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ABSTRACT

Natural disasters, human errors, and technical issues have caused disastrous blackouts to power

systems and resulted in enormous economic losses. Moreover, distributed energy resources have

been integrated into distribution systems, which bring extra uncertainty and challenges to system

restoration. Therefore, the restoration of power distribution systems requires more efficient and

effective methods to provide resilient operation.

In the literature, using Q-learning and multiagent system (MAS) to restore power systems has

the limitation in real system application, without considering power system operation constraints.

In order to adapt to system condition changes quickly, a restoration algorithm using Q-learning

and MAS, together with the combination method and battery algorithm is proposed in this study.

The developed algorithm considers voltage and current constraints while finding system switching

configuration to maximize the load pick-up after faults happen to the given system. The algo-

rithm consists of three parts. First, it finds switching configurations using Q-learning. Second, the

combination algorithm works as a back-up plan in case of the solution from Q-learning violates

system constraints. Third, the battery algorithm is applied to determine the charging or discharging

schedule of battery systems. The obtained switching configuration provides restoration solutions

without violating system constraints. Furthermore, the algorithm can adjust switching configura-

tions after the restoration. For example, when renewable output changes, the algorithm provides

an adjusted solution to avoid violating system constraints.

The proposed algorithm has been tested in the modified IEEE 9-bus system using the real-time

digital simulator. Simulation results demonstrate that the algorithm offers an efficient and effective

restoration strategy for resilient distribution system operation.
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CHAPTER 1: INTRODUCTION

Background

Natural Disaster and Blackouts

The stable supply of energy is one of the important issues in power systems. Numerous studies

and projects have been conducted to resolve this issue. Despite all these efforts, blackouts are

unavoidable due to various threats. The threats can be classified as natural, accidental, malicious,

and emerging threats as shown in Fig 1.1. Natural threats are from natural disasters. Accidental

threats include operational fault and equipment failure. Malicious threats consist of physical threat,

human threat, and cyber threat. Emerging threats include systemic threat and impact from other

infrastructures [3].

Figure 1.1: Percentages of the causes for historic blackouts

Although natural disasters can not be avoided, preparation is a must to supply electricity in a stable
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manner. However, modern grids have limited availability to apply the proactive plans for improving

the resilience of the grid due to their old infrastructures such as communication, transportation, etc.

Distribution System

An electric power system consists of major components including transmission system, subtrans-

mission system, substation, distribution system, and feeders. Distribution system delivers power

to customers and its goal is providing reliable transfer of electricity to customers [5]. Distribution

systems typically consist of the distribution substation connected by one or more subtransmission

lines. Each distribution substation will supply single or multiple feeders. There are various stan-

dard distribution voltage levels. They are in medium voltage and low voltage range. Some of the

popular ones are 34.5kV, 23. 9kV, 14.4kV, 13.2kV, 12.47kV, and 4.16kV [4].

In the late twentieth century, most challenges came from transmission systems and interconnected

system between them. During last decade, there has been a large development in renewables, bat-

teries, electric vehicles (EVs) and distributed generators (DGs) [4]. The increased penetration level

of renewables has brought concerns about the reliability of power system operation and restoration.

Integrating energy storage devices such as batteries can improve the reliability of power systems

and minimize the restoration time [6].

Microgrid

Microgrid is part of low voltage distribution systems with distributed energy resources (DERs)

including DGs, photovoltaic (PV) system, fuel cells, etc. with storage devices such as batteries.

When it is interconnected to a main grid, it can be operated in a non-autonomous way. If it is

disconnected from the main grid, it can be operated in an autonomous way [7]. Due to the features
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mentioned, microgrid has the ability to separate and isolate the system itself from the grid in case of

blackouts [8]. It enables high penetration of DERs without rebuilding current distribution systems

[9]. Furthermore, the microgrid can aid restoration process of distribution system with its surplus

power.

Power System Restoration

As mentioned above, the blackout is likely to occur due to various causes such as natural disas-

ter, human error, etc. Therefore, it is provident to prepare and plan restoration after the blackout

or faults. The power system’s frequency fluctuation is controlled automatically by load shed-

ding, controlled separation, and isolation mechanisms. However, the success rate of the automatic

restoration algorithm is about 50%. The challenge is coordinating the control and protective mech-

anisms with the operation of the power plants and the power system [1]. Figure 1.2 shows general

steps for power system restoration.

Figure 1.2: General Restoration Stages [1]
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Reinforcement Learning

The foundation of all theories related to learning and intelligence is learning from interaction.

Among those theories, reinforcement learning is that each agent is learning how to act in each

situation in order to maximize the total numerical reward of each agent. There are two main ap-

proaches for reinforcement learning, indirect learning, and direct learning. Indirect learning is

estimating an explicit model of the environment to learn so they can learn faster compared to di-

rect learning. Direct learning is learning the optimal control policy without an explicit model, and

therefore direct learning is not affected by bad models. An agent in an environment takes an action

and is given reward and observation from the environment as shown in Fig 1.3. Reinforcement

learning aims to maximize the total reward of each agent through a learning process. It has been

applied to several fields including control, business management, power systems, etc. [2, 10, 11].

Figure 1.3: Reinforcement Learning [2]
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Motivation

Due to the newly introduced technologies to power systems, there are emerging challenges for

the power system restoration. The power systems restoration studies based on MAS and Q-

learning mostly focused on reinforcement learning and theoretical development without power

system physics. There is a need of studying power system restoration with considering both rein-

forcement learning and power systems perspectives.

Outline of Thesis

This thesis has been organized as follows:

Chapter 1 presents the background of blackouts, distribution system, microgrid, power system

restoration, and reinforcement learning followed by the motivation of this study. Chapter 2 presents

a literature review and the theory of power system restoration, reinforcement learning, and multia-

gent. Chapter 3 presents the role of each agent, reward design, system constraints, and restoration

algorithm using Q-learning, reduced combination algorithm, and battery algorithm followed by

post-restoration algorithm. Chapter 4 presents a testbed and the simulation results using Matlab

and Simulink. Finally, Chapter 5 presents conclusions with future work.
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CHAPTER 2: LITERATURE REVIEW AND THEORY

Literature Review

Power System Restoration

There have been several studies of power system restoration. Adibi et al. [12] provided an overview

of restoration plans with considering power system characteristics and reactive power balance.

Gutierrez et al. [13] listed restoration plans in three steps: first of all, isolate the areas and zones

which have faults. Secondly, run black-start unit and energize the zones and areas. Thirdly, feed

thermal plant auxiliaries and synchronize zones. Lastly, reintegrate the areas and zones into the

bulk network. Ancona [14] proposed a framework for power system restoration. The paper speci-

fied the goals and objectives of restoration. Also, it listed the sequence of restoration actions: start

restoration, prepare initial cranking source, prepare restoration path, and build stable subsystem.

First of all, faults are located and following methods have been studied to locate faults: an expert

system [15, 16, 17, 18], multiagent-based distribution automation system [19], genetic algorithm

[20], etc. In the second stage, black-start is conducted. This stage includes selecting black-start

units and determining black-start schemes. Feltes [21] described black-start operation, planning,

and control with an overview of black-start. In the third stage, network reconfiguration is deter-

mined to in order to minimize energy loss and maximize power supply to the system. In this

stage, the power generation acquired from the previous stage is utilized to restore other units in

the power system including non black-start unit, substation, etc. There are several studies of net-

work reconfiguration using following methods: heuristic algorithm [22, 23], genetic algorithm

[24], linear programming [25], multiagent [26, 27, 28, 29], etc. In the last stage, load restoration is

processed. Cold load pickup is mainly studied for this last stage and Kumar et al. [30] overviewed
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cold load pickup related issues and models to solve problems. Among all the stages, this study

mainly focuses on the second stage of restoration. Besides these conventional methods to restore

power systems, new technologies have been studied to restore power systems such as renewables,

microgrid, etc. [31]

Adibi and Kafka [32] presented restoration issues including interconnection assistance, load gen-

eration balance, fault location, assessment of switching status, etc. Among those issues, this study

focuses on how to establish switching strategies to resolve issues to restore power systems. An-

drews et al. [33] presented two switching strategies: Controlled operation, and All-open. Although

All-open is much simpler to the system operators, it creates a large burden on the power system.

However, Controlled operation creates less burden on the power system and requires recurrent at-

tention on switches to restore the power system. In this study, reinforcement learning takes a role

of the system operators. Therefore, Controlled operation is chosen.

An overview of power system restoration was covered in [34] with eight topics from the papers in

the 1980s and 1990s. A more recent literature review regarding restoration with newer technologies

was investigated in [31].

Reinforcement Learning in Power System Restoration

MAS has been used over a decade in power system engineering and it is adopted by several power

systems applications: automation [35], energy market [36, 37], smartgrid [38], microgrid [39, 40],

load shedding [41], restoration [26, 27, 28, 42, 43, 44, 45, 46], protection [47], etc. McArthur et

al. [48] discussed the applications of MAS and the paper suggested any field to adopt MAS if the

applications have at least one of the following features:

• An interaction between entities is required.
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• A great number of entities needs to interact with each other.

• Enough data from local entities exist.

• Implementing new functions is required within existing systems.

• It is required to add and extend functionality of existing systems.

Power systems restoration requires at least three of the above items, and it can be concluded that

MAS can be adopted for power systems restoration. Jayasinghe et al. [29] presented an overview of

the application of MAS in power systems restoration. The paper introduced IEC 61850 standards

which allow automated systems to share the network for communication within the systems. It

also provided an overview of MAS architectures including centralized model, hierarchical model,

and hybrid model with their features.

Nagata et al. [26] showed hierarchical structure between each agent. This study considered power

system constraints, but renewables and load priorities were not considered in the study. Yan et

al. [46] adopted MAS in a centralized manner. Although it has a high speed of the process, it is

vulnerable to the loss of central agent. Felix et al. [28] proposed a hybrid model to restore power

systems with theoretical perspective. Lin and Chin [45] presented distribution service restoration

with centralized MAS model. It is vulnerable to the fault at the central agent. Khamphanchai et

al. [44] developed a framework for distributed system restoration with a hierarchical model and

JADE. However, it did not consider power system constraints. Solanki et al. [42] proposed the

MAS framework with a hierarchical model but the study mostly focused on agent development

rather than restoration perspective. Ye et al. [27] developed a hybrid MAS framework using Q-

learning to restore power systems. They adopted reward calculation for Q-learning, and it helped

agents to take actions with more accurate information. Even if they presented a solid model, power

system constraints were not considered in the study.
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Theory

In this section, the theories of Q-learning, and MAS are introduced with MAS platforms.

Reinforcement Learning

Q-learning

Q-learning is an off-policy Temporal Difference (TD) control algorithm [49]. Algorithm 1 rep-

resents Q-learning algorithm [10] where Q is an action-value function, s is previous state, a is

previous action, s′ is next state, a′ is next action, α is learning rate, 0 < α ≤ 1, r is the reward

that an agent receives when it takes an action a in a state s, and γ is discount rate, 0 ≤ γ ≤ 1.

Learning rate α can be referred as step size, and it decides how much an agent will learn from the

information. In the case of the learning rate close to 0, an agent is learning almost nothing from

the new information. With the learning rate 1, an agent is learning only from the new information.

Discount factor γ decides the importance of future rewards. With the discount factor 0, an agent

only considers current rewards. In the case of the learning rate 1, an agent only considers future

rewards. Line 7 in Algorithm 1 shows the simplest form of Q-learning.

Lauer et al. [50] showed that Q-learning could be used for distributed reinforcement learning in

cooperative MAS and it is utilized to develop restoration algorithm with MAS environment in this

study.

9



Algorithm 1 : Q-learning
1: Initialize Q(s, a) arbitrarily

2: for each episode do

3: Initialize s

4: for each step of episode do

5: Choose a from s using policy derived from Q (e.g., ε-greedy)

6: Take action a, observe r, s′

7: Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s
′, a′)−Q(s, a)]

8: s← s′;

9: until s is terminal

ε-Greedy

Among estimates of the action values, there should be at least one action that has the biggest

estimate. This action is called a greedy action. If an agent selects a greedy action, it is said that

the agent is exploiting its knowledge. If the agent takes a nongreedy action, then it is said that

the agent is exploring. The agent can improve the estimate of the nongreedy action through this

process. Exploiting current knowledge helps to maximize the estimates for one step, but exploring

may yield greater total estimates after several steps.

For an agent, an alternative of selecting greedy actions every time is selecting greedy actions most

of the time. Every once in a while, the agent selects an action randomly with small probability ε

as shown in Eq 2.1. This method is called ε-Greedy algorithm. The method shows higher average

reward after large number of iterations [10, 51].
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at =


a∗t , with probability 1-ε

Random action with probability ε
(2.1)

Temporal Difference Learning

TD learning is introduced as a combination of Monte Carlo and dynamic programming (DP) con-

cept. TD methods do not require a model of environment, and it can learn from raw information.

They are widely used to find solutions in an unknown environment. TD methods can update es-

timates without waiting for final estimates by using other learned estimates. They can be used to

estimate value functions for reinforcement learning [10, 52].

Policy

When an agent is learning, the way of behaving at a given time step is defined by a policy. A

policy is linking recognized states of the given environment to actions to be taken by the states. A

policy can be as simple as a lookup table, but it can be very complicating which requires extensive

computation. In most cases, policies are stochastic.

On-policy

An agent with on-policy learns the value of policy with the exploration steps. State-action-reward-

state-action (SARSA) is one of the on-policy reinforcement learning algorithms [53].
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Off-policy

Off-policy learns how to perform optimally when an agent is following a non-optimal policy. The

agents learns the optimal policy without depending on the agent’s action. Q-learning is off-policy

algorithm [53].

Agent and Multiagent System

Agent

There are a large number of definitions for an agent and therefore defining an agent can be difficult

[48, 54, 55, 56]. Among them, Russell et al. [57] defined an agent as follows: ”An agent is

anything that can be viewed as perceiving its environment through sensors and acting upon that

environment through effectors. This is a good way to define the agents assumed in this study along

with the following properties presented by Wooldridge and Jennings [58]:

• autonomy : agents operate without the direct intervention of humans or others, and have some

kind of control over their actions and internal state;

• social ability : agents interact with other agents (and possibly humans) via some kind of agent

communication language;

• reactivity : agents perceive their environment, (which may be the physical world, a user via

a graphical user interface, a collection of other agents, the INTERNET, or perhaps all of these

combined), and respond in a timely fashion to changes that occur in it;

• pro-activeness : agents do not simply act in response to their environment, they are able to exhibit

goal-directed behavior by taking the initiative;
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Multiagent System

There are multiple definitions of a MAS. For this study, a MAS can be defined in [55, 59] : A

multi-agent system is a loosely coupled network of problem-solving agents that work together to

find answers to problems that are beyond the individual capabilities or knowledge of each agent.

A MAS is useful to power system restoration because of following reasons [59]: ”robustness,

scalability, simpler programming, geographic distribution, and cost effectiveness”.

There are four types of agents for the MAS as follows [59]:

• Homogeneous Non-communicating Agents

• Homogeneous Communicating Agents

• Heterogeneous Non-communicating Agents

• Heterogeneous Communicating Agents

In this study, it is assumed that the given distribution system has heterogeneous communicating

agents since each component has a different reward formula and they talk to each other. MAS has

three architectures, decentralized, centralized, and hybrid model as shown in Fig 2.1.

Figure 2.1: MAS Architectures: Decentralized, Centralized, Hybrid Model
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In a centralized model, a central agent has access to all information from agents in the model and

global information provides accurate information to agents while restoring power systems. How-

ever, it is vulnerable to single point of failure when the model doesn’t have enough redundancy.

With a decentralized model, the MAS has less communication burden than a centralized model

[60]. A decentralized model is more compatible with homogeneous agents due to the nature of its

structure. Furthermore, each agent will have less computational burden compared to a centralized

model. However, the accuracy of decision is not guaranteed with this model.

A hybrid model combines the advantages from both centralized and decentralized models. It takes

less reaction time compared to a decentralized model, and it has less communication burden com-

pared to a centralized model with immunity to single point of failure [27, 29]. In this study, a

hybrid model is adopted to exploit these advantages for power system restoration.

Multiagent System Platforms

There are multiple frameworks to implement a MAS such as JADE (Java Agent Development

Framework) [61], FIPA-OS (Foundation for Intelligent Physical Agents OS) [62], ZEUS [63], and

JaCaMo (Combination of Jason, Cartago, and Moise) [64]. Among them, JADE has been utilized

most to study power system restoration [42, 44, 65, 66] since it has great compatibility with Matlab

and Simulink through the software MACSimjx [67].

The framework of JADE is based on a middleware that expedites the development process of agent

applications. In particular, the following features are useful to a MAS framework for power system

restoration [61, 68]: full compliance with the Foundation for Intelligent Physical Agents (FIPA)

specifications, a fully distributed system, support for agent mobility, etc. In this study, a MAS

platform is not used, but the agent and MAS are used in the Q-learning algorithm.
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CHAPTER 3: ALGORITHM DEVELOPMENT

Chapter 3 describes the algorithm and model developed to conduct this study.

Algorithm

Objective

The objective of this algorithm is the development of restoration strategy after faults occurred in

distribution systems with using several concepts including Q-learning and Multiagent. Addition-

ally, this algorithm is capable of operating distribution systems when they have unexpected system

condition changes after they are restored initially. Figure 3.1 shows the entire restoration algorithm

to restore the given distribution system from faults. Each component in the algorithm is covered in

this chapter.
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Figure 3.1: Restoration Algorithm
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Multiagent

A MAS consists of several distributed intelligent agents. A given distribution system is divided

into zones, and each zone has agents. The number of zones is determined by the size of the

distribution system. The distribution system restoration is carried out based on the coordination

between agents. Two types of agents are used in this study, Manager Agent, and Switch Agent.

There are three types of agents that belong to Switch Agent. Each agent is introduced in the

following section. This approach has advantages over either fully-centered or local approach [27].

Each zone could have several Switch Agents, and there is only one Manager Agent per zone. It

is assumed that the communication channel is existing between each zone and directly connected

by a power line. Each agent can share sensations, and policies. Sharing sensations can help each

agent to conduct global and local optimization. In this study, the communication between each

agent is assumed, and it is covered in Future work section.

Switch Agent

A Switch Agent is located at each switch in the given distribution system. There are three special

types of agents among Switch Agents: Load Agent, Generator Agent, and Local Agent. They are

defined separately for reward designing purposes. Although Local Agents and Load Agents have

their own rewards, Generator Agents do not have rewards since their status is determined by the

status of each generator.

Manager Agent

Manage Agents are chosen from Generator Agents since their computational load is less than

other types of agents. This helps to distribute a load of computation among agents and improve the
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efficiency of the algorithm.

Reward Design

Each agent has its own reward depending on its type. The reward from each agent is utilized to

implement the reinforcement learning part of the restoration algorithm.

Load Agent

When one load is restored, it could cause the loss of other loads connected in the given distribution

system. In order to generalize the reward function for any load in the system, below equations are

proposed.

LoadV alue(i) = Priority(i) ∗ CurrentLoad(i) (3.1)

LoadAgent(i, on) = LoadV alue(i)− 1

n

∑
k 6=i

LoadV alue(k) (3.2)

where n is the total number of loads in the given distribution system.

LoadAgent(i, off) = −LoadAgent(i, on) (3.3)

When restoring the load i, there is a possibility that other loads might lose the power. In Eq 3.2, if

the summation part of the reward is divided by n− 1, the reward can become negative for the load

i with the highest priority. Also, if there is only one load in the system, n − 1 can be zero, and it

causes an error in the given Eq 3.2. Therefore, it is divided by n instead of n− 1.
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Generator Agent

The status of Generator Agent is predetermined by the condition of the given distribution system.

Therefore, there is no need to design reward for Generator Agents. Furthermore, Generator Agents

are not included in Q-learning process since their statuses are already decided. It is assumed that

generators are connected to the given distribution system unless there are faults at the generators.

Local Agent

Local Agent refers to all Switch Agents in the given distribution system excluding Generator

Agents and Load Agents. Therefore, some Local Agents are connected to the switches on lines,

and some of them are connected to PV or battery. Therefore, the format of reward can vary de-

pending on the locations and features of switches.

LocalAgent(i, on) =
∑

i=connectedloads

Loadvalue(i)−
∑

j=disconnectedloads

Loadvalue(j) (3.4)

LocalAgent(i, off) = −LocalAgent(i, on) (3.5)

The result from switching action on, off decides which loads will be connected and disconnected

from the given distribution system. The reward of the Local Agent is shown in Eq 3.4 which

represents the general format of the reward equation as well.

Manager Agent

As described earlier, Manager Agent is chosen from Generator Agents. Therefore, there is no

reward function for this type of agent. Although Manager Agent does not have its own reward
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function, its function is critical to the Q-learning part of the entire algorithm, and it is described in

following sections.

Constraints

In order to present that the solution from this algorithm is realistic, voltage, current, radiality

constraints are considered. [28].

Voltage Constraint

Voltage from simulation should stay within ±5% range from normal operating voltage.

0.95(p.u.) ≤ Vi(p.u.) ≤ 1.05(p.u.) (3.6)

where Vi is the voltage at the bus i.

Current Constraint

Current from simulation should be less than 110% from current rating of each line of the given

distribution system.

Ii ≤ 1.1 ∗ Inom (3.7)

where Inom is nominal current of the given power system.
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Radiality Constraint

The system should keep radial structure after the reconfiguration.

Q-learning

Q-learning is one of the popular methods in reinforcement learning. However, the simplest form

of Q-learning in Chapter 2 has limited applications to power system since every state needs to be

defined prior to the implementation. Therefore, Q-learning without states is necessary to decrease

the computational burden and increase the efficiency of the algorithm. Modified Q-learning from

[27] is applied to power systems restoration. The function π(a) represents the stochastic action

policy as shown in Eq 3.8, where ε is the small positive number between 0 and 1 and n is is the

number of possible actions of an agent. ε is set as 0.4 in this study.

π(a) =


(1− ε) + ε

n
, When Q(a) is the highest

ε
n
, Otherwise

(3.8)

Equation 3.9 shows the possible actions of an agent i and therefore n is 2 in this study.

Action(i) =


On

Off

(3.9)

Both rewards of Load Agent and Local Agent are from general reward function as shown in Eq

3.10. Eq 3.11 represents theDegree function that is utilized to determine the degree of acceptance.

The function ranges from−1 to 1. The sign of Eq. 3.11 shows whether the action is encouraged or
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discouraged. A positive sign means it is encouraged and a negative sign means it is discouraged to

take the Action(a). The magnitude of Eq. 3.11 shows the strength of the suggestion. The closer

|Degree(i, a)| to 1 is, the stronger suggestion is.

Reward(i, a) =


LoadAgent(i, a), if i ∈ Loads

LocalAgent(i, a), if i /∈ Loads or Generators
(3.10)

Degree(i, a) =
Reward(i, a)− Average(a)

max(|Average(a)−Reward(i, a)|)
(3.11)

In Eq 3.11, Average(a) is the average of the reward of agents that belong to the same Manager

Agent when they take an action a.

Suggestion(i) = [Action(i), Degree(i, a)] (3.12)

Equation 3.12 represents the form of suggestion. Each agent has this form of suggestion to take

an action. Equation 3.13 decides the receptivity of Agent i for suggestions that range from 0 to

1. β is a arbitrary constant and it is 10 in this study. Info(Switch(i)) represents the number

of messages possessed by Switch Agent i. The messages are acquired during the communication

process between neighborhood agents. If an agent has more messages than the other agents during

the process, then the agent has less receptivity than the other agents since the value of Eq 3.13 is

smaller.

η(Switch(i)) =
β

β + Info(Switch(i))
(3.13)

The stochastic policy π(a) determined in Eq 3.8 is updated using the equations introduced above.
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As shown in Eq 3.14, π′(a) is utilized to update Q-learning algorithm.

π′(a) =


π(a) + π(a) ∗ η ∗Degree(i, a), if Degree(i, a) ≤ 0

π(a) + (1− π(a)) ∗ η ∗Degree(i, a), if Degree(i, a) > 0

(3.14)

Learning processes for each Switch Agent from [27] is applied to update Q values and decides

actions as shown below.

1. Initialize Q value for each possible action randomly.

2. Set k = 0.

3. Calculate π(a).

4. Update π′(a) with π(a).

5. Assign limit(π′(a)) to π′(a).

6. For each possible action a,

Qk+1(a) = Qk(a) + π′(a) ∗ α ∗ (
∑
a

Reward′(i, a)π′(a))−Qk(a)) (3.15)

7. Repeat step 3 to 6 predetermined k = x times.

8. aopti ← argMax(Q)

9. Switch Agent i takes action aopti.

In step 5, limit(π′(a)) returns a valid policy that is closet to π′(a) in order to normalize π′ and
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make the summation of π′ to 1 as shown in Eq 3.16.

limit(π′(a)) = argMinx∈valid(x)|π′ − x| (3.16)

In this study, there are only two possible actions for each agent so Eq 3.17 is simply adopted to

normalize π′(a).

π′(a) =
π′(a)∑

a∈Actions π
′(a)

(3.17)

From Eq 3.15 in step 6, α is the learning rate of the algorithm and it ranges between 0 and 1. The

closer it is to 1, the more weight it has on the future reward than the current reward of each agent.

Reward′(i, a) represents the expected reward of each agent by taking an action a. In step 8, the

action a that has the highest Q value is determined as aopti. Finally, each agent takes an action

aopti in step 9. With the above algorithm, the procedure of restoration using Q-learning and MAS

is shown in Fig 3.2.
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Figure 3.2: Restoration Algorithm using Q-learning and Multiagent

25



Reduced Combination Algorithm

From the experiment, it was found that Q-learning does not always provide the solutions free from

violating the constraints. Therefore, it is necessary to have supplementary algorithms to provide

solutions in case of failure of Q-learning. This algorithm utilizes a combination approach to find

the best solution to restore the given distribution system. However, it only considers a reduced

number of switch configuration combinations to decrease the computational load of the restoration

algorithm.

Preset switches

The following switches are set before the algorithm is implemented: the switches connected to

generators, the switches connected to the highest priority loads, and the switches at the fault lo-

cations. In this step, regardless of the amount of surplus power, the loads that have the highest

priority are only picked up. If all load priorities are equal to each other, then the status of the

switches connected to the loads is determined in the next step.

Determine the status of remaining switches

After determining the status of preset switches, the status of remaining switches in given distribu-

tion system is decided by following steps.

1. The combination of the status of remaining switches is generated while it meets the minimum

requirement such as no loop inside the system.

2. With the reward for each agent calculated in the previous step, the total reward for each

combination is calculated.
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3. The combination with higher total reward has higher priority than other combinations.

4. The constraints check is implemented for each combination from the combination that has

higher priority.

5. If there is any violation with the combination, the algorithm shows the switch (switches) has

(have) violation and runs next combination.

6. When the combination has no violation, the algorithm is ended.

Decide the switches that need to be 
connected/disconnected  with the 

information of priority load, generator, 
and fault location)

Generate the possible switching 
combinations with considering 
conditions from a previous step

Sort the combination from the one with 
the highest to lowest reward

Apply the combination to switching 
status from the one with higher to 

lowest reward

End

Does the system violate the voltage 
and current constraints?

Start

N

Y

Figure 3.3: Reduced Combination Algorithm
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Battery Algorithm

The goal of the battery algorithm is to use the most surplus power from the given distribution

system. Following steps present a general battery algorithm.

1. Calculate the surplus power.

TotalGeneration− TotalDemand = SurplusPower (3.18)

2. If the surplus power is greater than the battery capacity, the battery is set to be charged. If

the surplus power is less than the battery capacity, the battery is set to be discharged.

3. If there is any violation with the combination, the algorithm shows the switch (switches) has

(have) violation and run next combination.

4. When the combination has no violation, the algorithm is ended.

For example, if there is 25kW surplus power and are three 10kW batteries in the given system, the

algorithm is implemented as follows.

Table 3.1: Battery Algorithm Example

Battery Capacity (kW) Generator Variable Load Variable
1 10 b11 b12
2 10 b21 b22
3 10 b31 b32

Since each battery can be operated as either generator or load, there are following constraints.

b11 + b12 = 1 (3.19)
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b21 + b22 = 1 (3.20)

b31 + b32 = 1 (3.21)

Based on the surplus power 25kW, only 2 batteries can be charged. Therefore, following con-

straints are applied.

b11 + b21 + b31 = 1 (3.22)

b12 + b22 + b32 = 2 (3.23)

The combinations meeting above constraints can be implemented and the status of each battery

can be determined. Figure 3.4 shows the general battery algorithm.
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Figure 3.4: Battery Algorithm
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Post Restoration Algorithm

After faults, the algorithm in Fig 3.1 is implemented as an initial step. When the restoration is

completed, there is a possibility that the conditions of the components in the given system are

changed. For example, PV generation, load, the power supply from the substation, and so on.

Therefore, it is necessary to consider the post-restoration conditions. The algorithm proposed in

Fig 3.1 is applicable to handle these situations.

Summary

The proposed algorithm covers how to restore distribution system using Q-learning, MAS, Com-

bination algorithm, and Battery algorithm. As long as the total generation of the given distribution

system is larger than the total amount of loads that are connected to the system, the maximum

amount of loads is set to be picked up according to their priorities using the algorithms.

Real-time Simulaton

There are several power systems simulation tools such as PowerWorld, GridLAB-D, OpenDSS,

Matlab/Simulink, RTDS, and Opal-RT. Among those tools, Matlab/Simulink and Opal-RT are

selected to implement the real-time simulation of the algorithm from this study and this real-time

simulation provides rapid prototyping of the algorithm on the test model [69, 70, 71].

Configuration

A real-time simulation testbed consists of two parts: A host computer and a target computer. A host

computer is operating Windows OS, and it has a Simulink model and compile the model using RT-
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LAB. A target computer is operating Linux OS. It executes a real-time simulation, receives input

signals from connected hardware devices, and sends the model output to hardware devices. A host

computer and a target computer are communicating using TCP/IP. A configuration of the testbed

is shown in Fig 3.5.

Figure 3.5: A Real-time Simulation Testbed

Procedure

First, the model was built in Simulink with basic and special tool boxes such as SimPowerSystems

(SPS) models. The model is tested offline before proceeding to next steps. Next, the Simulink

model is separated into two subsystems: Console Subsystem (SC) and Master Subsystem(SM).

SC has every interface block of the Simulink model, and it provides interaction with the Simulink

model during real-time simulation. SM has all the elements of the Simulink model for computa-
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tion, I/O, mathematical operation, algorithm, etc. Then, RT-LAB is utilized to create an RT-LAB

model, and it separates the Simulink model into SM and SC. With the separated model, RT-LAB

generates C code. The RT-LAB model is assigned to a target, and the target executes the real-time

simulation of the model.

For a real-time simulation, the target computer is given a preset time such as 10ms, 100us, 10us,

etc. to receive input signals from sensors, to execute algorithms, and to send output signals to

connected hardware such as relays. The preset time is also known as the step size, and time step

(Ts). The preset time involves receiving input signals, executing algorithms and outputting signals

as shown in Fig 3.6 [72].

Figure 3.6: The Preset Time for a Real-time Simulation
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CHAPTER 4: SIMULATION AND RESULTS

In this chapter, the algorithm and model from Chapter 3 are implemented and tested with various

scenarios.

Simulation using IEEE 9-Bus system

The proposed algorithm is tested on the testbed. The testbed is built based on the IEEE 9-Bus

system. The model should have a generator, load, switch, PV, and battery. There is no limit to the

number of components to run the proposed algorithm. The testbed has two DGs, one battery, one

PV, and three loads. Each load has its own priority between 0 and 1. If a load has higher priority

than other loads, it is restored first. The substation is located at S12. Table 4.1 shows the main

components in the given distribution system. Typically, the voltage of distribution system ranges

from 120V to 35kV. The voltage of substation is 24.9kV, and the voltage of remaining network is

4.16kV in the testbed.

Table 4.1: Distribution System Components

Type Capacity(kW) Location Note
Battery 10 S10

PV 15 S10
DG 85 S13
DG 163 S14

Load 100 S9 Priority:0.8
Load 125 S10 Priority:0.8
Load 90 S11 Priority:0.5

Matlab and Simulink were used to build the testbed shown in Fig 4.1. Fig 4.2, 4.3, and 4.4 show

the details of the testbed. Fig 4.5 shows how the testbed is divided to apply MAS algorithm. Table
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4.2 represents the default configuration of the given distribution system.

Figure 4.1: Overview of IEEE 9-bus system
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Table 4.2: Default Switch Configuration

Switch Status
S1 On
S2 On
S3 Off
S4 On
S5 On
S6 Off
S7 On
S8 On
S9 On

S10 On
S11 On
S12 On
S13 On
S14 On
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Figure 4.2: IEEE 9-bus System 1
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Figure 4.3: IEEE 9-bus System 2
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Figure 4.4: IEEE 9-bus System 3
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Figure 4.5: Zone Separation of IEEE 9-bus system

As shown in Fig 4.4, PV is simulated using reactive power bank and generator model. Because the

focus of this study is not designing inverter and controlling PV, this modeling method is chosen

and in this way the power factor can range from 0.95 to 1.05.
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Figure 4.6: Battery Design

The model in Fig 4.6 represents the design of the battery. It has two components, one generator,

and one load. The generator and load have 10kW capacity, and also the components are designed

in order to keep the power factor between 0.95 and 1.05. As mentioned above, in order to simplify

the components, a battery control algorithm is not considered in this study.

Simulation Scenarios for Initial Restoration after Faults and Results

In order to test the compatibility of the proposed algorithm in various situations, five scenarios

were tested. The algorithm was implemented with the below assumptions.

1. It is assumed that each switch has communication capability with its neighborhood switches.

2. Each switch receives two messages from neighboring agents during the restoration process.

In this simulation, only three-phase fault cases were tested. The results from each scenario are
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presented as follows.

Fault at Substation

When a fault happened at the substation, the switching configuration is acquired from Q-learning

as shown in Table 4.3. The surplus power is utilized to charge the battery. The fault and system

configuration after restoration are shown in Fig 4.7

Table 4.3: Switch Status after Restoration

Switch Status
S1 On
S2 On
S3 Off
S4 On
S5 Off
S6 Off
S7 On
S8 On
S9 On

S10 On
S11 Off
S12 Off
S13 On
S14 On
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Figure 4.7: Restoration after Fault at Substation
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Fault at Line

When a fault happened at the line near S4, the switching configuration from Q-learning violated

the voltage constraints. Therefore, the combination algorithm was automatically utilized. After

five combinations, no violations were observed. The result is shown in Table 4.4. The surplus

power was utilized to charge the battery. The fault and system configuration after restoration are

shown in Fig 4.8

Table 4.4: Switch Status after Restoration

Switch Status
S1 On
S2 On
S3 Off
S4 Off
S5 On
S6 Off
S7 On
S8 On
S9 On

S10 On
S11 On
S12 On
S13 On
S14 On
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Figure 4.8: Restoration after Fault at Line
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Fault at Distributed Generator

When a fault happened at DG near S14, the switching configuration from Q-learning has no vio-

lation. The result is shown in Table 4.5. Since the power was not enough to serve all loads in the

system, the load at S11 which has lower priority than others was disconnected. The surplus power

was utilized to charge the battery. The fault and system configuration after restoration are shown

in Fig 4.9

Table 4.5: Switch Status after Restoration

Switch Status
S1 On
S2 On
S3 Off
S4 On
S5 Off
S6 Off
S7 On
S8 On
S9 On

S10 On
S11 Off
S12 On
S13 On
S14 Off
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Figure 4.9: Restoration after Fault at DG
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Fault at Load

When a fault happened at load near S9, the switching configuration from Q-learning violated volt-

age constraints. Therefore, the combination algorithm was automatically utilized. After twelve

combinations, no violation was observed. The result is shown in Table 4.6. The surplus power was

utilized to charge the battery. The fault and system configuration after restoration are shown in Fig

4.10

Table 4.6: Switch Status after Restoration

Switch Status
S1 On
S2 On
S3 Off
S4 On
S5 On
S6 On
S7 Off
S8 Off
S9 Off

S10 On
S11 On
S12 On
S13 On
S14 On
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Figure 4.10: Restoration after Fault at Load
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Fault at PV and Battery

When a fault happened at PV and Battery, the switching configuration from Q-learning violated

voltage constraints. Therefore, the combination algorithm was automatically utilized. After five

combinations, no violation was observed. The result is shown in Table 4.7. The fault and system

configuration after restoration are shown in Fig 4.11

Table 4.7: Switch Status after Restoration

Switch Status
S1 On
S2 On
S3 Off
S4 On
S5 Off
S6 Off
S7 On
S8 On
S9 On

S10 On
S11 On
S12 On
S13 On
S14 On
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Figure 4.11: Restoration after Fault at PV and Battery
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Post Restoration Algorithm Simulation

After the initial restoration of the system, there can be sudden changes from the components in

the given system. For example, load demands or power generation from renewables and DGs can

change. Post-restoration algorithm adjusts existing switching configuration to these changes. The

algorithm keeps monitoring changes of the system and applies the restoration algorithm again to

make sure all system constraints are met after the changes.

Fault at Substation

PV Output Changes After Restoration

When a fault happened at the substation, the given system is restored as shown in Table 4.3. The

power generation of PV changes from 15kW to 30kW. After the change, the algorithm finds the

change, and the restoration algorithm is applied. Switching configuration was acquired from Q-

learning as shown in Table 4.8. The system configuration after restoration with the change is shown

in Fig 4.12
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Table 4.8: Switch Status after Restoration

Switch Status
S1 On
S2 On
S3 Off
S4 On
S5 Off
S6 On
S7 On
S8 Off
S9 On

S10 On
S11 Off
S12 Off
S13 On
S14 On
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Figure 4.12: Restoration after Fault at Substation with a PV Generation Change
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Summary

The algorithm proposed in the previous chapter is implemented in this chapter, and it was tested

with six different scenarios including one case that the system condition changed after the initial

restoration. The results show that the combination algorithm can backup the Q-learning algorithm,

and this makes the restoration algorithm more resilient to fault and system condition changes. The

summary of results is shown in Table 4.9.

Table 4.9: Results Summary

Fault location Applied algorithm(s) The number of combinations tried
Substation Q-learning N/A

Line Q-learning/Combination 5
DG Q-learning N/A

Load Q-learning/Combination 12
PV/Battery Q-learning/Combination 5

Substation with a PV output change Q-learning N/A
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK

Conclusions

This study presents a multiagent and Q-learning based restoration algorithm. The contribution of

this study is that it adopts reduced combination algorithm and battery algorithm to the existing

MAS Q-learning algorithm to make power system restoration process resilient. Furthermore, this

study considers power system physics and provides realistic power system restoration scenarios.

Lastly, the proposed algorithm shows that it can reconfigure a distribution system to handle system

condition changes after an initial restoration.

Future Work

To develop this study further, first, the MAS communication between neighborhood agents can

be developed and established. This will give more realistic solutions, and more research about

communication issues between agents can be studied. Second, automatic reward calculation of

each agent for the given system can be developed. With this study, larger systems restoration such

as transmission system restoration can be developed. Lastly, fully automated restoration algorithm

can be studied. A Hardware-in-the-Loop (HIL) testbed can be developed by adding hardware

such as relays, satellite clock, amplifier, etc. to the current testbed. The HIL testbed will provide

distribution automation system that can protect the system from faults and restore the system after

clearing the faults.
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APPENDIX A: MATLAB CODE
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Related Matlab codes for this study have attached and the codes consist of four parts as follows.

Restoration after Fault at Substation with PVout changes

clear all

%Type1: Fault at Substation and restoration after certain change.

%warning('off','all') /turn off and on waring

%2,3,5,6,8,9 load

Qeval = 0;

alpha = 0.1;

beta = 10;

eta = 0.4;

n = 2; % number of available actions

Battery_size = 10;

BatOut = Battery_size;

PVOut = 15;

etc = 1.05;

etcQ = 1;

Pri = [0 0 0 0 0 0 0 0 0.8 0.8 0.5 0 0 0];

CurLd = [0 0 0 0 0 0 0 0 100 125 90 0 0 0];

Gen = [0 0 0 0 0 0 0 0 0 PVOut+BatOut 0 200 85 163];

GenStatus = [0 0 0 0 0 0 0 0 0 1 0 1 1 0];

Fault = [0 0 0 0 0 0 0 0 0 0 0 1 0 0];

Battery_stat = [0 ;1];
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Battery_sw = 1;

PV_sw = 1;

%%%%%%%%%%% Load value calculation

LV = zeros(14,1);

for i=[9 10 11];

LV(i) = Pri(i)*CurLd(i);

end

%%%%%%%%%%%%%%Reward Calculation for each Load

Reward = zeros(14,2);%1,4,7 should be zero

Reward(9,1) = RewardCal_st(9, [10 11]);

Reward(9,2) = -Reward(9,1);

Reward(10,1) = RewardCal_st(10, [9 11]);

Reward(10,2) = -Reward(10,1);

Reward(11,1) = RewardCal_st(11, [9 10]);

Reward(11,2) = -Reward(11,1);

%%%%%%%%%%%%%%Reward Calculation for each switch

Reward(1,1) = LV(9)+LV(10)+LV(11);

Reward(1,2) = -Reward(1,1);

Reward(2,1) = LV(9)+LV(10)+LV(11);

Reward(2,2) = -Reward(2,1);

Reward(3,1) = (LV(9)+LV(10)+LV(11))-(LV(9)+LV(10)+LV(11));

Reward(3,2) = -Reward(3,1);
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Reward(4,1) = LV(10)-LV(9);

Reward(4,2) = -Reward(4,1);

Reward(5,1) = LV(11)-LV(9);

Reward(5,2) = -Reward(5,1);

Reward(6,1) = (LV(9)+LV(10)+LV(11))-(LV(9)+LV(10)+LV(11));

Reward(6,2) = -Reward(6,1);

Reward(7,1) = (1-Fault(12))*(LV(9)+LV(10)+LV(11));

Reward(7,2) = -Reward(7,1);

Reward(8,1) = (1-Fault(12))*(LV(9)+LV(10)+LV(11));

Reward(8,2) = -Reward(8,1);

%%%%% fault switch reward is set to 0

for i=1:14

Reward(i,:) = (1-Fault(i))*Reward(i,:);

end

info = zeros(1,14);

info(1:14) = 2;

epsilon = beta./(beta+info);

average = zeros(14,2); %calculate the average reward for close(1)

and open(2)

%zone1 and zone2 present two Manager Agents

zone1 = [1,3,4,6,7,9,10];

60



zone2 = [2,5,8,11];

temp = 0;

for i = zone1

temp = temp+Reward(i,1);

end

average(14,1) = temp/length(zone1);

temp = 0;

for i = zone1

temp = temp+Reward(i,2);

end

average(14,2) = temp/length(zone1);

temp = 0;

for i = zone2

temp = temp+Reward(i,1);

end

average(13,1) = temp/length(zone2);

temp = 0;

for i = zone2

temp = temp+Reward(i,2);

end

average(13,2) = temp/length(zone2);

degree = zeros(14,2);

MaxD1 = max(abs(average(14,1)-Reward(zone1,1)));
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MaxD2 = max(abs(average(14,2)-Reward(zone1,2)));

for i = zone1

degree(i,1) = (Reward(i,1)-average(14,1))/MaxD1;

degree(i,2) = (Reward(i,2)-average(14,2))/MaxD2;

end

MaxDD1 = max(abs(average(13,1)-Reward(zone2,1)));

MaxDD2 = max(abs(average(13,2)-Reward(zone2,2)));

for i = zone2

degree(i,1) = (Reward(i,1)-average(13,1))/MaxDD1;

degree(i,2) = (Reward(i,2)-average(13,2))/MaxDD2;

end

%deg, Reward, alpha, eta, epsilon,n

SW = zeros(14,1);

ii=[1 2 3 4 5 6 7 8 9 10 11 12 13 14];

xx = find(Fault(ii)==1); %do not calculate the action for fault

switch

ii(xx)=[];

%calculate the switching action

for i=ii
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SW(i) = SAaction1(degree(i,:),Reward(i,:), alpha, eta,

epsilon(i), 2);

end

% convert close =1 and open =0 from close =1 open = 2 to make

more intuitive

SWstatus = zeros(14,1);

for i=ii

if SW(i)==1 % close

SWstatus(i) = SW(i);

elseif SW(i)==2 %open

SWstatus(i) = 0;

end

end

%%%%%%Check Surplus power and radiality

Recheck=zeros(14,1);

i=[9 10 11];

while dot(GenStatus,Gen)-dot(SWstatus,CurLd)>89

i=[9 10 11];

x = find(SWstatus(i)==0);

k = i(x);

Recheck(k) = Reward(k,1);

[c,d]=max(Recheck(k));

SWstatus(k(d))=1;
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end

if SWstatus(6)+SWstatus(7)+SWstatus(8)==3

i = [6 7 8];

Reward(i) = Reward(i,1);

[e f] = min(Reward(i));

SWstatus(i(f))=0;

end

if SWstatus(1)+SWstatus(2)+SWstatus(3)==3

i = [1 2 3];

Reward(i) = Reward(i,1);

[e f] = min(Reward(i));

SWstatus(i(f))=0;

end

j = 1:14;

jx = find(SWstatus(j)==1);

disp('Q-learning solution')

disp(' S1 S2 S3 S4 S5 S6 S7 S8 S9

S10 S11 S12 S13 S14')

disp(SWstatus')

%%%Verify Q-learning solution

for i=1
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SWstatus_up = SWstatus;

fprintf('Q-learning solution\n')

[viol_i,Mea_I,Mea_V] = const_viol_PV0612T1('

IEEE_9bus_new_PV_0612_simplified_V_auto',0.1, SWstatus_up)

;

sum_viol(i) = length(viol_i);

if isempty(viol_i)

disp('No violation and Switch Status:')

disp(' S1 S2 S3 S4 S5 S6 S7 S8

S9 S10 S11 S12 S13 S14')

disp(SWstatus')

TotalGen = Gen(10)+Gen(12)*SWstatus(12)+Gen(13)*SWstatus

(13)+Gen(14)*SWstatus(14);

TotalLd = CurLd(9)*SWstatus(9)+CurLd(10)*SWstatus(10)+

CurLd(11)*SWstatus(11);

AvB = TotalGen - TotalLd;

fprintf('Surplus Power %i kW\n',AvB)

if TotalGen - TotalLd >= Battery_size

Battery_stat = [1 ;0];

else

Battery_stat = [0;1];

end

[viol_i,Mea_I,Mea_V] = const_viol_PV0612T1('

IEEE_9bus_new_PV_0612_simplified_V_auto',0.1,
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SWstatus_up);

if isempty(viol_i)

disp('No violation from Battery and Switch Status:')

disp(' S1 S2 S3 S4 S5 S6 S7

S8 S9 S10 S11 S12 S13 S14')

disp(SWstatus')

disp(' Bat_Load Bat_Gen')

disp(Battery_stat')

Qeval = 1;

break;

end

end

end

SSW = zeros(14,1);

SSW(9:10)=1;%priority load

SSW(12)=1;SSW(13)=1;SSW(14)=1; %generator agent

SSW(14)=0; %fault

UnD = [1 2 3 4 5 6 7 8 11];

combn=0;

for i=5:length(UnD)

Temp = nchoosek(UnD,i);

Size_temp = size(Temp);
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combn = combn+Size_temp(1);

end

SW_matrix = zeros(15, combn);

counter = 0;

for i=5:length(UnD)

Temp = nchoosek(UnD,i);

Size_temp = size(Temp);

for j=1:Size_temp(1)

counter=counter+1;

SSW(Temp(j,:))=1;

SW_matrix(1:14,counter)=SSW;

SumReward=0;%%%%%%%%%%%%%%%%%%%%%%caution!

for l=1:14

if SSW(l)==1

SumReward = SumReward+Reward(l,1);

else

SumReward = SumReward+Reward(l,2);

end

end

SW_matrix(15,counter) = SumReward;

SSW(UnD) = 0;

end

end
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[Y,I]=sort(SW_matrix(15,:),'descend');

SW_reward_sorted=SW_matrix(:,I); %use the column indices from

sort() to sort all columns of A.

sum_viol = zeros(30,1);

for i=1:60

while Qeval == 0

while (SW_reward_sorted(1,i)+SW_reward_sorted(2,i)+

SW_reward_sorted(3,i) == 3)||(SW_reward_sorted(6,i)+

SW_reward_sorted(7,i)+SW_reward_sorted(8,i) == 3)

i = i+1;

end

SWstatus_up = SW_reward_sorted(1:14,i);

fprintf('Combination #:%i\n',i)

[viol_i,Mea_I,Mea_V] = const_viol_PV0612T1('

IEEE_9bus_new_PV_0612_simplified_V_auto',0.1,

SWstatus_up);

sum_viol(i) = length(viol_i);

if isempty(viol_i)

disp('No violation and Switch Status:')

disp(' S1 S2 S3 S4 S5 S6 S7

S8 S9 S10 S11 S12 S13 S14')

disp(SW_reward_sorted(1:14,i)')
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TotalGen = Gen(10)+Gen(12)*SW_reward_sorted(12,i)+Gen

(13)*SW_reward_sorted(13,i)+Gen(14)*

SW_reward_sorted(14,i);

TotalLd = CurLd(9)*SW_reward_sorted(9,i)+CurLd(10)*

SW_reward_sorted(10,i)+CurLd(11)*SW_reward_sorted

(11,i);

AvB = TotalGen - TotalLd;

fprintf('Surplus Power %i kW\n',AvB)

if TotalGen - TotalLd >= Battery_size

Battery_stat = [1 ;0];

else

Battery_stat = [0;1];

end

[viol_i,Mea_I,Mea_V] = const_viol_PV0612T1('

IEEE_9bus_new_PV_0612_simplified_V_auto',0.1,

SWstatus_up);

if isempty(viol_i)

disp('No violation and Switch Status:')

disp(' S1 S2 S3 S4 S5 S6 S7

S8 S9 S10 S11 S12 S13 S14')

disp(SW_reward_sorted(1:14,i)')

disp(' Bat_Load Bat_Gen')

disp(Battery_stat')

Qeval = 1;
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break;

end

end

i=i+1;

end

end

%% Monitoring PVOutput change and update system configuration

PVOutnew = 30;

Qeval = 0;

if PVOut ˜= PVOutnew

fprintf('The output of PV changed from %i kW to %i kW\n',

PVOut,PVOutnew)

PVOut = PVOutnew;

etc = 1;

etcQ = 1.2;

Pri = [0 0 0 0 0 0 0 0 0.8 0.8 0.5 0 0 0];

CurLd = [0 0 0 0 0 0 0 0 100 125 90 0 0 0];

Gen = [0 0 0 0 0 0 0 0 0 PVOut+BatOut 0 200 85 163];%

%%%%%%%%%%%PV generation

GenStatus = [0 0 0 0 0 0 0 0 0 1 0 1 1 0];

Fault = [0 0 0 0 0 0 0 0 0 0 0 1 0 0];

Battery_stat = [0 ;1];

Battery_sw = 1;
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PV_sw = 1;

%%%%%%%%%%% Load value calculation

LV = zeros(14,1);

for i=[9 10 11];

LV(i) = Pri(i)*CurLd(i);

end

%%%%%%%%%%%%%%Reward Calculation for each Load

Reward = zeros(14,2);%1,4,7 should be zero

Reward(9,1) = RewardCal_st(9, [10 11]);

Reward(9,2) = -Reward(9,1);

Reward(10,1) = RewardCal_st(10, [9 11]);

Reward(10,2) = -Reward(10,1);

Reward(11,1) = RewardCal_st(11, [9 10]);

Reward(11,2) = -Reward(11,1);

%%%%%%%%%%%%%%Reward Calculation for each switch

Reward(1,1) = LV(9)+LV(10)+LV(11);

Reward(1,2) = -Reward(1,1);

Reward(2,1) = LV(9)+LV(10)+LV(11);

Reward(2,2) = -Reward(2,1);

Reward(3,1) = (LV(9)+LV(10)+LV(11))-(LV(9)+LV(10)+LV(11));

Reward(3,2) = -Reward(3,1);

Reward(4,1) = LV(10)-LV(9);
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Reward(4,2) = -Reward(4,1);

Reward(5,1) = LV(11)-LV(9);

Reward(5,2) = -Reward(5,1);

Reward(6,1) = (LV(9)+LV(10)+LV(11))-(LV(9)+LV(10)+LV(11));

Reward(6,2) = -Reward(6,1);

Reward(7,1) = (1-Fault(12))*(LV(9)+LV(10)+LV(11));

Reward(7,2) = -Reward(7,1);

Reward(8,1) = (1-Fault(12))*(LV(9)+LV(10)+LV(11));

Reward(8,2) = -Reward(8,1);

%%%%% fault switch reward is set to 0

for i=1:14

Reward(i,:) = (1-Fault(i))*Reward(i,:);

end

info = zeros(1,14);

info(1:14) = 2;

epsilon = beta./(beta+info);

average = zeros(14,2); %calculate the average reward for close(1)

and open(2)

%zone1 and zone2 present two Manager Agents

zone1 = [1,3,4,6,7,9,10];

zone2 = [2,5,8,11];

temp = 0;
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for i = zone1

temp = temp+Reward(i,1);

end

average(14,1) = temp/length(zone1);

temp = 0;

for i = zone1

temp = temp+Reward(i,2);

end

average(14,2) = temp/length(zone1);

temp = 0;

for i = zone2

temp = temp+Reward(i,1);

end

average(13,1) = temp/length(zone2);

temp = 0;

for i = zone2

temp = temp+Reward(i,2);

end

average(13,2) = temp/length(zone2);

degree = zeros(14,2);

MaxD1 = max(abs(average(14,1)-Reward(zone1,1)));

MaxD2 = max(abs(average(14,2)-Reward(zone1,2)));

for i = zone1
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degree(i,1) = (Reward(i,1)-average(14,1))/MaxD1;

degree(i,2) = (Reward(i,2)-average(14,2))/MaxD2;

end

MaxDD1 = max(abs(average(13,1)-Reward(zone2,1)));

MaxDD2 = max(abs(average(13,2)-Reward(zone2,2)));

for i = zone2

degree(i,1) = (Reward(i,1)-average(13,1))/MaxDD1;

degree(i,2) = (Reward(i,2)-average(13,2))/MaxDD2;

end

%deg, Reward, alpha, eta, epsilon,n

SW = zeros(14,1);

ii=[1 2 3 4 5 6 7 8 9 10 11 12 13 14];

xx = find(Fault(ii)==1); %do not calculate the action for fault

switch

ii(xx)=[];

%calculate the switching action

for i=ii

SW(i) = SAaction1(degree(i,:),Reward(i,:), alpha, eta,

epsilon(i), 2);

end
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% convert close =1 and open =0 from close =1 open = 2 to make

more intuitive

SWstatus = zeros(14,1);

for i=ii

if SW(i)==1 % close

SWstatus(i) = SW(i);

elseif SW(i)==2 %open

SWstatus(i) = 0;

end

end

%%%%%%Check Surplus power and radiality

Recheck=zeros(14,1);

i=[9 10 11];

while dot(GenStatus,Gen)-dot(SWstatus,CurLd)>89

i=[9 10 11];

x = find(SWstatus(i)==0);

k = i(x);

Recheck(k) = Reward(k,1);

[c,d]=max(Recheck(k));

SWstatus(k(d))=1;

end

if SWstatus(6)+SWstatus(7)+SWstatus(8)==3

i = [6 7 8];
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Reward(i) = Reward(i,1);

[e f] = min(Reward(i));

SWstatus(i(f))=0;

end

if SWstatus(1)+SWstatus(2)+SWstatus(3)==3

i = [1 2 3];

Reward(i) = Reward(i,1);

[e f] = min(Reward(i));

SWstatus(i(f))=0;

end

j = 1:14;

jx = find(SWstatus(j)==1);

disp('Q-learning solution')

disp(' S1 S2 S3 S4 S5 S6 S7 S8 S9

S10 S11 S12 S13 S14')

disp(SWstatus')

%%%Verify Q-learning solution

for i=1

SWstatus_up = SWstatus;

fprintf('Q-learning solution\n')

[viol_i,Mea_I,Mea_V] = const_viol_PV0612T1('

IEEE_9bus_new_PV_0612_simplified_V_auto',0.1, SWstatus_up)
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;

sum_viol(i) = length(viol_i);

if isempty(viol_i)

disp('No violation and Switch Status:')

disp(' S1 S2 S3 S4 S5 S6 S7 S8

S9 S10 S11 S12 S13 S14')

disp(SWstatus')

TotalGen = Gen(10)+Gen(12)*SWstatus(12)+Gen(13)*SWstatus

(13)+Gen(14)*SWstatus(14);

TotalLd = CurLd(9)*SWstatus(9)+CurLd(10)*SWstatus(10)+

CurLd(11)*SWstatus(11);

AvB = TotalGen - TotalLd;

fprintf('Surplus Power %i kW\n',AvB)

if TotalGen - TotalLd >= Battery_size

Battery_stat = [1 ;0];

else

Battery_stat = [0;1];

end

[viol_i,Mea_I,Mea_V] = const_viol_PV0612T1('

IEEE_9bus_new_PV_0612_simplified_V_auto',0.1,

SWstatus_up);

if isempty(viol_i)

disp('No violation from Battery and Switch Status:')
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disp(' S1 S2 S3 S4 S5 S6 S7

S8 S9 S10 S11 S12 S13 S14')

disp(SWstatus')

disp(' Bat_Load Bat_Gen')

disp(Battery_stat')

Qeval = 1;

break;

end

end

end

SSW = zeros(14,1);

SSW(9:10)=1;%priority load

SSW(12)=1;SSW(13)=1;SSW(14)=1; %generator agent

SSW(12)=0; %fault

UnD = [1 2 3 4 5 6 7 8 11];

combn=0;

for i=5:length(UnD)

Temp = nchoosek(UnD,i);

Size_temp = size(Temp);

combn = combn+Size_temp(1);

end
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SW_matrix = zeros(15, combn);

counter = 0;

for i=5:length(UnD)

Temp = nchoosek(UnD,i);

Size_temp = size(Temp);

for j=1:Size_temp(1)

counter=counter+1;

SSW(Temp(j,:))=1;

SW_matrix(1:14,counter)=SSW;

SumReward=0;%%%%%%%%%%%%%%%%%%%%%%caution!

for l=1:14

if SSW(l)==1

SumReward = SumReward+Reward(l,1);

else

SumReward = SumReward+Reward(l,2);

end

end

SW_matrix(15,counter) = SumReward;

SSW(UnD) = 0;

end

end

[Y,I]=sort(SW_matrix(15,:),'descend');
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SW_reward_sorted=SW_matrix(:,I); %use the column indices from

sort() to sort all columns of A.

sum_viol = zeros(30,1);

for i=1:60

while Qeval == 0

while (SW_reward_sorted(1,i)+SW_reward_sorted(2,i)+

SW_reward_sorted(3,i) == 3)||(SW_reward_sorted(6,i)+

SW_reward_sorted(7,i)+SW_reward_sorted(8,i) == 3)

i = i+1;

end

SWstatus_up = SW_reward_sorted(1:14,i);

fprintf('Combination #:%i\n',i)

[viol_i,Mea_I,Mea_V] = const_viol_PV0612T1('

IEEE_9bus_new_PV_0612_simplified_V_auto',0.1,

SWstatus_up);

sum_viol(i) = length(viol_i);

if isempty(viol_i)

disp('No violation and Switch Status:')

disp(' S1 S2 S3 S4 S5 S6 S7

S8 S9 S10 S11 S12 S13 S14')

disp(SW_reward_sorted(1:14,i)')

TotalGen = Gen(10)+Gen(12)*SW_reward_sorted(12,i)+Gen

(13)*SW_reward_sorted(13,i)+Gen(14)*
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SW_reward_sorted(14,i);

TotalLd = CurLd(9)*SW_reward_sorted(9,i)+CurLd(10)*

SW_reward_sorted(10,i)+CurLd(11)*SW_reward_sorted

(11,i);

AvB = TotalGen - TotalLd;

fprintf('Surplus Power %i kW\n',AvB)

if TotalGen - TotalLd >= Battery_size

Battery_stat = [1 ;0];

else

Battery_stat = [0;1];

end

[viol_i,Mea_I,Mea_V] = const_viol_PV0612T1('

IEEE_9bus_new_PV_0612_simplified_V_auto',0.1,

SWstatus_up);

if isempty(viol_i)

disp('No violation and Switch Status:')

disp(' S1 S2 S3 S4 S5 S6 S7

S8 S9 S10 S11 S12 S13 S14')

disp(SW_reward_sorted(1:14,i)')

disp(' Bat_Load Bat_Gen')

disp(Battery_stat')

Qeval = 1;

break;

end

end
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i=i+1;

end

end

end

Q-learning algorithm for Switch Agents

function [ac_opti ] = SAaction1( deg, Reward, alpha, eta, epsilon

,n )

%UNTITLED4 Summary of this function goes here

% Detailed explanation goes here

Pi = [0.5 0.5];

Pi_dot = zeros(1,2);

ac1 = 1;

ac2 = 2;

Q = [0 0];

for k=1:2000

%action 1:on action 2:off

%adapt pi to pi_dot

if deg(ac1)<=0

Pi_dot(ac1) = Pi(ac1) + Pi(ac1)*eta*deg(ac1);
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Pi_dot(ac2) = Pi(ac2) + (1-Pi(ac2))*eta*deg(ac2);

else

Pi_dot(ac1) = Pi(ac1) + (1-Pi(ac1))*eta*deg(ac1);

Pi_dot(ac2) = Pi(ac2) + Pi(ac2)*eta*deg(ac2);

end

%Pi_dot normalization

Pi_dot = Pi_dot/sum(Pi_dot);

%Q value update

for m=1:2

Q(m) = Q(m) + Pi_dot(m)*alpha*(dot(Reward,Pi_dot) - Q(m))

;

end

%random initialization

[˜,ac1] = max(Q);

[˜,ac2] = min(Q);

Pi(ac1) = (1-epsilon)+(epsilon/n);

Pi(ac2) = epsilon/n;

end

Q;
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[˜,ac_opti] = max(Q);

end

Reward Calculation

function output = RewardCal_st1(connect, disconnect)

sum = 0;

LV = zeros(14,1);

%calculate the reward for picking up load

Pri = [0 0 0 0 0 0 0 0 0.8 0.8 0.5 0 0 0];

CurLd = [0 0 0 0 0 0 0 0 100 125 90 0 0 0];

for i = connect

LV(i) = Pri(i)*CurLd(i);

sum = sum + LV(i);

end

subsum = 0;

%calculate the reward for load that I might lose

for i = disconnect

LV(i) = Pri(i)*CurLd(i);

subsum = subsum + LV(i);

end

%multiply the probability to the reward
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subsum = 1/(length(disconnect)+1)*subsum;%%%+1 could be omitted

output = sum - subsum;

end

Current and Voltage Constraints Check

function [ viol_i,Mea_I,Mea_V ] = const__viol( model, MMargin,

SWstatus_up )

load_system(model)

sim(model)

%Compare Nominal value to Measured value to check the constraint

violation.

Nom_I(1:11) = 20;

% Nom_I = zeros(11,1);

% Nom_I(1) = SC1.data(end);

% Nom_I(2) = SC2.data(end);

% Nom_I(3) = SC3.data(end);

% Nom_I(4) = SC4.data(end);

% Nom_I(5) = SC5.data(end);

% Nom_I(6) = SC6.data(end);

% Nom_I(7) = SC7.data(end);

% Nom_I(8) = SC8.data(end);

% Nom_I(9) = SC9.data(end);

% Nom_I(10) = SC10.data(end);
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% Nom_I(11) = SC11.data(end);

Nom_V = zeros(11,1);

Nom_V = 1.0e+03 *[3.0835

3.0835

3.0836

3.0836

3.0836

3.0835

3.0835

3.0835

3.0835

3.0835

3.0835];

% Nom_V = zeros(11,1);

% Nom_V(1) = SV1.data(end);

% Nom_V(2) = SV2.data(end);

% Nom_V(3) = SV3.data(end);

% Nom_V(4) = SV4.data(end);

% Nom_V(5) = SV5.data(end);

% Nom_V(6) = SV6.data(end);

% Nom_V(7) = SV7.data(end);

% Nom_V(8) = SV8.data(end);

% Nom_V(9) = SV9.data(end);
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% Nom_V(10) = SV10.data(end);

% Nom_V(11) = SV11.data(end);

Mea_I = zeros(11,1);

Mea_I(1) = SC1.data(end);

Mea_I(2) = SC2.data(end);

Mea_I(3) = SC3.data(end);

Mea_I(4) = SC4.data(end);

Mea_I(5) = SC5.data(end);

Mea_I(6) = SC6.data(end);

Mea_I(7) = SC7.data(end);

Mea_I(8) = SC8.data(end);

Mea_I(9) = SC9.data(end);

Mea_I(10) = SC10.data(end);

Mea_I(11) = SC11.data(end);

Mea_V = zeros(11,1);

Mea_V(1) = SV1.data(end);

Mea_V(2) = SV2.data(end);

Mea_V(3) = SV3.data(end);

Mea_V(4) = SV4.data(end);

Mea_V(5) = SV5.data(end);

Mea_V(6) = SV6.data(end);

Mea_V(7) = SV7.data(end);

Mea_V(8) = SV8.data(end);
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Mea_V(9) = SV9.data(end);

Mea_V(10) = SV10.data(end);

Mea_V(11) = SV11.data(end);

SWstatus_temp = SWstatus_up;

i=1:11;

j=[1,2,3,4,5,6,7,8,9,10,11];%4,6,10;

x = find(SWstatus_up(i)==0); %find switches which are opened

i(x)=[];%eliminate the swiches opened

viol_i =[];

for p=i

if Mea_I(p)>= Nom_I(p)*(1+MMargin)

fprintf('Switch %i violates I constraint.\n',p)

viol_i = [viol_i p];

end

end

for q=i

if (Mea_V(q)>=Nom_V(q)*(1+0.05))||(Mea_V(q)<=Nom_V(q)

*(1-0.05))

fprintf('Switch %i violates V constraint.\n',q)

viol_i = [viol_i q];

end
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end

end

89



LIST OF REFERENCES

[1] M. Adibi and L. Fink, “Overcoming restoration challenges associated with major power sys-

tem disturbances-restoration from cascading failures,” IEEE Power and Energy Magazine,

vol. 4, no. 5, pp. 68–77, 2006.

[2] M. Harris. (2016) Train your reinforcement learning agents at the

openai gym. [Online]. Available: https://devblogs.nvidia.com/parallelforall/

train-reinforcement-learning-agents-openai-gym/

[3] E. Bompard, T. Huang, Y. Wu, and M. Cremenescu, “Classification and trend analysis of

threats origins to the security of power systems,” International Journal of Electrical Power

& Energy Systems, vol. 50, pp. 50–64, 2013.

[4] W. H. Kersting, “Distribution system modeling and analysis,” in Electric Power Generation,

Transmission, and Distribution, Third Edition. CRC press, 2012, pp. 1–9.

[5] J. D. McDonald, B. Wojszczyk, B. Flynn, and I. Voloh, “Distribution systems, substations,

and integration of distributed generation,” in Electrical Transmission Systems and Smart

Grids. Springer, 2013, pp. 7–68.

[6] K. Divya and J. Østergaard, “Battery energy storage technology for power systemsan

overview,” Electric Power Systems Research, vol. 79, no. 4, pp. 511–520, 2009.

[7] N. Hatziargyriou, MicroGrids. wiley-IEEE press, 2014.

[8] P. Asmus, “Microgrids, virtual power plants and our distributed energy future,” The Electric-

ity Journal, vol. 23, no. 10, pp. 72–82, 2010.

[9] R. H. Lasseter and P. Piagi, “Control and design of microgrid components,” PSERC Publica-

tion 06, vol. 3, 2006.

90

https://devblogs.nvidia.com/parallelforall/train-reinforcement-learning-agents-openai-gym/
https://devblogs.nvidia.com/parallelforall/train-reinforcement-learning-agents-openai-gym/


[10] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,” 1998.

[11] N. Shimkin. (2011) Reinforcement learning basic algorithms. [Online]. Available: http:

//www.ece.iisc.ernet.in/∼aditya/E1245 Online Prediction Learning F2014/ch4 RL1.pdf

[12] M. Adibi, P. Clelland, L. Fink, H. Happ, R. Kafka, J. Raine, D. Scheurer, and F. Trefny,

“Power system restoration-a task force report,” IEEE Transactions on Power Systems, vol. 2,

no. 2, pp. 271–277, 1987.

[13] J. Gutierrez, M. Staropolsky, and A. Garcia, “Policies for restoration of a power system,”

IEEE Transactions on power systems, vol. 2, no. 2, pp. 436–442, 1987.

[14] J. J. Ancona, “A framework for power system restoration following a major power failure,”

IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1480–1485, 1995.

[15] Y.-Y. Hsu, F.-C. Lu, Y. Chien, J. Liu, J. Lin, P. Yu, and R. Kuo, “An expert system for locating

distribution system faults,” IEEE Transactions on Power Delivery, vol. 6, no. 1, pp. 366–372,

1991.

[16] C. Fukui and J. Kawakami, “An expert system for fault section estimation using information

from protective relays and circuit breakers,” IEEE Transactions on Power Delivery, vol. 1,

no. 4, pp. 83–90, 1986.

[17] A. A. Girgis and M. B. Johns, “A hybrid expert system for faulted section identification, fault

type classification and selection of fault location algorithms,” IEEE Transactions on Power

Delivery, vol. 4, no. 2, pp. 978–985, 1989.

[18] H.-J. Cho and J.-K. Park, “An expert system for fault section diagnosis of power systems

using fuzzy relations,” IEEE transactions on power systems, vol. 12, no. 1, pp. 342–348,

1997.

91

http://www.ece.iisc.ernet.in/~aditya/E1245_Online_Prediction_Learning_F2014/ch4_RL1.pdf
http://www.ece.iisc.ernet.in/~aditya/E1245_Online_Prediction_Learning_F2014/ch4_RL1.pdf


[19] C.-H. Lin, H.-J. Chuang, C.-S. Chen, C.-S. Li, and C.-Y. Ho, “Fault detection, isolation

and restoration using a multiagent-based distribution automation system,” in Industrial Elec-

tronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference on. IEEE, 2009, pp.

2528–2533.

[20] X. Lin, S. Ke, Z. Li, H. Weng, and X. Han, “A fault diagnosis method of power systems based

on improved objective function and genetic algorithm-tabu search,” IEEE Transactions on

Power Delivery, vol. 25, no. 3, pp. 1268–1274, 2010.

[21] J. Feltes and C. Grande-Moran, “Black start studies for system restoration,” in Power and

Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st

Century, 2008 IEEE. IEEE, 2008, pp. 1–8.

[22] D. Shirmohammadi, “Service restoration in distribution networks via network reconfigura-

tion,” IEEE Transactions on Power Delivery, vol. 7, no. 2, pp. 952–958, 1992.

[23] Y.-Y. Hsu and H.-C. Kuo, “A heuristic based fuzzy reasoning approach for distribution system

service restoration,” IEEE Transactions on Power Delivery, vol. 9, no. 2, pp. 948–953, 1994.

[24] X.-m. Li, Y.-h. Huang, and X.-g. Yin, “A genetic algorithm based on improvement strategy

for power distribution network reconfiguration [j],” Proceedings of the CSEE, vol. 2, p. 009,

2004.

[25] R. A. Jabr, R. Singh, and B. C. Pal, “Minimum loss network reconfiguration using mixed-

integer convex programming,” IEEE Transactions on Power systems, vol. 27, no. 2, pp. 1106–

1115, 2012.

[26] T. Nagata and H. Sasaki, “A multi-agent approach to power system restoration,” IEEE Trans-

actions on power systems, vol. 17, no. 2, pp. 457–462, 2002.

92



[27] D. Ye, M. Zhang, and D. Sutanto, “A hybrid multiagent framework with q-learning for power

grid systems restoration,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2434–

2441, 2011.

[28] A. Felix, H. K. Nunna, and S. Doolla, “Distribution system restoration-a multi agent ap-

proach,” in India Conference (INDICON), 2012 Annual IEEE. IEEE, 2012, pp. 1014–1019.

[29] S. L. Jayasinghe and K. T. M. U. Hemapala, “Multi agent based power distribution system

restorationa literature survey,” Energy and Power Engineering, vol. 7, no. 12, p. 557, 2015.

[30] V. Kumar, I. Gupta, and H. O. Gupta, “An overview of cold load pickup issues in distribution

systems,” Electric Power Components and Systems, vol. 34, no. 6, pp. 639–651, 2006.

[31] L. Yutian, F. Rui, and V. Terzija, “Power system restoration: a literature review from 2006

to 2016,” Journal of Modern Power Systems and Clean Energy, vol. 4, no. 3, pp. 332–341,

2016.

[32] M. Adibi and R. Kafka, “Power system restoration issues,” IEEE Computer Applications in

Power, vol. 4, no. 2, pp. 19–24, 1991.

[33] C. Andrews, F. Arsanjani, M. Lanier, J. Miller, T. Volkmann, and J. Wrubel, “Special consid-

erations in power system restoration,” IEEE Trans. Power Syst, vol. 7, no. 4, pp. 1419–1427,

1992.

[34] D. Lindenmeyer, H. Dommel, and M. Adibi, “Power system restorationa bibliographical sur-

vey,” International journal of electrical power & energy systems, vol. 23, no. 3, pp. 219–227,

2001.

[35] E. M. Davidson, S. D. McArthur, J. R. McDonald, T. Cumming, and I. Watt, “Applying

multi-agent system technology in practice: Automated management and analysis of scada

93



and digital fault recorder data,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp.

559–567, 2006.

[36] J. Lagorse, D. Paire, and A. Miraoui, “A multi-agent system for energy management of dis-

tributed power sources,” Renewable energy, vol. 35, no. 1, pp. 174–182, 2010.

[37] G. Conzelmann, G. Boyd, V. Koritarov, and T. Veselka, “Multi-agent power market simu-

lation using emcas,” in Power Engineering Society General Meeting, 2005. IEEE. IEEE,

2005, pp. 2829–2834.

[38] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent systems in a distributed

smart grid: Design and implementation,” in Power Systems Conference and Exposition, 2009.

PSCE’09. IEEE/PES. IEEE, 2009, pp. 1–8.

[39] A. L. Dimeas and N. D. Hatziargyriou, “Operation of a multiagent system for microgrid

control,” IEEE Transactions on Power systems, vol. 20, no. 3, pp. 1447–1455, 2005.

[40] A. Dimeas and N. Hatziargyriou, “A multiagent system for microgrids,” in Power Engineer-

ing Society General Meeting, 2004. IEEE. IEEE, 2004, pp. 55–58.

[41] Y. Xu, W. Liu, and J. Gong, “Stable multi-agent-based load shedding algorithm for power

systems,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2006–2014, 2011.

[42] J. M. Solanki, S. Khushalani, and N. N. Schulz, “A multi-agent solution to distribution sys-

tems restoration,” IEEE Transactions on Power systems, vol. 22, no. 3, pp. 1026–1034, 2007.

[43] F. Ren, M. Zhang, D. Soetanto, and X. Su, “Conceptual design of a multi-agent system for

interconnected power systems restoration,” IEEE Transactions on Power Systems, vol. 27,

no. 2, pp. 732–740, 2012.

[44] W. Khamphanchai, S. Pisanupoj, W. Ongsakul, and M. Pipattanasomporn, “A multi-agent

based power system restoration approach in distributed smart grid,” in Utility Exhibition on

94



Power and Energy Systems: Issues & Prospects for Asia (ICUE), 2011 International Confer-

ence and. IEEE, 2011, pp. 1–7.

[45] W.-M. Lin and H.-C. Chin, “A new approach for distribution feeder reconfiguration for loss

reduction and service restoration,” IEEE Transactions on Power Delivery, vol. 13, no. 3, pp.

870–875, 1998.

[46] X.-W. Yan, L.-B. Shi, L.-Z. Yao, Y.-X. Ni, and M. Bazargan, “A multi-agent based au-

tonomous decentralized framework for power system restoration,” in Power System Tech-

nology (POWERCON), 2014 International Conference on. IEEE, 2014, pp. 871–876.

[47] I. S. Baxevanos and D. P. Labridis, “Implementing multiagent systems technology for power

distribution network control and protection management,” IEEE Transactions on Power De-

livery, vol. 22, no. 1, pp. 433–443, 2007.

[48] S. D. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou,

F. Ponci, and T. Funabashi, “Multi-agent systems for power engineering applicationspart

i: Concepts, approaches, and technical challenges,” IEEE Transactions on Power systems,

vol. 22, no. 4, pp. 1743–1752, 2007.

[49] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,

1992.

[50] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement learning in coop-

erative multi-agent systems,” in In Proceedings of the Seventeenth International Conference

on Machine Learning. Citeseer, 2000.

[51] M. Restelli. (2015) Reinforcement learning - exploration vs exploitation. [Online]. Available:

http://home.deib.polimi.it/restelli/MyWebSite/pdf/rl5.pdf

[52] F. Kunz, “An introduction to temporal difference learning,” 2000.

95

http://home.deib.polimi.it/restelli/MyWebSite/pdf/rl5.pdf


[53] D. Poole and A. Mackworth. (2010) 11.3.6 on-policy learning. [Online]. Available:

http://artint.info/html/ArtInt 268.html

[54] I. Rudowsky, “Intelligent agents,” The Communications of the Association for Information

Systems, vol. 14, no. 1, p. 48, 2004.

[55] M. Glavic, “Agents and multi-agent systems: a short introduction for power engineers,” 2006.

[56] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A taxonomy for autonomous

agents,” Intelligent agents III agent theories, architectures, and languages, pp. 21–35, 1997.

[57] S. Russell, P. Norvig, and A. Intelligence, “A modern approach,” Artificial Intelligence.

Prentice-Hall, Egnlewood Cliffs, vol. 25, p. 27, 1995.

[58] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and practice,” The knowledge

engineering review, vol. 10, no. 02, pp. 115–152, 1995.

[59] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine learning perspective,”

Autonomous Robots, vol. 8, no. 3, pp. 345–383, 2000.

[60] K. Huang, S. K. Srivastava, D. A. Cartes, and M. Sloderbeck, “Intelligent agents applied

to reconfiguration of mesh structured power systems,” in Intelligent Systems Applications to

Power Systems, 2007. ISAP 2007. International Conference on. IEEE, 2007, pp. 1–7.

[61] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent systems with JADE.

John Wiley & Sons, 2007, vol. 7.

[62] S. Poslad, P. Buckle, and R. Hadingham, “The fipa-os agent platform: Open source for open

standards.”

96

http://artint.info/html/ArtInt_268.html


[63] H. S. Nwana, D. T. Ndumu, L. C. Lee, and J. C. Collis, “Zeus: a toolkit for building dis-

tributed multiagent systems,” Applied Artificial Intelligence, vol. 13, no. 1-2, pp. 129–185,

1999.
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