supported by grant #2004-DN-BX-K215 awarded by the National Institute of Justice, Office of Justice Programs, US Department of Justice. Points of view in this document are those of the author and do not necessarily represent the official position or policies of the US Department of Justice.

## TABLE OF CONTENTS

| LIST OF FIGURES                  | viii |
|----------------------------------|------|
| LIST OF TABLES                   | ix   |
| CHAPTER 1. INTRODUCTION          | 1    |
| CHAPTER 2. MATERIALS AND METHODS | 9    |
| 2.1 Specimen Collection          | 9    |
| 2.2 Hemacytometry                | 10   |
| 2.3 LMD Slide Preparation        | 10   |
| 2.4 Histological Staining        | 11   |
| 2.5 Laser Microdissection        | 12   |
| 2.6 DNA Isolation                | 14   |
| 2.6.1 Qiagen QIAamp              | 14   |
| 2.6.2 MicroLYSIS                 | 15   |
| <u>2.6.3 Lyse-N-Go</u>           | 15   |
| <u>2.6.4 Chelex</u>              | 15   |
| 2.7 PCR and Human Identification | 16   |
| 2.8 Electrophoresis Conditions   | 17   |
| 2.9 Data Analysis                | 18   |

| CHAPTER 3. RESULTS AND DISCUSSION         | 19 |
|-------------------------------------------|----|
| 3.1 Technical Discussion                  | 19 |
| 3.2 Histology Comparison                  | 25 |
| 3.3 DNA Isolation Comparison              | 31 |
| 3.4 Cell Separation Study                 | 36 |
| CHAPTER 4. CONCLUSIONS                    | 42 |
| APPENDIX A. FIGURES AND TABLES            | 46 |
| APPENDIX B. HISTOLOGY COMPARISON DATA     | 65 |
| APPENDIX C. DNA ISOLATION COMPARISON DATA | 68 |
| APPENDIX D. CELL SEPARATION STUDY DATA    | 79 |
| LIST OF REFERENCES                        | 90 |

## LIST OF FIGURES

- Figure 1. Leica AS LMD System
- Figure 2. Laser Microdissection on the Leica AS LMD
- Figure 3. Computer Controlled Laser Microdissection on the Leica AS LMD
- Figure 4. Images of Stained Sperm and Epithelial Cells
- Figure 5. Peak Height Comparison of Stained Cells
- Figure 6. Detection of STR Loci Using Different Isolation Methods
- Figure 7. PCR Product Difference Using Lyse-N-Go vs. QIAamp Extraction
- Figure 8. STR Plots of LMD Sperm Cells from a Mixture
- Figure 9. STR Plots of LMD Sperm Cells from a Mixture with Extended Cycles Analysis
- Figure 10. Level of PCR Product Detected in Standard and Extended Cycles Analysis
- Figure 11. PCR Product Level of 75, 150, and 300 Sperm Cells
- Figure 12. Peak Height Ratios for Standard and Extended Cycles Analysis
- Figure 13. Protocol Flow Chart for Processing A Sexual Assault Kit

## LIST OF TABLES

- Table 1. LMD Parameters for Sperm and Epithelia Cells using 40x Objective.
- Table 2. Microscopic Identification Scores of Cells for Each Histology Stain.
- Table 3. LMD Collection Time for "300" Sperm Populations
- Table 4. Profiler Plus Genotypes of Donors Used in Cell Mixture from Fig. 9 & Fig. 10
- Table 5. Estimated Cell Concentrations of Donor Specimens

## **CHAPTER 1. INTRODUCTION**

STR analysis has become a valuable tool in identifying the source of biological stains particularly in the investigation of sexual assault crimes. Typically the male sperm cells are the component of interest, while the victim's cells from a vaginal, rectal, oral or other body swab complicate the genotyping of the assailant.

In cases where biological stains from two or more individuals cannot be separated a multifaceted statistical analysis is required with data interpretation that involves some subjectivity by the analyst. Typically, this is more time consuming for the forensic practitioner and challenging for an expert witness to successfully convey to a jury, potentially lessening the power of the evidence. The introduction of DNA evidence involving mixed genotype interpretation has several vulnerabilities to judicial attack. The legal weakness of this type of evidence stems from either the technical factors involved or from the lack of a scientific standard for a uniform mixture interpretation model. Mixture interpretation is complicated by a number of technical factors including, but not limited to, allele overlap, stochastic fluctuation, low quantity of DNA, degraded template, three-allele patterns, microvarients [Ladd et. al., 2001] and strand slippage stutter [Moxon et al., 1999]. The Scientific Working Group for DNA Analysis Methods have set recommendations for mixture analysis but allows laboratories and practitioners scientific freedom to develop validated methods of mixture interpretation [SWGDAM, 2000], and the National Research Counsel has set guidelines on the evaluation of forensic DNA evidence [NRC II, 1996]. In addition, the National Institute of Standards and Technology (NIST)

has sponsored extensive research on the analysis of mixed stains [Duewer et al., 2001; Kline et al., 2003]. The variability of methods used for mixture interpretation can vary not only from lab to lab, but within a lab, and even from case to case when conducted by a single analyst. The most common methods used are "Qualitative Statement-No Calculation", "Inferring Genotypes-Match Probability", "Exclusion Probabilities" and "Likelihood Ratio Estimates" [Ladd et al., 2001]. When choosing to infer genotypes, there are again different approaches and levels of stringency applied, some mathematical others subjective. This variety of methods used by forensic scientists indicates that a single interpretation model is inadequate for all mixture scenarios, and that mixture de-convolution does require the scientist to select the method that best conveys the facts. However, this subjectivity in analysis provides other experts and attorneys with an opening to challenge the validity of the results and evidence. Some Courts have ruled the "Qualitative Statement-No Calculation" method to be inadmissible [Nelson v State, 1993; US v Yee, 1991] and the debate over proper interpretation guidelines continues both within US Courts and between practicing forensic scientists.

The purpose of this project was not to propose another mixture interpretation model or support the theoretical basis for an existing method. Instead, the goals of this project would eliminate the need for mixture interpretation in many cases by addressing the problem early in the line of evidence analysis, during sperm identification. The development of a method capable of fully separating spermatozoa from epithelial cells before DNA analysis would result in more readily interpretable typing patterns improving the chances for a successful individualization. As a result, testimony in these cases would be more straightforward, and better understood by the judicial system facilitating the adjudication of crimes.

The current method of preferential lysis [Yoshida et al., 1995; Gill et al., 1985] has been the forensic standard for separating sperm cells from epithelial and blood cells for nearly 20 years. This method utilizes cell-specific differences in membrane chemical composition by first lysing the non-sperm cells without disrupting the sperm cells, then washing away any residual unwanted DNA from the intact sperm cells. Although this method can generally provide two cellular fractions, one comprising of sperm cell DNA and the other of non-sperm DNA, the separation is not always complete, and there may be carryover from one fraction to another making eventual genotype interpretation and further statistical analysis challenging. This challenge is frequently encountered in cases where the ratio of victim cells to assailant sperm cells is large or where there are very low numbers of sperm. Additional limitations to this technique are the pre-mature lysis and loss of sperm cells in the first digestion and the multiple liquid transfers and washing steps reducing cell recovery. This method therefore may require substantial numbers of sperm cells in the starting material to obtain a complete genotype.

Flow cytometry was introduced as a superior method to separate sperm cells from vaginal epithelial cells [Schoell et al., 1999] in the late 1990s. This fluorescence-activated cell sorting (FACS) approach relies on differences in the cell size, shape, surface phenotype, cytoplasm and DNA content. It has been reported that flow cytometry has improved sensitivity relative to preferential lysis in identifying male DNA in a mixture. However, this high sensitivity requires a low concentration of cellular debris in the vaginal lavage. FACS was also successful in separating sperm from a mixture as low as 1:160 sperm/vaginal cell ratio, which provides superior resolution over the preferential lysis method. Unfortunately, FACS also requires a large number of target cells as starting material (6000 sperm in 1 million vaginal cells). In addition, the

starting cell suspension requires a lengthy, multi-step florescent immunostaining process before initiating cytometry. There are no reports applying FACS to analysis of non-clinical samples, such as samples from post-mortem collection or crime scene samples which could be a problem as larger amounts of released DNA from degraded cells would be expected in these types of samples.

A microchip-based sperm and epithelial cell separation method utilizes the differential physical properties of cells that result in settling of the epithelial cells to the bottom of a reservoir and subsequent adherence to the glass substrate [Horsman et al., 2005]. The flow rate can be used to separate the sperm cells from the epithelial cell-containing mixture. Semen donor profiles using AmpF/STR COfiler amplification were clearly obtained from the male fractions, but the presence of female DNA in the sperm fraction was evident - most likely to epithelial cell DNA free floating in the sample. This separation procedure can be performed under 30 minutes and has the potential of being automated. However, the sperm recovery using gravity-driven flow was less than 5% and only increased to ~25% by extending the flow time to 70 minutes. The authors suggest that using a negative pressure flow instead may improve this yield, although, at this method may not be suited for samples with minute numbers of sperm.

Membrane filtration was another separation method introduced as an alternative to the preferential lysis method [Chen el al., 1998]. This filtration method was developed to cleanly separate spermatozoa from epithelial cells based upon differences in size and shape. This is a very simple and rapid technique with separation based on choice of the appropriate filter pore size and either low speed centrifugation or vacuum filtration. In this study 70% of sperm cells in the mixed cell sample penetrated the filter into the collection tube. This provides a larger sperm

yield from that of preferential lysis. However, a 1.0-2.0% of intact epithelial cells also penetrated through the filter into the collected sperm, and epithelial cell DNA released from lysed cells contaminated the filtrate. The investigator then performed this separation on a 1:1 mixture followed by genotyping at the D1S80 locus with PAGE visualized by silver staining. Although no epithelial carryover was detected in the genotype, this outcome does not compare either to the level of sensitivity in current STR capillary electrophoresis analysis or the ability PCR multiplexing has in detecting a DNA mixture. This filtration method may be more suitable for samples containing large amounts of sperm with only trace contamination by epithelial cells.

Efforts are currently underway to develop a new cell separation technique using magnetic beads coated with antibodies [Herr, 2004]. This approach requires the identification and isolation of specific monoclonal antibodies that target the surface of the human sperm cell. A second antibody conjugated to a magnetic bead specifically binds to the first antibody and is then used to draw away the sperm cells from unwanted cells in a mixture. One of the challenges with any antibody-based method is the stability of cell surface antigens in environmentally compromised forensic samples. The magnetic bead technology itself is a proven technology and the forensic community awaits reports on the outcome of this research.

Y-chromosome STR analysis takes a non-separation approach to identifying a male's DNA from a female's DNA in a forensic mixture [Kauser et al., 1997]. The identification of the Y chromosome haplotype of a perpetrator can be determined in a mixed male/female specimen in which the female cells are in overwhelming quantity [Prinz el al., 1997] while maintaining the high level of sensitivity seen in autosomal STR analysis. In addition, Y-STR analysis can clarify the numbers of semen contributors when multiple males are involved and useful in rare

incidences of azoospermic perpetrators. Y-STR analysis does not discriminate sexual assault mixtures involving the same sex, such as sodomy of a male and does not specifically target sperm cells. Therefore, if multiple assailants are involved in a mixture, tying the origin of the genotype to the semen deposited or cell type can be unclear. Cell source attribution can be important in defining the type of sexual assault crime committed in court.

The Y-chromosome lacks recombination from father to son and the statistical product rule cannot be applied as many markers are required to achieve a practical degree of discrimination [Butler, 2001]. However, even with a multiplex assay, Y-chromosome analysis does not reach the degree of statistical power that the 13 core STR loci provide, and it has yet to be incorporated into the FBI's Combined DNA Index System (CODIS). Furthermore, when a Y-STR database is formed, the State and Federal costs of Y-typing archived and newly convicted offender blood samples in addition to the 13 core loci will have to be addressed.

The methods described above have weaknesses in efficient cell separation, yield, time effectiveness, cost, ability to work with minute amounts of starting material, identifying genotype to a specific cell type, and ability to discriminate multiple perpetrators. This research project proposes Laser Microdissection as a new sample separation method to address some of these weaknesses. Laser microdissection (LMD) technology has been increasingly used in biomedical research applications to harvest selected cells from histological sections of complex tissues [Emmert- Buck et al., 1996; Simone et al., 1998; Luizzi et al., 2001, Rook et al., 2004]. LMD has several potential advantages for forensic science over previous separation methods. It requires low-manipulation of sample and works by direct microscopic visualization, making it suitable for single-cell analysis. This resolution makes LMD ideal for forensic samples of minute

quantities. LMD directly separates and collects the target cells without contamination from a mixed cell population. This separation can be verified visually by the post-dissection image of the slide and also the post-collection inspection mode in the software allows the user to microscopically inspect the contents of tube. Thus LMD addresses the question about cell source type of the genetic profile obtained.

Laser microdissection technology was first introduced as "laser capture microdissection" or LCM (Arcturus). Recently LCM was reported to improve recovery of DNA from sperm on microscope slides [Elliott et al., 2003]. This technology involves the use of a laser to microscopically melt a thermoplastic film onto a target cell embedding and lifting the cell from the slide. Although this technology allows the capture of an enriched sperm fraction, female carryover is relatively common. This problem can be due to female DNA from lysed cells adhering to the sperm but it may also be due to the non-specific attachment of surrounding foreign cells to the plastic membrane. Despite contamination of female DNA in the male fraction LCM performs significantly better than the preferential lysis method in its ability to separate sperm from vaginal epithelial cells and can detect STR alleles from even a few sperm [Elliott et al., 2003].

Since the initial use of LCM, laser microdissection (LMD) engineering have evolved and other instruments developed. In this study the third generation Leica AS LMD instrument (Leica Microsystems) was evaluated and a method developed to separate pure populations of sperm cells from semen/epithelial cell mixtures compatible with forensic DNA analysis. The aim of this research was to develop a method to simultaneously identify and separate pure populations of sperm cells from an epithelial cell mixture suitable for forensic human identification testing.

The research questions addressed were: What histological staining method can be used with laser microdissection and downstream DNA analysis that can discriminate sperm cells from epithelial cells while both preserving DNA integrity and preventing PCR inhibition? What DNA isolation method can be used for LMD collected cells? Finally, can LMD separate sperm cells from a two donor semen and buccal swab mixtures without epithelial cell carryover for forensic STR analysis?

Development of laser microdissection could assist forensic scientists in analyzing sexual assault mixtures that previously could not be effectively separated using conventional means. LMD could also be the tool of choice for collection of minute numbers of sperm in mixtures for Low Copy Number Analysis. With proper development of software and integration of robotics, LMD could become more automated and has the potential of processing at a higher throughput for backlog reduction.

## CHAPTER 2. MATERIALS AND METHODS

#### 2.1 Specimen Collection

The Rosalind Franklin University of Medicine and Science Institutional Review Board approved collections of all human tissue specimens. Liquid semen samples containing sperm were obtained from the Los Angeles Police Department, Scientific Investigation Division laboratory and the Los Angeles Sheriffs Department Crime Laboratory. These laboratories retain frozen stock specimens of biological fluids for positive controls and standards used in forensic serology and DNA analysis. These stock semen samples were reported to be selfcollected by anonymous male volunteer employees then transported to the crime laboratory for storage. 200-1000µl from five donors were shipped overnight on cold packs then stored at -20°C at the University laboratory. A 1:10 working solution of each semen sample was prepared with sterile water.

Buccal swabs from twelve female subjects were obtained from employees at the Los Angeles Police Department using one or two sterile dry cotton swabs at a time, the subjects selfswabbed the inside of their cheek for up to one minute. The swabs were air dried overnight at room temperature, shipped by express mail to the University laboratory then stored at -20°C until ready to use. Whole cotton tips were cut from the swab with a sterile blade and placed in 1ml of sterile water then incubated at room temperature with agitation for 15 minutes. Each swab was removed and placed in a spin basket microcentrifuge tube then centrifuged for 2min. Liquid from both tubes were consolidated and spun for 2-3 minutes. The supernatant was removed

leaving an epithelial cell sample recovered in a 50µl working solution. No information on age of subject or date of collection was obtained for any of the semen or buccal samples.

#### 2.2 Hemacytometry

A hemacytometer was used on some samples to determine the concentration of cells in the working solutions. A Bright Line counting chamber (Hausser Scientific) was used with 5µl of epithelial cell working solutions mixed with 5µl of nuclear fast red or 5µl of semen working solutions mixed with 4.5µl of nuclear fast red and 0.5µl of picroindigocarmine. Average values of four 1mm square frames were used to estimate cell concentrations of the working solutions using the following formula: 1µl = 1 cubic mm = (# cells counted per square mm) X (dilution) X (10). The dilution factor for all samples was 2x to account for the staining solution.

### 2.3 LMD Slide Preparation

Glass microscope slides covered with a polyethylene napthalate, PEN, foil (Lecia Microsystems) were modified by adhering 1/4" diameter Avery hole reinforcement labels to the PEN surface. The slide fits three labels in a row and the internal open diameter is consistent with typical spot sizes used in forensic sperm identification. The labels also produced a dam to hold liquid when processed with histological stains. 2µl of the samples were spotted over the interior circle area in triplicate and dried at room temperature.

#### 2.4 Histological Staining

Five histological staining methods were used: hematoxylin/eosin (H&E), nuclear fast red/picroindigocarmine (CTS), methyl green (MG), Wright's stain (WRT) and acridine orange (AO) were used for staining of cells. All solutions were sterile filtered before use. The staining protocols are as follows with all washes consisting of approximately 5 seconds in sterile water: H&E - QS modified Mayer's hematoxylin (Vector) for 5 minutes, Wash, 1% Acidic alcohol (70% EtOH) for 5-10 seconds, Wash, 1% w/v Eosin Yellowish Solution (non-alcoholic) for 5 minutes, Wash, Rinsed with 95% ethanol for 5 seconds; CTS - nuclear fast red (Vector Laboratories) for 5 minutes, Wash, picroindigocarmine (1.3% w/v picric acid, 7mM indigocarmine) for 30 seconds, Rinse with 95% ethanol for 5 seconds; WRT - Wright's blood stain solution(0.255%) for 5 minutes; spiked Wright's buffer (0.25% w/v Wright's stain in Wright's buffer), Rinse in Giordano buffer (pH 6.4) for 20 seconds; AO - Remel 0.01% acridine orange (1% w/v in AO Buffer) for 4 minutes, AO buffer (33mM Potassium dihydrogen phosphate, 33mM di-Sodium hydrogen phosphate, pH 6) for 1 minute, 1M Calcium Chloride solution for 3 minutes, Rinse with AO Buffer 5-10 seconds; and MG - Sterile water for 10-15 seconds, methyl green (Vector Laboratories) for 5 minutes, Wash. Unstained control smears were rinsed with 95% ethanol for 5-10 seconds. Slides were vacuum desiccated and stored at -20°C until ready for LMD. H&E staining was modified in the DNA isolation and mixture studies to Mayer's hematoxylin for 1 minute, Wash, 0.5% Acidic Alcohol for 5-10 seconds, Wash, 0.1M Sodium Bicarbonate solution (pH8) for 1 minute, Eosin 5-10 seconds, Rinsed with 95% ethanol.

#### 2.5 Laser Microdissection

Several laser microdissections systems were considered for this project. Three systems were further investigated for their suitability in this research. Arcturus Pixcell developed the first laser microdissection system, which was patented as "laser capture microdissection" (LCM). The LCM technology uses an IR laser to microscopically melt a thermoplastic film onto the cells of interest. This process embeds the cells in plastic followed by pulling the cells by force from the slide. Some concerns arose regarding the nature of this type of collection. The plastic film is held in a cap holder than comes into physical contact with a large area of the slide. This instrument was initially designed for tissue cryosections where the integrity of the tissue section can withstand the contact. However, it was suspected that with a slide smear this could result in a simple contact transfer of unwanted cells from the slide to the surface of the plastic thus contaminating the cap. With the sensitivity of PCR and the increasing popularity of Low Copy Number Analysis contact transfer can now be detected [Ladd et al., 1999]. Similarly, since the method does not employ cutting there were concerns that cells adjacent to or overlapping the target cell - such as a sperm head on the non-nuclear body of an epithelial cell - may lift the whole contaminating cell onto the cap. Finally, the operation of the instrument is performed in real-time somewhat like a video game where the operator controls a joystick type device directing the stage and firing the laser to collect cells. This appeared to be labor intensive and allowed little room for operator error. The Acturus system did have one advantage in that specimens could be recovered from a standard glass microscope slide. This could be useful

when faced with archival samples not specifically prepared for laser microdissection. However, old mounted specimens could still prove challenging as specimens on aged slides have a propensity to be more permanently adhered to the glass slide.

The second instrument considered was the P.A.L.M MicroBeam laser microdissection and pressure catapulting (LMPC). This system has the improvement of non-contact collection. It uses a laser to cut the specimen, however, since the slide sits upright the target material must be catapulted up against gravity using a pressure pulse. According to the manufacturer it is "like a ball that is kicked into the goal". The "goal" is an inverted microtube cap. The sample is held onto the underside of the cap by either tension or an adhesive cap. The engineering of this type of collection seemed counterproductive in recovering and retaining all cells given it is working against gravity. In addition, the most basic of PALM systems started at a cost well above the other systems considered.

It was determined that the Leica Microsystems AS LMD would be best suited for this projects application. The Leica system is based on a computer automated laboratory microscope integrated with a 337nm UV laser. The laser beam is directed through the objective lens and passes through the inverted glass microscope slide to the plastic PEN film on which the sample resides. Laser ablation occurs around the cell(s) of interest and the material is collected by a push from a charged laser pulse and gravity into a PCR tube cap below the stage. Figure 1 diagrams the instrument while Figure 2 illustrates the laser microdissection technique. This instrument offers the advantages of a non-contact collection and secures recovery of cells.

In facilitating accurate cell counting for this study, laser microdissection collection was limited such that clusters of sperm cells were avoided. This was done by limiting single software

tracings to a range of 1 to 10 cells at any one time. Slides were vacuum desiccated and brought to room temperature immediately before LMD. The LMD parameters used at the 40x objective are listed in Table 1.

An analog hand counter was used while 75, 150 or 300 sperm and epithelial cells were dissected by LMD from the prepared smears. Cells were automatically collected into the cap of 0.2ml thin walled PCR tubes containing 20µl of buffer (described in section "DNA Isolation" below). After collection cells were centrifuged down from the cap for 10 seconds.

#### 2.6 DNA Isolation

#### 2.6.1 Qiagen QIAamp

LMD cells collected in 20µl of TE buffer (10mM Tris-HCl, 0.1mM EDTA, pH8) were extracted using the QIAamp DNA Micro Kit (Qiagen). Lysis was performed by adding Buffer ATL to a final volume of 50µl, 10µl of Proteinase K, 30mM dithiothreitol (DTT), then incubated at 56°C for 3 hours with occasional agitation. 50µl of Buffer AL with 1 µg kit carrier RNA was added and mixed for 15 seconds. 50µl of 100% ethanol was added and mixed for 15 seconds. The entire lysate was added to the QIAamp MinElute Column and centrifuged for 1 minute for DNA binding to column. The column was washed with 500µl Buffer AW1 and centrifuged for 1 minute, then washed with 500µl of buffer AW2 and centrifuged for 1 minute. The column was dried by centrifugation for 3 minutes. Elution of DNA from the column was performed by adding 25µl of Buffer AE, incubating for 5 minutes at room temperature, and centrifuged for 1 minute to recover DNA extract.

#### 2.6.2 MicroLYSIS

LMD cells collected in microLYSIS reagent were extracted using 20µl of reagent with the addition of DTT (30mM) and incubated in the thermal cycler according to the manufacturer's recommendations as follows: 65°C for 5 minutes, 96°C for 2 minutes, 65°C for 4 minutes, 96°C for 1 minute, 65°C for 1 minute, 96°C for 30 seconds, 20°C hold. LMD sample collection, lysis and PCR were all performed in the same 0.2ml thin-walled tube.

#### 2.6.3 Lyse-N-Go

LMD cells collected in Lyse-N-Go reagent were extracted using 20µl of reagent with the addition of DTT (30mM) and incubated in the thermal cycler according to the manufacturer's recommendations as follows: 65°C for 30 seconds, 8°C for 30 seconds, 65°C for 90 seconds, 97°C for 180 seconds, 8°C for 60 seconds, 65°C for 180 seconds, 97°C for 60 seconds, 65°C for 60 seconds, 65°C for 180 seconds, 97°C for 60 seconds, 65°C for 180 seconds, 97°C for 60 seconds, 65°C for 5 minutes. LMD sample collection, lysis and PCR were all performed in the same 0.2ml thin-walled tube.

## 2.6.4 Chelex

LMD cells collected in a 5% Chelex-100 (Bio-Rad) solution (pH 10) were extracted in 20µl of the bead suspension with the addition of DTT (30mM) and 1µl of proteinase K (10mg/mL) then incubated in a heat block at 56°C for 45 minutes. Samples were vortexed for 10 seconds and incubated at 100°C for 8 minutes followed by another 10-second vortex and

centrifuged for 2-3 minutes. The DNA extract was removed from the resin by a capillary pipette tip to separate from the beads. All of the  $\sim 15\mu l$  of DNA extract recovered was used for PCR.

#### 2.7 PCR and Human Identification

Short tandem repeat (STR) markers are polymorphic DNA loci that contain a repeated nucleotide sequence. The STR repeat unit can be from two to seven nucleotides in length but most commercial kits used in forensic science applications are composed of tetra-nucleotide repeats. Alleles of different lengths are possible because the number of repeat units at an STR locus may vary. STR loci can be amplified and fluorescently labeled using the polymerase chain reaction (PCR). PCR products were separated by electrophoresis to distinguish the alleles according to size, then collected data was analyzed by software to size the DNA fragments and genotype the alleles. The use of several STR loci provides a high discrimination power useful for human identification purposes [LaFountain et al., 2001].

In this study DNA amplification was performed using Applied Biosystems AmpF/STR® Profiler Plus<sup>™</sup> Kit for nine short tandem repeat loci (Blue: FAM-labeled D351358, vWA, FGA; Green: JOE-labeled D8S1179, D21S11, D18S51, and Yellow: NED-labeled D5S818, D13S317, D7S820) plus amelogenin. This kit was chosen due to its reliability in human identification shown through many validation studies [LaFountain et al., 2001; Frank et. al 2001, Leclair et al. 2004, Moretti et al. 2001]. PCR was performed on a Bio-Rad iCycler according to manufacturer recommendations using a 50µl reaction volume per sample under standard conditions. Standard PCR conditions were utilized as follows: 21µl AmpFlSTR PCR Reaction Mix, 1µl AmpliTaq Gold DNA Polymerase, 11 µl AmpFlSTR Profiler Plus Primer Set, 20 µl sample DNA; Thermal cycling conditions - Incubate 95°C for 11 minutes (polymerase activation); 94°C for 1 minute (denaturation), 59°C for 1 minute (annealing), 72°C for 1 minute (extension) for 28 cycles; then 60°C for 45 minutes (final extension). In addition, extended cycles analysis was used and amplified as follows: 25µl of PCR product amplified under the standard conditions was removed and added to a new tube with 0.25µl of AmpliTaq Gold DNA Polymerase, and then PCR was continued as described above for six additional cycles.

#### 2.8 Electrophoresis Conditions

1.5µl of each PCR product was added to 24µl of HI-DI formamide with 1µl of ROX-500 size standard (Applied Biosystems) and denatured at 95°C for 3 minutes then snap cooled on ice for 3 minutes. Denatured samples were shipped overnight on ice pack to either the Los Angeles Police Department Crime Laboratory or ReliaGene Technologies for electrophoresis and data collection. Capillary electrophoresis was performed using POP-4 polymer through a 36cm capillary with a 60°C block temperature at a run voltage of 15kV. The histology study samples were injected for 5 seconds on an ABI Prism 310 Genetic Analyzer. The DNA isolation and mixture study samples were injected for 11 seconds using an ABI Prism 3100 Genetic Analyzer.

#### 2.9 Data Analysis

GeneScan 3.1.2 and Genotyper 2.5.2 (Profiler Plus template 4.1) software were utilized to analyze the electrophoresis data at Rosalind Franklin University of Medicine and Science. Baselining, matrix correction and light smoothing were applied to all samples. The minimum peak height threshold was set at 50 RFU to allow for detection of all peaks clearly above background. Peaks were examined to determine if they qualified as true alleles excluding fluorescent signal that was identified as stutter, spectral overlap, incomplete nucleotide extension, electronic noise, dye blobs or raised baseline. The peak height, in relative fluorescent units (RFU), of all true alleles was used for statistical analysis. Amplified product quantity was measured using peak height as a parameter. Data compilation and statistical calculations were performed in Microsoft Excel 2001and GraphPad Prism 4.0 including mean, standard error, unpaired t-test, Wilcoxon test, and ANOVA analysis with Bonferroni's post-tests.

## **CHAPTER 3. RESULTS AND DISCUSSION**

#### 3.1 Technical Discussion

The Leica AS LMD is designed primarily to cut mounted tissue cryosections. Since cell smears were used in this study, some time was spent on determining the optimal sample preparation and cutting conditions for this study. The instrument has several available cutting parameters what can be manipulated as show in Table 1. The UV laser operates at 30Hz and up to 60 Hz in burst mode. The intensity of the laser can be adjusted using a "less" to "more" sliding scale. It was observed that determining the minimum necessary energy to cut the material in question was important because using excessive laser strength caused leakage of laser light to a nearby area of the slide. Shadows of the cutting pattern were occasionally observed about 100-200µm from the target cut when the laser was operated at maximum power. Although the intensity of the deflected light was not strong enough to cut through the material there was obvious ablation damage to the surface. It was conceivable that this leakage from the UV laser could degrade or destroy nuclear material from nearby cells if not controlled.

The cutting speed parameter can be adjusted on a slow to fast sliding scale. By slowing down the laser speed, a deeper cut could be achieved and laser intensity reduced. The drawback although to reducing speed was an increase in collection time. The balance between laser intensity and speed were the two parameters that had the most dramatic effect on cutting performance but once the desired settings were determined for a particular type of specimen the

specification could be saved and quickly restored by the computer software for future cutting sessions. This allowed the instrument to be used for a variety of other applications such as pathology samples, hair roots or other tissue without re-optimizing for each different tissue type or user prior to each session.

Laser aperture can also be adjusted on a sliding scale. A narrow aperture gave more precision and control in excising specific cells without the ablation of adjacent cells while a wider aperture better facilitated the drop of the specimen into the collection tube. It was found however that the larger apertures were only necessary when large, odd-shaped, free-drawn cuts were performed. It is analogous to a jigsaw puzzle where an elaborate piece would be more difficult to punch out than the circular piece. In this study most of the specimens involved collection of only one or two cells no larger than a circle with a 30-micron diameter and throughout the experiments performed, a narrow aperture was found to be sufficient for dissection of these small pieces.

Toward the end of each cut, the instrument pauses at a short distance from completion of the closed loop. A larger and wider burst of laser power is then pulsed to push the cell(s) into the collection tube. Both the gap (small, medium, large) during the pause and the amount of increased laser intensity and aperture can be controlled. In general, longer bridge gaps allowed more controlled sample drops. The shorter the gap the more frequent the PEN membrane would prematurely peal away before the final burst potentially causing a hanging sample which has been named "hanging chad" after the 2000 presidential election controversy. The sample would hang below the slide attached only by a small bridge. This premature movement could cause the focal plane to be offset from the remaining membrane to be cut. Because the effectiveness of the

laser is in part dependent on the microscope objective's focus on the specimen, the final burst occasionally did not complete the final cut when hanging chads occurred. This problem may be prevented in two ways. 1) Longer gap settings 2) Wider more intense final laser bursts. However, once a hanging chad occurs it was found that the best method effective in completing the cut and collection was to refocus and retarget the bridge using the line cut feature. Optimal LMD parameters were determined for sperm and epithelial cells as described in the methods section. In general, slower more intense laser settings were requires to collect epithelial cells.

The 4x, 10x and 20x objectives were insufficient to identify the small sperm cells of 5µm. The 63x objective was helpful in identifying or verifying sperm morphology and could also be used for dissection of spermatozoa. Although, the 63x objective created a smaller field of view reducing the potential number of sperm cells that could be cut at any one time thereby slowing the recovery process. The 40x objective was the best balance for identifying and dissecting both sperm and epithelial cells simultaneously.

Images of sperm/epithelial cell mixtures cut by LMD are show in Figure 3. Circles were found to be the most effective in targeting sperm cells using the circle and reuse tool option, which replicates the previously used cutting shape and size. Moreover, epithelial cells could also be recovered in a separate collection tube either simultaneously or after sperm collection. Changing to more aggressive cutting parameters (Table 1) could collect sperm cells overlapping with epithelial cells. If a sperm cell resided very close to an epithelial cell nucleus ablation of the nucleus could destroy epithelial cell DNA before collection of the sperm cell to avoid contamination.

Sample preparation requires some unique challenges when performing laser microdissection. Two different types of slides were evaluated: polyethylene terephthalate (PET) and the polyethylene napthalate (PEN) slides. Leica Microsystems first developed the PEN slide followed by the production of PET slides in response for the need for an inert material for mass spectrophotometry applications. No cover slip is used in laser microdissection, therefore, the quality of the image is reduced compared to traditional microscopy. One of the characteristics explored in this study was the plastic clarity of the PET over the PEN slides. The PEN slides contain what appear to be minute bubbles in the membrane that are nearly absent in the PET slide. Several samples were prepared and examined on the PET slides finding some distinct disadvantages over the PEN slides. The PET membrane is stretched over a metal frame such that it hangs open with no contact against a solid surface. Preparing smears onto this fragile membrane was difficult as even if the smear was gently applied and supported against a solid surface deformities frequently occurred on the membrane. This exasperated the problem of continuous focal adjustment from field to field on the microscope. The membrane was also more difficult to cut requiring increased laser intensity and sometimes repeat cuts. Samples that contain very few sperm heads, which are difficult to identify, could benefit from using PET slides, however, it was determined that the drawbacks outweighed the optical advantages for routine analysis.

Histological techniques to improve the optical quality of sectioned tissue specimens are worth exploring but were beyond the scope of this project. Clearing agents have been used to defat tissues and used routinely for laser microdissection followed by nucleic acid analysis [Ehrig et al., 2001]. However this would involve more toxic chemicals and its effects on forensic STR

analysis would have to be investigated. Also, a recent development using a thin aqueous mounting solution with an adhesive gum base has been reported to greatly improve tissue morphology for laser microdissection. No detrimental effects were detected on DNA isolation and efficiency of PCR amplification including only a minimal reduction of LMD cutting efficiency [van Dijk et al., 2003]. Another practice of simply dehydrating the slides by rinsing through a gradient of low to high percentage ethanols is a technique that would not be expected to affect any downstream analysis. This could improve clarity and would also better dehydrate the specimen, an important component described in more detail below.

The cell concentration of the slide smear is also a consideration. In preliminary studies 2-5µl of the cell pellet were tested over quarter inch diameter circles on the slide. In general the smaller aliquot smeared over the spot area allowed a wider distribution of cells reducing the occurrence of sperm cells overlapping with epithelial cells. Most of the samples tested did not contain high densities of epithelial cells, which are frequently encountered in postcoital vaginal swabs. It was anticipated that with increasing numbers of epithelial cells the smears may have to be adjusted such that a larger area is utilized on the slide or the cell pellet is diluted before slide preparation.

Forensic laboratories are familiar with the need to control a facility's environmental conditions within the laboratory to maintain consistent operation of sensitive analytical equipment, and integrity of evidence samples. For example some DNA sequencers are sensitive to room temperature changes effecting electrophoresis mobility. In addition, excessive moisture and/or heat can compromise biological specimens if not stored properly. Control of environmental conditions was found to be critical for successful laser microdissection. A slide

specimen had to be well dehydrated before dissection. Water will dissipate the laser energy resulting in poor ablation. If moisture remained on the slide after a cut have been made on the plastic membrane the water could migrate between the glass slide and the membrane, making cutting nearly impossible. It was important when removing slides from the freezer to immediately vacuum desiccate to prevent the accumulation of condensation on the surface. However, in contrast excessively dry conditions created static electricity which sometimes caused a cut piece of PEN film to be attracted to the underside of the slide instead of dropping into the PCR tube. This problem was discovered as changes in cutting performance were observed through the cold, dry winters and hot, humid summers. The humidity was controlled inexpensively by using a simple room dehumidifier in the summer and a humidifier in the winter to reach the ideal humidity of 35-45 percent for LMD cutting. This avoided static electricity while preventing the absorption of water by the sample during the collection period. By controlling the humidity there was also a reduction in the effect of another dilemma with LMD collection, evaporation of buffer from the collection cap.

The collection cap has an effective working volume of 20-30µl using the 0.2ml PCR tube option (0.5ml tube option available). The brightfield illumination originates from below the stage and travels through the cap to the slide above. The heat from this light and the open exposure of the buffer to the environment can quickly cause evaporation of this small amount of buffer from the collection cap. Steps were initiated to address this problem. First, a filter was used to reduce heat exposure to the cap, and the bulb intensity was dimmed to a lower level. The digital video camera was able to compensate for the lower light level. Second, the collection cap can be put into a standby position where light is not transmitted through the cap and moved into

position just before each cutting was initiated. The second method although effective in reducing the heat on the cap was time consuming as each time a new field of view was changed the tube had to be directed out of position then back into position. However, this bottleneck is expected to improve with pending software improvements better automating the process. In the meantime the first method was effective in minimizing volume loss. In this study an acceptable  $\sim 5\mu l$  volume loss during a 45-minute cutting session was experienced. Volume could be compensated by the addition of  $5\mu l$  of either buffer or water to the collection cap prior to LMD. Given the evaporation loss there should be minimal dilution effect.

#### 3.2 Histology Comparison

To compare the staining effectiveness and downstream effect of various histological chemistries, samples from 6 donors (3 semen and 3 oral swabs) were examined. Slides were prepared with the working solutions described in the specimen collection section. Six slides were prepared for each single source donor specimen and stained as described in the histology methods. Cell identification was performed using the 40x and 63x objectives without a coverslip under brightfield and fluorescent microscopy on the Leica AS LMD microscope. Scores were assigned to describe the stain's ability to facilitate cell identification as follows: double minus (- -) = cannot ID or highly challenging; minus (-) = poor; plus/minus (+/-) = satisfactory; plus (+) = good; double plus (+ +) = excellent. Collections of 300 sperm cells and 150 epithelial cells were recovered by LMD while duration of collection was recorded. The DNA was isolated using the Qiagen QIAamp DNA purification method followed by STR

analysis. Accuracy and completeness of genotypes were verified by analyzing samples from the untreated donor specimens. Total RFU values were tabulated for each sample at each locus and normalized to values of the unstained specimen to determine relative yields. Spreadsheet data are included in Appendix B.

Table 2 shows the identification scores assigned to the specimens. Both hematoxylin/eosin and Christmas tree stain readily provided morphological discrimination of spermatozoa and epithelial cells. This is consistent with previous reports [Allery et al., 2001]. Both Wright's stain and methyl green staining resulted in poor visualization of sperm cells making identification difficult. The penetration of methyl green was difficult to control and the Wright's staining method appeared to cause some deformation either in the epithelial cells or the PEN membrane hindering identification. Acridine orange performed well for identification of sperm, although, it appeared that differentiation amongst a concentrated field of epithelial cells might be challenging as the larger epithelial cells brightly fluoresced, potentially masking hidden sperm cells. Examples of H&E, CTS, AO, and unstained cells are shown in Figure 4.

Collection times were monitored in all the histology experiment samples. Table 3 summarizes the times required to collect 300 sperm cells from UNSTN, CTS, H&E and AO specimens. No significant difference was observed in the collection times between the four types of staining (p>0.05, Wilcoxon test). The average time to collect 300 sperm cells was  $43\pm2.9$  minutes. The similarities in collection times could be attributed to a consistent cutting speed, as the same cutting parameters were uses as in this study. Differences in cell identification time may have not been observed as they were incorporated into the longer dissection times. A

record of the two time periods were not monitored, therefore, more samples would be required to further evaluate the effect of staining method on identification speed.

STR data from H&E, CTS, AO and unstained samples were compared. MG and WRT stains were excluded in this comparison due to the poor performance in the visualization of cells and also a suspected inaccuracy of cell numbers directly resulting from the high difficulty of identification. Figure 5 illustrates data in the blue dye which shows a decrease of RFU peak height exhibited by stained cells. Total RFU values of all Profiler Plus loci from the stained sperm and epithelial cells were compared to that of the unstained control to determine relative percent PCR yield. ANOVA analysis followed by Bonferroni's post-tests were applied excluding one semen donor sample due to the amplification failure of five loci from an unstained control. H&E samples exhibited RFU values  $62.4\% \pm 6.6\%$  of that observed by the unstained control (p < 0.01). CTS samples exhibited RFU values  $42.6\% \pm 5.5\%$  of that observed by the unstained control (p < 0.001). Cells stained with AO produced no amplified product in all samples tested.

It should be noted that due to the increased difficultly of identifying unstained specimens, error associated with underestimation of the number of unstained cells collected could exist but was not measured. In unstained specimens, collection was limited to sperm cells defined by their morphology, which included intact tails. Sperm heads alone were more difficult to identify without a stain. It is suspected that some sperm heads adjacent to targeted spermatozoa may have been recovered but not accounted for. Therefore, there may be an overestimate in the loss of RFU observed in stained specimens. In addition, the loss in PCR product may be due to either DNA degradation or PCR inhibition. Although not performed in this study, Human DNA

quantification by real-time PCR assay could provide data on quantity and quality of extracted DNA, information necessary to determine if these mechanisms are responsible for the reduced yield.

The separation and recovery of sperm cells by laser microdissection for DNA analysis differs from the preferential lysis method in that LMD is best performed when the material is stained for a more accurate and efficient microscopic identification of the cells of interest. It is important that histological dyes chosen do not interfere with downstream analysis of the sample DNA material. PCR inhibition of genomic DNA by dyes and fixatives has been observed with gross, stained tissue samples [Murase et al., 2000; Serth el al., 2000]. However, negative effects on DNA analysis from histological dyes can be reduced when the tissue is recovered using laser microdissection instead of manually dissecting tissue [Ehrig et al., 2001. This contrast is most likely attributable to the amount of tissue sampled as the cellular material collected by LMD is microscopically small and the instrument's ability to precisely excise the area of interest results in a low contamination of dye substances into further downstream analysis.

The objective of this part of the study was to investigate routinely used dye chemistry for their risk of degradative or inhibitory properties and their ability to provide good visual identification of the target cells. Five common stains were chosen to investigate their effect on downstream analysis of LMD collected material.

Hematoxylin/eosin is conventionally used as a nuclear stain in pathology and forensic laboratories and has been successfully used to recover LMD tissue for nucleic acid analysis [Ehrig et al., 2001]. Hematoxylin is a multicomponent dye with hematein as the active staining ingredient binding to acidic components. The blue to purple color depends on the mordant used to make the hematoxylin dye bind to the molecules in the tissue [Kiernan et al., 1990]. Of the histological stains evaluated in this study, H&E performed best. It readily provided morphological discrimination of spermatozoa and epithelial cells which is consistent with findings reported by Allery et al. The use of H&E however resulted in lower RFU values compared to unstained specimens. This supports reports indicating that hematoxylin produces less PCR product than unstained controls in laser microdissected tissue sections [Ehrig et al., 2001, Murase el al., 2000] but it continues to be a popular choice in laser microdissection. Although the mechanism responsible for the reduced yield is not completely understood, hematoxylin-bound DNA seems resistant to complete digestion which may make the DNA less available for enzymatic replication [Burton et al., 1998]. In addition, while Eosin Y has shown no effect on PCR yield in laser microdissected tissues [Murase el al., 2000] it is an acidic dye that could be responsible for DNA damage. Despite the observed reduction in PCR product, the use of H&E did not prevent the acquisition of sufficient PCR product for successful STR genotyping. Shortened exposure times of H&E staining were used as a simple tactic to reduce the uptake of dyes by the cells and lessen the negative effect of these chemicals in the subsequent studies.

The Christmas tree stain consisting of nuclear fast red and picroindicocarmine is the forensic standard used to differentiate sperm cells from epithelial cells in stain identification [Oppitz et al., 1969]. Although the Christmas tree stain provided excellent morphological discrimination of spermatozoa and epithelial cells, its use produced significantly lower RFU values than H&E specimens (p < 0.05, paired t-test). This loss may be due to the picric acid component as highly acidic solutions will depurinate nucleic acids [Moore et al., 2002]

damaging DNA. In addition, indigo carmine, used in the textile industry for dyeing denim, is a known inhibitor of PCR [Larkin et al., 1999] further causing low yields. Use of nuclear fast red stained paraffin-embedded tissues prior to laser microdissection has produced superior yield over other histological stains [Burton et al., 1998] and used alone may be an approach to increasing yield if found sufficient for morphological identification.

Methyl green with an active ingredient of ethyl green, is a one-component nuclear dye believed to bind to the negatively charged DNA in nuclei, and has shown no adverse effect on laser microdissected tissue producing consistent amplification [Murase et al. 2000]. It has also been suggested that methyl green may increase amplification efficiency in manually dissected tissues [Ehrig et al., 2001]. However in this study methyl green did not provide adequate staining to visualize and identify sperm and epithelial cells.

Wright's Stain, consisting of azure blue and eosin, is commonly used to differentiate blood cells, which can potentially be used in cases where a mixture with blood is involved. It is a neutral stain produced by the interaction of methylene blue, an acidic dye and eosin, a basic dye, producing a large salt molecule with a colored dye in both its parts. It however yields less PCR product than methyl green and nuclear fast red [Burton et al. 1998]. In this study Wright's stain did not provide adequate staining to visualize and identify sperm and epithelial cells.

Acridine orange is a nucleic acid stain used to visualize sperm from vaginal swabs particularly from samples with dense epithelial cell populations [Mercurio et al., 2001]. However, a marked decrement in DNA yield is observed in brain tissue stained with AO [Ginsberg et at., 2004]. The only florescent stain used in this study, AO provided good visual identification of sperm but differentiation from epithelial cells became more difficult amongst

high concentrations of epithelial cells and/or sperm without tails. It however proved to not be compatible with downstream analysis. AO intercalates with double stranded DNA and binds electrostatically to the phosphate backbone [Lerman 1961] which may hinder primer access to the template.

These histology study results support the previous reports of problems with PCR yield associated with hematoxylin, acidic solutions, indigo carmine and acridine orange. STR analysis of the H&E and CTS treated cells can produce sufficient PCR product for genotyping, however, further work is necessary to increase yield. Given the successful history of nuclear fast red compatibility with downstream molecular analysis, it is suggested that further investigation into using this alone for forensic sperm identification and LMD collection should be examined.

#### 3.3 DNA Isolation Comparison

To determine what isolation method would be appropriate for LMD cells three isolation methods were compared. Samples from 10 donors (5 semen and 5 oral swabs) were examined. Slides were prepared with the working solutions described in the specimen collection section and stained with the modified H&E method. Collections of 300 sperm cells and 150 epithelial cells were collected by LMD in triplicate to compare QIAamp, microLYSIS and Lyse-N-Go DNA isolation methods. All samples were typed for STRs using both standard PCR conditions and extended cycles analysis. Accuracy and completeness of genotypes were verified by analyzing aliquots from the untreated donor specimens. Total RFU values were tabulated for each sample at each locus and normalized to corresponding values of the Qiagen QIAamp samples to determine relative yield. Spreadsheet data are included in Appendix C.

All DNA extraction protocols were modified to include dithiothreitol (DTT) to facilitate the rupture of sperm cells. DTT in high concentrations can be a PCR inhibitor, therefore, some experimental tests on DTT concentration were performed using all three extraction methods. The tests indicated that 5mM DTT was insufficient in completely reducing the disulfide bonds and releasing the DNA but 10-30mM of DTT sufficiently ruptured the sperm without having a negative in effect on the PCR reaction (data not shown). The use of 30mM of DTT in the lysis step is consistent with analysis protocols from the Los Angeles Police Department [LAPD manual] and AmpFISTR kit recommendations [Applied Biosystems] of ~30-40mM.

Figure 6 shows mean values of the number of loci detected from samples processed with the three isolation methods. MicroLYSIS performed poorly with both sperm and epithelial cells samples displaying a high degree of allelic drop-out and resulting on average less than 50% of loci detected. Both Lyse-N-Go and QIAamp methods successfully isolated sperm DNA such that all loci were detected in 100% of the samples ("300 cell" count), however, results from epithelial cell extractions varied ("150 cell" count). On average 74±6.8% of loci were detected using Lyse-N-Go on epithelial cells while the QIAamp method produced on average 90±5.4% of the female donors' loci. However, within this study population the increase could not be deemed significant after ANOVA analysis (p = 0.10).

RFU values from Lyse-N-Go and QIAamp samples were also compared to evaluate quantity of PCR product produced. Relative differences were determined by normalizing RFU values of each donor sample at each locus to the corresponding QIAamp RFU values. Figure 7

shows the differences in amount of Lyse-N-Go PCR product detected from sperm and epithelial cells. QIAamp® extractions resulted in observed RFU values approximately 75% higher than the Lyse-N-Go<sup>TM</sup> method, a significant increase (p < 0.05, paired t-test), when used to extract epithelial cells. However, when applied to sperm cells the Lyse-N-Go method produced higher RFU values in 5 out of the 6 samples compared to the QIAamp® method.

The LMD collection cap has a working volume of 20-30µl. The goal of this study was to develop a method that can work in this small volume format and ideally in a single-tube format to minimize sample loss and be potentially automatable. The use of Chelex<sup>™</sup> is a rapid inexpensive method widely used in forensic casework [Walsh et. al, 1991]. Chelex<sup>™</sup> resin binds with Mg<sup>++</sup>, rendering DNAases inoperable. However, in this study preliminary data (not shown) indicated that the use of Chelex<sup>™</sup> resin was a poor method for the extraction of DNA from LMD cells. It was difficult to use in such a small volume format, challenging to remove all the liquid from the resin beads and resulted in little or no interpretable STR results when 400 and fewer cells were analyzed.

QIAamp spin columns have been successfully used to purify DNA from LCM samples [Martino et al. 2004] and forensic casework [Greenspoon et al., 1998]. This method uses a column containing a silica-based membrane that selectively binds nucleic acids as the lysate is drawn through by centrifugation. Through a series of washes, Salt and pH conditions ensure that proteins and other contaminants, which can inhibit PCR and other downstream enzymatic reactions, are not retained on the membrane. The DNA is then eluted off the membrane recovering a pure sample.

MicroLYSIS reagent and Lyse-N-Go reagent are one-step proprietary commercial reagents designed to lyse cells ready for PCR in one tube but do nothing to remove impurities. These solutions allow the release of DNA through a series of heating and cooling, which causes the cells and their organelles to lyse open [Burr et al., 2001]. The heating step also promotes the inactivation of endogenous nucleases. These methods offer the advantages of low-manipulation of forensic samples, a rapid incubation, and economical in the small volume required of LMD. However, the drawback of these methods is impurities often found in forensic samples would not be removed and may cause PCR inhibition if introduced in effective concentrations.

The nucleus of a human cheek cell is 5 microns in diameter, about the same length of a human sperm head. In this experiment, the nuclear material of the buccal cell was collected by recovering the whole epithelial cell body which is several times larger than the sperm cell. The amount of biological material including bound histological chemicals is therefore expected to be greater from the epithelial cells than the much smaller collected sperm heads. The QIAamp® kit is designed to remove proteins and possibly other contaminants that can inhibit PCR improving DNA yield from the epithelial cell samples. No such purification is done using the Lyse-N-Go<sup>™</sup> method leaving effective contaminants in the PCR reaction. In contrast the sperm cell samples most likely contributed a smaller concentration of inhibitory histological dyes into the PCR reaction than the LMD collected epithelial cells. This may have allowed the sperm cell samples to benefit from the Lyse-N-Go<sup>™</sup> method's ability to conserve sample.

The technique of diluting a DNA extract to reduce inhibitors and facilitate amplification, though with reduced sensitivity, is well documented [Yoshida el al., 1995]. A similar approach of dissecting only the nuclei of the larger epithelial cells may reduce the contribution of

inhibitory or degradative dyes into downstream analysis while maintaining the same concentration of DNA. In addition, it can be anticipated that as fewer amounts of cells are collected by LMD the concentration of inhibitors would decrease making collection of minute numbers of cells for Low Copy Number analysis more amenable to non-purification, one-step lysis buffers such as Lyse-N-Go<sup>TM</sup>. Therefore consideration of cell type and number should be a factor in the choice of DNA extraction method to address the presence of potentially inhibitory histological dyes when using LMD.

A variety of types of biological samples are encountered in forensic evidence. Not only is there an assortment of different types of samples such as blood, semen, saliva, tissue and hair but due to the nature of criminal investigations specimens will have degrees of available material, degradation, and contamination with foreign substances or bacteria. As a result there are many different DNA isolation methods routinely used in crime laboratories to address the basic steps of lysing the cells and recovering a relatively pure DNA sample for PCR analysis.

Some unique challenges emerge when developing and determining what DNA isolation method is appropriate for LMD cells. When faced with performing molecular DNA analysis of stained cells, a method that removes the histological chemicals from the DNA would be preferred to avoid polymerase inhibition. In addition, choosing a DNA isolation method that conserves the DNA and provides a concentrated DNA extract would be desirable for LMD cells. The time required to collect cells was approximately 15 minutes per 100 sperm cells using the Leica system software version 4.1.3. It was important then to minimize the number of cells collected and chose a DNA isolation method such that the entire extract can be used for PCR. This would be particularly important in the recovery and analysis of very minute evidence

sample and Low copy number (LCN) analysis. For the LMD collection of sperm cells the Lyse-N-Go extraction method conserved cells, had a rapid lysis and could provide complete STR typing.

### 3.4 Cell Separation Study

To evaluate the capability of LMD to separate and recover sperm cells from a semen/epithelial cell mixture, five mixed cell samples from 10 donors (5 semen and 5 oral swabs) were examined. Mixtures were created by combining 25µl of the epithelial cell pellet working solution with 10µl of the 1:10 semen working solution and prepared on PEN slides as described in the methods section and stained with the modified H&E protocol. Collections of 75, 150 and 300 sperm cells were separated by LMD from the mixtures. A serial dilution of the AmpF/STR positive control standard was included to simulate 2ng, 1ng, 0.5ng, 0.25ng and 0.125ng DNA amplifications to compare to collected cell amounts. STR typing was performed on all samples under both standard and extended cycles analysis. Accuracy and completeness of genotypes were verified by analyzing samples from the untreated donor specimens. Total RFU values and peak height ratios were tabulated at each locus. Spreadsheet data is included in Appendix D.

Using standard PCR conditions all 10 loci of the sperm donors in all samples containing 300 LMD sperm were detected. Samples containing 150 sperm exhibited on average  $96\pm3\%$  of the male donors' alleles and samples containing 75 sperm cells displayed on average  $72\pm12\%$  of the male donors' alleles. STR plots of the LMD sperm fractions from three collection amounts

are illustrated in Figure 8 and the donor genotypes of the original mixture are listed in Table 4. In all samples tested, no true allele peaks were detected in non-overlapping positions from the female buccal cell donors.

Extended cycles analysis was used for two purposes. First, increased amplifications can detect even minute amounts of carryover female DNA that may be contaminating the sperm fraction. Second, increasing cycle number could be useful in detecting male donor alleles not detected under standard PCR conditions. Using extended cycle analysis 100% of samples containing 75 and 150 sperm cells displayed all of the sperm donor alleles. Non-overlapping female alleles (alleles that are not the same for both donors) were not detected in any samples using a total of 34 PCR cycles demonstrating the collection of a pure population of sperm cells without female DNA contamination. This is illustrated in Figure 9 showing STR plots of the two collection amounts from the same mixture. Samples containing 300 sperm were not interpreted due to the preponderance of peak heights over the linear range and an abundance of PCR artifacts such as increased stutter and -A nucleotide products.

RFU (signal intensity) is a measure of PCR product quantity. Peak height data is summarized in Figure 10 showing the total fluorescence signal detected (the sum of two heterozygote peaks or the value of a single homozygote peak) at each locus for the three collection amounts. In general the total RFUs detected increased with an increase in the number of LMD collected sperm cells. Assuming one human haploid cell contains 3.3pg of genomic DNA, the examination of 75, 150, and 300 sperm cell amounts contains approximately 0.25, 0.5 and 1.0ng of DNA respectively prior to DNA isolation. The lower limit recommended by the AmpF/STR kit is 1ng although forensic casework is routinely performed below this limit. Signal

intensity was compared from the experimental samples with a dilution series of the AmpF/STR® DNA positive control under standard PCR conditions. Figure 11 shows a plot with regression line of the positive DNA control analyzed from 0.125 to 2ng. As expected the positive control showed a linear relationship between RFU value and quantity of DNA ( $r^2$ = 0.9961). Mean values of the LMD samples plotted on the same graph maintained a linear relationship ( $r^2$ = 0.9179) with RFU values 2.5 - 3.7 times less than the positive control values. This reduction likely reflects DNA recovery or PCR inefficiency but it is not possible to measure this precisely due to inherent inaccuracies with the quantitation of the positive control by the manufacturer.

Threshold RFU values for individual peak heights are typically determined by each laboratory based on internal validation of their protocols and interpretation guidelines. The Applied Biosystems User's Manual recommends a minimum threshold value of 150 RFU. However, in practice alleles are routinely identified below this level with special cautions in interpretation. Under standard PCR conditions, heterozygote and homozygote peak height ranged from [51, 217] for "75 sperm", [54, 479] for "150 sperm" and [56, 494] for "300 sperm" samples with loci of larger base pair sizes generally exhibiting lower peak heights. Under extended cycles analysis peak heights ranged from [306, 7786] for "75 sperm", and [657, 9413] for "150 sperm" samples.

Balanced allele peaks are important for accurate genotyping from DNA mixtures. Heterozygote peak height ratios were calculated, which is defined as the height of the lower peak divided by the height of the higher peak, of the sperm cell fractions. Samples that displayed only one allele at a locus where the donor was heterozygous were excluded in the calculations. Peak height ratios calculated and at each locus are shown in Figure 12. Mean peak height ratios over

all loci under standard conditions were  $76.3\pm3.3\%$  for "75 sperm",  $81.1\pm1.3\%$  for "150 sperm and  $82.0\pm1.4\%$  for "300 sperm" samples. Mean peak height ratios decreased with extended cycles analysis to  $67.0\%\pm4.2\%$  for "75 sperm" but did not significantly change for "150 sperm" samples at  $85.2\pm2.1\%$ , however, variance increased in peak height ratio values when extended cycle analysis was used.

Under ideal conditions a PCR reaction will contain an equivalent number of copies of both alleles. In theory amplification should occur resulting in equal amplicon yields from each target sequence, although in practice various factors affect PCR efficiency creating disproportionate products. Reactant depletion, accumulation of pyrophosphate and other contributing factors reduce PCR efficiency in later cycles resulting in fewer large amplicons become targets in subsequent cycles [Leclair et al., 2004]. Therefore, even under ideal of conditions peak height ratios are less than 1. A validation study using the Profiler Plus kit calculated peak height ratios from 425 database and casework samples which reported mean values for single source specimens above 86% [Frank et al., 2001]. The AmpFISTR kit is optimized to produce relatively balanced levels of PCR product both within and between loci and rarely produce height ratios less then 70% in a heterozygous individual. Ratios observed in single source samples less then 70% may indicate degraded DNA, presence of inhibitors, a rare sequence not efficiently amplified, or low amount of DNA or cells [AmpF/STR User's Manual].

A few factors were believed to be at work in this study's experimental samples resulting in mean peak height ratios below expected values. First, as indicated in the histology study, histological stains either acted as effective PCR inhibitors or degraded the DNA. Second, the amount of input DNA into the PCR reactions was lower than the recommended range. Third, the

samples involved the analysis of haploid cells. In abundant amounts of haploid cells one would expect to have equal amounts of each allele due to random sampling. However, as fewer cells were collected the probability of having a disproportionate representation of alleles increased. Finally, increasing PCR cycles above the optimized range could cause preferential amplification of one allele in late cycles as described earlier. Despite the apparent loss in PCR product yield, 75-300 sperm separated from an epithelial cell mixture produced clear single source genotypes with satisfactory peak signals and allelic balance.

The nature of forensic samples results in a variety of cell numbers on a vaginal swab. In this study mixtures were created to be equivalent to 1µl of semen and one half a buccal swab to get consistency in the mixture experiments. However, it was later determined that using this approach to create mixed specimens could still result in a wide variety of cell ratios and concentrations due to the individual variability of the donor samples. Hemacytometer analysis of 5 buccal swabs and 4 semen samples were performed to determine cell concentrations. Table 5 lists cell amounts estimated for 1/2 buccal swab and 1µl of semen. A large variability in both buccal swabs and semen samples was observed with standard deviations exceeding 50% of the mean values. This unintentional variability may actually closer represent postcoital samples. This indicates that controlled cell ratio studies are warranted in the future to determine the LMD separation power of sperm cells from increasing concentrations of epithelial cells.

To fully evaluate the LMD method's separation capability, real postcoital and forensic casework samples should be analyzed. A hurdle anticipated in more compromised samples is the premature lysis of vaginal epithelial cells prior to evidence collection. Previous physical separation methods discussed earlier reports carryover contamination of the female fraction, due

primarily to free-floating DNA. It is predicted that most free-floating DNA can be avoided using LMD due to the precise dissection capabilities of the instrument. However, of greater concern is the affinity of exogenous DNA to sperm heads.

Sperm cells from nearly all species are able to take up foreign DNA [Spadafpra et al., 1998]. Exogenous DNA binding is an ionic reversible interaction that occurs in the subacrosomal segment of the sperm head and interestingly seminal fluid strongly repels the binding. The glycoprotein, IF-1, has been identified as an inhibitory factor in seminal fluid that selectively binds to the same cell compartment targeted by exogenous DNA binding, protecting the sperm. It would be expected that as the postcoital interval increases there would be a reduction in seminal fluid concentration and degradation of seminal fluid proteins. This combined with the normal metabolic lysis of vaginal epithelial cells could be an environment encouraging the binding of the female's vaginal DNA with the semen depositor's sperm. Plasmid DNA has been found to detach from epididymal spermatozoa by excess of cold competitor DNA or by other polyanions as heparin and dextran sulphate [Lavitrano et al., 1992]. For future studies, an approach to separate exogenous DNA from sperm cells prior to LMD may lie in the exposure of the cell pellet to an appropriate negatively charged macromolecule solution to remove the vaginal DNA bound to the sperm head.

## CHAPTER 4. CONCLUSIONS

These results demonstrate that laser microdissection is an effective technique for recovering spermatozoa from a sperm/epithelial cell mixture. LMD collects pure populations of sperm with no apparent cross contamination from epithelial cells. Hematoxylin/eosin and nuclear fast red/picroindigocarmine histological stains can be used for sperm identification in conjunction with LMD separation for STR genotyping. Used in combination with the Lyse-N-Go extraction procedure the LMD method is a simple, low-manipulation method that conserves collected sperm cells. This has the potential of facilitating analysis of low numbers of sperm.

The simplicity of the LMD method can be demonstrated in Figure 13 compared it to the traditional methods of processing a sexual assault mixture. Using preferential lysis with Chelex or organic phenol/chloroform DNA extraction requires about one and a half days from the time the laboratory begins processing of a single swab until the sample is ready for PCR. Alternatively, the LMD method can take a sample and be PCR ready within a couple of hours. It is also conceivable that hospital sexual assault evidence kits (SAK) could be prepared with PEN slides for preparation of smears further facilitating the LMD process.

LMD combines and eliminates other forensic DNA analysis steps making the laboratory process more efficient. The sperm identification step and separation step are done simultaneously using the LMD method. The direct human DNA quantification step is eliminated as cells can easily be counted during LMD collection and extrapolated into an estimate of DNA quantity added to the PCR reaction. DNA quantification is particularly important in samples with high DNA concentrations, as it is necessary to limit the amount of DNA entered into the PCR reaction

to avoid off-scale data, PCR inhibition and other amplification artifacts. The AmpF/STR kit recommends a maximum DNA input of 1-2.5ng of DNA. LMD collection is preferably done and can be limited to < 2.5ng or ~750 sperm cells. Adherence to SWGDAM validation guidelines [TWGDAM 1995] concerning the quantification of DNA could be achieved by validating a cell counting method with the DNA extraction yield to estimate quantity. Not only does LMD eliminate the need for a time consuming DNA quantification procedure but also conserves precious sample for genotyping.

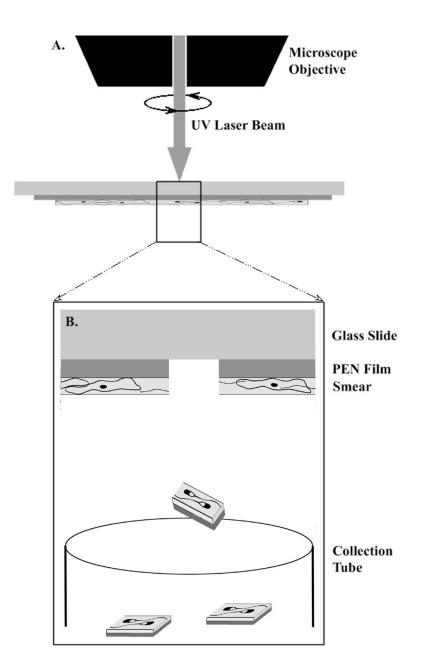
A disadvantage of using the LMD method at this time is the separation step cannot be batched as in the preferential lysis method. Each sample slide is handled separately and the time it takes to recover the samples is dependant on the number of cells collected. However, relief at this bottleneck will most likely occur in the near future as the manufacturer has recently released software modifications to allow all target cells to be dissected from an entire slide using a single initiation of dissection rather than field by field. In addition, software is in development to perform auto-recognition of target cells based on identification parameters designated by the operator. These improvements could revolutionize this technology. Yet even now, when a few samples require an immediate and quick analysis LMD could be the critical tool of choice.

Other potential forensic application of the LMD could be the use of fluorescence in-situ hybridization (FISH) to target sex chromosomes on the slide. FISH has been used to identify male epithelial cells in cervicovaginal smears and found more sensitive than conventional cytolocical stains [Rao et al., 1995]. Integrating LMD with FISH could allow the separation of mixtures of identical cell types from two donors of different sex. DNA mixtures found in cases

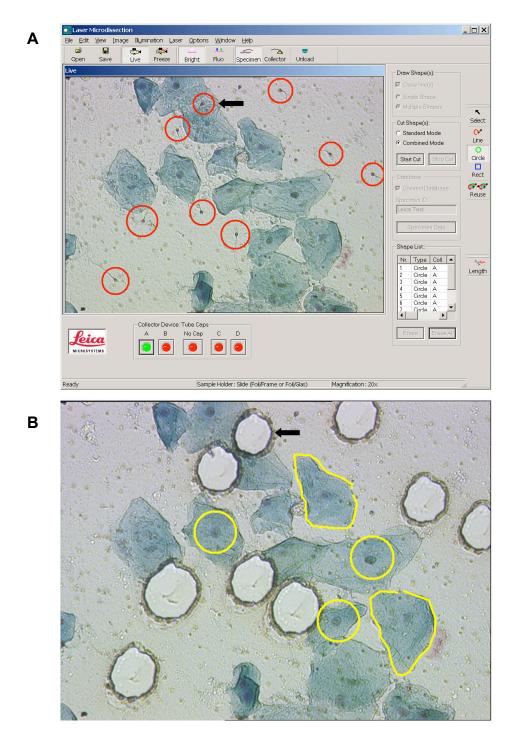
involving forced oral copulation, sodomy and digital penetration could potentially be separated using LMD even when sperm is absent.

Products of conception may have evidentiary value in determining the identity of a rapist or even link a pregnancy to a motive for homicide. Occasionally products of conception become available in criminal cases due to elective abortion, miscarriage or autopsy and could be analyzed using LMD in its traditional capacity, dissections from tissue cryosections. Historically, manual dissection of products of conception has been the method used by trained pathologists to recover fetal tissue. However, frequently the fetal material is contaminated with maternal tissue especially in early pregnancies. A case study has been documented of paternity testing from residues of chorionic villi after pregnancy termination 5 weeks before the victim was murdered [Bauer et al., 2002]. Fetal cells were selectively isolated by laser-induced microdissection to avoid contamination with maternal DNA followed by STR genotyping.

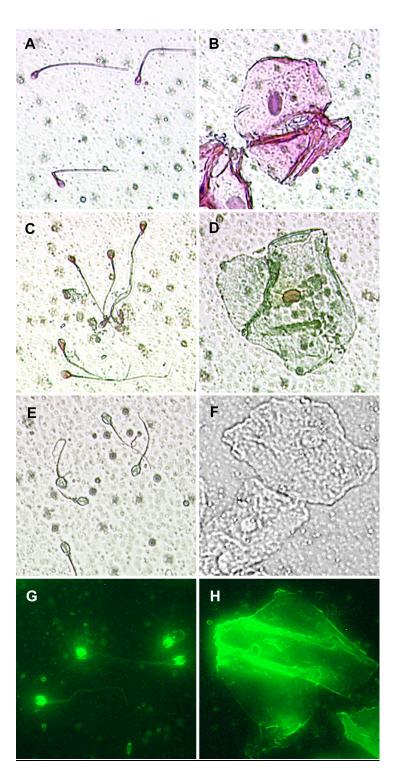
Nucleic acid analysis from single cells has been documented [Findlay et al., 1997; Garvin et al., 1998] but challenging and difficult to reproduce. Much focus and research in the forensic community is turned to low copy number analysis in order to expand the current limits of detection [Gill et al., 2000; 2001]. It is in the foreseeable future that development of single-cell analysis will be utilized in forensic casework to allow a single sperm cell to be haplotyped when the proper molecular tools are in place and statistical models for identification determined. In sexual assaults with multiple perpetrators, single-cell analysis though recovery by LMD may one day differentiate individual donors.


This research will continue by testing semen and blood mixtures, mixtures with high concentrations of epithelial cells, and its application to recover minute numbers of sperm cells

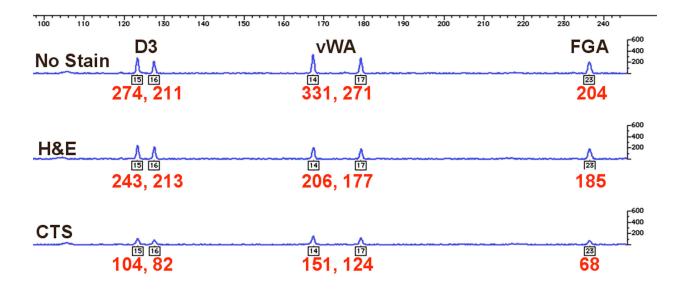
for Low Copy Number analysis. Further studies are warranted to establish if testing of genuine casework specimens respond to LMD separation like the mock specimens in this study.


# APPENDIX A FIGURES AND TABLES

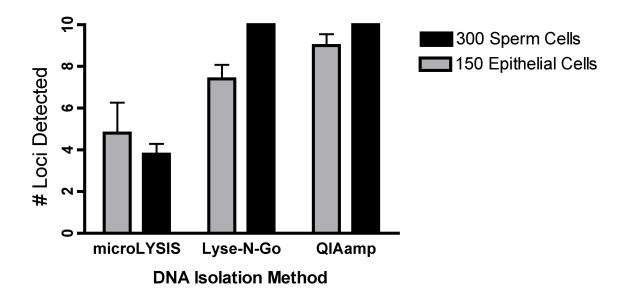



**Figure 1. Leica AS LMD System** A) Laser B) Laser shield C) Motorized objectives 4x, 10x, 20x, 40x & 63x D) Slide/specimen holder E) PCR tube holder F) Fluorescence option G) XYZ control mouse H) Live camera I) Computer controlled dissection

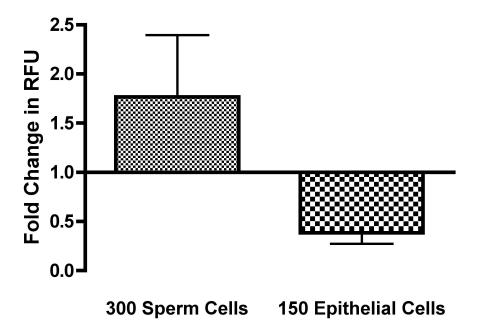



**Figure 2. Laser Microdissection on the Leica AS LMD** A) The slide rests inverted on the microscope stage with specimen facing down. The laser is focused through the objective to dissect around sperm cells cutting the PEN film. B) Magnified cross section of sperm cells adhered to PEN film dropping into collection tube below stage.

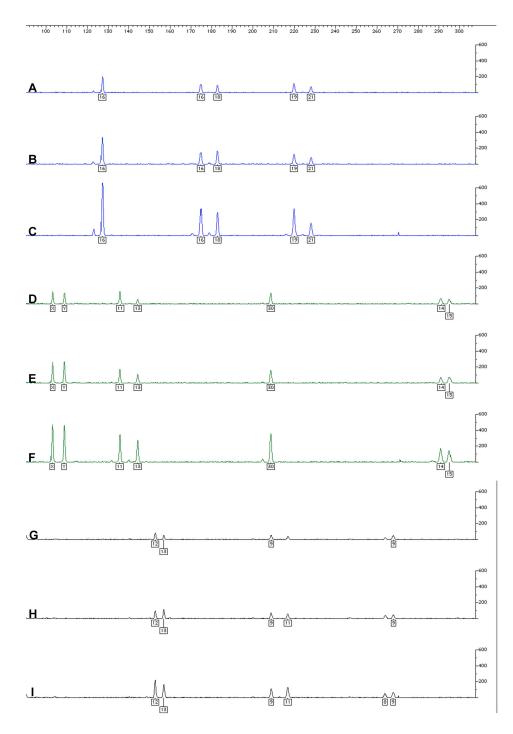



**Figure 3. Computer Controlled Laser Microdissection on the Leica AS LMD**. A) An epithelial and sperm cell mixture is displayed on the computer screen bordered by a control options window. Sperm cells are identified and targeted by circles drawn through the software control panel with tube "A" selected to the right of the "Leica" logo. B) After sperm dissection, epithelial cells are targeted by circles and drawn lines for a separate collection. Arrows specify a sperm cell commingled with two epithelial cell bodies.

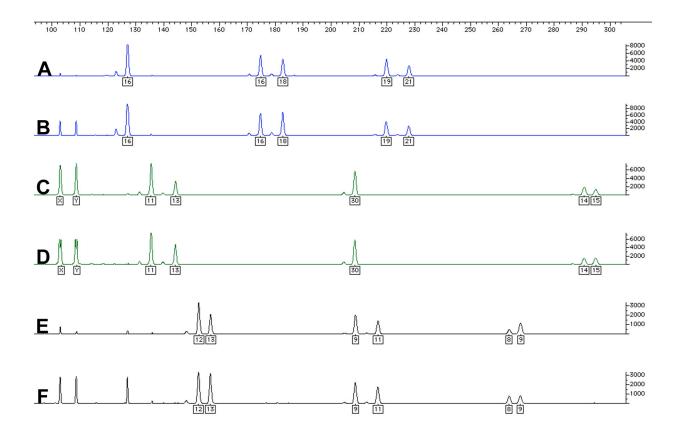



**Figure 4. Images of Stained Sperm and Epithelial Cells.** A) H&E sperm cells, B) H&E epithelial cells, C) CTS sperm cells, D) CTS epithelial cells, E) UNSTN sperm cells, F) UNSTN epithelial cells, G) AO sperm cells, H) AO epithelial cells

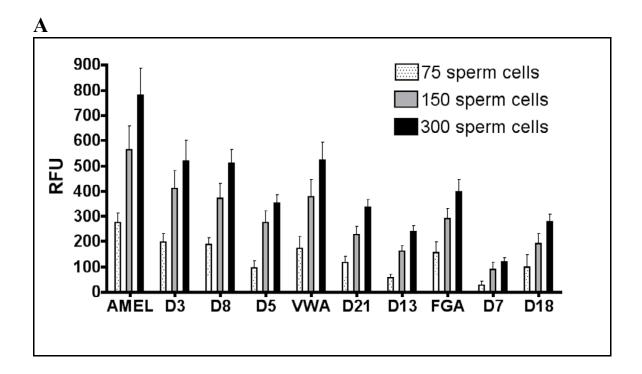


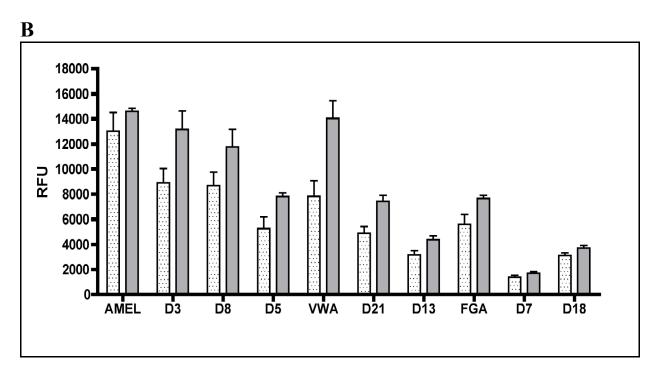

**Figure 5.** Peak Height Comparison of Stained Cells. STR Plots at the D351358, wWA and FGA loci of 150 oral epithelial cells with no stain, H&E and CTS. Red numbers below plots are RFU values of each peak.



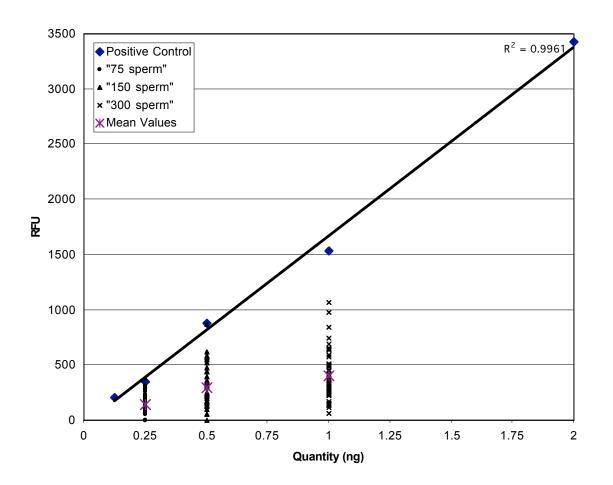

**Figure 6. Detection of STR Loci Using Different Isolation Methods**. Samples comprising of 300 sperm and 150 oral epithelial cells were subjected to three DNA isolation methods: microLYSIS, Lyse-N-Go and QIAamp. Mean number of loci (n=5) detected out of ten possible Profiler Plus markers is shown from each group.



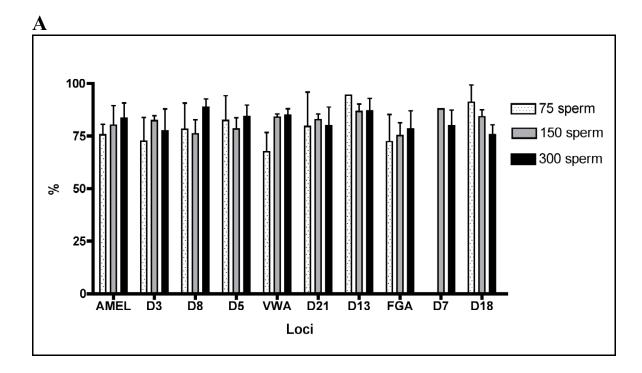

**Figure 7. PCR Product Differences Using in Lyse-N-Go vs. QIAamp Extraction.** RFU values of each donor sample was normalized at each locus to the corresponding QIAamp RFU values with mean fold changes shown for sperm samples (n=5) and epithelial cell samples (n=5).

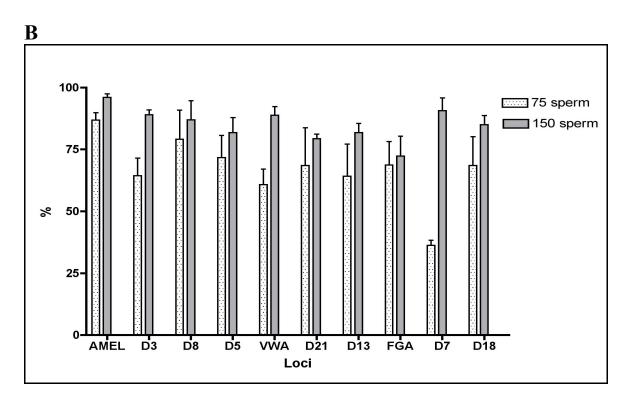



**Figure 8. STR Plots of Sperm Cells from a Mixture.** Profiler Plus alleles of LMD collected sperm cells from a sperm/epithelial cell mixture observed in the following: blue loci at A) 75 sperm B) 150 sperm and C) 300 sperm; green loci at D) 75 sperm E) 150 sperm and F) 300 sperm; yellow loci (shown in black) at G) 75 sperm H) 150 sperm and I) 300 sperm (y-axis scale at 600 RFU). Allelic drop-out observed in yellow loci for 75 and 150 cells.




**Figure 9. STR plots of Sperm Cells from a Mixture with Extended Cycles Analysis**. Profiler Plus alleles of LMD collected sperm cells from a sperm/epithelial cell mixture using extended cycles analysis observed in the following: blue loci A) 75 sperm B) 150 sperm; green loci C) 75 sperm D) 150 sperm; and yellow loci E) 75 sperm F) 150 sperm. All alleles were detected from male donor without female carryover (chart in Table 3).




**Figure 10. Level of PCR Product Detected in Standard and Extended Cycle Analysis.** Total RFU peak values at each loci were averaged for A) 75, 150, and 300 sperm cell specimens using standard PCR conditions and B) 75 and 150 sperm cell specimens using extended cycles analysis.



**Figure 11. PCR Product Level of 75, 150, and 300 Cells**. Five positive control dilutions of 0.125, 0.25, 0.5, 1 & 2ng were plotted against observed RFU values. RFU values for 75, 150 & 300 sperm samples were plotted at their maximum theoretical DNA quantity.





**Figure 12. Peak Height Ratios at Each Loci for Standard and Extended Cycles Analysis.** Peak height ratios of heterozygous loci were averaged for A) 75, 150, and 300 sperm cell specimens using standard PCR conditions and B) 75 and 150 sperm cell specimens using extended cycles analysis.

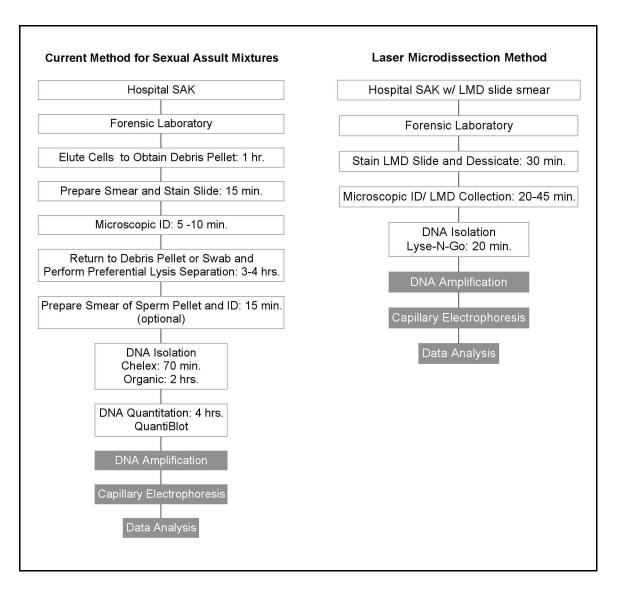



Figure 13. Protocol Flow Chart for Processing A Sexual Assault Kit. Laboratory steps and analysis times for the current traditional method are compared to the LMD method for a sexual assault evidence sample.

| <b>Table 1. LMD Parameter</b> | s for Sperm and Epithel | lial Cells using 40x Objective |
|-------------------------------|-------------------------|--------------------------------|
|                               |                         |                                |

|               | Sperm cells with low epithelial | Epithelial cells or              |
|---------------|---------------------------------|----------------------------------|
| Parameter     | cell density                    | Sperm cells with high epithelial |
|               |                                 | cell density                     |
| Aperture      | 2/16                            | 2/16                             |
| Intensity     | 39/46                           | 44/46                            |
| Speed         | 6/20                            | 3/20                             |
| Bridge (Gap)  | Medium                          | Medium                           |
| Aperture diff | 6                               | 6                                |
| Off set       | 40                              | 40                               |

Denominators denote maximum setting allowed. Numerators denote setting used for collection

|              |        | Histological Stain |     |     |    |     |     |
|--------------|--------|--------------------|-----|-----|----|-----|-----|
|              | Sample | UNSTN              | H&E | CTS | MG | WRT | AO  |
| Spermatozoa  | 1      | +/-                | +   | +   |    | -   | +   |
|              | 2      | +/-                | +   | + + | -  |     | +   |
|              | 3      | +/-                | +   | + + |    | -   | +   |
| Buccal Cells | 1      | +/-                | +   | + + | -  |     | +/- |
|              | 2      | -                  | +   | + + | -  |     | -   |
|              | 3      | +/-                | +   | + + |    |     | +   |

 Table 2. Microscopic Identification Scores of Cells for Each Histology Stain.

UNSTN = not stained.

H&E = hematoxylin/eosin.

CTS = nuclear fast red/picroindigocarmine.

MG = methyl green.

WRT = Wright's stain.

AO = acridine orange.

- - : cannot ID or highly challenging

- : poor

+/-: satisfactory

+ : good

++: excellent

| Stain | Semen Donor | Time<br>(minutes) | Mean <u>+</u> SEM<br>(minutes) |
|-------|-------------|-------------------|--------------------------------|
| UNSTN |             | · · ·             |                                |
|       | Donor 1     | 30                |                                |
|       | Donor 2     | 57                |                                |
|       | Donor 3     | 53                |                                |
|       |             |                   | 46.7 <u>+</u> 8.4              |
| CTS   |             |                   |                                |
|       | Donor 1     | 37                |                                |
|       | Donor 2     | 49                |                                |
|       | Donor 3     | 42                |                                |
|       |             |                   | 42.7 <u>+</u> 3.5              |
| H&E   |             |                   |                                |
|       | Donor 1     | 37                |                                |
|       | Donor 2     | 33                |                                |
|       | Donor 3     | 45                |                                |
|       |             |                   | 38.3 <u>+</u> 3.5              |
| AO    |             |                   |                                |
|       | Donor 1     | 36                |                                |
|       | Donor 2     | 61                |                                |
|       | Donor 3     | 37                |                                |
|       |             |                   | 44.7 <u>+</u> 8.2              |

## Table 3. LMD Collection Times for "300 sperm" Populations.

Unstained = UNSTN; Christmas Tree = CTS; Hematoxylin/Eosin = H&E; Acridine Orange = AO

| Donor               | Amel. | D3S1358 | Vwa    | FGA    | 621128D | D21S11 | D18S51 | D5S818 | D13S317 | D7S820 |
|---------------------|-------|---------|--------|--------|---------|--------|--------|--------|---------|--------|
| Male Semen          | XY    | 16      | 16, 18 | 19, 21 | 11, 13  | 30     | 14, 15 | 12, 13 | 9, 11   | 8, 9   |
| Female Buccal Cells | X     | 15, 17  | 14, 20 | 22, 25 | 10, 14  | 29     | 15, 18 | 12     | 11      | 9, 10  |

Table 4. Profiler Plus Genotypes of Donors Used in Cell Mixture from Fig. 8 & Fig. 9.

| Female Buccal Swab | # Epithelial cells /<br>half swab | Male Semen | # Sperm cells /<br>1µl semen |
|--------------------|-----------------------------------|------------|------------------------------|
| Donor A            | 36,000                            | Donor F    | 48,950                       |
| Donor B            | 49,000                            | Donor G    | 90,750                       |
| Donor C            | 85,250                            | Donor H    | 138,900                      |
| Donor D            | 90,250                            | Donor I    | 31,350                       |
| Donor E            | 14,500                            |            |                              |

# Table 5. Estimated Cell Concentrations of Donor Specimens

## APPENDIX B HISTOLOGY COMPARISON DATA

### HISTOLOGY COMPARISON: Cell Identification and Collection Times

|                       | ID Grade         | Time (minutes) |
|-----------------------|------------------|----------------|
| UNSTN Samples<br>S-67 | 2                | 30             |
| S-07<br>S-2           | 3                | 57             |
| S-2<br>S-94           | 3<br>3<br>2<br>3 | 53             |
| O-06                  | 2                | 50             |
| O-04                  | 2                | 48             |
| O-30                  | 3                | 42             |
| CTS Samples           | Ũ                |                |
| S-67                  | 5                | 37             |
| S-2                   | 4                | 49             |
| S-94                  | 5                | 42             |
| O-06                  | 5                | 28             |
| O-04                  | 5                | 20             |
| O-30                  | 5                | 25             |
| H&E Samples           |                  |                |
| S-67                  | 4                | 37             |
| S-2                   | 4                | 33             |
| S-94                  | 4                | 45             |
| O-06                  | 4                | 45             |
| O-04                  | 4                | 30             |
| O-30                  | 4                | 47             |
| WRT Samples           |                  |                |
| S-67                  | 1                | 47             |
| S-2                   | 2                | 64             |
| S-94                  | 2                | 58             |
| O-06                  | 1                | 56             |
| O-04                  | 1                | 29             |
| O-30                  | 1                | fail           |
| AO Samples            |                  |                |
| S-67                  | 4                | 36             |
| S-2                   | 4                | 61             |
| S-94                  | 4                | 37             |
| O-06                  | 2<br>3           | 40<br>foil     |
| O-04                  | 3<br>4           | fail           |
| O-30                  | 4                | 51             |
| MG Samples<br>S-67    | 2                | 48             |
| S-07<br>S-2           | 2<br>1           | fail           |
| S-2<br>S-94           |                  | fail           |
| 0-06                  | י<br>2           | 50             |
| O-00<br>O-04          | 2                | 36             |
| O-30                  | 1<br>2<br>2<br>1 | fail           |
| 0.00                  |                  | iuii           |

| UNSTN | o-4 | o-6 | o-30 | s-2 | s-67 | s-94 |
|-------|-----|-----|------|-----|------|------|
| amel  | 553 | 627 | 758  | 593 | 371  | 173  |
| D3    | 557 | 485 | 707  | 539 | 358  | 152  |
| vwa   | 415 | 283 | 573  | 655 | 354  | 199  |
| fgf   | 245 | 120 | 438  | 278 | 239  | 0    |
| D8    | 456 | 891 | 781  | 590 | 354  | 159  |
| D21   | 324 | 219 | 487  | 339 | 263  | 0    |
| D18   | 139 | 137 | 291  | 244 | 187  | 0    |
| D5    | 362 | 533 | 505  | 530 | 306  | 179  |
| D13   | 297 | 163 | 334  | 316 | 238  | 0    |
| D7    | 0   | 0   | 154  | 85  | 94   | 0    |
|       |     |     |      |     |      |      |
| H&E   | o-4 | o-6 | o-30 | s-2 | s-67 | s-94 |
| amel  | 371 | 495 | 416  | 233 | 329  | 358  |
| D3    | 218 | 456 | 261  | 0   | 263  | 150  |
| vwa   | 136 | 385 | 245  | 62  | 415  | 305  |
| fgf   | 0   | 185 | 118  | 0   | 0    | 0    |
| D8    | 292 | 459 | 311  | 148 | 499  | 575  |
| D21   | 146 | 249 | 146  | 0   | 79   | 59   |
| D18   | 52  | 61  | 0    | 0   | 0    | 0    |
| D5    | 145 | 315 | 251  | 51  | 279  | 218  |
| D13   | 0   | 202 | 109  | 0   | 0    | 0    |
| D7    | 0   | 0   | 0    | 0   | 0    | 0    |
| CTS   | 0-4 | o-6 | o-30 | s-2 | s-67 | s-94 |
| amel  | 88  | 270 | 173  | 204 | 295  | 546  |
| D3    | 0   | 186 | 139  | 131 | 239  | 359  |
| vwa   | 0   | 275 | 155  | 54  | 216  | 507  |
| fgf   | 0   | 68  | 83   | 0   | 0    | 192  |
| D8    | 0   | 299 | 205  | 0   | 347  | 855  |
| D21   | 0   | 109 | 74   | 0   | 115  | 240  |
| D18   | 0   | 0   | 0    | 0   | 0    | 158  |
| D5    | 0   | 182 | 144  | 0   | 243  | 535  |
| D13   | 0   | 0   | 0    | 0   | 0    | 146  |
| D7    | 0   | 0   | 0    | 0   | 0    | 0    |

#### RFU Values for Unstained, Hematoxylin/Eosin, and Christmas Tree Stained Sperm and Epithelial Cells

## APPENDIX C DNA ISOLATION COMPARISON DATA

|               |          | A      | leles  | R      | RFU    |                |           |
|---------------|----------|--------|--------|--------|--------|----------------|-----------|
| Sample Info   | Category | Peak 1 | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| LNG OS 07 150 | AMEL     | Х      |        | 403    |        |                | 403       |
| LNG OS 07 150 | D13S317  | 11     |        | 69     |        |                | 69        |
| LNG OS 07 150 | D18S51   |        |        |        |        |                |           |
| LNG OS 07 150 | D21S11   | 29     |        | 200    |        |                | 200       |
| LNG OS_07_150 | D3S1358  | 15     | 17     | 76     | 92     | 82.6%          | 168       |
| LNG OS_07_150 | D5S818   | 12     |        | 208    |        |                | 208       |
| LNG OS_07_150 | D7S820   |        |        |        |        |                |           |
| LNG OS_07_150 | D8S1179  | 10     | 14     | 105    | 111    | 82.6%          | 216       |
| LNG OS_07_150 | FGA      | 22     | 25     | 77     | 92     | 82.6%          | 169       |
| LNG OS_07_150 | vWA      | 14     | 20     | 163    | 89     | 54.6%          | 252       |
| LNG OS_07_150 |          |        |        |        |        |                |           |
|               |          |        |        |        |        |                |           |
|               |          |        |        |        |        |                |           |
| M OS_07_150   | AMEL     | Х      |        | 294    |        |                | 294       |
| M OS_07_150   | D13S317  |        |        |        |        |                |           |
| M OS_07_150   | D18S51   |        |        |        |        |                |           |
| M OS_07_150   | D21S11   | 29     |        | 50     |        |                | 50        |
| M OS_07_150   | D3S1358  |        |        |        |        |                |           |
| M OS_07_150   | D5S818   | 12     |        | 110    |        |                | 110       |
| M OS_07_150   | D7S820   |        |        |        |        |                |           |
| M OS_07_150   | D8S1179  | 10     | 14     | 68     | 56     | 82.4%          | 124       |
| M OS_07_150   | FGA      |        |        |        |        |                |           |
| M OS_07_150   | vWA      | 14     | 20     | 95     | 64     | 67.4%          | 159       |
| M OS_07_150   |          |        |        |        |        |                |           |
|               |          |        |        |        |        |                |           |
| Q OS_07_150   | AMEL     | Х      |        | 927    |        |                | 927       |
| Q OS_07_150   | D13S317  | 11     |        | 52     |        |                | 52        |
| Q OS_07_150   | D18S51   |        |        |        |        |                |           |
| Q OS_07_150   | D21S11   | 29     |        | 253    |        |                | 253       |
| Q OS_07_150   | D3S1358  | 15     | 17     | 162    | 150    | 92.6%          | 312       |
| Q OS_07_150   | D5S818   | 12     |        | 237    |        |                | 237       |
| Q OS_07_150   | D7S820   |        |        |        |        |                |           |
| Q OS_07_150   | D8S1179  | 10     | 14     | 629    | 467    | 74.2%          | 1096      |
| Q OS_07_150   | FGA      |        |        |        |        |                |           |
| Q OS_07_150   | vWA      | 14     | 20     | 499    | 287    | 57.5%          | 786       |
| Q OS_07_150   |          |        |        |        |        |                |           |

# **DNA Isolation Comparison: STR Data**

|               |          | Alleles |        | RFU    |        |                |           |
|---------------|----------|---------|--------|--------|--------|----------------|-----------|
| Sample Info   | Category | Peak 1  | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| LNG OS_08_150 | AMEL     | Х       |        | 258    |        |                | 258       |
| LNG OS_08_150 | D13S317  |         |        |        |        |                |           |
| LNG OS_08_150 | D18S51   |         |        |        |        |                |           |
| LNG OS_08_150 | D21S11   | 30.2    |        | 50     |        |                | 50        |
| LNG OS_08_150 | D3S1358  | 15      | 17     | 84     | 72     | 85.7%          | 156       |
| LNG OS_08_150 | D5S818   |         |        |        |        |                |           |
| LNG OS_08_150 | D7S820   |         |        |        |        |                |           |
| LNG OS_08_150 | D8S1179  | 12      |        | 69     |        |                | 69        |
| LNG OS_08_150 | FGA      |         |        |        |        |                |           |
| LNG OS_08_150 | vWA      | 17      |        | 80     |        |                | 80        |
| LNG OS_08_150 |          |         |        |        |        |                |           |
|               |          |         |        |        |        |                |           |
| M OS_08_150   | AMEL     | Х       |        | 173    |        |                | 173       |
| M OS_08_150   | D13S317  |         |        |        |        |                |           |
| M OS_08_150   | D18S51   |         |        |        |        |                |           |
| M OS_08_150   | D21S11   |         |        |        |        |                |           |
| M OS_08_150   | D3S1358  |         |        |        |        |                |           |
| M OS_08_150   | D5S818   |         |        |        |        |                |           |
| M OS_08_150   | D7S820   |         |        |        |        |                |           |
| M OS_08_150   | D8S1179  |         |        |        |        |                |           |
| M OS 08 150   | FGA      |         |        |        |        |                |           |
| M OS_08_150   | vWA      |         |        |        |        |                |           |
| M OS_08_150   |          |         |        |        |        |                |           |
|               |          |         |        |        |        |                |           |
| Q OS_08_150   | AMEL     | Х       |        | 946    |        |                | 946       |
| Q OS_08_150   | D13S317  | 9       | 12     | 149    | 118    | 79.2%          | 267       |
| Q OS_08_150   | D18S51   | 14      | 16     | 169    | 147    | 87.0%          | 316       |
| Q OS_08_150   | D21S11   | 30.2    | 32.2   | 206    | 172    | 83.5%          | 378       |
| Q OS_08_150   | D3S1358  | 15      | 17     | 350    | 293    | 83.7%          | 643       |
| Q OS_08_150   | D5S818   | 11      | 12     | 360    | 267    | 74.2%          | 627       |
| Q OS_08_150   | D7S820   |         |        |        |        |                |           |
| Q OS_08_150   | D8S1179  | 12      | 16     | 512    | 531    | 96.4%          | 1043      |
| Q OS_08_150   | FGA      | 24      | 25     | 179    | 188    | 95.2%          | 367       |
| Q OS_08_150   | vWA      | 17      | 18     | 505    | 406    | 80.4%          | 911       |
| Q OS_08_150   |          |         |        |        |        |                |           |

|               |          | Alleles |        | RFU    |        |                |           |
|---------------|----------|---------|--------|--------|--------|----------------|-----------|
| Sample Info   | Category | Peak 1  | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| LNG OS_09_150 | AMEL     | Х       |        | 337    |        |                | 337       |
| LNG OS_09_150 | D13S317  |         |        |        |        |                |           |
| LNG OS_09_150 | D18S51   |         |        |        |        |                |           |
| LNG OS_09_150 | D21S11   | 30      |        | 80     |        |                | 80        |
| LNG OS_09_150 | D3S1358  | 14      | 18     | 141    | 146    | 96.6%          | 287       |
| LNG OS_09_150 | D5S818   | 12      |        | 128    |        |                | 128       |
| LNG OS_09_150 | D7S820   |         |        |        |        |                |           |
| LNG OS_09_150 | D8S1179  | 11      | 15     | 118    | 99     | 83.9%          | 217       |
| LNG OS_09_150 | FGA      | 22      |        | 84     |        |                | 84        |
| LNG OS_09_150 | vWA      | 17      | 18     | 133    | 93     | 69.9%          | 226       |
| LNG OS_09_150 |          |         |        |        |        |                |           |
|               |          |         |        |        |        |                |           |
| M OS_09_150   | AMEL     | Х       |        | 295    |        |                | 295       |
| M OS_09_150   | D13S317  |         |        |        |        |                |           |
| M OS_09_150   | D18S51   |         |        |        |        |                |           |
| M OS_09_150   | D21S11   |         |        |        |        |                |           |
| M OS_09_150   | D3S1358  |         |        |        |        |                |           |
| M OS_09_150   | D5S818   | 12      |        | 110    |        |                | 110       |
| M OS_09_150   | D7S820   |         |        |        |        |                |           |
| M OS_09_150   | D8S1179  | 11      | 15     | 54     | 79     | 68.4%          | 133       |
| M OS_09_150   | FGA      |         |        |        |        |                |           |
| M OS_09_150   | vWA      | 17      | 18     | 91     | 70     | 76.9%          | 161       |
| M OS_09_150   |          |         |        |        |        |                |           |
|               |          |         |        |        |        |                |           |
| Q OS_09_150   | AMEL     | Х       |        | 718    |        |                | 718       |
| Q OS_09_150   | D13S317  | 11      | 12     | 175    | 180    | 97.2%          | 355       |
| Q OS_09_150   | D18S51   | 12      | 13     | 171    | 135    | 78.9%          | 306       |
| Q OS_09_150   | D21S11   | 30      | 33.2   | 184    | 187    | 98.4%          | 371       |
| Q OS_09_150   | D3S1358  | 14      | 18     | 309    | 282    | 91.3%          | 591       |
| Q OS_09_150   | D5S818   | 12      |        | 704    |        |                | 704       |
| Q OS_09_150   | D7S820   | 8       | 9      | 119    | 95     | 79.8%          | 214       |
| Q OS_09_150   | D8S1179  | 11      | 15     | 415    | 272    | 65.5%          | 687       |
| Q OS_09_150   | FGA      | 22      | 23     | 233    | 241    | 96.7%          | 474       |
| Q OS_09_150   | vWA      | 17      | 18     | 363    | 307    | 84.6%          | 670       |
| Q OS_09_150   |          |         |        |        |        |                |           |

|               |          | Alleles |        | RFU    |        |                |           |
|---------------|----------|---------|--------|--------|--------|----------------|-----------|
| Sample Info   | Category | Peak 1  | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| LNG OS_10_150 | AMEL     | Х       |        | 400    |        |                | 400       |
| LNG OS_10_150 | D13S317  | 12      | 13     | 54     | 58     | 93.1%          | 112       |
| LNG OS_10_150 | D18S51   |         |        |        |        |                |           |
| LNG OS_10_150 | D21S11   | 32.2    |        | 152    |        |                | 152       |
| LNG OS_10_150 | D3S1358  | 17      | OL     | 70     | 84     | 83.3%          | 154       |
| LNG OS_10_150 | D5S818   | 11      |        | 85     |        |                | 85        |
| LNG OS_10_150 | D7S820   |         |        |        |        |                |           |
| LNG OS_10_150 | D8S1179  | 13      |        | 182    |        |                | 182       |
| LNG OS 10 150 | FGA      | 20      | 23     | 122    | 70     | 57.4%          | 192       |
| LNG OS_10_150 | vWA      | 16      | 17     | 96     | 82     | 85.4%          | 178       |
| LNG OS_10_150 |          |         |        |        |        |                |           |
|               |          |         |        |        |        |                |           |
| M OS 10 150   | AMEL     | Х       |        | 338    |        |                | 338       |
| M OS 10 150   | D13S317  |         |        |        |        |                |           |
| M OS 10 150   | D18S51   |         |        |        |        |                |           |
| M OS 10 150   | D21S11   |         |        |        |        |                |           |
| M OS 10 150   | D3S1358  |         |        |        |        |                |           |
| M OS 10 150   | D5S818   | 12      |        | 50     |        |                | 50        |
| M OS 10 150   | D7S820   |         |        |        |        |                |           |
| M OS 10 150   | D8S1179  | 13      |        | 231    |        |                | 231       |
| M OS 10 150   | FGA      |         |        |        |        |                |           |
| M OS 10 150   | vWA      | 16      | 17     | 124    | 138    | 89.9%          | 262       |
| M OS_10_150   |          |         |        |        |        |                |           |
|               |          |         |        |        |        |                |           |
| Q OS 10 150   | AMEL     | Х       |        | 1418   |        |                | 1418      |
| Q OS 10 150   | D13S317  | 12      | 13     | 290    | 283    | 97.6%          | 573       |
| Q OS 10 150   | D18S51   | 14      | OL     | 223    | 151    | 67.7%          | 374       |
| Q OS 10 150   | D21S11   | 32.2    |        | 696    |        |                | 696       |
| Q OS_10_150   | D3S1358  | 17      | OL     | 530    | 430    | 81.1%          | 960       |
| Q OS_10_150   | D5S818   | 11      | 12     | 453    | 470    | 96.4%          | 923       |
| Q OS_10_150   | D7S820   | 8       | 12     | 72     | 76     | 94.7%          | 148       |
| Q OS_10_150   | D8S1179  | 13      | T      | 1292   |        |                | 1292      |
| Q OS_10_150   | FGA      | 20      | 23     | 455    | 340    | 74.7%          | 795       |
| Q OS_10_150   | vWA      | 16      | 17     | 695    | 720    | 96.5%          | 1415      |
| Q OS 10 150   |          |         |        |        |        |                |           |

|               |          | A      | leles  | F      | RFU    |                |           |
|---------------|----------|--------|--------|--------|--------|----------------|-----------|
| Sample Info   | Category | Peak 1 | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| LNG_OS_30_150 | AMEL     | Х      |        | 316    |        |                | 316       |
| LNG OS 30 150 | D13S317  |        |        |        |        |                |           |
| LNG_OS_30_150 | D18S51   | 13     |        | 50     |        |                | 50        |
| LNG_OS_30_150 | D21S11   | 29     | 30     | 83     | 57     | 68.7%          | 140       |
| LNG_OS_30_150 | D3S1358  | 15     | 18     | 110    | 67     | 60.9%          | 177       |
| LNG_OS_30_150 | D5S818   | 11     | 12     | 70     | 84     | 83.3%          | 154       |
| LNG_OS_30_150 | D7S820   | 9      |        | 57     |        |                | 57        |
| LNG_OS_30_150 | D8S1179  | 10     | 12     | 56     | 66     | 84.8%          | 122       |
| LNG_OS_30_150 | FGA      | 22     |        | 143    |        |                | 143       |
| LNG_OS_30_150 | vWA      | 18     |        | 174    |        |                | 174       |
| LNG_OS_30_150 |          |        |        |        |        |                |           |
|               |          |        |        |        |        |                |           |
| M_OS_30_150   | AMEL     | Х      |        | 1756   |        |                | 1756      |
| M_OS_30_150   | D13S317  | 11     | 12     | 365    | 308    | 84.4%          | 673       |
| M_OS_30_150   | D18S51   | 13     | 17     | 230    | 186    | 80.9%          | 416       |
| M_OS_30_150   | D21S11   | 29     | 30     | 534    | 412    | 77.2%          | 946       |
| M_OS_30_150   | D3S1358  | 15     | 18     | 597    | 594    | 99.5%          | 1191      |
| M_OS_30_150   | D5S818   | 11     | 12     | 579    | 586    | 98.8%          | 1165      |
| M_OS_30_150   | D7S820   | 9      |        | 383    |        |                | 383       |
| M_OS_30_150   | D8S1179  | 10     | 12     | 618    | 586    | 68.70%         | 1204      |
| M_OS_30_150   | FGA      | 22     |        | 918    |        |                | 918       |
| M_OS_30_150   | vWA      | 18     |        | 1234   |        |                | 1234      |
| M_OS_30_150   |          |        |        |        |        |                |           |
|               |          |        |        |        |        |                |           |
| Q_OS_30_150   | AMEL     | Х      |        | 454    |        |                | 454       |
| Q_OS_30_150   | D13S317  | 11     |        | 51     |        |                | 51        |
| Q_OS_30_150   | D18S51   | 13     | 17     | 92     | 78     | 84.8%          | 170       |
| Q_OS_30_150   | D21S11   | 29     | 30     | 82     | 86     | 95.3%          | 168       |
| Q_OS_30_150   | D3S1358  | 15     | 18     | 131    | 113    | 86.3%          | 244       |
| Q_OS_30_150   | D5S818   | 11     | 12     | 114    | 117    | 97.4%          | 231       |
| Q_OS_30_150   | D7S820   |        |        |        |        |                |           |
| Q_OS_30_150   | D8S1179  | 10     | 12     | 416    | 359    | 86.3%          | 775       |
| Q_OS_30_150   | FGA      | 22     |        | 105    |        |                | 105       |
| Q OS 30 150   | vWA      | 18     |        | 357    |        |                | 357       |

|             |          | Alleles |        | RFU    |        |                |           |
|-------------|----------|---------|--------|--------|--------|----------------|-----------|
| Sample Info | Category | Peak 1  | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| LNG_S_1_300 | AMEL     | Х       | Y      | 772    | 758    | 98.2%          | 1530      |
| LNG S 1 300 | D13S317  | 10      | 11     | 281    | 258    | 91.8%          | 539       |
| LNG_S_1_300 | D18S51   | 13      | 14     | 305    | 297    | 97.4%          | 602       |
| LNG_S_1_300 | D21S11   | 30      | 30.2   | 322    | 375    | 85.9%          | 697       |
| LNG_S_1_300 | D3S1358  | 15      | 16     | 733    | 590    | 80.5%          | 1323      |
| LNG_S_1_300 | D5S818   | 11      | 12     | 309    | 313    | 98.7%          | 622       |
| LNG_S_1_300 | D7S820   | 10      |        | 259    |        | 0.0%           | 259       |
| LNG_S_1_300 | D8S1179  | 11      | 14     | 418    | 599    | 69.8%          | 1017      |
| LNG_S_1_300 | FGA      | 20      | 24     | 408    | 410    | 99.5%          | 818       |
| LNG_S_1_300 | vWA      | 14      | 17     | 506    | 551    | 91.8%          | 1057      |
| LNG_S_1_300 |          |         |        |        |        |                |           |
|             |          |         |        |        |        |                |           |
| M_S_1_300   | AMEL     | Х       | Y      | 631    | 614    | 97.3%          | 1245      |
| M_S_1_300   | D13S317  |         |        |        |        |                |           |
| M_S_1_300   | D18S51   |         |        |        |        |                |           |
| M_S_1_300   | D21S11   |         |        |        |        |                |           |
| M_S_1_300   | D3S1358  | 15      | 16     | 82     | 62     | 75.6%          | 144       |
| M_S_1_300   | D5S818   | 11      | 12     | 125    | 100    | 80.0%          | 225       |
| M_S_1_300   | D7S820   |         |        |        |        |                |           |
| M_S_1_300   | D8S1179  | 11      | 14     | 337    | 314    | 93.2%          | 651       |
| M_S_1_300   | FGA      |         |        |        |        |                |           |
| M_S_1_300   | vWA      | 14      | 17     | 286    | 334    | 85.6%          | 620       |
| M_S_1_300   |          |         |        |        |        |                |           |
|             |          |         |        |        |        |                |           |
| Q_S_1_300   | AMEL     | Х       | Y      | 210    | 171    | 81.4%          | 381       |
| Q_S_1_300   | D13S317  | 10      | 11     | 77     | 59     | 76.6%          | 136       |
| Q_S_1_300   | D18S51   | 13      | 14     | 92     | 78     | 84.8%          | 170       |
| Q_S_1_300   | D21S11   | 30      | 30.2   | 57     | 62     | 91.9%          | 119       |
| Q_S_1_300   | D3S1358  | 15      | 16     | 136    | 105    | 77.2%          | 241       |
| Q_S_1_300   | D5S818   | 11      | 12     | 144    | 108    | 75.0%          | 252       |
| Q_S_1_300   | D7S820   | 10      |        | 55     |        |                | 55        |
| Q_S_1_300   | D8S1179  | 11      | 14     | 209    | 132    | 63.2%          | 341       |
| Q_S_1_300   | FGA      | 20      | 24     | 63     | 92     | 68.5%          | 155       |
| Q_S_1_300   | vWA      | 14      | 17     | 182    | 189    | 96.3%          | 371       |
| Q_S_1_300   |          |         |        |        |        |                |           |

|             |          | Alleles |        | RFU    |        |                |           |
|-------------|----------|---------|--------|--------|--------|----------------|-----------|
| Sample Info | Category | Peak 1  | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| LNG S 2 300 | AMEL     | Х       | Y      | 372    | 464    | 80.2%          | 836       |
| LNG S 2 300 | D13S317  | 10      | 11     | 143    | 184    | 77.7%          | 327       |
| LNG S_2_300 | D18S51   | 13      | 14     | 147    | 104    | 70.7%          | 251       |
| LNG S_2_300 | D21S11   | 30      | 30.2   | 154    | 207    | 74.4%          | 361       |
| LNG S_2_300 | D3S1358  | 15      | 16     | 316    | 361    | 87.5%          | 677       |
| LNG S_2_300 | D5S818   | 11      | 12     | 207    | 230    | 90.0%          | 437       |
| LNG S_2_300 | D7S820   | 10      |        | 68     |        | 0.0%           | 68        |
| LNG S_2_300 | D8S1179  | 11      | 14     | 261    | 269    | 97.0%          | 530       |
| LNG S_2_300 | FGA      | 20      | 24     | 323    | 175    | 54.2%          | 498       |
| LNG S_2_300 | vWA      | 14      | 17     | 338    | 326    | 96.4%          | 664       |
| LNG S_2_300 |          |         |        |        |        |                |           |
|             |          |         |        |        |        |                |           |
| M S_2_300   | AMEL     | Х       | Y      | 842    | 648    | 77.0%          | 1490      |
| M S_2_300   | D13S317  |         |        |        |        |                |           |
| M S_2_300   | D18S51   |         |        |        |        |                |           |
| M S_2_300   | D21S11   |         |        |        |        |                |           |
| M S_2_300   | D3S1358  | 15      | 16     | 89     | 95     | 93.7%          | 184       |
| M S_2_300   | D5S818   | 11      | 12     | 242    | 131    | 54.1%          | 373       |
| M S_2_300   | D7S820   |         |        |        |        |                |           |
| M S_2_300   | D8S1179  | 11      | 14     | 465    | 332    | 71.4%          | 797       |
| M S_2_300   | FGA      |         |        |        |        |                |           |
| M S_2_300   | vWA      | 14      | 17     | 451    | 280    | 62.1%          | 731       |
| M S_2_300   |          |         |        |        |        |                |           |
|             |          |         |        |        |        |                |           |
| Q S_2_300   | AMEL     | Х       | Y      | 684    | 739    | 92.6%          | 1423      |
| Q S_2_300   | D13S317  | 10      | 11     | 448    | 439    | 98.0%          | 887       |
| Q S_2_300   | D18S51   | 13      | 14     | 361    | 368    | 98.1%          | 729       |
| Q S_2_300   | D21S11   | 30      | 30.2   | 475    | 438    | 92.2%          | 913       |
| Q S_2_300   | D3S1358  | 15      | 16     | 684    | 545    | 79.7%          | 1229      |
| Q S_2_300   | D5S818   | 11      | 12     | 522    | 518    | 99.2%          | 1040      |
| Q S_2_300   | D7S820   | 10      |        | 498    |        |                | 498       |
| Q S_2_300   | D8S1179  | 11      | 14     | 524    | 456    | 87.0%          | 980       |
| Q S_2_300   | FGA      | 20      | 24     | 540    | 514    | 95.2%          | 1054      |
| Q S_2_300   | vWA      | 14      | 17     | 638    | 507    | 79.5%          | 1145      |
| Q S_2_300   |          |         |        |        |        |                |           |

|              |          | Alleles |        | RFU    |        |                |           |
|--------------|----------|---------|--------|--------|--------|----------------|-----------|
| Sample Info  | Category | Peak 1  | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| LNG S_60_300 | AMEL     | Х       | Y      | 737    | 840    | 87.7%          | 1577      |
| LNG S_60_300 | D13S317  | 12      |        | 504    |        |                | 504       |
| LNG S_60_300 | D18S51   | 15      | 16     | 296    | 291    | 98.3%          | 587       |
| LNG S_60_300 | D21S11   | 28      | 31     | 424    | 386    | 91.0%          | 810       |
| LNG S_60_300 | D3S1358  | 15      | 17     | 642    | 512    | 79.8%          | 1154      |
| LNG S_60_300 | D5S818   | 11      | 12     | 420    | 359    | 85.5%          | 779       |
| LNG S_60_300 | D7S820   | 10      | 11     | 187    | 107    | 57.2%          | 294       |
| LNG S_60_300 | D8S1179  | 12      | 13     | 501    | 523    | 95.8%          | 1024      |
| LNG S_60_300 | FGA      | 21      | 24     | 459    | 470    | 97.7%          | 929       |
| LNG S_60_300 | vWA      | 16      | 18     | 486    | 538    | 90.3%          | 1024      |
| LNG S_60_300 |          |         |        |        |        |                |           |
|              |          |         |        |        |        |                |           |
| M S_60_300   | AMEL     | Х       | Y      | 253    | 318    | 125.7%         | 571       |
| M S_60_300   | D13S317  |         |        |        |        |                |           |
| M S_60_300   | D18S51   |         |        |        |        |                |           |
| M S_60_300   | D21S11   |         |        |        |        |                |           |
| M S_60_300   | D3S1358  |         |        |        |        |                |           |
| M S_60_300   | D5S818   |         |        |        |        |                |           |
| M S_60_300   | D7S820   |         |        |        |        |                |           |
| M S_60_300   | D8S1179  | 12      | 13     | 144    | 128    | 88.9%          | 272       |
| M S_60_300   | FGA      |         |        |        |        |                |           |
| M S_60_300   | vWA      | 16      | 18     | 119    | 101    | 84.9%          | 220       |
| M S_60_300   |          |         |        |        |        |                |           |
|              |          |         |        |        |        |                |           |
| Q S_60_300   | AMEL     | Х       | Y      | 445    | 520    | 85.6%          | 965       |
| Q S_60_300   | D13S317  | 12      |        | 665    |        |                | 665       |
| Q S_60_300   | D18S51   | 15      | 16     | 383    | 272    | 71.0%          | 655       |
| Q S_60_300   | D21S11   | 28      | 31     | 377    | 435    | 86.7%          | 812       |
| Q S_60_300   | D3S1358  | 15      | 17     | 409    | 556    | 73.6%          | 965       |
| Q S_60_300   | D5S818   | 11      | 12     | 480    | 398    | 82.9%          | 878       |
| Q S_60_300   | D7S820   | 10      | 11     | 254    | 196    | 77.2%          | 450       |
| Q S_60_300   | D8S1179  | 12      | 13     | 524    | 588    | 89.1%          | 1112      |
| Q S_60_300   | FGA      | 21      | 24     | 452    | 444    | 98.2%          | 896       |
| Q S_60_300   | vWA      | 16      | 18     | 388    | 521    | 74.5%          | 909       |
| Q S_60_300   |          |         |        |        |        |                |           |

|              |          |         |        | _      |        |                |           |
|--------------|----------|---------|--------|--------|--------|----------------|-----------|
|              |          | Alleles |        | RFU    |        |                |           |
| Sample Info  | Category | Peak 1  | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| LNG S_67_300 | AMEL     | Х       | Y      | 885    | 734    | 82.9%          | 1619      |
| LNG S_67_300 | D13S317  | 9       | 10     | 326    | 279    | 85.6%          | 605       |
| LNG S_67_300 | D18S51   | 12      | 15     | 353    | 346    | 98.0%          | 699       |
| LNG S_67_300 | D21S11   | 30      |        | 944    |        |                | 944       |
| LNG S_67_300 | D3S1358  | 15      | 16     | 794    | 707    | 89.0%          | 1501      |
| LNG S_67_300 | D5S818   | 10      | 11     | 442    | 383    | 86.7%          | 825       |
| LNG S_67_300 | D7S820   | 10      |        | 261    |        |                | 261       |
| LNG S_67_300 | D8S1179  | 13      |        | 1140   |        |                | 1140      |
| LNG S_67_300 | FGA      | 21      | 22     | 583    | 623    | 93.6%          | 1206      |
| LNG S_67_300 | vWA      | 17      | 18     | 725    | 547    | 75.4%          | 1272      |
| LNG S_67_300 |          |         |        |        |        |                |           |
|              |          |         |        |        |        |                |           |
| M S_67_300   | AMEL     | Х       | Y      | 425    | 561    | 75.8%          | 986       |
| M S 67 300   | D13S317  |         |        |        |        |                |           |
| M S_67_300   | D18S51   |         |        |        |        |                |           |
| M S 67 300   | D21S11   |         |        |        |        |                |           |
| M S 67 300   | D3S1358  |         |        |        |        |                |           |
| M S 67 300   | D5S818   |         |        |        |        |                |           |
| M S 67 300   | D7S820   |         |        |        |        |                |           |
| M S 67 300   | D8S1179  | 13      |        | 440    |        |                | 440       |
| M S 67 300   | FGA      |         |        |        |        |                |           |
| M S 67 300   | vWA      | 17      | 18     | 106    | 149    | 71.1%          | 255       |
| M S 67 300   |          |         |        |        |        |                |           |
|              |          |         |        |        |        |                |           |
| Q S 67 300   | AMEL     | Х       | Y      | 496    | 520    | 95.4%          | 1016      |
| Q S 67 300   | D13S317  | 9       | 10     | 195    | 221    | 88.2%          | 416       |
| Q S 67 300   | D18S51   | 12      | 15     | 263    | 195    | 74.1%          | 458       |
| Q S 67 300   | D21S11   | 30      |        | 455    |        |                | 455       |
| Q S 67 300   | D3S1358  | 15      | 16     | 386    | 349    | 90.4%          | 735       |
| Q S 67 300   | D5S818   | 10      | 11     | 320    | 352    | 90.9%          | 672       |
| Q S 67 300   | D7S820   | 10      |        | 129    | 1      |                | 129       |
| Q S 67 300   | D8S1179  | 13      |        | 915    |        |                | 915       |
| Q S 67 300   | FGA      | 21      | 22     | 265    | 294    | 90.1%          | 559       |
| Q S 67 300   | vWA      | 17      | 18     | 463    | 379    | 81.9%          | 842       |
| Q S 67 300   |          | ± /     |        |        |        |                |           |

|              |          | Alleles |        | RFU    |        |                |           |
|--------------|----------|---------|--------|--------|--------|----------------|-----------|
| Sample Info  | Category | Peak 1  | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| LNG S_94_300 | AMEL     | Х       | Y      | 700    | 667    | 95.3%          | 1367      |
| LNG S 94 300 | D13S317  | 8       | 12     | 250    | 187    | 74.8%          | 437       |
| LNG S_94_300 | D18S51   | 15      | 16     | 232    | 223    | 96.1%          | 455       |
| LNG S_94_300 | D21S11   | 28      | 30     | 420    | 385    | 91.7%          | 805       |
| LNG S_94_300 | D3S1358  | 15      | 18     | 399    | 528    | 75.6%          | 927       |
| LNG S_94_300 | D5S818   | 10      | 12     | 361    | 269    | 74.5%          | 630       |
| LNG S_94_300 | D7S820   | 8       | 11     | 114    | 135    | 84.4%          | 249       |
| LNG S_94_300 | D8S1179  | 11      | 12     | 590    | 353    | 59.8%          | 943       |
| LNG S_94_300 | FGA      | 22      | 25     | 438    | 325    | 74.2%          | 763       |
| LNG S_94_300 | vWA      | 17      | 18     | 540    | 519    | 96.1%          | 1059      |
| LNG S_94_300 |          |         |        |        |        |                |           |
|              |          |         |        |        |        |                |           |
| M S_94_300   | AMEL     | Х       | Y      | 232    | 222    | 95.7%          | 454       |
| M S_94_300   | D13S317  |         |        |        |        |                |           |
| M S_94_300   | D18S51   |         |        |        |        |                |           |
| M S_94_300   | D21S11   |         |        |        |        |                |           |
| M S_94_300   | D3S1358  |         |        |        |        |                |           |
| M S_94_300   | D5S818   |         |        |        |        |                |           |
| M S_94_300   | D7S820   |         |        |        |        |                |           |
| M S_94_300   | D8S1179  | 11      | 12     | 188    | 167    | 88.8%          | 355       |
| M S_94_300   | FGA      |         |        |        |        |                |           |
| M S_94_300   | vWA      | 17      | 18     | 113    | 93     | 82.3%          | 206       |
| M S_94_300   |          |         |        |        |        |                |           |
|              |          |         |        |        |        |                |           |
| Q S_94_300   | AMEL     | Х       | Y      | 339    | 399    | 85.0%          | 738       |
| Q S_94_300   | D13S317  | 8       | 12     | 185    | 128    | 69.2%          | 313       |
| Q S_94_300   | D18S51   | 15      | 16     | 147    | 142    | 96.6%          | 289       |
| Q S_94_300   | D21S11   | 28      | 30     | 206    | 210    | 98.1%          | 416       |
| Q S_94_300   | D3S1358  | 15      | 18     | 307    | 287    | 93.5%          | 594       |
| Q S_94_300   | D5S818   | 10      | 12     | 262    | 255    | 97.3%          | 517       |
| Q S_94_300   | D7S820   | 8       | 11     | 85     | 62     | 72.9%          | 147       |
| Q S_94_300   | D8S1179  | 11      | 12     | 441    | 383    | 86.8%          | 824       |
| Q S_94_300   | FGA      | 22      | 25     | 189    | 203    | 93.1%          | 392       |
| Q S 94 300   | vWA      | 17      | 18     | 348    | 355    | 98.0%          | 703       |

Naming nomenclature = Isolation Method \_Cell Type\_Donor\_# Cells

LNG = Lyse-N-Go

M = microLYSIS

- Q = QIAamp
- S= Semen

OS =Buccal Cells

## APPENDIX D CELL SEPARATION STUDY DATA

| S107          |          | Alleles |        | RFU    |        |                |           |
|---------------|----------|---------|--------|--------|--------|----------------|-----------|
| # sperm Cells | Category | Peak 1  | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| 75            | AMEL     | Х       | Y      | 167    | 146    | 87.4%          | 313       |
| 150           | AMEL     | Х       | Y      | 281    | 286    | 98.3%          | 567       |
| 300           | AMEL     | Х       | Y      | 494    | 480    | 97.2%          | 974       |
| 75            | D13S317  | 9       |        | 59     |        |                | 59        |
| 150           | D13S317  | 9       | 11     | 75     | 63     | 84.0%          | 138       |
| 300           | D13S317  | 9       | 11     | 120    | 132    | 90.9%          | 252       |
| 75            | D18S51   | 14      | 15     | 77     | 64     | 83.1%          | 141       |
| 150           | D18S51   | 14      | 15     | 72     | 77     | 93.5%          | 149       |
| 300           | D18S51   | 14      | 15     | 178    | 152    | 85.4%          | 330       |
| 75            | D21S11   | 30      |        | 143    |        |                | 143       |
| 150           | D21S11   | 30      |        | 169    |        |                | 169       |
| 300           | D21S11   | 30      |        | 361    |        |                | 361       |
| 75            | D3S1358  | 16      |        | 209    |        |                | 209       |
| 150           | D3S1358  | 16      |        | 353    |        |                | 353       |
| 300           | D3S1358  | 15      | 16     | 85     | 760    | 11.2%          | 845       |
| 75            | D5S818   | 12      | 13     | 88     | 62     | 70.5%          | 150       |
| 150           | D5S818   | 12      | 13     | 102    | 119    | 85.7%          | 221       |
| 300           | D5S818   | 12      | 13     | 232    | 169    | 72.8%          | 401       |
| 75            | D7S820   | 9       |        | 55     |        |                | 55        |
| 150           | D7S820   | 9       |        | 53     |        |                | 53        |
| 300           | D7S820   | 8       | 9      | 59     | 75     | 78.7%          | 134       |
| 75            | D8S1179  | 11      | 13     | 162    | 67     | 41.4%          | 229       |
| 150           | D8S1179  | 11      | 13     | 176    | 116    | 65.9%          | 292       |
| 300           | D8S1179  | 11      | 13     | 355    | 280    | 78.9%          | 635       |
| 75            | FGA      | 19      | 21     | 122    | 79     | 64.8%          | 201       |
| 150           | FGA      | 19      | 21     | 138    | 91     | 65.9%          | 229       |
| 300           | FGA      | 19      | 21     | 344    | 169    | 49.1%          | 513       |
| 75            | vWA      | 16      | 18     | 108    | 102    | 94.4%          | 210       |
| 150           | vWA      | 16      | 18     | 152    | 173    | 87.9%          | 325       |
| 300           | vWA      | 16      | 18     | 353    | 297    | 84.1%          | 650       |

## CELL SEPARATION: STR DATA USING STANDARD ANALYSIS

| S208          |          |        |        |        |        |                 |     |
|---------------|----------|--------|--------|--------|--------|-----------------|-----|
| # sperm Cells | Category | Peak 1 | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratios |     |
| 75            | AMEL     | Х      | Y      | 157    | 217    | 72.4%           | 374 |
| 150           | AMEL     | Х      | Y      | 263    | 352    | 74.7%           | 615 |
| 300           | AMEL     | Х      | Y      | 338    | 317    | 93.8%           | 655 |
| 75            | D13S317  | 10     |        | 61     |        |                 | 61  |
| 150           | D13S317  | 10     | 11     | 83     | 85     | 97.6%           | 168 |
| 300           | D13S317  | 10     | 11     | 127    | 130    | 97.7%           | 257 |
| 75            | D18S51   | 13     | 14     | 138    | 137    | 99.3%           | 275 |
| 150           | D18S51   | 13     | 14     | 137    | 109    | 79.6%           | 246 |
| 300           | D18S51   | 13     | 14     | 122    | 171    | 71.3%           | 293 |
| 75            | D21S11   | 30     | 30.2   | 99     | 95     | 96.0%           | 194 |
| 150           | D21S11   | 30     | 30.2   | 108    | 134    | 80.6%           | 242 |
| 300           | D21S11   | 30     | 30.2   | 126    | 160    | 78.8%           | 286 |
| 75            | D3S1358  | 15     | 16     | 137    | 130    | 94.9%           | 267 |
| 150           | D3S1358  | 15     | 16     | 330    | 254    | 77.0%           | 584 |
| 300           | D3S1358  | 15     | 16     | 296    | 298    | 99.3%           | 594 |
| 75            | D5S818   | 11     | 12     | 86     | 81     | 94.2%           | 167 |
| 150           | D5S818   | 11     | 12     | 165    | 138    | 83.6%           | 303 |
| 300           | D5S818   | 11     | 12     | 172    | 166    | 96.5%           | 338 |
| 75            | D7S820   | 10     |        | 83     |        |                 | 83  |
| 150           | D7S820   | 10     |        | 124    |        |                 | 124 |
| 300           | D7S820   | 10     |        | 153    |        |                 | 153 |
| 75            | D8S1179  | 11     | 14     | 112    | 125    | 89.6%           | 237 |
| 150           | D8S1179  | 11     | 14     | 233    | 209    | 89.7%           | 442 |
| 300           | D8S1179  | 11     | 14     | 236    | 213    | 90.3%           | 449 |
| 75            | FGA      | 20     | 24     | 138    | 126    | 91.3%           | 264 |
| 150           | FGA      | 20     | 24     | 172    | 187    | 92.0%           | 359 |
| 300           | FGA      | 20     | 24     | 188    | 148    | 78.7%           | 336 |
| 75            | vWA      | 14     | 17     | 182    | 114    | 62.6%           | 296 |
| 150           | vWA      | 14     | 17     | 243    | 278    | 87.4%           | 521 |
| 300           | vWA      | 14     | 17     | 254    | 233    | 91.7%           | 487 |

| S6009         |          |        |        |        |        |                 |      |
|---------------|----------|--------|--------|--------|--------|-----------------|------|
| # sperm Cells | Category | Peak 1 | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratios |      |
| 75            | AMEL     | Х      | Y      | 173    | 100    | 57.8%           | 273  |
| 150           | AMEL     | Х      | Y      | 479    | 395    | 82.5%           | 874  |
| 300           | AMEL     | Х      | Y      | 568    | 496    | 87.3%           | 1064 |
| 75            | D13S317  | 12     |        | 57     |        |                 | 57   |
| 150           | D13S317  | 12     |        | 247    |        |                 | 247  |
| 300           | D13S317  | 12     |        | 312    |        |                 | 312  |
| 75            | D18S51   |        |        |        |        |                 |      |
| 150           | D18S51   | 15     | 16     | 135    | 164    | 82.3%           | 299  |
| 300           | D18S51   | 15     | 16     | 194    | 142    | 73.2%           | 336  |
| 75            | D21S11   | 28     |        | 67     |        |                 | 67   |
| 150           | D21S11   | 28     | 31     | 181    | 160    | 88.4%           | 341  |
| 300           | D21S11   | 28     | 31     | 238    | 156    | 65.5%           | 394  |
| 75            | D3S1358  | 15     | 17     | 86     | 133    | 64.7%           | 219  |
| 150           | D3S1358  | 15     | 17     | 317    | 254    | 80.1%           | 571  |
| 300           | D3S1358  | 15     | 17     | 252    | 325    | 77.5%           | 577  |
| 75            | D5S818   | 11     |        | 62     |        |                 | 62   |
| 150           | D5S818   | 11     | 12     | 196    | 248    | 79.0%           | 444  |
| 300           | D5S818   | 11     | 12     | 248    | 199    | 80.2%           | 447  |
| 75            | D7S820   |        |        |        |        |                 |      |
| 150           | D7S820   | 10     | 11     | 91     | 80     | 87.9%           | 171  |
| 300           | D7S820   | 10     | 11     | 56     | 60     | 93.3%           | 116  |
| 75            | D8S1179  | 12     | 13     | 78     | 92     | 84.8%           | 170  |
| 150           | D8S1179  | 12     | 13     | 349    | 221    | 63.3%           | 570  |
| 300           | D8S1179  | 12     | 13     | 322    | 315    | 97.8%           | 637  |
| 75            | FGA      | 21     | 24     | 67     | 71     | 94.4%           | 138  |
| 150           | FGA      | 21     | 24     | 237    | 156    | 65.8%           | 393  |
| 300           | FGA      | 21     | 24     | 269    | 247    | 91.8%           | 516  |
| 75            | vWA      | 16     | 18     | 113    | 62     | 54.9%           | 175  |
| 150           | vWA      | 16     | 18     | 306    | 245    | 80.1%           | 551  |
| 300           | vWA      | 16     | 18     | 317    | 373    | 85.0%           | 690  |

| S6710         |          |        |        |        |        |                 |     |
|---------------|----------|--------|--------|--------|--------|-----------------|-----|
| # sperm Cells | Category | Peak 1 | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratios |     |
| 75            | AMEL     | Х      | Y      | 73     | 58     | 79.5%           | 131 |
| 150           | AMEL     | Х      | Y      | 154    | 323    | 47.7%           | 477 |
| 300           | AMEL     | Х      | Y      | 166    | 295    | 56.3%           | 461 |
| 75            | D13S317  |        |        |        |        |                 |     |
| 150           | D13S317  | 9      | 10     | 74     | 61     | 82.4%           | 135 |
| 300           | D13S317  | 9      | 10     | 83     | 74     | 89.2%           | 157 |
| 75            | D18S51   |        |        |        |        |                 |     |
| 150           | D18S51   | 12     | 15     | 120    | 98     | 81.7%           | 218 |
| 300           | D18S51   | 12     | 15     | 108    | 66     | 61.1%           | 174 |
| 75            | D21S11   | 30     |        | 60     |        |                 | 60  |
| 150           | D21S11   | 30     |        | 231    |        |                 | 231 |
| 300           | D21S11   | 30     |        | 227    |        |                 | 227 |
| 75            | D3S1358  | 16     |        | 65     |        |                 | 65  |
| 150           | D3S1358  | 15     | 16     | 161    | 192    | 83.9%           | 353 |
| 300           | D3S1358  | 15     | 16     | 183    | 91     | 49.7%           | 274 |
| 75            | D5S818   |        |        |        |        |                 |     |
| 150           | D5S818   | 10     | 11     | 112    | 130    | 86.2%           | 242 |
| 300           | D5S818   | 10     | 11     | 98     | 132    | 74.2%           | 230 |
| 75            | D7S820   |        |        |        |        |                 |     |
| 150           | D7S820   | 10     |        | 101    |        |                 | 101 |
| 300           | D7S820   | 10     |        | 59     |        |                 | 59  |
| 75            | D8S1179  | 13     |        | 100    |        |                 | 100 |
| 150           | D8S1179  | 13     |        | 327    |        |                 | 327 |
| 300           | D8S1179  | 13     |        | 334    |        |                 | 334 |
| 75            | FGA      |        |        |        |        |                 |     |
| 150           | FGA      | 21     | 22     | 145    | 164    | 88.4%           | 309 |
| 300           | FGA      | 21     | 22     | 140    | 103    | 73.6%           | 243 |
| 75            | vWA      |        |        |        |        |                 |     |
| 150           | vWA      | 17     | 18     | 149    | 178    | 83.7%           | 327 |
| 300           | vWA      | 17     | 18     | 154    | 138    | 89.6%           | 292 |

| S9411         |          |        |        |        |        |                 |     |
|---------------|----------|--------|--------|--------|--------|-----------------|-----|
| # sperm Cells | Category | Peak 1 | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratios |     |
| 75            | AMEL     | Х      | Y      | 161    | 130    | 80.7%           | 291 |
| 150           | AMEL     | Х      | Y      | 148    | 145    | 98.0%           | 293 |
| 300           | AMEL     | Х      | Y      | 339    | 407    | 83.3%           | 746 |
| 75            | D13S317  | 8      | 12     | 54     | 51     | 94.4%           | 105 |
| 150           | D13S317  | 8      | 12     | 58     | 70     | 82.9%           | 128 |
| 300           | D13S317  | 8      | 12     | 131    | 92     | 70.2%           | 223 |
| 75            | D18S51   | 15     |        | 75     |        |                 | 75  |
| 150           | D18S51   | 15     |        | 54     |        |                 | 54  |
| 300           | D18S51   | 15     | 16     | 126    | 145    | 86.9%           | 271 |
| 75            | D21S11   | 28     | 30     | 50     | 79     | 63.3%           | 129 |
| 150           | D21S11   | 28     | 30     | 92     | 73     | 79.3%           | 165 |
| 300           | D21S11   | 28     | 30     | 200    | 209    | 95.7%           | 409 |
| 75            | D3S1358  | 15     | 18     | 148    | 86     | 58.1%           | 234 |
| 150           | D3S1358  | 15     | 18     | 103    | 91     | 88.3%           | 194 |
| 300           | D3S1358  | 15     | 18     | 183    | 219    | 83.6%           | 402 |
| 75            | D5S818   | 10     |        | 100    |        |                 | 100 |
| 150           | D5S818   | 10     | 12     | 109    | 63     | 57.8%           | 172 |
| 300           | D5S818   | 10     | 12     | 173    | 170    | 98.3%           | 343 |
| 75            | D7S820   |        |        |        |        |                 |     |
| 150           | D7S820   |        |        |        |        |                 |     |
| 300           | D7S820   | 8      | 11     | 84     | 57     | 67.9%           | 141 |
| 75            | D8S1179  | 11     | 12     | 109    | 106    | 97.2%           | 215 |
| 150           | D8S1179  | 11     | 12     | 122    | 104    | 85.2%           | 226 |
| 300           | D8S1179  | 11     | 12     | 268    | 236    | 88.1%           | 504 |
| 75            | FGA      | 22     | 25     | 132    | 51     | 38.6%           | 183 |
| 150           | FGA      | 22     | 25     | 106    | 68     | 64.2%           | 174 |
| 300           | FGA      | 22     | 25     | 187    | 189    | 98.9%           | 376 |
| 75            | vWA      | 17     | 18     | 118    | 69     | 58.5%           | 187 |
| 150           | vWA      | 17     | 18     | 91     | 74     | 81.3%           | 165 |
| 300           | vWA      | 17     | 18     | 285    | 212    | 74.4%           | 497 |

Mixture sample nomenclature = Last two numbers designate epithelial cell donor; First two or three characters designate semen donor

| S107         |          | Alleles |        | RFU    |        |                |           |
|--------------|----------|---------|--------|--------|--------|----------------|-----------|
| #sperm cells | Category | Peak 1  | Peak 2 | Peak 1 | Peak 2 | Peak Ht. Ratio | Total RFU |
| 75           | AMEL     | Х       | Y      | 7574   | 7761   | 97.6%          | 15335     |
| 150          | AMEL     | Х       | Y      | 6785   | 7072   | 95.9%          | 13857     |
| 75           | D13S317  | 9       | 11     | 2057   | 1453   | 70.6%          | 3510      |
| 150          | D13S317  | 9       | 11     | 2324   | 1776   | 76.4%          | 4100      |
| 75           | D18S51   | 14      | 15     | 1916   | 1331   | 69.5%          | 3247      |
| 150          | D18S51   | 14      | 15     | 1472   | 1561   | 94.3%          | 3033      |
| 75           | D21S11   | 30      |        | 5894   |        |                | 5894      |
| 150          | D21S11   | 30      |        | 6005   |        |                | 6005      |
| 75           | D3S1358  | 16      |        | 8466   |        |                | 8466      |
| 150          | D3S1358  | 16      |        | 9413   |        |                | 9413      |
| 75           | D5S818   | 12      | 13     | 3457   | 2172   | 62.8%          | 5629      |
| 150          | D5S818   | 12      | 13     | 3466   | 3363   | 97.0%          | 6829      |
| 75           | D7S820   | 8       | 9      | 472    | 1179   | 40.0%          | 1651      |
| 150          | D7S820   | 8       | 9      | 794    | 832    | 95.4%          | 1626      |
| 75           | D8S1179  | 11      | 13     | 7756   | 3396   | 43.8%          | 11152     |
| 150          | D8S1179  | 11      | 13     | 7755   | 5000   | 64.5%          | 12755     |
| 75           | FGA      | 19      | 21     | 4488   | 2763   | 61.6%          | 7251      |
| 150          | FGA      | 19      | 21     | 4304   | 2780   | 64.6%          | 7084      |
| 75           | vWA      | 16      | 18     | 5534   | 4586   | 82.9%          | 10120     |
| 150          | vWA      | 16      | 18     | 6620   | 7133   | 92.8%          | 13753     |

### CELL SEPARATION STUDY: STR DATA USING EXTENDED CYCLES ANALYSIS

| S208         |          |        |        |        |        |       |       |
|--------------|----------|--------|--------|--------|--------|-------|-------|
| #sperm cells | Category | Peak 1 | Peak 2 | Peak 1 | Peak 2 |       |       |
| 75           | AMEL     | Х      | Y      | 6410   | 7786   | 82.3% | 14196 |
| 150          | AMEL     | Х      | Y      | 7452   | 7398   | 99.3% | 14850 |
| 75           | D13S317  | 10     | 11     | 1645   | 1155   | 70.2% | 2800  |
| 150          | D13S317  | 10     | 11     | 2334   | 2140   | 91.7% | 4474  |
| 75           | D18S51   | 13     | 14     | 1864   | 1811   | 97.2% | 3675  |
| 150          | D18S51   | 13     | 14     | 2412   | 1884   | 78.1% | 4296  |
| 75           | D21S11   | 30     | 30.2   | 2282   | 2319   | 98.4% | 4601  |
| 150          | D21S11   | 30     | 30.2   | 3457   | 4198   | 82.3% | 7655  |
| 75           | D3S1358  | 15     | 16     | 5225   | 4364   | 83.5% | 9589  |
| 150          | D3S1358  | 15     | 16     | 9067   | 7654   | 84.4% | 16721 |
| 75           | D5S818   | 11     | 12     | 3112   | 2637   | 84.7% | 5749  |
| 150          | D5S818   | 11     | 12     | 4781   | 3797   | 79.4% | 8578  |
| 75           | D7S820   | 10     |        | 1158   |        |       | 1158  |
| 150          | D7S820   | 10     |        | 1887   |        |       | 1887  |
| 75           | D8S1179  | 11     | 14     | 4017   | 4392   | 91.5% | 8409  |
| 150          | D8S1179  | 11     | 14     | 7501   | 7181   | 95.7% | 14682 |
| 75           | FGA      | 20     | 24     | 3097   | 2562   | 82.7% | 5659  |
| 150          | FGA      | 20     | 24     | 4390   | 3957   | 90.1% | 8347  |
| 75           | vWA      | 14     | 17     | 5365   | 2959   | 55.2% | 8324  |
| 150          | vWA      | 14     | 17     | 8901   | 8832   | 99.2% | 17733 |

| S6009        |          |        |        |        |        |       |       |
|--------------|----------|--------|--------|--------|--------|-------|-------|
| #sperm cells | Category | Peak 1 | Peak 2 | Peak 1 | Peak 2 |       |       |
| 75           | AMEL     | Х      | Y      | 7778   | 6291   | 80.9% | 14069 |
| 150          | AMEL     | Х      | Y      | 7274   | 7029   | 96.6% | 14303 |
| 75           | D13S317  | 12     |        | 2773   |        |       | 2773  |
| 150          | D13S317  | 12     |        | 4078   |        |       | 4078  |
| 75           | D18S51   | 15     | 16     | 1369   | 1663   | 82.3% | 3032  |
| 150          | D18S51   | 15     | 16     | 1837   | 1967   | 93.4% | 3804  |
| 75           | D21S11   | 28     | 31     | 3607   | 1734   | 48.1% | 5341  |
| 150          | D21S11   | 28     | 31     | 4770   | 3627   | 76.0% | 8397  |
| 75           | D3S1358  | 15     | 17     | 4934   | 7331   | 67.3% | 12265 |
| 150          | D3S1358  | 15     | 17     | 8805   | 7679   | 87.2% | 16484 |
| 75           | D5S818   | 11     | 12     | 3546   | 2835   | 79.9% | 6381  |
| 150          | D5S818   | 11     | 12     | 3691   | 4336   | 85.1% | 8027  |
| 75           | D7S820   | 10     | 11     | 934    | 306    | 32.8% | 1240  |
| 150          | D7S820   | 10     | 11     | 818    | 657    | 80.3% | 1475  |
| 75           | D8S1179  | 12     | 13     | 4542   | 5007   | 90.7% | 9549  |
| 150          | D8S1179  | 12     | 13     | 7501   | 6737   | 89.8% | 14238 |
| 75           | FGA      | 21     | 24     | 2946   | 3305   | 89.1% | 6251  |
| 150          | FGA      | 21     | 24     | 4955   | 2790   | 56.3% | 7745  |
| 75           | vWA      | 16     | 18     | 6403   | 3336   | 52.1% | 9739  |
| 150          | vWA      | 16     | 18     | 8826   | 7796   | 88.3% | 16622 |

| S6710        |          |        |        |        |        |       |       |
|--------------|----------|--------|--------|--------|--------|-------|-------|
| #sperm cells | Category | Peak 1 | Peak 2 | Peak 1 | Peak 2 |       |       |
| 75           | AMEL     | Х      | Y      | 3845   | 3277   | 85.2% | 7122  |
| 150          | AMEL     | Х      | Y      | 7712   | 7035   | 91.2% | 14747 |
| 75           | D13S317  | 9      | 10     | 1783   | 495    | 27.8% | 2278  |
| 150          | D13S317  | 9      | 10     | 2100   | 1594   | 75.9% | 3694  |
| 75           | D18S51   | 12     | 15     | 1820   | 501    | 27.5% | 2321  |
| 150          | D18S51   | 12     | 15     | 2080   | 1609   | 77.4% | 3689  |
| 75           | D21S11   | 30     |        | 2983   |        |       | 2983  |
| 150          | D21S11   | 30     |        | 6660   |        |       | 6660  |
| 75           | D3S1358  | 15     | 16     | 1850   | 3481   | 53.1% | 5331  |
| 150          | D3S1358  | 15     | 16     | 5766   | 6207   | 92.9% | 11973 |
| 75           | D5S818   | 10     | 11     | 778    | 860    | 90.5% | 1638  |
| 150          | D5S818   | 10     | 11     | 3403   | 3897   | 87.3% | 7300  |
| 75           | D7S820   | 10     |        | 957    |        |       | 957   |
| 150          | D7S820   | 10     |        | 1387   |        |       | 1387  |
| 75           | D8S1179  | 13     |        | 4802   |        |       | 4802  |
| 150          | D8S1179  | 13     |        | 7226   |        |       | 7226  |
| 75           | FGA      | 21     | 22     | 1531   | 1145   | 74.8% | 2676  |
| 150          | FGA      | 21     | 22     | 3424   | 3666   | 93.4% | 7090  |
| 75           | vWA      | 17     | 18     | 1801   | 1183   | 65.7% | 2984  |
| 150          | vWA      | 17     | 18     | 5492   | 6422   | 85.5% | 11914 |

| S9411        |          |        |        |        |        |       |       |
|--------------|----------|--------|--------|--------|--------|-------|-------|
| #sperm cells | Category | Peak 1 | Peak 2 | Peak 1 | Peak 2 |       |       |
| 75           | AMEL     | Х      | Y      | 7621   | 6763   | 88.7% | 14384 |
| 150          | AMEL     | Х      | Y      | 7517   | 7713   | 97.5% | 15230 |
| 75           | D13S317  | 8      | 12     | 2304   | 2041   | 88.6% | 4345  |
| 150          | D13S317  | 8      | 12     | 2513   | 3016   | 83.3% | 5529  |
| 75           | D18S51   | 15     | 16     | 1960   | 1299   | 66.3% | 3259  |
| 150          | D18S51   | 15     | 16     | 2096   | 1721   | 82.1% | 3817  |
| 75           | D21S11   | 28     | 30     | 2107   | 3560   | 59.2% | 5667  |
| 150          | D21S11   | 28     | 30     | 4713   | 3757   | 79.7% | 8470  |
| 75           | D3S1358  | 15     | 18     | 5867   | 3148   | 53.7% | 9015  |
| 150          | D3S1358  | 15     | 18     | 5345   | 5843   | 91.5% | 11188 |
| 75           | D5S818   | 10     | 12     | 4895   | 1993   | 40.7% | 6888  |
| 150          | D5S818   | 10     | 12     | 5131   | 3111   | 60.6% | 8242  |
| 75           | D7S820   | 8      | 11     | 1355   | 488    | 36.0% | 1843  |
| 150          | D7S820   | 8      | 11     | 1080   | 1040   | 96.3% | 2120  |
| 75           | D8S1179  | 11     | 12     | 4559   | 5032   | 90.6% | 9591  |
| 150          | D8S1179  | 11     | 12     | 5031   | 4925   | 97.9% | 9956  |
| 75           | FGA      | 22     | 25     | 4563   | 1615   | 35.4% | 6178  |
| 150          | FGA      | 22     | 25     | 5124   | 2941   | 57.4% | 8065  |
| 75           | vWA      | 17     | 18     | 5351   | 2592   | 48.4% | 7943  |
| 150          | vWA      | 17     | 18     | 5707   | 4481   | 78.5% | 10188 |

Mixture Sample Nomenclature = Last two digits designate epithelial donor. First two to three characters designate semen donor

#### LIST OF REFERENCES

Allery JP, Telmon N, Mieusset R, Blanc A, Rouge D. Cytological detection of spermatozoa: comparison of three staining methods. *J Forensic Sci* 2001;46(2);349-351

Applied Biosystems. AmpFISTR Proliler Plus User's Manual.1998

- Bauer M, Thalheimer A, Patzelt D. Paternity testing after pregnancy termination using laser microdissection of chorionic villi. *Int J Legal Med.* 2002 Feb;116(1):39-42.
- Burton MP, Schneider BG, Brown R, Escamilla-Ponce N, Gully ML. Comparison of histologic stains for use in PCR analysis of microdissected, paraffin-embedded tissues. Biotechniques 1998 Jan; Vol. 24; 1; 86-92
- Burr K, Harper, R, Linacre, A. One-step isolation of plant DNA suitable for PCR amplification. *Plant Molecular Biology Reporter*. 2001 Dec; 19:367-371.
- Butler, J.M. (2001). Forensic DNA Typing. London: Harcourt Science and Technology.
- Chen J, Kobilinsky L, Wolosin D, Shaler R, Baum H. A physical method for separating spermatozoa from epithelial cells in sexual assault evidence. *J Forensic Sci.* 1998 Jan; 43(1): 114-8.
- Duewer DL, Kline MC, Redman JW, Newall PJ, Reeder DJ. **NIST mixed stain studies #1 and** #2:interlaboratory comparison of DNA quantification practice and short tandem repeat multiplex performance with multiple-source samples. *J Forensic Sci.* 2001 Sep; 46(5): 1199-210.
- Ehrig T, Abdulkadir SA, Dintzis SM, Milbrandt J, Watson MA. Quantitative amplification of genomic DNA from histological tissue sections after staining with nuclear dyes and laser capture microdissection. *J Mol Diagn.* 2001 Feb; 3(1): 22-5.
- Elliott K, Hill DS, Lambert C, Burroughes TR, Gill P. Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides. *Forensic Science International.* 137 (2003) 28-36
- Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA. Laser capture microdissection. *Science*. 1996 Nov 8; 274(5289): 998-1001. Comment in: Science. 1996 Nov 8;274(5289):921-2.
- Findlay I, Taylor A, Quirke P, Frazier R, Urquhart A. **DNA fingerprinting from single cells**. *Nature*. 1997 Oct 9; 389(6651): 555-6.

- Frank WE, Llewellyn BE, Fish PA, Riech AK, Marcacci TL, Gandor DW, Parker D, Carter RR, Thibault SM. Validation of the AmpFlSTR Profiler Plus PCR amplification kit for use in forensic casework. *J Forensic Sci.* 2001 May;46(3):642-6.
- Garvin AM, Holzgreve W, Hahn S. Highly accurate of heterozygous loci by single cell PCR. 2nd European Symposium on Human Identification. 1998
- Gill P. Application of low copy number DNA profiling. *Croat Med J.* 2001 Jun; 42(3): 229-32. Review.
- Gill P, Whitaker J, Flaxman C, Brown N, Buckleton J. An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci Int. 2000 Jul 24; 112(1): 17-40.
- Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA 'fingerprints'. *Nature*. 1985 Dec 12-18; 318(6046): 577-9.
- Ginsberg SD, Che S. Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus. *Lab Invest.* 2004 Aug;84(8):952-62.
- Greenspoon SA, Scarpetta MA, Drayton ML, Turek SA. **QIAamp spin columns as a method** of DNA isolation for forensic casework. *J Forensic Sci.* 1998 Sep;43(5):1024-30.
- Herr, JC. U.V.A researchers developing new forensic tool. Retrieved January 19, 2004, from http://www.healthsystem.virginia.edu/internet/news/Archives 01/forensic.cfm.
- Horseman KM, Barker SLR, Ferrance JP, Forrest KA, Koen KA, Landers JP. Separation of Sperm and Epithelial Cells in a Microfabricated Device; Potenial Application to Forensic Analysis of Sexual Assault Evidence. *Analytical Chemistry*, Vol. 77, No.3, Feb. 2005.
- Kayser, M., Caglia, A., Corach, D., Fretwell, N., Gehrig, G., Heidorn, F., Herrmann, S., Herzog, B., Hidding, M., Honda, K., Jobling, M., Krawczak, M., Leim, K., Meuser, S., Meyer, E., Oesterreich, W., Pandya, A., Parson, W., Penacino, G., Perez-Lezaun, A., Piccinini, A., Prinz, M., Schmitt, C., Schneider, PM., Szibor, R., Teifel-Greding, J., Weichhold, GM., de Knijff, P., and Roewer, L. Chromosome Y microsatellites: population genetic and evolutionary aspects. (1997a) *International Journal of Legal Medicine*, 110, 125-133, Appendix 141-149.
- Kline MC, Duewer DL, Redman JW, Butler JM. **NIST Mixed Stain Study 3: DNA** quantitation accuracy and its influence on short tandem repeat multiplex signal intensity. *Anal Chem.* 2003 May 15; 75(10): 2463-9.

- Ladd C, Adamowicz MS, Bourke MT, Scherczinger CA, Lee HC. A systematic analysis of secondary DNA transfer. *J Forensic Sci.* 1999 Nov;44(6):1270-2.
- Ladd C, Lee HC, Yang N, Bieber FR. Interpretation of complex forensic DNA mixtures. *Croat Med J.* 2001 Jun; 42(3): 244-6.
- LaFountain MJ, Schwartz MB, Svete PA, Walkinshaw MA, Buel E. **TWGDAM validation of the AmpFISTR Profiler Plus and AmpFISTR COfiler STR multiplex systems using capillary electrophoresis**. *J Forensic Sci*. 2001 Sep;46(5):1191-8
- Larkin A, Harbison S. An improved method for STR analysis of bloodstained denim. *Int J Legal Med.* 1999;112(6):388-90.
- Lavitrano M, French D, Zani M, Frati L, Spadafora C. The interaction between exogenous DNA and sperm cells. *Mol Reprod Dev.* 1992 Mar;31(3):161-9.
- Leclair B, Fregeau CJ, Bowen KL, Fourney RM. Systematic analysis of stutter percentages and allele peak height and peak area ratios at heterozygous STR loci for forensic casework and database samples. *J Forensic Sci.* 2004 Sep;49(5):968-80.
- Lerman LS. Structural considerations in the interaction of DNA and acridines. *J Mol Biol.* 1961 Feb;3:18-30.
- Los Angeles Police Department DNA Protocol and Procedures Manual, Rev. 1/24/02
- Luzzi V, Holtschlag V, Watson MA. Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. *Am J Pathol.* 2001 Jun; 158(6): 2005-10.
- Martino D, Giuffre G, Staiti N, Simone A, Le Donne M, Saravo L. Single sperm cell isolation by laser microdissection. *Forensic Science International* 2004 S151-153
- Mercurio M, Silenieks T, Royds, D. An evaluation of the acridine orange and Christmas tree stains for the identification of spermatozoa. 12th International Symposium on Human Identification. 2001
- Moore J, Aros M, Steudel K, Cheng K. Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis. *BioTechniques* 2002 Feb; 32: 296-298
- Moretti TR, Baumstark AL, Defenbaugh DA, Keys KM, Brown AL, Budowle B. Validation of STR typing by capillary electrophoresis. *J Forensic Sci.* 2001 May;46(3):661-76.

Moxon ER, Wills C. DNA microsatellites: agents of evolution? Sci Am. 1999 Jan; 280(1):

94-9.

Murase T, Inagaki H, Eimoto T. Influence of histochemical and immunohistochemical stains on polymerase chain reaction. *Mod Pathol.* 2000 Feb; 13(2): 147-51.

Nelson v State, 628 A2d 69, 76 [DEL, 1993].

- NRC II, Committee on DNA Forensic Science, National Research Council. An Update: The Evaluation of Forensic DNA Evidence. National Academy Press, Washington, DC, 1996
- Oppitz E. Eine neue Farbemethode zum Nachweis der Spermien bei Sittlichkeitsdelikten [A new colouring method for the determination of sperm cells in sexual assault cases]. Arch Kriminol 1969;144:145-8
- Prinz M, Boll K, Baum H, Shaler B. Multiplexing of Y chromosome specific STRs and performance for mixed samples. *Forensic Sci Int.* 1997 Mar 14;85(3):209-18.
- Roa PN, Collins KA, Geisinger KR, Parsons LH, Schnell S, Hayworth-Hodge R, Tap MP, Lantz PE, Pettenati MJ. Identification of male epithelial cells in routine postcoital cervicovaginal smears using fluorescence in situ hybridization. Application in sexual assault and molestation. *Am J Clin Pathol.* 1995 Jul;104(1):32-5.
- Rook MS, Delach SM, Deyneko G, Worlock A, Wolfe JL. Whole genome amplification of DNA from laser capture-microdissected tissue for high-throughput single nucleotide polymorphism and short tandem repeat genotyping. *Am J Pathol.* 2004 Jan; 164(1): 23-33.
- Schoell WM, Klintschar M, Mirhashemi R, Pertl B. Separation of sperm and vaginal cells with flow cytometry for DNA typing after sexual assault. Obstet Gynecol. 1999 Oct; 94(4): 623-7.
- Serth J, Kuczyk MA, Paeslack U, Lichtinghagen R, Jonas U. Quantitation of DNA extracted after micropreparation of cells from frozen and formalin-fixed tissue sections. *Am J Pathol.* 2000 Apr; 156(4): 1189-96.
- Simone NL, Bonner RF, Gillespie JW, Emmert-Buck MR, Liotta LA. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. *Trends Genet.* 1998 Jul; 14(7): 272-6.
- Spadafora C. Sperm cells and foreign DNA: a controversial relation. *Bioessays*. 1998 Nov;20(11):955-64.

- SWGDAM, Scientific Working Group on DNA Analysis Methods, Short Tandem Repeat Interpretation Guidelines, Forensic Science Communications, Vol. 2, July 2000
- TWGDAM, Technical Working Group of DNA Analysis Methods, Guidelines for a Quality Assurance Program for DNA Analysis, *Crime Laboratory Digest*, Vol. 22, April 1995
- Van Dijk M, Rombout P, Dijkman H, Ruiter D, Bernsen M. Improved resolution by mounting of tissue sections for laser microdissection. *J Clin Pathol: Mol Pathol* 2003; 56: 240-243

Us v Yee, 134 FRD 161, 181 [ND OHIO, 1991].

- Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. *Biotechniques*. 1991 Apr; 10(4): 506-13.
- Yoshida K, Sekiguchi K, Mizuno N, Kasai K, Sakai I, Sato H, Seta S. The modified method of two-step differential extraction of sperm and vaginal epithelial cell DNA from vaginal fluid mixed with semen. *Forensic Sci Int.* 1995 Mar 21; 72(1): 25-33.