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ABSTRACT

This research focuses on the learning of a class of behaviors defined as high-
level behaviors. High-level behaviors are defined here as behaviors that can be
executed using a sequence of identifiable behaviors. Represented by low-level
contexts, these behaviors are known a priori to learning and can be modeled
separately by a knowledge engineer. The learning task, which is achieved by
observing an expert within simulation, then becomes the identification and rep-
resentation of the low-level context sequence executed by the expert. To learn this
sequence, this research proposes FAMTILE - the Fuzzy ARTMAP / Template-
Based Interpretation Learning Engine. This algorithm attempts to achieve this
learning task by constructing rules that govern the low-level context transitions
made by the expert. By combining these rules with models for these low-level
context behaviors, it is hypothesized that an intelligent model for the expert can

be created that can adequately model his behavior.

To evaluate FAMTILE, four testing scenarios were developed that attempt
to achieve three distinct evaluation goals: assessing the learning capabilities of
Fuzzy ARTMAP, evaluating the ability of FAMTILE to correctly predict expert
actions and context choices given an observation, and creating a model of the
expert’s behavior that can perform the high-level task at a comparable level of

proficiency.
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CHAPTER 1

INTRODUCTION

This research explores the problem of developing a learning system that can
learn portions of tactical human behavior merely by observing an expert perform
the behavior within a simulation. The term tactical behavior, often reserved for
behaviors involving military or war-related operations, is defined here to denote

behaviors that:

o A well-defined goal or mission
e Are characterized by planning and/or maneuvering

e Are not well-defined as to their execution sequence, and thus their charac-

teristics may vary greatly across individuals

For this research, we are interested in a subset of tactical behaviors which
characterized by the execution of an undetermined sequence of sub-behaviors.

These sub-behaviors possess the following characteristics:

e Can be identified and modeled by a knowledge engineer without the assis-

tance of the expert under study

e Are atomic in that no two sub-behaviors co-exist at the same point in time



These type of situations are easily found when we consider tactical human
behavior. The task of flying an airplane, for example, can be broken down into,
in the most extreme case, trivial low-level actions - pushing buttons, guiding a
throttle stick in a certain direction, etc. However, flying an airplane is certainly
NOT a trivial task. The real knowledge is contained in the processes involved
in deciding when to push a button, when to pull back on the throttle, etc.,
and in what sequence, depending on the situation at-hand. The knowledge is
so complex, in fact, that there are hierarchies of sub-tasks that play a role in
representing the behavior of flying a plane. Learning to fly is not achieved by
learning button-pushing and throttle-maneuvering techniques per-say, but it is
achieved by learning sub-tasks that involve those techniques - landing, taking-off,

maintaining a heading, etc., and when to initiate these actions.

The argument posed by this example is that if we can identify and replicate
the low-level functionality of the expert, learning his tactical expertise becomes
an exercise in identifying a mapping between environmental and situational cues,
which we will call expert stimuli, and the low-level function or behavior that the

expert chooses in response to that cue.

The overall behaviors to be learned by the proposed system, therefore, are
considered to be as high-level behaviors. The precise definition of a high-level
behavior usually omitted in papers in spite of the fact that their implementation
is a primary focus of the work. Jones and Laird refer to high-level behavior when
describing the TacAir-Soar system ([JK99], [JL96]) but never define the term
explicitly. Likewise, the work reported by Patterson et al ([PK03]) describes a
method for learning high-level behavior by examining low-level sensors, and stops
short of providing a definition of high-level behavior. A common thread found in

all of the literature, however, is the presence of sub-behaviors that compose the



high-level behavior described. In ([JL96]), the behavior of piloting a fixed-wing
aircraft is described in terms of the composition of its lower-level functionality,

such as communication, maneuvering the plane, etc.

For this research, high-level behaviors will be explicitly defined as as behav-
iors that can be represented by a sequence of simpler, identifiable sub-behaviors
known as low-level behaviors. If it is assumed that each low-level behavior can
be modeled and identified a priori by a knowledge engineer, the learning task
becomes identifying the cues that determine the sequence in which those low-level

behaviors are executed by the observed expert.

Proposed here is a learning system that gathers a sequence of observations
from an expert performing one of these high-level behaviors (or high-level tasks).
By examining the observations, the proposed system aims to correctly identify the
low-level behaviors being executed (without feedback from the expert himself)
and map them to stimuli within the observations that prompted their selection.
With the help of a modeling paradigm, this proposed system can then be used to
develop intelligent models of the learned high-level behavior. For this research,
the Context-Based Reasoning (CxBR) paradigm [SGO04] is used. Using CxBR,
low-level behaviors are represented as individual contezts, while the high-level
behavior to be modeled is represented using CxBR missions. CxBR is described

in detail in section 1.2.

The potential utility of such a system is two-fold. On one hand, the time
required to develop acceptable models of tactical behavior for such agents could
be eliminated or significantly reduced. Instead of producing a complete high-
level behavior model by hand, the most difficult portion (the cues that incite
the expert to perform a new or different known low-level behavior during a task)

of the logic could be automatically generated using this system. The knowledge



engineer is therefore only responsible for specifying each low-level behavior - both
how they are executed and how they are identified (i.e. what cues can allow an

observer to recognize that the expert is executing a certain low-level behavior).

A second benefit involves the correctness of the knowledge extracted, and
would denote a significant advance in the state-of-the-art of machine learning.
Experts that perform their task with a high degree of proficiency often cannot
elicit their knowledge to a third party [LL99]. A model constructed using an
expert’s explanation can therefore suffer from incompleteness (or even incorrect-
ness) based on this shortcoming. In allowing a system to learn this behavior
automatically by observing an expert in action, the intermediate step of asking
the expert to recite his knowledge to a knowledge engineer (who would then
be responsible for constructing a model for that expert) would be eliminated.
Furthermore, learning such tactical behavior from observation allows for agents
to study experts who are either unwilling or unable to elicit their knowledge
to a third party. Automated reconnaissance vehicles, for example, can perhaps
covertly observe an enemy terrorist training cell, extracting knowledge of cer-
tain tactical behaviors intended for use during (and perhaps before) an attack on
friendly targets. That knowledge can, in turn, be used to create simulated ter-
rorist agents for training counterterrorist forces. In a completely different sense,
a learning system could perhaps observe the movement and behavior patterns of
certain living organisms. If that behavior can be captured and replicated in sim-
ulation, it would be possible to gain a greater understanding of many mysteries

in such fields as ecology or zoology.

The following sections provide background information on the abstract topics
discussed above: high-level and low-level behaviors, learning from observation,

intelligent agents, and Context-Based Reasoning.



1.1 Learning from Observation

The work reported here is dedicated to producing an algorithm that can model
an observed high-level tactical behavior to the extent that its knowledge can be
extracted, summarized, and reused. It is important, then, to define learning and

how it is applicable within the arena of learning from observation.

As children, learning was a critical element of our day-to-day life. Much of it
this learning is achieved by watching and emulating the activities of others. We
learn to speak even at the early stages of our development by observing mouth
movements of our parents and those around us, and replicate those movements
to produce sounds of our own. We learn the various sounds made by animals,
as well, by making a connection between sounds heard and images seen. When
repeatedly presented a picture of a cow; for instance, along with hearing the

sound 'moo’, over time it is learned that a cow makes a sound of 'moo.’

The field of machine learning identifies several learning techniques. For ex-
ample, Learning by instruction provides the required knowledge directly. On the
other hand, Reinforcement learning allows the learning agent to learn by trial-
and-error - in other words, allowing the agent to experience the successes and
failures that correspond with his actions. Inductive learning uses classified his-
torical examples to develop an induction tree from which rules can be derived.
The examples can be discarded after the tree is built. Ezplanation-based learn-
ing is somewhat similar except that by including an explanation along with the
examples, the number of examples necessary for adequate learning can be sub-
stantially reduced. Connectionist learning also uses classified historical examples
to establish the values of weights in an artificial neural network. The examples

can also be discarded after the weight values are set. Unlike the other techniques,



neural nets generally suffer from opaqueness, as these weights are rather mean-
ingless to someone casually inspecting the code. Case-based reasoning learns by
adding historical examples progressively as it solves new and different problems.
It does not discard the examples used, but rather, incorporates them into its
own problem-solving approach. Additionally, unlike neural networks which must
be trained all at once, case-based reasoning systems learn progressively as new
cases are added to the case library. Evolutionary techniques can arguably also
be said to learn by searching for an optimal way to accomplish some goal(s).
All machine learning methods mentioned above have one thing in common - the
need to somehow manipulate data from the real world, either provided a-priori,
or collected as part of the process. This will permit us to put the term learning

from observation in its proper context.

Within the research area of learning from observation, there also exists a
distinction between supervised and unsupervised learning. Supervised learning
is a technique by which the learning system is controlled, in terms of what it
learns, by an outside party or system. An unsupervised learning system is free to
learn on its own, without the aid or support of a teaching agent or expert, and
is not guided in any fashion as to what to observe, what good and bad responses

are, or what the overall goals or objectives of the observed behavior is.

The concept of learning from observation (LFO) is first mentioned in Michal-
ski, Carbonel and Mitchell’s book [MMS86], where they associate learning from
observation with unsupervised learning. In neural networks, the term ”learning
through observation” is often used to refer to the fact that the training data are
"observations”. It is true that much of the data in machine learning are based
on actual observations. Nevertheless, they typically do not involve learning tac-

tical behaviors. Even if observations are used to learn to recognize handwritten



characters, an observed entity is not employed to teach handwriting skills to an
observer. Fernlund [FGO1] defines learning from observation as ”the adoption
of behavior through the use of data collected by means of observation.” A more
descriptive definition describes learning from observation as ”inferring concepts
by observation” [ZMO00]. Here, observation is defined as the act of collecting
”characteristics of the relevant environment” [ZMO00]. What an observer infers
from these observations, however, is a far different matter, and so there must
be a clear distinction between what is observed and what is inferred about a
given environment. One cannot assume that what is reported by an expert as
‘observed’ constitutes knowledge that hasn’t already been asserted based on his
a priori knowledge about his task or scenario. The goal is for the agent to de-
velop, on its own, inferences about 'what it sees’ based on how the expert reacts
to his observations - not how he reports them. Therefore, observation must be
considered as it pertains to the agent - we want to record what the agent sees
through the expert’s eyes. The observations must not include expressions of what

the expert may annotate or report about his environment.

We define a single observation to be a point-acquisition of time-dependent
inputs that can be used to infer assertions about an agent’s environment. Included
here is the concept of a time-dependent input, which is often an important factor
in determining the relevance of a given observation or observation sequence (a
group of observations each made during a given time interval). Because of this,
we can use the time parameter to differentiate and make relationships between

two otherwise independent observations.

0O =< 11,19, 83, oy Ty > (1].)



In the above equation, we define an observation O, that occurred at time t.
The vector O, contains fields that represent each input that was introduced to
the observer at time t. An observation sequence, therefore, can be considered to

be the set of all observations occurring within an arbitrary period of time.

Oto—tn - {Otm Ot17 ey Otn} (12)

The assumption made here is that observations within a time interval occur
in discrete points in time rather than continuously. This is potentially a danger-
ous assumption - considering that a gap in time-steps separating two adjacent
observations can influence the overall completeness of the observation sequence.
In other words, if observations are taken at two adjacent time-points t; and ¢;, 1,
anything that happens and ends between those two points will not be recorded.
To ensure that this does not happen, each learning scenario will be such that
occurrences within the simulation will be turn-based. Observations, then, will be
made at a rate of one per turn. This eliminates the possibility of events occurring

and disappearing between observation points.

As it pertains to our application, it is desired that a single observation include
information about both the current environment and the current actions of the
agent. This requirement is critical because we are attempting to draw a cause-
effect relationship between the two. For this research, the learning system will
develop tactical knowledge from an observation sequence by creating a certain
mapping between an observation pattern and the observed response. However,
it is necessary for this research to process these observations and, from them,
learn the knowledge that produces these relationships between the environment
and the reaction(s) of the observed expert. If we consider these observations as

a set of training examples, learning then can be considered to be the process by



which these examples are used to generate a knowledge-base about actions within
the given scenario. Khardon [Kha98| infers a similar definition in his discussion
on supervised learning, defining it to be an algorithm that takes examples and
produces a strategy that attempts to mimic that of its teacher. In our case, how-
ever, the learning is to be unsupervised at the input. The expert being observed,
in other words, does not directly interact with the agent, and learning is done
merely by inferring how the expert has reacted to his observations. Nevertheless,

we can define learning from observation in similar fashion:

learning from observation The use of data acquired, through observation, to

assert knowledge from which an expert’s behavior can be intimated

We can use the earlier definition of observation to formalize this definition.
To do this, we consider the learning process for an expert E to be some function

A of a given observation sequence Og.

A{OE} :AE|AE - {A17A277Aw} (13)

In the above equation, the learning algorithm designated by A operates on
an arbitrary observation sequence Og and outputs a set of assertions Ag that, in
some fashion, describe the behavior that has been observed. As the abstraction
of 'learning’ does not imply a restriction in the format of what is learned, these
assertions are likewise free to take on various types: equalities, thresholds, rules,

ete.

In the following section, we introduce the modeling paradigm known as Context-
Based Reasoning. This paradigm allows for the construction of models of intel-
ligent behavior, as described above, that can represent the intelligence of an

autonomous agent.



1.2 Context-Based Reasoning

Context-Based Reasoning, or CxBR, is a technique by which knowledge engineers
can create autonomous agents able to demonstrate some tactical behavior. We
define an agent to be any system operating within a real or simulated environ-
ment. An autonomous agent, then, is a system that operates unsupervised within

that environment [TG04].

For this research, autonomous agents used to replicate observed expert be-
havior will do so using a model. A model is a construct that defines the behavior
of a given entity within a specific scenario. The model is responsible, therefore,
for all of the decisions made by the agent to which it is assigned - it is the "brains’
of the agent. We say that an agent is using a particular reasoning method if it
is using a model constructed using that method. CxBR is a reasoning paradigm
that allows for such models to be created for use in a variety of environments and
scenarios where tactical expertise is necessary. CxBR is based on the idea that

([GA96], [SGO4]):

e A situation calls for a set of actions and procedures that properly address

the current situation

e As a mission evolves, a transition to another set of actions and procedures

may be required to address a new situation

e What is likely to happen under the current situation is limited and influ-

enced by the current situation itself

The motivation for CxBR is the idea that people tend to use only a fraction
of their knowledge at any one given time [GA96]. For instance, let us consider an

auto mechanic on his way to work. While he needs to keep in mind rules of the
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road, e.g., following speed and caution signs, avoiding pedestrians and other such
obstacles, and being mindful of the other drivers in the area, his knowledge of how
to rebuild a car’s transmission is irrelevant to his current behavior of maneuvering
his car on the road. In creating a model for this mechanic’s behavior while driving
to work, the representation of his expertise in fixing cars can be omitted. On the
other hand, such knowledge would be required for a CxBR representation of the
mechanic’s day-to-day activities. While driving, however, our mechanic will not

likely need to use his technical knowledge.

The technique of dividing the knowledge base into contexts is based on this
concept. Given any behavior to model, contexts represent exclusive behavior sub-
states which are relevant to that behavior. From them, the knowledge required
to execute a specific behavior is contained within its associated context [SGO04].
While this paradigm benefits from its intuitiveness, there are other advantages
that make CxBR a viable solution, especially within the realm of tactical behav-
ior. First, decomposing a model’s behavior space - or behavioral capabilities -

into contexts enables the model to carry a very broad understanding of its task.

While this understanding might, at times, be only on a general level, a context
space representative of the entire domain in which the model is to operate, all but
guarantees that it will operate on some level of intelligence at any point during
its mission. There are many times where a certain skill may be helpful in more
than one situation. Furthermore, a certain behavior might be needed in a variety
of tactical tasks. CxBR models, in this sense, are modular. Contexts, which may
have been constructed for one specific task, can be extracted from its model and
inserted into a model for a new task in which that context is relevant. Because
of this feature, CxBR models greatly benefit from an object-oriented software

engineering approach.

11



Using CxBR, tasks assigned to the agent is encapsulated within a CxBR
mission. This mission provides for the agent both a set of goals, which represent
the criterion for completing the task, and a set of constraints specific to that task
[SG04]. Also present within a mission is a list of contezts that serve to partition

the agent’s task-related knowledge by the situations in which they apply.

A context represents a situation, based on environmental conditions and agent
stimuli, which induces a certain agent behavior specific to that context [SGO04].
When an agent is executing a mission using a CxBR model, its behavior is con-
trolled by the current active context. The determination of the current active
context is made by the context-transition logic of the model. At each time step,
context-transition logic examines the current stimuli on the agent and makes
a determination of the active context for the subsequent time step. This logic
is often in the form of sentinel rules that contain the conditions for a specific
context-to-context transition; however the transition logic is not required to be

rule-based.

1.2.1 Missions in CxBR

A mission, or mission context, is an abstraction defined within the model and
assigned to a specific agent prior to run-time. Included within a mission is the
goal, any imposed constraints, and the context topology that will dictate the high-
level behavior of the agent. The goal provides the agent with the criterion for
mission termination - end-game conditions for the agent’s behavior. For example,
consider the assignment of a mission X in which the criterion for completing X

would be to satisfy conditions a, b, and ¢. Obviously, that goal can be represented
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formally using a Boolean function (e.g. goal, = f(a,b, c¢)) and embedded within a
CxBR model to indicate whether or not the agent has satisfied the requirements
of X. The mission goal can be formally defined as a Boolean function ¢ of a set of

environmental and physical conditions £ and P that exist at the time of query.

goal = g(E(to), P(to)) (1.4)

In tactical missions, it is often the case where a ’goal’ cannot be defined or
is not applicable. It is not uncommon to assign an agent with the mission of
performing a certain task or behavior for an indefinite amount of time. In this
case, the goal can be construed as an end-game condition for the simulation or
scenario. If, for example, an agent representing a scout plane is assigned the
mission of performing general reconnaissance on a particular area, the 'goal con-
dition” might be defined as the point where the agent has either been shot down
or is ordered to discontinue the mission and return to base. The constraints on
the mission provide the agent with a set of guidelines for operation. These con-
straints can be in the form of physical limitations placed on the sensing faculties
of the agent, maximum and minimum counts for scenario-specific entities such as
obstacles or enemies, or even map boundaries within which the agent is required
to operate. We can consider the constraints on the mission M to be the union of
the set of physical, environmental, and logistical constraints (denoted 7}, T, and
T;) placed on the agent as required by its mission. In this definition, a constraint
¢ provides the agent with either a constant value or a range of valid values for a

certain variable within the simulation.

constraints = {T,, T, T;} (1.5)
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While the notion of a context will be formally introduced in the following
section, it is important to mention it here, as it is an essential part of the mission.
It was mentioned earlier that to model a behavior with CxBR, that behavior must
have the quality that it can be partitioned into sections representing all possible
situations; the union of each of those partitions must represent that behavior in
full. The reason for this requirement is that the behavior or task, as represented
by any CxBR model, must be defined completely by the contexts that constitute
it. It is because of this that the mission is also responsible for listing the contexts
that are required to correctly execute the model’s behavior in that mission. A
default context is also listed within the mission, which is a behavior that the
model can execute when it is unsure of a behavior to use for a certain situation.
This context is also used as the initial context for the agent when it begins a
scenario unless a more applicable context can be selected. The mission defines
the high-level behavior of the agent by assigning it both a set of contexts and
context-transition pairs, which indicate the specific context switches that will
be allowed during the scenario. For example, consider the following two sets.
The set C, represents a set of five distinct major contexts present in a mission
M,, while set T, includes all possible context-transition pairs applicable while

executing M,.

o CZ - {Cl7 C2, C3, C4, 05}

o T ={< 1,04 >,< o053 >,< 3,01 >, < Cq,00 >, < 4,05 >,< C5,01 >}

Since the context-transition pair < c¢1,c4 > is a member of T}, context ¢4 is
a possible transition from context ¢;. In other words, if the agent is currently

operating in context cj, it is possible to switch contexts at a given time-step tg

to context ¢y, if certain conditions exist at t5. The logic used to trigger these
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pairs is known as context-transition logic, and will be defined in the next section.
A CxBR model’s context topology CT, consist of a set of contexts C,, along
with the set of context-transition pairs 7, the Default Context (cpx), and the
scenario’s universal transition criteria UT'C,.. C'T,, along with the goal conditions

and constraints, comprises mission M,.

CT,=<C,,T,,cpx, UTC, > (1.6)

M, =< goal,, constraints,, CT, > (1.7)

1.2.2 Contexts in CxBR

In [SHO1], a context is defined as a set of environmental and physical conditions
that may suggest a specific behavior or action. Within a CxBR model, however, a
context is a functional state induced as a result of these conditions. Contexts are
inserted within a mission to represent all possible conditions that can arise during
the course of that mission. This ensures that a model can exhibit intelligent

behavior no matter what occurs during mission execution.

CxBR models require that a single context be active at any one time-step
during a scenario. It is said that a context within the model is ’active’ if the
conditions implying its validity exist and the agent is using its included knowledge
to make decisions within a scenario. That context is then denoted the current
active context. The knowledge engineer responsible for creating the model defines
and creates each context. Contexts, therefore, are often constructed intuitive
subsets of the behavior to be modeled. When encoding the knowledge for these

contexts, the idea is to achieve a model that can take the same actions that an
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expert might take when in the same situation. Consider a mission M with context
set C = {c1,¢9...¢,}. While the division of knowledge represented by these
contexts is in the extreme case arbitrary, the knowledge engineer responsible for
constructing the model will likely partition each context in a manner consistent
with his understanding of the mission. Furthermore, the context-space might
also be partitioned so that each context is intuitively coupled with a specific task
or behavior that is necessary for the mission. This technique is often used for
tactical models in which the sequence of activities and behavior is well known
and bounded, and also where the mission itself entails the execution of a series
of sub-tasks. It is important to note here, however, that the context-space must
be partitioned in order to represent all possible situations that may exist for the
agent during a scenario - not simply to divide all possible actions that the agent
might take. For instance, consider the some high-level behavior where there are
two distinct and unrelated situations under which a behavior b; is activated. If
contexts were partitioned by action, then the two unrelated situations would share
the same context within the CxBR model. Partitioning the context-space by
situation also ensures that the behavior space of the agent is completely spanned
by the set of contexts - i.e. the CxBR model can address any situation and choose

a viable active context for the agent to act in.

Within a CxBR model, individual contexts are nothing more than conduits
between the current set of stimuli facing the agent and the behavior that will
be executed in response. When a CxBR context is declared active, it references
the appropriate behavior modules and fact-bases, which in turn determine the
correct course of action. The command for that action is then passed from the
context to the agent’s interface for execution. The context will continue to repeat
these steps every simulation cycle, until a different context is denoted as active

or the mission terminates.
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An active context controls the agent by referencing various knowledge and
action modules. These modules are not restricted to a specific form - inference
engines, neural networks, and expert systems are all valid modules. Using these
modules, along with a local fact base in the agent interface, the active context
derives an appropriate action. A fact base is a structure that stores parameters

and inferences for a certain system, in this case the CxBR model.

The context logic for a context is composed of the control functions, knowledge
and action rules that constitute the agent’s ’behavior’ within that context. We
define Fi;¢ as the set of functions that control the agent under a specific active

context, such that

Fue ={cfi,cfa, cfs,...cfn} (1.8)

Furthermore, we define the set of action rules for a specific context as ARc.
Action rules are general purpose productions used to execute certain tasks nec-
essary for behavior within a context. Action rules can use facts located in the
agent’s local fact base, or local variables in the functions that form part of Fyc.
Some implementations of CxBR may additionally contain a global fact base upon

which facts accessible to all models may reside. We can define ARy;¢ as:

ARyc = {ary, arq,ars, ... ary} (1.9)

Lastly, we define the knowledge contained by each context as a set of frames
or classes whose attributes and methods/daemons are essential elements of the
tactical knowledge required to successfully navigate the current situation. We

refer to this knowledge, for lack of a better name, as knowledge frames or K Fyc.
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Therefore, the context logic C'Lysc, which controls the actions of the agent while

under the control of a context M C', can be formally defined as:

CLMC =< FMCUARMCUKFMC > (110)

1.2.2.1 Sub-Contexts

CxBR supports the use of other context-like structures known as sub-contexts.
Sub-contexts encompass a small functional section of a context not directly crit-
ical to the mission objectives. These structures share logical and physical sim-
ilarities to contexts, but lack many of their attributes. A sub-context is called
upon, like a function, to perform a subtask deemed necessary in the logic by a
context. Unlike contexts, however, a sub-context does not need to be active at
any given moment. Furthermore, when a sub-context has finished executing, it
is immediately deactivated and control shifts back to the context that called it.
In terms of its role, it is more convenient to think of sub-contexts as user-defined
functions that are slightly more complex and specific to the model’s mission.
However, unlike user-defined functions - whose scope is typically the context that
uses it - sub-contexts can be used by any context present within the model. This
enhances re-usability of components in the model. Nevertheless, we can represent
the sub-context by a vector function - whose input is an action rule of the calling

context.

subContexty = fo(ARnc,) (1.11)
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1.2.3 Context-Transition Logic in CxBR

The selection of an active context during a scenario is controlled by the context-
transition logic. Knowing the active context and the recent stimuli on the agent,
the context-transition logic selects the appropriate context transition amongst

the pairs listed by the mission.

Context-transition logic is permitted to take any form within a CxBR model,
so long as a context is chosen at each time step. The most popular representation

of context-transition logic is with sentinel rules and universal sentinel rules.

With this implementation, the knowledge containing conditions under which
a context transition is required are called sentinel rules, or transition sentinel
rules. Sentinel rules indicate when the appropriate conditions for each applicable
transition (each context-transition pair provided by the Mission) hold true. If,
for instance, the mission provides a context-transition pair for context c¢; to cs3, a
sentinel rule will be present within ¢; that monitors for the conditions warranting
a transition from c¢; to c3. If that condition arises, the transition sentinel rule
corresponding to that pair will fire, and a transition will be instantiated. Sentinel
rule antecedents may include the fact-base of the current context and the current
status of the agent (e.g. inputs, physical state and location). While there are
often universal conditions for a transition to a given context, sentinel rules defined
to be unique to the context where they exist. This feature allows the agent to
function in more complex tactical domains where transitions to a context might
be a consequence of two entirely different motivations. When sentinel rules are
implemented within a mission M, the CxBR model provides a set S, of transition
criteria that represent the conditions necessary for each transition listed in 7}, (the

set of legal context-transitions). Representing the rule defining the transition
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criteria from context ¢; to ¢; as s;;, we can define the set of sentinel rules S, as
the combination of all s;; where < i,j > is a member of T}, (i.e. if <4,j > is a

valid transition within mission M,).

ijo<ij>e M,
S, = U Sij (1.12)
ij=1
In many tactical scenarios, there exist conditions that require the agent to
transition its context regardless of its current active context. To account for such

conditions, universal sentinel rules are encoded within the mission. These rules

hold precedence over all other transition criteria or sentinel rules.

US; = Jusry, (1.13)
J

1.2.4 A Generic CxBR Model

Figure 1.1 below illustrates a block diagram of a generic CxBR model that can be
generated using the current CxBR framework developed by Norlander [Nor99].
This framework serves as both an engine for CxBR models as well as a foundation
on which they are constructed. The agent interface module stores any sensor data
that is read-in by the agent, and includes any necessary low-level functionality
needed to implement the actions indicated by a context. When a model is run,
this module is instantiated and assigned a mission. The CxBR model controls
the agent by determining proper actions and calling the appropriate functions

defined within this interface.

As illustrated, CxBR missions define a context topology for the model as

well as valid context-transition pairs (illustrated by the dashed lines); agent con-
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Figure 1.1: Block diagram of a CxBR model

straints, universal sentinel rules, and mission objectives (goals). They are also
responsible for identifying the default context, which is the context that the agent
will operate in at the start of the scenario. If no sentinel rules fire within the
current context and it is also found that the current context is not valid, the

model will revert to this default context.

As an example of a CxBR model, we present the iRobot Scenario developed
in [TGO4]. This scenario was an exercise in implementing a CxBR model on a
physical platform. In this scenario, the mission is to maneuver an iRobot around
an open area looking for a single enemy entity.

Upon detection, the agent first determines the hostility level of the enemy. If
it approaches, consider it hostile and retreat. If the enemy retreats, follow it at
a close distance. If the enemy is not responsive (i.e., stationary), execute an end

of mission signal and retreat to the original starting position.
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The context topology for this scenario is provided as figure 1.2. The agent in-
terface connects the CxBR model to the iRobot and defines its low-level functions

(move, turn, activate sonar).

Context Names for iRobot Behavior

e goal =< findAndRespondT oStationaryEnemy >
o C, ={c1 = locateEnemy, c; = determine EnemyH ostility,
e c3 = approachEnemy, cy = retreat FromEnemy,

e c5 = stationaryEnemySignal }

Sentinel Rules for iRobot Behavior

o T, ={< ci,c0 > < ca,01 >,< Co,C3 >,< Cg,C4 >,< Cg,C5 >,< C3,Co >, <
Cq, 0o >}

e 5(1,2) = foundEnemyOnSonar

e 5(2,1) = lostEnemyOnSonar

e 5(2,3) = enemyRetreating

e 5(2,4) = enemyApproaching

e 5(2,5) = enemyStationary

e 5(3,2) = enemyStoppedRetreating

e s5(4,2) = enemyStopped Approaching
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Context Behaviors for iRobot Behavior

CLy = (lookFor Enemy)

CLy = (watchEnemyW ait For M ovement)

C'Ls = (pursue EnemyUntil HeStops Retreating)

CLy = (retreatFromEnemyUntil HeStops Pursuing)

CLs = (waitW hile EnemySits, spinAroundl f Sitting For FiveSeconds)

1.2.5 Knowledge Representation in CxBR
As discussed in the previous sections, the CxBR paradigm itself provides a way of

representing knowledge through the use of the agent interface, mission, context,

and context moderator objects.
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At some level, knowledge is contained in all CxBR components. Some of this
contained knowledge is directly responsible for the action of the agent, such as the
high-level behavioral knowledge represented within contexts. Other knowledge
contained in these CxBR objects is concerned with the dynamics of the paradigm
itself, such as the context topology contained in the mission object. Regardless of
whether the knowledge is used for directly controlling the agent or the dynamics
of the paradigm, CxBR does not constrain nor specify the use of any particular
type of knowledge representation paradigm. A knowledge schema illustrating the
potential facets of a CxBR model’s knowledge-base is illustrated below as figure

1.3

The importance of not demanding a specific knowledge-representation paradigm
is in the flexibility offered to the modeler. Any knowledge or associated reasoning
mechanisms employed must be determined by the knowledge engineer responsible
for model construction. For most systems, a rule-based structure may prove to
be the most efficient. However, if learning is to be incorporated or the details
of decision-making are not easily classified in terms of rules, structures such as a
neural network may be employed. The CxBR paradigm does not limit the type or
types of knowledge representation used; rather it is a decision to be made by the

knowledge engineer, based on the requirements of the behavior to be modeled.

1.2.6 Intrinsic Low-Level Knowledge of Autonomous Agents
Low-level behaviors in CxBR models are considered to be behaviors that are

closely related to dynamic physical and behavioral characteristics of the agent.

Such behaviors may include motor skills, sensory data, what the agent perceives
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Figure 1.3: Knowledge Schema for a CxBR Agent (reprinted from [SG04]

about its world, environmental knowledge, or even what the agent remembers
with regard to its historical perception of the world. These low-level behaviors
are fundamental in defining the agent. This is true in that the agent is defined
by the low-level behaviors of which it is capable and. It is also true in the
sense that the constraints of the behaviors help to define the agent. Consider
a behavior such as movement and a corresponding function move() to represent
this behavior. Different agent types should be characterized in distinctly different
ways by how move() defines them. For example, move() to a helicopter allows for
three dimensional movement through space, but there are certain constraints that

must be adhered to regarding maximum velocity, maximum altitude, attitude of
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the aircraft, etc. A fish would also have a low-level behavior defined by move().
However, the maximum velocity or maximum altitude of a fish will obviously

differ from that of a helicopter.

In addition to low-level behaviors, in CxBR each agent has some perception
of and knowledge about its surrounding world. What is of particular importance
here, as in the other areas of knowledge representation employed by CxBR agents,
is the flexibility the modeler is permitted in choosing knowledge representation
paradigms. The method in which memory is implemented for a model is not con-
strained by the CxBR paradigm. A set of data structures stored in memory could
be used to allow fast retrieval of information. Alternatively, a database could be
interfaced with the model to allow storage and retrieval of large quantities of

data.

1.3 Summary and Discussion of Introduction Topics

In this chapter, a brief overview of the problem space was defined that introduced
the topic of learning from observation and the research challenges that it poses.
The following chapter describes relevant work that has been done in these areas.
Chapter 3 specifically defines the problem addressed for this research. Chapter 4
describes the methodology developed to address the problem, and chapter 5 in-
troduces a prototype implementation of this methodology. The final two chapters
are devoted to reporting relevant data, results, and conclusions from the testing

of the prototype learning system.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, other research both directly and indirectly related to the topics of
this work is presented and summarized. The research discussed here is organized
by how it is related to this work. Section 2.1 introduces some cognitive architec-
tures and behavior-modeling techniques related to the Context-Based Reasoning
paradigm. Section 2.2 summarizes an assortment of techniques used for learning
expert behavior that use neural networks in their approach, while section 2.3

outlines other techniques for learning.

2.1 Related Cognitive Architectures and Behavior

Modeling Techniques

Recognition-primed Decision Making, or RPDM, is a behavior-representation
paradigm developed by Klein [CK02]. The major focus of RPDM is to define
how experts make decisions during situations highlighted by time constraints,
uncertainty, and ’high-stakes’ [SHO1]. RPDM has been used to model decision-
making processes in such arenas as route planning, computer security, and even

nursing and weather forecasting.
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The model for RPDM, illustrated in figure 2.1, is based on two variations that
represent the level of recognition made by the expert about the current situation
[SHO1]. In the first variation, the expert easily recognizes the situation he is in.
Here, the expert likely makes a decision on a course of action in a direct and

methodical manner, and there is little doubt that the course of action is correct

for that instance.

Experience the Situation in a Changing Context

no
Diagnose | ;
o = s Situation Typical?
[Feature Matching] € l ratatune or Analoaueal | ™
more [Story Building] [Frototype or Analogue ] s
data
inference yes

Recognition has four byproducts

Relevant
| e ¥ L
Plausible
Goals ;

Evaluate
Action (n)
Mental Simulation]

¥

YWl It weorke™?

Anamaly

Implement
Course of Action

Figure 2.1: Block Diagram of RPDM Model (reprinted with permission from

[SHO1])
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In the second variation, the situation is either not immediately recognized, or
is initially recognized incorrectly. When the situation is not immediately identi-
fied, the expert will enter a diagnostic model to determine appropriate course of
action. After a course of action is taken, the expert may realize at some point
that the consequences of his actions do not coincide with the situation he has
chosen. Here, the expert would revert back to re-diagnose the situation as if his

initial choice had not been made.

The concept of RPDM shares many similarities to the Context-Based Rea-
soning (CxBR) paradigm, specifically in its relationship to sentinel rules. Like
CxBR, RPDM models put a premium on recognizing and acting upon the intro-
duction of a new situation that requires a new and immediate change in tactical
behavior. In CxBR, sentinel rules provide specific and clear-cut conditions that
indicate a change in behavior due to a new situation. This behavior is, in fact,
tied directly to that new situation through the abstraction of a context. Simi-
larly, RPDM looks for changes in the environment that indicate a new situation,
through the diagnosis phase, and then chooses a new mode of action to compen-
sate. Furthermore, both techniques employ a system that identifies and corrects
incorrect assessments of the situation. In the case of CxBR, the process of select-
ing a next-context allows for multiple iterations in order to insure that the proper
context is entered. More specifically, a context can be chosen by a sentinel rule
and then discarded if it is found that its premises are invalid. These mechanics
are not unlike the steps taken in RPDM for variation 2 - if the expectancies as-
sumed by the selected situation do not occur, that situation is discarded and a

new one chosen.

There has been significant work done, over the past two years, in developing

computational models for RPDM in the tactical behavior arena [WM]. These
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models have been successful in distinguishing among courses of action even in
complex tactical areas such as air-traffic control and on-ground enemy detection.
In these cases, the diagnostic logic processes executed are often difficult to express

as a set of if-then rules.

Context-mediated Behavior (CMB) is a technique for developing intelligent,
autonomous agents much like CxBR. It was originally developed by Turner [Tur98]
at the University of Maine. Turner defines a context as ”...any identifiable con-
figuration of environmental, mission-related, and agent-related features that has
predictive power for behavior”. Through this definition, he is better able to jus-
tify the close relationship between the identification and selection of context and
the knowledge used when acting within that context. He argues the relationship
between context and decision-making processes, for instance citing the ”gambler’s
fallacy” of a person skewing the probability of a given outcome because of his

recent observations of previous outcomes [TK74].

Much like CxBR, Context-mediated Behavior partitions the knowledge space
of an expert into ’contexts’ which outline implicitly when that knowledge is ap-
propriate for use. In CMB, the vehicle used to represent this knowledge is the
contextual schema, or c-schema. A c-schema is a frame-like abstraction that
contains several pieces that define the parameters for entering the context and
the behavioral knowledge to employ when the context is active. The context
description of the c-schema contains three fields - "actors,” ’objects,” and ’descrip-
tion.” These three fields are used to define the situation under which the context
is valid by providing values for ’how much’ each feature is expected within that
context. By doing this, CMB models are able to use these context descriptions
to assess their context at each time step. Context descriptions can also be used

by the behavioral knowledge within their respective c-schema to further enhance
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its models situational awareness about his environment. The standing orders of a
c-schema define the appropriate actions to take whenever its context is entered or
exited. Similarly, the events field within a c-schema defines unanticipated events
within a certain context that must be responded to and provides the knowledge
to make an appropriate response. The goals field gives direction to the overall
behavior of the agent when it is applying a certain c-schema. This field provides
the agent with a general direction to follow when executing actions. Finally, the
actions field provides the agent with a list of various moves that it can employ to

reach the goals outlined in his current c-schema.

CxBR models are in fact quite similar to those modeled using CMB. In rep-
resentation, CMB uses several structures to represent knowledge within each c-
schema, whereas in CxBR knowledge representation is not as well-defined. In
CxBR, the models are more rigidly structured at the mission level. Absent
in CMB models, a mission context provides structure in an effort to control
the context-flow rather than the execution of individual contexts. Furthermore,
CxBR model design places a premium on separating the lower-level contextual
knowledge from the contexts themselves, emphasizing the notion that contexts
are cues for behavior, and do not also embody the actual behaviors themselves.
This line of thinking follows closely with the ideas of Brezillon [BS97], who in his

work separates context from action through the use of proceduralized contexts.

Soar is a cognitive architecture developed at Carnegie Mellon University in
by Laird, Rosenbloom and Newell [LR87]. It was at first an attempt to de-
velop a Unified Theory of Cognition [LR95], and has since been used to develop
robust, high-fidelity behavior models in systems from rotary and fixed-wing air-
crafts [JK99] to computer-game Al bots [WJ02] and models that perform natural-

language processing.
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The driving force behind all Soar models is the production rule. These rules
are responsible for allowing models to reason about its environment, make changes
to both its short and long-term memory, and to select appropriate actions based
on relevant stimuli. The Soar architecture has a unique rule-firing mechanism,
based on the Rete Algorithm, that identifies when each rules’ conditions are
met. This mechanism allows for rules in a Soar model to activate 'in parallel’,
meaning they are executed in the same production cycle. Soar production rules
are categorized by their specific function within the model. FElaboration rules, or
elaborations, are responsible for updating the Soar agent’s situational awareness
by editing working memory with new information. The other two rule categories
are both related to the abstract operator structure. Operators are the structures
within Soar that are responsible for allowing the agent to react and make actions
either directly or indirectly in response to his environment. Two types of rules
are associated with operators: operator proposal rules are Soar rules that allow
the agent to select from (or set preference values to) a list of possible operators.
Operator application rules are then responsible for executing the operator that

has been selected as a result of the firing of the operator proposal rules.

While operators are often responsible for making a direct response to the
outside world, operators are also involved with the selection of agent substates.
Agent substates serve to decompose the action/behavior space into goal-defined
structures from which the agent can execute more specific operators relevant to
that goal. Substates exist underneath the agent’s main state (representing its
presence within whatever global task it is participating in), and can also exist

within other substates creating a hierarchy structure.

An analog to this substate-hierarchy is also present in the ACT-R theory of
cognition [And96]. Within ACT-R, these structures are identified as subgoals.
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When a goal in ACT-R is identified, the requirements to meet that goal are
themselves partitioned into subgoals which, if achieved, will complete the top-

level goal.

It is this hierarchical organization of goal-oriented templates that draws the
biggest comparison of the Soar (and ACT-R to some extent) cognitive archi-
tecture to the modeling paradigm of Context-based Reasoning. Within CxBR,
as described in Chapter 1, contexts exist to partition the behavior space just
as substates do within Soar. Furthermore, context-transition logic exists within
CxBR to select an appropriate active context at each time-step. This is a close
analogue to any operator proposal rules within a Soar model that maps to a
substate-activating operator application rule. The nature of these operator pro-
posal rules, in conjunction with the state-information and relevant task and agent
constraints, help to indirectly form a ’substate-topology’ which is similar to the
context-topology that is defined by CxBR models’ transition logic, mission/agent

constraints and goals.

This section introduced four paradigms for behavior representation which are
related to Context-Based Reasoning. In each, behaviors are partitioned in some
fashion (c-schemas in CMB, substates in Soar, etc.) and selected when applicable
to the situation. While the CxBR paradigm is instead used to model behaviors,

it is this selection process that is central to the theme of this research.
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2.2 Approaches to Learning from Observation Using

Neural Networks

Henninger [Hen01] describes the design of a neural network to more accurately
predict low-level behavior of vehicles in a distributed simulation (MODSAF).
More specifically, her work involved predicting Abrams M1 tank positions while
moving by using a neural network to extrapolate an updated location accurately.
Her model alleviates network bandwidth requirements by allowing a system to
accurately predicting tank positions, thereby reducing its need to frequently query

the simulation.

In a distributed simulation with many 'nodes’ (stations that control individual
or several entities), network bandwidth is at a premium. Because of this, it is
infeasible for a node to be constantly updated with state information. A dead-
reckoning algorithm is typically used to allow each node in the simulation to
predict the positions of each vehicle. However, since dead-reckoning is merely a
linear approxi