
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2016

Applied Advanced Error Control Coding for General Purpose Applied Advanced Error Control Coding for General Purpose

Representation and Association Machine Systems Representation and Association Machine Systems

Bowen Dai
University of Central Florida

 Part of the Electrical and Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Dai, Bowen, "Applied Advanced Error Control Coding for General Purpose Representation and Association
Machine Systems" (2016). Electronic Theses and Dissertations, 2004-2019. 5249.
https://stars.library.ucf.edu/etd/5249

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236258925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/266?utm_source=stars.library.ucf.edu%2Fetd%2F5249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/5249?utm_source=stars.library.ucf.edu%2Fetd%2F5249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

APPLIED ADVANCED ERROR CONTROL CODING FOR GENERAL PURPOSE
REPRESENTATION AND ASSOCIATION MACHINE SYSTEMS

by

BOWEN DAI
M.S. University of Central Florida, 2013

B.S. Beijing Institute of Technology, 2009

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2016

Major Professor: Lei Wei

c© 2016 Bowen Dai

ii

ABSTRACT

General-Purpose Representation and Association Machine (GPRAM) is proposed to be focusing

on computations in terms of variation and flexibility, rather than precision and speed. GPRAM

system has a vague representation and has no predefined tasks. With several important lessons

learned from error control coding, neuroscience and human visual system, we investigate several

types of error control codes, including Hamming code and Low-Density Parity Check (LDPC)

codes, and extend them to different directions.

While in error control codes, solely XOR logic gate is used to connect different nodes. Inspired by

bio-systems and Turbo codes, we suggest and study non-linear codes with expanded operations,

such as codes including AND and OR gates which raises the problem of prior-probabilities mis-

matching. Prior discussions about critical challenges in designing codes and iterative decoding

for non-equiprobable symbols may pave the way for a more comprehensive understanding of bio-

signal processing. The limitation of XOR operation in iterative decoding with non-equiprobable

symbols is described and can be potentially resolved by applying quasi-XOR operation and inter-

mediate transformation layer. Constructing codes for non-equiprobable symbols with the former

approach cannot satisfyingly perform with regarding to error correction capability. Probabilistic

messages for sum-product algorithm using XOR, AND, and OR operations with non-equiprobable

symbols are further computed. The primary motivation for the constructing codes is to establish

the GPRAM system rather than to conduct error control coding per se. The GPRAM system is fun-

damentally developed by applying various operations with substantial over-complete basis. This

system is capable of continuously achieving better and simpler approximations for complex tasks.

The approaches of decoding LDPC codes with non-equiprobable binary symbols are discussed

due to the aforementioned prior-probabilities mismatching problem. The traditional Tanner graph

iii

should be modified because of the distinction of message passing to information bits and to parity

check bits from check nodes. In other words, the message passing along two directions are iden-

tical in conventional Tanner graph, while the message along the forward direction and backward

direction are different in our case. A method of optimizing signal constellation is described, which

is able to maximize the channel mutual information.

A simple Image Processing Unit (IPU) structure is proposed for GPRAM system, to which images

are inputted. The IPU consists of a randomly constructed LDPC code, an iterative decoder, a

switch, and scaling and decision device. The quality of input images has been severely deteriorated

for the purpose of mimicking visual information variability (VIV) experienced in human visual

systems. The IPU is capable of (a) reliably recognizing digits from images of which quality is

extremely inadequate; (b) achieving similar hyper-acuity performance comparing to human visual

system; and (c) significantly improving the recognition rate with applying randomly constructed

LDPC code, which is not specifically optimized for the tasks.

KEYWORDS: General Purpose Systems, Advanced Coding, Low-Density Parity Check Codes,

Image Processing Unit

iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and deepest appreciation to my academic advisor,

Professor Lei Wei, for his guidance, inspiration, and patience through five years of study at Uni-

versity of Central Florida (UCF). I feel grateful for his suggestions and discussions throughout my

doctoral research. This dissertation would not have been possible without his persistent assistance

and review. Financial supports from UCF are greatly appreciated from which I got a four-year

fellowship.

Profound gratitude goes to my PhD committee members, Professor Mingjie Lin, Professor Nazanin

Rahnavard from Department of Electrical and Computer Engineering, Professor Damla Turgut

from Department of Computer Science, and Professor Qiyu Sun from Department of Mathematics,

for providing invaluable advice, information, and support on different aspects of my dissertation

and for their devoted cooperation.

I would like to thank the members of Signals and Communications Lab, with whom I have shared

invaluable memories during my graduate studies. Particularly I would like to acknowledge Huihui

Li, Alireza Sani, Mojitaba Shirazi, Toktam Amanzade for the assistance of all related discussions.

This is dedicated to my family and many friends who supported me on this memorable journey. I

could not have walked alone for all these years without your love and encouragement.

v

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xv

CHAPTER 1: INTRODUCTION . 1

Motivations . 1

Outline . 4

Contributions . 5

Paper List . 7

CHAPTER 2: BACKGROUND AND RELATED WORK 9

Logic Gates . 9

Linear Block Codes . 10

Low-Density Parity Check codes . 11

Human Vision Hyper-Acuity . 12

Literature Review . 13

CHAPTER 3: STUDY ON ERROR CORRECTION CODES WITH NON-EQUIPROBABLE

vi

SYMBOLS . 17

Limitation of XOR Operation . 18

quasi-XOR Operation and Intermediate Transformation Layer 21

quasi-XOR Operation . 21

Intermediate Transformation Layer . 26

Front-Intermediate Transformation Layer 28

End-Intermediate Transformation Layer 31

Half-Intermediate Transformation Layer 32

Code Construction and Probabilistic Messages for Non-equiprobable Symbols 32

Tree Codes with QXOR . 33

Summary . 37

CHAPTER 4: NONLINEAR CODES WITH EXPANDED OPERATIONS 38

Modification of (7,4) Hamming code using AND and OR Gates 39

Decoding of Nonlinear Codes using Iterative Decoder 43

Message Passing in AND Logic Gate . 46

Message From Inputs to Output . 47

Message From Other Inputs and Output to an Input 49

vii

Message Passing in OR Logic Gate . 50

Message From Inputs to Output . 51

Message From Other Inputs and Output to an Input 52

Message Passing in XOR Logic Gate . 54

Message From Inputs to Output . 54

Message From Other Inputs and Output to an Input 56

The Numerical Results . 57

CHAPTER 5: LDPC CODE WITH NON-EQUIPROBABLE SYMBOLS 66

Signal and System . 66

Signaling Optimization . 68

Message Passing with Non-equiprobable Symbols and Nonlinear Codes 71

Numerical Procedure for Simulation . 74

Optimal Constellation . 74

Simulation of short LDPC Codes . 74

Summary . 76

CHAPTER 6: IMAGE PROCESSING UNIT FOR GENERAL PURPOSE REPRESENTA-

TION AND ASSOCIATION MACHINE 78

viii

Structure of IPU for GPRAM . 79

Visual Information Variability . 81

Point spread . 83

Drift-like motion . 83

Orientation movement . 84

Power Scaling Methods . 84

Algorithms . 88

Training . 88

Testing . 90

Scaling for LLR . 90

Testing Procedure . 94

Simulation Results and Discussion . 95

Performance on 2 digits . 96

Performance on 10 digits . 96

Simulation Results . 97

Performance on Alphabetic Letters and Roman Numerals 100

Performance on Hyper-Acuity . 100

ix

Performance on Low-Resolution Human Face Recognition 102

CHAPTER 7: CONCLUSION . 111

Summary . 111

Future Works . 112

LIST OF REFERENCES . 115

x

LIST OF FIGURES

2.1 Inputs and Output for a Logic Gate with Mapping Function 9

2.2 Distinctive Shape for Different Logic Gates 10

2.3 Tanner Graph with K = 10 and T = 5, Corresponding to the H matrix

Defined in Equation (2.1). Circles Indicate Variable Nodes while Squares In-

dicate Parity Check Nodes. Connection Lines from Variable Nodes to Parity

Check Nodes are Edges. 14

3.1 A Simple Example on Parity Check Nodes. ⊗ Denotes XOR. 19

3.2 Karnaugh Map for XOR Operation. 23

3.3 Karnaugh Map for an Operation with Three Inputs. 23

3.4 Karnaugh Map for QXOR Operation with Three Inputs. 24

3.5 Karnaugh Map for QXOR Operation with Four Inputs. 25

3.6 Probabilities of Output Symbols Versus Input Symbols 27

3.7 Structure for F-ITL, where p1 = p2 = p3 = p4 = p5 = p6 = 0.3, p(O1,1 =

0) = 0.09, p(O2,1 = 0) = 0.09, p(O3,2 = 0) = 0.21, p(O = 0) = 0.305 29

3.8 Structure for E-ITL, where p1 = · · · = pk = pO1 = pO2 32

3.9 Structure for H-ITL . 33

xi

4.1 (7,4) Hamming Code . 40

4.2 (7,4) Hamming Code with (a) Outflow (b) Top-down Directions 41

4.3 Tanner Graph for (7,4,2) Hamming Code . 44

4.4 Tanner Graph for dc − 1 Inputs and One Output 49

5.1 (a) Conventional Tanner Graph of (7,4) Hamming Code and Extension (b)

Graph with Directions for Non-equiprobable Symbols 68

5.2 R of Systems with M=2, Equiprobable and Non-equiprobable ({pk}=[0.3,

0.7]) Symbols as a Function of Es/N0 . 75

5.3 Bit Error Rate of (3, 6) LDPC Codes for Case 1 to Case 4 as a Function of

Es/N0 . 77

5.4 Package Error Rate of (3, 6) LDPC Codes for Case 1 to Case 5 as a Function

of Eb/N0 . 77

6.1 Structure of IPU for GPRAM for One Frame 79

6.2 Effects of Point Spread (β1), Drift-like Motion (β2), Head Orientation Rota-

tion (β3) and Gaussian Noise (σ1) . 85

6.3 10 Standard Digits . 97

6.4 Error Rates of 2 Types of Detectors . 98

xii

6.5 Histogram of Errors when β1 = 1, β2 = 1, β3 = 1, σ1 = 1, and σ2 = 1.5

(a) with the LDPC H Matrix Involved and (b) without the LDPC H Matrix

Involved . 104

6.6 Histogram of Errors when β1 = 0, β2 = 1, β3 = 0, σ1 = 1, and σ2 = 1.5

with the LDPC H Matrix Involved. 105

6.7 Histogram of Errors when β1 = 0, β2 = 0, β3 = 1, σ1 = 1, and σ2 = 1.5

with the LDPC H Matrix Involved. 105

6.8 Histogram of Errors when β1 = 0, β2 = 1, β3 = 1, σ1 = 1, and σ2 = 1.5

with the LDPC H Matrix Involved. 106

6.9 Histogram of Errors when β1 = 1, β2 = 0, β3 = 1, σ1 = 1, and σ2 = 1.5

with the LDPC H Matrix Involved. 106

6.10 Histogram of Errors when β1 = 1, β2 = 1, β3 = 0, σ1 = 1, and σ2 = 1.5

with the LDPC H Matrix Involved. 107

6.11 Histogram of Errors when β1 = 1, β2 = 1, β3 = 1, σ1 = 1, and σ2 = 1.5

using Scaling Method 4 with LDPC H Matrix Involved. 107

6.12 Histogram of Errors when β1 = 1, β2 = 1, β3 = 1, σ1 = 1, and σ2 = 1.5

using Scaling Method 4 without LDPC H Matrix Involved. 108

6.13 Alphabetic Letters “a” through “z” . 109

6.14 Roman Numerals “I” to “X” . 110

xiii

6.15 (a) Two Bars Lined up Perfectly, (b) Right Bar Shifted downward with a

Hyper-acuity Threshold of 1 Photo-receptor, (c) Right Bar Shifted downward

with a Hyper-acuity Threshold of 1/10 of a Photo-receptor 110

xiv

LIST OF TABLES

3.1 Four Symbols with Two Bits. 20

3.2 Codes based on XOR2 . 33

3.3 Codes based on QXOR3 . 34

3.4 Codes based on XOR3 . 34

3.5 Codes based on QXOR4 . 35

4.1 9 Different Codes Cases with Different Gates and Different Directions 41

4.2 Codewords of Various Codes Using Tanner Graph in Fig. 4.1 42

4.3 Prior Probabilities for Codes with Tanner Graph in Fig. 4.1 with Equiproba-

ble Symbols . 43

4.4 Prior Probabilities for Codes with Tanner Graph in Fig. 4.1 with Non-Equiprobable

Symbols . 43

4.5 Codewords of Various Codes Using Tanner Graph in Fig. 4.3 45

4.6 Prior Probabilities for Codes with Tanner Graph in Fig. 4.3 with Equiproba-

ble Symbols . 45

4.7 Prior Probabilities for Codes with Tanner Graph in Fig. 4.3 with Non-Equiprobable

Symbols . 46

4.8 Truth Table with Three Inputs and One Output for AND gate 46

xv

4.9 Truth Table with Three Inputs and One Output for OR Gate 51

4.10 Truth Table with Three Inputs and One Output for XOR Gate 54

4.11 Error Probabilities of Codes using Hamming (7,4) Structure with p = 0.5

and Optimal Constellation . 59

4.12 Error Probabilities of Codes Using Hamming (7,4) Structure with p = 0.5

and Equal Spaced Constellation {±1} . 60

4.13 Error Probabilities of Codes Using Hamming (7,4) Structure with p = 0.3

and Optimal Constellation . 61

4.14 Error Probabilities of Codes using Hamming (7,4) Structure with p = 0.3

and Equal Spaced Constellation {±0.5} . 62

4.15 Error Probabilities of Codes using Hamming (7,4,2) Structure with p = 0.5

and Optimal Constellation . 63

4.16 Error Probabilities of Codes using Hamming (7,4,2) Structure with p = 0.5

and Equal Spaced Constellation {±0.5} . 64

4.17 Error Probabilities of Codes Using Hamming (7,4,2) Structure with p = 0.3

and Optimal Constellation . 65

5.1 Simulation Cases . 76

6.1 Performance of Pairwise Detector using Method 3 96

6.2 Detector Types . 97

xvi

6.3 Performance of Hyper-Acuity Detector under Various Settings using Scaling

Method 3 and 4 (σ2 = 1) . 103

xvii

CHAPTER 1: INTRODUCTION

Motivations

Human brain is capable of executing functions such as intelligence, planning, reasoning, and ab-

stract thought in general purposes [1] [2] [3]. And intelligence gradually emerges during evolu-

tion [4] [5]. On the other hand, artificial intelligence (AI) is typically developed aiming at specific

purposes [7] [8] [9], such as modern computer which was invented in the 1940s [10]. The latter

can perform with precision and speed of which human brains are not capable [11] [12]. Upon the

difference observed between human brain and AI, precision and versatility needs to be considered

in order to construct a machine with general purposes. To achieve precision, one or several gener-

alized function(s) are required to represent a fixed association, and attempt to prove all other types

of functions can be obtained by the generalized one(s). As for versatility, many different types of

specific functions with variations needs to be included and combined to improve possible capabil-

ities. In fact, the latter appeared in biological systems [13], which was naturally developed during

evolution.

Human beings have already succeeded in handling many practical problems, prior to the establish-

ment of theories of sciences. For instance, our ancestors gather and hunt a mammoth with a careful

strategy: they ambush the animal and then drive the panic-stricken mammoth into a muck. The

selection of kill site, weapon, and opportunity ensures the successfulness of hunting. In modern

world, these factors are determined by computer-aided accurate calculations, with numerous math-

ematical or scientific models involved. And the strategy is planned and executed non-erroneously.

However, the human mind is guiding and leading the decision-making by providing many widely

but roughly trial thoughts. This encourages us to develop a machine to mimic this role of human

mind, to make a decision based on the consideration of many parallel possibilities and different

1

types of ideas. On the other hand, precision is ranked as lower priorities. Intuition is the main

guidance during research and discovering processes, which is learned from previous experiences

such as failures and random guesses.

Nowadays, scientists and engineers are still using intuition as a guide to their research and work

sometimes just as our hunter-gatherer ancestor did. These intuitions utilizes stored experience [14],

including failures and random guesses. And intuition plays an important role on decision making

[15]. Scientists and researchers might benefit from their intuition in terms of how to approach and

tackle sophisticated problems or how to develop novel theories. However, none of modern theories

would be found if they completely relied on their instincts. Scientific approaches and mathematical

principles are still needed to prove the correctness of possible solutions and hypotheses [16]. It is

definitely amazing about how far we have achieved on Medicine [17], Neuroscience [18]. The

computational tasks solved by AI lacks the intuitional part since human beings play an essential

role in that process. For instance, researchers decide to implement which algorithm and utilize

which feature for one specific task.

In summary, in most of the engineering task solved by AI lacks complexity factor due to the

foundation of mathematical principles and engineering structure developed in [19] [20] [21]. A

theory of General-Purpose Representation and Association Machine (GPRAM) is proposed in [22],

which aligns with the dimension of versatility. This is inspired by the mechanism of human brain

that associates the representations of external world, which enables solving problems in general

purpose [23]. In our work, we want to implement a prototype of GPRAM, behind which the overall

philosophy is to perform a large number of tasks with acceptable accuracy, rather than design for

a specific task with high accuracy. The primary performance metrics are no long precision and

speed, rather flexibility and complexity.

To implement the aforementioned prototype, we choose error control code, Low-Density Parity

2

Check (LDPC) codes to be specific, as the core which functions like the “brain” of GPRAM. The

key reasons of this choice of error control coding are [22]:

1. The existence of good performing codes are possible since the average performance over

randomly constructed long codes can be close to Shannon limit [24].

2. Plenty of randomly constructed codes are sub-optimal if generated from Tanner graphs [25]

under the constraint that the graphs only contain few loops with small girth.

3. Sub-graphs can propagate and pass information among each other while complexity is at a

low level [25] [26].

4. Iterative decoding is implemented in [26] and this process is noise-resilient and error-resilient.

5. McEliece et al, [27] have discovered connections between iterative decoding and Pearl’s

belief algorithm [28], which is vital to generate information required by Bayesian networks.

6. Factor graph representation and iterative decoding can be derived as instances of a wide

variety of algorithms, including algorithms in AI and signal processing [29].

7. Neurons and iterative decoding share a similar way of functioning: repetition, random per-

mutation, and non-linear operation [30].

Based on these reasons, it is not unreasonable to state that LDPC code is indeed a good candidate

for implementing GPRAM, even though some might argue that more proofs are still needed to con-

firm Bayesian models in cognitive science [31]. In order to understand and utilize this best known

information transmission and reception mechanism to the most, we explored, studied and extended

error control coding to different directions: from hamming code to LDPC codes, from equiproba-

ble symbols to non-equiprobable ones, from error correcting codes with exclusive-OR(XOR) gate

3

to codes with AND and OR gates, and combination of these all. There are works studied long

codes [32], short codes [33] [34], and other types of codes [35].

Outline

In this dissertation, the concentration is on studying advanced error control coding, for instance,

(7,4) Hamming code with AND and OR gates, and LDPC codes with non-equiprobable symbols,

for the implementation of GPRAM system prototype. And an image process unit (IPU) framework

is suggested which accepts images as input for GPRAM . Many tasks are selected to test against

the proposed framework. There are seven chapters in this dissertation, which are organized as

follows.

All the related work, techniques involved and background are presented in Chapter 2. Different

logic gates are reviewed at first. Relevant error control coding theory is introduced next, including

LDPC codes and (7, 4) hamming code, which is followed by human vision related visual informa-

tion and also the concept of hyper-acuity.

The study and extension on linear block codes is investigated in Chapter 3. The problem of assum-

ing equiprobable source information is stated firstly, which follows by the probability mismatch

between the input and the output of encoders. The limitation of XOR operation in dealing with

non-equiprobable is demonstrated. Different ways of solving the probability mismatch problem are

proposed, such as quasi-XOR operation and intermediated transformation layer. How to construct

codes for non-equiprobable symbols using quasi-XOR operation is explained in details.

Extension on linear block codes to a further direction is studied, which incorporates AND, OR and

XOR gates in Chapter 4. Prior probabilities for each node is discussed and calculated. A study case

of modifying (7,4) Hamming code using AND and OR gates is illustrated in details to investigate

4

the properties for such codes. Traditional message passing algorithm is revised according to the

changes of logic gates. Simulation results showing error handling capabilities for revised (7,4)

Hamming codes are presented as well.

Chapter 5 describes the necessity of extending LDPC codes with equiprobable symbols to LDPC

codes with non-equiprobable symbols. The signal and system for this application is defined at the

beginning. We found the optimized constellation for non-equiprobable symbols and proved that

such constellation scheme maximizes capacity and the channel mutual information. It then follows

by decoding procedure for LDPC codes with non-equiprobable symbols. And we also compare the

performance of LDPC codes with non-equiprobable symbols with LDPC codes with equiprobable

ones. The replacement of equal space constellation with optimal constellation could gain 0.72 dB

in performance. Several cases of short LDPC codes are explored and gain almost 0.4 dB.

Chapter 6 proposes a simple IPU structure for GPRAM system. A structure of IPU based on

LDPC codes and image mapping is defined later. This structure includes three aspects of Visual

Information Variability (VIV), LDPC parity check matrix, and power scaling process for which

there are four methods discussed. The experimental procedures and algorithms are described in

details. We also present the simulation results for different type of tasks and also for different type

of detectors.

We summarize this dissertation by describing the time-line and future research directions in Chap-

ter 7.

Contributions

The major contributions in this dissertation are listed as follows:

5

1. We presented about critical challenges in designing codes and iterative decoding for non-

equiprobable symbols may pave the way for a more comprehensive understanding of bio-

signal processing. (Chapter 3 and papers C1 and C2)

2. We demonstrated the limitations of XOR operation in dealing with non-equiprobable sym-

bols. The limitation of XOR operation can be potentially resolved by applying quasi-XOR

operation and intermediate transformation layer. (Chapter 3 and paper C2)

3. We showed how to construct codes for non-equiprobable symbols using quasi-XOR opera-

tion and the codes cannot satisfyingly perform with regarding to error correction capability.

(Chapter 3 and paper C2)

4. We studied a new type of (7, 4) Hamming code by extending it to non-equiprobable sym-

bols, then replaced XOR operation by other logic gates such as AND and OR. And further

we computed probabilistic messages for sum-product algorithm using XOR, AND, and OR

operations with non-equiprobable symbols. Large amount of operations available in the sys-

tem with substantial over-complete basis will lay a foundation to develop a GPRAM system

that can continuously discover better and simple approximations for complex tasks. (Chapter

4)

5. We analyzed how to decode LDPC codes with non-equiprobable binary symbols. And we

proved that the message passing from check nodes to information bits and to parity check

bits are diverse from conventional Tanner graph, which is with equiprobable binary symbols.

(Chapter 5 and paper J3)

6. A method of optimizing signal constellation is described, which is able to maximize the

channel mutual information for non-equiprobable binary symbols. We simulated LDPC

codes with prior probabilities of (0.3, 0.7) and was able to obtain 0.72 dB gain using our

method comparing with equal space constellation. (Chapter 5 and paper J3)

6

7. We proposed a simple IPU structure for GPRAM system which implements a form of gen-

eralized learning which could function like an “eye” for GPRAM systems in the future.

(Chapter 6)

8. We selected different tasks to test the performance ability of IPU/GPRAM with visual vari-

ability information which human beings perceive in real life. These tasks include 10 digit

recognition, alphabetical letters recognition, roman numerals recognition, fine details visual

discrimination and human face recognition. And we found that the IPU is capable of (a) reli-

ably recognizing digits from images of which quality is extremely inadequate, (b) achieving

similar hyper-acuity performance comparing to human visual system, and (c) significantly

improving the recognition rate with applying randomly constructed LDPC code, which is

not specifically optimized for the tasks. (Chapter 6 and papers J1, J2)

Paper List

Journal Papers:

J1. B. Dai, H. Li and L. Wei, “Image Processing Unit for General-Purpose Representation and

Association System for Recognizing Low-Resolution Digits with Visual Information Vari-

ability,” in IEEE Transactions on System, Man, and Cybernetics: System, Accepted

J2. H. Li, B. Dai and L.Wei, “Image Processing Unit for GPRAM System for Recognizing Low

Resolution Facial Images with Visual Imperfectness,” in IEEE Transactions on Information

Theory, Submitted

J3. B. Dai and L. Wei, “Low-Density Parity Check Codes with Non-equiprobable Symbols,” in

IEEE Communication Letter, vol. 17, no. 11, pp. 2124-2127, Nov. 2013.

7

Conference Papers:

C1. H. Li, B. Dai, S. Schultz and L. Wei, “General Purpose Representation and Association

Machine, Part 3: Prototype Study Using Low-Density Parity Check codes,” in Proceedings

of IEEE Southeastcon, Jacksonville, FL, USA, 2013, pp. 1-5.

C2. B. Dai and L. Wei, “Some Results and Challenges on Codes and Iterative Decoding with

Non-equal Symbol Probabilities,” in IEEE International Symposium on Information Theory

and its Applications (ISITA), Hawaii, USA, Oct. 2012, pp. 116-120.

8

CHAPTER 2: BACKGROUND AND RELATED WORK

Logic Gates

Turing and Church investigated the characteristics of computability in the year of 1936 [19] [36],

since then classical computation theory became prominent. Logic gates and logic circuits play as

a major role in the theory of computation. Optimal structure of classical logic circuits have been

developed [37]. A logic gate is essentially an electric circuit, and ideally implements a boolean

function [38]. These logic gates take one or more logical inputs and generates one logical output.

A gate is logically reversible if the input values can be uniquely determined from the output values,

otherwise the gate is defined as logically irreversible. The AND and OR gates show as irreversible

logical gates. The seven basic logic gates are: AND, OR, XOR, NOT, NAND (NOT AND), NOR

(NOT OR), and XNOR (NOT XOR). Fig. 2.1 shows the mapping function from multiple inputs to

an output. Fig. 2.2 shows the distinctive shape for several logic gates [39].

Output

Input

Input
⁞

Input

function

Figure 2.1: Inputs and Output for a Logic Gate with Mapping Function

There has been work reported about the similarity between logic gates and neurons [40]. McCul-

loch et al. [41] proposed that brain can be decomposed to threshold units which consist of logic

9

gates. And the threshold units are similar to neurons. This proposed framework laid foundation

for artificial neural networks [42] and machine learning theory [43] [44]. And also some suggests

how brains differ from computers [45] and argues using logic-gates simplifies brain functions since

they perform on pure binary elements [46].

(a) AND Gate (b) OR Gate

(c) NOT Gate (d) XOR Gate

Figure 2.2: Distinctive Shape for Different Logic Gates

Nonetheless, a logic gate provides a function mapping a set of inputs to an output. And the number

of functions increases exponentially if logic gates are cascaded.

Linear Block Codes

In coding theory, the linear block codes is a subclass of all block codes. The word “linear” means

any linear combination of any selection of codewords is also a codeword. There are several famous

and widely used examples of block codes, such as Hamming codes, Reed-Solomon codes, Reed-

Muller codes, and many more. In our study, we choose Hamming codes and LDPC codes as study

cases, for the reasons stated in Chapter 1.

Each group of linear block codes is associated with two matrices, named Generator Matrix or G

matrix, and Parity Check Matrix or H matrix. A codeword is essentially a tuple with length of K,

10

which can be partitioned into two blocks. A block contains message bits with the length of K−T ,

while the other contains parity check bits with the length of T . Parity check bits are redundant

information which can be used to recover original message bits after transmitting through noisy

channel.

Generator matrix can be used to generate all the codewords given all the combinations of message

bits. The number of possible codewords is 2K−T over the field GF(2) with block length of K and

dimension of T . Parity Check Matrix can be used for decoding and recovering original message

bits through message passing algorithm. We used sum-product algorithm in our study.

Equation (2.1) shows an example of Parity Check Matrix when K = 10 and T = 5. It is worth

mentioning that each row of Parity Check Matrix represents parity check constraint on code-

words. An example of valid codewords for the Parity Check Matrix defined in Equation (2.1)

is [1, 1, 1, 1, 0, 0, 0, 1, 0, 1] since it satisfies all the parity check constraints.

H =

1 1 0 1 0 0 1 1 1 0

1 0 1 1 1 0 1 0 0 1

0 1 1 0 0 1 0 1 1 1

1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1

(2.1)

Low-Density Parity Check codes

LDPC codes were developed and introduced by Robert Gallager [47] in his Ph.D. dissertation and

till Mackay revealed the good performance of LDPC codes [48]. Its associated message passing

algorithm, given as belief propagation algorithm, has been applied in communities of AI [28]. A

special type of belief propagation was firstly analyzed and described in [49], and was applied to

11

hard decision decoding of LDPC codes in [50]. LDPC codes are a subset of linear block codes. In

this dissertation, we only discuss binary codes and assume the block length of LDPC codes is K

and dimension is T . Binary code means there are only two possible values {0, 1} for each single

element in each codeword. And that element is called bit by convention and thus in the rest of this

dissertation. When the probability of message bit being 0 is equal to the probability of it being

1, this message bit is therefore referred as equiprobable, non-equiprobable otherwise. The codes

are called low-density because the Parity Check Matrix contains far more 0’s in comparison to the

amount of 1’s.

A more visualized way to represent LDPC codes is through Tanner graph [51] as shown in Fig.

2.3. A Tanner graph is a bipartite graph showing connections among variable nodes and check

nodes with them aligning on two sides [52]. Each variable node corresponds to an element or a

bit in every codeword and to a column in Parity Check Matrix. Each check node corresponds to a

parity check constraint and to a row in Parity Check Matrix. Therefore, any codeword must satisfy

all parity check constraints to be called valid. The operation for a parity check constraint is defined

as modulo 2 addition or XOR. Variable nodes and check nodes are connected through edges which

indicate as the ones in Parity Check Matrix in a Tanner graph.

Human Vision Hyper-Acuity

The hyper-acuity, also known as vernier-acuity [53], is described as an ability that human eye de-

tects the misalignments of lines with extraordinary accuracy. It can be measured under various

situations [54] [55] [56], for example, an object is standing, sitting, or walking. Human visual

systems can surprisingly distinguish the misalignment between two lines within a misalignment of

1 arcsec [57] [58] [59], which is approximately equivalent to 1/30th of the inter-cone spacing. The

term of hyper-acuity is termed by Westheimer [61] because the spatial discrimination task [60]

12

evaluating relations between between a line or a dot and a reference are far smaller than the cone

spacing. The following factors should be specified to experimentally measure the capability of hu-

man hyper-acuity capability, including distance between an observer and a screen, the screen size,

the screen resolution, and stimulus conditions like luminance and edges. This is selected as one of

the experimental tasks to compare the differentiation rate between IPU and human performance,

in our study described in Chapter 6

Literature Review

Modern computer was invented and developed in the 1940s to satisfy the requirement of com-

putational precision and rate that our brains are not capable of [19] [21]. Recent publications

in [22] [23] highlighted the philosophic differences between the computer and a GPRAM. A

GPRAM can simultaneously conduct various tasks with adequate accuracy, instead of a single

task with superior accuracy. Fundamental investigations have been listed in [22] [23], from the

aspects of modern error control coding, information theory, and biological/life science. The im-

portance of self-noises in a system has been described by [62], indicating the possibility of applying

LDPC codes as a representative layer in such systems. The feasibility of implementing matched

filters is reported by [63] [64], this is for the purpose of achieving statistically optimal performance

for a biologically inspired system. A device achieving hyper-acuity vision is proposed by Wei et

al. in [65], under the circumstance of VIV. Iterative decoding for error control code with non-

equiprobable symbols is discussed in [66] [67], because the source that generates these symbols

might not be practically ideal. A GPRAM prototype system can be established by applying simple

LDPC codes, and its multi-task performing can be achieved by conducting a progressive learning

process, per introduction in [68]. In the presented thesis, a GPRAM is supposed to be constructed

and some substantial results are exhibited to this end.

13

Figure 2.3: Tanner Graph with K = 10 and T = 5, Corresponding to the H matrix Defined
in Equation (2.1). Circles Indicate Variable Nodes while Squares Indicate Parity Check Nodes.
Connection Lines from Variable Nodes to Parity Check Nodes are Edges.

The concept of GPRAM has not been widely accepted in the existed research areas mentioned

above. This is because the most competitive results with regarding to precision may not be ob-

tained by our GPRAM approach in each highly-specified task, comparing to the existed tech-

niques in these fields. On the contrary, a comprehensively interdisciplinary integration is required

by GPRAM rather than limited combination of a few research areas, let alone the concentration on

14

a specific field. Therefore, the higher priority would be to achieve variation, flexibility, and versa-

tility, instead of the computational precision and rate. Furthermore, various tasks and templates can

be more easily blended together in the early stage with vague boundary, where accuracy should

not be considered as the critical factor in comparison. The limitation of study would be related

to the current understanding of error control coding and the small-scale of computer simulation.

However, it can be significantly improved from many different aspects when sufficient attention is

attracted in the scientific community.

Another objective of this study is to demonstrate that VIV may be unanticipatedly beneficial for

developing a multi-task visual system. This would correspond to the fact that the brain benefits

from uncertainty, as reported in [69] [70]. Recognition of images (28-by-28 pixels) is selected as

the testing case, including realistic VIV such as point spread, fixational movement, orientation ro-

tation, and Gaussian noise. These visual factors and their effects are described in [65]. A GPRAM

trial platform is then established by applying a randomly constructed LDPC code and iterative

decoding [71]. The former secures that no particular optimization applied for any specific task.

Nevertheless, the results will be described in alignment with the traditional best-known techniques

for the purpose of comparison. Multiple machines will be devised under the platform in a mature

GPRAM system, while each individual is equipped with its own approaches for representation

and association. Therefore, GPRAM units may be dictated by different procedures and converge

to each distinct aspect. The current study can then be considered as one of the numerous imple-

mented GPRAM units. It is worth mentioning that the ultimate objective is to develop millions of

tantamount rather than identical units.

The recognition of hand-written digits and optical character has been an important research topic

in the field of machine learning [72], for example, to process blurred images due to camera mo-

tions [73], low resolution text, various paper quality, or other issues [74] [75]. A novel algorithm

is proposed about one-shot classification using handwritten characters in [76]. Research related

15

to computational neuroscience over the last 20 years is reviewed in [77]. An explanation from

the aspect of mathematics about human vision is reported in [78]. In the neural science areas,

researchers have been tried to reconstruct the visual view from animals either by directly record-

ing neural activities [79] or through non-intruding technology such as fMRI [80]. However, the

directly obtained animal view are barely recognizable and the process to form the sharp and clear

image as we experience still remains a mystery. It was concluded that blurringly sampled and

quantized images could actually improve the recognition in [81], which is corresponding to our

approach of beneficially involving the effect of VIV in recognition process.

It is reported that human has superior capability to recognize hand-written digits [82] [83]. Various

techniques have been developed with regarding to this topic over the last 20 years [84] [85]. Ciresan

et al. [107] applied a large deep multilayer perceptron (MLP) network, achieving a computationally

feasible error rate of 0.35% on the MNIST hand-written digits benchmark. The error rate could

be further decreased to 0.27% in [108] with additional training time. Wang et al. [109] proposed

a deep learning method to resolve a very-low-resolution recognition problem (16-by-16 pixels). It

is worth mentioning that VIV is not considered nor applied in the studies above.

16

CHAPTER 3: STUDY ON ERROR CORRECTION CODES WITH

NON-EQUIPROBABLE SYMBOLS

Many work and optimization problems are developed and designed under the assumption that

source information is equiprobable [67] [86]. Modern telecommunication and error control coding

are largely designed to handle equiprobable symbols. In this chapter, we present critical challenges

in designing codes and iterative decoding for non-equiprobable symbols may pave the way for a

more comprehensive understanding of bio-signal processing.

It is recommended to develop the source and channel encoders independently in a communica-

tion system according to Shannon’s separation principle [87] which had an enormous impact on

constructing telecommunication systems. Since the same performance can be achieved both by a

jointly devised source and channel coding system and by separately developed source and channel

encoders. It is almost a default assumption that data have been compressed by an ideal source

encoder and hence generates an independent, identically distributed (i.i.d) sequence of equiprob-

able bits. Subjects such as modulation, capacity, and error correction capabilities have been well

considered and researched under this assumption in [71] [88] [89] [90]. The authors presented a

general method to compute the capacity of LDPC codes when the inputs are binary and the channel

is memoryless in [91].

However, cases beyond this assumption have been considered in recent papers not only in telecom-

munication system design [92] [93] [94], but also in the understanding of biological systems [22]

[23] [65]. In this Chapter, it is assumed that information source symbols have fixed, but non-equal

prior probabilities. Based on this assumption, our study is focusing on designing an encoder which

produces the symbols with the same prior probability settings as input symbols and hence gener-

ating sequence of non-equiprobable bits regardless of what the probability settings are. The study

17

result can be generalized and utilized by studies on more complicated cases in GPRAM.

XOR operation is the key operation connecting parity check bit and information bit in error con-

trol coding when dealing with equiprobable symbols. However it is not an optimal operation when

the source are non-equiprobable symbols. If two equiprobable symbols s1 and s2 are two inputs

to an XOR gate, then the output of XOR operation,s3 = s1 ⊕ s2 where ⊕ denotes XOR, is an

equiprobable symbol; however, if p(s1 = 0) = p(s2 = 0) = 0.3, where p(.) denotes probabil-

ity, the output symbol has the prior-probability p(s3 = 0) = 0.58 which does not match with

the prior-probabilities of two inputs. This issue will be demonstrated in details in next Section.

Furthermore, in topics like biological systems which is related to likelihood detection theory [65],

source compressing or sparse coding [95], iterative turbo-like joint estimation and decoding or

factorized decoder [96], the input symbols might be non-equiprobable. Another benefit to study

how to design source and channel encoding and decoding mechanisms for the systems with non-

equiprobable symbols is that it might be used in bio-systems and a new type of intelligent machine

GPRAM [22] [23] [68].

Therefore our work in this Chapter aims to discover potential similarities between advanced coding

theory and brain functionalities, which are discussed in [27] [97] and how to use the former to

represent and simulate the latter in GPRAM.

Limitation of XOR Operation

Given a simple example with K = 3 and T = 2 shown as in Fig. 3.1, in which the two message

bits are (I1, I2) and three codeword bits are (s1, s2, s3) = (I1, I2, O1 = I1 ⊕ I2), where ⊕ denotes

XOR operation. Equiprobable message bits are considered at first, i.e., Ik ∈ {0, 1} with p(Ik =

0) = p(Ik = 1) = 0.5 for k = 1, 2, then prior-probabilities for the codeword bits are also

18

equiprobable. After encoding, the transmitter can transmit codeword bits sk ∈ {0, 1} using equal-

spaced constellation with dk ∈ {±1} for k = 1, 2, 3.

Figure 3.1: A Simple Example on Parity Check Nodes. ⊗ Denotes XOR.

The XOR operation has several nice properties when the inputs are equiprobable:

1. Reversible, if s1 ⊕ s2 = s3, then s3 ⊕ s2 = s1 and s1 ⊕ s3 = s2.

2. Symmetric, s1 ⊕ s2 = s2 ⊕ s1.

3. Scalable, s1 ⊕ s2 ⊕ s3 = (s1 ⊕ s2)⊕ s3.

However, if the message bits becomes non-equiprobable, for instance, p(sk = 0) = 0.3 for

k = 1, 2, non-equiprobable codeword bits would be generated correspondingly, i.e., p(s1 = 0) =

p(s2 = 0) = 0.3 and p(s3 = 0) = 0.58 as demonstrated in Equation (3.1).

p(s3 = 0) = p(s1 = 0)× p(s2 = 0) + p(s1 = 1)× p(s2 = 1) (3.1)

= 0.3× 0.3 + 0.7× 0.7

= 0.58

19

Besides this issue, message passing from s3 and s2 to s1 which is the output of s2⊕s3, will result in

a mismatching in prior probability. since p(s2 ⊕ s3 = 0) = 0.468 6= p(s1 = 0) = 0.3 as explained

in Equation (3.2). Furthermore, it is difficult to apply optimal constellation to message bits and

parity check bits because XOR operation is not capable of handling non-equiprobable symbols.

p(s1 = 0) = p(s2 = 0)× p(s3 = 0) + p(s2 = 1)× p(s3 = 1) (3.2)

= 0.3× 0.58 + 0.7× 0.42

= 0.468

The optimal constellations for message bits satisfy equations dk ∈ {dk,1, dk,2} and 0.3dk,1 +

0.7dk,2 = 0, where dk,1 denotes amplitude of rectangular pulse waveform transmitted when 0

occurs and dk,2 when 1 occurs [98]. The optimal equation for constellations will be explained in

Chapter 5. If equal spaced constellation is applied without considering the non-equal probabilities

of message bits, it will cost 0.72 dB non-recoverable reduction in Eb/N0 capacity.

If constellations are represented in two consecutive bits, four symbols can be obtained as shown in

Table. 3.1.

Table 3.1: Four Symbols with Two Bits.

s1 s2 symbols probability constellations
0 0 (0, 0) 0.09 {d1,1, d2,1}
0 1 (0, 1) 0.21 {d1,1, d2,2}
1 0 (1, 0) 0.21 {d1,2, d2,1}
1 1 (1, 1) 0.49 {d1,2, d2,2}

In order to transmit symbols through channel, we need to assign the constellations to codeword bits.

Conventionally, the same constellation dk ∈ {dk,1, dk,2} are used for codeword bits. However, this

20

strategy is not optimal since the output of XOR has a different prior-probability than its inputs if

they are non-equiprobable.

Therefore, XOR operation needs to be replaced so that the prior probability of each codeword bit

matched to the one of each message bit. Two novel solutions are introduced to solve this probable:

1. quasi-XOR(QXOR) operation to replace XOR operation.

2. intermediate transformation to obtain symbols with prior probabilities suitable for XOR op-

eration.

quasi-XOR Operation and Intermediate Transformation Layer

In this section, quasi-XOR Operation and Intermediate Transformation Layer are discussed. The

first method is finding an alternative operation to replace XOR and yet can still be utilized in error

control coding while the second is to add a layer between non-equiprobable symbols and XOR

operation.

quasi-XOR Operation

Quasi-XOR operation is introduced as producing output with prior probabilities identical to the

prior probability of input. In Fig. 3.2 3.3 3.4 3.5, Karnaugh maps are shown for an XOR operation,

an operation with three inputs, QXOR operations with three inputs and four inputs, respectively.

The process of QXOR operation is described as follows. Firstly the XOR operation incorporates

one additional input ,I3, and then labels “1” for all slots with I3 = 1 as shown in Fig. 3.3. Some

of “1” are placed to other spots with the same Hamming weight. For example, “1” at the bottom

21

left in Fig. 3.3 is moved to “1” at the top right in Fig. 3.4 since the hamming weight for the first

spot I1I2I3 = 001 is 1 and the hamming weight for second spot I1I2I3 = 010 is 1 as well. By

repeating this process, six cases can be obtained as shown in Fig. 3.4 and their representations are

as follows:

O1 = Ī2I1 + I2I3 (3.3)

O2 = Ī1I3 + I2I1 (3.4)

O3 = Ī3I2 + I1I3 (3.5)

O4 = Ī2I3 + I1I2 (3.6)

O5 = Ī1I2 + I1I3 (3.7)

O6 = Ī3I1 + I2I3 (3.8)

Equation (3.3)(3.4)(3.5) form three feedback paths fromO1, O2, andO3 to I1, I2, and I3 as follows.

I1 = Ō2O1 +O2O3 (3.9)

I2 = Ō1O3 +O1O2 (3.10)

I3 = Ō3O2 +O3O1 (3.11)

22

by swapping I1, I2, I3 with O1, O2, O3, respectively. This operation is defined as QXOR3.

00 01 11 10

1 1

Figure 3.2: Karnaugh Map for XOR Operation.

00 01 11 10

1 11 11

0

Figure 3.3: Karnaugh Map for an Operation with Three Inputs.

For four inputs, QXOR operation form as shown in Fig. 3.5.

O1 = I1I2I3 + I2Ī1Ī4 + I2I4Ī3 + I3I4Ī2 (3.12)

O2 = I1I2I4 + I1Ī2Ī3 + I3I4Ī1 + I1I3Ī4 (3.13)

23

00 01 11 10

1

11 11

0

Figure 3.4: Karnaugh Map for QXOR Operation with Three Inputs.

O3 = I1I3I4 + I3Ī2Ī4 + I1I2Ī3 + I2I3Ī1 (3.14)

O4 = I2I3I4 + I4Ī1Ī3 + I1I2Ī4 + I1I4Ī2 (3.15)

The reversing operations can be obtained by swapping I1, I2, I3, and I4 with O1, O2, O3, and O4

respectively. And this operation is defined as QXOR4.

ForQXOR4, there are other selections for this similar operation. Another way to operateQXOR4

is listed as follows.

O1 = I4Ī1Ī3 + I2I3I4 + I1I2Ī4 + I1I4Ī2 (3.16)

O2 = I2Ī1Ī3 + I1I2I4 + I3I4Ī2 + I2I3Ī4 (3.17)

24

00 01 11 10

1

11

1 1 1

1 1

Figure 3.5: Karnaugh Map for QXOR Operation with Four Inputs.

O3 = I3Ī1Ī4 + I2I3I4 + I1I3Ī2 + I1I2Ī3 (3.18)

O4 = I1Ī2Ī3 + I1I2I4 + I1I3Ī4 + I3I4Ī1 (3.19)

And reversing operations are defined as

I1 = O1O4Ō3 +O2O3O4 +O1O3Ō4 +O4Ō1Ō2 (3.20)

I2 = O2Ō3Ō4 +O1O2O4 +O2O3Ō1 +O1O3Ō2 (3.21)

25

I3 = O3Ō1Ō2 +O1O3O4 +O2O3Ō4 +O2O4Ō3 (3.22)

I4 = O1Ō3Ō4 +O1O2O3 +O2O4Ō1 +O1O4Ō2 (3.23)

By combining QXOR3 and QXOR4 operations, operations with any number (≥ 3) of inputs are

able to be obtained.

Intermediate Transformation Layer

In this Section, how prior probability of inputs and output of an XOR operation is investigated.

XOR operation with Φ number of inputs is defined as Φ-XOR of which form is defined in Equation

(3.24).

I1 ⊕ I2 ⊕ I3⊕, · · · ,⊕IΦ (3.24)

Define the prior probability of symbol Iφ as pφ, then the prior probability of output symbol, denoted

as po(Φ), can be computed recursively as follows. Since po(2) = p1p2 + (1 − p1)(1 − p2), for

φ = 3, · · · ,Φ,

po(φ) = pφpo(φ− 1) + (1− pφ)(1− po(φ− 1)) (3.25)

and finally, po(Φ) can be obtained by recursively computing XOR operation with adding one more

input. po(Φ) is plotted as a function of pφ for Φ-XOR in Fig. 3.6. In order to generate symbols

with all possible prior probabilities between 0 and 1 for the XOR gate, pφ of inputs needs to be

small, i.e. pφ << 0.5. That is, the probability of satisfying parity check constraint must be small.

If NOT gates are available in designing, then inputs with probabilities pφ >> 0.5 can produce

desired output. In either case, the case of pφ = 0.5 should always be avoided since XOR operation

26

will only generate equiprobable symbols when the inputs are equiprobable. Another observation

is that the value of po(Φ) approaches the value of 0.5 over a large range when the value of pφ is

around of 0.5. The larger the value of Φ is, the broader this range becomes. From Equation (3.25),

the following results are obtained.

po(φ) =

pφ + (1− 2pφ)(1− po(φ− 1)) ≥ pφ if pφ < 0.5

pφ − (2pφ − 1)(1− po(φ− 1)) ≤ pφ if pφ > 0.5

0.5 if pφ = 0.5

(3.26)

for any φ ∈ (1, 2, · · · ,Φ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pk

p
o

2XOR

3XOR

4XOR

5XOR

6XOR

Figure 3.6: Probabilities of Output Symbols Versus Input Symbols

27

In order to impose code constraint, the prior probabilities of message bits and parity check bits

must match with each other. For example, if I1 ⊕ I2 ⊕ I3 = I4, then po(3) of I1 ⊕ I2 ⊕ I3 must

match up with p4 of I4.

There are three different types of intermediate transformation layer (ITL) to deal with non-equiprobable

symbols. The prior probability of output from these layers are termed as po.

1. Front ITL (F-ITL) as shown in Fig. 3.7, applies ITL followed by Φ-XOR, which produces

output symbols with desired prior-probability directly.

2. End ITL (E-ITL) as shown in Fig. 3.8, applies Φ-XOR operations to non-equiprobable

symbols with probability of pk, then uses the transformation layer to match po of the output

symbol with pk of the input symbols.

3. Half ITL (H-ITL) as shown in Fig. 3.9, converts non-equiprobable symbols to equiprob-

able symbols, then uses Φ-XOR, and finally converts equiprobable symbols back to non-

equiprobable symbols.

Front-Intermediate Transformation Layer

F-ITL is demonstrated using an example of pk = 0.3, or simply denoted as p since the prior

probability for each bit is indistinct. If two inputs are combined together as a group, then there are

three basic probabilities, p2 = 0.09 for I1 = 0 and I2 = 0, p(1− p) = 0.21, and (1− p)2 = 0.49.

For each two inputs I2κ+1 and I2κ+2, where subscript κ denote the κth group of two inputs, F-ITL

can be generalized to three outputs.

p(Oκ,1 = 0) = p(I2κ+1 = 0
⋂

I2κ+2 = 0) = 0.09 (3.27)

28

, , ,

F-ITL

Figure 3.7: Structure for F-ITL, where p1 = p2 = p3 = p4 = p5 = p6 = 0.3, p(O1,1 = 0) =
0.09, p(O2,1 = 0) = 0.09, p(O3,2 = 0) = 0.21, p(O = 0) = 0.305

p(Oκ,2 = 0) = p(I2κ+1 = 0
⋂

I2κ+2 = 1) = 0.21 (3.28)

p(Oκ,3 = 0) = p(I2κ+1 = 1
⋂

I2κ+2 = 0) = 0.21 (3.29)

where Oκ,1 = I2κ+1 + I2κ+2, Oκ,2 = I2κ+1 + Ī2κ+2, and Oκ,3 = Ī2κ+1 + I2κ+2. Applying 3-XOR

with Oκ,1 where p(Oκ,1 = 0) = 0.09 from the κth group, Oκ+1,1 where p(Oκ+1,1 = 0) = 0.09 from

the κ+ 1th group and Oκ+2,2 where p(Oκ+2,2 = 0) = 0.21 from the κ+ 2th group will produce an

output symbol with po = 0.305, which approximates p = 0.3 as shown in Fig. 3.7.

Combining three inputs as a group, four basic probabilities can be achieved p3 = 0.027, p2(1−p) =

0.063, p(1 − p)2 = 0.147, and (1 − p)3 = 0.343. Seven outputs can be created through these

29

probabilities,

Oκ,1 = I2κ+1 + I2κ+2 + I2κ+3 (3.30)

Oκ,2 = Ī2κ+1 + I2κ+2 + I2κ+3 (3.31)

Oκ,3 = I2κ+1 + Ī2κ+2 + I2κ+3 (3.32)

Oκ,4 = I2κ+1 + I2κ+2 + Ī2κ+3 (3.33)

Oκ,5 = Ī2κ+1 + Ī2κ+2 + I2κ+3 (3.34)

Oκ,6 = Ī2κ+1 + I2κ+2 + Ī2κ+3 (3.35)

Oκ,7 = I2κ+1 + Ī2κ+2 + Ī2κ+3 (3.36)

Let

OO1 = Oκ,1Oκ+1,1Oκ+2,1Oκ+3,1Oκ+4,1 (3.37)

OO2 = Oκ,2Oκ+1,2 (3.38)

OO3 = Oκ,5 (3.39)

Applying 3-XOR with OO1, OO1 and OO2, or OO2, OO2, and OO3, can produce an output

30

symbol with po = 0.291 or po = 0.299, respectively. If we define

OO1 = Oκ,1Oκ+1,1Oκ+2,1 (3.40)

OO2 = Oκ,2 (3.41)

OO3 = Oκ,1Oκ+1,5 (3.42)

then applying 4-XOR with OO1, OO1, OO2, and OO3 will produce an output symbol with po =

0.705 which can be inverted and creates a symbol with prior probability of 0.2954.

The basic idea of F-ITL is to create symbols with small probabilities first then apply XOR oper-

ations with these symbols which will produce symbols approximately matching to the same prior

probability as the inputs have.

End-Intermediate Transformation Layer

E-ITL is demonstrated using the same example with p = 0.3. According to Fig. 3.6, the prior-

probability of output of Φ-XOR is po ≈ 0.5 when Φ ≥ 4. Let Os denote output symbols. Define

OOκ(φ) = Oκ +Oκ+1 + · · ·+Oκ+φ (3.43)

where κ denotes the κ-th group of combination of Os, and the prior probability of OOκ(φ) is

2−(φ+1), denoted as pOO(φ). It is not difficult to get pOO(1) + pOO(4) + pOO(6) = 0.296. Com-

bining OOκ(2)OOκ+3(5)OOκ+9(6) gives an output with prior probability of p = 0.296. From the

described process, E-ITL is comparatively simpler than F-ITL.

31

E-ITL

⋯

Figure 3.8: Structure for E-ITL, where p1 = · · · = pk = pO1 = pO2

Half-Intermediate Transformation Layer

The structure for H-ITL is using Φ-XOR to construct a front-layer which converts non-equiprobable

symbols to equiprobable symbols; then developing an end-layer similar to E-ITL to convert equiprob-

able symbols back to non-equiprobable ones. The structure for H-ITL is defined in Fig. 3.9.

Code Construction and Probabilistic Messages for Non-equiprobable Symbols

In this section, the detailed process of constructing codes using QXOR is discussed. These codes

are neither source codes nor error control codes. Their applications are beyond conventional source

and channel coding in modern telecommunication systems and may perform functionalities similar

to brain functionalities in GPRAM [22] [23].

32

H-ITL1

⋯

H-ITL2

⋯

Conventional Codes for Equiprobable
Symbols

Figure 3.9: Structure for H-ITL

Tree Codes with QXOR

Two codes with QXOR operations are developed as shown in Tables 3.3 and 3.5, while two other

codes with XOR operations are shown in Tables 3.2 and 3.4.

Table 3.2: Codes based on XOR2

I1 I2 I3 O1 O2 O3

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 1 0 1
0 1 1 1 1 0
1 0 0 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 1 0 0 0

33

Table 3.3: Codes based on QXOR3

I1 I2 I3 O1 O2 O3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 1 1 1 1

Table 3.4: Codes based on XOR3

I1 I2 I3 I4 O1 O2 O3 O4

0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 1 0 1 1 0 1
0 0 1 1 1 0 1 0
0 1 0 0 1 0 1 1
0 1 0 1 1 1 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 0 0 1
1 0 0 0 1 1 1 0
1 0 0 1 1 0 0 1
1 0 1 0 0 0 1 1
1 0 1 1 0 1 0 0
1 1 0 0 0 1 0 1
1 1 0 1 0 0 1 0
1 1 1 0 1 0 0 0
1 1 1 1 1 1 1 1

Codes in Table 3.2 are constructed as follows. Define

O1 = I1 ⊕ I2 = Ī2I1 + I2Ī1 (3.44)

34

Table 3.5: Codes based on QXOR4

I1 I2 I3 I4 O1 O2 O3 O4

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 1 1 1 0 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 1
0 1 1 0 1 0 1 0
0 1 1 1 0 1 1 1
1 0 0 0 0 1 0 0
1 0 0 1 0 1 0 1
1 0 1 0 0 1 1 0
1 0 1 1 1 0 1 1
1 1 0 0 0 0 1 1
1 1 0 1 1 1 1 0
1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1

O2 = I1 ⊕ I3 (3.45)

O3 = I2 ⊕ I3 (3.46)

While in Table 3.4, define

O1 = I1 ⊕ I2 ⊕ I3 (3.47)

O2 = I1 ⊕ I3 ⊕ I4 (3.48)

O3 = I1 ⊕ I2 ⊕ I4 (3.49)

35

O4 = I2 ⊕ I3 ⊕ I4 (3.50)

Both codes are linear with Hamming distances of 3 and 4 for Codes in Table 3.2, and 4 and 7 for

Codes in Table 3.4, respectively. Despite the code constraints illustrated in prior equations, both

codes introduce new constraints. For example, O1 ⊕ O2 ⊕ O3 = 0 for Codes in Table 3.2 and

I1 = O1⊕O2⊕O3 for Codes Table 3.4. These constraints form mesh networks when more inputs

are incorporated. And the number of code constraints grows exponentially.

Codes in Table 3.3 and 3.5 are constructed with QXOR3 and QXOR4 respectively. Both codes

are non-linear codes with Hamming distance (2,4,6) and (2,4,6,8) respectively. The property of

Hamming distances makes both codes similar to repetition codes. However, the difference is that

input symbols in the repetition codes are independent of each other, while input symbols in Codes

in Table 3.3 and 3.5 are dependent on each other through constraints of Os.

Property 1. The minimum Hamming distance of codes based on QXORΨ is no greater than 2

and the multiplicity is Ψ.

Proof. From the construction process, Codes based on QXORΨ contain two parts Is and Os, as

shown in Table 3.3 and 3.5. Since Hamming weight of a codeword is the number of 1 in that

codeword. Hence Hamming weight of each codeword is the sum of Hamming weights in Is and

Os. Each symbol of Ψ O bits with O = 1 in codes based on QXORΨ must not contain more than

one codeword with Hamming weight of 1 in Is to enforce the the same prior probabilities of Is

and Os.

For example, the only one combination has Hamming weight of 1, I1I2I3I4 = 0100 in Fig. 3.5

where O1 = 1. There are Ψ codewords with Hamming weight of 1 in Is in total. If one of such

codewords has a Hamming weight of 2 or more in Os, then there must be at least one codeword

36

with Hamming weight of 0 in Os in these Ψ codewords. Consequently, the minimum Hamming

weight is 1. If each of Ψ codewords has a Hamming weight of 1 in Os, then we have codes with

minimum Hamming distance of 2 and the multiplicity is Ψ.

This proposition rules out the possibility of creating a decent error control code using QXOR

operation, since it produces codes with neither large minimum Hamming distance nor a favorable

distribution of multiplicities.

Summary

In this chapter, we presented critical challenges in designing codes and iterative decoding for non-

equiprobable symbols. We demonstrated the limitations of XOR operation in dealing with non-

equiprobable symbols. The limitation of XOR operation can be potentially resolved by applying

quasi-XOR operation and intermediate transformation layer. Besides We showed how to construct

codes for non-equiprobable symbols using quasi-XOR operation and the codes cannot satisfyingly

perform with regarding to error correction capability.

37

CHAPTER 4: NONLINEAR CODES WITH EXPANDED OPERATIONS

Logic and XOR operations have played essential roles in modern computer and telecommuni-

cations system design. The modern computer was developed in the 1940s to meet our need to

perform computational tasks which our brains are not capable of performing with precision and

speed. Visionary thoughts from Turing [19] and von Neumann [21] laid the foundation in terms

of mathematical principle and engineering structure. Well-known Turning machines demonstrated

in mathematics that face many problems in our life can be reduced to computational problems.

During the same period, Shannon laid the foundation of the mathematical measurement of infor-

mation [87]. Over the last sixty years, telecommunication engineers have learned how to build

a computer and achieved the Shannon limit using coding and detection theory. During the pro-

cess, we have accumulated a wealth of knowledge on how to preserve, transmit, recover and detect

information.

These classic works do not include the complexity, one of key issues in our engineering activi-

ties. Even though many tasks can be completed by alternative computation in Turing sense, the

complexity advantage of some non-optimal schemes should never be ignored. One of the biggest

impact of Turbo invention [26] was to demonstrate that some well structured sub-optimal process-

ing can not only achieve near Shannon-limit decoding, but also require very low computational

complexity. After that, the soft-in soft-out idea embedded in SOVA [99] has swept over the entire

error control coding field over the last 18 years.

Could the Turbo invention also be utilized beyond error control coding fields? Over the last sixteen

years, we have been searching for its implication in understanding human brains. These lead us

to our GPRAM theory [22] [23] and we aim to develop a prototype using error control coding

in [68]. One of key functions in our GPRAM machine is constantly searching for simple and

38

better approximation for any given task. For example, GPRAM system uses a group of operations

to deal with a task such as approximating a function with three inputs. If in the future, it discovers

a new area with a smaller group of operations which can get a better approximation, then it will

abandon the old area and migrate to the new area.

To explain this concept better, a problem is given under the assumption that we want to build a

machine which can approximate any given functions with an unknown number of inputs. If the

desired function is known, then the design of this system can be optimized by using mathematical

tools. On the contrast, if the form of this function are in oblivion and we rather have a vague idea

of the function, then we can design a set of typical functions which are often called basis functions

and hopefully one or combinations of them can handle the approximation and future tasks.

In the bio-systems, it has been well-known that over-complete basis functions have been used to

achieve sparse coding [95]. Almost all error control coding theory known so far has been built

on XOR operation [71]. However, it has been found that even the conventional XOR operation

does not fit well when applying onto non-equiprobable symbols as explained in Chapter 3. In

this Chapter, XOR operation will be expanded to other logic operations such as AND and OR. In

future, these operations will be applied to GPRAM systems to use over-complete basis to simplify

the individual computational complexity.

Modification of (7,4) Hamming code using AND and OR Gates

Nonlinear codes generated from various modifications of (7,4) Hamming codes using AND, OR

and XOR gates are studied. How to encode these codes and code distance property are investigated

as well.

Fig. 4.1 illustrates the Tanner graph of (7,4) Hamming code. For equiprobable symbols, the Tanner

39

graph does not define inputs and outputs, since each XOR operation with Φ edges is equivalent to

Φ XOR operation units and each edge is an output. However, for non-equiprobable symbols, inputs

and outputs have to be defined in each operation due to mismatch in prior probabilities (see Chapter

3). Furthermore, by replacing XOR operation by other logic operations such as AND or OR, we

can construct many codes as shown in Table 4.1 and Fig. 4.2.

s6 s4 s7

s2

s3 s1

s5

C1 C2

C3

Figure 4.1: (7,4) Hamming Code

When different gates are used, directions of information must be taken into consideration. This is

because if s1 AND s2 equals to s3, it is not possible to get s1 AND s3 equals to s2 or s2 AND s3

equals to s1. In this chapter, only two directions are considered: outflow and top-down cases. In

the outflow case, s1, s2, s3, and s4 are inputs (i.e., message bits) to all three C operations and s5,

s6, and s7 are outputs (i.e., parity check bits). While in the top-down case, s2, s4, s6, and s7 are

inputs and s1, s3, and s5 are outputs.

Encoder for these codes are straightforward. Taking 16 possible combinations of input bits, all code

words can be created for several codes listed in Table 4.2. Readers can easily generate codewords

for the remaining codes. Codes 3, 4, 5, 7, 8, and 9 are nonlinear and with minimum distance of 1.

40

s6 s4 s7

s2

s3 s1

s5

C1 C2

C3

(a)

s6 s4 s7

s2

s3 s1

s5

C1 C2

C3

(b)

Figure 4.2: (7,4) Hamming Code with (a) Outflow (b) Top-down Directions

Table 4.1: 9 Different Codes Cases with Different Gates and Different Directions

Code C1 C2 C3 direction
1 XOR XOR XOR -
2 XOR XOR XOR outflow
3 XOR AND OR outflow
4 AND AND AND outflow
5 OR OR OR outflow
6 XOR XOR XOR top-down
7 XOR AND OR top-down
8 AND AND AND top-down
9 OR OR OR top-down

Even through codes 1, 2, and 6 are identical, the decoder processing could be different, since for

codes 2 and 6, the code constraints are defined by only three gates, while for code 1 the constraints

are given by 12 gates. It is also worth mentioning that for non-equiprobable symbols the constraints

in code 1 can not be satisfied simultaneously. The iterative decoding processing for decoder will

be discussed in next Section.

41

Furthermore, prior probabilities for each node are different. If p(sk = 0) = p = 0.3, for k =

1, · · · , 4, then p(sk = 0) = 0.468, 0.657, or 0.027 for XOR, AND, and OR gates, respectively,

where k = 5, 6, 7. In Table 4.3 and 4.4 prior probabilities for codes 1 to 6 with equiprobable and

non-equiprobable symbols are displayed. Prior probabilities for codes 7 to 9 can be computed

based on code structure and logic gates. For non-equiprobable symbols, even through codewords

for code 1, 2, and 6 are identical, the prior probabilities are very different.

Table 4.2: Codewords of Various Codes Using Tanner Graph in Fig. 4.1

1/2/6 3 4 5 7 8
0000000 0000000 0000000 0000000 0000000 0000000
0001011 0001010 0001000 0001011 0000001 0000001
0010110 0010110 0010000 0010110 0010110 0000010
0011101 0011100 0011000 0011111 0010111 0000011
0100111 0100110 0100000 0100111 0011100 0001000
0101100 0101101 0101000 0101111 0011101 0001001
0110001 0110100 0110000 0110111 0001010 0001010
0111010 0111110 0111010 0111111 0001011 0001011
1000101 1000100 1000000 1000101 0110100 0100000
1001110 1001110 1001000 1001111 0110101 0100001
1010011 1010110 1010000 1010111 0100110 0100010
1011000 1011100 1011000 1011111 0100111 0100011
1100010 1100110 1100000 1100111 0101100 0101000
1101001 1101101 1101001 1101111 1101101 1101001
1110100 1110100 1110100 1110111 0111110 0111010
1111111 1111111 1111111 1111111 1111111 1111111

Code 1 is the conventional linear (7,4) Hamming code for equiprobable symbols. Each edge does

not have direction. It is equivalent to 12 XOR gates and each with 3 inputs and 1 output. For the

rest of 8 codes, there are only three operations each with three inputs and one output. So, it would

not be surprised that the remaining 8 codes are far weaker in term of error correction capability

than code 1.

A comparison study using the (7,4,2) Hamming code of which structure can be found in Fig. 4.3 is

42

also conducted. Because there is no loop in this structure, error propagation effect in the original

(7,4) Hamming code can be estimated. Using Table 4.1 and the graph in Fig. 4.3, we can quickly

establish 9 new codes based on (7,4,2) code as shown in Table 4.5 and prior probabilities in Table

4.6.

Table 4.3: Prior Probabilities for Codes with Tanner Graph in Fig. 4.1 with Equiprobable Symbols

Prior Probabilities code 1 2 3 4 5 6 7 8 9
p(s1 = 0) 0.5 0.5 0.5 0.5 0.5 0.5 0.875 0.875 0.125
p(s2 = 0) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
p(s3 = 0) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.875 0.125
p(s4 = 0) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
p(s5 = 0) 0.5 0.5 0.125 0.875 0.125 0.5 0.219 0.992 0.008
p(s6 = 0) 0.5 0.5 0.5 0.875 0.125 0.5 0.5 0.5 0.5
p(s7 = 0) 0.5 0.5 0.875 0.875 0.125 0.5 0.5 0.5 0.5

Table 4.4: Prior Probabilities for Codes with Tanner Graph in Fig. 4.1 with Non-Equiprobable
Symbols

Prior Probabilities code 1 2 3 4 5 6 7 8 9
p(s1 = 0) - 0.3 0.3 0.3 0.3 0.468 0.657 0.657 0.027
p(s2 = 0) - 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
p(s3 = 0) - 0.3 0.3 0.3 0.3 0.468 0.468 0.657 0.027
p(s4 = 0) - 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
p(s5 = 0) - 0.468 0.027 0.657 0.027 0.499 0.092 0.918 0.0002
p(s6 = 0) - 0.468 0.468 0.657 0.027 0.3 0.3 0.3 0.3
p(s7 = 0) - 0.468 0.657 0.657 0.027 0.3 0.3 0.3 0.3

Decoding of Nonlinear Codes using Iterative Decoder

To decode these nonlinear codes using iterative decoding, there are two aspects need to be consid-

ered:

43

1. how to map non-equiprobable symbols into signal amplitude;

2. how to update probabilistic measurement.

s6 s4 s7

s2

s3 s1

s5

C1 C2

C3

Figure 4.3: Tanner Graph for (7,4,2) Hamming Code

The first aspect will be discussed in details in Chapter 5.

For equiprobable symbols, we always map to equal amplitude with polar sign, i.e., ±1. However,

for non-equiprobable symbols, the optimal signal constellation is rk ∈ {d1, d2}, where pd1 + (1−

p)d2 = 0 as explained in Chapter 5. In this Chapter, both constellation methods are considered for

the purpose of comparison. It is worth mentioning for optimal constellation, the decision threshold

is not zero anymore. The threshold is defined by

Threshold =
σ2

1

d2 − d1

ln
1− p
p

+
1

2
(d2 + d1) (4.1)

Assume a noise corrupted signal bk = rk + nk, where nk is a white Gaussian variable with mean

44

of 0 and variance of σ2
1 . A case with three inputs and one output will be considered and explained

in details and generalized later. s1, s2 and s3 are inputs while s4 is output.

Table 4.5: Codewords of Various Codes Using Tanner Graph in Fig. 4.3

1/2/6 3 4 5 7 8
0000000 0000000 0000000 0000000 0000000 0000000
0001010 0001010 0001000 0001010 0000001 0000001
0010100 0010100 0010000 0010100 0100110 0000010
0011110 0011110 0011000 0011110 1100111 0000011
0100111 0100110 0100000 0100111 0101100 0001000
0101101 0101100 0101010 0101111 1101101 0001001
0110011 0110110 0110100 0110111 0001010 0101010
0111001 0111100 0111110 0111111 0001011 1101011
1000001 1000000 1000000 1000001 0010100 0010000
1001011 1001010 1001000 1001011 0010101 0010001
1010101 1010100 1010000 1010101 0110110 0010010
1011111 1011110 1011000 1011111 1110111 0010011
1100110 1100111 1100001 1100111 0111100 0011000
1101100 1101101 1101011 1101111 1111101 0011001
1110010 1110111 1110101 1110111 0011110 0111110
1111000 1111101 1111111 1111111 0011111 1111111

Table 4.6: Prior Probabilities for Codes with Tanner Graph in Fig. 4.3 with Equiprobable Symbols

Prior Probabilities code 1 2 3 4 5 6 7 8 9
p(s1 = 0) 0.5 0.5 0.5 0.5 0.5 0.5 0.75 0.875 0.125
p(s2 = 0) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.75 0.25
p(s3 = 0) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
p(s4 = 0) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
p(s5 = 0) 0.5 0.5 0.25 0.75 0.25 0.5 0.25 0.875 0.125
p(s6 = 0) 0.5 0.5 0.5 0.75 0.25 0.5 0.5 0.5 0.5
p(s7 = 0) 0.5 0.5 0.75 0.75 0.25 0.5 0.5 0.5 0.5

45

Message Passing in AND Logic Gate

In this case, nodes are connected through an AND gate, Table 4.8 explains the truth table for an

AND gate with three inputs and one output.

Messages are propagating from three other nodes to the left node, and the direction of message

must be taken in consideration. The message passing from s1, s2, s3 to s4 can be proved.

Table 4.7: Prior Probabilities for Codes with Tanner Graph in Fig. 4.3 with Non-Equiprobable
Symbols

Prior Probabilities code 1 2 3 4 5 6 7 8 9
p(s1 = 0) - 0.3 0.3 0.3 0.3 0.5 0.649 0.657 0.027
p(s2 = 0) - 0.3 0.3 0.3 0.3 0.499 0.499 0.51 0.09
p(s3 = 0) - 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
p(s4 = 0) - 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
p(s5 = 0) - 0.499 0.51 0.51 0.09 0.5 0.15 0.657 0.027
p(s6 = 0) - 0.499 0.499 0.51 0.09 0.3 0.3 0.3 0.3
p(s7 = 0) - 0.499 0.09 0.51 0.09 0.3 0.3 0.3 0.3

Table 4.8: Truth Table with Three Inputs and One Output for AND gate

s1 s2 s3 s4

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

46

Message From Inputs to Output

Define two sets as the possible values for r1, r2, r3, r4

Γ1 =

{d1, d1, d1, d1}

{d1, d1, d2, d1}

{d1, d2, d1, d1}

{d1, d2, d2, d1}

{d2, d1, d1, d1}

{d2, d1, d2, d1}

{d2, d2, d1, d1}

(4.2)

Γ2 =

{
{d2, d2, d2, d2}

}
(4.3)

p(r4 = d1|b1b2b3b4)

p(r4 = d2|b1b2b3b4)
=
p(b1b2b3b4|r4 = d1)

p(b1b2b3b4|r4 = d2)

p(r4 = d1)

p(r4 = d2)

=
p(r4 = d1)

p(r4 = d2)

p(b4|r4 = d1)

p(b4|r4 = d2)

∑
{r1,r2,r3}∈Γ1

p(b1b2b3r1r2r3|r4 = d1)∑
{r1,r2,r3}∈Γ2

p(b1b2b3r1r2r3|r4 = d2)

=
p(b4|r4 = d1)

p(b4|r4 = d2)
eU4 (4.4)

Define

v
(0)
k = ln

(
p(rk = d1|bk)
p(rk = d2|bk)

)
(4.5)

47

where k = 1, 2, 3, 4.

eU4 =
all the cases when r4 = d1

the case when r4 = d2

= ev
(0)
1 ev

(0)
2 ev

(0)
3 + ev

(0)
2 ev

(0)
3 + ev

(0)
1 ev

(0)
2 + ev

(0)
1 ev

(0)
3 + ev

(0)
1 + ev

(0)
2 + ev

(0)
3

= (ev
(0)
1 + 1)(ev

(0)
2 + 1)(ev

(0)
3 + 1)− 1

This case is generalized for dc − 1 inputs and 1 output as shown in Fig. 4.4.

Define

v
(0)
k = ln

(
p(rk = d1|bk)
p(rk = d2|bk)

)
(4.6)

Rk = ln

(
p(bk|rk = d1)

p(bk|rk = d2)

)
(4.7)

Uk = ln

p(rk = d1|
⋂dc
q=1
q 6=k

bq)

p(rk = d2|
⋂dc
q=1
q 6=k

bq)

 (4.8)

where k = 1, · · · , dc − 1 denotes dc − 1 inputs and k = dc denotes the output.

If the logic gate is AND gate, it can be shown that the message passing from input nodes to the

only output node can be computed as

Udc = ln

(
dc−1∏
k=1

(exp(v
(0)
k) + 1)− 1

)
(4.9)

48

…

Figure 4.4: Tanner Graph for dc − 1 Inputs and One Output

Message From Other Inputs and Output to an Input

While to find the message from s2, s3, s4 to s1, this formula can also be applied to from s1, s2, s4

to s2 and from s1, s2, s4 to s3. Since the labels for each node are interchangeable.

Define two sets as the possible values for r1, r2, r3, r4

Γ3 =

{d1, d1, d1, d1}

{d1, d1, d2, d1}

{d1, d2, d1, d1}

{d1, d2, d2, d1}

(4.10)

49

Γ4 =

{d2, d1, d1, d1}

{d2, d1, d2, d1}

{d2, d2, d1, d1}

{d2, d2, d2, d2}

(4.11)

p(r1 = d1|b1b2b3b4)

p(r1 = d2|b1b2b3b4)
=
p(r1 = d1)

p(r1 = d2)

p(b1|r1 = d1)

p(b1|r1 = d2)

∑
{r2,r3,r4}∈Γ3

p(b2b3b4r2r3r4|r1 = d1)∑
{r2,r3,r4}∈Γ4

p(b2b3b4r2r3r4|r1 = d2)

= ev
(0)
1
eR4ev

(0)
2 ev

(0)
3 + eR4ev

(0)
2 + eR4ev

(0)
3 + eR4

eR4ev
(0)
2 ev

(0)
3 + eR4ev

(0)
2 + eR4ev

(0)
3 + 1

eU1 =
eR4(ev

(0)
2 + 1)(ev

(0)
3 + 1)

eR4(ev
(0)
2 + 1)(ev

(0)
3 + 1) + 1− eR4

(4.12)

Similarly, to generalize this case, the message passing from the output and other dc−2 input nodes

to input node k is

exp(Uk) =

exp(Rdc)
∏dc−1

q=1
q 6=k

(exp(v
(0)
q) + 1)

exp(Rdc)
∏dc−1

q=1
q 6=k

(exp(v
(0)
q) + 1) + 1− exp(Rdc)

(4.13)

Message Passing in OR Logic Gate

In this case, nodes are connected through an OR gate, Table 4.9 explains the truth table for an OR

gate with three inputs and one output using the same labels for these signals as we demonstrated

for AND logic gate.

50

Table 4.9: Truth Table with Three Inputs and One Output for OR Gate

s1 s2 s3 s4

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Message From Inputs to Output

Define two sets as the possible values for r1, r2, r3, r4

Γ5 =

{
{d1, d1, d1, d1}

}
(4.14)

Γ6 =

{d1, d1, d2, d2}

{d1, d2, d1, d2}

{d1, d2, d2, d2}

{d2, d1, d1, d2}

{d2, d1, d2, d2}

{d2, d2, d1, d2}

{d2, d2, d2, d2}

(4.15)

p(r4 = d1|b1b2b3b4)

p(r4 = d2|b1b2b3b4)
=
p(r4 = d1)

p(r4 = d2)

p(b4|r4 = d1)

p(b4|r4 = d2)

∑
{r1,r2,r3}∈Γ5

p(b1b2b3r1r2r3|r4 = d1)∑
{r1,r2,r3}∈Γ6

p(b1b2b3r1r2r3|r4 = d2)

=
p(b4|r4 = d1)

p(b4|r4 = d2)
eU4 (4.16)

51

eU4 =
the case when r4 = d1

all the cases when r4 = d2

=
ev

(0)
1 ev

(0)
2 ev

(0)
3

ev
(0)
1 ev

(0)
2 + ev

(0)
2 ev

(0)
3 + ev

(0)
1 ev

(0)
3 + ev

(0)
1 + ev

(0)
2 + ev

(0)
3 + 1

e−U4 = e−v
(0)
3 + e−v

(0)
2 + e−v

(0)
1 + e−v

(0)
1 e−v

(0)
3 + e−v

(0)
2 e−v

(0)
3 + e−v

(0)
1 e−v

(0)
2 + e−v

(0)
1 e−v

(0)
2 e−v

(0)
3

= (e−v
(0)
1 + 1)(e−v

(0)
2 + 1)(e−v

(0)
3 + 1)− 1

eU4 =
1

(e−v
(0)
1 + 1)(e−v

(0)
2 + 1)(e−v

(0)
3 + 1)− 1

(4.17)

This case can be generalized for dc − 1 input nodes to the only output node, and the message

received by the only output is

Udc = − ln

(
dc−1∏
k=1

(exp(−v(0)
k) + 1)− 1

)
(4.18)

Message From Other Inputs and Output to an Input

As we explained in AND logic gate, the formula for the message from s2, s3, s4 to s1 can also

be applied to from s1, s2, s4 to s2 and from s1, s2, s4 to s3. Since the labels for each node are

interchangeable.

52

Define two sets as the possible values for r1, r2, r3, r4

Γ7 =

{d1, d1, d1, d1}

{d1, d1, d2, d2}

{d1, d2, d1, d2}

{d1, d2, d2, d2}

(4.19)

Γ8 =

{d2, d1, d1, d2}

{d2, d1, d2, d2}

{d2, d2, d1, d2}

{d2, d2, d2, d2}

(4.20)

p(r1 = d1|b1b2b3b4)

p(r1 = d2|b1b2b3b4)
=
p(r1 = d1)

p(r1 = d2)

p(b1|r1 = d1)

p(b1|r1 = d2)

∑
{r2,r3,r4}∈Γ7

p(b2b3b4r2r3r4|r1 = d1)∑
{r2,r3,r4}∈Γ8

p(b2b3b4r2r3r4|r1 = d2)

= ev
(0)
1
eR4ev

(0)
2 ev

(0)
3 + ev

(0)
2 + ev

(0)
3 + 1

ev
(0)
2 ev

(0)
3 + ev

(0)
2 + ev

(0)
3 + 1

= ev
(0)
1
eR4ev

(0)
2 ev

(0)
3 + ev

(0)
2 + ev

(0)
3 + 1 + ev

(0)
2 ev

(0)
3 − ev

(0)
2 ev

(0)
3

ev
(0)
2 ev

(0)
3 + ev

(0)
2 + ev

(0)
3 + 1

eU1 = 1 +
ev

(0)
2 ev

(0)
3

(ev
(0)
2 + 1)(ev

(0)
3 + 1)

(eR4 − 1) (4.21)

The message passing from the output node and other dc−2 input nodes to node k can be generalized

as

exp(Uk) = 1 +

∏dc−1
q=1
q 6=k

exp(v
(0)
q)∏dc−1

q=1
q 6=k

(exp(v
(0)
q) + 1)

(eRdc − 1) (4.22)

53

Message Passing in XOR Logic Gate

In this case, nodes are connected through an XOR gate, Table 4.10 explains the truth table for an

XOR gate with three inputs and one output using the same labels for these signals as we demon-

strated for AND logic gate.

Table 4.10: Truth Table with Three Inputs and One Output for XOR Gate

s1 s2 s3 s4

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Message From Inputs to Output

Define two sets as the possible values for r1, r2, r3, r4

Γ9 =

{d1, d1, d1, d1}

{d1, d2, d2, d1}

{d2, d1, d2, d1}

{d2, d2, d1, d1}

(4.23)

54

Γ10 =

{d1, d1, d2, d2}

{d1, d2, d1, d2}

{d2, d1, d1, d2}

{d2, d2, d2, d2}

(4.24)

p(r4 = d1|b1b2b3b4)

p(r4 = d2|b1b2b3b4)
=
p(r4 = d1)

p(r4 = d2)

p(b4|r4 = d1)

p(b4|r4 = d2)

∑
{r1,r2,r3}∈Γ9

p(b1b2b3r1r2r3|r4 = d1)∑
{r1,r2,r3}∈Γ10

p(b1b2b3r1r2r3|r4 = d2)

=
p(b4|r4 = d1)

p(b4|r4 = d2)
eU4

eU4 =
the cases when r4 = d1

the other cases when r4 = d2

=
ev

(0)
1 ev

(0)
2 ev

(0)
3 + ev

(0)
1 + ev

(0)
2 + ev

(0)
3

ev
(0)
1 ev

(0)
2 + ev

(0)
1 ev

(0)
3 + ev

(0)
2 ev

(0)
3 + 1

eU4 − 1

eU4 + 1
=
ev

(0)
1 − 1

ev
(0)
1 + 1

· e
v
(0)
2 − 1

ev
(0)
2 + 1

· e
v
(0)
3 − 1

ev
(0)
3 + 1

tanh
U4

2
= tanh

ev
(0)
1

2
tanh

ev
(0)
2

2
tanh

ev
(0)
3

2
(4.25)

Finally, for XOR gate, the message passing from dc − 1 input nodes to the only output node is

tanh
Udc
2

=
dc−1∏
k=1

tanh
v

(0)
k

2
(4.26)

55

Message From Other Inputs and Output to an Input

The message from s2, s3, s4 to s1 is explained as follows. Define two sets as the possible values

for r1, r2, r3, r4.

Γ11 =

{d1, d1, d1, d1}

{d1, d1, d2, d2}

{d1, d2, d1, d2}

{d1, d2, d2, d1}

(4.27)

Γ12 =

{d2, d1, d1, d2}

{d2, d1, d2, d1}

{d2, d2, d1, d1}

{d2, d2, d2, d2}

(4.28)

p(r1 = d1|b1b2b3b4)

p(r1 = d2|b1b2b3b4)
=
p(r1 = d1)

p(r1 = d2)

p(b1|r1 = d1)

p(b1|r1 = d2)

∑
{r2,r3,r4}∈Γ11

p(b2b3b4r2r3r4|r1 = d1)∑
{r2,r3,r4}∈Γ12

p(b2b3b4r2r3r4|r1 = d2)

= ev
(0)
1
eR4ev

(0)
2 ev

(0)
3 + ev

(0)
2 + ev

(0)
3 + eR4

ev
(0)
2 ev

(0)
3 + ev

(0)
2 eR4 + ev

(0)
3 eR4 + 1

eU1 − 1

eU1 + 1
=
ev

(0)
2 − 1

ev
(0)
2 + 1

· e
v
(0)
3 − 1

ev
(0)
3 + 1

· e
R4 − 1

eR4 + 1

tanh
U1

2
= tanh

v
(0)
2

2
tanh

v
(0)
3

2
tanh

R4

2
(4.29)

To generalize this case, the message passing from the output node and other dc − 2 input nodes to

node k is

tanh
Uk
2

=
dc−1∏
q=1
q 6=k

tanh
v

(0)
q

2
tanh

Rdc

2
(4.30)

56

The Numerical Results

The application environment of these codes in GPRAM systems is quite different from those in

telecommunication systems. Supposing one information message is sent over a symbol duration,

we sample the output from matched filter at the end of symbol duration and obtain a single value as

decision statistics in telecommunication systems. In GPRAM, there is no way to decide how long a

message will last and it can not wait until the end of message since it needs to respond in real time.

The information needs to be continuously processed and to obtain an estimate based on current

available signal. Thus, the iterative decoding process is revised in which nk is independent during

each iteration in GPRAM Equivalently, this process resembles a decoder in telecommunication

systems which needs to make tentative decision, not at the end of symbol duration rather during a

symbol duration. In real bio-systems, the noise is often correlated, which is neither independent

(GPRAM case) nor totally dependent. The iteration time is set to be 10 in our simulations.

There are two ways to select constellation, (a) d1 = −1, d2 = 1; (b) d1p = d2(1 − p). To

decode Code 1 defined in Table. 4.1 for non-equiprobable symbols, the receiver treats all non-

equiprobable symbols as equiprobable symbols. This means there is mismatches between prior

symbol probabilities from transmitter to receiver. For all other codes, the receiver is assumed to

know prior probabilities for symbols.

In each simulation trial, a corresponding codeword is generated and added noises. For each sim-

ulation batch, either 10000 trials will get executed or a minimum of 100 error events has been

cumulated for each variable node.

In table 4.11, we show error rate for codes 1 to 9 with optimal constellation, i.e., d1p = d2(1− p),

and in table 4.12 results for conventional constellation, d1 = −1, d2 = 1. In order to ensure an

appropriate error rate which is no less than 10−3 in GPRAM systems, we select Eb = 0.25. As

57

shown in Tables 4.3 and 4.5, the prior probabilities of variable nodes s5, s6, s7 for codes 3, 4, 5 are

affected by constellation selection. Further for the remaining codes, variable nodes s1, s3, s5 for

codes 6, 7, 8, 9 are affected by constellation selection. Both results in Tables 4.11 and 4.12 confirm

this observation.

Error propagation will have some effects to the system. In tables 4.13 and 4.17, we present the

results for codes constructed from the (7,4) Hamming code and code constructed from the (7,4,2)

code. As we can see the results in 4.17 is generally better than those in 4.13.

Finally, these results show even though extended codes are weaker than the original Hamming

code in term of distance profile and error correct capability, at the error rate of 10−2 to 10−3, these

extended codes are comparable. So, these codes might be good candidates because of their distance

properties. There are also other tables showing the simulation results for different Hamming code

structure and constellation methods.

58

Table 4.11: Error Probabilities of Codes using Hamming (7,4) Structure with p = 0.5 and Optimal
Constellation

σ2
1 Error rate (%) for Node

1 2 3 4 5 6 7
Code 1/2/6

1 0.26 0.16 0.15 0.25 0.48 0.33 0.39
2 3.4 2.9 3.1 3.1 3.5 3.2 3.1
4 10 11 10 10 10 11 11

Code 3
1 0.7 0.43 0.39 0.37 0 0.33 0
2 3.7 3.1 3.1 3.8 0.3 3.3 0.11
4 10 9.7 9.5 13 2.6 11 1.1

Code 4
1 0.75 0.94 0.98 0.89 0 0 0.01
2 5.4 6.4 5.0 5.2 0.1 0.1 0.12
4 14 17 15 15 1.1 1.1 1.2

Code 5
1 0.72 0.65 0.55 0.68 0.01 0 0
2 3.4 3.2 3.4 3.4 0.36 0.4 0.32
4 9.6 10 9.3 9.0 2.6 2.5 3.0

Code 7
1 0 0.5 0.32 0.45 0.05 0.4 0.78
2 0.0 7 2.4 2.5 4.6 1.6 3.5 4.6
4 0.99 8.0 8.1 12 7.6 11 13

Code 8
1 0 1.0 0 0.88 0 0.64 0.94
2 0.08 5.7 0.07 5.6 0 5.0 4.8
4 0.81 16 0.85 14 0 13 13

Code 9
1 0 0.62 0 0.82 0 0.66 0.73
2 0.13 3.5 0.09 3.6 0 3.7 3.5
4 1.2 9.8 1.3 9.4 0 9.4 9.2

59

Table 4.12: Error Probabilities of Codes Using Hamming (7,4) Structure with p = 0.5 and Equal
Spaced Constellation {±1}

σ2
1 Error rate (%) for Node

1 2 3 4 5 6 7
Code 1/2/6

1 0.26 0.16 0.15 0.25 0.48 0.33 0.39
2 3.4 2.9 3.1 3.1 3.5 3.2 3.1
4 10 11 10 10 10 11 11

Code 3
1 0.56 0.34 0.50 0.17 5.30 0.46 2.80
2 3.6 2.8 3.5 2.7 7.7 3.3 5.1
4 9.5 9.7 9.6 11 9.6 11 6.8

Code 4
1 0.45 0.55 0.50 0.46 2.8 2.6 2.8
2 3.4 2.7 3.3 2.9 4.8 4.8 4.5
4 11 11 11 11 7.5 7.0 7.2

Code 5
1 1.3 1.4 1.1 1.2 5.2 5.5 5.4
2 4.2 3.7 4.0 4.3 7.5 7.8 7.4
4 9.1 8.9 9.8 9.9 9.7 9.9 9.7

Code 7
1 2.00 0.37 0.53 0.28 2.80 0.41 0.44
2 4.7 2.3 3.0 3.1 8.1 3.3 3.6
4 6.5 8.4 8.7 10 14 11 11

Code 8
1 2.0 0.45 1.9 0.42 6.6 0.42 0.4
2 3.5 3.3 3.7 3.6 6.3 3.2 3.6
4 6.2 11 6.3 11 6.5 10 11

Code 9
1 4.2 1.3 3.9 1.1 6.1 0.98 1.0
2 6.6 4.2 6.8 4.1 6.4 3.6 4.0
4 8.8 9.5 8.6 9.7 5.9 11 9.7

60

Table 4.13: Error Probabilities of Codes Using Hamming (7,4) Structure with p = 0.3 and Optimal
Constellation

σ2
1 Error rate (%) for Node

1 2 3 4 5 6 7
Code 1

1 0.19 0.12 0.24 0.15 0.43 0.29 0.41
2 2.1 2.1 2.1 2.4 3.3 3.1 3.1
4 8.3 8.3 8.1 8.6 10 10 11

Code 2
1 0.51 0.33 0.72 0.78 0.18 0.26 0.23
2 3.6 2.8 3.4 3.0 2.6 3.0 2.4
4 8.5 7.3 8.4 8.2 9.4 9.4 9.1

Code 3
1 0.95 0.54 0.88 0.76 0 0.21 0.05
2 3.8 2.8 3.2 3.8 0 2.8 1.3
4 7.6 7.3 7.4 8.9 0 9.5 7.0

Code 4
1 0.64 0.50 0.83 0.76 0.06 0.07 0.11
2 4.3 3.7 3.9 3.8 1.5 1.4 1.4
4 9.8 9.7 9.6 9.4 6.8 7.2 6.4

Code 5
1 1.7 1.6 1.6 1.8 0 0 0
2 4.0 3.7 4.2 3.8 0 0 0.01
4 8.2 7.7 7.4 7.4 0.01 0 0

Code 6
1 0.16 0.59 0.18 0.71 0.35 1.3 1.3
2 2.5 2.9 2.2 3.2 3.3 3.7 4.2
4 9.3 8.4 8.8 8.6 10 9.5 8.8

Code 7
1 0.08 0.39 0.18 0.76 0 1.3 1.3
2 1.5 1.5 2.4 3.5 0.08 4.1 4.8
4 7.3 4.3 8.0 9.2 1.8 9.1 9.2

Code 8
1 0.05 0.84 0 0.74 0 1.2 1.3
2 0.64 4.3 4.5 3.9 0.01 4.9 4.4
4 2.4 10 2.5 9.5 0.5.3 9.4 9.9

Code 9
1 0 1.8 0 1.6 0 2.1 2.1
2 0 3.5 0 4.0 0 4.5 4.2
4 0.01 7.9 0 7.9 0 8.1 7.8

61

Table 4.14: Error Probabilities of Codes using Hamming (7,4) Structure with p = 0.3 and Equal
Spaced Constellation {±0.5}

σ2
1 Error rate (%) for Node

1 2 3 4 5 6 7
Code 1

1 0.19 0.12 0.24 0.15 0.43 0.29 0.41
2 2.1 2.1 2.1 2.4 3.3 3.1 3.1
4 8.3 8.3 8.1 8.6 10 10 11

Code 2
1 7.0 5.9 6.9 7.1 0.74 0.72 0.78
2 11 9.6 11 11 4.1 4.0 3.9
4 14 13 15 14 11 11 11

Code 3
1 6.4 4.0 9.4 4.7 2.6 0.84 0.1
2 10 8.9 12 8.9 2.6 4.0 1.4
4 13 13 15 14 2.4 11 6.2

Code 4
1 2.6 0.99 2.6 2.6 0.1 0.1 0.02
2 7.5 5.1 7.9 7.7 1.2 1.7 1.5
4 13 12 13 13 6.5 6.6 6.8

Code 5
1 14 14 14 14 2.8 2.7 2.7
2 15 14 15 15 2.5 2.5 2.8
4 15 15 16 15 2.6 2.6 2.9

Code 6
1 0.49 5.6 0.62 7.2 0.34 10 9.6
2 3.4 9.8 3.5 11 3.1 13 13
4 11 14 9.9 15 11 15 16

Code 7
1 0.04 4.1 0.63 4.3 12 10 6.5
2 1.3 6.6 3.5 9.0 13 13 10
4 6.7 9.6 8.9 13 14 16 15

Code 8
1 0.05 2.6 0.06 2.7 11 6.3 6.1
2 0.73 7.2 0.78 7.1 14 11 11
4 4.6 14 4.4 13 16 14 15

Code 9
1 2.5 14 2.5 13 0.73 14 14
2 2.5 14 2.6 15 0.71 15 15
4 2.7 15 2.8 15 0.97 16 16

62

Table 4.15: Error Probabilities of Codes using Hamming (7,4,2) Structure with p = 0.5 and Opti-
mal Constellation

σ2
1 Error rate (%) for Node

1 2 3 4 5 6 7
Code 1/2/6

1 0.16 0 0.15 0.22 0.19 0.16 0.24
2 2.5 0.95 2.5 2.6 2.5 2.6 2.4
4 9.3 6.7 9.1 9.3 9.5 9.5 9.7

Code 3
1 0.44 0.19 0.64 0.28 0.10 0.19 0.03
2 3.8 1.4 2.9 2.6 0.97 2.6 0.54
4 11 6.4 8.1 9.8 5.2 9.0 2.7

Code 4
1 0.66 0.37 0.72 0.55 0.03 0.01 0.02
2 3.8 3.4 3.6 3.8 0.41 0.37 0.36
4 11 13 11 11 2.9 2.9 2.6

Code 5
1 0.58 0.49 0.76 0.6 0.04 0.06 0.06
2 3.0 1.6 3.0 3.0 1.1 0.93 0.95
4 8.4 6.0 8.3 7.8 5.0 4.6 5.4

Code 7
1 0.02 0.13 0.63 0.17 0.06 0.11 0.48
2 0.58 1.7 3.0 2.7 1.2 2.4 3.9
4 2.8 6.2 8.5 9.2 4.9 9.4 11

Code 8
1 0 0 0.84 0.44 0 0.48 0.65
2 0.1 0.44 4.3 3.6 0.1 3.9 4.8
4 0.96 3.1 12 11 1.2 11 13

Code 9
1 0.01 0.02 0.72 0.67 0 0.5 0.74
2 0.02 0.34 3.5 3.0 0.08 3.0 3.6
4 0.79 1.8 9.9 8.3 0.94 8.2 9.9

63

Table 4.16: Error Probabilities of Codes using Hamming (7,4,2) Structure with p = 0.5 and Equal
Spaced Constellation {±0.5}

σ2
1 Error rate (%) for Node

1 2 3 4 5 6 7
code 1/2/6, p=0.5

1 0.16 0 0.15 0.22 0.19 0.16 0.24
2 2.5 0.95 2.5 2.6 2.5 2.6 2.4
4 9.3 6.7 9.1 9.3 9.5 9.5 9.7

Code 3
1 0.4 0.12 0.94 0.19 1.6 0.27 0.37
2 2.7 1.3 3.2 2.3 5.4 2.6 2.0
4 8.8 6.2 9.2 8.8 11 9.2 5.6

Code 4
1 0.45 0.56 0.33 0.29 0.35 0.37 0.34
2 2.7 1.3 2.8 2.6 2.0 1.7 2.3
4 9.6 6.9 9.0 9.0 5.4 6.0 5.8

Code 5
1 0.97 1.4 1.0 1.0 1.6 2.1 1.7
2 3.5 2.4 3.6 3.8 5.8 5.6 5.4
4 9.0 5.9 9.1 8.8 11 10 11

Code 7
1 0.38 0.08 1.1 0.15 1.7 0.15 0.31
2 2.1 1.4 3.7 2.7 5.4 2.4 2.8
4 6.0 6.2 8.8 9.0 11 9.7 9.5

Code 8
1 2.9 0.5 0.4 0.39 3.1 0.33 0.42
2 4.3 1.2 3.9 2.9 4.3 2.7 3.5
4 5.5 3.2 11 9.0 5.7 9.0 11

Code 9
1 5.8 1.4 0.93 1.0 5.8 1.1 0.93
2 7.4 3.5 4.1 3.6 7.2 3.6 4.1
4 8.6 6.6 10 9.1 8.5 8.3 10

64

Table 4.17: Error Probabilities of Codes Using Hamming (7,4,2) Structure with p = 0.3 and
Optimal Constellation

σ2
1 Error rate (%) for Node

1 2 3 4 5 6 7
Code 1

1 0.13 0.01 0.14 0.09 0.23 0.18 0.18
2 1.6 0.79 1.8 1.8 2.7 2.7 2.6
4 7.4 4.8 7.5 7.1 11 9.4 10

Code 2
1 0.52 0.03 0.46 0.63 0.15 0.09 0.07
2 2.7 0.9 3.0 2.9 1.5 1.6 1.5
4 7.4 4.3 7.7 7.5 7.8 8.1 7.9

Code 3
1 0.13 0.07 3.0 0.56 1.7 0.06 1.4
2 1.0 0.33 5.3 2.9 3.6 1.7 5.7
4 3.6 2.8 8.6 7.9 4.7 8.0 12

Code 4
1 0.52 0.06 0.35 0.42 0.01 0.5 0.4
2 2.5 0.51 2.5 2.5 0.8 0.96 0.71
4 7.0 4.3 6.9 6.9 5.0 5.0 5.5

Code 5
1 1.6 1.0 1.7 1.8 0 0 0
2 3.7 2.0 4.3 3.7 0.02 0.04 0
4 7.4 6.5 7.0 7.0 0.33 0.35 0.41

Code 6
1 0.16 0.01 0.62 0.75 0.14 0.62 0.76
2 2.1 0.46 3.4 2.5 2.2 3.0 3.4
4 8.7 5.3 8.2 7.3 8.5 7.4 8.0

Code 7
1 0.03 0.07 1.2 0.51 0 0.75 1.1
2 0.63 0.96 2.4 2.9 0.11 3.1 4.0
4 3.5 4.9 5.3 7.6 1.7 7.7 9.1

Code 8
1 0.04 0.02 1.8 0.46 0.11 0.57 2.0
2 1.1 0.49 5.6 2.6 1.0 2.5 5.4
4 4.7 2.7 10 7.1 4.7 7.2 9.9

Code 9
1 0 0 1.8 1.7 0 1.7 2.1
2 0 0.03 4.2 3.3 0 3.8 4.7
4 0.05 0.58 8.1 7.4 0.07 7.4 8.4

65

CHAPTER 5: LDPC CODE WITH NON-EQUIPROBABLE SYMBOLS

In practice, the output from source encoders after compression often contains some extent of re-

dundancy [92] [100]. Due to these redundancies, the equiprobable symbols no longer holds that

property [94]. How to optimize the system with such symbols is discussed in [93] [101]. The tight

lower bounds on symbol error rate of nonuniform signaling is discussed in [102]. Extension of

Turbo codes with non-equiprobable symbols can also be found in [103] [104] [105].

In this Chapter, selection and computation of optimal constellations for LDPC codes in order to

maximize channel mutual information is discussed. Revised message passing algorithm for LDPC

codes with non-equiprobable symbols will be reviewed and has already been presented in [104] .

Also short LDPC codes with non-equiprobable signaling with different constellation schemes are

simulated and the results are compared with the ones with equiprobable symbols and prior work

in [103].

Signal and System

Assume each codeword be of length of K bits, s = [s1, s2, · · · , sK], which contains K − T

message bits I = [I1, I2, · · · , IK−T] and T parity check bits O = [O1, O2, · · · , OT], where s =

[s1, s2, · · · , sK] = [I1, · · · , IK−T , O1, · · · , OT], and {sk} ∈ {0, 1}. Let pk,1 = p(sk = 0), pk,2 =

p(sk = 1), where p(.) denotes probability. {sk} is modulated to binary constellation {rk} ∈

{dk,1, dk,2} and deteriorated by Additive White Gaussian noise (AWGN) {nk} with zero mean and

variance of σ2
1 .

bk = rk + nk (5.1)

66

for k = 1, 2, · · · , K. In an ideal case, the symbols are equiprobable, pk,1 = pk,2 = 0.5 and

equal-spaced constellation would be used dk,1 = −dk,2 =
√
Es, where Es is the average energy

per transmitted symbol. While in this Chapter, our concentration is on non-equiprobable case, i.e.,

pk,1 = p1 6= pk,2 = p2, k = 1, · · · , K − T and p1 + p2 = 1.

To better explain the effect of non-equiprobable symbols, (7,4) Hamming code is used for illus-

tration. Fig. 5.1(a) shows the conventional Tanner graph with variable nodes, s nodes and check

nodes, C. In the former case, the end nodes for each edge can both be either input or output of the

parity check node. For example, edge of C2 to s7 can be considered as output of C2 with inputs

s1, s2, s4; meanwhile, edge of s7 to C2 can also considered as input of C2 with outputs to s1, s2, s4

respectively. While for the latter case, because of the mismatching problem in prior probabilities,

only one parity check bit associated with one check node can be selected as an output. For exam-

ple, in Fig. 5.1(b), assume pk,1 = 0.3 for k = 1, 2, 3, 4, then p6,1 = 0.468. If s4 is selected as output

of further operation, then for the case of p2,1 = p3,1 = 0.3 and p6,1 = 0.468, p4,1 = 0.495 can be

obtained, which is contradicted to the fact that p4,1 = 0.3. This prior probabilities mismatching

problem was discussed in Chapter 3.

To study LDPC cods with non-equiprobable symbols, three problems need to be solved:

1. optimal constellations for both information bits and parity check bits;

2. message propagating from information bits to parity check bits;

3. message propagating from parity check bits to information bits.

67

directional flow

s4

s3 s1

s5

s7

s2

C3

C1 C2

s6 s4

s3 s1

s5

s7

s2

C3

C1 C2

(b)(a)

s6

Figure 5.1: (a) Conventional Tanner Graph of (7,4) Hamming Code and Extension (b) Graph with
Directions for Non-equiprobable Symbols

Signaling Optimization

In this section, how to find optimal constellations for non-equiprobable symbols in terms of maxi-

mizing channel mutual information and capacity is presented.

To make this problem more generalized, M -ary amplitude-shift keying (MASK) is considered

at first, where the constellation for the LDPC codes is a special case of M = 2. Let {dm} for

m = 1, · · · ,M denotes the constellation points for an M -ary signal s with probabilities of pm =

p(sm) = p(dm). The signal is passed through an AWGN channel and the output is b = dm + n,

where n is Gaussian distributed with zero mean and variance of σ2
1 = N0/2. Let b0 = b/

√
N0, and

gm = dm/
√
N0, and the capacity can be represented as

I(D;B) =
M∑
m=1

∫ ∞
−∞

pm√
π
e−(b0−gm)2 log2

e−(b0−gm)2∑M
α=1 pαe

−(b0−gα)2
db0 (5.2)

68

In order to optimize I(D;B) with given {pm} and

M∑
m=1

pmg
2
m =

Es
N0

(5.3)

, the object function is defined as

Ω = I(D;B) + λ

(
M∑
m=1

pmg
2
m −

Es
N0

)
(5.4)

where λ is a Lagrange multiplier. The optimal gm and λ could be found by solving ∂Ω/∂gm = 0

and ∂Ω/∂λ = 0 for m = 1, 2, · · · ,M , where

∂I(D;B)

∂ga
=

M∑
m=1
m6=a

∫ ∞
−∞

2pmpa

[
(ga − gm − b0) exp (−b2

0 + (ga − gm)(2b0 − ga + gm))
√
π ln 2

∑M
α=1 pα exp ((gα − gm)(2b0 − gα + gm))

+

(ga − gm + b0) exp (−b2
0 + (gm − ga)(2b0 − gm + ga))√

π ln 2
∑M

α=1 pα exp ((gα − ga)(2b0 − gα + ga))

]
db0 (5.5)

Proposition 1: For M = 2, optimal constellation satisfies p1g1 + p2g2 = 0.

Proof : Taking ∂Ω/∂gm = 0 for m =1,2,

∂I(D;B)

∂gm
+ 2λpmgm = 0 (5.6)

69

To complete the proof, only ∂I(D;B)
∂g1

= −∂I(D;B)
∂g2

need to be proved. From (5.5),

∂I(D;B)

∂g1

=

∫ ∞
−∞

p1p2e
−(d+g1−g2)22(g1 − g2 + d)√

π ln 2(p1 + p2e(g1−g2)(g1−g2+2d))
dd

−
∫ ∞
−∞

2p1p2e
−(d+g2−g1)22(g2 − g1 + d)√

π ln 2(p2 + p1e(g2−g1)(g2−g1+2d))
dd

=− ∂I(D;B)

∂g2

This proposition shows that the constellation not only minimizes bit error rates [93] [106] but also

maximizes the capacity. The optimal values of constellation points are:

g1o =

√
Es
N0

p2

p1

(5.7)

g2o = −

√
Es
N0

p1

p2

(5.8)

Go = g1o − g2o =

√
Es
N0

(√
p1

p2

+

√
p2

p1

)
(5.9)

where Es is the average energy per transmitted symbol. The optimal constellation to every single

bit is solely dependent on its prior probability distribution when Es is fixed. The scheme used

computing prior probabilities of parity check bits is identical to [103].

Proposition 2: When Es/N0 → ∞, the capacity, I(D,B), converges to H(D) regardless signal

constellations where H(D) =
∑M

m=1−pm log2(pm).

Proof : Putting {gm0} (with distinct M0 values and assume M0 ≥ 2) in order from least to

greatest, a new sequence of a total of M0 ≤ M elements, {g′1, g′2, · · · , g′M0
}, where g′m0

< g′m1
if

m0 < m1 can be arranged. Ordering {pm0} accordingly and combining probabilities together for

70

those points with same dm0 . It is easy to show that H(D) = H(D′), H(D;B) = H(D′;B), where

simplifying Equation (5.2).

I(D′;B) =

M0∑
m0=1

∫ ∞
−∞
−
p′m0

exp(−b2
0)

√
π

log2

p′m0
+

M∑
m1=1
m1 6=m0

pm1 exp
(
(g′m1

− g′m0
)(2b0 − g′m1

+ g′m0
)
) db0

≤
M0∑
m0=1

∫ ∞
−∞
−
p′m0

exp(−b2
0)

√
π

log2(p′m0
)db0 = H(D′) (5.10)

lim
Es
N0
→∞

I(D′;B) = lim
|g′m0

−g′m1
|→∞

I(D′;B) = H(D′)

Message Passing with Non-equiprobable Symbols and Nonlinear Codes

Starting from the simplest example of message passing for non-equiprobable symbols, we have

two information bits and one parity check bit, s = [I1, I2, O] = [s1, s2, s3] and O = I1

⊕
I2.

Let vk represent the message being propagated from variable node k to the check node, while u1k

represent the message being propagated from the check node to variable node k, where k = 1, 2, 3

in this case. Hereafter, the superscript denotes iteration number, and (.)(0) is the initial value of (.).

Define

v
(0)
k = ln

p(Ik = 0|bk)
p(Ik = 1|bk)

= ln
p(dk,1|bk)
p(dk,2|bk)

(5.11)

for k = 1, 2, both are initial messages propagated from s1, s2 to the check node. Now, the message

71

propagated from check node to the parity check bit s3 is

u
(1)
13 = ln

p(O = 0|b1b2)

p(O = 1|b1b2)
= ln

p(d3,1|b1b2)

p(d3,2|b1b2)
(5.12)

which can be calculated as

tanh
u

(1)
13

2
= tanh

v
(0)
1

2
tanh

v
(0)
2

2
(5.13)

The posterior probability ratio is

ln
p(d3,1|b1b2b3)

p(d3,2|b1b2b3)
= ln

p(b3|d3,1)

p(b3|d3,2)
+ u

(1)
13 (5.14)

v
(0)
3 = ln

p(b3|d3,1)

p(b3|d3,2)
(5.15)

which is not identical to ln p(d3,1|b3)

p(d3,2|b3)
for non-equiprobable symbols.

ln
p(d3,1|b1b2b3)

p(d3,2|b1b2b3)
= v

(0)
3 + u

(1)
13 (5.16)

Similarly the message propagated from check node to the k-th information bit is defined as

tanh
u

(1)
1k

2
= tanh

v
(0)
3

2
tanh

v
(0)
3−k

2
(5.17)

for k = 1, 2. These steps demonstrate that information bits and parity check bits for non-equiprobable

symbols should be treated separated in message passing algorithm.

In general for all information bits, we have

v
(0)
k = ln

p(dk,1|bk)
p(dk,2|bk)

(5.18)

72

which is the initial message of information bits, and

v
(0)
k =

(2dk,1 − 2dk,2)bk + d2
k,2 − d2

k,1

N0

+ ln
pk,2
pk,1

(5.19)

where 1 ≤ k ≤ K − T . And for all parity check bits,

v
(0)
k = ln

p(bk|dk,1)

p(bk|dk,2)
(5.20)

which is the initial message for parity check bits, and

v
(0)
k =

(2dk,1 − 2dk,2)bk + d2
k,2 − d2

k,1

N0

(5.21)

where K − T + 1 ≤ k ≤ K. ln
pk,2
pk,1

is termed as biased term.

The iterative decoding process is identical to traditional message passing algorithm,

tanh
u

(l)
tk

2
=

dc∏
q=1
q 6=k

tanh
v

(l−1)
tq

2
(5.22)

and

v
(l)
k =

dv∑
q=1

u
(l−1)
qk + u

(l)
k (5.23)

where 1 ≤ k ≤ K, dv is the degree of each variable node, s nodes, and dc is the degree of each

check node, C nodes.

In next section, improvement due to this modification will be displayed.

73

Numerical Procedure for Simulation

Optimal Constellation

LDPC codes with binary bits where M = 2 and {pk} = [0.3, 0.7] is selected. In Fig. 5.2, the

maximum achievable rate is plotted as a function of Es/N0 for five cases: (a) AWGN channel, (b)

binary input AWGN (BIAWGN) channel with equiprobable symbols and optimal constellations,

(c) BIAWGN channel with equiprobable symbols and constellations {dk} = ±
√
Es, (d) BIAWGN

channel with non-equiprobable symbols ({p1} = 0.3) and optimal constellation, d1 =
√
Es

p2
p1

,

d2 = −
√
Es

p1
p2

, (e) BIAWGN channel with non-equiprobable symbols ({p1} = 0.3) and constel-

lations {dk} = ±
√
Es. When the value of Es/N0 is comparatively high, the rate for cases (b) and

(c) converge to 1, while the rate of cases (d) and (e) converge to H(p1) as proved in Proposition

2. When the value of Es/N0 is comparatively small, the rate with optimal constellation of case(d)

converges to that of case (b), but the rate of non-optimal constellation of case(e) does not converge

with other cases. The loss of Es/N0 due to non-optimal constellation is approximately 0.72 dB.

Simulation of short LDPC Codes

5 code cases given in Table 5.1 are chosen in simulation. A regular-(3, 6) LDPC code with the

length of 1024 is used. Bit error rate is plotted as a function of Es/N0 for cases 1 to 4 in Fig. 5.3.

By comparing case 1 and case 2, the application of optimal constellation over equal-spaced con-

stellation could gain 0.4 dB. Moreover, the gap between case 1 and case 3 is due to the existence of

biased term ln(p1/p2) or ln(p2/p1) in case 3. Besides revising the constellation, sum-product algo-

rithm also needs to be revised when the prior probabilities of input symbols are non-equiprobable,

the process is described in previous Section.

74

−2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

E
s
/N

0
 (dB)

R

M=2 {p
k
}=[0.3,0.7]

AWGN

BIAWGN with equal p and optimal {dk}

BIAWGN with equal p and {dk} = ±
√

Es

BIAWGN with {pk} and optimal {dk}

BIAWGN with {pk} and {dk} = ±
√

Es

Figure 5.2: R of Systems with M=2, Equiprobable and Non-equiprobable ({pk}=[0.3, 0.7]) Sym-
bols as a Function of Es/N0

A comparison is made among the five cases in terms of energy per information bit. For codes in

cases 1-3, each transmitted bit delivers H(0.3) = 0.88 information bits. Fig. 5.4 shows that case 5

has approximately 0.2dB gain compared with case 1. However, such a gain can only be achieved

with optimal source coding.

Codes with K = 1000 for p1 = 0.1 and 0.2 are also simulated. Our results match to those in [103].

75

Table 5.1: Simulation Cases

cases p1 constellation code rate (K - T, K)
1 0.3 optimal 1/2 (512, 1024)
2 0.3 (

√
Es,−

√
Es) 1/2 (512, 1024)

3 0.3 optimal without biased term 1/2 (512, 1024)
4 0.5 - 1/2 (512, 1024)
5 0.5 - 0.44 (511, 1161)

Summary

In this Chapter, selection and computation of optimal constellations for LDPC codes in order to

maximize channel mutual information was reviewed. The message passing from information bits

to parity check bits and from parity check bits to information bits were computed as well. A gain

of 0.72 dB in performance can be achieved if optimal constellation (
√
Esp1/p2,−

√
Esp2/p1) is

used instead of (−
√
Es,
√
Es).

76

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
s
/N

0
(dB Energy per Transmitted Symbol)

B
E

R

case 1
case 2
case 3
case 4

Figure 5.3: Bit Error Rate of (3, 6) LDPC Codes for Case 1 to Case 4 as a Function of Es/N0

1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
(dB Energy per Information bits)

P
E

R

case 1
case 2
case 3
case 4
case 5

Figure 5.4: Package Error Rate of (3, 6) LDPC Codes for Case 1 to Case 5 as a Function of Eb/N0

77

CHAPTER 6: IMAGE PROCESSING UNIT FOR GENERAL PURPOSE

REPRESENTATION AND ASSOCIATION MACHINE

In this chapter, a novel framework which supports multiple recognition tasks and includes VIV

is presented [110]. This framework is an IPU which consists of a randomly constructed LDPC

coding structure, an iterative decoder, a switch, scaling and decision device. VIV is introduced to

degrade the quality of input images which mimics human visual systems. The degraded images

are then fed to the IPU.

Each task contains a pool of candidate images. At training step, these images are inputted into IPU

to generate reusable information which will be utilized in testing step. At testing step, a randomly

selected candidate is recognized through the IPU with the information generated in previous step.

These tasks include digits recognition, alphabetical letters recognition, roman numerals recogni-

tion, hyper-acuity task and low-resolution human face recognition.

Three aspects are the focus of our study in this Chapter and listed as follow.

1. Whether the IPU unit can recognize different candidates in a VIV environment.

2. Whether the IPU unit is capable of hyper-acuity task.

3. Whether randomly constructed code can improve the differentiation capability.

Based on GPRAM principles, the non-optimized LDPC coding structure is totally randomly con-

structed which might lay a foundation for individuality of different units. The results presented

latter in this Chapter provide promising answers to these aspects.

78

Structure of IPU for GPRAM

An IPU for GPRAM structure is introduced in this Section and a testable platform is founded due

to the superior capability of LDPC code dealing with internal noise in the system [62]. Fig. 6.1

illustrates different modules for IPU.

Image

i=1

j=
1

I

J

s(i,j) Visual
Information
Variability

Power
Scaling
Methods

K

k=1 m=1

...

M

LDPC Matrix

...b(i,j)

r(i,j)

n(i,j)

Sum−product
Algorithm

Decision
Algorithm

Probability or
Log−likelihood ratio

Output

Decision Scaling

2

1

Figure 6.1: Structure of IPU for GPRAM for One Frame

Each pixel in an input image is connected to a photo-sensor unit in IPU (e.g., s1, s2, · · ·). Hence

for a picture with K-pixels, there are K sensor units in the system. For a gray scaled picture, the

value for each pixel is ranging from 0 to 255. These pixels can be normalized into a range of [0,1]

79

when divided by 255. To better explain the structure of IPU, simpler images -binary pictures- are

assumed as inputs to the unit in this and the next section. Furthermore, the value for a pixel in an

image with dimensions of I by J can be represented by s(i,j) or sk, which locates at the i-th row

and j-th column, and k = (i− 1)× I + j, 0 ≤ i ≤ I , 0 ≤ j ≤ J .

The IPU is shown in Fig. 6.1. For every task, the switch is first at position 1 for the system to

compute a template for every input image in an image set, which could be a tuple with length

K of either log-likelihood ratios (LLR) or measured probabilities of variable nodes. The system

performs the real differentiation task while the switch is at position 2. Uncoded cases can be

obtained by removing the LDPC coding structure for comparison, which is shown as the dashed

box in Fig. 6.1.

The detailed transformation from sk to rk under VIV will be discussed in next Section. Without

VIV, rk = sk. Assuming the input to unit is without influence of VIV, then black pixel is mapped

to 0 and white pixel is mapped to 1 which are latter modulated to {−1, 1}, respectively; and

AWGN noise is added to the pixels to generate inputs to the LDPC coding structure where we

have b(l)
k = n

(l)
k if the variable node k is not connected to any sensor input and b(l)

k = 1 + n
(l)
k or

b
(l)
k = −1 + n

(l)
k if node k is connected to a sensor input and the input value is 1 or 0, respectively.

n
(l)
k is Gaussian distributed with zero mean and variance of σ2

1 , n(l)
k ∼ N (0, σ2

1), and (l) indicates

the iteration number. Each iteration uses one frame of image information.

Define u(l)
k = 2b

(l)
k /σ

2
2 as the initial LLR of variable node k. The value of σ2 is chosen to be

different than the value of σ1 and σ2 > σ1 is enforced for robustness purposes [111]. A sum-

product algorithm is used to propagate messages as in conventional iterative decoding [112] [113]

[114],

v
(l)
kt =

u

(l)
k l = 0

u
(l)
k +

∑dv
q=1
q 6=t

u
(l)
qk l > 0

(6.1)

80

tanh
u

(l)
tk

2
=

dc∏
q=1
q 6=k

tanh
v

(l−1)
tq

2
(6.2)

where v(l)
kt is the LLR from the variable node k to the check node t, u(l)

tk is the LLR from the check

node m to the variable node k, and dv and dc are the degrees of the variable and check nodes,

respectively. At the end of each iteration, the status of each variable node is decided by

c
(l)
k =

 1 v
(l)
k > 0

0 v
(l)
k ≤ 0

(6.3)

where v(l)
k = u

(l)
k +

∑dv
q=1 u

(l−1)
qk .

Visual Information Variability

Line-spread functions [115] is applied to evaluate the distribution of luminance on the retina, which

can be obtained by summing two Gaussian functions [116] as an approximation. The same param-

eters used in [65] for a 3-mm pupil are strongly related to the data from bio-visual systems [115],

being applied in the system.

h(x, y) =
a1

2πa3

exp

[
−0.5(x2 + y2)

a2
3

]
+

a2

2πa4

exp

[
−0.5(x2 + y2)

a2
4

]
(6.4)

where the coefficients a1 = 0.417 and a2 = 0.583 and the variances a3 = 0.443β1 and a4 =

2.04β1; the intensity of this movement is denoted as β1.

81

The second factor is drift-type fixational motion. The drifting pattern and rate are strongly de-

pendent on the observer and their status and might vary from person to person [117]. The drift-

ing, on the other hand, is uncorrelated between (a) horizontal and vertical directions, and (b) two

eyes [118]. The drift-type motion is therefore modeled, as follows:

x0(τ) = g(τ)
⊗

nx(τ)

y0(τ) = g(τ)
⊗

ny(τ) (6.5)

where
⊗

denotes the linear convolution operation, g(τ) is the impulse response, and nx and ny are

independent Gaussian noise vectors with zero mean and unitary variance. This model fits well with

the observation of the human visual system in [119] [120]. The effect of fixation eye movements

is explained in [121]. An examination of this model is conducted in [65].

The form of g(τ) is

g(τ) =

(
40√
2πa5

exp

[
− τ 2

2a2
5

]
− 0.0117

)
cos(4πτ/1000) (6.6)

where a5 = 223.61β2 ms and β2 is the scale factor.

The third one is orientational movement, which causes rotation along clockwise and counterclock-

wise directions. This motion imitates side-wise head tilting. A simple filter is used:

θ(τ) = 0.95θ(τ − 1) + 0.05n0(τ)
π

9
β3 (6.7)

where n0(τ) ∼ N (0, 1) and the initial value of θ(τ), θ(0), is a uniformly distributed random

variable in the interval of [−20◦, 20◦].

82

Three scale factors, β1, β2, and β3, denote the intensities for all three movement. The higher a

value for a factor, the more intense that movement is.

All the previous processes are described in continuous domains. Discrete models of these three

have to be studied in order to be implemented in our unit which will be introduced in following

Sections.

Point spread

Define

H(x, y) = s(l)(x, y)
⊗

h(x, y) (6.8)

where
⊗

denotes convolution. After that, the discrete values for H(x, y) can be computed as

H
(l)
(i,j) =

∫ ihs

(i−1)hs

∫ jhs

(j−1)hs

H(x, y)dxdy. (6.9)

Alternatively, discrete convolution operation is defined as in

H
(l)
(i,j) = s

(l)
(i,j)

⊗
h(i, j) (6.10)

where h(i, j) = h(ihs − 1/2hs, jhs − 1/2hs).

Drift-like motion

The drift-like motion is modeled as described in Equation (6.5). The discrete model for drift-like

motion is

83

x
(l)
0 =

⌊
x0(lTs)

β2hs

⌋
y

(l)
0 =

⌊
y0(lTs)

β2hs

⌋
(6.11)

where Ts is the time duration between two frames and bxc takes the largest integer smaller than or

equal to x.

Orientation movement

Orientation is represented as

f
(l)
(i,j) = H

(l)

(i1+x
(l)
0 ,j1+y

(l)
0)

(6.12)

where

i = bi1 cos(θ(t))− j1 sin(θ(t))c

j = bi1 sin(θ(t)) + j1 cos(θ(t))c (6.13)

This movement can change the orientation of input figures.

Fig. 6.2 illustrates the effects of these VIV movements adding upon an image of standard digit “1”.

σ1 is typically set to 1 in this study, which is far noisier than what can be observed in Fig.6.2(t).

Power Scaling Methods

The pixel values significantly vary from frame to frame due to the effect of VIV. Therefore, each

frame is supposed to be scaled into a range before inputted into the system. There are four scaling

84

methods.

(a) β1 = 0, β2 =
0, β3 = 0, σ1 =
0

(b) β1 = 0, β2 =
1, β3 = 0, σ1 =
0

(c) β1 = 0, β2 =
1, β3 = 0, σ1 =
0.2

(d) β1 = 0, β2 =
1, β3 = 0, σ1 =
0.4

(e) β1 = 0, β2 =
1, β3 = 0, σ1 =
0.6

(f) β1 = 1, β2 = 0,
β3 = 0, σ1 = 0

(g) β1 = 1, β2 =
1, β3 = 0, σ1 =
0

(h) β1 = 1, β2 =
1, β3 = 0, σ1 =
0.2

(i) β1 = 1, β2 =
1, β3 = 0, σ1 =
0.4

(j) β1 = 1, β2 =
1, β3 = 0, σ1 =
0.6

(k) β1 = 0, β2 =
0, β3 = 1, σ1 =
0

(l) β1 = 0, β2 = 1,
β3 = 1, σ1 = 0

(m) β1 = 0, β2 =
1, β3 = 1, σ1 =
0.2

(n) β1 = 0, β2 =
1, β3 = 1, σ1 =
0.4

(o) β1 = 0, β2 =
1, β3 = 1, σ1 =
0.6

(p) β1 = 1, β2 =
0, β3 = 1, σ1 =
0

(q) β1 = 1, β2 =
1, β3 = 1, σ1 =
0

(r) β1 = 1, β2 =
1, β3 = 1, σ1 =
0.2

(s) β1 = 1, β2 =
1, β3 = 1, σ1 =
0.4

(t) β1 = 1, β2 =
1, β3 = 1, σ1 =
0.6

Figure 6.2: Effects of Point Spread (β1), Drift-like Motion (β2), Head Orientation Rotation (β3)
and Gaussian Noise (σ1)

Method 1: No mean nor energy normalization; output from VIV is the input to the LDPC code,

85

where r(l)
(i,j) = f

(l)
(i,j).

Method 2: This is the mean normalization, as defined by

m(l) =

∑I
i=1

∑J
j=1 f

(l)
(i,j)

I × J
(6.14)

q
(l)
(i,j) = f

(l)
(i,j) −m

(l) (6.15)

Zero can then be considered as a watershed for dividing all pixels into two sets after subtracting

their mean value. The mean value for each group can be found as:

m(l)
p =

∑I
i=1

∑J
j=1 q

(l)
(i,j)∑I

i=1

∑J
j=1 Z

(
q

(l)
(i,j) > 0

) if q
(l)
(i,j) > 0

m(l)
n =

∑I
i=1

∑J
j=1 q

(l)
(i,j)∑I

i=1

∑J
j=1 Z

(
q

(l)
(i,j) ≤ 0

) if q
(l)
(i,j) ≤ 0 (6.16)

where

Z(x) =

 1 x is true

0 x is false
(6.17)

Finally,

r
(l)
(i,j) =

q
(l)
(i,j)

min(m
(l)
p , |m(l)

n |)
(6.18)

b
(l)
(i,j) = r

(l)
(i,j) + n

(l)
(i,j) (6.19)

where n(l)
(i,j) ∼ N (0, σ2

1). This step is to ensure the group with a smaller mean, i.e., min(m
(l)
p , |m(l)

n |)

should be higher than a lower bound lest the decoder generate irregular results with all zeros or all

ones.

86

Method 3: The value of r(l)
(i,j) is further scaled per energies of both positive and negative groups

following the mean-normalization described in Method 2.

E(l)
p =

I∑
i=1

J∑
j=1

[
q

(l)
(i,j)

]2

if q
(l)
(i,j) > 0

E(l)
n =

I∑
i=1

J∑
j=1

[
q

(l)
(i,j)

]2

if q
(l)
(i,j) ≤ 0 (6.20)

Define S(l)
p and S(l)

n as scaling factors to the positive and negative groups

S
(l)
p = min

(
1,

√
E

(l)
n

E
(l)
p

)
S

(l)
n = min

(
1,

√
E

(l)
p

E
(l)
n

) (6.21)

In addition, each r(l)
(i,j) is updated as

r
(l)
(i,j) =

 q
(l)
(i,j) × Sp(l) q

(l)
(i,j) > 0

q
(l)
(i,j) × Sn(l) q

(l)
(i,j) ≤ 0

(6.22)

This step is to ensure the energies for both groups are the same. Therefore, the iterative decoder

will not fail to converge for given σ2
1 .

Method 4: It is observed that the total energy drastically varies for each digit after applying

Method 2. In order to figure out the impact on this variation, we set S(l)
p and S(l)

n based on

S(l)
p =

√
784

E
(l)
p

S(l)
n =

√
784

E
(l)
n

(6.23)

87

Therefore, the newE
(l)
p andE(l)

n for each candidate under any condition will be identical after scal-

ing. r(l)
(i,j) can be obtained by replacing Equation (6.23) by Equation (6.22) to obtain for Method 4.

Conclusively Method 1 excludes the scaling process, which is for the purpose of comparison, and

Method 2 is the prerequisite for both Method 3 and Method 4.

Algorithms

In this section, learning and testing procedures will be introduced, for the task of standard digits

recognition. The procedures can be transplanted to other tasks with adjusting the number of can-

didates only. z is denoted as a digit, referring to “0”, “1”, “2”, · · · “9”. Each digit is considered as

a 28-by-28 pixels image, where each pixel is granted to binary values. It is worth mentioning that

the values would no longer be binary but with gray level after the involvement of VIV.

Training

The image stream will be input frame by frame as an LDPC code and decoded by a sum-product

algorithm. The image matrix is then converted into an image vector, by relocating pixels (i, j) in

the matrix at (i− 1)× J + j in the vector. Each digit will be consecutively learned. Two different

outputs can be obtained: the averaged LLR (i.e., the soft decision, given in Equation (6.24)) and

the multiplicity (i.e., the hard decision, given in Equation (6.25)) of each pixel.

As for the first type, the averaged likelihood of a bit (784 in total in our case) is the mean of v(l)
k

over Ia − 20 iterations (Ia is 320 in program). Only the last 300 iterations will be counted in lest

of error propagation.

vk(z) =

∑Ia
l=21 v

(l)
k

Ia − 20
(6.24)

88

where z refers to the digits “0”, “1”, · · · , “9” and vk(z) denotes the averaged likelihood of the k

variable in the case of digit z.

For the second type, the status of a bit will be decided at each iteration, i.e., making a hard decision,

which is c(l)
k (z). A probability of 0 and 1 can be calculated for each bit by dividing the occurrences

of zeros and ones by the number of iterations, after Ia iterations.

p(ck = 0|z) =

∑Ia
l=21 Z

(
c

(l)
k = 0

)
Ia − 20

p(ck = 1|z) =

∑Ia
l=21 Z

(
c

(l)
k = 1

)
Ia − 20

(6.25)

where p(ck = 0|z) denotes the probability of 0 for the variable k in the case of digit z.

Algorithm 1 summarizes the training step of our proposed IPU.

Algorithm 1 Training Step
1: for z ← 1, 10 do
2: Add VIV to image z
3: Scale image z with a method discussed in Section 6
4: Initialize u(0)

k = 2b
(0)
k /σ2

2 , u(0)
tk = 0, v(0)

kt = u
(0)
k

5: for l← 1, Ia do
6: v

(l)
kt = u

(l)
k +

∑dv
q=1
q 6=t

u
(l)
qk , u(l)

tk = 2× arctan
∏dc

q=1
q 6=k

tanh
v
(l−1)
tq

2

7: Store the value of c(l)
k based on Equation (6.3)

8: end for
9: Output p(ck = 0) and p(ck = 1) or vk for image z

10: end for

89

Testing

Scaling for LLR

The 4 scaling methods described in previous steps are applied to images. And to determine whether

taking away the mean value of L(z) and scaling it based on the energy of positive group and

negative group will effect the performance of system, we studied three scaling methods of LLR:

Method 1 does not have mean or energy normalization for the purpose of comparison; Method

2 has mean normalization, but no-energy normalization; Method 3 has both mean and energy

normalization.

Method 1: This step is exactly the same as in Equation (6.35)(6.36).

Method 2: Mean value of L(z) for each z from each pixel is deducted.

Define

mL(z) =

∑K
1 Lk(z)

K
(6.26)

as mean of likelihood. And the adjusted LLR is

L′k(z) = Lk(z)−mL(z) (6.27)

for every 1 ≤ k ≤ K.

90

Substitute L(z) in Equation (6.36) with L′k(z)

Decision = arg min
0≤z≤9

Il∑
l=1

K∑
k=1

[
L′k(z)− v(l)

k

]2

= arg min
0≤z≤9

Il∑
l=1

K∑
k=1

[
Lk(z)−mL(z)− v(l)

k

]2

= arg min
0≤z≤9

Il∑
l=1

{
K∑
k=1

[
(Lk(z)− v(l)

k)2 − 2mL(z)(Lk(z)− v(l)
k)
]

+KmL(z)2mL(z)

}

⇒ arg min
0≤z≤9

Il∑
l=1

{
K∑
k=1

[
(Lk(z)− v(l)

k)2
]

+
K∑
k=1

[
−2mL(z)(Lk(z)− v(l)

k)
]}

(6.28)

If
∑K

k=1

[
(Lk(z)− v(l)

k)2
]
�
∑K

k=1

[
−2mL(z)(Lk(z)− v(l)

k)
]
, then the detector will not be af-

fected by mL(z).

Method 3: After mean-normalization in Method 2, we further adjust the value of likelihood based

on the total energy of positive group and negative group. For 1 ≤ k ≤ K, Lk(z) is either grater

than, or less than or equal to 0.

For Lk(z) which is larger than 0, its subscript belongs to set I(z) of which length is K1(z). For

Lk(z) which is less than or equal to 0, its subscript belongs to set J(z) of which length is K2(z).

Iλ(z) is the λ-th element in set I(z). To simplify the notation, let LIλ(z) be the Iλ(z)-th element

of L(z). So we have

LIλ(z) > 0,where 1 ≤ λ ≤ K1(z)

LJλ(z) ≤ 0,where 1 ≤ λ ≤ K2(z)

K1(z) +K2(z) = K

I(z) ∪ J(z) = {1, 2, · · · , K} (6.29)

91

We compute energy for each group as

E+(z) =

K1(z)∑
λ=1

[LIλ(z)]2

E−(z) =

K2(z)∑
λ=1

[LJλ(z)]2 (6.30)

Take scaling the value of Lk(z) into consideration based on E+(z) and E−(z). By definition

S+(z) = min

(
1,

√
E−(z)

E+(z)

)

S−(z) = min

(
1,

√
E+(z)

E−(z)

)
(6.31)

Then we have

L′′Iλ(z) = LIλ(z)S+(z)

L′′Jλ(z) = LIλ(z)S−(z) (6.32)

So after scaling, the energy of L′′I (z) is equal to the one of L′′J(z). The reason of this step is

because that for each digit, the one with more one (white) in its original digit will have a larger

92

ratio of E+(z) to E−(z). Rewrite Equation (6.36) with the definition in Equation (6.30)

Decision = arg min
0≤z≤9

Il∑
l=1

K1(z)∑
λ=1

[
LIλ(z)− v(l)

Iλ

]2

+

K2(z)∑
λ=1

[
LJλ(z)− v(l)

Jλ

]2

= arg min

0≤z≤9

Il∑
l=1

K1(z)∑
λ=1

[
(LIλ(z))2 − 2LIλ(z)v

(l)
Iλ

+ (v
(l)
Iλ

)2
]

+

K2(z)∑
λ=1

[
(LJλ(z))2 − 2LJλ(z)v

(l)
Jλ

+ (v
(l)
Jλ

)2
]

= arg min
0≤z≤9

Il∑
l=1

E+(z) + E−(z)− 2

K1(z)∑
λ=1

LIλ(z)v
(l)
Iλ
− 2

K2(z)∑
λ=1

LJλ(z)v
(l)
Jλ

 (6.33)

Substitute LIλ(z) and LJλ(z) in Equation (6.33) with L′′Iλ(z) and L′′Jλ(z).

Decision

= arg min
0≤z≤9

Il∑
l=1

K1(z)∑
λ=1

[
L′′Iλ(z)− v(l)

Iλ

]2

+

K2(z)∑
λ=1

[
L′′Jλ(z)− v(l)

Jλ

]2

= arg min

0≤z≤9

Il∑
l=1

K1(z)∑
λ=1

[
LIλ(z)S+(z)− v(l)

Iλ

]2

.+

K2(z)∑
λ=1

[
LJλ(z)S−(z)− v(l)

Jλ

]2

= arg min

0≤z≤9

Il∑
l=1

K1(z)∑
λ=1

[(
LIλ(z)S+(z)

)2 − 2LIλ(z)S+(z)v
(l)
Iλ

+
(
v

(l)
Iλ

)2
]

+

K2(z)∑
λ=1

[(
LJλ(z)S−(z)

)2 − 2LJλ(z)S−(z)v
(l)
Jλ

+
(
v

(l)
Jλ

)2
]

⇒ arg min
0≤z≤9

Il∑
l=1

(S+(z)
)2
E+(z) +

(
S−(z)

)2
E−(z)− 2

K1(z)∑
λ=1

S+(z)v
(l)
Iλ
− 2

K2(z)∑
λ=1

S−(z)v
(l)
Jλ

(6.34)

93

Testing Procedure

A candidate will be selected from digit “0” to digit “9” and iteratively decoded for Il iterations.

The distances between the LLR of v(l) (vector of v(l)
k) and ln p(ck=1|z)

p(ck=0|z) , or v(z), represented as L(z)

in either case, can be computed during each iteration. Therefore, Lk(z) = vk(z) in Detector 1,

whereas Lk(z) = ln p(ck=1|z)
p(ck=0|z) in Detector 2.

Four aforementioned scaling methods in learning step are applied for image inputs, whereas the

scaling in this testing step is applied for the LLR computation.

The output from scaling in the testing step remains to be denoted as L(z). Define ξ(l)(z) as the

distance between v(l) and L(z) of the z-th digital during the l-th iteration:

ξ(l)(z) =
I∗J∑
k=1

(
v

(l)
k − Lk(z)

)2

(6.35)

The test decision is based on the minimum sum of distances over Il (30 in our program) iterations.

Decision = arg min
0≤z≤9

Il∑
l=1

ξ(l)(z) (6.36)

The probability of a correct decision, which matches the input, can be obtained by repeating this

testing procedure 10000 times.

Algorithm 2 summarizes the testing step of our proposed IPU.

94

Algorithm 2 Testing Step
1: for i← 1, 10000 do
2: Randomly select an image z
3: Add VIV to image z
4: Scale image z with a method discussed in Section 6
5: Initialize u(0)

k = 2b
(0)
k /σ2

2 , u(0)
tk = 0, v(0)

kt = u
(0)
k

6: for l← 1, Il do
7: v

(l)
kt = u

(l)
k +

∑dv
q=1
q 6=t

u
(l)
qk , u(l)

tk = 2× arctan
∏dc

q=1
q 6=k

tanh
v
(l−1)
tq

2

8: Calculate the distance between v(l) and L(z) based on Equation (6.35)
9: end for

10: Decide the input image based on Equation (6.36)
11: end for
12: Output error rate

Simulation Results and Discussion

The tests are conducted using a computer with an Intel Core2 Duo 2.00 GHz processor, 4 GB of

RAM, and 64-bit Windows 7 operating system. Two steps are required to develop an IPU, and

performed only once: (a) generating an H matrix and (b) training to obtain reference templates.

It takes approximately 15 milliseconds for step (a) and 110 seconds for step (b). The training

process requires 320 frames for each digit and 10 digits in total. The time anticipated to perform

one recognition test is approximately 1.1 seconds, generating 30 frames of each candidate. It is

worth mentioning that all information about VIV is practically intrinsic rather than generated as in

this work.

Several randomly constructed (3, 6) LDPC codes with lengths of 784 variable nodes are compared,

exhibiting very similar error performance results. Therefore, our IPU is code independent for these

tasks. One LDPC code was selected to perform the following tasks.

95

Performance on 2 digits

First, several pairs of digits are selected, of which one has a similar shape with the other, such as

0 and 6, 0 and 8, 0 and 9, 1 and 4, 1 and 7, 3 and 8, 6 and 9, 7 and 9, 8 and 9. 10000 trials are

conducted for each pair with σ1 = 1, σ2 = 1, and β1 = β2 = β3 = 1. The results in Table 6.1

show that the recognition errors of most pairs are approximately zero.

Table 6.1: Performance of Pairwise Detector using Method 3

Pair occurrence error rate
0 5009 4.771%
6 4991 4.167%
0 5009 0.180%
8 4991 0.020%
0 4998 4.732%
9 5002 1.423%
1 4955 0.000%
4 5055 0.000%
1 5000 0.000%
7 5000 0.000%
3 5004 0.000%
8 4996 0.006%
6 4978 0.000%
9 5022 0.000%
7 5002 0.000%
9 4998 0.000%
8 5000 0.020%
9 5000 0.060%

Performance on 10 digits

Fig. 6.3 shows the digit images used in this task. Two types of detectors are defined in Table 6.2.

Detector 1 takes soft decisions from the training phase, while Detector 2 uses hard decisions. Both

96

detectors, with 28 × 28 nodes, are called full-scale Detector 1 and 2, whereas the other detectors

are named reduced-scale Detector 1 and 2. The latter are for comparison purposes because it may

lessen the number of pixels accessed by the detectors to reduce the complexity and to indicate the

importance of certain nodes.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.3: 10 Standard Digits

Table 6.2: Detector Types

Detector Detector Input σ2 Number of Nodes
1 vk(z) 1.5σ1 5, 10, 20, 40, 28× 28
2 p(ck = 0|z) 1.5σ1 5, 10, 20, 40, 28× 28

Simulation Results

In this section, the performance of detectors introduced in Fig. 6.2 is indicated by 0.00% resulting

error rates in Fig. 6.4 for full-scale Detector 1 and 0.52% for full-scale Detector 2. The number of

nodes is reduced from 784 to specific numbers of nodes, i.e., 40, 20, 10, and 5, in the reduced-scale

Detectors 1 and 2, resulting a degradation of the performance.

97

5 10 20 40 784
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

//

Number of nodes

E
rr

or
 r

at
e

//

Detector 1
Detector 2

Figure 6.4: Error Rates of 2 Types of Detectors

From Fig. 6.4, the error rate is below 1% if 40 nodes are retained. Only full-scale detectors will

be considered because of their possibly better performance compared to reduced scale detectors.

In Table 6.4, the energy equalization method 4 is excluded (i.e., to preserve constant energy for

different numbers of nodes) because it is not practical in bio-systems, and the coding systems

reduce the total amount of energy in 784 bits into a number of bits as small as 40, 20, 10 or 5 bits,

respectively.

100 batches are processed under different system configurations to obtain the histograms in Fig.

6.5.

98

In each batch, 10,000 randomly selected digits (from 0 to 9) are sent to the IPU and the number

of error decisions is counted and recorded. Errors ranging from 0 to 200 or to 2000 are evenly

divided into 10 intervals, i.e., [0, 20), [20, 40), · · · in Fig. 6.5(a). The median number of each

range is marked at each interval center along the horizontal axis. The number of errors is counted

and adds up under each interval. The same procedure is conducted to depict an error range from 0

to 2000 and a step of 200 in Fig. 6.5(b). It can be observed that the performance of IPU detection

is improved by the LDPC code constraint, per comparison between Fig. 6.5(a) and Fig. 6.5(b). It

is reiterated that the LDPC code is randomly constructed and is not specifically optimized for this

task. Scaling Method 3 is applied to generate the results in Fig. 6.5.

The same experiments are conducted under different parameter settings with the LDPC H matrix

involved in order to verify the importance of VIV, such as (a) β1 = 0, β2 = 1, β3 = 1, σ1 = 1,

and σ2 = 1.5; (b) β1 = 1, β2 = 0, β3 = 1, σ1 = 1, and σ2 = 1.5; and (c) β1 = 1, β2 = 1,

β3 = 0, σ1 = 1, and σ2 = 1.5; (d) β1 = 0, β2 = 1, β3 = 0, σ1 = 1, and σ2 = 1.5; (e) β1 = 0,

β2 = 0, β3 = 1, σ1 = 1, and σ2 = 1.5 as shown from Fig.6.6-6.10. Comparing to Fig. 6.5, it

can be concluded that the uncertainty in these movements can be beneficial for the IPU detection

capability, due to a sub-optimal property of the detector. It is noticed that the system is not ideal

comparing to telecommunication systems, where it is assumed that (a) the receiver knows the exact

SNR, (b) the system controls the signal transmission power to maintain the required minimum

SNR, and (c) the receiver maximizes the SNR with the matched filter [90]. The IPU is unable

to control the received signal power or noise power in bio-visual systems. Therefore, it will be

unable to build an optimal receiver for minimizing the error rates. This can be verified by applying

Method 4 to normalize the energy for all frames. The errors are remarkably reduced comparing to

Fig .6.5 when Method 4 is used. This indicates that the IPU is substantially closer to the optimal

detector under Method 4 than Method 3. The distributions are further investigated by removing

one or two VIV factors. It can be observed that additional VIV factors result in greater error

99

distributions, which is consistent with our conventional wisdom. If the IPU is accepted as a sub-

optimal detector, then it would not be surprising that the VIV may be beneficial. Contradictory

results are often observed in bio-systems, implying that bio-coding systems can be sub-optimal.

Therefore, this output in Fig. 6.5 exhibits high similarity to phenomena observed in bio-neural

systems, in which neurons are typically firing stochastically. Fig.6.11 and 6.12 is of comparison

while scaling Method 4 is used, where the error rate is smaller comparing to Fig. 6.5 for both with

and without LDPC H matrix involved.

Performance on Alphabetic Letters and Roman Numerals

Recognition tasks on both alphabetic letter (“a” to “z” as shown in Fig. 6.13) and Roman numerals

(“I” to “X” as shown in Fig. 6.14) are also performed. The full-scale Detector 2 was applied with

following environment settings: β1 = 1, β2 = 1, β3 = 1, σ1 = 1 and σ2 = 1.5. The error rate for

alphabetic letter recognition is 0.74%, and 0.00% for Roman numeral recognition.

Performance on Hyper-Acuity

The IPU unit is evaluated under a simplified configuration, assuming that the photo-receptor in the

IPU is identical to the image pixel in terms of both size and shape. The ability of IPU is evaluated,

about differentiating a misalignment up to 1/30th of a pixel size.

The IPU unit monitors the difference between two candidates at a time to perform hyper-acuity de-

tection, while the input experiences independent point-spreads, fixational movements, orientations

and noises.

If the differences are inputted into the IPU simultaneously, then both of them will experience

100

identical visual uncertainty, i.e., s(l)
k (z12) = s

(l)
k (z1) − s

(l)
k (z2) and s

(l)
k (z21) = −s(l)

k (z12) =

s
(l)
k (z2)− s(l)

k (z1).

When s(l)
k (z12) is the input into the IPU, b(l)

k (z12) can be obtained and then u(l)
k (z12). vk(z12) and

p(ck|z12) is yielded from (6.24) and (6.25) after iterative decoding, as defined in

vk(z12) =

∑Ia
l=21 v

(l)
k

Ia − 20
(6.37)

p(ck = 0|z12) =

∑Ia
l=21 Z

(
c

(l)
k = 0

)
Ia − 20

p(ck = 1|z12) =

∑Ia
l=21 Z

(
c

(l)
k = 1

)
Ia − 20

. (6.38)

Similarly, vk(z21) and p(ck|z21) can be obtained when s(l)
k (z21) is the input.

Now, “z12” or “z21” is inputted into the IPU during the testing stage. However, the IPU has no

knowledge as to whether z is z12 or z21. The following testing procedure is identical as in Section

6; Fig.6.15 presents three different cases.

The performance of hyper-acuity detector is tested under various settings. Each result data point in

Table 6.3 is obtained from an average of 1000 trials. Thresholds of 3% and 1% of a photo-receptor

are chosen as the right bar offset from the left one, as illustrated in Fig.6.15.

A 79.1% correct detection rate can be achieved by our detector with a 3% threshold. However, it is

only approximately 50% with a 1% threshold. It has been reported by [57] that humans are capable

of detecting a 1/30th threshold; however, no report is found claiming that humans can do better

than 3%. The 3% threshold case can be improved under a reduced level of σ1 of 0.5; however, the

101

1% case remains unable to be detected. The latter can be considered as one of the benchmarks to

determine whether human vision systems are compliant with our IPU principle. It is found that

the IPU can not differentiate the 1% threshold because the energy in input S(l)
k (z21) for this case

is significantly smaller than that for the 3% threshold. The capability of the IPU to detect the 1%

threshold can be acquired after normalizing the energy of S(l)
k (z21) under the 1% threshold identical

to that under the 3% threshold, as mentioned in Method 4. However, noises are inseparable from

signals in practice, as mentioned earlier, which implies that Method 4 is to be used for comparison

study only, and it is inapplicable to bio-systems to boost signal energy without affecting the noise

power. In Table 6.3, scaling Method 3 is compared to Method 4 in the hyper-acuity detector. The

fixed energy in Method 4 is chosen to be approaching to the value of E(l)
p and E(l)

n under the 3 %

threshold (0.09) when β1 = 1, β2 = 1, β3 = 1.

Performance on Low-Resolution Human Face Recognition

The last recognition task that IPU performs on is low-resolution face recognition under VIV condi-

tions. The experimental procedures in this task is identical as the one presented in [122] with AT&T

ORL database [123]. The SSSL approach proposed by Cai et al. [122] could obtain 97.4±1.2%

recognition accuracy for 5 training and 5 testing task. Cai et al. [122] have also reported the

performance of other methods such as Eigenface (87.5±2.5%), TensorPCA (88.1±2.5%), Fish-

erface (94.3±1.4%), 2DLDA (95.8±1.2%), Laplacianface (93.0±1.9%), and NPE (93.4±1.8%).

All these methods do not incorporate VIV.

Using our IPU (Detector 2 with 32-by-32 pixels) with the VIV (β1 = 0.5, β2 = 0.5, β3 = 0.5, σ1 =

0.8, σ2 = 1), recognition accuracy of 93.67±1.53% can be achieved.

102

Table 6.3: Performance of Hyper-Acuity Detector under Various Settings using Scaling Method 3
and 4 (σ2 = 1)

Offset β1, β2, β3 error rate when σ1

1 0.5

Method 3

0.03 1, 1, 1 35.1% 4.5%
0.03 1, 1, 0 32.5% 6.1%
0.03 1, 0, 1 31.4% 3.3%
0.03 0, 1, 1 29.6% 4.9%
0.03 1, 0, 0 26.9% 1.5%
0.03 0, 1, 0 34.2% 3.6%
0.03 0, 0, 1 31.0% 2.6%
0.01 1, 1, 1 49.8% 50.3%
0.01 1, 1, 0 51.4% 49.7%
0.01 1, 0, 1 48.9% 50.5%
0.01 0, 1, 1 49.9% 50.1%
0.01 1, 0, 0 49.6% 48.5%
0.01 0, 1, 0 49.9% 51.2%
0.01 0, 0, 1 49.6% 47.9%

Method 4

0.03 1, 1, 1 37.1% 4.2%
0.03 1, 1, 0 34.1% 3.2%
0.03 1, 0, 1 28.0% 3.9%
0.03 0, 1, 1 29.9% 5.0%
0.03 1, 0, 0 32.4% 0.8%
0.03 0, 1, 0 27.7% 5.0%
0.03 0, 0, 1 26.5% 1.9%
0.01 1, 1, 1 34.3% 9.5%
0.01 1, 1, 0 32.4% 10.7%
0.01 1, 0, 1 33.6% 12.0%
0.01 0, 1, 1 36.0% 10.6%
0.01 1, 0, 0 26.5% 2.5%
0.01 0, 1, 0 35.1% 11.8%
0.01 0, 0, 1 32.9% 5.4%

103

10 30 50 70 90 110 130 150 170 190
0

5

10

15

20

25

30

35

40

Errors

F
re

qu
en

cy
(%

)

(a)

100 300 500 700 900 1100 1300 1500 1700 1900
0

5

10

15

20

25

30

35

40

Errors

F
re

qu
en

cy
(%

)

(b)

Figure 6.5: Histogram of Errors when β1 = 1, β2 = 1, β3 = 1, σ1 = 1, and σ2 = 1.5 (a) with the
LDPC H Matrix Involved and (b) without the LDPC H Matrix Involved

104

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Errors

F
re

q
u

e
n

c
y
(%

)

Figure 6.6: Histogram of Errors when β1 = 0, β2 = 1, β3 = 0, σ1 = 1, and σ2 = 1.5 with the
LDPC H Matrix Involved.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Errors

F
re

q
u

e
n

c
y
(%

)

Figure 6.7: Histogram of Errors when β1 = 0, β2 = 0, β3 = 1, σ1 = 1, and σ2 = 1.5 with the
LDPC H Matrix Involved.

105

10 30 50 70 90 110 130 150 170 190
0

5

10

15

20

25

30

35

40

Errors

F
re

qu
en

cy
(%

)

Figure 6.8: Histogram of Errors when β1 = 0, β2 = 1, β3 = 1, σ1 = 1, and σ2 = 1.5 with the
LDPC H Matrix Involved.

10 30 50 70 90 110 130 150 170 190 210
0

5

10

15

20

25

30

35

40

Errors

F
re

qu
en

cy
(%

)

Figure 6.9: Histogram of Errors when β1 = 1, β2 = 0, β3 = 1, σ1 = 1, and σ2 = 1.5 with the
LDPC H Matrix Involved.

106

100 300 500 700 900 110013001500170019002100
0

5

10

15

20

25

30

35

40

Errors

F
re

qu
en

cy
(%

)

Figure 6.10: Histogram of Errors when β1 = 1, β2 = 1, β3 = 0, σ1 = 1, and σ2 = 1.5 with the
LDPC H Matrix Involved.

5 15 25 35 45 55 65 75 85 95
0

10

20

30

40

50

60

70

80

90

100

Errors

F
re

qu
en

cy
(%

)

Figure 6.11: Histogram of Errors when β1 = 1, β2 = 1, β3 = 1, σ1 = 1, and σ2 = 1.5 using
Scaling Method 4 with LDPC H Matrix Involved.

107

25 75 125 175 225 275 325 375 425 475
0

10

20

30

40

50

60

70

80

90

100

Errors

F
re

qu
en

cy
(%

)

Figure 6.12: Histogram of Errors when β1 = 1, β2 = 1, β3 = 1, σ1 = 1, and σ2 = 1.5 using
Scaling Method 4 without LDPC H Matrix Involved.

108

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

(z)

Figure 6.13: Alphabetic Letters “a” through “z”

109

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.14: Roman Numerals “I” to “X”

(a) (b) (c)

Figure 6.15: (a) Two Bars Lined up Perfectly, (b) Right Bar Shifted downward with a Hyper-acuity
Threshold of 1 Photo-receptor, (c) Right Bar Shifted downward with a Hyper-acuity Threshold of
1/10 of a Photo-receptor

110

CHAPTER 7: CONCLUSION

Summary

This research addressed the implemented coding for GPRAM system. The challenges in design-

ing codes and iterative decoding for non-equiprobable symbols were discussed. Two possible

approaches were proposed to tackle the limitation of XOR operation relation to non-equiprobable

symbols: quasi-XOR operation and intermediate transformation layer. The former can be used

to construct nodes for non-equiprobable symbols, and it was proved the codes are less capable of

error correction.

Non-linear codes with expanded operations were then developed, aiming to establish the GPRAM

instead of conducting error control coding. Conventional Hamming code was extended for non-

equiprobable symbols and XOR operation was replaced by other logic gates such as AND and

OR. An error rate of 10−2 to 10−3 could be achieved by applying the extended codes despite their

worse distance property, indicating the effects of constellations and small loops. The ones with

bio-implications need further exploring.

The LDPC codes decoding with non-equiprobable symbols was reviewed. The message passing to

check nodes is varied between from information bits and parity check bits, and an approach was

proposed to optimize signaling constellation maximizing channel capacities. A 0.72 dB gain in

performance could be reached if using optimal instead of equal-spaced constellation for symbols

with prior probabilities of p(0) = 0.3. Several cases of short LDPC codes were simulated and 0.4

dB could be approximately gained. An additional 0.2 dB gain could be achieved if optimal source

coding was applied.

A simple IPU for GPRAM was proposed and evaluated, consisted of a LDPC coding structure, an

111

iterative decoder, a switch, and decision unit. The IPU mimics bio-visual systems as a gateway to

information processing in biological brain, on the basis of fundamental principles of neural net-

works addressing information and communication. The IPU devision was guided by the GPRAM

concept and philosophy, which is to compete against other computational machines on factors of

variation, flexibility, and versatility rather than on precision and rate. The IPU was realistically

configured to demonstrate its huge potential, while an immense amount of resources is required

to completely invigorate GPRAM in the future. The IPU was tested by assigning tasks of digit

and hyper-acuity recognition, where significantly debased digit images were inputted in order to

mimic the VIV experienced by human visual system. The IPU exhibits strong capability in re-

liably recognizing such inputs, and achieving comparable hyper-acuity to human visual system.

The recognition capability of IPU can be greatly improved by applying randomly (not specifically

optimized for given tasks) constructed LDPC code, comparing to the IPU without applying any

coding.

Future Works

Further challenges and works are outlined as follows.

1. Beyond XOR: The necessity of extending the basic operation beyond XOR, for example,

including AND and OR gates, or the combination of these gates. It will complicate the

design but help to deeply understand bio-systems.

2. Code construction using intermediate transformation layer: It is current unavailable to

precisely match the targeted prior probabilities with those in intermediate transformation

layer. Only an approximation can be achieved, of which effect on performance of codes

remains unknown.

112

3. Encoder: Well-known issue in constructing encoder from parity check matrix of general

LDPC codes. It can be worse for codes with XOR, AND, and OR gates with non-equiprobable

symbols.

4. Application of advanced error correction codes: Variety of approaches to apply these

codes in GPRAM design [68]. A simple IPU is developed and studied for GPRAM. The

IPU is equipped with regular LDPC codes, which can be altered to advanced codes.

5. Comparison and optimization: Comparison to best know codes like non-uniform Turbo

codes, by applying optimized codes using density evolution method. A good way of design-

ing LDPC codes can be found in [124] [125].

6. Extension of the logic operations into vague operations: Insufficiency of simple logic

operations in GPRAM systems. A complex tasks can be decomposed into a combination of

simpler tasks being resolved by applying an amount of simple logic gates, upon which con-

ventional systems are established. On the contrary, the GPRAM system pursues to achieve

better and simpler groups of approximations towards the complex tasks. As an approxima-

tion, it can be gradually transformed from one variation to another, resulting two different

logical functions. Therefore, an over-completed function basis is required in GPRAM sys-

tems, each of which has different degrees of variations. The accomplishment of generating

this type of functions would be assisted by investigating those two different logical functions.

7. Improvement on the IPU/GPRAM system: Compatibility between IPU and LDPC codes

and iterative decoders. They are commonly more appropriated for 10−5 bit error rates cases

than IPU, which typically requires an accuracy of 70% - 99%. The IPU can be considered as a

sub-optimal case for the tasks per se, because computations specified in it do not completely

befit the concept of GPRAM in this stage. Currently, this work is being extended to recognize

hand-written digits. This effort and results help use to understand how brains work and how

113

humans recognition abilities function, which is described in [126].

114

LIST OF REFERENCES

[1] J. Hawkins and S. Blakeslee. On Intelligence. Times Books, 2004.

[2] H. B. Barlow. Intelligence, guesswork, language. Nature, 304:207-209, 1983.

[3] M. D. Fox and M. E. Raichle. Spontaneous fluctuations in brain activity observed with func-

tional magnetic resonance imaging. Nature Reviews Neuroscience, 9:700-711, 2007.

[4] G. Roth and U. Dicke. Evolution of the brain and intelligence. Trends in Cognitive Sciences,

9(5):250-257, 2005.

[5] Y. Li, Y. Liu, J. L, W. Qin, K. Li, C. Yu and T. Jiang. Brain anatomical network and intelli-

gence. PLoS Computational Biology 5(5):e1000395, 2009.

[6] W. H. Calvin. How brains think: evolving intelligence, then and now. Basic Books, 1996.

[7] N. J. Nilsson. Principles of artificial intelligence. Springer, 2004.

[8] G. F. Luger. Artificial intelligence: structures and strategies for complex problem solving.

Pearson, 6th edition, 2008.

[9] A. Mackworth and D. Poole. Artificial intelligence: foundations of computational agents.

Cambridge University Press, 2010.

[10] K. G. Zuse, Z3 computer on May 12th, 1941.

[11] W. K. Estes. Is human memory obsolete? Comparisons of computer memory with the pic-

ture of human memory emerging from psychological research suggest basic differences in

modes of operation, with little likelihood that one can replace the other. American Scientist,

68(1):62-69, 1980

115

[12] World’s most powerful computer as of 2016 can perform around 93,000 trillion calculations

per second at it peak.

[13] H. Gardner. Frames of mind: The theory of multiple intelligences. Basic Books, 1983.

[14] A. L. Blackler, V. Popovic and D. P. Mahar. Empirical investigations into intuitive interaction:

a summary. Mensch-Maschine-Interaktion Interaktiv, 13:4-24, 2007.

[15] N. Khatri and H. A. Ng. The role of intuition in strategic decision making. Human Relations,

53(1):57-86, 2000.

[16] J. R. Platt. Strong inference: certain systematic methods of scientific thinking may produce

much more rapid progress than others. Science, 146(3642):347-353, 1964.

[17] Y. Jia, R. Argueta-Morales, M. Liu, Y. Bai, E. Divo, A. J. Kassab and W. M. Decampli.

Experimental study of anisotropic stress/strain relationships of the piglet great vessels and

relevance to pediatric congenital heart disease. The Annals of Thoracic Surgery, 99(4):1399-

1407, 2015.

[18] B. D. Smedt, M. P. Noël, C. Gilmore and D. Ansari. Trends in Neuroscience and Education,

2:48?55, 2013.

[19] A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. In

Proceedings of the London Mathematical Society, 2(42):230-265, 1937.

[20] A. M. Turing. On computable numbers, with an application to the entscheidungsproblem: a

correction. In Proceedings of the London Mathematical Society, 2(43):544-546, 1937.

[21] von J. Neumann. The computer and the brain. Yale University Press, 2nd edition, 2000.

[22] L. Wei. General purpose representation and association machine-part 1: introduction and

illustrations. In Proceedings of the 2012 IEEE Southeastcon, pages 1-5, 2012.

116

[23] L. Wei. General purpose representation and association machine-part 2: biological implica-

tions. In Proceedings of the 2012 IEEE Southeastcon, pages 1-5, 2012.

[24] R. G. Gallager. Information theory and reliable communication. Wiley, 1968.

[25] R. M. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Infor-

mation Theory,27:533-547, 1981.

[26] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-correcting coding

and decoding: turbo codes. In IEEE International Conference on Communications (ICC),

pages 1064-1070, 1993.

[27] R. J. McEliece, D. J. C. MacKay and Jung-Fu Cheng. Turbo decoding as an instance of

Pearl’s “belief propagation” algorithm. IEEE Journal on Selected Areas in Communications,

16(2):140-152, 1998.

[28] J. Pearl. Probabilistic reasoning in intelligent systems. Morgan Kaufmann, 1988.

[29] F. R. Kschischang, B. J. Frey and H. A. Loeliger. Factor graphs and the sum-product algo-

rithm. IEEE Transactions on Information Theory, 47:498-519, 2001.

[30] G. D. Forney, Jr.. Codes on graphs: normal realization. IEEE Transactions on Information

Theory, 47:520-548, 2001.

[31] F. Eberhardt and D. Danks. Confirmation in the cognitive sciences: the problematic case of

Bayesian models. Minds and Machines, 21:389-410, 2011.

[32] L. Wei and H. Qi. Near optimal limited search decoding on ISI/CDMA channels and decoding

of long convolutional codes. IEEE Transactions on Information Theory, 46(4):1459-1482,

2000.

117

[33] L. Wei. Several properties of short LDPC codes. IEEE Transactions on Communications,

51(5):721-727.

[34] C. A. Cole, S. G. Wilson, E. K. Hall and T. R. Giallorenzi. Analysis and design of moderate

length regular LDPC codes with low error floors. In 40th Annual Conference on Information

Sciences and Systems, 2006.

[35] L. Wei. High-performance iterative viterbi algorithm for conventional serial concatenated

codes. IEEE Transactions on Information Theory, 48(7):1759-1771, 2002.

[36] A. Church. An unsolvable problem of elementary number theory.American Journal of Math-

ematics, 58:345-363, 1936.

[37] F. E. Hohn. Applied boolean algebra: an elementary introduction. The Macmillan Company,

1966.

[38] R. C. Jaeger and T. N. Blalock. Microelectronic circuit design, McGraw-Hill, 4th edition,

2011.

[39] IEEE Graphic Symbols for Logic Functions. IEEE Std 91/91a-1991, 1994.

[40] A. V. M. Herz, T. Goollisch, C. K. Machen and D. Jaeger. Modeling single-neuron dynamics

and computations: a balance of detail and abstraction. Science, 314: 80?85, 2006.

[41] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.

Bulletin of Mathematical Biology, 5:115-133, 1943.

[42] B. Krose and P. van der Smagt. An introduction to neural networks. University of Amsterdam

Press, 1993.

[43] Y. Bengio. Learning deep architectures for AI.Foundations and Trends in Machine

Learning,2(1):1-127, 2009.

118

[44] T. Hastie, R. Tibshirani and J. Friedman. The elements of statistical learning, Springer, 2009.

[45] J. R. Searle. Is the brain’s mind a computer program? Scientific American, pages 26-31, 1990.

[46] A. Goldental, S. Guberman, R. Vardi and I. Kanter. A computational paradigm for dynamic

logic-gates in neuronal activity. Frontiers in Computational Neuroscience, 29:8-52, 2014.

[47] R. G. Gallager. Low-density parity-check codes. MIT Press, 1963.

[48] D. J. C. Mackay. Good error-correcting codes based on very sparse matrices. IEEE Transac-

tions on Information Theory, 45(2):399-431, 1999.

[49] M. Luby, M. Mitzenmacher and A. Shokrollahi. Analysis of random processes via and-or tree

evaluation. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 364-373, 1998.

[50] M. Luby, M. Mitzenmacher, A. Shokrollahi and D. Spielman. Analysis of low density codes

and improved designs using irregular graphs. IEEE Transaction on Information Theory,

47:585-598, 2001.

[51] R. M. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Infor-

mation Theory, 27:533-547, 1981.

[52] L. Yang. Advanced coding and modulation for ultra-wideband and impulsive noises. Elec-

tronic Theses and Dissertations, Paper 3420, 2007.

[53] E. A. Wülfing. Über den kleinsten Gesichtswinkel. Zeitschrift für Biologie, 29:199-202, 1892.

[54] G. Westheimer and S. P. McKee. Spatial configurations for visual hyperacuity. Vision Re-

search, 17(8): 941-947, 1977.

[55] G. Westheimer and S. P. McKee. Visual acuity in the presence of retinal-image motion. Jour-

nal of the Optical Society of America, 65:847-850, 1975.

119

[56] D. Marr, T. Poggio and E. Hildreth. Smallest channel in early human vision. Journal of the

Optical Society of America 70:868-870, 1980.

[57] S. A. Klein and D. M. Levi. Hyper-acuity thresholds of 1 sec: Theoretical predictions and

empirical validation. Journal of the Optical Society of America A: Optics and Image Science,

7(2): 1170-1190, 1985.

[58] H. Wang and D. M. Levi. Spatial integration in position acuity. Vision Research, 34(21):2859-

2877, 1994.

[59] D. R. Williams and N. J. Coletta. Cone spacing and the visual resolution limit. Journal of the

Optical Society of America A: Optics and Image Science,4(8):1514-1523, 1987.

[60] W. S. Geisler and K. D. Davila. Ideal discriminators in spatial vision: two-point stimuli.

Journal of the Optical Society of America, 2(9):1483-1497, 1985.

[61] G. Westheimer. Visual acuity and hyperacuity. Investigative Ophthalmology and Visual Sci-

ence, 14(8):570-572, 1975.

[62] L. Wei. Robustness of LDPC codes and internal noisy systems. In Proceedings of the 41st

Annual Allerton Conference on Communication, Control, and Computing, pages 1665-1674,

2003.

[63] L. Wei. Biologically inspired statistical matched filter. In IEEE International Conference on

Communications(ICC’05), 2:810-814, 2005.

[64] L. Wei. Biologically inspired amorphous communications. In IEEE International Symposium

on Information Theory (ISIT’05), page 1005, 2005.

[65] L. Wei, D. M. Levi, R. Li and S. Klein. Feasibility study on a hyper-acuity device with

motion uncertainty: two-point stimuli. IEEE Transactions on Systems, Man, and Cybernet-

ics:Cybernetics, 37(2):385-397, 2007.

120

[66] B. Dai and L. Wei. Low-density parity check codes with non-equiprobable symbols. IEEE

Communication Letter, 17(11):2124-2127, 2013.

[67] B. Dai and L. Wei. Some results and challenges on codes and iterative decoding with non-

equal symbol probabilities. in IEEE International Symposium on Information Theory and its

Applications(ISITA), pages 116-120, 2012.

[68] H. Li, B. Dai, S. Schultz, and L. Wei. General purpose representation and association ma-

chine, part 3: prototype study using LDPC codes. In Proceedings of the 2013 IEEE South-

eastcon, pages 1-5, 2013.

[69] E. Yaakobi and J. Bruck. On the uncertainty of information retrieval in associative memories.

In Proceedings of IEEE International Symposium on Information Theory, pages 106-111,

2012.

[70] D. C. Knill and A. Pouget. The Bayesian brain: the role of uncertainty in neural coding and

computation. Trends in Neurosciences, 27(12):712-719, 2004.

[71] L. Shu and D. Costello. Error Control Coding. Prentice Hall, 2nd edition, 2004.

[72] A. Kae, G. B. Huang, C. Doersch, and E. Learned-Miller. Improving state-of-the-art OCR

through high-precision document-specific modeling. In Computer Vision and Pattern Recog-

nition(CVPR’10), pages 1935-1942, 2010.

[73] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski. Image deblurring using inertial measure-

ment sensors. In ACM Transactions on Graphicss (Proc. SIGGRAPH), 29(3), 2010.

[74] C. Jacobs, P.Y. Simard, P. Viola, and J. Rinker. Text recognition of low-resolution document

images. In International Conference on Document Analysis and Recognition(ICDAR’05),

pages 695-699, 2005.

121

[75] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D. J. Wu and A. Y. Ng.

Text detection and character recognition in scene images with unsupervised feature learning.

In International Conference on Document Analysis and Recognition(ICDAR’11), 2011.

[76] B. M. Lake, R. Salakhutdinov and J. B. Tenenbaum. Human-level concept learning through

probabilistic program induction. Science, 350(6266):1332-1338, 2015.

[77] B. A. Olshausen. 20 years of learning about vision: Questions answered, questions unan-

swered, and questions not yet asked. Twenty Years of Computational Neuroscience. Springer,

pages 243-270.

[78] E. Simoncelli. Vision’s grand theorist. Science, 314(5796):78-79, 2006.

[79] G. Felsen, and Y. Dan. A natural approach to studying vision. Nature Neuroscience, 8:1643-

1646, 2015.

[80] S. Nishimoto, A. Vu, T. Naselaris, Y. Benjamini, B. Yu, and J. Gallant. Reconstructing visual

experiences from brain activity evoked by natural movies. Current Biology, 21(19):1641-

1646, 2011.

[81] L. D. Harmon and B. Julesz. Masking in visual recognition: effects of two-dimensional fil-

tered noise. Science, 180(4091): 1194-1197, 1973.

[82] I. Chaaban and M. R. Scheessele. Human performance on the USPS database. Technical

Report, Indiana University, 2007.

[83] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image

classification. In IEEE Conference on Computer Vision and Pattern Recognition(CVPR),

2012.

122

[84] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, I. Guyon, U.

Müller, E. Säckinger, P. Simard and V. Vapnik. Comparison of learning algorithms for hand-

written digit recognition. In International Conference on Artificial Neural Networks(ICANN),

pages 53-60, 1995.

[85] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner. Gradient-based learning applied to document

recognition. In Proceedings of the IEEE, 86(11):2278-2324, 1998.

[86] A. D. Liveris, Z. Xiong and C.N. Georghiades. Joint source-channel coding of binary sources

with side information at the decoder using IRA codes. In 2002 IEEE Workshop on Multimedia

Signal Processing, pages 9-11, 2002.

[87] C. E. Shannon. A Mathematical theory of communication. The Bell System Technical Journal,

27:370-423, 1948.

[88] J. M. Wozencraft and I. M. Jacobs. Principles of Communication Engineering. John Wiley

and Sons, 1965.

[89] M. K. Simon, M. K. Hinedi and W. C. Lindsey. Digital Communication. Prentice-Hall, 1995.

[90] J. B. Proakis and M. Salehi. Digital Communications. McGraw-Hill, 5th edition, 2008.

[91] T. J. Richardson and R. L. Urbanke. The capacity of Low-Density Parity-Check codes under

message-passing decoding. IEEE Transactions on Information Theory, 47(2):599-618, 2001.

[92] W. Xu, J. Hagenauer and J. Hollmann. Joint source-channel decoding using the resid-

ual redundancy in compressed images. In IEEE International Conference on Communica-

tions(ICC’1996), 1996.

[93] I. Korn, J. P. Fonseka and S. Xing. Optimal binary communication with nonequal probabili-

ties. IEEE Transactions on Communication, 51(9):1435-1438, 2003.

123

[94] H. Kuai, F. Alajaji and G. Takahara. Tight error bounds for nonuniform signaling over AWGN

channels. IEEE Transactions on Information Theory, 46:2712-2718,2000.

[95] B. A. Olshausen and D. J. Field. Emergence of simple cell receptive field properties by learn-

ing a sparse code for nature images. Nature, 381:607-609, 1997.

[96] Y. Burak, U. Rokni, M. Meister and H. Sompolinsky. Bayesian model of dynamic image

stabilization in the visual system. Proceedings of the National Academy of Sciences(PNAS),

107:19525-19530, 2010.

[97] C. Mead. Analog VLSI and Neural Systems. Addison-Wesley, 1989.

[98] L. Wei. Channel capacity and constellation optimization of M-

PAM input AWGN with non-equal symbol probabilities. Available at:

http://people.cecs.ucf.edu/lei/letter ieee capacityMPSK v2.pdf

[99] J. Hagenauer and P. Hoeher. A viterbi algorithm with soft-decision outputs and its applica-

tions. In IEEE Global Telecommunications Conference(GLOBECOM’89), pages 1680-1686,

1989.

[100] F. Alajaji, N. Phamdo and T. Fuja. Channel codes that exploit the residual redundancy in

CELP-encoded speech. IEEE Transactions on Speech Audio Processing, 4:325-336, 1996.

[101] L. Wei. Optimized M-ary orthogonal and bi-orthogonal signaling using coherent receiver

with non-equal symbol probabilities. IEEE Communication Letters,16(9):794-796, 2010.

[102] S. Yousefi and B. Holmes. Tight lower bounds on the symbol error rate of uncoded nonuni-

form signaling over AWGN channel. In International Conference on Wireless Networks,

Communications and Mobile Computing, pages 606-611, 2005.

[103] I. Ochoa, P. M. Crespo and M.Hernaez. LDPC codes for non-uniform memoryless sources

and unequal energy allocation. IEEE Communication Letters, 14(9):794-796, 2010.

124

[104] F. Cabarcas, R. D. Souza, and J. Garcia-Frias. Turbo coding of strongly nonuniform mem-

oryless sources With unequal energy allocation and PAM signaling. IEEE Transactions on

Signal Processing, 54(5):1942-1946, 2006.

[105] G. I. Shamir and J. J. Boutros. Non-Systematic Low-Density Parity-Check Codes for

Nonuniform Sources. In Proceedings of IEEE International Symposium on Information The-

ory, 2005.

[106] L. Wei and I. Korn. Optimal M-ASK/QASK with non-equal symbol probabilities. IET Com-

munications, 5(6):745-752, 2011.

[107] D. C. Ciresan, U. Meier, L. M. Gambardella and J. Schmidhuber. Deep, big, simple neural

nets for handwritten digit recognition. Neural Computation, 22(12):3207-3220, 2010.

[108] D. Ciresan, U. Meier, L. Gambardella and J. Schmidhuber. Convolutional neural network

committees for handwritten character classification. 2011 International Conference on Doc-

ument Analysis and Recognition(ICDAR), pages 1135-1139, 2011.

[109] Z. Wang, S. Chang, Y. Yang, D. Liu and T. S. Huang. Studying very low resolution recog-

nizing using deep networks. In IEEE Conference on Computer Vision and Pattern Recogni-

tion(CVPR), pages 1-9, 2016.

[110] B. Dai, H. Li and L. Wei. Image processing unit for General-purpose representation and

association system for recognizing low-resolution digits with visual information variability.

IEEE Transactions on System, Man, and Cybernetics: System, 2016

[111] H. Saeedi and A. H. Banihashemi. Performance of belief propagation for decoding LDPC

codes in the presence of channel estimation error. IEEE Transactions on Communications,

55(1):83-89, 2007.

125

[112] S.-Y. Chung. On the construction of some capacity-approaching coding schemes. Ph.D. dis-

sertation, Massachusetts Institute of Technology, 2000.

[113] G. D. Forney, Jr.. On iterative decoding and the two-way algorithm. In Proceedings of In-

ternational Symposium on Turbo Codes and Related Topics, 1997.

[114] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block and convolutional

codes. IEEE Transactions on Information Theory, 42:429-445, 1996.

[115] F. W. Campbell and R. W. Gubisch. Optical quality of the human eye. The Journal of

Physiology,186(3):558-578, 1966.

[116] W. S. Geisler. Physical limits of acuity and hyperacuity. Journal of the Optical Society of

America. A, Optics, image science, and vision,1(7):775-782, 1984.

[117] E. Kowler. The stability of gaze and it implications of vision. Eye Movements, R. H. S.

Carpenter, pages 71-92, 1991.

[118] J. Krauskopf, T. N. Cornsweet and L. A. Riggis. Analysis of eye movements during monoc-

ular and binocular fixation. Journal of the Optical Society of America, 50(6):572-578, 1960.

[119] L. A. Riggis and J. C. Armington. Motions of the retinal image during fixation. Journal of

the Optical Society of America, 44(4):315-321, 1954.

[120] M. Eizenman, P. E. Hallett, and R. C. Frecker. Power spectra for ocular drift and tremor.

Vision Research, 25(11):1635-1640, 1985.

[121] S. Martinez-Conde, S. L. Macknik and D. H. Hubel. The role of fixational eye movements

in visual perception. Nature Reviews Neuroscience, 5:229-240, 2004.

126

[122] D. Cai, X. He, Y. Hu, J. Han and T. S. Huang. Learning a spatially smooth subspace for face

recognition. In IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pages

138-142, 2007.

[123] F. Samaria, A. Harter. Parameterisation of a stochastic model for human face identification.

In Proceedings of 2nd IEEE Workshop on Applications of Computer Vision, 1994.

[124] T. J. Richardson, M. A. Shokrollahi and R. L. Urbanke. Design of capacity-approaching

irregular Low-Density Parity-Check codes. IEEE Transactions on Information Theory,

47(2):619-637, 2001.

[125] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson and R. Urbanke. On the design of low-

density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications

Letters, 5(2):58-60, 2001.

[126] P. Sinha, B. Balas, Y. Ostrovsky, and R. Russell. Face recognition by humans: nineteen

results all computer vision researchers should know about. In Proceedings of the IEEE,

94(11):1948-1962, 2006.

127

	Applied Advanced Error Control Coding for General Purpose Representation and Association Machine Systems
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Motivations
	Outline
	Contributions
	Paper List

	CHAPTER 2: BACKGROUND AND RELATED WORK
	Logic Gates
	Linear Block Codes
	Low-Density Parity Check codes

	Human Vision Hyper-Acuity
	Literature Review

	CHAPTER 3: STUDY ON ERROR CORRECTION CODES WITH NON-EQUIPROBABLE SYMBOLS
	Limitation of XOR Operation
	quasi-XOR Operation and Intermediate Transformation Layer
	quasi-XOR Operation
	Intermediate Transformation Layer
	Front-Intermediate Transformation Layer
	End-Intermediate Transformation Layer
	Half-Intermediate Transformation Layer

	Code Construction and Probabilistic Messages for Non-equiprobable Symbols
	Tree Codes with QXOR

	Summary

	CHAPTER 4: NONLINEAR CODES WITH EXPANDED OPERATIONS
	Modification of (7,4) Hamming code using AND and OR Gates
	Decoding of Nonlinear Codes using Iterative Decoder
	Message Passing in AND Logic Gate
	Message From Inputs to Output
	Message From Other Inputs and Output to an Input

	Message Passing in OR Logic Gate
	Message From Inputs to Output
	Message From Other Inputs and Output to an Input

	Message Passing in XOR Logic Gate
	Message From Inputs to Output
	Message From Other Inputs and Output to an Input

	The Numerical Results

	CHAPTER 5: LDPC CODE WITH NON-EQUIPROBABLE SYMBOLS
	Signal and System
	Signaling Optimization
	Message Passing with Non-equiprobable Symbols and Nonlinear Codes
	Numerical Procedure for Simulation
	Optimal Constellation
	Simulation of short LDPC Codes

	Summary

	CHAPTER 6: IMAGE PROCESSING UNIT FOR GENERAL PURPOSE REPRESENTATION AND ASSOCIATION MACHINE
	Structure of IPU for GPRAM
	Visual Information Variability
	Point spread
	Drift-like motion
	Orientation movement

	Power Scaling Methods
	Algorithms
	Training
	Testing
	Scaling for LLR
	Testing Procedure

	Simulation Results and Discussion
	Performance on 2 digits
	Performance on 10 digits
	Simulation Results

	Performance on Alphabetic Letters and Roman Numerals
	Performance on Hyper-Acuity
	Performance on Low-Resolution Human Face Recognition

	CHAPTER 7: CONCLUSION
	Summary
	Future Works

	LIST OF REFERENCES

