
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

Famtile: An Algorithm For Learning High-level Tactical Behavior Famtile: An Algorithm For Learning High-level Tactical Behavior

From Observation From Observation

Brian Stensrud
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Stensrud, Brian, "Famtile: An Algorithm For Learning High-level Tactical Behavior From Observation"
(2005). Electronic Theses and Dissertations, 2004-2019. 398.
https://stars.library.ucf.edu/etd/398

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/398?utm_source=stars.library.ucf.edu%2Fetd%2F398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

FAMTILE: An Algorithm for Learning High-Level
Tactical Behavior from Observation

by

Brian S. Stensrud

B.S. Mathematics, University of Florida, 2001
B.S. Computer Engineering, University of Florida, 2001
B.S. Electrical Engineering, University of Florida, 2001

M.S. Computer Engineering, University of Central Florida, 2003

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical and Computer Engineering
in the College of Engineering

at the University of Central Florida
Orlando, Florida

Spring Term
2005

Major Professor: Avelino J. Gonzalez

c© 2005 by Brian S. Stensrud

Abstract

This research focuses on the learning of a class of behaviors defined as high-

level behaviors. High-level behaviors are defined here as behaviors that can be

executed using a sequence of identifiable behaviors. Represented by low-level

contexts, these behaviors are known a priori to learning and can be modeled

separately by a knowledge engineer. The learning task, which is achieved by

observing an expert within simulation, then becomes the identification and rep-

resentation of the low-level context sequence executed by the expert. To learn this

sequence, this research proposes FAMTILE - the Fuzzy ARTMAP / Template-

Based Interpretation Learning Engine. This algorithm attempts to achieve this

learning task by constructing rules that govern the low-level context transitions

made by the expert. By combining these rules with models for these low-level

context behaviors, it is hypothesized that an intelligent model for the expert can

be created that can adequately model his behavior.

To evaluate FAMTILE, four testing scenarios were developed that attempt

to achieve three distinct evaluation goals: assessing the learning capabilities of

Fuzzy ARTMAP, evaluating the ability of FAMTILE to correctly predict expert

actions and context choices given an observation, and creating a model of the

expert’s behavior that can perform the high-level task at a comparable level of

proficiency.

iii

For my poo

iv

Acknowledgments

Thanks to my advisor, Avelino, and to each member of my committee who put

up with me coming in for update meetings. Thanks also to Amy Henninger, who

found me a job when I ran out of dissertation funding and then helped me stick

around until I was finished! Thanks to my maze and poker experts - Britt, Chad,

Gil, Kacey, Kevin, and Mike - Howard Lederer and Jesus Ferguson just wouldn’t

return my phone calls, so you guys were the next-best thing. Thanks to Gil

Barrett, who has been my partner in sorrow these past 3+ years - I appreciate

your support, your friendship, and your, um, unique perspective. Thanks to my

parents, Mike and Lynn Stensrud, and to my grandparents, Philip C. Stanley,

Jr. and Frances. I’ve been in school now for nearly 22 (!) years, and my main

reason for staying with it and working hard has been to make you proud. Finally,

thanks to my mother-in-law, Kerry. You went out of your way to help get me

started on this journey - oh, and you also allowed me to marry your daughter!

v

Table of Contents

LIST OF TABLES . xii

LIST OF FIGURES . xix

1 INTRODUCTION . 1

1.1 Learning from Observation . 5

1.2 Context-Based Reasoning . 10

1.2.1 Missions in CxBR . 12

1.2.2 Contexts in CxBR . 15

1.2.3 Context-Transition Logic in CxBR 19

1.2.4 A Generic CxBR Model 20

1.2.5 Knowledge Representation in CxBR 23

1.2.6 Intrinsic Low-Level Knowledge of Autonomous Agents . . 24

1.3 Summary and Discussion of Introduction Topics 26

2 LITERATURE REVIEW . 27

2.1 Related Cognitive Architectures and Behavior Modeling Techniques 27

2.2 Approaches to Learning from Observation Using Neural Networks 34

2.3 Other Approaches for Learning from Observation 38

3 PROBLEM DEFINITION . 56

vi

3.1 Research Challenges . 56

3.2 Problem Statement . 59

3.3 Overview of Approach . 60

3.4 Contributions of this Research . 61

4 METHODOLOGY . 63

4.1 Template-Based Interpretation . 64

4.1.1 Context Templates . 65

4.1.2 Template Selection in TBI 68

4.2 Fuzzy ARTMAP . 72

4.2.1 Cluster Construction and Modification in Fuzzy ARTMAP 73

4.2.2 Learning Parameters for Fuzzy ARTMAP 77

4.2.3 Extracting Rules from Fuzzy ARTMAP Clusters 79

4.2.4 Motivation For Using Fuzzy ARTMAP 79

4.3 FAMTILE: Fuzzy ARTMAP / Template-Based Interpretation Learn-

ing Engine . 82

4.3.1 Generating an Observation Sequence 83

4.3.2 Inferring Low-Level Contexts from Expert Actions and Ob-

servations using TBI . 86

4.3.3 Converting Observation Sequence to Training Patterns for

Fuzzy ARTMAP . 87

4.3.4 Applying Fuzzy ARTMAP to the Learning Algorithm . . . 91

4.3.5 Converting Fuzzy ARTMAP Clusters into CxBR Sentinel

Rules . 94

vii

4.4 Summary of FAMTILE Algorithm Sequence 96

5 A PROTOTYPE IMPLEMENTATION OF FAMTILE 98

5.1 Simulation Environment for FAMTILE Training and Testing . . . 98

5.1.1 Interface between Simulation and FAMTILE 99

5.1.2 The Simulation Engine Module 100

5.2 Four Training Vignettes for FAMTILE 102

5.2.1 Vignettes A and B: Navigating a Maze 102

5.2.2 Vignettes 3 and 4: Texas Hold’em Poker 107

5.3 A Prototype Implementation of FAMTILE 130

5.3.1 The TBI Engine . 130

5.3.2 Generation and Representation of Training Data 137

5.3.3 Generation and Representation of Training Data for Poker

Vignettes . 142

5.3.4 The Fuzzy ARTMAP Neural Network 152

5.3.5 Rule Extraction and CxBR Model Composition 154

6 EVALUATION OF FAMTILE PROTOTYPE 156

6.1 Overview of Testing Scenarios . 156

6.1.1 Testing Scenarios #1 and #2 157

6.1.2 Testing Scenarios #3 and #4 158

6.1.3 Testing Scenarios #5 and #6 160

6.1.4 Testing Scenario #7 . 161

6.2 Evaluation Procedures for FAM and FAMTILE 163

viii

6.2.1 Computing a Predictive Accuracy 163

6.3 Learning Parameters for FAM . 166

6.4 Scenario #1 Testing . 167

6.4.1 Scenario #1 Motivation 168

6.4.2 Scenario #1 Results . 169

6.4.3 Analysis of Scenario #1 Results 177

6.5 Testing Scenario #2 . 179

6.5.1 Scenario #2 Motivation 179

6.5.2 Scenario #2 Results . 180

6.5.3 Analysis of Scenario #2 Results 188

6.6 Testing Scenario #3 . 190

6.6.1 Scenario #3 Motivation 191

6.6.2 Scenario #3 Results . 193

6.6.3 Analysis of Scenario #3 Results 198

6.7 Testing Scenario #4 . 202

6.7.1 Scenario #4 Motivation 202

6.7.2 Scenario #4 Results . 204

6.7.3 Analysis of Scenario #4 Results 206

6.8 Testing Scenario #5 . 207

6.8.1 Context Templates Used For Vignette C 208

6.8.2 Scenario #5 Results . 215

6.8.3 Analysis of Scenario #5 Results 223

6.9 Testing Scenario #6 . 226

ix

6.9.1 Template Descriptions for Vignette D 226

6.9.2 Scenario #6 Results . 237

6.9.3 Analysis of Scenario #6 Results 240

6.10 Test Scenario #7 . 242

6.10.1 Scenario #7 Motivation 242

6.10.2 Scenario #7 Results . 243

6.11 Summary and Conclusion of FAMTILE Evaluation 248

7 SUMMARY, CONCLUSIONS AND FUTURE WORK 250

7.1 Summary . 250

7.2 Conclusions . 253

7.2.1 Lessons Learned . 256

7.3 FAMTILE and Explainable AI . 258

7.4 Complexity and Scalability Analysis 259

7.5 Proposed Topics for Future Research 261

A GLOSSARY OF TERMS . 263

B GLOSSARY OF ACRONYMS . 272

C POKER AND TEXAS HOLD’EM 275

C.1 Texas Hold’em Poker . 281

D POKER EXPERT QUESTIONNAIRE AND RESPONSES . . 283

D.1 Questionnaire Response #1 . 285

x

D.2 Questionnaire Response #2 . 286

D.3 Questionnaire Response #3 . 287

D.4 Questionnaire Response #4 . 289

D.5 Questionnaire Response #5 . 291

D.6 Questionnaire Response #6 . 292

E TESTING DATA . 297

E.1 Scenario #1 Results . 298

E.2 Scenario #2 Results . 302

E.3 Scenario #3 Results . 306

E.4 Scenario #4 Results . 311

E.5 Scenario #5 Results . 314

E.6 Scenario #6 Results . 322

E.7 Scenario #7 Results . 326

LIST OF REFERENCES . 328

xi

LIST OF TABLES

5.1 Vignette Features . 102

5.2 Pre-Flop Hand Groupings ([SM03]) 116

6.1 Summary of Test Scenario Parameters 157

6.2 Distribution of 100 Testing Runs for each Subject, Scenario #1 . 171

6.3 Results for Scenario #1: Average Number Correct of 100 Testing

Patterns . 172

6.4 Summarized Results for Scenario #1: Average Number Correct

out of 100 Testing Patterns over 90 Total Runs 173

6.5 Summarized Results for Scenario #1: 1000 Runs for each subject,

Using ρ̄a and ρ̄atest Values that Yielded Best Accuracy (see Table

6.3) . 174

6.6 Statistical Comparison of Predictive Accuracies for Scenario #1;

H0 → µi − µj = 0, H1 → µi − µj 6= 0 177

6.7 Results for Scenario #2: Average Number Correct of 90 testing

patterns . 183

6.8 Summarized Results for Scenario #2: Average Number Correct

out of 100 testing patterns, over 100 Total Runs 184

6.9 Summarized Results for Scenario #2: 1000 Runs for each subject,

Using ρ̄a Values that Yielded Best Accuracy (see Table 6.7) 185

xii

6.10 Statistical Comparison of Predictive Accuracies for Scenario #2;

H0 → µi − µj = 0, H1 → µi − µj 6= 0 188

6.11 Statistical Comparison of Predictive Accuracies for Scenario #1

versus Scenario #2; H0 → µi − µj = 0, H1 → µi − µj 6= 0 189

6.12 Average Predictive Accuracies of Subject Actions for 100-run sets

of FAM, 300 Training Points . 194

6.13 Average Predictive Accuracies of Subject Actions for 100-run sets

of FAM, 600 Training Points . 195

6.14 Average Predictive Accuracies of Subject Actions for 100-run sets

of FAM, 900 Training Points . 196

6.15 ρ̄a Values Yielding Best Average Predictive Accuracies for Scenario

#3 . 197

6.16 Average Predictive Accuracy for 1000-run Sets for Scenario #3

Using Optimal Values for ρ̄a . 198

6.17 Average Predictive Accuracies of Subject Actions for FAM 205

6.18 Average Predictive Accuracy for 1000-run Sets 206

6.19 Context Template for foldWithWeakHandContext 209

6.20 Context Template for foldToStrongBettingContext 209

6.21 Context Template for foldToInWeakPositionContext 210

6.22 Context Template for foldWithStrongHandContext 210

6.23 Context Template for callWithDrawingHandContext 211

6.24 Context Template for callToTrapContext 211

6.25 Context Template for callWithMarginalHandContext 212

6.26 Context Template for callWithWeakHandContext 212

xiii

6.27 Context Template for raiseWithDrawingHandContext 213

6.28 Context Template for raiseInPositionContext 213

6.29 Context Template for raiseWithStrongHandContext 214

6.30 Context Template for raiseWithStrongHandContext 214

6.31 Average Predictive Accuracies of Subject Contexts for 100-run sets

of FAMTILE, 300 training patterns 216

6.32 Average Predictive Accuracies of Subject Contexts for 100-run sets

of FAMTILE, 600 training patterns 217

6.33 Average Predictive Accuracies of Subject Contexts for 100-run sets

of FAMTILE, 900 training patterns 218

6.34 Average Predictive Accuracies of Subject Actions for 100-run sets

of FAMTILE, 300 training patterns 219

6.35 Average Predictive Accuracies of Subject Actions for 100-run sets

of FAMTILE, 600 training patterns 220

6.36 Average Predictive Accuracies of Subject Actions for 100-run sets

of FAMTILE, 900 training patterns 221

6.37 Average Predictive Accuracy for 1000-run Sets with 300 training

patterns . 223

6.38 Average Predictive Accuracy for 1000-run Sets with 600 training

patterns . 223

6.39 Average Predictive Accuracy for 1000-run Sets with 900 training

patterns . 223

6.40 Tabulated 2-tailed t-tests on Best-Case Action Predictive Accura-

cies for Scenarios #3 and #5 . 225

xiv

6.41 Context Template for foldWithWeakHandContext 229

6.42 Context Template for foldWithDrawingHandContext 229

6.43 Context Template for foldWithMediocreHandContext 229

6.44 Context Template for foldWithStrongHand 230

6.45 Context Template for checkWithWeakHandContext 230

6.46 Context Template for checkWithMediocreHandContext 230

6.47 Context Template for checkWithDrawingHandContext 231

6.48 Context Template for checkWithMonsterHandContext 231

6.49 Context Template for checkWithStrongButVulnerableHandContext 231

6.50 Context Template for betWithWeakHandContext 232

6.51 Context Template for betWithWeakHandContext 232

6.52 Context Template for betWithMediocreHandContext 232

6.53 Context Template for betWithMonsterHandContext 233

6.54 Context Template for betWithStrongButVulnerableHandContext . 233

6.55 Context Template for callWithWeakHandContext 233

6.56 Context Template for callWithWeakHandContext 234

6.57 Context Template for callWithMediocreHandContext 234

6.58 Context Template for callWithMonsterHandContext 234

6.59 Context Template for callWithStrongButVulnerableHandContext . 235

6.60 Context Template for raiseWithWeakHandContext 235

6.61 Context Template for raiseWithWeakHandContext 235

6.62 Context Template for raiseWithMediocreHandContext 236

6.63 Context Template for raiseWithMonsterHandContext 236

xv

6.64 Context Template for raiseWithStrongButVulnerableHandContext 236

6.65 Average Predictive Accuracies of Subject Contexts for FAMTILE 238

6.66 Average Predictive Accuracies of Subject Actions for FAMTILE . 239

6.67 Average Predictive Accuracy of FAMTILE for Inferred Contexts

and Actions over 1000-run Sets 240

6.68 Tabulated 2-tailed t-tests on Best-Case Action Predictive Accura-

cies for Scenarios #4 and #6 . 241

E.1 Results for Scenario #1: Average Number Correct of 100 Testing

Patterns . 299

E.2 Summarized Results for Scenario #1: 1000 Runs for each subject,

Using ρ̄a and ρ̄atest Values that Yielded Best Accuracy (see Table

6.3) . 300

E.3 Results for Scenario #2: Average Number Correct of 90 testing

patterns . 303

E.4 Summarized Results for Scenario #2: 1000 Runs for each subject,

Using ρ̄a Values that Yielded Best Accuracy (see Table 6.7) 304

E.5 Scenario #3: Average Predictive Accuracies of Subject Actions for

100-run sets of FAM, 300 Training Points 307

E.6 Scenario #3: Average Predictive Accuracies of Subject Actions for

100-run sets of FAM, 600 Training Points 308

E.7 Scenario #3: Average Predictive Accuracies of Subject Actions for

100-run sets of FAM, 900 Training Points 309

E.8 Scenario #3: Average Predictive Accuracy for 1000-run Sets for

Scenario #3 Using Optimal Values for ρ̄a 310

xvi

E.9 Scenario #4: Average Predictive Accuracies of Subject Actions for

FAM . 312

E.10 Scenario #4: Average Predictive Accuracy for 1000-run Sets . . . 313

E.11 Scenario #5: Average Predictive Accuracies of Subject Contexts

for 100-run sets of FAMTILE, 300 training patterns 315

E.12 Scenario #5: Average Predictive Accuracies of Subject Contexts

for 100-run sets of FAMTILE, 600 training patterns 316

E.13 Scenario #5: Average Predictive Accuracies of Subject Contexts

for 100-run sets of FAMTILE, 900 training patterns 317

E.14 Scenario #5: Average Predictive Accuracies of Subject Actions for

100-run sets of FAMTILE, 300 training patterns 318

E.15 Scenario #5: Average Predictive Accuracies of Subject Actions for

100-run sets of FAMTILE, 600 training patterns 319

E.16 Average Predictive Accuracies of Subject Actions for 100-run sets

of FAMTILE, 900 training patterns 320

E.17 Average Predictive Accuracy for 1000-run Sets with 300 training

patterns . 321

E.18 Average Predictive Accuracy for 1000-run Sets with 600 training

patterns . 321

E.19 Average Predictive Accuracy for 1000-run Sets with 900 training

patterns . 321

E.20 Scenario #6: Average Predictive Accuracies of Subject Contexts

for FAMTILE . 323

E.21 Scenario #6: Average Predictive Accuracies of Subject Actions for

FAMTILE . 324

xvii

E.22 Scenario #6: Average Predictive Accuracy of FAMTILE for In-

ferred Contexts and Actions over 1000-run Sets 325

xviii

LIST OF FIGURES

1.1 Block diagram of a CxBR model 21

1.2 Context Topology for iRobot Scenario 23

1.3 Knowledge Schema for a CxBR Agent (reprinted from [SG04] . . 25

2.1 Block Diagram of RPDM Model (reprinted with permission from

[SH01]) . 28

2.2 Konik’s Learning from Observation Framework (reprinted with

permission from[KL04]) . 40

2.3 A Markov Chain . 42

3.1 Learning Behaviors By Mapping Relationships Between Known

Sub-Behaviors . 58

4.1 A Generic Context Template and TBI Engine 71

4.2 Block Diagram of a Fuzzy ARTMAP Architecture[GC01] 73

4.3 Interconnections Between F a
1 and F a

2 75

4.4 Training Context Transitions with Fuzzy ARTMAP 93

4.5 Creating a CxBR Model of Observed Expert Behavior using FAMTILE 96

5.1 Block Diagram of Testing Environment 99

5.2 Maze Used for Vignettes A and B 103

xix

5.3 Screen Shot of Vignette A . 104

5.4 Screen Shot of Vignette B . 105

5.5 Screen Shot of Vignette C . 108

5.6 Screen Shot of Vignette D . 110

5.7 Alternate Screen Shot of Vignette D 112

5.8 Wall-State and Other Map Inputs for Vignette A 140

5.9 Wall-State and Other Map Inputs for Vignette B 141

5.10 An Example Decision Point in Vignette C 144

5.11 Table Position Value Assignments for Vignette C Input Patterns . 145

6.1 Training FAM With Subject Actions 159

6.2 Training FAMTILE With Inferred Subject Contexts 160

6.3 Scenario 1 Results: Frequency of Correct Predictions over 1000

Runs for Subject 1 . 175

6.4 Scenario 1 Results: Frequency of Correct Predictions over 1000

Runs for Subject 2 . 176

6.5 Scenario 1 Results: Frequency of Correct Predictions over 1000

Runs for Subject 3 . 176

6.6 Scenario 2 Results: Frequency of Correct Predictions over 1000

Runs for Subject 1 . 186

6.7 Scenario 2 Results: Frequency of Correct Predictions over 1000

Runs for Subject 2 . 186

6.8 Scenario 2 Results: Frequency of Correct Predictions over 1000

Runs for Subject 3 . 187

xx

6.9 Chip Count Comparison of Subject #1 versus FAM and FAMTILE 246

6.10 Chip Count Comparison of Subject #2 versus FAM and FAMTILE 246

6.11 Chip Count Comparison of Subject #3 versus FAM and FAMTILE 247

C.1 A Royal Flush . 276

C.2 A Straight Flush . 277

C.3 Four of a Kind . 277

C.4 A Full House . 278

C.5 A Flush . 278

C.6 A Straight . 278

C.7 Three of a Kind . 279

C.8 Two Pair . 279

C.9 A Pair . 280

C.10 High Card - Ace High . 280

E.1 Scenario 1 Results: Frequency of Correct Predictions over 1000

Runs for Subject 1 . 300

E.2 Scenario 1 Results: Frequency of Correct Predictions over 1000

Runs for Subject 2 . 301

E.3 Scenario 1 Results: Frequency of Correct Predictions over 1000

Runs for Subject 3 . 301

E.4 Scenario 2 Results: Frequency of Correct Predictions over 1000

Runs for Subject 1 . 304

E.5 Scenario 2 Results: Frequency of Correct Predictions over 1000

Runs for Subject 2 . 305

xxi

E.6 Scenario 2 Results: Frequency of Correct Predictions over 1000

Runs for Subject 3 . 305

E.7 Chip Count Comparison of Subject #1 versus FAM and FAMTILE 326

E.8 Chip Count Comparison of Subject #2 versus FAM and FAMTILE 326

E.9 Chip Count Comparison of Subject #3 versus FAM and FAMTILE 327

xxii

CHAPTER 1

INTRODUCTION

This research explores the problem of developing a learning system that can

learn portions of tactical human behavior merely by observing an expert perform

the behavior within a simulation. The term tactical behavior, often reserved for

behaviors involving military or war-related operations, is defined here to denote

behaviors that:

• A well-defined goal or mission

• Are characterized by planning and/or maneuvering

• Are not well-defined as to their execution sequence, and thus their charac-

teristics may vary greatly across individuals

For this research, we are interested in a subset of tactical behaviors which

characterized by the execution of an undetermined sequence of sub-behaviors.

These sub-behaviors possess the following characteristics:

• Can be identified and modeled by a knowledge engineer without the assis-

tance of the expert under study

• Are atomic in that no two sub-behaviors co-exist at the same point in time

1

These type of situations are easily found when we consider tactical human

behavior. The task of flying an airplane, for example, can be broken down into,

in the most extreme case, trivial low-level actions - pushing buttons, guiding a

throttle stick in a certain direction, etc. However, flying an airplane is certainly

NOT a trivial task. The real knowledge is contained in the processes involved

in deciding when to push a button, when to pull back on the throttle, etc.,

and in what sequence, depending on the situation at-hand. The knowledge is

so complex, in fact, that there are hierarchies of sub-tasks that play a role in

representing the behavior of flying a plane. Learning to fly is not achieved by

learning button-pushing and throttle-maneuvering techniques per-say, but it is

achieved by learning sub-tasks that involve those techniques - landing, taking-off,

maintaining a heading, etc., and when to initiate these actions.

The argument posed by this example is that if we can identify and replicate

the low-level functionality of the expert, learning his tactical expertise becomes

an exercise in identifying a mapping between environmental and situational cues,

which we will call expert stimuli, and the low-level function or behavior that the

expert chooses in response to that cue.

The overall behaviors to be learned by the proposed system, therefore, are

considered to be as high-level behaviors. The precise definition of a high-level

behavior usually omitted in papers in spite of the fact that their implementation

is a primary focus of the work. Jones and Laird refer to high-level behavior when

describing the TacAir-Soar system ([JK99], [JL96]) but never define the term

explicitly. Likewise, the work reported by Patterson et al ([PK03]) describes a

method for learning high-level behavior by examining low-level sensors, and stops

short of providing a definition of high-level behavior. A common thread found in

all of the literature, however, is the presence of sub-behaviors that compose the

2

high-level behavior described. In ([JL96]), the behavior of piloting a fixed-wing

aircraft is described in terms of the composition of its lower-level functionality,

such as communication, maneuvering the plane, etc.

For this research, high-level behaviors will be explicitly defined as as behav-

iors that can be represented by a sequence of simpler, identifiable sub-behaviors

known as low-level behaviors. If it is assumed that each low-level behavior can

be modeled and identified a priori by a knowledge engineer, the learning task

becomes identifying the cues that determine the sequence in which those low-level

behaviors are executed by the observed expert.

Proposed here is a learning system that gathers a sequence of observations

from an expert performing one of these high-level behaviors (or high-level tasks).

By examining the observations, the proposed system aims to correctly identify the

low-level behaviors being executed (without feedback from the expert himself)

and map them to stimuli within the observations that prompted their selection.

With the help of a modeling paradigm, this proposed system can then be used to

develop intelligent models of the learned high-level behavior. For this research,

the Context-Based Reasoning (CxBR) paradigm [SG04] is used. Using CxBR,

low-level behaviors are represented as individual contexts, while the high-level

behavior to be modeled is represented using CxBR missions. CxBR is described

in detail in section 1.2.

The potential utility of such a system is two-fold. On one hand, the time

required to develop acceptable models of tactical behavior for such agents could

be eliminated or significantly reduced. Instead of producing a complete high-

level behavior model by hand, the most difficult portion (the cues that incite

the expert to perform a new or different known low-level behavior during a task)

of the logic could be automatically generated using this system. The knowledge

3

engineer is therefore only responsible for specifying each low-level behavior - both

how they are executed and how they are identified (i.e. what cues can allow an

observer to recognize that the expert is executing a certain low-level behavior).

A second benefit involves the correctness of the knowledge extracted, and

would denote a significant advance in the state-of-the-art of machine learning.

Experts that perform their task with a high degree of proficiency often cannot

elicit their knowledge to a third party [LL99]. A model constructed using an

expert’s explanation can therefore suffer from incompleteness (or even incorrect-

ness) based on this shortcoming. In allowing a system to learn this behavior

automatically by observing an expert in action, the intermediate step of asking

the expert to recite his knowledge to a knowledge engineer (who would then

be responsible for constructing a model for that expert) would be eliminated.

Furthermore, learning such tactical behavior from observation allows for agents

to study experts who are either unwilling or unable to elicit their knowledge

to a third party. Automated reconnaissance vehicles, for example, can perhaps

covertly observe an enemy terrorist training cell, extracting knowledge of cer-

tain tactical behaviors intended for use during (and perhaps before) an attack on

friendly targets. That knowledge can, in turn, be used to create simulated ter-

rorist agents for training counterterrorist forces. In a completely different sense,

a learning system could perhaps observe the movement and behavior patterns of

certain living organisms. If that behavior can be captured and replicated in sim-

ulation, it would be possible to gain a greater understanding of many mysteries

in such fields as ecology or zoology.

The following sections provide background information on the abstract topics

discussed above: high-level and low-level behaviors, learning from observation,

intelligent agents, and Context-Based Reasoning.

4

1.1 Learning from Observation

The work reported here is dedicated to producing an algorithm that can model

an observed high-level tactical behavior to the extent that its knowledge can be

extracted, summarized, and reused. It is important, then, to define learning and

how it is applicable within the arena of learning from observation.

As children, learning was a critical element of our day-to-day life. Much of it

this learning is achieved by watching and emulating the activities of others. We

learn to speak even at the early stages of our development by observing mouth

movements of our parents and those around us, and replicate those movements

to produce sounds of our own. We learn the various sounds made by animals,

as well, by making a connection between sounds heard and images seen. When

repeatedly presented a picture of a cow; for instance, along with hearing the

sound ’moo’, over time it is learned that a cow makes a sound of ’moo.’

The field of machine learning identifies several learning techniques. For ex-

ample, Learning by instruction provides the required knowledge directly. On the

other hand, Reinforcement learning allows the learning agent to learn by trial-

and-error - in other words, allowing the agent to experience the successes and

failures that correspond with his actions. Inductive learning uses classified his-

torical examples to develop an induction tree from which rules can be derived.

The examples can be discarded after the tree is built. Explanation-based learn-

ing is somewhat similar except that by including an explanation along with the

examples, the number of examples necessary for adequate learning can be sub-

stantially reduced. Connectionist learning also uses classified historical examples

to establish the values of weights in an artificial neural network. The examples

can also be discarded after the weight values are set. Unlike the other techniques,

5

neural nets generally suffer from opaqueness, as these weights are rather mean-

ingless to someone casually inspecting the code. Case-based reasoning learns by

adding historical examples progressively as it solves new and different problems.

It does not discard the examples used, but rather, incorporates them into its

own problem-solving approach. Additionally, unlike neural networks which must

be trained all at once, case-based reasoning systems learn progressively as new

cases are added to the case library. Evolutionary techniques can arguably also

be said to learn by searching for an optimal way to accomplish some goal(s).

All machine learning methods mentioned above have one thing in common - the

need to somehow manipulate data from the real world, either provided a-priori,

or collected as part of the process. This will permit us to put the term learning

from observation in its proper context.

Within the research area of learning from observation, there also exists a

distinction between supervised and unsupervised learning. Supervised learning

is a technique by which the learning system is controlled, in terms of what it

learns, by an outside party or system. An unsupervised learning system is free to

learn on its own, without the aid or support of a teaching agent or expert, and

is not guided in any fashion as to what to observe, what good and bad responses

are, or what the overall goals or objectives of the observed behavior is.

The concept of learning from observation (LFO) is first mentioned in Michal-

ski, Carbonel and Mitchell’s book [MM86], where they associate learning from

observation with unsupervised learning. In neural networks, the term ”learning

through observation” is often used to refer to the fact that the training data are

”observations”. It is true that much of the data in machine learning are based

on actual observations. Nevertheless, they typically do not involve learning tac-

tical behaviors. Even if observations are used to learn to recognize handwritten

6

characters, an observed entity is not employed to teach handwriting skills to an

observer. Fernlund [FG01] defines learning from observation as ”the adoption

of behavior through the use of data collected by means of observation.” A more

descriptive definition describes learning from observation as ”inferring concepts

by observation” [ZM00]. Here, observation is defined as the act of collecting

”characteristics of the relevant environment” [ZM00]. What an observer infers

from these observations, however, is a far different matter, and so there must

be a clear distinction between what is observed and what is inferred about a

given environment. One cannot assume that what is reported by an expert as

’observed’ constitutes knowledge that hasn’t already been asserted based on his

a priori knowledge about his task or scenario. The goal is for the agent to de-

velop, on its own, inferences about ’what it sees’ based on how the expert reacts

to his observations - not how he reports them. Therefore, observation must be

considered as it pertains to the agent - we want to record what the agent sees

through the expert’s eyes. The observations must not include expressions of what

the expert may annotate or report about his environment.

We define a single observation to be a point-acquisition of time-dependent

inputs that can be used to infer assertions about an agent’s environment. Included

here is the concept of a time-dependent input, which is often an important factor

in determining the relevance of a given observation or observation sequence (a

group of observations each made during a given time interval). Because of this,

we can use the time parameter to differentiate and make relationships between

two otherwise independent observations.

Ot =< i1, i2, i3, . . . , in > (1.1)

7

In the above equation, we define an observation Ot that occurred at time t.

The vector Ot contains fields that represent each input that was introduced to

the observer at time t. An observation sequence, therefore, can be considered to

be the set of all observations occurring within an arbitrary period of time.

Ot0−tn = {Ot0 , Ot1 , . . . , Otn} (1.2)

The assumption made here is that observations within a time interval occur

in discrete points in time rather than continuously. This is potentially a danger-

ous assumption - considering that a gap in time-steps separating two adjacent

observations can influence the overall completeness of the observation sequence.

In other words, if observations are taken at two adjacent time-points ti and ti+1,

anything that happens and ends between those two points will not be recorded.

To ensure that this does not happen, each learning scenario will be such that

occurrences within the simulation will be turn-based. Observations, then, will be

made at a rate of one per turn. This eliminates the possibility of events occurring

and disappearing between observation points.

As it pertains to our application, it is desired that a single observation include

information about both the current environment and the current actions of the

agent. This requirement is critical because we are attempting to draw a cause-

effect relationship between the two. For this research, the learning system will

develop tactical knowledge from an observation sequence by creating a certain

mapping between an observation pattern and the observed response. However,

it is necessary for this research to process these observations and, from them,

learn the knowledge that produces these relationships between the environment

and the reaction(s) of the observed expert. If we consider these observations as

a set of training examples, learning then can be considered to be the process by

8

which these examples are used to generate a knowledge-base about actions within

the given scenario. Khardon [Kha98] infers a similar definition in his discussion

on supervised learning, defining it to be an algorithm that takes examples and

produces a strategy that attempts to mimic that of its teacher. In our case, how-

ever, the learning is to be unsupervised at the input. The expert being observed,

in other words, does not directly interact with the agent, and learning is done

merely by inferring how the expert has reacted to his observations. Nevertheless,

we can define learning from observation in similar fashion:

learning from observation The use of data acquired, through observation, to

assert knowledge from which an expert’s behavior can be intimated

We can use the earlier definition of observation to formalize this definition.

To do this, we consider the learning process for an expert E to be some function

Λ of a given observation sequence OE.

Λ{OE} = AE|AE = {A1, A2, . . . , Aw} (1.3)

In the above equation, the learning algorithm designated by Λ operates on

an arbitrary observation sequence OE and outputs a set of assertions AE that, in

some fashion, describe the behavior that has been observed. As the abstraction

of ’learning’ does not imply a restriction in the format of what is learned, these

assertions are likewise free to take on various types: equalities, thresholds, rules,

etc.

In the following section, we introduce the modeling paradigm known as Context-

Based Reasoning. This paradigm allows for the construction of models of intel-

ligent behavior, as described above, that can represent the intelligence of an

autonomous agent.

9

1.2 Context-Based Reasoning

Context-Based Reasoning, or CxBR, is a technique by which knowledge engineers

can create autonomous agents able to demonstrate some tactical behavior. We

define an agent to be any system operating within a real or simulated environ-

ment. An autonomous agent, then, is a system that operates unsupervised within

that environment [TG04].

For this research, autonomous agents used to replicate observed expert be-

havior will do so using a model. A model is a construct that defines the behavior

of a given entity within a specific scenario. The model is responsible, therefore,

for all of the decisions made by the agent to which it is assigned - it is the ’brains’

of the agent. We say that an agent is using a particular reasoning method if it

is using a model constructed using that method. CxBR is a reasoning paradigm

that allows for such models to be created for use in a variety of environments and

scenarios where tactical expertise is necessary. CxBR is based on the idea that

([GA96], [SG04]):

• A situation calls for a set of actions and procedures that properly address

the current situation

• As a mission evolves, a transition to another set of actions and procedures

may be required to address a new situation

• What is likely to happen under the current situation is limited and influ-

enced by the current situation itself

The motivation for CxBR is the idea that people tend to use only a fraction

of their knowledge at any one given time [GA96]. For instance, let us consider an

auto mechanic on his way to work. While he needs to keep in mind rules of the

10

road, e.g., following speed and caution signs, avoiding pedestrians and other such

obstacles, and being mindful of the other drivers in the area, his knowledge of how

to rebuild a car’s transmission is irrelevant to his current behavior of maneuvering

his car on the road. In creating a model for this mechanic’s behavior while driving

to work, the representation of his expertise in fixing cars can be omitted. On the

other hand, such knowledge would be required for a CxBR representation of the

mechanic’s day-to-day activities. While driving, however, our mechanic will not

likely need to use his technical knowledge.

The technique of dividing the knowledge base into contexts is based on this

concept. Given any behavior to model, contexts represent exclusive behavior sub-

states which are relevant to that behavior. From them, the knowledge required

to execute a specific behavior is contained within its associated context [SG04].

While this paradigm benefits from its intuitiveness, there are other advantages

that make CxBR a viable solution, especially within the realm of tactical behav-

ior. First, decomposing a model’s behavior space - or behavioral capabilities -

into contexts enables the model to carry a very broad understanding of its task.

While this understanding might, at times, be only on a general level, a context

space representative of the entire domain in which the model is to operate, all but

guarantees that it will operate on some level of intelligence at any point during

its mission. There are many times where a certain skill may be helpful in more

than one situation. Furthermore, a certain behavior might be needed in a variety

of tactical tasks. CxBR models, in this sense, are modular. Contexts, which may

have been constructed for one specific task, can be extracted from its model and

inserted into a model for a new task in which that context is relevant. Because

of this feature, CxBR models greatly benefit from an object-oriented software

engineering approach.

11

Using CxBR, tasks assigned to the agent is encapsulated within a CxBR

mission. This mission provides for the agent both a set of goals, which represent

the criterion for completing the task, and a set of constraints specific to that task

[SG04]. Also present within a mission is a list of contexts that serve to partition

the agent’s task-related knowledge by the situations in which they apply.

A context represents a situation, based on environmental conditions and agent

stimuli, which induces a certain agent behavior specific to that context [SG04].

When an agent is executing a mission using a CxBR model, its behavior is con-

trolled by the current active context. The determination of the current active

context is made by the context-transition logic of the model. At each time step,

context-transition logic examines the current stimuli on the agent and makes

a determination of the active context for the subsequent time step. This logic

is often in the form of sentinel rules that contain the conditions for a specific

context-to-context transition; however the transition logic is not required to be

rule-based.

1.2.1 Missions in CxBR

A mission, or mission context, is an abstraction defined within the model and

assigned to a specific agent prior to run-time. Included within a mission is the

goal, any imposed constraints, and the context topology that will dictate the high-

level behavior of the agent. The goal provides the agent with the criterion for

mission termination - end-game conditions for the agent’s behavior. For example,

consider the assignment of a mission X in which the criterion for completing X

would be to satisfy conditions a, b, and c. Obviously, that goal can be represented

12

formally using a Boolean function (e.g. goalx = f(a, b, c)) and embedded within a

CxBR model to indicate whether or not the agent has satisfied the requirements

of X. The mission goal can be formally defined as a Boolean function g of a set of

environmental and physical conditions E and P that exist at the time of query.

goal = g(E(t0), P (t0)) (1.4)

In tactical missions, it is often the case where a ’goal’ cannot be defined or

is not applicable. It is not uncommon to assign an agent with the mission of

performing a certain task or behavior for an indefinite amount of time. In this

case, the goal can be construed as an end-game condition for the simulation or

scenario. If, for example, an agent representing a scout plane is assigned the

mission of performing general reconnaissance on a particular area, the ’goal con-

dition’ might be defined as the point where the agent has either been shot down

or is ordered to discontinue the mission and return to base. The constraints on

the mission provide the agent with a set of guidelines for operation. These con-

straints can be in the form of physical limitations placed on the sensing faculties

of the agent, maximum and minimum counts for scenario-specific entities such as

obstacles or enemies, or even map boundaries within which the agent is required

to operate. We can consider the constraints on the mission M to be the union of

the set of physical, environmental, and logistical constraints (denoted Tp, Te, and

Tl) placed on the agent as required by its mission. In this definition, a constraint

c provides the agent with either a constant value or a range of valid values for a

certain variable within the simulation.

constraints = {Tp, Te, Tl} (1.5)

13

While the notion of a context will be formally introduced in the following

section, it is important to mention it here, as it is an essential part of the mission.

It was mentioned earlier that to model a behavior with CxBR, that behavior must

have the quality that it can be partitioned into sections representing all possible

situations; the union of each of those partitions must represent that behavior in

full. The reason for this requirement is that the behavior or task, as represented

by any CxBR model, must be defined completely by the contexts that constitute

it. It is because of this that the mission is also responsible for listing the contexts

that are required to correctly execute the model’s behavior in that mission. A

default context is also listed within the mission, which is a behavior that the

model can execute when it is unsure of a behavior to use for a certain situation.

This context is also used as the initial context for the agent when it begins a

scenario unless a more applicable context can be selected. The mission defines

the high-level behavior of the agent by assigning it both a set of contexts and

context-transition pairs, which indicate the specific context switches that will

be allowed during the scenario. For example, consider the following two sets.

The set Cx represents a set of five distinct major contexts present in a mission

Mx, while set Tx includes all possible context-transition pairs applicable while

executing Mx.

• Cx = {c1, c2, c3, c4, c5}

• Tx = {< c1, c4 >,< c2, c3 >,< c3, c1 >,< c4, c2 >,< c4, c5 >,< c5, c1 >}

Since the context-transition pair < c1, c4 > is a member of Tx, context c4 is

a possible transition from context c1. In other words, if the agent is currently

operating in context c1, it is possible to switch contexts at a given time-step t0

to context c4, if certain conditions exist at t0. The logic used to trigger these

14

pairs is known as context-transition logic, and will be defined in the next section.

A CxBR model’s context topology CTx consist of a set of contexts Cx, along

with the set of context-transition pairs Tx, the Default Context (cDX), and the

scenario’s universal transition criteria UTCx. CTx, along with the goal conditions

and constraints, comprises mission Mx.

CTx =< Cx, Tx, cDX , UTCx > (1.6)

Mx =< goalx, constraintsx, CTx > (1.7)

1.2.2 Contexts in CxBR

In [SH01], a context is defined as a set of environmental and physical conditions

that may suggest a specific behavior or action. Within a CxBR model, however, a

context is a functional state induced as a result of these conditions. Contexts are

inserted within a mission to represent all possible conditions that can arise during

the course of that mission. This ensures that a model can exhibit intelligent

behavior no matter what occurs during mission execution.

CxBR models require that a single context be active at any one time-step

during a scenario. It is said that a context within the model is ’active’ if the

conditions implying its validity exist and the agent is using its included knowledge

to make decisions within a scenario. That context is then denoted the current

active context. The knowledge engineer responsible for creating the model defines

and creates each context. Contexts, therefore, are often constructed intuitive

subsets of the behavior to be modeled. When encoding the knowledge for these

contexts, the idea is to achieve a model that can take the same actions that an

15

expert might take when in the same situation. Consider a mission M with context

set C = {c1, c2 . . . cn}. While the division of knowledge represented by these

contexts is in the extreme case arbitrary, the knowledge engineer responsible for

constructing the model will likely partition each context in a manner consistent

with his understanding of the mission. Furthermore, the context-space might

also be partitioned so that each context is intuitively coupled with a specific task

or behavior that is necessary for the mission. This technique is often used for

tactical models in which the sequence of activities and behavior is well known

and bounded, and also where the mission itself entails the execution of a series

of sub-tasks. It is important to note here, however, that the context-space must

be partitioned in order to represent all possible situations that may exist for the

agent during a scenario - not simply to divide all possible actions that the agent

might take. For instance, consider the some high-level behavior where there are

two distinct and unrelated situations under which a behavior bi is activated. If

contexts were partitioned by action, then the two unrelated situations would share

the same context within the CxBR model. Partitioning the context-space by

situation also ensures that the behavior space of the agent is completely spanned

by the set of contexts - i.e. the CxBR model can address any situation and choose

a viable active context for the agent to act in.

Within a CxBR model, individual contexts are nothing more than conduits

between the current set of stimuli facing the agent and the behavior that will

be executed in response. When a CxBR context is declared active, it references

the appropriate behavior modules and fact-bases, which in turn determine the

correct course of action. The command for that action is then passed from the

context to the agent’s interface for execution. The context will continue to repeat

these steps every simulation cycle, until a different context is denoted as active

or the mission terminates.

16

An active context controls the agent by referencing various knowledge and

action modules. These modules are not restricted to a specific form - inference

engines, neural networks, and expert systems are all valid modules. Using these

modules, along with a local fact base in the agent interface, the active context

derives an appropriate action. A fact base is a structure that stores parameters

and inferences for a certain system, in this case the CxBR model.

The context logic for a context is composed of the control functions, knowledge

and action rules that constitute the agent’s ’behavior’ within that context. We

define FMC as the set of functions that control the agent under a specific active

context, such that

FMC = {cf1, cf2, cf3, . . . cfn} (1.8)

Furthermore, we define the set of action rules for a specific context as ARMC .

Action rules are general purpose productions used to execute certain tasks nec-

essary for behavior within a context. Action rules can use facts located in the

agent’s local fact base, or local variables in the functions that form part of FMC .

Some implementations of CxBR may additionally contain a global fact base upon

which facts accessible to all models may reside. We can define ARMC as:

ARMC = {ar1, ar2, ar3, . . . ark} (1.9)

Lastly, we define the knowledge contained by each context as a set of frames

or classes whose attributes and methods/daemons are essential elements of the

tactical knowledge required to successfully navigate the current situation. We

refer to this knowledge, for lack of a better name, as knowledge frames or KFMC .

17

Therefore, the context logic CLMC , which controls the actions of the agent while

under the control of a context MC, can be formally defined as:

CLMC =< FMC , ARMC , KFMC > (1.10)

1.2.2.1 Sub-Contexts

CxBR supports the use of other context-like structures known as sub-contexts.

Sub-contexts encompass a small functional section of a context not directly crit-

ical to the mission objectives. These structures share logical and physical sim-

ilarities to contexts, but lack many of their attributes. A sub-context is called

upon, like a function, to perform a subtask deemed necessary in the logic by a

context. Unlike contexts, however, a sub-context does not need to be active at

any given moment. Furthermore, when a sub-context has finished executing, it

is immediately deactivated and control shifts back to the context that called it.

In terms of its role, it is more convenient to think of sub-contexts as user-defined

functions that are slightly more complex and specific to the model’s mission.

However, unlike user-defined functions - whose scope is typically the context that

uses it - sub-contexts can be used by any context present within the model. This

enhances re-usability of components in the model. Nevertheless, we can represent

the sub-context by a vector function - whose input is an action rule of the calling

context.

subContext0 = f0(ARMCi
) (1.11)

18

1.2.3 Context-Transition Logic in CxBR

The selection of an active context during a scenario is controlled by the context-

transition logic. Knowing the active context and the recent stimuli on the agent,

the context-transition logic selects the appropriate context transition amongst

the pairs listed by the mission.

Context-transition logic is permitted to take any form within a CxBR model,

so long as a context is chosen at each time step. The most popular representation

of context-transition logic is with sentinel rules and universal sentinel rules.

With this implementation, the knowledge containing conditions under which

a context transition is required are called sentinel rules, or transition sentinel

rules. Sentinel rules indicate when the appropriate conditions for each applicable

transition (each context-transition pair provided by the Mission) hold true. If,

for instance, the mission provides a context-transition pair for context c1 to c3, a

sentinel rule will be present within c1 that monitors for the conditions warranting

a transition from c1 to c3. If that condition arises, the transition sentinel rule

corresponding to that pair will fire, and a transition will be instantiated. Sentinel

rule antecedents may include the fact-base of the current context and the current

status of the agent (e.g. inputs, physical state and location). While there are

often universal conditions for a transition to a given context, sentinel rules defined

to be unique to the context where they exist. This feature allows the agent to

function in more complex tactical domains where transitions to a context might

be a consequence of two entirely different motivations. When sentinel rules are

implemented within a mission Mx, the CxBR model provides a set Sx of transition

criteria that represent the conditions necessary for each transition listed in Tx (the

set of legal context-transitions). Representing the rule defining the transition

19

criteria from context ci to cj as sij, we can define the set of sentinel rules Sx as

the combination of all sij where < i, j > is a member of Tx (i.e. if < i, j > is a

valid transition within mission Mx).

Sx =
i,j3<i,j>∈Mx⋃

i,j=1

Sij (1.12)

In many tactical scenarios, there exist conditions that require the agent to

transition its context regardless of its current active context. To account for such

conditions, universal sentinel rules are encoded within the mission. These rules

hold precedence over all other transition criteria or sentinel rules.

USj =
⋃

j

usrxj (1.13)

1.2.4 A Generic CxBR Model

Figure 1.1 below illustrates a block diagram of a generic CxBR model that can be

generated using the current CxBR framework developed by Norlander [Nor99].

This framework serves as both an engine for CxBR models as well as a foundation

on which they are constructed. The agent interface module stores any sensor data

that is read-in by the agent, and includes any necessary low-level functionality

needed to implement the actions indicated by a context. When a model is run,

this module is instantiated and assigned a mission. The CxBR model controls

the agent by determining proper actions and calling the appropriate functions

defined within this interface.

As illustrated, CxBR missions define a context topology for the model as

well as valid context-transition pairs (illustrated by the dashed lines); agent con-

20

Figure 1.1: Block diagram of a CxBR model

straints, universal sentinel rules, and mission objectives (goals). They are also

responsible for identifying the default context, which is the context that the agent

will operate in at the start of the scenario. If no sentinel rules fire within the

current context and it is also found that the current context is not valid, the

model will revert to this default context.

As an example of a CxBR model, we present the iRobot Scenario developed

in [TG04]. This scenario was an exercise in implementing a CxBR model on a

physical platform. In this scenario, the mission is to maneuver an iRobot around

an open area looking for a single enemy entity.

Upon detection, the agent first determines the hostility level of the enemy. If

it approaches, consider it hostile and retreat. If the enemy retreats, follow it at

a close distance. If the enemy is not responsive (i.e., stationary), execute an end

of mission signal and retreat to the original starting position.

21

The context topology for this scenario is provided as figure 1.2. The agent in-

terface connects the CxBR model to the iRobot and defines its low-level functions

(move, turn, activate sonar).

Context Names for iRobot Behavior

• goal =< findAndRespondToStationaryEnemy >

• Cx = {c1 = locateEnemy, c2 = determineEnemyHostility,

• c3 = approachEnemy, c4 = retreatFromEnemy,

• c5 = stationaryEnemySignal}

Sentinel Rules for iRobot Behavior

• Tx = {< c1, c2 >,< c2, c1 >,< c2, c3 >,< c2, c4 >,< c2, c5 >,< c3, c2 >,<

c4, c2 >}

• s(1, 2) = foundEnemyOnSonar

• s(2, 1) = lostEnemyOnSonar

• s(2, 3) = enemyRetreating

• s(2, 4) = enemyApproaching

• s(2, 5) = enemyStationary

• s(3, 2) = enemyStoppedRetreating

• s(4, 2) = enemyStoppedApproaching

22

Figure 1.2: Context Topology for iRobot Scenario

Context Behaviors for iRobot Behavior

• CL1 = (lookForEnemy)

• CL2 = (watchEnemyWaitForMovement)

• CL3 = (pursueEnemyUntilHeStopsRetreating)

• CL4 = (retreatFromEnemyUntilHeStopsPursuing)

• CL5 = (waitWhileEnemySits, spinAroundIfSittingForF iveSeconds)

1.2.5 Knowledge Representation in CxBR

As discussed in the previous sections, the CxBR paradigm itself provides a way of

representing knowledge through the use of the agent interface, mission, context,

and context moderator objects.

23

At some level, knowledge is contained in all CxBR components. Some of this

contained knowledge is directly responsible for the action of the agent, such as the

high-level behavioral knowledge represented within contexts. Other knowledge

contained in these CxBR objects is concerned with the dynamics of the paradigm

itself, such as the context topology contained in the mission object. Regardless of

whether the knowledge is used for directly controlling the agent or the dynamics

of the paradigm, CxBR does not constrain nor specify the use of any particular

type of knowledge representation paradigm. A knowledge schema illustrating the

potential facets of a CxBR model’s knowledge-base is illustrated below as figure

1.3

The importance of not demanding a specific knowledge-representation paradigm

is in the flexibility offered to the modeler. Any knowledge or associated reasoning

mechanisms employed must be determined by the knowledge engineer responsible

for model construction. For most systems, a rule-based structure may prove to

be the most efficient. However, if learning is to be incorporated or the details

of decision-making are not easily classified in terms of rules, structures such as a

neural network may be employed. The CxBR paradigm does not limit the type or

types of knowledge representation used; rather it is a decision to be made by the

knowledge engineer, based on the requirements of the behavior to be modeled.

1.2.6 Intrinsic Low-Level Knowledge of Autonomous Agents

Low-level behaviors in CxBR models are considered to be behaviors that are

closely related to dynamic physical and behavioral characteristics of the agent.

Such behaviors may include motor skills, sensory data, what the agent perceives

24

Figure 1.3: Knowledge Schema for a CxBR Agent (reprinted from [SG04]

about its world, environmental knowledge, or even what the agent remembers

with regard to its historical perception of the world. These low-level behaviors

are fundamental in defining the agent. This is true in that the agent is defined

by the low-level behaviors of which it is capable and. It is also true in the

sense that the constraints of the behaviors help to define the agent. Consider

a behavior such as movement and a corresponding function move() to represent

this behavior. Different agent types should be characterized in distinctly different

ways by how move() defines them. For example, move() to a helicopter allows for

three dimensional movement through space, but there are certain constraints that

must be adhered to regarding maximum velocity, maximum altitude, attitude of

25

the aircraft, etc. A fish would also have a low-level behavior defined by move().

However, the maximum velocity or maximum altitude of a fish will obviously

differ from that of a helicopter.

In addition to low-level behaviors, in CxBR each agent has some perception

of and knowledge about its surrounding world. What is of particular importance

here, as in the other areas of knowledge representation employed by CxBR agents,

is the flexibility the modeler is permitted in choosing knowledge representation

paradigms. The method in which memory is implemented for a model is not con-

strained by the CxBR paradigm. A set of data structures stored in memory could

be used to allow fast retrieval of information. Alternatively, a database could be

interfaced with the model to allow storage and retrieval of large quantities of

data.

1.3 Summary and Discussion of Introduction Topics

In this chapter, a brief overview of the problem space was defined that introduced

the topic of learning from observation and the research challenges that it poses.

The following chapter describes relevant work that has been done in these areas.

Chapter 3 specifically defines the problem addressed for this research. Chapter 4

describes the methodology developed to address the problem, and chapter 5 in-

troduces a prototype implementation of this methodology. The final two chapters

are devoted to reporting relevant data, results, and conclusions from the testing

of the prototype learning system.

26

CHAPTER 2

LITERATURE REVIEW

In this chapter, other research both directly and indirectly related to the topics of

this work is presented and summarized. The research discussed here is organized

by how it is related to this work. Section 2.1 introduces some cognitive architec-

tures and behavior-modeling techniques related to the Context-Based Reasoning

paradigm. Section 2.2 summarizes an assortment of techniques used for learning

expert behavior that use neural networks in their approach, while section 2.3

outlines other techniques for learning.

2.1 Related Cognitive Architectures and Behavior

Modeling Techniques

Recognition-primed Decision Making, or RPDM, is a behavior-representation

paradigm developed by Klein [CK02]. The major focus of RPDM is to define

how experts make decisions during situations highlighted by time constraints,

uncertainty, and ’high-stakes’ [SH01]. RPDM has been used to model decision-

making processes in such arenas as route planning, computer security, and even

nursing and weather forecasting.

27

The model for RPDM, illustrated in figure 2.1, is based on two variations that

represent the level of recognition made by the expert about the current situation

[SH01]. In the first variation, the expert easily recognizes the situation he is in.

Here, the expert likely makes a decision on a course of action in a direct and

methodical manner, and there is little doubt that the course of action is correct

for that instance.

Figure 2.1: Block Diagram of RPDM Model (reprinted with permission from

[SH01])

28

In the second variation, the situation is either not immediately recognized, or

is initially recognized incorrectly. When the situation is not immediately identi-

fied, the expert will enter a diagnostic model to determine appropriate course of

action. After a course of action is taken, the expert may realize at some point

that the consequences of his actions do not coincide with the situation he has

chosen. Here, the expert would revert back to re-diagnose the situation as if his

initial choice had not been made.

The concept of RPDM shares many similarities to the Context-Based Rea-

soning (CxBR) paradigm, specifically in its relationship to sentinel rules. Like

CxBR, RPDM models put a premium on recognizing and acting upon the intro-

duction of a new situation that requires a new and immediate change in tactical

behavior. In CxBR, sentinel rules provide specific and clear-cut conditions that

indicate a change in behavior due to a new situation. This behavior is, in fact,

tied directly to that new situation through the abstraction of a context. Simi-

larly, RPDM looks for changes in the environment that indicate a new situation,

through the diagnosis phase, and then chooses a new mode of action to compen-

sate. Furthermore, both techniques employ a system that identifies and corrects

incorrect assessments of the situation. In the case of CxBR, the process of select-

ing a next-context allows for multiple iterations in order to insure that the proper

context is entered. More specifically, a context can be chosen by a sentinel rule

and then discarded if it is found that its premises are invalid. These mechanics

are not unlike the steps taken in RPDM for variation 2 - if the expectancies as-

sumed by the selected situation do not occur, that situation is discarded and a

new one chosen.

There has been significant work done, over the past two years, in developing

computational models for RPDM in the tactical behavior arena [WM]. These

29

models have been successful in distinguishing among courses of action even in

complex tactical areas such as air-traffic control and on-ground enemy detection.

In these cases, the diagnostic logic processes executed are often difficult to express

as a set of if-then rules.

Context-mediated Behavior (CMB) is a technique for developing intelligent,

autonomous agents much like CxBR. It was originally developed by Turner [Tur98]

at the University of Maine. Turner defines a context as ”. . . any identifiable con-

figuration of environmental, mission-related, and agent-related features that has

predictive power for behavior”. Through this definition, he is better able to jus-

tify the close relationship between the identification and selection of context and

the knowledge used when acting within that context. He argues the relationship

between context and decision-making processes, for instance citing the ”gambler’s

fallacy” of a person skewing the probability of a given outcome because of his

recent observations of previous outcomes [TK74].

Much like CxBR, Context-mediated Behavior partitions the knowledge space

of an expert into ’contexts’ which outline implicitly when that knowledge is ap-

propriate for use. In CMB, the vehicle used to represent this knowledge is the

contextual schema, or c-schema. A c-schema is a frame-like abstraction that

contains several pieces that define the parameters for entering the context and

the behavioral knowledge to employ when the context is active. The context

description of the c-schema contains three fields - ’actors,’ ’objects,’ and ’descrip-

tion.’ These three fields are used to define the situation under which the context

is valid by providing values for ’how much’ each feature is expected within that

context. By doing this, CMB models are able to use these context descriptions

to assess their context at each time step. Context descriptions can also be used

by the behavioral knowledge within their respective c-schema to further enhance

30

its models situational awareness about his environment. The standing orders of a

c-schema define the appropriate actions to take whenever its context is entered or

exited. Similarly, the events field within a c-schema defines unanticipated events

within a certain context that must be responded to and provides the knowledge

to make an appropriate response. The goals field gives direction to the overall

behavior of the agent when it is applying a certain c-schema. This field provides

the agent with a general direction to follow when executing actions. Finally, the

actions field provides the agent with a list of various moves that it can employ to

reach the goals outlined in his current c-schema.

CxBR models are in fact quite similar to those modeled using CMB. In rep-

resentation, CMB uses several structures to represent knowledge within each c-

schema, whereas in CxBR knowledge representation is not as well-defined. In

CxBR, the models are more rigidly structured at the mission level. Absent

in CMB models, a mission context provides structure in an effort to control

the context-flow rather than the execution of individual contexts. Furthermore,

CxBR model design places a premium on separating the lower-level contextual

knowledge from the contexts themselves, emphasizing the notion that contexts

are cues for behavior, and do not also embody the actual behaviors themselves.

This line of thinking follows closely with the ideas of Brezillon [BS97], who in his

work separates context from action through the use of proceduralized contexts.

Soar is a cognitive architecture developed at Carnegie Mellon University in

by Laird, Rosenbloom and Newell [LR87]. It was at first an attempt to de-

velop a Unified Theory of Cognition [LR95], and has since been used to develop

robust, high-fidelity behavior models in systems from rotary and fixed-wing air-

crafts [JK99] to computer-game AI bots [WJ02] and models that perform natural-

language processing.

31

The driving force behind all Soar models is the production rule. These rules

are responsible for allowing models to reason about its environment, make changes

to both its short and long-term memory, and to select appropriate actions based

on relevant stimuli. The Soar architecture has a unique rule-firing mechanism,

based on the Rete Algorithm, that identifies when each rules’ conditions are

met. This mechanism allows for rules in a Soar model to activate ’in parallel’,

meaning they are executed in the same production cycle. Soar production rules

are categorized by their specific function within the model. Elaboration rules, or

elaborations, are responsible for updating the Soar agent’s situational awareness

by editing working memory with new information. The other two rule categories

are both related to the abstract operator structure. Operators are the structures

within Soar that are responsible for allowing the agent to react and make actions

either directly or indirectly in response to his environment. Two types of rules

are associated with operators: operator proposal rules are Soar rules that allow

the agent to select from (or set preference values to) a list of possible operators.

Operator application rules are then responsible for executing the operator that

has been selected as a result of the firing of the operator proposal rules.

While operators are often responsible for making a direct response to the

outside world, operators are also involved with the selection of agent substates.

Agent substates serve to decompose the action/behavior space into goal-defined

structures from which the agent can execute more specific operators relevant to

that goal. Substates exist underneath the agent’s main state (representing its

presence within whatever global task it is participating in), and can also exist

within other substates creating a hierarchy structure.

An analog to this substate-hierarchy is also present in the ACT-R theory of

cognition [And96]. Within ACT-R, these structures are identified as subgoals.

32

When a goal in ACT-R is identified, the requirements to meet that goal are

themselves partitioned into subgoals which, if achieved, will complete the top-

level goal.

It is this hierarchical organization of goal-oriented templates that draws the

biggest comparison of the Soar (and ACT-R to some extent) cognitive archi-

tecture to the modeling paradigm of Context-based Reasoning. Within CxBR,

as described in Chapter 1, contexts exist to partition the behavior space just

as substates do within Soar. Furthermore, context-transition logic exists within

CxBR to select an appropriate active context at each time-step. This is a close

analogue to any operator proposal rules within a Soar model that maps to a

substate-activating operator application rule. The nature of these operator pro-

posal rules, in conjunction with the state-information and relevant task and agent

constraints, help to indirectly form a ’substate-topology’ which is similar to the

context-topology that is defined by CxBR models’ transition logic, mission/agent

constraints and goals.

This section introduced four paradigms for behavior representation which are

related to Context-Based Reasoning. In each, behaviors are partitioned in some

fashion (c-schemas in CMB, substates in Soar, etc.) and selected when applicable

to the situation. While the CxBR paradigm is instead used to model behaviors,

it is this selection process that is central to the theme of this research.

33

2.2 Approaches to Learning from Observation Using

Neural Networks

Henninger [Hen01] describes the design of a neural network to more accurately

predict low-level behavior of vehicles in a distributed simulation (MODSAF).

More specifically, her work involved predicting Abrams M1 tank positions while

moving by using a neural network to extrapolate an updated location accurately.

Her model alleviates network bandwidth requirements by allowing a system to

accurately predicting tank positions, thereby reducing its need to frequently query

the simulation.

In a distributed simulation with many ’nodes’ (stations that control individual

or several entities), network bandwidth is at a premium. Because of this, it is

infeasible for a node to be constantly updated with state information. A dead-

reckoning algorithm is typically used to allow each node in the simulation to

predict the positions of each vehicle. However, since dead-reckoning is merely a

linear approximation of a moving vehicle’s position, its predictive accuracy can

be quite poor in a simulation where vehicles are constantly changing speed and

direction.

Henninger uses a feed-forward, backpropagation neural network to predict

entities’ location in the simulation. By doing so, she significantly improved upon

the accuracy of the dead-reckoning model. The neural network achieves this

accuracy by recording previous activity of the tanks and learning how the position

of the tank is affected by its previous positions. After learning, the network uses

a history of previous tank-position updates to predict its current position. This

model proves to be a significant improvement over a straight dead-reckoning

34

algorithm, which simply extrapolates the previous position and heading of the

tank’s last updated position to predict it’s current position.

While relevant to this research because of the learning aspect, Henninger’s

work is strictly relevant to low-level behavior. All of the learning done for her

research centered around predicting positional data, there is no hierarchy of be-

havior that is considered as in this research.

Gerber [Ger01] employs a Template-Based Interpretation (TBI) engine that

predicts tank-position information by first selecting its inferred behavioral con-

text. TBI is a method of inferring tactical intent that was developed in [GG00].

In this method, behaviors are represented by templates that contain the expec-

tations of what an expert would do if executing that behavior. When identifying

the presence of a specific behavior compete with each other. Attributes in tem-

plates are referenced and marked when observed. Since TBI will be used for this

research, a more thorough description of the algorithm is included in chapter 4.

In Gerber’s work, the behaviors to be identified were encapsulated as CxBR

contexts. He used a neural network to learn and modify the attribute weights for

each template, where each template represented a specific context for a tank’s

path . Through this series of modifications, Gerber’s model is better able to

correctly identify the current context of the tank than with pre-existing template

definitions.

While still confined to tank-driving behaviors, Gerber’s work is highly rele-

vant to this research. He decomposes the behavior into a set of contexts which

are represented using TBI templates, and attempts to optimize the identifying

weights associated with the templates using a learning algorithm. By contrast,

this research assumes an accurate definition of a set of context templates and

attempts to learn the cues that result in a specific context selection.

35

Sidani [SG00] introduces a framework for learning implicit expert knowledge

through observation within a simulation. This framework operates by combining

symbolically represented explicit knowledge with implicit knowledge represented

using a multi-layer neural network, into a structure he denotes as a SAM (Situa-

tional Awareness Module). The goal of the hybrid structure of SAM is to be able

to handle learning complex recognition patterns of the expert. These patterns

may even be temporal in nature, varying across a sequence of events in time.

The system works by partitioning the learning space into situations where

certain behaviors are expected, such as the contexts described in chapter 1. In

Sidani’s work, these situations are identified by a global symbolic reasoner. This

module is assigned the task of assessing the overall situation facing the expert,

and selecting the knowledge unit most appropriate.

The knowledge unit selected, then, learned more primitive (or low-level as de-

fined in this text) knowledge by employing a set of multi-layer neural networks.

One trained network is used for each slice of knowledge. By doing this, each

network is confined to learning lower-level knowledge confined to particular sit-

uations. Training patterns, therefore, can focus on implicit cues and skills that

maximize the utility of the neural network.

Sidani’s developed framework is quite relevant to this research because of its

attention to partitioning knowledge bases by situation. However, the research

presents almost the opposite approach. More specifically, here it is assumed that

the low-level behavior (denoted as ’primitive’ in [SG00]) is defined explicitly and

it is the actual situation identification knowledge that is learned using a neural

network. This concept will be introduced in further detail in Chapter 4.

Johnson [JD02] describes a Fuzzy ARTMAP-based system that allows computer-

generated forces to gradually learn behavior on-line during a real-time simulation.

36

Fuzzy ARTMAP [CR92](or FAM) is reported to have several key benefits, includ-

ing a relatively few number of parameters and the ability to extract and easily

explain the results of the learning.

The neural network is initially trained off-line prior to simulation-time using

data that can either be extracted from the simulation or created by-hand by the

knowledge engineer responsible for the model. With this data, Johnson’s algo-

rithm determines the appropriate parameter values for FAM so that a maximum

classification-accuracy is achieved in the testing set.

After off-line training, the FAM model is embedded within a simulation as

a computer-generated object (CGO) that imitates the inferred behavior learned

from the training data. The online-learning phase of this research then com-

mences when the simulation starts. At this point, all decisions for the new CGO

are made by the trained FAM model. Training now occurs incrementally after

each decision-step. If the CGO reports that the FAM model has made a favorable

decision, that decision’s associated pattern is immediately presented as a training

pattern thereby strengthening FAMs ability to correctly respond to those type of

decision patterns. However, if a poor decision is made (i.e. the results of FAM’s

decision at that time-step are unfavorable), FAM evaluates what would have been

the second-chosen decision for that input-type and uses that pattern for training.

Carpenter and Tan [CT95] describe a technique for extracting individual rules

from a trained FAM neural network based on their confidence factor. The authors

refer to a fuzzy rule within FAM as the mapping between a vector input cluster

and its output pattern. The goal of the research was to extract these fuzzy rules

through techniques they call pruning and quantization, thereby giving the learned

network a set of usable, readable rules that can be extracted and used.

37

Rule pruning is the process by which unnecessary and misleading input clus-

ters are removed from the trained neural network. To begin this process, each

input cluster in the neural network is assigned a confidence factor that represents

its usage frequency within the network along with its accuracy in output pre-

dictions. Fuzzy rules that are assigned the lowest confidence values are removed

from the network based on the specifics of the pruning policy used.

After pruning is finished, the fuzzy values in each rule are quantized to allow

for the analog description of the rule to be re-expressed as a logical statement. To

do this, the range of values for each field is divided into quantization levels. These

levels define a set of features associated with each field (i.e. ’high’, ’medium’, and

’low’). Each analog value within the fuzzy rule is then re-expressed in terms of

the quantization level in which it falls.

2.3 Other Approaches for Learning from Observation

Van Lent and Laird [LL01] outline the development of KnoMic, a system that

extracts knowledge from an expert through observation and then generalizes this

knowledge in the form of rules that can be used by an agent to perform a similar

task to that of the expert. Whereas Henninger’s work focused on learning low-

level behaviors, KnoMic is assigned to learn how to execute specific and detailed

tasks, like flying an airplane to a certain destination and in a certain fashion.

The authors refer to these types of tasks as performance tasks.

KnoMic was developed as a derivative of two previously-developed techniques.

The first technique, known as behavioral cloning, also attacks the problem of

learning performance tasks. The idea behind this technique is to exactly mimic

38

an expert’s actions in performing a very specific and well-defined task. Behavioral

cloning revolves around building decision trees which classify appropriate control

values based on the values of the sensor inputs to the system during specific

stages of the performance task. For example, 36 decision trees would be created

for an agent that is learning to control 4 four flight parameters during a 9-stage

performance task.

While this technique has shown to be effective in its ability to duplicate expert

behavior in a single task, it is easy to see that the same learned behavior would

not be sufficient should the environment or task be modified in a similar domain.

For example, an agent trained in a flight plan from Orlando to Denver would

not be able to use his learned knowledge effectively in a trip from Orlando to

Boulder, much less from San Francisco to Pittsburgh. Furthermore, the way

that knowledge is represented in a behavioral cloning system’s decision trees is

extremely limited in scope and cannot be generalized in any form so that it might

be used in other systems. KnoMic’s other parent system, known as OBSERVER,

represents knowledge in terms of a specific scripting language that is flexible to

generalization (i.e. the system accepts wild-card values and ranges). Its limitation

is its ability to learn complex behaviors such as the flight plan example handled

well using a system employing a behavioral cloning learning scheme. KnoMic

represents knowledge through scripts like OBSERVER, but the operators that

use those scripts can be applied over multiple time-steps and in conjunction

with other operators. This facet can lead to a hierarchy of operators operating in

parallel, allowing for the system to be more reactive to changes in the environment

and to better represent the knowledge base used by the expert. Because of this,

much more complex tasks can be learned using KnoMic. Furthermore, the use of

scripts also gives KnoMic a more flexible representation scheme, the best trait of

the OBSERVER system.

39

As follow-up research to van Lent’s KnoMic system, Tolga Konik’s work

[KL04] involves the learning of goal hierarchies using a technique known as In-

ductive Logic Programming (ILP). In the observation mode of this algorithm,

the expert is again asked to execute a task while annotating goals that he/she

has completed during the task. The learning algorithm is then responsible for

learning the selection and termination conditions of each goal (when the behavior

to execute each goal should be turned on/off) based on the situations the expert

is presented and the annotations made in response to those situations.

Figure 2.2: Konik’s Learning from Observation Framework (reprinted with per-

mission from[KL04])

The ILP algorithm used for this research is called inverse entailment, a tech-

nique defined and detailed in [Mug95]. One significant advantage of using ILP for

learning is its tolerance for both noise within the training data and the ability to

40

cope with training data where the expert has made an action that is inconsistent

with actions he has made at a previous time-step.

The target architecture for Konik’s work is Soar, which has been reviewed

earlier in this chapter. The goal conditions referred to in [KL04] draws analogies

to the concept of context-transition logic, just as the operator abstraction in the

Soar Architecture is similar in function to a CxBR context.

Using an array of Bayesian Networks, Laskey [LW04] describes a system by

which human-behavior models can be employed to detect security threats im-

posed by authorized users of computer information systems - situations where

users attempt to access portions of the system for which they do not have an ap-

propriate level of clearance. The networks employed are defined as Multi-Entity

Bayesian Networks (MEBNs) - extensions to generic Bayesian Networks. This

extension allows the network to add arguments to the network known as MFrags

that have a significant impact at building a hypothetical, probabilistic case for a

particular action sequence of a user model.

In Laskey’s implementation, seven MFrags are used that represent each poten-

tial query and document retrieval command that can be entered by an authorized

user. Each of these MFrags is arranged to construct a model representing a single

secure query by one individual user. The model is then able to provide probabil-

ities of the users likelihood of malicious intent based on these factors. Learning

in this system occurs every time an individual makes a retrieval or query. When

this happens, the probabilities associated with the MEBR are updated to reflect

the current action.

The work by Rabiner [Rab89] contains a description of both the Markov Chain

and Hidden Markov Model (HMM). Although the applications Rabiner selected

for his paper do not directly apply to learning from observation, it is possible

41

that a properly trained HMM can output state/context transition data, based on

agent observations. This data, in the form of HMM event probability matrices,

can be analyzed in parallel with sensor data to extract transitional rules.

Before introducing the HMM, it is important to first understand the concept

of a Markov Chain. A Markov Chain is essentially a collection of abstract states

and events that stimulate a change in states that is represented as a directed

graph. An example of a Markov Chain is provided in figure 2.3 below.

Figure 2.3: A Markov Chain

The nodes on this chain are known as discrete-time states, and each directed

edge is known as an event, or a transition between states in the chain. Each

transition is the means by which the state q1 at time n becomes a new state q2 at

time n+1. Note that transitions can occur to and from the same state, and states

do not necessarily have to have a corresponding event that leads them directly

to every other state in the chain. For example, in state s3 there is no event that

will stimulate a direct transition to state s1.

A Markov Model is simply a probabilistic way by which to represent a given

Markov Chain. Note that in all of the states in Figure 2.3, multiple events are

possible that will cause a transition to different states in the chain. The act of

42

choosing, or perhaps predicting, the event that will occur prior to a subsequent

time-step, is the job of the state-transition probability matrix. This matrix con-

tains heuristic values that can be conceived as probabilities that each specific

event will (or should) occur. Consider a Markov Chain with three states and the

following state-transition probability matrix:

A =

e11 e12 e13

e21 e22 e23

e31 e32 e33

(2.1)

Here, e11 represents the probability that, in the current time-step, the state

should/will change from state 1 to state 1. e23 is the probability of a change from

state 2 to state 3, and so on. If there is no possible transition to a state a to a

state b, the value eab will be zero.

In a Hidden Markov Model, the observation that is output from the system

is itself another probabilistic function of the current state. The urn-and-ball

example can more clearly illustrate this concept. Consider a set of n urns that

each contains a different distribution of colored baseballs, where at each time

step one ball is selected from one urn and then placed back into the urn. If that

output of the system is to predict what color ball will be selected from the urn,

the prediction will be different depending on which urn the ball is removed from.

This concept is extrapolated to a general HMM by considering the output of the

system to be the color of the ball selected, and each urn to be a state in the

Markov Chain.

Wu et al [WP99] introduce the Baum-Welch Re-estimation algorithm for Hid-

den Markov Models. Though it is in the context of speech-recognition, the al-

43

gorithm uses a module that trains an HMM to predict a specific state-sequence

and observation response to the sensor inputs it receives.

The Baum-Welch Algorithm attempts to generate a model that maximizes

the probability of a certain observation sequence given a time-valued input. Two

values are generated to initiate this process, α(t) and β(t). α(t) is the joint

probability that the model will arrive at a specific state i at time t and that it

will have generated the correct partial observation sequence from time 0 to time t.

This probability is known as the forward probability. The backward probability,

β(t), is the probability that the correct partial observation sequence is generated

in reverse for inputs starting at the end-time T and ending at the current time t.

After α(t) and β(t) have been computed for the current time-step, the HMM

parameters and transition matrix can be updated based on those values. The

number of epochs that the input sequence must be presented to the model to be

properly trained is unknown, and is a topic for future research and/or experi-

mentation.

Pineau and Thrun [PT02] introduce the concept of a POMDP and Hierarchi-

cal POMDP in the context of controlling the high-level behavior of an autonomous

robot designed to guide and assist the elderly.

Partially Observable Markov Decision Processes (POMDP’s) are designed to

extend the traditional Markov Decision Processes (MDPs, used in Markov Models

discussed earlier in this review). They are capable of making informed decisions

in domains where state uncertainty is probable. While containing a set of states,

actions, and observations, a POMDP model is also capable of high-level problem-

solving, and so also includes a heuristic for evaluating action consequences and

rewards. Unlike MDP models, POMDP models choose action based on belief

44

of the current state rather than the observed state, because the observations

themselves are vulnerable to noise.

The concept of Hierarchical POMDPs is also introduced in this paper. Be-

cause of the fact that the current state will not always be completely observable,

hierarchical POMDPs involve the partitioning of the action space instead of the

state space to provide a more robust problem solution set to the agent.

Here, the actions that are available to the agent are divided into categories

that serve as smaller POMDP tasks, which themselves are governed by what the

authors call a local policy. The execution of a high-level task now becomes an

exercise in extracting all of these local policies and forming a global policy - one

that will govern the actions of the agent when it performs the assigned task.

Kocabas et al [KK95] describes a system by which agents that can explain

their own learned actions. The authors indicate that most of the previous research

on agent explanation has been based on static knowledge instead of machine

learning, which was part of the motivation for their project.

Explanation-based Learning (EBL) is a machine learning technique that has

previously been used in smaller domains for learning concepts, control rules, and

planning. In [KK95], the technique is used to create autonomous agents to serve

as opponents and targets in a real-time air simulation. For such domains, they

explain, acquiring knowledge for such a task without machine learning is nearly

impossible.

RSIM is the name of their integrated system designed in [KK95] to learn

the tactical behavior needed for these targets. Within RSIM is a learning and

explanation subsystem which is also described in the text.

The learning and explanation subsystem is a rule-based system where action

rules are learned in real-time by querying the trainer during the simulation. When

45

a situation arises when action is required, the subsystem searches its rule database

for an appropriate response. If no rules match the current situation, the trainer is

asked for an appropriate action and the reasoning/explanation behind the choice.

If a similar situation occurs in the future, even in the same run of the simulation

(the rule is stored in what the authors call dynamic memory), RSIM applies the

action described by the rule and provides the included explanation.

Yairi et al [YN00] consider a completely different direction to learning by ob-

servation. The concept of a state-space, in earlier work, has always been provided

to the agent prior to simulation-time. Learning, therefore, is an exercise in opti-

mizing state-to-state actions and transitions. Manually defining the state-space,

however, is often very difficult to do when it is complex, thereby making the task

quite inefficient and tedious. Unfortunately, the opposite is also true. Allowing

the agent to construct the state-space from scratch, the authors contest, has also

shown to be very inefficient.

The concept of reconstructing a provided state-space during simulation-time

is introduced in this report. Here, a state-space definition is constructed a priori

and provided to the agent. A state-action mapping is learned using a tech-

nique known as Q-learning. After the mapping is achieved, the state-space is

reconstructed that groups similar behavior experiences (a behavior experience is

defined by the authors to be an ordered triple of the sensor input, action taken

and behavior outcome) and generalizes them to a state. After the state-space

has been reconstructed, the Q-values (found during Q-learning - though the al-

gorithm applies when Q-learning is combined or replaced with another method)

for the initial state-space are converted for the reconstructed state-space.

Q-learning is a reinforcement learning method, intended for domains that can

be modeled using a Markov model (such as the one illustrated in figure 1). The

46

algorithm for Q-learning involves the updating of an SxA matrix of Q-values,

where S is the number of states in the Markov chain, and A is the number of

actions possible at each state. At each state s′, the agent chooses an appropriate

action a′ (which is based on applying a function involving Q-values from the

previous time-step). That action typically will transition the agent to a new

state, and the environment will typically provide some type of feedback to the

user - feedback which can be construed to the form of a reward value for taking the

action. That reward value is then used to update the Q-value that corresponds

to taking action a′ at state s′.

When state-spaces are reconstructed, the authors claim that three different

criteria can be used as preference for considering behaviors ’similar’. These are

(1) goal achievement, (2) reward obtained, and (3) sensor-input change. While

each of these three criteria come with it different advantages and disadvantages

(optimality vs. efficiency, etc.), the authors attempt to combine each of the

criteria by considering what they call entropy minimization of multiple behavior

outcomes. This is executed by calculating the ’information entropy’ for each

behavior in a classified state, applying a weight to each, and summing to obtain

a Weighted Sum of Entropies (WSE) for the state being evaluated. Minimizing

this sum, the authors claim, is equivalent to finding states whose corresponding

behavior outcomes are most similar (thereby creating the most accurate state-

space).

The act of minimizing that sum, of course, is a much more difficult task than

just taking a derivative. Because of this, the authors impose an algorithm that

gradually decreases the WSE for each state. This process that decreases the

exploration space dramatically and provides an acceptable state-space for the

47

agent, however it will not in non-trivial cases be able to produce the optimal

solution.

Takeda et al [TA00] define a new Q-learning algorithm, Continuous Valued

Q-learning (CVQ) in an attempt to handle some of the shortcomings and inaccu-

racies encountered when applying standard Q-learning to a Markovian domain.

The authors describe the major problem with standard Q-learning to be its

reliance on well-defined action and state-spaces. In a complex domain, it is

argued, it becomes very difficult to provide the agent with an appropriate state-

space a priori. Attempting to represent Q-values by quantizing the state and

action spaces into a finite number of ’cells’ that contain identical state and action

values, the authors argue, is a generalization technique that is acceptable but runs

into the problem of poor efficiency with a small cell-size. Other methods - such

as neural networks and statistical techniques - perform a similar task, require a

large set of training data often unavailable or time-consuming to prepare.

Introduced in [TA00] is Continuous Valued Q-learning. In this technique, the

same general algorithm of Q-learning is applied. However, a critical difference is

in the way states and actions are represented. Consider a system with n sensor

inputs and m actions available to the agent at each time-step. The CVQ method

uses an n-dimensional state-space that can be visualized as a grid of n-dimensional

hypercubes representing a continuous state-space. In this continuous state-space,

each vertex corresponds to one of n representative states. A perceived continuous

state x, then, can be considered as a weighted linear combination of each of the

representative states. The weights correspond to how a representative state xi

influences the continuous state x.

New Q-value functions and action policies are also redefined in the CVQ

method which takes into account the weights found using the method described

48

above. This method is shown to be both more successful and ’smoother’ (smoother

in terms of robot movement) than standard Q-learning in the experiments per-

formed.

Laurent and Piat [LP01] discuss a parallel Q-learning procedure for automat-

ing the control of a micro-manipulator system with two degrees of freedom. The

agent in question is assigned the task of maneuvering several small blocks across

a glass platform. The immediate problem that the authors encountered was the

potential size of the state-space if each of the objects on the table were consid-

ered. According to the text, representing n objects on a table using a Markov

diagram would require a 2n-dimensional state space, which would be too large

for effective learning to occur.

Their solution was to create what they call a parallel Q-learning algorithm.

In this algorithm, all objects on the table are assumed identical in terms of their

size and movement. Because of this, the Q-values generated assume identical

rewards for two objects that are pushed in the same manner.

The algorithm takes this into account, and generates a set of n Q-values based

on the current state for each of the n objects on the table. The maximum Q-value

generated, then, is chosen as the global strategy (action taken) for the agent at

that time step. A theoretical analysis was performed on this algorithm and the

result is that this method will converge to a local solution that is often acceptable

in complex domains such as this.

Fernlund [FG01] incorporates the concepts of genetic programming and Context-

Based Reasoning to generate his technique of learning from observation. More

specifically, Fernlund evolves CxBR models - models of agents exhibiting tactical

behavior - using genetic programming (GP). In this algorithm, the observation

49

takes place on a human performing the very task that the program is attempting

to duplicate in a CxBR model.

The observational phase of the learning, for this approach, takes place prior

to run-time and results in a recorded set of data that is used to generate fitness

values. An evolved model is evaluated by simulating its behavior and comparing

its outputs to those generated by the human.

The learning that occurs in this algorithm takes place on three levels: con-

text, transitional, and sub-context. At the context level, models learn what

environments constitute a context and what actions should be associated with

it. In a driving scenario, for instance, a program should be able to distinguish

between interstate driving and city-street driving. Coupled with this idea is

learning transitions between contexts. Here, the learning mechanism should de-

velop recognition of when the observed expert has changed his major context.

This recognition would then be translated to sentinel rules in the model. Learn-

ing at the sub-context level involves learning how to execute the various actions

associated with each context.

One problem with a scheme of this type is its scope. By expecting a GP

to evolve programs that have no knowledge of either the context domain or the

environment, one opens up a search-space many dimensions larger than neces-

sary, especially when the task to be learned is at least somewhat familiar to the

developer. By providing the model with at least an initial set of contexts on

which to evolve, we can shift the focus of the learning to that of transitions and

sub-contexts, knowledge that often separates a novice from an expert.

One of the advantages of a CxBR model is its intuitiveness, in terms of its

logic structure. Contexts are defined as logical pieces of a tactical mission, and

transitions are rules that an expert would most likely provide as reasoning to

50

proceed from one context to another. Genetic programming techniques, how-

ever, do not hold these qualities in the same esteem. Individuals in a population

are evaluated on how well they score on a fitness function - a function tied to

performance, not clarity of design. In a system such as the one presented by

Fernlund, it is conceivable that the GP technique produces models that do not

resemble any CxBR models that a typical systems engineer might produce. For

example, contexts and transitional rules might be expressed in terms of variables

that do not directly translate to one physical object or idea. They might, instead,

represent some random combination that only makes sense within the chromo-

some itself. Though these models might indeed represent the most-fit program

based on the fitness specifications, they abandon the spirit of CxBR - readability

and modularity.

As in Fernlund’s work, the approach in Gustafson [gH01] uses GP to evolve

models using a technique known as layered learning. In layered learning, problems

are presented to a population individually, and a new problem is presented only

after the population has successfully evolved to solve the previous one. This

technique is in contrast to a standard GP system where a population is asked

to solve a set of problems concurrently, complicating the fitness function and

increasing the search-space of the algorithm.

Gustafson develops autonomous, intelligent soccer players that compete on a

team with other agents. To develop this behavior, it was deemed necessary to

evolve knowledge of the tactics involved from the bottom-up - much like a coach

would teach young children the very basics of soccer before moving on to strategy

and the various tactics of the game. In this paper, these basics are referred to as

ADFs (automatically defined functions).

51

ADFs are code segments that evolve at the early stages of the layered learning

process, and are later used as building blocks for models learning higher-level be-

havior. For example, consider the action of heading a soccer ball. This fundamen-

tal skill is learned independently of an actual soccer match, but is used throughout

a match nonetheless. The same concept holds true for this GP scheme: the ADF

of heading is learned in the early stages, and stored as a code-segment and re-

used during latter learning stages - stages where match-specific behavior is being

observed.

Pentland and Liu [PL99] propose that human behaviors can be modeled using

a Markov chain of dynamic activities, represented by Kalman filters, and then

be used to predict future actions based on observations of a human’s preparatory

activities.

According to the authors, simple human behaviors can be represented using

a simple dynamic model known as a Kalman filter. A Kalman filter is, basically,

a next-state estimator whose inputs are the current state, sensor measurements,

and a Kalman gain matrix that constitute a vector of scalar constants that apply

weights to the inputs. However, the authors note that human behavior cannot

be accurately modeled by using one of these filters. A multiple model approach,

therefore, is proposed where several filters are connected using a Markov chain.

A human is then observed to be behaving in one of the states in that chain, and

the appropriate filter is applied to predict future behavior.

In this type of setup, the need to predict when the human will change states

within the Markov chain. In dealing with this, the authors present a Markov Dy-

namic Model (MDM). A MDM is similar to a Hidden Markov Model (described

earlier in this review), but instead of generating state-transition probability ma-

52

trices based on observations, they are based on the prediction errors generated

by the Kalman filter output of the current state.

Using this approach, the authors were able to achieve 95% accuracy in pre-

dicting human behavior in an automobile driving scenario. However, they do not

discuss how the Kalman filters or transition probability matrices were generated

except that they were designed based on experimental data. In other words, no

automated learning was performed in this work.

Seymore and McCallum [SR99] outline a project to extract information from

the headings of research papers using a Hidden Markov Model. Many topics were

addressed in this paper, including the comparison of using multiple HMM states

per information class, and how best to utilize data of different types (labeled,

unlabeled, ’distantly labeled’). However, most relevant to our project was the

sections of the paper devoted to the automatic generation of an HMM structure.

To generate a model automatically from labeled training data, the authors

begin by assigning each word in a labeled paper and assigning it a state. A

new state is then created for the next word, along with a transition to it from

the previous state. This process will continue until the training data has been

exhausted, at which time state merging can begin. The authors identify two

types of state merging, named neighbor merging and V-merging.

In neighbor merging, states that are connected by a transition and share a

common label are merged into one state with a self-transition loop (transition

from the state to itself). V-merging, on the other hand, merges states that share

a transition either to or from the same state, and also share the same label. For

example, if state A and state B both contain the label ′X ′ and point to the

state C, they would merge using this technique. After the merging is complete,

the model structure used to predict the actual data is learned using a Bayesian

53

model-merging strategy that attempts to maximize a balance between fit of the

model to the data and the size of the model.

Oliver and Pentland [OP00] describe a system capable of learning driver ma-

neuvers from observation. Known as SmartCar, this system collects inputs - in

real-time and from real vehicles - of both the vehicles movement parameters (ac-

celeration, brake, steering angle, etc.) and the surrounding environment (road,

other drivers, etc). With these inputs, the SmartCar system is used to predict

seven different simple maneuvers that drivers typically make while driving. To

accomplish the learning, the authors construct HMMs for each of the seven ma-

neuvers that the SmartCar system is required to recognize. More specifically, a

CHMM - or Coupled Hidden Markov Model - was developed and used for this

project. A CHMM allows for multiple chains to be used and for interactions to

exist between them. In the case of SmartCar, separate HMMs were required to

represent an interaction between the other drivers on the road and the subject

driver. The authors found that SmartCar was able to recognize and predict a

maneuver nearly one second prior to when signals designating that maneuver

occur.

Khardon [Kha98] provides a formalization of supervised learning procedures

and how they can be applied to rule-based paradigms in both a flat and hierar-

chical setting (i.e. the layered learning technique introduced in [gH01]).

Khardon first provides a model on which to base his formalizations. This

model is a push-button game that embodies some unknown state machine, where

some unknown ’goal’ state must be reached (note that a context-based model

can easily be extrapolated to mirror these requirements). He then defines what

the student agent (the thing doing the learning) can do in terms of collecting

information and interacting with the environment and provides definitions of

54

terms based on this syntax. Using this setting, Khardon produces a proof that

learning a rule-based strategy (a gambit by which to proceed from a certain state

to a goal state) can be achieved in polynomial time.

All of the literature introduced in this chapter provides meaningful insight

into the state-of-the-art in behavior modeling and machine learning. However,

there is a significant gap in this literature in that little work has been done to

address the learning of high-level behaviors. While the work by Konik [KL04] is

the most relevant, his learning algorithm required the expert to identify when a

sub-task was completed and a new one begins. In this research, no direct contact

is made between the expert and observer, nor is any indication given when a

context transition is made.

Gerber’s work involves the learning of context-template weights, however, it

was confined to the low-level task of driving a tank. Contexts were implicitly

distinguished by only the features of its path and not a result of high-level plan-

ning on the part of the expert. In this work, a shift in context is representative

of a clear tactical decision made on the part of the expert which is identified

unobtrusively by the system.

By contrast, this research is distinguished by the current state-of-the-art in

the following areas:

• Low-level behavior/goal transitions are identified automatically by the sys-

tem

• Learned behavior is is not limited to lower-level behaviors such as maneu-

vering a tank or navigating a room

• Learned behavior can ultimately be expressed as explicit sentinel rules that

define the conditions for each low-level action switch

55

CHAPTER 3

PROBLEM DEFINITION

The purpose of this chapter is to define the purpose, scope and contributions

of this research. In section 3.1, we review the general topic of learning from

observation and the research opportunities that relate to this work. Section

3.2 details the specific problem addressed by this research, and postulates the

potential contributions that the results of this work can provide. The final section

contains the specific hypothesis to be tested. The system design to test this

hypothesis is described in detail in Chapter 4, and the prototype implementation

of this design is provided in Chapter 5.

3.1 Research Challenges

This research can be best described as an exercise in learning from observation.

While Chapter 1 defines the term, the concept of implementing a system that

’learns from observation’ is ambiguous at best. What is it that we are attempting

to learn, and how are we going to go about observing it? How much interaction

does the learning system have with the expert? What aspects of the expert’s

stimuli and response patterns do we intend to observe?

56

As shown in the previous chapter, work in learning from observation addresses

the task of learning a variety of different patterns and tasks. While work by Hen-

ninger [Hen01] addressed the task of learning low-level, task-specific movement

models of tanks, Hovland [HM97] was interested in learning the task of insert-

ing pegs into holes. Other research involved LFO challenges such as navigating

an airplane [LL99], driving a car [FG01], and even the seemingly simple task

of exiting a room [KL04]. The learning challenges associated with these tasks,

therefore, often imply very unique qualities that are representative of how difficult

the ability to ’learn from observation’ truly is.

As discussed in Chapter 1, the overall behaviors to be learned by the proposed

system are defined as high-level behaviors. High-level behaviors are considered

to be those that can be represented by a sequence of simpler, identifiable sub-

behaviors known as low-level behaviors. If it is assumed that each low-level

behavior can be modeled and identified a priori by a knowledge engineer, the

learning task becomes identifying the cues that determine the transitions from

one low-level behavior to another, as executed by the expert.

This process is then potentially capable of expanding about itself. For exam-

ple, consider behaviors X,Y, and Z that are composed by a set of known low-level

behaviors a, b, and c. This research attempts to learn how an expert executes

tasks X, Y, and Z by creating a mapping between the expert’s observations and

the action sequence consisting of sub-actions. Assuming that this task is done

successfully, a higher-level behavior A can then be learned in the same manner

provided that its execution is composed of behaviors X, Y, and Z. A diagram

illustrating this point is provided in figure 3.1 below.

This example identifies the nature of a high-level behavior versus a low-level

behavior. In terms of the behaviors X, Y , and Z, the behaviors a, b, and c

57

Figure 3.1: Learning Behaviors By Mapping Relationships Between Known Sub-

-Behaviors

are considered to be low-level behaviors. However, since X, Y , and Z in-part

compose behavior A, they are considered as low-level behaviors with respect to

A.

This research, therefore is interested in a class of behaviors and tasks which

are composed of lower-level tasks that (a) can be identified during observation,

(b) do not need to be learned individually, and (c) are known to be charac-

teristic of the task/behavior we do wish to learn. A behavior Bi, therefore, is

learned by determining the situations under which our expert decides to use the

sub-behaviors b0, b1 . . . bk that compose Bi. This behavior Bi will be considered

58

the high-level behavior. The pre-defined contexts that compose that behavior,

therefore, will model the low-level behaviors b0, b1 . . . bk that compose Bi.

3.2 Problem Statement

For this research, we consider a generic task that can be modeled by hand us-

ing the Context-Based Reasoning paradigm (introduced in Chapter 1). This

paradigm calls for a specific action or action-sequence to be executed in response

to identifying the active context that best applies to the model’s current situation

within his assigned task/mission.

Given such a task, the research challenge was to design an algorithm that cre-

ates a mapping between a presentation of a certain stimuli and the expert’s ob-

served choice of active context in response to that stimuli. Since this observation

is chosen to take place without the expert’s assistance, the idea of observing the

active context requires two key assumptions: (1) that the expert operates within

these contexts and (2) that the system is able to correctly identify the context

in which the expert is acting. The first assumption can be justified by choosing

the context-set so that it is both transparent to the expert and representative

of the choices the expert makes. For example, we can define a highwayDriving

context for an expert participating in a driveCarToWork mission, and infer from

observation when he is acting within the highwayDriving context. This way, it is

possible to identify how the expert has chosen to respond to a situation without

disrupting the process by asking him.

59

3.3 Overview of Approach

To address this problem, this research creates an algorithm that will observe a

human expert within a simulation and develop a set of rules that define his high-

level behavior. To accomplish this, the algorithm employs two key components.

The first component is a Template-Based Interpretation (TBI) engine. This en-

gine is responsible for observing the situation, along with the expert’s observed

action, and outputting the current context under which the expert is acting. The

behaviors and circumstances that define each context are known a priori by a

knowledge engineer, who is responsible for encoding the properties specific to

each relevant context.

The second component is a Fuzzy ARTMAP neural network, which creates a

mapping between a set of stimuli and the context chosen by the expert in response

to that stimuli. This mapping is created after presenting the neural network with

a set of training patterns - each training pattern is represented by an input-

output pair. The input is the observed stimuli on the expert, and the output is

the context identified by the TBI engine as the response chosen by the expert.

The Fuzzy ARTMAP neural network operates by creating a set of clusters for

the input patterns presented that group patterns with similar features that map

to the same output. These clusters are represented within the neural network in

such that they can be extracted and represented as a set of input-output rules.

This technique is summarized below for clarity:

1. Expert is placed within a simulation and performs a pre-defined, high-level

tactical mission or behavior

2. At discrete time-points, the simulation records the current stimuli (referred

to as an observation) and the response made by the expert

60

3. The observation and resultant expert action will be examined by a TBI

engine to interpret the context of the expert’s action

4. The interpreted low-level context will be paired with the observation, and

transformed into an input/output training pattern

5. The learning module within the algorithm will learn the patterns within a

given observation that result in each certain context to be activated by the

expert

6. After training, the algorithm will contain pattern clusters which can be

transformed into transition sentinel rules for a model of the expert’s high-

level behavior

A more detailed description of the algorithm is provided in chapter 4. That

chapter also includes a thorough description of both Template-Based Interpreta-

tion and Fuzzy ARTMAP neural networks.

3.4 Contributions of this Research

Below are the contributions of the research described in this dissertation, a few

of which have been discussed in earlier sections of this chapter.

• A definition of high-level behavior as a sequence of low-level behaviors com-

bined with the knowledge about when to transition from one behavior to

another

• An algorithm by which a high-level behavior - one that can be decomposed

into a pattern or sequence of several lower-level, identifiable actions - can be

61

learned through observations of an expert performing the behavior within

a simulation.

• A learning algorithm that is both supervised and unsupervised. The algo-

rithm is supervised in the sense that the output mapping that the system

makes is limited to a set of possible output contexts. However, it is unsu-

pervised in that the output context does not need to be provided to the

system by the expert at run-time.

• An algorithm which can automatically generate a set of sentinel rules for a

Context-Based Reasoning Model by observing a human expert perform the

behavior within a simulation

• A system that can replicate an expert’s high-level behavior by facilitating

the construction of a CxBR model of that behavior

• A system that can identify and replicate the different strategies and heuris-

tics used by two different experts in a tactical situation such as a Poker

game

• A Java-based simulation environment that can be easily used for LFO tasks.

Chapter 4 documents the design of the learning algorithm and provides thor-

ough descriptions of the key pieces used to realize it. Chapter 5 describes the

implementation of this methodology, as well as the simulation testbed and testing

scenarios on which it was evaluated. Finally, chapters 6 and 7 detail the results

of the testing procedures, discuss conclusions of the work, and suggest future

research that can be done to expand or improve the system.

62

CHAPTER 4

METHODOLOGY

As discussed in the previous chapter, the main focus of this research is the produc-

tion of an algorithm that can learn high-level behavior by observing the sequence

of transitions for the lower-level actions that constitute that behavior. This chap-

ter proposes an algorithm that identifies low-level behaviors when executed by

the expert and creates a mapping between them and the scenario-specific obser-

vations that precede them. The name given to this algorithm is FAMTILE, which

stands for Fuzzy ARTMAP / Template-based Interpretation Learning Engine.

Based on our definition of low-level behavior, we assert that all low-level be-

havior can be specified and identified during observation. After learning the set of

conditions that call for each possible low-level behavior transition, a CxBR model

can then be constructed that represents the high-level behavior of the expert ob-

served during the simulation. This model contains both the low-level contextual

knowledge developed a priori and the knowledge learned by this system that

identifies when each low-level context is applicable.

The first two sections of this chapter introduce the two main components that

are used within FAMTILE. Section 4.1 outlines Template-Based Interpretation,

the technique defined in [GG00] and used by FAMTILE to identify expert actions

by inferring the low-level context that supports them for each observed decision-

point. The subsequent section describes Fuzzy ARTMAP, the neural network

63

architecture used to learn the relationship between the recorded observations

during the scenario and the low-level contexts representing the actions taken by

the expert in response to those observations. In each section, the description of

the systems is followed by a detailed explanation of how FAMTILE uses them to

support the learning task.

The last section defines the FAMTILE algorithm, and how it is used to learn

high-level behavior. Concluding this chapter is a description of how a CxBR

model is developed using the knowledge gained by using the FAMTILE system.

4.1 Template-Based Interpretation

We assume no contact between the expert and the observing system. Because

of this unobtrusive observation, however, there is a level of uncertainty that

exists when recording an expert’s actions for use as training data. A system

that can effectively learn expert behavior, therefore, cannot do so by creating a

relationship between stimulus and expert response without the ability to recognize

that observed response.

For this research, we assume that high-level behaviors are composed of lower-

level behaviors which are executed in some sequence. This sequence is dependent

on the goals, the environments, and the individual experts themselves. It is also

assumed that each of these low-level behaviors can be modeled as CxBR contexts,

and are known and specified prior to learning-time by a knowledge engineer.

On the other hand, it cannot be assumed that an expert operates under the

same set of contexts identified for the task. Though the contexts may involve

the same set of sub-goals that the expert assumes, there is no communication

64

between the expert and the system during learning. Thus, the low-level contexts

that the expert actually uses cannot be assumed. Therefore, at no point can

the expert’s low-level context be unequivocally identified. This limitation creates

an interesting challenge for this research. If no contact with the expert is to be

made (through interview, system feedback, etc.), how can his observed behavior

be represented as a sequence of low-level context transitions?

Nevertheless, since the low-level behaviors that embody these contexts are

known, we employ a technique known as Template-Based Interpretation (TBI).

This algorithm allows for an inference to be made of the low-level context sequence

for the expert. TBI is a method of inferring tactical intent [GG00].

4.1.1 Context Templates

In TBI, contexts are represented by context templates, or templates, that list the

expectations of what an expert would do if acting within that context. Within

each template is a set of attributes that indicate actions and conditions; each

attribute within a template is considered relevant to the context represented by

that template. TBI operates by considering each template attribute for all pos-

sible contexts for a specific observation or observation sequence. By identifying

which attributes are true, TBI will compute a score for each template. The tem-

plate earning the highest score will then be flagged by the engine, and the context

that template represents is considered to be the context under which the expert

is operating at the time of observation.

Consider the tactical behavior of driving a car. As a high-level behavior,

driving includes several lower-level behaviors that are executed in support of

65

the high-level task: stopping at a red-light, passing slower traffic, avoiding and

being aware of pedestrians, etc. Often times there are attributes and cues, from

either the driver or from the surrounding environment, that could indicate to an

observer what low-level behavior is being executed by the driver. For instance,

a passenger does not need to ask the driver to indicate when he’s attempting to

pass a slower car, he can simply look out the window - the driver has changed

lanes and increased his speed, the passed car is likely driving too slow, etc.

Using TBI, we consider these cues to be attributes of a context, and group

them together within a context template. These attributes are then assigned a

weight indicating their importance in identifying the context. When observing

an expert in action, then, these templates are then referenced to see which has

the most (and most important) attributes in effect at that time.

Since the behavior expected within each context is known a priori, creating

templates with useful attributes is a reasonable task for a knowledge engineer.

During the observation phase, then, the intent of the observed performer is in-

ferred, using TBI, amongst the templates created prior to learning-time.

For convenience, we will consider an arbitrary set of contexts C = C1, C2, . . . Cn

and corresponding set of context templates T = T1, T2, . . . Tn. Using this repre-

sentation, we say that a template Tj includes all attributes and weights common

to the context Cj. In a given scenario, all contexts Ci are represented within TBI

by a specific template Ti that defines the attributes of Ci.

Each attribute ai in template Tj is a representation of a condition that is

prevalent in the context Cj. The weight wi represents the importance of ai in

determining context Cj. A low weight value for wk indicates that attribute ak is

not an imperative nor important characteristic of context Cj. Conversely, a high

weight value for wm indicates that the attribute am is a highly relevant condition

66

for context Cj, perhaps even essential. This representation was used in both the

work by Drewes ([GG00])and by Gerber [Ger01].

Tj = < a0, w0 >,< a1, w1 >, . . . < an, wn > (4.1)

Here, we reintroduce the high-level behavior of driving a car. If we were to

break that behavior down into lower-level contexts of behavior, one context we

might create is that of driving in a school zone. For this context, how would we

represent its attributes within a context template?

First, we must consider the factors that would indicate that the driver is

driving within a school zone:

• a0: A school is within sight of the driver

• a1: Children are present and walking the sidewalks

• a2: Crossing guards are seen controlling nearby traffic

• a3: Driver is not exceeding 25 mph

• a4: School Zone signs are visible and blinking

Each of these conditions favor the presence of this context, though none of

them are necessarily required. For instance, the driver may know that he is

in a school zone despite the fact that he has not seen a sign for the school

zone. Likewise, these conditions may exist despite the fact that the driver is not

operating within that context. This would certainly be the case at night, where

a school may be in sight of the driver though school-zone driving laws are not

enforced after school hours or on weekends.

67

To these ends, we apply a set of weights to each of these attributes that

indicate their importance in identifying the school-zone driving context:

• w0 = 3 - A school is within sight of the driver

• w1 = 4 - Children are present and walking the sidewalks

• w2 = 5 - Crossing guards are seen controlling nearby traffic

• w3 = 6 - Driver is not exceeding 25mph

• w4 = 9 - School Zone signs are visible and blinking

The existence of blinking school-zone lights is more indicative of a school-zone

driving context than, for instance, the fact that the school is in sight of the driver.

Because of this, that attribute is assigned a higher value.

Attributes are not limited to boolean conditions. Perhaps as an alternative

to attribute a3, we want to consider the attribute á3 that represents how close

the driver’s speed is to the school-zone recommended speed of 25 mph. By doing

this, we eliminate the situation where the driver’s speed exceeds 25mph but not

by much. Using attribute a3, the boolean condition considers a speed of 27mph

equivalently to one of 72 mph.

4.1.2 Template Selection in TBI

The TBI engine infers a context for each decision-step by first evaluating the

condition or value of each attribute present in its set of predefined templates.

After each attribute is assigned a value, a weighted sum is computed for each

68

template Tj and used as its template score. This template score, sj, is computed

as follows:

sj =
n∑

i=0

aij ∗ wij (4.2)

The value assigned to each attribute ai in template Tj is dependent on the

nature of the attribute. We consider four types of template attributes. Below is

a short description of each along with an example:

boolean Boolean attributes are either true or false. True attributes are assigned

the value 1, false attributes are assigned 0.

aboolean="does the driver have his windshield wipers on"

amount less than These attributes are assigned an absolute value scaled be-

tween 0 and 1, representing the amount less than a certain value an attribute

is

aamount∗less∗than="how much slower the driver’s speed is to 25 mph"

amount greater than These attributes are assigned an absolute value scaled

between 0 and 1, representing the amount greater than a certain value an

attribute is

aamount∗greater∗than="how much faster the driver’s speed is above 25

mph"

how close to These attributes are assigned an absolute value scaled between 0

and 1, representing how close a certain value is to an attribute

ahow∗close∗to="how close is the driver to driving 25 mph?"

To assign values to each attribute, the attribute’s type is considered. For

boolean attributes, the value 1 is assigned if the attribute is true, and 0 if the

69

attribute is false. Amount less than and amount greater than attributes are

computed using the expression

(valueatt − valuetarget)/max ∗ range(att) (4.3)

(valuetarget − valueatt)/max ∗ range(att) (4.4)

How close to attributes are computed using the expression

valueatt = 1− (|valueatt − valuetarget|/max ∗ rangeatt) (4.5)

For these expressions, the max∗range value represents the maximum possible

difference between the attribute condition (the test variable for the attribute, e.g.

the driver’s speed for the above descriptions) and the target condition, e.g. 25

mph. Using these expressions, the attribute ”how close is the driver’s speed

is to 25mph” would be evaluated as 1 − (|25 − 12|/25) = 0.48 if the driver was

traveling at 12mph. Note that this value is maximized when the driver is traveling

at exactly 25mph.

After each attribute and weight within a template is assigned a value, the

template score is calculated using equation 4.2. A context Cx is then chosen by

TBI as the inferred context if and only if its corresponding template Tx achieves

a template score sx greater than or equal the scores of all other templates. In

FAMTILE, the TBI engine will only select one context per observation.

Figure 4.1 represents a TBI engine that considers a set of m context templates

and n attributes per template. On the left side of the figure, we see the compo-

sition of a generic context template score. Note that the score is generated using

a simple weighted sum of each attribute score (computed using the equations

70

above) multiplied by its associated weight. The right side of the figure illustrates

the comparative portion of the engine - each score is reviewed and the maximum

score selected. The context associated with smax is chosen as the inferred context

for that observation.

Figure 4.1: A Generic Context Template and TBI Engine

71

4.2 Fuzzy ARTMAP

Fuzzy ARTMAP is a neural-network clustering technique developed in the early

1990’s. The network was introduced by Carpenter et al in [CR92]. It is also

described in detail in [GC01]. The goal behind this technique is to produce a

neural network proficient at dealing with ’misbehaved’ batches of test patterns

- patterns where a minority of the testing patterns share little in common with

the majority used to train the neural network, but are equally (if not more so)

relevant.

A block diagram of the Fuzzy ARTMAP architecture is shown in figure 4.2.

The ARTa and ARTb modules within Fuzzy ARTMAP are responsible for gen-

erating pattern clusters that correspond to a certain pattern form. Each cluster

created within the ARTa module represents an input-pattern type that corre-

sponds to a specific output template created by the ARTb module. The Inner-

ART module is then responsible for creating a many-to-one mapping between the

templates within ARTa and those within ARTb.

For example, consider a situation where a neural network is trained to recog-

nize alphabetic letters when seen and, in response, produces a specific sequence

of numbers based on the letter input: A = 1010, B = 1011, C = 1100, D = 1011.

When training a Fuzzy ARTMAP module, the ARTa module is responsible for

learning to recognize each input letter (A-D), while the ARTb module is respon-

sible for learning to recognize each output sequence (1010-1101). The Inner-ART

module creates the mapping between specific letters and their corresponding out-

put sequence.

72

Figure 4.2: Block Diagram of a Fuzzy ARTMAP Architecture[GC01]

4.2.1 Cluster Construction and Modification in Fuzzy ARTMAP

Fuzzy ARTMAP learns in part by developing clusters that represent similarities

amongst the inputs present within the training sequence. These clusters are

developed within both the ARTa and ARTb modules. During the training phase,

a cluster is either modified or created (in both modules) to accommodate each

input-output pair presented. A mapping between the two clusters is then created

within the Inner-ART module. This mapping represents the idea that for a

pattern < a, b >, the output b is the desired response to the input a.

As stated above, the training patterns used to teach Fuzzy ARTMAP are

presented in the form of an input/output pair. This pair is then presented to the

ARTa and ARTb modules, respectively. Before this presentation, however, both

the input and output patterns must be preprocessed so that they are in a proper

form and can be useful to Fuzzy ARTMAP.

73

First, the pattern must be converted into a vector of real numbers ranging

between [0, 1]. This step is taken to ensure no learning bias is placed on the

magnitudes of each individual field [GC01]. For example, consider an input pat-

tern containing two fields ranging between [0, 100] and [0, 1]. The operations

done within a neural network often contain factors that represent magnitudes.

Because of this, the first field will have a much greater impact on the learning

capabilities of the network simply because it can represent numbers of greater

magnitudes. By scaling each input to ensure an identical range across each field,

this potential problem is eliminated.

Before presentation to Fuzzy ARTMAP, the input pattern undergoes a pro-

cess known as complement coding within the F a
0 field of the ARTa module. In

complement coding, the fuzzy complement of each field within the pattern is

taken and then appended to the end of the vector. The fuzzy complement

of a number xε[0, 1] is denoted xc, where xc = 1 − x. For example, con-

sider vector v =< 0.2, 0.7, 0.35 >. Complement coding v results in the vector

vc =< 0.2, 0.7, 0.35, 0.8, 0.3, 0.65 >. After complement coding the input pat-

terns, both patterns are presented to Fuzzy ARTMAP at fields and F a
1 and F b

1 .

Before discussing further the training procedure, however, it is necessary to define

the relevant components and parameters within Fuzzy ARTMAP.

Fields F a
1 and F b

1 represent the position where the input and output patterns

are presented to the ART modules. When a pattern enters one of these fields,

each component of the pattern vector is represented by a node. Within F a
1 , then,

there exist 2n nodes, where n represents the number of fields present within each

input pattern. Fields F a
2 and F b

2 contain nodes that are connected to the and

nodes via top-down weights and bottom-up inputs. One node exists for each

cluster created in the ARTa module, plus an additional node representing the

74

uncommitted node. All other nodes within F a
2 and F b

2 are known as committed

nodes. These interconnections are illustrated below as figure 4.3.

Figure 4.3: Interconnections Between F a
1 and F a

2

When input pattern I is presented at F a
1 , a bottom-up input is calculated

for each of the existing nodes within F a
2 . This bottom-up input to node n in

F a
2 is a function of the input pattern, the choice parameter (a Fuzzy ARTMAP

constant ranging from (0,∞)), and the top-down weight vector for n. This vector

is known as a cluster. The node nmax in that induces the maximum bottom-up

input from is chosen as the representative for I, so long as the node satisfies the

vigilance criterion for ARTa. The vigilance criterion for node nmax is met when

a specific scalar function of the input I and the top-down weight vector wn is

found to be greater than the vigilance parameter a. The vigilance parameter

is a measure of how selective a node is to admitting patterns, and is a value

75

initialized to the baseline vigilance parameter ρ̄a(ρ̄aε[0, 1]) before each pattern

presentation during the training phase. If the vigilance criterion is not satisfied,

nmax is disqualified and the node inducing the next largest bottom-up input from

F a
1 is selected, so long as it satisfies the vigilance criterion. If no committed

node satisfies the vigilance criterion, the uncommitted node (which will always

satisfy the criterion) is selected as the representative for I. When this occurs, a

new uncommitted node is generated within before the presentation of the next

training pattern. A similar interaction occurs between fields and when an output

pattern O, though the vigilance parameter ρb for ARTb can not change during

the training phase.

If the node selected for I is the uncommitted node, that node must be mapped

to the node in F b
2 that was selected for the output pattern O. This task is

performed by the Inner-ART module, which creates an internal connection weight

between the nodes selected by ARTa and the ARTb. If the node selected for I

is a committed node, however, a connection has already been made to a node in

ARTb. If that node is the same node selected by ARTb for O, a correct mapping

has been achieved. In either of these cases, the top-down weight vectors for the

nodes are updated to reflect the addition of new patterns to the cluster. However,

it is possible for the ARTa module to select a node for I that maps to a node

in ARTb that does not correspond to the node chosen for the output pattern

O. In this case, the mapping is incorrect and must be removed from memory.

Furthermore, the vigilance parameter in ARTa must be increased as a precaution

against future incorrect mappings. As previously stated, large values for the

vigilance parameter in ARTa lead to tighter clustering of input patterns. After

this parameter is increased, the bottom-up inputs from F a
1 are reexamined and

a new node is selected. This process will continue until either the uncommitted

76

node is selected for I, or a committed node is selected that maps to the node

selected for O in ARTb.

A more thorough description of cluster construction and Inner-ART mappings

can be found in [GC01].

4.2.2 Learning Parameters for Fuzzy ARTMAP

There are several Fuzzy ARTMAP parameters that affect the performance of the

learning algorithm in a variety of ways. These parameters are listed along with

their description (reprinted from [GC01]).

βa: This parameter is called the ARTa choice parameter, and takes values in the

interval (0, inf). Its value affects the bottom-up inputs that are produced

at the F a
2 nodes due to a pattern presentation at F a

1 .

ρ̄a: This parameter, called the baseline vigilance parameter, determines the initial

value of the vigilance parameter ρa in ARTa. The range of ρ̄a is the interval

[0, 1]. Small values of ρ̄a result in coarse clustering of the input patterns

presented in ARTa, while large values of ρ̄a result in fine clustering of the

input patterns presented in ARTa.

ρa: This parameter, called the vigilance parameter, is related to the baseline

vigilance parameter. Prior to an input/output pair presentation in fuzzy

ARTMAP, ρa is set equal to ρ̄a. During training with an input/output pair,

the value of ρa is allowed to increase above the ρ̄a value; it is reset back to

ρ̄a when a new input/output training pair is presented to Fuzzy ARTMAP.

This parameter affects the granularity of the clusters created in ARTa

77

Na: This parameter corresponds to the number of committed nodes + 1 in F a
2

during the Fuzzy ARTMAP training phase. During the training phase,

Fuzzy ARTMAP operates with all the committed nodes in F a
2 and one

committed node. A committed node in F a
2 is a node that has coded at least

one input pattern. An uncommitted node is a node that is not committed.

ε: This parameter is used to evaluate the value of the vigilance parameter, when

the vigilance parameter is required to increase during Fuzzy ARTMAP

training to a level above the baseline vigilance parameter level. It is usually

taken to be a very small positive constant.

βb: This parameter is called the ARTb choice parameter and takes values in the

interval (0, inf). Its value affects the bottom-up inputs that are produced

at the F b
2 nodes due to a pattern presentation at F b

1 .

ρb: This parameter is called the vigilance parameter in ARTb. Small values of ρb

result in coarse clustering of the output patterns presented in ARTb, while

large values of ρb result in fine clustering of the output patterns presented

in ARTb.

Nb: This parameter corresponds to the number of committed nodes +1 in F b
2

during the Fuzzy ARTMAP training phase. During the training phase,

fuzzy ARTMAP operates with all the committed nodes in F b
2 and one un-

committed node. A committed node in F b
2 is a node that has coded at least

one output pattern. An uncommitted node is a node that is not committed.

78

4.2.3 Extracting Rules from Fuzzy ARTMAP Clusters

Chapter two includes a synopsis of the work done by Tan and Carpenter [CT95].

In this paper, the authors describe a rule-extraction algorithm for Fuzzy ARTMAP

where clusters in a trained Fuzzy ARTMAP neural network are converted into

a set of rules that describe the mapping learned by the network. In the case of

FAMTILE, each cluster developed represents a certain observation pattern that

implies a specific inferred output context reaction by the expert. For example,

consider the input pattern attributes a, b, c, output patterns d, e, and f , and a

Fuzzy ARTMAP cluster generated by a series of pattern presentations:

< amin
0 , bmin

0 , cmin
0 , amax

0 , bmax
0 , cmax

0 , d0, e0, f0 >=< 0.2,−0.1,−0.7, 0.4, 0.5,−0.3, 0, 0, 1 >

Using the technique from [CT95], the cluster above can be extracted to form

the following rule:

if(a0 > 0.2, a0 < 0.4, b0 > −0.1, b0 < 0.5, c0 > −0.7, c0 < −0.3)

then(d0 = 0, e0 = 0, f0 = 1)

4.2.4 Motivation For Using Fuzzy ARTMAP

The ability of a neural network to handle ’misbehaved’ training sets is of par-

ticular relevance to learning from observation. Consider the knowledge required

to drive an automobile, an example of a tactical skill. The ability to handle a

tire blowout while driving, especially when at high speeds, is certainly impor-

tant. However, this skill is rarely required simply because tires rarely blow out.

If one were to observe an automobile driver in order to train a neural network

how to drive; then, it can be assumed that the training pattern corresponding

79

to a blown-out tire on the freeway would represent a very small minority of the

training set.

In a CxBR model for a tactical simulation, it is possible that important events

requiring a specific context change occurs infrequently. Because of this, training

patterns representing these types of context-change cues will most likely be under-

represented within a training set. In such situations, traditional neural networks

will have a difficult time learning these patterns as a result to the strong emphasis

of the other patterns. In these cases, the neural network tends to ’over-learn’

the more frequent patterns, discarding the others as noise within the training

set. In the case of this research, this noise may represent an interesting and

important observation, making the expert’s response to it very important to

record. Fuzzy ARTMAP neural networks are adept at recognizing the infrequent

patterns without reversing the knowledge of any well-learned patterns [GC01].

The idea of creating clusters representing recognition-pattern clusters is also

compatible with the RPDM model discussed in chapter one - a model that shares

many common features with CxBR sentinel rules. In the RPDM model, situations

are diagnosed at critical points during a scenario when the context of that scenario

changes. If the situation is ’typical’, i.e. if the model recognizes the situation

as familiar and has the knowledge to generate an appropriate response, that

response is determined and implemented. If the situation is not recognized, the

model must generate a new response. This new response will be based on what

is known about the situation, any new sub-goals that will be required, and the

expectations of outcome based on various responses to the situation.

Within CxBR models, decision making at the highest level is controlled by

sentinel rules. At each decision step, sentinel rules choose an appropriate next-

context for the model to activate based on the current context and stimuli. If

80

the sentinel rules do not call for a transition to a specific next-context based on

the situation presented, and the current active context is not valid, the default

context is then chosen.

Through the creation of clusters, Fuzzy ARTMAP also has the ability to han-

dle the large sample of training patterns necessary for a complete observation of

an expert’s behavior. This clustering process has the effect of reducing the com-

plexity of a decision-space significantly based on the size of the clusters created.

The advantage here can be visualized by again considering the task of learning

driver behavior. Since recording a decision-making cue (to change lanes, to brake,

to turn) often requires a fine granularity across observations, several hundred ob-

servations may be recorded of the driver/expert throughout a few-minute driving

task. Furthermore; values for the driver’s speed, heading, distance to other ve-

hicles, and other potentially significant factors will certainly fluctuate at least

nominally along a several-second stretch where no significant behavioral change

is executed. This is not because the driver consciously decides to make these

changes (decisions that should be recorded and learned), but simply because of

the dynamics of the environment and the driver’s inherent inability to hold an

identical speed and course. A Fuzzy ARTMAP system, however, allows for nearly

identical input patterns such as these (that map to the same output) to be repre-

sented by a single cluster. By creating a less complex decision space, we not only

reduce the order of the learning task but also create a set of clusters from which

it may be easier to extract the decision cues they represent and express their

knowledge outside of the neural network. The knowledge learned by FAMTILE

can be extracted into rules that determine context transitions within a CxBR

model.

81

4.3 FAMTILE: Fuzzy ARTMAP / Template-Based

Interpretation Learning Engine

In this section, the components and mechanics of FAMTILE will be explained.

As stated earlier, the knowledge extracted with this algorithm is high-level in that

it identifies situations where the expert has chosen to chose a specific lower-level

course of action or behavior. The situations and goals requiring these lower-level

behaviors represented by contexts. Assuming that these lower-level behaviors are

known and accurately represented by existing contexts, the algorithm proposed

provides the transitional knowledge necessary to construct a CxBR model of the

behavior. The knowledge within each context, combined with the overall goals

of the expert’s behavior (his mission) and the logic that defines when transitions

are necessary (the context-transition logic), constitutes a CxBR model for the

expert’s behavior.

For this research, a mission is defined as a specific behavior partitioned into

a set of contexts. These contexts are designed to represent all possible situations

that can arise within the mission. Because we assume no direct interaction with

the expert, the creation and partitioning of the mission’s context-space is done

independently. This is a fundamental design requirement of this algorithm, as in

Chapter 1 it is asserted that this research intends to learn from experts that may

be either unable or unwilling to cooperate with the learning task. Furthermore,

the expert is not expected or assumed to know anything about contexts, nor is it

expected or assumed that the expert reasons in a manner consistent with Context-

Based Reasoning. Part of the design task for the knowledge engineer, therefore,

is to construct a set of contexts that are generic enough to represent most experts

but detailed enough to be identifiable using TBI and to have meaning as a context.

82

Before the learning process can begin, the expert must understand clearly the

mission he is to perform. He must also be in an environment (either live or simu-

lated) in which he can operate normally. Furthermore, the observational system

must be situated so it has the most direct access to the stimuli on the expert

without impeding him. To test the learning algorithm, all learning takes place

within a simulation so that the observing system can have identical perspective

of the scenario as the expert. This simulation is described in Chapter 5.

The following sections describe in sequence the steps used to learn a high-

level behavior using FAMTILE, beginning with the generation of an observation

sequence.

4.3.1 Generating an Observation Sequence

When an expert executes a high-level mission within the simulation, FAMTILE

records all relevant and visible stimuli on the expert along with the actions taken

by the expert at the time those stimuli are presented. A recording is made at each

decision point i reached during the execution of the behavior to be learned. In the

simulated world, these decision points can either be continuous points or segments

in time, or they can be planned decision points where time is not relevant, as in a

turn-based mission (such as playing chess, for instance, or cards). To account for

the reactive nature of the expert’s actions at any decision point i, we will refer

to the time at which the stimuli are presented as time i−, and the time at which

the expert switches his active context and chooses a course of action as time

i+. At the point when the expert completes the scenario, the learning system

will have compiled a set of recordings that should encompass all relevant stimuli

83

and expert actions taken. This set is known as the observation sequence for the

executed scenario. Individual members of this sequence are distinguished by the

simulation-time at which they were recorded, and are referred to as observations.

These observations, labeled as ωi denote the decision-point i, along with the set

of visible stimuli Φ that existed at i− and the set of actions Γ taken by the expert

at i+.

ωi =< Φi− , Γi+ > (4.6)

Φi− =

traits−of−observation−i︷ ︸︸ ︷
o0, o1, . . . on (4.7)

Γi+ =

actions−taken−by−expert−inresponse−to−observation−i︷ ︸︸ ︷
a0, a1, . . . an (4.8)

We define the complete observation sequence, Ωn, to be the set of observations

ωi taken of the expert throughout an entire scenario n.

Ω =
i⋃

ωi (4.9)

The algorithm for generating this observation sequence is enumerated below:

1. Determine all variables to be recorded in each observation

2. For each variable k, assign a representation for that variable

and denote it φk

3. Denote the set of all variables φ in an observation x to be Φx−.

If there are n variables in an observation, Φx− can be defined

by Φx− =
⋃n

k=0 φk

84

4. Determine all expert actions to be recorded

5. For each action j, assign a representation for that action and denote

it γj

6. Denote the set of all variables γ in an action set y to be Γy+.

If there are m variables in an observation, Γy+ can be defined

by Γy+ =
⋃m

j=0 γj

7. Set i = 0; ∆i = 1; define the number of decision points to observe

as N

8. Record current state of variables φ present at decision point i

9. Save the set of variables as Φi−

10. Record all actions γ of the expert at decision point i

11. Save the set of actions as Γi+

12. Save the observation sequence ωi as ωi =< Φi− , Γi+ >

13. If i = N, go to step 15

14. Set i = i + ∆i, go to step 8

15. For N decision points, save the observation sequence Ω as Ω =
⋃N

n=0 ωn

Algorithm for Generating an Observation Sequence for FAMTILE

85

4.3.2 Inferring Low-Level Contexts from Expert Actions

and Observations using TBI

After the observations of the expert is complete, the entire observation sequence

Ω is presented to FAMTILE. At this point, the actions of the expert must be

interpreted by a TBI engine, which will convert Ωn into a new observation se-

quence Ώn where the set of actions taken (represented by ωi in Ωn) are replaced

with the interpreted low-level context. This context, inferred by TBI for decision

point i, is represented by Ψt+ in equation 4.10. Also represented within ώi is the

inferred active context of the expert prior to decision point i. This context is

denoted Ψi− , but is identical to the context inferred from the previous decision

step (Ψ(i−1)+).

ώi =< Φi− , Ψi− , Ψi+ > (4.10)

Ώ =
i⋃

ώi (4.11)

FAMTILE’s TBI engine achieves this transformation by making an inter-

pretation of each low-level action, as described in detail in section 4.1. Prior

to observation-time, a knowledge engineer (KE) creates a specification for each

low-level behavior necessary for the execution of some high-level behavior (the

behavior the system will observe). From these specifications, the KE also creates

a set of context templates. Each of the templates’ attributes are derived from

fields within the observation ωi.

The algorithm for this step is provided below:

86

1. Determine all parameters P from each observation needed by TBI

engine to infer a context

2. Set i = 0; ∆i = 1; define the number of decision points as N

3. If i = 0, set Ψi− = null, else set Ψi− = Ψ(i−1)+

4. Extract necessary parameters Pi from ωi and input them to TBI

5. Record the inferred context by TBI as Ψi+, the expert’s inferred

context after decision point i

6. Extract the input variable set Φi− from ωi

7. Record the new observation sequence ώi =< Φi− , Ψi− , Ψi+ >

8. If i = N, go to step 10

9. Set i = i + ∆i, go to step 3

10. For N decision points, save the observation sequence Ώ as Ώ =
⋃N

i=0 ώi

Algorithm for Generating Revised Observation Sequence with Context

Inferences

4.3.3 Converting Observation Sequence to Training Pat-

terns for Fuzzy ARTMAP

The set Ώ is at this point transformed into a form usable by Fuzzy ARTMAP.

This operation is done by converting each ώi into a single training pattern. For a

87

training pattern to be readable by the neural network, each field must be a fuzzy

value (some real number between [−1, 1]). Within FAMTILE, the input portion

of the training pattern is derived from Φi− and Ψi− , while the output pattern is

derived from Ψi+ .

4.3.3.1 Input Pattern Generation

The subset Φi− of the observation sequence Ώn consists of fields representing the

expert’s complete observation at time i−. The expert’s active context at i− is

denoted by Ψi− .

The specific technique for converting the observation arguments must be de-

termined by the knowledge engineer, and depend on the nature of the observations

required for the learning. Specific examples of converting an observation into a

partial input pattern is included as part of chapter 5, which introduces the proto-

type FAMTILE system. Converting the observation for Ψi− , the observed active

context at i−, involves the same procedure regardless of the scenario. To convert

the identified active context into a field within the input pattern, one field is set

aside for every possible context in the scenario. If a context j is identified as

the active context, the jth field is assigned a value of 1, and the other ’context

fields’ within the input pattern are assigned a 0. This is done to persuade input

patterns with different active contexts to bind to different templates in ARTa.

Equation 4.12 represents an arbitrary input pattern converted from Φi− that can

be presented to Fuzzy ARTMAP. We refer to this converted pattern as ˙Φi−

˙Φi− = o1, o2, o3, . . . , ok−1︸ ︷︷ ︸
observationfields

,

activecontextn−1︷ ︸︸ ︷
c1, c2, c3, . . . , cn−1 (4.12)

88

The algorithm for generating the input patterns for FAMTILE is provided

below.

1. Determine a conversion technique for each parameter φ in the input

observation Φ

2. If there are C total contexts in the scenario observed, assign

each context a number b between 0 and C−1. Assign the representation

for the contexts represented by Ψi− as a C-bit binary number. In

a representation for a certain Ψ value where Ψ is assigned context

b0, each bit gets set to 0 except for the bth
0 bit, which is assigned

a 1.

3. Set i = 0; ∆i = 1; define the number of decision points as N

4. Perform the conversion for each parameter φk in Φi, denote each

converted field as ok

5. Convert the context Φi− into a C-bit binary integer using the technique

from step 2

6. Construct the input pattern ˙Φi− by combining each φk value with

the C-bit binary integer, as shown in equation 4.12

7. If i < N,set i = i + ∆i, go to step 4

Algorithm for Converting Observation Sequence into a Set of Input Patterns for

Fuzzy ARTMAP

89

4.3.3.2 Output Pattern Generation

The output pattern Ψi+ is simply a representation of the inferred active context

at i+. Because of this, Ψi+ can be represented as a j-bit binary number to identify

one of j distinct low-level contexts as active, just as is done for the inferred context

at i−. Within Ψi+ , all bits are set to 0 except for one. If that one set bit is the ith

bit (i.e. oci in equation 4.13), that means that context i has been identified as the

active context for i+. This representation scheme will make for a trivial clustering

task for ARTb, because exactly one output cluster will be generated per context.

Representing a context name in this manner allows for the output of ARTb to

be both readable and unambiguous for either a knowledge engineer or a separate

module created to read its output. Equation 4.13 represents an arbitrary input

pattern converted from Ψi+ that can be presented to Fuzzy ARTMAP. We refer

to this converted pattern as Ψ̇i+

Ψ̇i+ = oc1, oc2, oc3, . . . , ok−1︸ ︷︷ ︸
activecontextj

(4.13)

The algorithm for generating the output patterns for FAMTILE is provided

below.

1. If there are C total contexts in the scenario observed, assign

each context a number b between 0 and C−1. Assign the representation

for the contexts represented by Ψi+ as a C-bit binary number. In

a representation for a certain Ψ value where Ψ is assigned context

b0, each bit gets set to 0 except for the bth
0 bit, which is assigned

a 1.

2. Set i = 0; ∆i = 1; define the number of decision points as N

90

3. Convert the context Φi+ into a C-bit binary integer using the technique

from step 1

4. The C-bit binary integer is assigned to ˙Φi+, as shown in equation

4.13

5. If i < N,set i = i + ∆i, go to step 3

Algorithm for Converting Observation Sequence into a Set of Output Patterns

for Fuzzy ARTMAP

4.3.4 Applying Fuzzy ARTMAP to the Learning Algo-

rithm

The input and output patterns ˙Φi− Ψ̇i+ presented to Fuzzy ARTMAP reflect

observations recorded at specific times during the scenario along with the active

contexts at those times as identified by the TBI engine. Input patterns are repre-

sented by quantitative values for each stimulus on the expert - enemy movements,

environmental conditions, current physical conditions, etc. The output patterns

represent the action taken by the expert in response to the input pattern pre-

sented, where each action reflects a transition from the provided context at the

input to a new active context which is inferred using TBI. The implication here

is that every action (and thus every output pattern) will represent a transition

to a new context, which is of course not the case. Rather, actions representing

no context transition are also represented by patterns that require a transition

to the current context - the equivalent to no context change.

91

A training pattern is generated and presented to Fuzzy ARTMAP for each

observation made of the expert during the execution of a scenario. Learning

occurs through the creation of clusters in the ARTa and ARTb modules and of

a many-to-one mapping between those templates. ARTa templates represent

clusters of input patterns, similar in their representation, to which the expert has

responded by making a specific context transition. That transition is stored in

a template in the ARTb module, and a mapping between the two templates is

created. When the network subsequently encounters an input that matches the

input pattern cluster represented by that template in ARTa, it will know that

the appropriate response is stored in its mapped template in ARTb.

Figure 4.4 depicts FAMTILE in learning mode. An observation recorded in-

cludes both the stimuli on the expert and his resultant decision. A decision is

considered to be the action made by the expert in response to a set of stimuli

presented at i, and is expressed as the context that the agent enters (makes ac-

tive). This stimuli, along with the active context in which the expert is operating

at immediately prior to i (i−), constitutes the input pattern that is presented to

ARTa. The actions that the agent executes in response to these inputs (at i+) are

analyzed by a TBI module, which then outputs the most likely candidate for the

context that corresponds to those actions. That context name is then presented

to ARTb as the output pattern for i, and is also stored for the next decision-point

i+1, where it will be presented as part of the input pattern as the active context

prior to the stimuli presented and actions taken at i + 1.

The task for Fuzzy ARTMAP, then, is to learn the correct context transition

given the current active context and the input stimuli on the agent. To do this,

the network will create templates in ARTa that effectively cluster similar input

patterns that induce a specific context transition by the expert. The template

92

Figure 4.4: Training Context Transitions with Fuzzy ARTMAP

corresponding to the actual transition made will be stored in ARTb, and the

Inner-ART module will create a link representing a mapping between the two

templates. After the training phase is complete, there will exist a many-to-one

mapping between the input-pattern templates in ARTa and the context-transition

templates in ARTb.

93

4.3.5 Converting Fuzzy ARTMAP Clusters into CxBR

Sentinel Rules

In section 4.2.3 a technique for converting Fuzzy ARTMAP clusters, as introduced

in [CT95], is described. For FAMTILE, rule extraction is used to convert the

clusters into sentinel rules for a CxBR model of the expert’s high-level behavior.

To illustrate the use of this technique, we again consider consider the input-

pattern attributes a, b, g, and output patterns d, e, and f . In addition, we add

the input-pattern attributes c0, c1, and c2 that collectively represent the expert’s

active context at point i− - < 0, 0, 1 > would correspond to context 1, 0, 1, 0 to

context 2, and < 1, 0, 0 > to context 3.

• icx =< amin, bmin, gmin, c0min
, c1min

, c2min
, amax, bmax, gmax, c0max , c1max , c2max >

• ocx =< d, e, f >

• ic0 =< 0.2,−0.1,−0.7, 1, 0, 0, 0.4, 0.5,−0.3, 1, 0, 0 >

• oc0 < 0, 0, 1 >

Consider the input and output clusters ic0 and oc0 above. This cluster is

identical to the example given in 4.2.3. However the input pattern includes fields

for the active context at i−. This cluster corresponds to the following rule:

if (c0==1 and c1==0 and c2==0)

and (a>0.2 and a<0.4)

and (b>-0.1 and b<0.5)

and (g>-0.7 and g<-0.3)

then (d=0, e=0, f=1)

94

If we consider the fields d, e, and f to represent the expert’s active context at

point i+, this rule represents a CxBR sentinel rule that indicates the conditions

necessary for a transition from context 1 (c = 100) to context 3 (c = 001). The

rule can be re-written as:

if (a>0.2 and a<0.4)

and (b>-0.1 and b<0.5)

and (g>-0.7 and g<-0.3)

then (transition to context 3)

If the behaviors for these low-level contexts have been coded a priori by a

knowledge engineer, they can be integrated with the set of rules generated from

each Fuzzy ARTMAP cluster, along with any necessary mission requirements,

to develop a CxBR model for the expert’s observed behavior. This process is

illustrated in figure 4.5.

The overall measure of how well FAMTILE is able to deduce expert decision-

making cues must ultimately be determined by allowing an autonomous agent to

imitate the expert’s knowledge in similar scenarios. To do this, the CxBR model

- constructed partially by extracted sentinel rules from FAMTILE and partially a

priori by a knowledge engineer - is assigned to an agent that attempts to execute

the expert’s behavior in a separate physical or simulated environment. If it is

assumed that the behaviors represented by the individual contexts closely match

that of the expert, the success of the agent will rely most heavily on the ability of

FAMTILE to generate the correct active context sequence based on the stimuli

presented to the agent during the scenario. It is the degree of this success that

this investigation must ultimately use to evaluate the effectiveness of the learning

algorithm.

95

Figure 4.5: Creating a CxBR Model of Observed Expert Behavior using

FAMTILE

4.4 Summary of FAMTILE Algorithm Sequence

In the previous sections, the individual components of FAMTILE were introduced

and described, as well as many of the processes that take place within the sys-

tem. To summarize the algorithm, the sequence of events for this algorithm are

repeated below.

1. SME runs simulation and begins a scenario involving some high-level be-

havior

96

2. FAMTILE collects an observation sequence which spans the length of the

expert’s activity (see section 4.3.1)

3. Expert actions are deciphered by TBI Engine to determine sequence of

output contexts (see section 4.3.2)

4. Input observation sequence converted into a set of input patterns for Fuzzy

ARTMAP (see section 4.3.3.1)

5. Sequence of output contexts converted into a set of output patterns for

Fuzzy ARTMAP (see section 4.3.3.2)

6. Input/Output patterns are re-paired and presented sequentially to Fuzzy

ARTMAP

7. Fuzzy ARTMAP training is complete after each pattern has been presented.

Input pattern clusters represent ’interesting’ observation patterns that re-

sult in a certain context being activated

8. CxBR Sentinel Rules are extracted from Fuzzy ARTMAP clusters (see sec-

tion 4.3.5)

9. Extracted sentinel rules are combined with pre-coded context behaviors

and mission specification to construct CxBR model of expert’s high-level

behavior (see figure 4.5)

In Chapter 5, a prototype of FAMTILE is described. Also documented the

chapter is the simulation environment developed for this research, as well as the

four training scenarios that were generated for testing purposes.

97

CHAPTER 5

A PROTOTYPE IMPLEMENTATION OF

FAMTILE

In this Chapter, the prototype system used to evaluate FAMTILE is introduced

and described. Section 5.1 describes the simulation developed to serve as the

training environment for FAMTILE. The following section details each module

of FAMTILE and how they relate to the functionality of the system. Section 5.2

introduces the two high-level behaviors used to evaluate the prototype FAMTILE

implementation. The final section, section 5.3 describes the prototype FAMTILE

system and each of its components.

5.1 Simulation Environment for FAMTILE Training and

Testing

In order to test the FAMTILE prototype, it was first necessary to construct a

testbed with which training vignettes can be developed. This environment was

developed in Java, and was designed to interface FAMTILE with the testing

vignettes and to provide a graphical user interface for the expert.

98

A block diagram of the simulation environment is provided as figure 5.1, as

well as the systems in which it interacts with (including the human expert).

Figure 5.1: Block Diagram of Testing Environment

5.1.1 Interface between Simulation and FAMTILE

Each module involved in this system interacts with other necessary pieces through

an interface class named ArtmapInterface. This class is responsible for reading the

raw data representing observation sequences of the expert. This class interprets

the incoming data, transforms it into a set of input/output patterns, and finally

presents that set to FAMTILE’s neural network for training and testing. The

raw data is saved in a text file generated by the simulation engine at run-time.

99

The interface contains pointers to classes constituting both the simulation

and the learning algorithm so that it can interpret the actions of the simulation

and report them to FAMTILE. This interface operates as follows:

1. Expert executes a vignette. The interface generates a text file containing

his responses to all presented stimuli

2. Interface reads text file

3. Interface passes observation sequence to TBI engine

4. Interface creates a second text file containing the input/output patterns

which are readable by a generic FAM neural network.

5. Interface randomizes the list of patterns, and then divides them into training

and testing data

6. Interface instantiates FAM and presents it with training data

7. FAM neural network is trained with data

8. Interface presents FAM with testing data

9. Results are compiled and presented

10. If training results are satisfactory, FAMTILE replaces the context-transition

logic for a CxBR model

5.1.2 The Simulation Engine Module

The simulation engine provides both the logic of the expert vignettes and their

graphical user interface, developed using the Java programming language. This

100

interface was developed in an attempt to both attract experts to participate

and to provide them with as realistic a vignettes as possible. Each vignette is

introduced and described later in this Chapter.

The simulation engine implements the logic and execution engine for each of

the four vignettes. When the expert selects one of them, the simulation instanti-

ates it and presents the expert with his first decision-point. Each vignette is such

that the expert actions are turn-based, and observations for a certain decision-

step represent a set of stimuli and resultant action for one turn. In a turn-based

simulation, decision-steps are triggered on expert actions, and not actual clock-

time. This property ensures for FAMTILE that the expert is making decisions

in response to a known set of observations, and that there is a correct pairing

between those observations and that action. Otherwise, the system could not

guarantee that the expert was making decisions based on the observation that

were recorded for that corresponding time-step.

Listed below are the actions that take place within the simulation during

training mode.

1. Simulation prompts expert to enter his name

2. After name is entered, expert selects a training vignette

3. When a vignette is selected, the simulation engine calls the initial com-

mands that begin that vignette. That vignette then displays the situation

for the expert, and then pauses until the expert has made his response.

That response triggers an event in the simulation that brings up the next

situation, and writes the stimuli/response pair to a text file which is read by

the interface class after the training session is complete (offline learning).

101

Table 5.1: Vignette Features

Single Decision-Point Complete Task/Mission

Simple Behavior Vignette A Vignette B

Complex Behavior Vignette C Vignette D

5.2 Four Training Vignettes for FAMTILE

In order to make a thorough evaluation of the learning algorithm, four different

test vignettes are developed. These vignettes are based on two types of behaviors

- moving within a maze environment and playing a game of poker.

The first two vignettes (A and B) consider a relatively simple behavior. Set

in a maze environment, only the expert’s choice of direction is required at each

decision-step. The second pair of vignettes (C and D) involve the game of poker.

For these vignettes, we instead assume that the actions made by the expert

represent contexts that must be inferred using FAMTILE’s TBI engine.

Two vignettes are used for each vignette-type to allow for decisions to be made

both repeatedly at the same decision point (vignettes A and C) and throughout

a series of consecutive decision-points (B and D).

5.2.1 Vignettes A and B: Navigating a Maze

The first two training vignettes involve the navigation of a 2-dimensional maze.

For each vignette, the expert is asked to navigate from his position within a

virtual maze to a specified goal position. At each point during the vignette, the

player is provided a compass-like directional icon that indicates the distances - in

102

Figure 5.2: Maze Used for Vignettes A and B

both the x and y directions - to the goal position. If the goal position is located

within the player’s field of view, its position is marked on the map.

In Figure 5.3 above, the circular shape occupying the center position in the

maze indicates the position of the expert’s avatar. Also illustrated are the walls in

all directions that are one space in all directions from the avatar’s position. From

the observations of this figure, the expert makes a decision on which direction to

move. In the first vignette, the avatar and goal positions are re-initialized after

each expert action.

In the second vignette, the expert is asked to navigate the avatar towards a

goal-position and is given a larger frame of view as illustrated in Figure 5.4. In

addition, the simulation records the spaces that have been visited by the avatar

along his path to the goal position, and marks these spaces with a square shape

on the maze view.

103

Figure 5.3: Screen Shot of Vignette A

In these two vignettes, there is no conversion from the player’s action (left,

right, up, down) to a context. This is because of the relative simplicity of the

maze-navigating task. With no context inference, the FAMTILE algorithm re-

duces to a simple Fuzzy ARTMAP neural network. Vignettes A and B, therefore,

will serve as a baseline for evaluating FAMTILE in more complicated vignettes

where context inference is required. In addition, these vignettes will also be used

to evaluate the effectiveness of using Fuzzy ARTMAP individually to learn ex-

pert behaviors. The first vignette is intended to produce a basic learning task for

Fuzzy ARTMAP. The second vignette is designed to pose a slightly more difficult

task for the neural network. The viewing area for the expert is more than twice

that as the area in Vignette A. In addition, the network is provided the last move

104

Figure 5.4: Screen Shot of Vignette B

of the expert as well as the spaces on the board visited during the vignette. The

extra information that may or may not affect the expert’s decision is included

in an attempt to make the clustering process for Fuzzy ARTMAP more difficult

than in Vignette A.

5.2.1.1 Expert Behavior within a Maze Environment

Navigation of a maze is, for the most part, an exercise in trial-and-error. A

particular path is chosen, and when it is found to be the wrong path a new

direction is taken. However, there are certain strategies that can be employed by

105

an expert that take advantage of the observations provided by our simulation. In

Vignette A, the expert is provided only a view of one space in either direction

along with a vector indicating the distance and direction to the goal position.

Here, the strategy for choosing a direction to move is simple: Move in a direction

towards the goal that is not blocked by a wall. Unless the expert is able to predict

the walls in positions he has not visited (which he cannot do, as his and the goal’s

position are reset after each move), there is no reason to navigate the maze in

a different manner, unless the goal’s position is not in the field-of-view of the

avatar.

If the goal’s position is visible to the player, his movement strategy will likely

be altered. For instance, if the goal position is located one unit away from the

avatar but in a direction in which he is blocked, the expert will likely choose the

best direction that navigates the avatar around the wall.

In Vignette B, there are two additional enhancements that provide more tac-

tical options to the expert. First, the expert’s field-of-view is widened by one

space, giving him an 5x5 view of the maze environment. With this view, the

expert can ’look ahead’ to what his options will be if he moves in a certain direc-

tion. With this extra information, the expert can make a move in anticipation

of making another move to get to a desired position. This planning step can be

made at each decision point, since the field-of-view changes after each move to

keep the player in the center of the 5x5 view.

The second interesting enhancement is the presence of markers on each posi-

tion in the maze that has been visited by the player (refer to Figure 5.4. With

these markers, the expert can now recognize paths within the maze that he has

already traversed. If the paths lead to a dead-end, the expert can make a different

choice if he is in the same position a second time.

106

5.2.2 Vignettes 3 and 4: Texas Hold’em Poker

The final two training vignettes involve the game of Texas Hold’em Poker. The

following sections assume a basic understanding of the concepts of poker and of

Hold’em Strategy. A description of the rules and strategies behind these games

can be found in Appendix C. For advanced Texas Hold’em or general Poker

strategy, please refer to [SM03] or [Bru79].

5.2.2.1 Description of Poker Vignettes

For this research, two training vignettes were developed using Limit Hold’em

game. In the first vignette (Vignette C), only one betting round occurring prior

to the flop is considered. The expert is placed at a random position at a poker

table and seated with seven computerized opponents. The dealer button is placed

at a random position, and each player is dealt two hole-cards. Starting with the

player to the left of the big-blind bet, each opponent will make an action (either

to fold, to call, or to raise) until it is the expert’s turn to act. At this point, the

expert will know his two hole-cards, his position at the table, and the actions

of each opponent who has acted before him. The simulation will then prompt

the expert to make an action - either to fold, call, or raise. The expert’s action

will be recorded along with all applicable observations at that point, and then a

new hand is dealt and the player is re-seated. This process continues until the

simulation has collected a requisite number of expert observations. A screen shot

of the simulation for this vignette is provided below as Figure 5.5.

In this figure, the player at the top of the table is on the button and will

act last. Action proceeds in a clockwise direction starting with the player on the

107

Figure 5.5: Screen Shot of Vignette C

small blind. The two players to the left of the big blind have folded. The player

to their left has raised the big blind, so the bet the remaining players must call

to remain in the hand is two.

To the raiser’s left is the expert’s seat. He has been dealt 10♠10♥, a pair

of tens. His options are to raise the bet (to three), to call the raise, or to fold.

These options are shown to the player using the window at the bottom of the

figure.

108

For the second poker vignette (Vignette D), the expert is asked to make

decisions throughout entire hands and accumulate chips throughout the vignette.

This vignette begins just as the first poker vignette - the expert is placed at the

table with seven opponents, and the button is placed at a random position at the

table. A hand is dealt, and each opponent makes an action on their cards until

it is the expert’s turn to act. When the expert acts, however, the betting round

continues as well as the hand, and proceeds just as a standard round of Limit

Hold’em. After each round, the dealer button rotates one chair to the left and a

new hand is dealt. A chip-count is stored for the expert, which will reflect the

amount of money won/lost during the sequence of hands played.

109

Figure 5.6: Screen Shot of Vignette D

110

In this vignette, the situations encountered by the expert are far more robust

and are designed to challenge his playing ability. Because the vignette involves

entire rounds, the opponents at the table react to the expert’s decisions and use

many of the strategies outlined in [SM03] to try and win hands. The intelligence

coded for the opponents is described in 5.2.2.3.

Figure 5.6 illustrates a hand being played out in Vignette D. Here, the turn

card has just been dealt. The betting round begins to the left of the dealer, and

that player bets. Note that in the final two betting rounds (after the turn card

and river card), the bet amount is doubled. The player to his left raises, and so

the amount is 4 units to call for any remaining player. The expert is next to act.

After the turn card, the player’s best hand is J♥, J♦, 4♦, 4♣, K♣. He has the

option to raise (making it 6 units), to call the 4 unit bet, or to fold. Since a bet

has already been made, the player is not allowed to check.

In Figure 5.7, another hand is taking place and the flop has just been dealt.

The subsequent betting round begins to the left of the dealer, and that player

has checked along with the player to his left. The expert has the 5♥, 10♦ and

can either check or bet. Folding is not an option, since both players who acted

before him checked.

111

Figure 5.7: Alternate Screen Shot of Vignette D

112

5.2.2.2 Expert Strategy and Techniques in Texas Hold’em

Unlike the basic strategies that can be employed when navigating a maze, ad-

vanced Texas Hold’em strategy is very complex and requires a variety of skills.

For instance, advanced players are generally well-versed in the mathematics of the

game. and often use the random nature of the cards to their advantage. These

players are also adept at reading other players - assessing the strength of their

hands by observing betting patterns, mannerisms, and behaviors at the table -

while frequently changing the style and patterns of their own play so that they

are less likely to be read.

The strategy in which the hole cards (the two cards dealt face-down to the

player) are played prior to the flop is considered to be the most important skill

in the game of Limit Hold’em. While these hole cards will inevitably only make

up at most 2/5 of the player’s eventual 5-card hand, the players who begin with

the best hole cards are those who have the best odds to win the hand [SM03].

Likewise, players who begin with poor hole cards - for instance, two cards of low

and unpaired rank - have a relatively low chance of their hand turning into the

eventual winner, and are best served to fold their hand before the flop is even

presented.

Another important concept in Texas Hold’em is that of position. Players

who act near the right dealer button are among the last few to act, and have

a considerable advantage for that round of play. This is because they are able

to observe how the players acting before them play their hand. Because of this

important facet of the game, identical starting hands are often played in different

ways based on the position of the player holding the hand.

113

There are many factors that affect the overall action of an expert player

besides besides hand strength and position. For example, players will often feign

weakness in the opening rounds of betting with a superior hand, in an attempt

to trap their opponents in later rounds when the bet amount has doubled. This

gambit is known as slowplaying.

Expert players will often choose to make a raise when their hand is on the

come or on a draw - meaning that hand is one card away from a made hand

(when a player has successfully drawn to a hand that will likely win). Consider

a player who holds 7♥J♥ with the board (the set of community cards currently

displayed) showing 8♥7♦10♦6♥. At this point, the player only has a pair of 7’s

as his best hand (a relatively weak hand given the cards on the board), however

there are many cards that can come on the ’river’ that will make a significantly

stronger hand. Any 9 will give the player a Jack-High Straight, and any ♥ will

make the player a flush. However, the player may choose to raise here employing

what is known as a semi-bluff. Not only does this bluff induce more money to be

thrown in the pot (which will result in a larger payoff if his hand is made), but

with only a few players in the pot the semi-bluff may induce them all to fold. In

this case, the player would win the pot without even making his hand.

The various tactics associated with raising brings to light important reasons

why Texas Hold’em Poker works well in an intelligent model where contextual

actions can be identified accurately using templates. In these two Hold’em-based

vignettes, there is a many-to-one mapping between the context the player employs

when making an action and the action itself. For example, consider potential con-

texts RaiseToBluff, RaiseToSemiBluff, and RaiseWithSuperiorHand. While each

context in this set induces the same action (raise), the stimuli for activating them

are likely completely different depending on the style and preference of the expert

114

who is playing. However, with knowledge of the player’s hole cards, his position

at the table, other players at the table, the board, and the previous activity in

earlier betting rounds, the context in which the raise was made can likely be in-

ferred. To make this inference, we call to use the Template-Based Interpretation

engine described in section 5.3.1. The context topology and associated context

templates for both poker vignettes in Chapter 6.

Playing the opening betting round well in Texas Hold’em requires a good

sense of hole-card strength. While it is reasonable to assume that two Kings are

strong hole cards, there are many hole-card pairings whose strength is not as

obvious.

To assist in determining the relative strength of a player’s hole cards, we refer

again to Sklansky’s ”Hold’Em Poker for Advanced Players” [SM03]. In this text,

the author breaks down the best starting hands and places them into groups

according to their relative strength. The strongest hands are in group 1 and so

on, as provided below. In this list, the suffix ’s’ at the end of a card-pairing means

the two cards share the same suit. The suffix ’x’ refers to any card lower in rank

than 10.

115

Group # Hole Cards

1 AA, KK, QQ, JJ, AKs

2 TT, AQs, AJs, KQs, AK

3 99, JTs, QJs, KJs, ATs, AQ

4 T9s, KQ, 88, QTs, 98s, J9s, AJ, KTs

5 77, 87s, Q9s, T8s, KJ, QJ, JT, 76s, 97s, Axs, 65s

6 66, AT, 55, 86s, KT, QT, 54s, K9s, J8s, 75s

7 44, J9, 64s, T9, 53s, 33, 98, 43s, 22, Kxs, T7s, Q8s

8 87, A9, Q9, 76, 42s, 32s, 96s, 85s, J8, J7s, 65, 54, 74s, K9, T8

Table 5.2: Pre-Flop Hand Groupings ([SM03])

5.2.2.3 Intelligent Opponents for Poker Training Vignettes

Since this vignette involves the observation of experts playing against opponents,

it was important to create opponents who are able to pose at least a minimal

challenge. Opponents for the vignettes are programmed with:

• Basic understanding of the strength of its hole cards before the flop

• Basic understanding of hand-strength relative to cards on the board

• Basic understanding of hand-potential relative to cards on the board

• Ability to bluff

• Ability to trap, or slowplay

116

• Ability to change play based on position and amount of action in betting

round

Since Vignette C only involves a single decision-point that occurs towards

the beginning of a Hold’em round, it was not necessary to require each opponent

to reason about their cards. However, having each opponent make a random

decision of call, fold, raise, check, or bet would not make for a realistic situation

for the expert (and thus would result in unusable expert data). Because of this,

the likelihood of each opponent decision option was weighted based on a realistic

estimate of the number of players who that will be in the hand after the first

round of betting. To do this, the opponent’s option weights were skewed towards

folding (the most likely opponent move) but favored players either calling (or

better-still raising) in good position (within 0 to 2 seats away from the dealer) or

on the blinds (a player who has already committed money to a pot is less-likely to

fold than someone who can get out for free). A random number then ultimately

decides the action taken by the opponent, creating a close approximation of tight,

aggressive pre-flop opponents. This is the playing style that expert players tend

to employ. A tight, aggressive style calls for the player to fold all but the best

of hands, but when they play a hand to be aggressive and choose to raise rather

than calling.

For Vignette D, however, it became necessary to construct intelligent op-

ponents that could make informed Hold’em decisions throughout entire hands.

The first step in doing this was providing the opponents with a knowledge of

the strength of their hole cards. To do this, the hand grouping technique from

Sklansky ([SM03]) is encoded within each opponent’s knowledge-base. During

the pre-flop betting round, each opponent will make a decision on the strength

of his cards and make an action accordingly. For example, if the opponent is

117

dealt A♠K♠, he will first examine the table and determine that this set of cards

denotes a group 1 hand. Being the strongest group, the opponent will likely

make a raise. The actual play that the opponent makes in this situation will be

a probabilistic function biased heavily towards raising.

Hand Strength. The most crucial piece of the opponent’s intelligence to encode

is the ability to read and understand relative hand-strengths based on the cards

present on the board at the time of betting. Consider the following vignette.

A player is dealt A♦A♣ and recognizes that he has a group 1 pre-flop hand.

However, after the turn card is dealt, the cards on the board are 5♠6♠8♠9♠.

At this point any player who has a 7 has a straight, and any player with a spade

has a flush. Since both of these hands beat a pair of aces, the opponent should

recognize that his hand is weak with respect to the board and fold.

In 1997, Billings et al [BS98] developed an intelligent model of expert Hold’em

behavior called Loki. Within Loki, hand strength is calculated at each point in

the hand for a player by considering

a=numHandsPlayerBeats the number of opponent hand combinations that

the player can beat

b=numHandsPLayerTies the number of opponent hand combinations that

the player can tie

c=numPossibleOpponentHands the number of possible opponent hand com-

binations

From these, a fuzzy value representing the relative strength of the player’s

hand can be calculated by

relativeHandStrength = (a + (b/2))/c (5.1)

118

This equation calculates the probability that the player’s hand can beat a

random hand. Each opponent makes this calculation to gain an awareness of their

relative hand strength at each stage of the betting. After the model computes this

value, it examines the value to make an assignment to the enumerated variable

handStrength, a qualitative description of the player’s hand. The code to make

this assignment is duplicated below:

if (rhs < .3) handStrength = awful;

else if (rhs < 0.6) handStrength = mediocre;

else if (rhs < 0.75) handStrength = playable;

else if (rhs < 0.9) handStrength = good;

else if (rhs < 0.98) handStrength = great;

else handStrength = monster;

For our model, the drawing strength of a hand is considered quantitatively us-

ing the pPot calculation developed in [BS98]. This value represents the potential

of the player’s current hand to draw to a winning hand. For example, consider

the vignette where the player holds T♠, J♠ and the board is the A♠K♠, 3♦.

At this point, the player only holds ace-high (A♠, K♠, J♠, 10♠, 3♦), which is

likely not the best hand. However, with two cards to come, the player has many

draws at a good and likely winning hand. Any spade makes the player a flush,

while any Queen makes the player a straight. The Q♠ would make the player an

unbeatable royal flush!

In Loki ([BS98]), pPot is determined by considering the player’s current hand

against all possible hands held by an opponent. All remaining two-card combi-

nations are then dealt as the turn and river, and the two hands are compared.

For each possible opponent hand and turn/river combination, the following cases

are counted, and a value for pPot is computed using equation 5.2

119

a=numBehindToAhead number of times player had an inferior hand to the

opponent, but drew to a better hand

b=numBehindToTied number of times player had an inferior hand to the op-

ponent, but drew to the same hand

c=numTiedToAhead number of times player had an equal strength hand to

the opponent, but drew to a better hand

d=numBehind number of times player had an inferior hand to the opponent

e=numTied number of times player had an equal strength hand to the opponent

pPot = (a + b/2 + c/2)/(d + e) (5.2)

Similarly, a player’s hand can be the best hand at some point but be vulnerable

to getting drawn out on by an opponent. This likelihood is represented by the

value nPot ([BS98]). Consider a vignette where the player holds A♠, J♥ while

the board cards are J♣, A♣, 10♣. At this point during the round, the player very

likely holds the best hand with two pairs (A♠, J♥, A♣, J♣, 10♣). However, two

cards are left to come, and any opponent with a ♣ can make a flush if another

♣ is dealt on the turn or river. Other opponents can also make a straight with

one card if they hold a Jack or King - both a straight and a flush would beat the

player’s two pair.

Like the pPot value, nPot is determined by considering the player’s current

hand against all possible hands held by an opponent. All remaining two-card com-

binations are then dealt as the turn and river, and the two hands are compared.

For each possible opponent hand and turn/river combination, the following cases

are counted:

120

f=numAheadToBehind number of times player had a superior hand to the

opponent, but the opponent drew to a better hand

g=numAheadToTied number of times player had an inferior hand to the op-

ponent, but the opponent drew to a hand of equal strength

h=numTiedToBehind number of times player had an equal strength hand to

the opponent, but the opponent drew to a better hand

j=numAhead number of times player had a superior hand to the opponent

k=numTied number of times player had an equal strength hand to the opponent

pPot is then computed by:

nPot = (f + g/2 + h/2)/(j + k) (5.3)

The concept of a bluff is a very important concept in poker, though severely

overused by amateur players. A ’bluff’ is when a player makes a strong play

(either a bet or a raise) with a hand that cannot win in a showdown. The idea

behind the bluff is to misrepresent the strength of your hand in order to induce

your opponents to fold. Not only does this play allow for players to win pots with

hands that would otherwise be thrown away, it also allows for players to ’mix up

their play’ in order to confuse their opponents and keep from being readable. If a

player only raises with the most premium of hands, for instance, expert opponents

will pick up on this and be able to quickly identify his hand strength by whether

or not he is raising. On the other hand, the more often a player makes a bluff,

the more often he will be unsuccessful in running other players out of pots. In

order to keep one’s opponents guessing about your style of play, it is necessary

121

to make a bluff or two to let opponents know that you don’t always put money

in with the best possible hands.

The bluff is integrated within the model’s playing logic within the probabil-

ities of his actions. When an opponent determines his hand to be an ’awful’

hand, depending on the state of the hand it introduces a distribution of action-

probabilities that favor folding, such as the following code segment:

if (handStrength == awful) && (betAmount < 4)

{

check-likelihood = 0;

bet-likelihood = 0;

fold-likelihood = 90; \\

raise-likelihood = 8; \\

call-likelihood = 2; \\

}

Notice, however, that the raise likelihood for this situation is assigned the

value 8. This means that the player will raise 8/(0 + 0 + 90 + 8 + 2) = 8% of the

time. This percentage represents the likelihood that the model will bluff. Note

also that the call likelihood is assigned the lowest probability. This is because

calling is the worst move that can be made in this situation - an awful hand will

only win if the other player decides to fold, which cannot happen in response to

a call.

Each opponent model also incorporates the idea of slowplaying. As explained

in an earlier section, this tactic is employed by misrepresenting the strength of

your hand by feigning weakness with your actions - checking and calling instead

of raising, acting unimpressed with your hand, etc. While our model is incapable

122

of acting, it does execute slowplaying by favoring checking and calling in the early

stages of betting with a monster hand. The code for this tactic is shown below

for making an action with a monster hand on the flop.

case monster:

{

if (betAmount == 0) // slowplay most of the time

{

check-likelihood = 80;

fold-likelihood = 0;

call-likelihood = 0;

bet-likelihood = 20;

raise-likelihood = 0;

}

else if (betAmount - myBetOnTable < 2) // slowplay

{

check-likelihood = 0;

fold-likelihood = 2;

call-likelihood = 78;

bet-likelihood = 0;

raise-likelihood = 20;

}

else // less likely to slowplay with more than 2 bets

{

check-likelihood = 0;

fold-likelihood = 2;

call-likelihood = 48;

123

bet-likelihood = 0;

raise-likelihood = 50;

}

}

The final ability that was incorporated into the intelligent opponent models is

the concept of changing play as a function of the player’s position. As explained

earlier, the button is the strongest position at the table. The player on the button,

in all rounds after the first round (because of the blinds), acts last and is able to

watch everyone else’s play prior to playing. Because of this advantage, players on

and near the button have the luxury of being more aggressive with weaker cards

[SM03]. This advantage is maximized before the flop because of the number

of possible hands is minimized, and because it is relatively straightforward to

determine a correct course of action based on the betting and the player’s position.

To incorporate the idea of position into our model, we simply modify the

values for the decision probabilities based on a qualitative representation of the

player’s position. This representation is determined by the code segment below:

// determine player’s distance from button

while (distFromButtonCount != position)

{

distFromButtonCount--;

if (distFromButtonCount == -1)

distFromButtonCount = 7;

distFromButton++;

}

// is player in good, middle, or bad position?

goodPosition = (distFromButton < 3);

124

middlePosition = ((distFromButton >= 3) && (distFromButton < 5));

badPosition = ! (middlePosition || goodPosition);

This variable is updated after every hand, as the button rotates. It is used in

code-segments such as the one below to derive appropriate action probabilities

for the player’s turn. This code segment is used for action before the flop with a

group 6 or group 7 hand.

else if ((handGroup < 8) && goodPosition)

{

check-likelihood = 0;

fold-likelihood = 45;

bet-likelihood = 0; // cannot bet

call-likelihood = 55;

raise-likelihood = 10;

if (betAmount-myBetOnTable >= 2)

{

fold-likelihood = 70;

call-likelihood = 25;

raise-likelihood = 5;

}

}

else if ((handGroup < 8) && middlePosition))

{

check-likelihood = 0;

fold-likelihood = 60;

bet-likelihood = 0; // cannot bet

call-likelihood = 45;

125

raise-likelihood = 5;

if (betAmount-myBetOnTable >= 2)

{

fold-likelihood = 75;

call-likelihood = 12;

raise-likelihood = 3;

}

}

else if (handGroup < 8) // bad position

{

check-likelihood = 0;

fold-likelihood = 65;

bet-likelihood = 0; // cannot bet

call-likelihood = 35;

raise-likelihood = 5;

if (betAmount-myBetOnTable >= 2)

{

fold-likelihood = 92;

call-likelihood = 2;

raise-likelihood = 8;

}

}

}

Here, the model is given a better chance to make a raise or call if he is in

better position. Note also that there are other factors at work here, such as the

amount of the bet at the time it is the model’s turn to act.

126

Finally, since there will be seven models in Vignette D acting as opponents

to the expert, a random value representing the model’s aggression is computed

once for each model. Each model’s aggression value is between [0.5,−0.5] and

represents the player’s capacity for making aggressive and loose plays during

given rounds. Since this value is randomly generated for each opponent, no two

opponents will act in an identical fashion. The code segment below represents

how this value affects each model’s action probabilities.

// adjust for aggression

if (handStrength <= good) // average-weak hand

{

fold-likelihood *= (1-aggression);

call-likelihood *= (1+aggression);

}

else // good-monster hand

{

raise-likelihood *= (1+aggression);

call-likelihood *= (1-aggression);

}

If a model is given an aggression value close to 0.5, this code tells us that he

is more apt to call a bet with a weak hand and raise a bet with a good hand. On

the other hand, a player with aggression value close to -0.5 is more apt to fold

with an average-weak hand, and more apt to call (rather than raise) a bet with

a good-monster hand.

It is noted that these components were not designed to construct robust mod-

els of opponent poker behavior. The only purpose of these models are so that

the expert could play against realistic computer-generated opponents in terms

127

of their betting patterns. If the opponent folded every time when raised, for

instance, the expert would likely pick up on this and modify his normal playing

style to compensate. This would be undesirable for collecting training data.

Since each opponent has been provided the intelligence to play the game

autonomously, the poker vignettes can be run as a regular game without scripting

the order or sequencing of the cards in play. Cards are dealt randomly to each

player, and the opponents play according to what they are dealt. This forces the

expert to make intelligent decisions in order to succeed in the game, which makes

for a good training exercise for FAMTILE. Using the algorithm, the expert’s

decision is analyzed by the TBI engine which infers the context that supported

it. FAMTILE then learns the criteria for choosing a certain context based on the

player’s cards, position, the board cards, the action around the table, and the

player’s previous context.

As discussed earlier, there is no doctrine or field manual for playing poker as

there would be for negotiating an assault or ambush on the battlefield. It is as

much of an art as a science, and the choices to make particular actions during the

game are very much dependent on the individual who is making the decisions.

Within our opponent models, these variations are handled probabilistically - in a

particular spot with a hand of a certain strength, the opponent will be instructed

to raise 80% of the time, but the other 20% of the time he may fold or call. This

is the type of information we wish to extract using FAMTILE: when expert A

gets a certain hand in a certain position with a certain opponent-betting pattern,

what action will he choose in response? For example, consider the case where

the player has the 10♦, J♦ and the flop comes Q♦, K♦, A♦ - the player has an

unbeatable Royal Flush! If there are four opponents still in the hand and one

opponent bets, what should the expert do? Should he raise with immediately, or

128

string his opponents along by slowplaying and attempt to build the pot? What

if the player is first to act - should he lead out and bet, or check hoping that

another opponent will bet for him? These decisions are very much dependent on

both the situation and the individual player making the decision. The goal of

FAMTILE is to successfully learn the patterns of a variety of expert players and

predict them when similar situations occur.

This task is simplified in Vignette C with no cards on the board and, therefore,

only two cards and the opponents’ actions to consider. Furthermore, the expert’s

past context is assumed null because it is the first betting round of a new hand.

This vignette is an analog to Vignette A in that past actions are not considered,

and the expert makes a set of unrelated decisions instead of a string of decisions

throughout a running vignette. The main difference is that a context is identified

for the expert based on the environment and his resultant action. Because of

this, the entire FAMTILE algorithm is used to perform the learning rather than

simply Fuzzy ARTMAP, which is used by itself to learn the experts’ behaviors

in Vignettes A and B.

Vignette D adds a new degree of complexity to the learning task with the addi-

tion of previous context considerations, multiple betting rounds, and community

cards that are present during entire rounds of Hold’em poker. These added in-

puts are intended to break the FAMTILE algorithm so that its deficiencies can

be identified, analyzed, and ultimately posed for future work.

129

5.3 A Prototype Implementation of FAMTILE

The major components of FAMTILE are the TBI Engine, the Fuzzy ARTMAP

Neural Network, and the rule extraction engine. Descriptions for each of these

subsystems is provided in the following sections.

5.3.1 The TBI Engine

For Vignettes C and D, each action taken by the expert must first be interpreted

by the TBI engine before presenting a corresponding output pattern to FAM.

This output pattern is the context of the action taken as interpreted by TBI.

Individual actions performed by the expert are assumed to be a consequence of

the expert acting in a particular context.

To make an interpretation of the context embodied by the expert’s recorded

action, the TBI engine matched each template against the appropriate conditions

present in the observation. The engine then infers the context in which the

expert is likely to be acting. This determination is then recorded by the interface

module and transformed into a bitstream representing the output pattern for

Fuzzy ARTMAP using the technique discussed in Chapter 4.

5.3.1.1 Context Templates

Context Templates are a heuristic description of ’what it means’ to exist in a

certain context. These structures are most analogous to the context description

fields present in each c-schema of Turner’s CMB models [Tur98]. Each structure

130

includes a weighted ’checklist’ of parameters that represent conditions that often

or occasionally exist when in a certain context. When the TBI engine receives

all appropriate variables relevant to the current expert action to be interpreted,

it will attempt to match them to each context template present for the given

vignette. The template that yields the highest score (based on the number of

field matches and their appropriate weight) will be chosen as the context most

likely to have reflected the expert’s action.

For Vignettes A and B, no context templates are required because there are

no contexts implied with expert’s movement. However, context templates are

used for both of the poker vignettes introduced in 5.2.2.1. Each context used for

Vignettes C and D is described below. For Vignette C, the contexts calling for

a bet or a check are not used. When the player is on the big blind and the pot

is not raised, we consider it a call if a check is made.

foldWithWeakHandContext player folds because his hole cards are not strong

foldToStrongBettingContext player folds an otherwise playable hand due to

raising and other aggressive table action

foldWithWeakHandContext player folds because his hole cards are not strong

foldToStrongBettingContext player folds an otherwise playable hand due to

raising and other aggressive table action

foldInWeakPositionContext player folds an otherwise playable hand

foldWithStrongHandContext player incorrectly folds a strong hand

checkWithStrongHand player checks with a strong hand, possibly with the

intention to raise when it is his action. This strategy is known as a ’check-

raise’, commonly referred to as the strongest play in hold’em

131

checkWithWeakHand player checks with a weak hand, likely with the inten-

tion to fold if there is a bet made

checkWithMarginalHand player checks with a marginal hand, likely to ob-

serve the action at the table and gain more perspective on the strength of

his hand

callToTrapContext player calls with a strong hand either in or out of position

attempting to induce action in later rounds

callWithMarginalHandContext player makes a ’loose call’ with a hand that

’tighter’ players would likely fold. A ’tight’ player typically only plays with

very strong hands and draws

callWithDrawingHandContext player calls with good multiway hole cards

to see a flop, or if he is on a good draw (to a flush, straight, etc.)

callWithWeakHandContext player makes an extremely loose call with a weak

hand

raiseWithMultiwayHandContext player makes a raise with a ’multi-way’

hand before the flop cards in order to increase the size of the pot and

thereby increase the implied odds on his bet. Implied odds are the pot-

odds the player is getting on his bet based on the assumption that he will

earn extra bets if and when his hand ’hits’ (i.e. he makes a winning hand)

raiseWithDrawingHandContext player makes a raise with a strong drawing

hand, in an attempt to induce either folds or ’free cards’ in later rounds.

A free card is when a player on the come acts strong and in a later round

induces other players to ’check’ around to him, allowing him to see a card

without betting or calling.

132

raiseInPositionContext player makes a raise based mainly on his position at

the table

raiseWithStrongHandContext player makes a raise with a strong opening

hand

raiseToBluffContext player makes a raise with a weak hand in order to induce

the table to fold out

foldInWeakPositionContext player folds an otherwise playable hand

foldWithStrongHandContext player folds a strong hand for no discernable

reason

checkWithStrongHand player checks with a strong hand, possibly with the

intention to raise when it is his action. This strategy is known as a ’check-

raise’, commonly referred to as the strongest play in hold’em

checkWithWeakHand player checks with a weak hand, likely with the inten-

tion to fold if there is a bet made

checkWithMarginalHand player checks with a marginal hand, likely to ob-

serve the action at the table and gain more perspective on the strength of

his hand

callToTrapContext player calls with a strong hand either in or out of position

attempting to induce action in later rounds

callWithMarginalHandContext player makes a ’loose call’ with a hand that

’tighter’ players would likely fold. A ’tight’ player typically only plays with

very strong hands and draws.

133

callWithDrawingHandContext player calls with good [multiway] hole cards

to see a flop, or if he is on a good draw (to a flush, straight, etc.)

callWithWeakHandContext player makes an extremely loose call with a weak

hand

raiseWithMultiwayHandContext player makes a raise with a ’multi-way’

hand before the flop cards in order to increase the size of the pot and

thereby increase the implied odds on his bet. Implied odds are the pot-

odds the player is getting on his bet based on the assumption that he will

earn extra bets if and when his hand ’hits’ (i.e. he makes a winning hand)

raiseWithDrawingHandContext player makes a raise with a strong drawing

hand, in an attempt to induce either folds or ’free cards’ in later rounds.

A free card is when a player on the come acts strong and in a later round

induces other players to ’check’ around to him, allowing him to see a card

without betting or calling

raiseInPositionContext player makes a raise based mainly on his position at

the table

raiseWithStrongHandContext player makes a raise with a strong opening

hand

raiseToBluffContext player makes a raise with a weak hand in order to induce

the table to fold out

In poker, a context is assumed to be a circumstance and/or rationale for

making a particular play. The raise action, for instance, is divided into contexts

that differentiate the inferred reason for the raise. As discussed in [SM03], there

is a variety of purposes behind making a raise - to force weaker hands to fold,

134

to get more money into a pot, to bluff thereby causing stronger hands to fold,

etc. While the expert’s intent cannot be recorded through strict observation,

it can be inferred if each of these purposes are encoded by a context. Using

expertise gathered from poker experience and from various texts [SM03], [Skl89],

[Bru79]), a set of contexts were generated that result in each possible action

(raise, call, bet, fold check) in both vignettes. When an observation is presented

to FAMTILE’s TBI engine, it is compared against the attributes of each context

template and generates a score for that template. Consider the template below

for the RaiseInPosition context. This context refers to a situation where the

expert has made a raise based mostly on his strong position relative to the dealer

button. As stated earlier, players on the button get to act last on each post-flop

betting round, giving them a significant advantage of being able to react to each

opponent’s play.

playerAction == Raise; weight = 6

distanceFromDealerButton = 0; weight = 3

numPlayersInPot = 2; weight = 0.5

numBetsToCall = 1; weight = 0.5

Note the weights associated with each attribute. The most heavily weighted

attribute is the player’s action - if the player does not make a raise, this weight

induces the TBI engine to calculate a low score for this template. The other

weights are assigned based on their relevance to the context. Aside from the

player’s action, all attribute scores are assigned based on the following formula

introduced in Chapter 4 for ’how close to’ attribute-types:

scoreatt = (1− |attobserved − atttemplate|/rangeatt) ∗ weight (5.4)

135

Consider the distanceFromDealerButton attribute. If that observed value for

an observation is 0, the player is on the button and is more likely to raise because

of it. To reflect this, the distanceFromDealerButton attribute score is maximized

when the expert is on the button:

scoredistanceFromDealerButton = (1− |0− 0|/7) ∗ 3 = 3

Likewise, as the button moves further away from the expert, this attribute

score decreases, making it less likely for the TBI engine to select this template

as the inferred context.

For this prototype, context templates are instantiated as Java objects in the

following form. The TBI engine is itself a class that stores an array of Template

objects. When passed an observation from the FAMTILE interface, it compares

the attributes of that observation with those of each template in its array. A

total score is computed for each template using the sum of each attribute score

as calculated above.

public class Template

final int numAttributes;

String templateName;

double [array] attributes;

double[array] weights;

double[array] templateScore;

int[array] range;

Using equation 5.4, a score is generated for each context template and each

expert observation oj recorded. The template for which a maximum score is

computed is chosen the most likely active context of the expert at time j. This

selection will be used for the output pattern of time j, while the observation oj will

136

be used to construct the input pattern at that point. Presented in an appropriate

form, this pairing of the observation oj and the resultant active context ctxj

inferred by TBI will be presented to Fuzzy ARTMAP for training.

Consider the case where the expert is on the big blind with 8♥, 9♥ and 4

opponents call the forced blind. Given the option to check or raise, the expert

chooses to raise with this hand. TBI uses the information given to it and examines

the top 5 candidates for the expert’s inferred action:

• raiseWithWeakHandContext (template score = 8.2)

• raiseWithDrawingHandContext (template score = 8.7)

• raiseWithMediocreHandContext (template score = 8.0)

• raiseWithStrongButVulnerableHandContext (template score = 6.7)

• raiseWithMonsterHandContext (template score = 6.1)

With the highest template score, raiseWithDrawingHandContext is chosen as

the inferred context of the expert at that decision point. The task of FAMTILE is

therefore to cluster similar situations that result in that context selection and use

them to predict the raiseWithDrawingHandContext for future decision-points not

seen by the expert. This clustering process begins by presenting the observation

to FAMTILE, which is discussed in the following sections.

5.3.2 Generation and Representation of Training Data

Since the training patterns for the neural network come directly from the obser-

vations of the expert under study, the amount of diversity among those training

137

patterns is completely dependent on the robustness of the vignette in which that

expert operates. Knowledge used for training can only be extracted from obser-

vations, and thus any relevant expert knowledge not executed within an observed

simulation will not be learned by the neural network. Because of this, there will

be gaps in the tactical knowledge representing situations not encountered by the

expert during the observation phase. If these gaps are ignored by the learning sys-

tem, the resultant autonomous agent will have no intelligent response if presented

with that unlearned situation. The only defense against these gaps in knowledge

is to train the network with as many examples as possible in hopes that they

sample as much of the expert’s knowledge as possible - in other words, provide

vignettes in which the expert must use all or most of his tactical knowledge.

5.3.2.1 Generation and Representation of Training Data for Maze

Vignettes

Generating training points for the maze vignettes is a matter of placing the player

and goal at random locations within a fixed maze. Each time the player makes

a move, the next training point input pattern becomes either a new random

position for both him and the goal (as in Vignette A) or the updated maze state

based on the direction of the player’s previous movement (as in Vignette B. The

output pattern for that training point is then the action taken by the expert for

the corresponding maze state represented by the input pattern. Each of these

patterns, however, must first be translated into a readable form so that they can

serve as useful training patterns for FAMTILE.

Because the Fuzzy ARTMAP Neural Network is the component of FAMTILE

responsible for doing the low-level learning of the expert’s knowledge, it is nec-

138

essary to pre-process the stimulus data (the maze and goal-state) along with the

interpreted context of the expert’s action. In this case, the expert’s contexts

are considered to be simply the actions of moving left, right, up, or down. The

observation of the maze state is recorded, and the composition of each processed

piece is presented to the network as a single input-pattern. Each input pattern

generated represents the position of the player at a given time; the visual of the

maze according to the player, his distance to the goal, and the move he takes in

response.

As illustrated in figure 5.4, the visible portion of the maze for Vignette B is a

5x5 window in which the player is at the center. To represent this portion of the

maze in terms of a bit-stream, each edge on the maze is represented by a 1-bit

binary number. This number represents whether or not a wall is present at that

edge. In addition to this information, the distance to the goal in both the vertical

and horizontal direction is also parsed into the input pattern. To do this, both

distances are scaled to a value between 0 and 1 by dividing by the length and

width of the maze. A Boolean value is inserted into the data stream representing

whether or not the goal position is actually visible on the screen. The reason for

adding this value is that the player is given a much better idea as to the correct

move to make when the goal is not visible to the player (exists outside the 5x5

window).

Vignette B requires an additional piece of information - the player’s movement

history. This is because the board is marked with spaces previously visited by the

player during the vignette. These data must be represented in the input pattern

because it is potentially an input that the expert uses to make his next decision.

To represent this, an additional bit is added to the 4-bit wall-state vector for

139

each space on the visible board that indicates whether or not that space has been

visited.

The output pattern is simply the context that the expert has chosen as a

response to the stimuli represented by the input pattern. In both maze vignettes,

there are four possible transitions that exist. Just as with the wall-state of a space

on the maze, a 4-bit binary integer is used. However, here the ’1’ bit represents

the action taken and the other bits hold value ’0’, meaning that only 4 possible

output-patterns exist. These 4-bit representations of the players’ move will also

be inserted into the input patterns for the next move made by the expert (for

Vignette B).

Figure 5.8: Wall-State and Other Map Inputs for Vignette A

The representations for the input and output vectors used for Vignettes A

and B are summarized below.

140

distance︷ ︸︸ ︷
0.5, 0.8 0︸︷︷︸

goal∗visible

wall∗states∗for∗3x3∗window︷ ︸︸ ︷
000110010111... . . . (5.5)

Input Vector for Vignette A

0001︸ ︷︷ ︸
action∗4∗player∗goes∗down

(5.6)

Output Vector for Vignette A

Figure 5.9: Wall-State and Other Map Inputs for Vignette B

141

2∗west∗2∗north︷ ︸︸ ︷
−0.2, 0.2 1︸︷︷︸

goal∗is∗visible

action∗taken∗last∗move∗right︷ ︸︸ ︷
0100 001011 . . .︸ ︷︷ ︸

visited∗spaces

wall∗states∗for∗visible∗5x5∗window︷ ︸︸ ︷
1000011101010... . . .

(5.7)

Input Vector for Vignette B

0100︸ ︷︷ ︸
action∗2∗player∗goes∗right

(5.8)

Output Vector for Vignette B

0︸︷︷︸
space∗0∗not∗visited

space∗1∗visited︷︸︸︷
1 1︸︷︷︸

space∗2∗visited

. . . (5.9)

Representing Visited Spaces in Vignette B

5.3.3 Generation and Representation of Training Data for

Poker Vignettes

To accurately represent the situation presented to the expert player, the sim-

ulation must generate and record the following pieces of information for each

observation:

• Player’s hole cards

• Board cards (Vignette D)

• Player’s position

142

• Position of the Button

• Action of all players acting before the player

• Amount of money in pot (Vignette D)

• Player’s action

To generate this information, the simulation deals a random hand to the

expert and seven automated opponents. Each opponent makes an action until it

is the player’s turn. At this point, the state of the hand is recorded along with

the action made by the player for his turn. For Vignette C, each of these points

occur during the betting round prior to the flop. Vignette D includes points

throughout an entire hand of Hold’em.

5.3.3.1 Representation of Training Data for Vignette C

The simulation records the hand-state information in character form, and that

character sequence is then converted by the interface into an appropriate in-

put/output vector to present to Fuzzy ARTMAP. This process is similar to that

used to record and convert the stimuli/action data for vignettes 1 and 2. How-

ever, observation for Vignette C also involves the conversion of the player’s action

to an interpretation of the expert’s context.

After the expert observation sequence has been generated, representations for

each situation are in the format seen in equation 5.10. In these equations, hole

cards are identified by rank and suit (e.g. 8s is the 8 of spades, tc is the 10 of

clubs, etc.). Opponent actions are either f (fold), c (call), or r (raise) in vignette

C. In vignette D, players also have the option to bet (b) and check (k). Opponents

143

who have yet to act are identified by a ’-’. Consider the situation illustrated by

figure 5.10.

Figure 5.10: An Example Decision Point in Vignette C

To represent this situation, we record the player’s hole cards, his position at

the table, and the actions of his opponents. This situation is represented by the

expression below. Note that the opponent actions begin with the player to the

left of the big blind.

<

holecards︷ ︸︸ ︷
6s, Ac 6︸︷︷︸

distancefrombutton

opponentactions︷ ︸︸ ︷
f, f, c, f, r, f, r,− > (5.10)

The player’s hole cards hc1 and hc2 are converted into an input pattern first

by rank, then by suit. The rank of each card is scaled into a fuzzy value between

0 and 1 (a fuzzy bit) by simply dividing the card’s rank by 14 - the rank of the

highest card (Ace). One fuzzy bit is then used to represent whether or not the

cards are suited(share the same suit). If they are, that bit is set to 1, otherwise

it is set to zero The player’s distance to the button, db, is also represented as

a fuzzy bit. This value is determined by gauging the player’s position at the

144

table relative to the button. The strongest position is to be on the button, so

this position is assigned the value 1. The remainder of the seats are assigned

according to figure 5.11

Figure 5.11: Table Position Value Assignments for Vignette C Input Patterns

Each action in the action sequence can be represented by a 3-bit binary integer

that designates the action taken. For the action sequence, a ’c’ represents a call,

an ’f’ represents a fold, an ’r’ represents a raise, and an ’x’ represents a player

who has yet to act. We can represent these actions by representing the amount

of money each player has put into the pot.

The minimum amount of chips that a player can have for his bet is 0, which

occurs if he has folded or has yet to act. Since there is a maximum of three

raises, the maximum number of chips that a player can have as his bet is 4.

Therefore, we can consider each chip bet by a player to hold a value of 0.25. If a

player is on the small blind and has yet to act, his 1/2 chip can be represented

by 0.25/2 = 0.125. Going around the table, the amount of chips each player has

in the pot is converted to a fuzzy bit.

145

Combining each of the bits and fuzzy bits described above, we can now express

an input pattern for Vignette C that represents the action at the table directly

prior to the expert’s decision point.

<

hc1︷ ︸︸ ︷
0.4286

hc2︷ ︸︸ ︷
1.000 0︸︷︷︸

suited

db︷ ︸︸ ︷
0.250 0, 0, 0.25, 0, 0.5, 0, 0.75, 1︸ ︷︷ ︸

actions

> (5.11)

5.3.3.2 Representation of Training Data for Vignette D

For Vignette D, this observation is expanded to include interpreted information

about the player’s hand and position relative to the rest of the table. To do this,

the following parameters are used:

hole cards rank and of player’s two hole cards. Both are scaled to values < 1

suited boolean value indicating whether cards have the same suit, e.g. 5♥, J♥

hand strength fuzzy value of player’s hand, as determined in equation 5.1

([BS98])

pPot fuzzy value representing the potential of the player’s hand drawing to a

winning hand, as determined in equation 5.2

nPot fuzzy value representing the potential of the player’s hand decreasing in

strength due to future board cards, as determined in equation5.3

distance from dealer button

betting round 4-bit binary value, representing the current betting round. Ei-

ther preFlop (0 0 0 1), flop (0 0 1 0), turn (0 1 0 0), or river betting round

146

last action 4-bit binary value representing what the player did on his last turn

to act. Either nothing (0 0 0 0), fold (0 0 0 1), check (0 0 1 0), call (0 1 0

0), or raise (1 0 0 0)

pot size number of chips currently in the pot, scaled to a fuzzy value < 1

opponent bets in pot Scaled to a fuzzy value < 1 by the size of the largest

bet

Here is an example observation for vignette D:
hole∗cards︷ ︸︸ ︷

tdks tc9h8h−−︸ ︷︷ ︸
board∗cards

position∗of∗button︷︸︸︷
6

last∗action︷︸︸︷
r f︸︷︷︸

betting∗round

pot∗size︷︸︸︷
2.5 ffrfc−−︸ ︷︷ ︸

opponent∗actions

Based on the conversions listed in the above descriptions, here is the corre-

sponding input pattern for this observation that would be presented to Fuzzy

ARTMAP:

hole∗cards︷ ︸︸ ︷
0.714, 0.929 0︸︷︷︸

suited

hand∗strength︷ ︸︸ ︷
0.78 .3︸︷︷︸

pPot

nPot︷︸︸︷
.2 5︸︷︷︸

distance∗from∗button

last∗action︷ ︸︸ ︷
1000

0010︸ ︷︷ ︸
betting∗round

︷ ︸︸ ︷
0.025
pot∗size

num∗players∗in∗pot

0.75︸ ︷︷ ︸

opponent∗bets∗in∗pot︷ ︸︸ ︷
0, 0, 1, 0, 1, 0, 0

147

5.3.3.3 Generation of Output Patterns for Poker Vignettes

When the simulation records the expert’s action during observation, the result

is simply a character value representing either a raise, fold, or call. For both

poker vignettes, however, Fuzzy ARTMAP is used to create a mapping between

the observed situation and the expert’s choice of context, not simply his action.

To make this transformation, the interface extracts necessary variables from the

input pattern to present to the TBI engine, which makes a prediction of the most

likely context that the expert has chosen. For Vignette C, there are 12 contexts

from which the expert can select.

foldWithWeakHandContext Player folds because his hole cards are not strong.

foldToStrongBettingContext - Player folds an otherwise playable hand due

to the bet amount and other aggressive table action

foldInWeakPositionContext - Player folds an otherwise playable hand

foldWithStrongHandContext - Player folds a strong hand for no discernable

reason

callWithDrawingHandContext - Player calls a good multiway hand in order

to see a flop.

callToTrapContext - Player calls with a strong hand either in or out of position

attempting to induce action in later rounds

callWithMarginalHandContext - Player makes a loose call with a hand that

tighter players would likely fold. A loose call indicates a call when the

player holds a relatively mediocre or poor hand. A tight player typically

only plays with very strong hands and draws.

148

callWithWeakHandContext - Player makes an extremely loose call with a

very weak hand

raiseWithDrawingHandContext - Player makes a raise with a strong draw-

ing hand, in an attempt to induce either folds or free cards in later rounds.

A free card is when a player on the come acts strong and in a later round

induces other players to ’check’ around to him on the next round, allowing

him to see a card (and possibly catch his draw) without betting or calling.

raiseInPositionContext - Player makes a raise based mainly on his position

at the table

raiseWithStrongHandContext - Player makes a raise with a strong opening

hand

raiseToBluffContext - Player makes a raise with a weak hand in order to

induce the table to fold out A 12-bit binary number, therefore, is used to

represent the context identified for the expert’s action and constitutes the

entire output pattern that is presented to Fuzzy ARTMAP at ARTb.

An output pattern for Vignette C would therefore be a 12-bit binary number

with all but one number set to zero. That number, in the jth position, repre-

sents that the TBI engine has identified context j as the active context for the

observation represented by the input pattern.

In Senario D, there are 23 contexts:

foldWithWeakHandContext Player folds because his hole cards are not strong.

foldWithMediocreHandContext Player folds an average hand

149

foldWithDrawingHandContext Player folds a hand that could draw to a

winner

foldWithStrongHandContext Player unknowingly folds a strong hand

checkWithWeakHandContext Player checks with a weak hand, likely with

the intention to fold if there is a bet made

checkWithDrawingHandContext Player checks a hand that is on the come

to a possible winning hand, and would like to see another card for little to

no money

checkWithMediocreHandContext Player checks with a marginal hand, likely

to observe the action at the table and gain more perspective on the strength

of his hand

checkWithMonsterHandContext Player checks with a monster hand, to fake

weakness and induce action from his opponents

checkWithStrongButVulnerableHandContext Player checks with a strong

hand that may get drawn out on

callWithWeakHandContext Player makes an extremely loose call with a weak

hand

callWithMediocreHandContext Player makes a ’loose call’ with a hand that

’tighter’ players would likely fold. A ’tight’ player typically only plays with

very strong hands and draws.

callWithDrawingHandContext Player calls with good multiway hole cards

to see a flop, or if he is on a good draw (to a flush, straight, etc.)

150

callWithMonsterHand Player calls with a monster hand, attempting to slow-

play his hand

callWithStrongButVulnerableHandContext Player calls with a strong hand

vulnerable to drawing hands

betWithWeakHandContext Player bets with a weak hand to bluff

betWithMediocreHandContext Player bets with a marginal hand, either to

bluff or to induce an even weaker hand to fold

betWithDrawingHandContext Player bets a drawing hand on a semi-bluff.

betWithStrongButVulnerableHandContext Player bets with a strong and

likely winning hand

betWithMonsterHandContext Player bets with a hand that cannot be beaten

raiseWithWeakHandContext Player makes a raise with a weak hand in order

to induce the table to fold out (a bluff)

raiseWithMediocreHandContext Player makes a raise with a mediocre hand,

either to bluff or to induce a weaker drawing hand to fold

raiseWithDrawingHandContext Player makes a raise with a strong drawing

hand, in an attempt to induce either folds or ’free cards’ in later rounds.

A free card is when a player on the come acts strong and in a later round

induces other players to ’check’ around to him, allowing him to see a card

without betting or calling.

raiseWithStrongButVulnerableHandContext Player makes a raise with a

strong hand that could get drawn out on

151

raiseWithMonsterHandContext Player has a nearly unbeatable hand, and

is raising to extract the most amount of chips out of his opponents

An output pattern for Vignette D would, likewise, be a 23-bit binary number

with all but one number set to zero. That number, in the jth position, repre-

sents that the TBI engine has identified context j as the active context for the

observation represented by the input pattern.

context−6−chosen︷ ︸︸ ︷
00000100000000000000000 (5.12)

To evaluate the utility of representing expert actions through the context in

which they were executed, a second set of output patterns are generated that

represent the expert’s actual action. The expert has three available actions in

Vignette C - fold, call, and raise, therefore his selected action can be represented

by a 3-bit binary integer (there are four options in vignette four because the

player can ’check’). Presenting the input patterns paired with output patterns of

this form provides a learning task similar to those of vignettes A and B. It also

provides baseline results that can be measured against the set generated using

context selections as the output patterns.

5.3.4 The Fuzzy ARTMAP Neural Network

After the expert has executed a vignette, and the results have been interpreted

by the TBI engine and the simulation interface, all of the expert data now exists

as simply a sequence of binary strings. These strings represent a set of input and

output patterns that are then presented to the neural network for learning. Before

this presentation, a neural network class is instantiated and provided with values

152

for its learning parameters. Next, the training and testing set are read in by the

neural network, complement-encoded, and stored into two arrays of sizes m and

n, where m is the number of training examples and n is the number of testing

examples (see Chapter 4). The neural network then trains by presenting itself

each training pattern individually and in sequential order. Since Fuzzy ARTMAP

only requires one pattern presentation epoch for learning; the training ends once

all pattern have been presented once. One trait of the Fuzzy ARTMAP neural

network is its sensitivity to the order in which the patterns are presented during

training. Two identical Fuzzy ARTMAP neural networks trained by the same set

of training data will produce different results if the order of patterns presented

during training differs. Therefore, it became necessary that, for each vignette

and expert tested, the neural network be trained multiple times with a different

order of pattern presentation given for each learning session. By doing this, and

computing an aggregate score for the network’s testing results, the possibility for

skewing the results because of a specific pattern-presentation order is eliminated.

After FAM has learned each training pattern, a set of clusters will exist at the

input and output. Each cluster in the ARTa module of FAM will map to an action

cluster in ARTb for the maze vignettes, and to an output-context cluster for the

poker vignettes. The ARTa clusters represent a group of closely matched input

patterns that each map to the same cluster in ARTb. In the maze vignettes,

patterns in the same cluster may represent similar positions within the maze

where the expert chose the same direction. In the poker vignettes, such patterns

may share features such as hole-card strength, player position, or even opponent

betting patterns. The only guaranteed similarity amongst patterns in the same

cluster are their input patterns. However, the relative granularity of each cluster

(which represents the similarity that must exist for patterns to share the same

cluster) can be adjusted for FAM using the ρ̄a parameter discussed in Chapter 4.

153

Since the output patterns contain only one piece of information (the index

of the output context inferred for the input), only one output cluster exists per

output context.

For this prototype, FAM clusters are stored as 1-dimensional arrays - one

for each cluster in the ARTa and ARTb modules. Each entry in these arrays

represents a field value of that cluster. To store the mappings, a separate array

is created that represents the InnerART module of FAM. This array contains

one field for each cluster created in ARTa. The value stored in each field is the

index of its mapped cluster in ARTb. For instance, if ARTa cluster i is mapped

to cluster j in ARTb, the InnerART array would look like

[ia1, ia2, . . . , iac = j, . . .] (5.13)

Here the field containing the value j is stored in the ith slot.

5.3.5 Rule Extraction and CxBR Model Composition

When implementing CxBR models in the framework developed by Norlander

([Nor99]), all context-transition logic must be represented in the form of sentinel

rules. For the simulation used in this prototype, however, this framework is not

required to develop CxBR models of the expert’s observed behavior. The reason

for this is that each context used for the training vignettes map to a single, atomic

action. For instance, the raiseInPosition context implies that a raise is made -

no further intelligence is needed to define that context. This condition exists for

each context used. Because of this, no rule extraction prototype was developed

for this implementation.

154

The rule extraction algorithm [CT95] discussed in Chapter 4, however, can

be implemented within FAMTILE to make the transformation. To do this, first

each cluster array from ARTa along with the InnerART array is retrieved from

the network. To convert each cluster to a rule, the following steps are executed:

• Count the number of fields n within the ARTa clusters

• Field j represents the minimum value for that cluster

• Field n/2 + j represents the maximum value for that cluster

• Calculate the range for each cluster field and interpret those ranges in terms

of the observation sequence

• Each range constitutes a condition for entering the output context repre-

sented by the corresponding InnerART value

• The conjunction of each range stored in a cluster represents the transition

rule for that cluster

• Compose each rule using the format given in [Nor99]

155

CHAPTER 6

EVALUATION OF FAMTILE PROTOTYPE

In this Chapter, we outline the testing procedures used to evaluate FAMTILE

along with the summarized results of those tests. The testing procedure uses

eight testing Scenarios, with each using one of the four Vignettes described in

Chapter 5. To populate each Vignette with data for training and testing, three

human test subjects were observed over a fixed number of decision points. The

observations collected from these test subjects were used as the source of training

and testing data for both Fuzzy ARTMAP and FAMTILE.

As discussed in Chapter three, the primary interest of this research is the class

of behaviors and tasks which are composed of lower-level behaviors that (a) can

be identified during observation, (b) do not need to be learned individually, and

(c) are known to be characteristic of the task/behavior we do wish to learn.

6.1 Overview of Testing Scenarios

Seven testing Scenarios are used to evaluate Fuzzy ARTMAP and FAMTILE.

In this section, each Scenario will be briefly introduced. Table 6.1 contains an

overview of the algorithms and Vignettes used for each testing Scenario described

here.

156

Table 6.1: Summary of Test Scenario Parameters

Scenario Vignette Used Expert Contexts Learning Algorithm Evaluated

1 A no FAM

2 B no FAM

3 C no FAM

4 D no FAM

5 C yes FAMTILE

6 D yes FAMTILE

7 D n/a both

6.1.1 Testing Scenarios #1 and #2

With Scenarios A and B, we consider a basic instantiation of this class of be-

haviors. Here, low-level actions are represented by direction-choices - either left,

right, up, or down. These directions are also representative of the entire action-

space of the behavior, as no other actions are permitted within the maze. Sce-

narios #1 and #2 are an evaluation of Fuzzy ARTMAP’s ability to learn subject

behavior from Vignettes A and B, respectively.

When learning subject behaviors for Vignettes A and B, all possible contexts

that may provide motivation for each action is ignored during training. For

instance, the motivation of going left because the goal state is in that direction

is considered identical to the motivation of going left simply because that is the

best alternative. Because of this, contexts for making particular moves are not

considered in these two testing Scenarios.

157

6.1.2 Testing Scenarios #3 and #4

In Scenarios #3 and #4, the subjects perform the more complex activities related

to Vignettes C and D - participating in hands of Texas Hold’em. As discussed in

Chapter 5, these Scenarios involve reasoning about several observations, where

each may have a significant impact on the subject’s eventual decision. Further-

more, each action taken by the subject may be the result of one or more motiva-

tions. A raise or bet in one situation, for instance, may be used for a completely

different purpose than it would in another situation.

Scenarios #3 and #4, however, intentionally ignore this fact. When a player

makes an action, it is presented to Fuzzy ARTMAP as that action regardless of

any supposed context behind it, as illustrated in Figure 6.1. Because of this,

these tests will mirror those of Scenarios #1 and #2, but with a more complex

behavior.

158

Figure 6.1: Training FAM With Subject Actions

Figure 6.1 represents the process of training FAM with the actions of a spe-

cific test subject. the subject is a presented with some stimuli that triggers a

decision point at ik− . In response to that stimuli, the subject executes an action

(considered to occur at ik+). That action is presented to the ARTb module of

Fuzzy ARTMAP. At the input module ARTa, both a representation of the stimuli

and the action performed at the previous time step i(k−1)+ is presented.

159

6.1.3 Testing Scenarios #5 and #6

By contrast, Scenarios #5 and #6 consider the context of each subject action

prior to creating a training pattern for the neural network. Before running these

test Scenarios, a set of contexts were developed for both Vignettes C and D in

an attempt to capture all possible motivations for each action. During training,

therefore, the subject’s action at each decision point is first examined by a TBI

engine to infer a context for that point. This training technique is illustrated in

Figure 6.2.

Figure 6.2: Training FAMTILE With Inferred Subject Contexts

160

Here, ARTa is instead presented with the subject’s inferred active context de-

termined for ik+ . At ARTb, similarly, the context inferred for i(k−1)+ is introduced

along with the a representation of the stimuli present at ik−

6.1.4 Testing Scenario #7

In Scenario #7, both Fuzzy ARTMAP and FAMTILE attempt to execute Vi-

gnette D, making a sequence of decisions just as the subject did during observa-

tion. To perform these tests, the entire observation sequence collected from the

subject’s activity was used for training. This sequence is then used to train both

Fuzzy ARTMAP and FAMTILE.

For Fuzzy ARTMAP, just as in Scenarios #3 and #4, the actions of the

subject are presented output patterns regardless of the motivation behind the

action.

1. The entire observation sequence gathered from subject i is used to generate

a set of training patterns - no validation set is generated

2. FAM is trained with the complete set of patterns and generates a mapping

between observation and action

3. FAM takes the place of the test subject within the simulation and executes

the training Scenario

4. For each decision cue presented by the simulation, FAM predicts an action

5. That action is then executed in the simulation and the Vignette continues

161

6. The overall performance of both subject i and FAM are compared based

on metrics collected throughout the execution of the Scenario

When testing FAM separately, the network is trained with the subject’s action

being presented at its output. For FAMTILE, the actions of the subject are first

translated to an inferred context for each decision point, and a representation of

that context is instead presented to the FAM network within FAMTILE.

After training of each system was complete, the simulation was run again.

This time, each decision cue was presented to the algorithm. Based on its knowl-

edge, then, FAMTILE predicts a low-level context and the actions associated

with that context were executed. The standalone FAM outputs only a predicted

action.

1. The entire observation sequence gathered from subject i is used to generate

a set of training patterns - no validation set is generated

2. FAMTILE is trained with the complete set of patterns, and generates a

mapping between observation and low-level context

3. FAMTILE takes the place of the subject within the simulation and executes

the Vignette

4. For each decision cue presented by the simulation, FAMTILE predicts a

low-level context

5. The knowledge for that low-level context implies an action that is then

executed, and the Vignette continues

6. The overall behaviors of both subject i and FAMTILE are compared based

on metrics collected throughout the execution of the Vignette

162

6.2 Evaluation Procedures for FAM and FAMTILE

In this section, we introduce the two methods used in the testing Scenarios to

quantify the accuracies of FAM and FAMTILE in predicting subject actions in

Vignettes A through D.

6.2.1 Computing a Predictive Accuracy

In Scenarios 1 through 6, both FAM and FAMTILE are evaluated using the

following technique:

1. Subject is observed while executing a specific behavior, such as navigating

a maze or playing poker

2. An observation sequence is recorded for that subject and converted into a

set of training patterns

3. These patterns are randomly divided into a training set and a validation

set

4. The neural network is trained using each pattern in the training set

5. The network is then presented with the input patterns from the validation

set

6. A percentage is taken of how many times the network correctly predicts the

output pattern out of the total number of validation-set presentations

This percentage is referred to as the predictive accuracy of the system for

a particular validation set. For example, a network would achieve a predictive

163

accuracy of 86% if it correctly predicts 86 out of 100 inferred output patterns from

a validation set. As stated earlier, this validation set is comprised of patterns

from the same set of observations as those making up the training set. However,

the patterns generated for validation are separate than the ones generated for

training.

For these testing Scenarios, predictive accuracies will be taken in three types

of instances. For Scenarios 1 through 4, this accuracy will represent how well

Fuzzy ARTMAP correctly predicts the action of the test subject.

When examining FAMTILE in Scenarios 5 through 7, we first consider the

case where the predictive accuracy represents the ability to predict the subject’s

inferred active context (not his action!). This process is summarized below.

1. Subject is observed while executing a specific behavior, such as navigating

a maze or playing poker

2. An observation sequence is recorded and converted to a set of input patterns

in the manner described in section 4.12. This set of patterns is randomly

separated into training and validation sets

3. During training, the network is provided the input observation at ARTa

and the predicted active context of the subject at ARTb

4. During validation, the network is only provided the input observation at

ARTa

5. the network identifies a cluster in ARTa to match with the input pattern,

and from the mappings created during training, follows the mapping to the

corresponding cluster in ARTb. This cluster represents a specific output

context

164

6. The output context predicted by FAMTILE is compared with the output

context inferred by TBI for each test pattern and the actual action per-

formed by the subject for that decision point

7. If the inferred context matches the predicted context, then FAMTILE has

made a correct prediction of that pattern

In a separate set of runs, a new predictive accuracy for FAMTILE is calcu-

lated that represents its ability to predict the subject’s action (equivalent to the

predictive accuracies for FAM):

1. Subject is observed while executing a specific behavior, such as navigating

a maze or playing poker

2. An observation sequence is recorded and converted to a set of input patterns

in the manner described in section 4.12. This set of patterns is randomly

separated into training and validation sets

3. During training, the network is provided the input observation at ARTa

and the inferred active context of the subject at ARTb

4. During validation, the network is only provided the input observation at

ARTa

5. the network identifies a cluster in ARTa to match with the input pattern,

and from the mappings created during training, follows the mapping to the

corresponding cluster in ARTb. This cluster represents a specific output

context

6. The output context predicted by FAM is then translated to an action. That

action is then compared with the actual action performed by the subject

for that decision point

165

7. If the actual action matches the predicted action, then FAMTILE has made

a correct prediction of that validation pattern

The reason for this second type of predictive accuracy calculations for FAMTILE

is so that its results can be more easily compared to those of FAMTILE. Since

there is a many-to-one relationship between the contexts and their resultant ac-

tions, comparing the ability of FAM to predict actions against the ability of

FAMTILE to predict contexts is irrelevant.

Furthermore, if FAMTILE achieves a statistically significant increase in pre-

dictive accuracy versus FAM, it indicates that there is indeed utility in considering

context for our test Scenarios.

Though our test Scenarios for FAMTILE only consider contexts that imply

a single action, it is easy to consider cases where they could instead imply more

complex behaviors. For example, consider the tactical behavior of maneuvering

a squad for an assault on a enemy’s location. At the lowest level of behavior,

’actions’ would involve mechanical movements such as crawling, walking, raising a

gun or shooting. However, these movements are the consequence of higher-level

behaviors (such as seeking cover, gaining an angle on the enemy, etc.) which

themselves are low-level behaviors comprising the assault.

6.3 Learning Parameters for FAM

For each Scenario, the following parameters (defined in section 4.2.2) within Fuzzy

ARTMAP were held constant:

• ε = 0.00001

166

• βa = 1

• βb = 1

• ρb = 1

The only parameter that was modified during the testing phase was the base-

line vigilance ρ̄a. As stated in Chapter 4, this parameter has a direct effect on

the granularity of the clusters generated in the ARTa module. These clusters

represent groups of input patterns presented to ARTa where each pattern maps

to the same output pattern (either an action as in Scenarios #1 and #2, or a

context as in Scenarios #3 and #4) and are closely matched with respect to their

individual fields. ρ̄a affects this granularity by raising the vigilance parameter,

which is responsible for rejecting the addition of new input patterns to a certain

cluster if it fails to match a certain criteria. This change ultimately increases

the number of input pattern clusters created in ARTa by decreasing their overall

size (and inclusiveness). This effect is illustrated quantitatively in the following

sections.

6.4 Scenario #1 Testing

This section defines the purpose, motivation and results for the first of four testing

Scenarios. This Scenario is a baseline evaluation of Fuzzy ARTMAP.

As described in the previous section, Vignette A involves a maze environment.

The test subject is placed at the center of a 3x3 subsection of a 10x10 maze, and

provided a vector indicating the distance and direction towards the goal position

(see Figure 5.3). He will then choose the direction that he would begin moving

167

towards that goal state. After this direction is chosen, he will be presented a brand

new position and goal location, and will again choose a direction to proceed. The

subject does not continuously navigate towards the goal in this Scenario; that

behavior is reserved for Vignette B.

The observation recorded by the simulation represents the 3x3 subsection of

the maze, along with the vector that provides the distance and direction from the

character (maneuvered by the subject) and the goal state. The subject’s action

in response to that observation is recorded by the simulation - either left, right,

up, or down.

In Scenario #1, we examine the predictive accuracy of FAM for subject action

for Vignette A.

6.4.1 Scenario #1 Motivation

Essentially, the task for FAM in this Scenario is to create a mapping between the

maze topology and a predicted direction for the test subject facing that situation

- either left, right, up, down. In this Vignette, there is no implied notion of

’context’ used within the learning environment for this Scenario, and thus there

is no interpretation made by the TBI engine.

The purpose for this testing Scenario, therefore, is to confirm the effectiveness

of the FAM within FAMTILE. The results of the Scenario #1 tests illustrate the

effectiveness (or ineffectiveness) behavior of Fuzzy ARTMAP for this Vignette.

From here, we then proceed to gradually more complex Scenarios involving more

complicated observation landscapes and, eventually, subject actions that must be

interpreted. Vignette A, as discussed above, is the simplest of the four Scenarios.

168

This Vignette examines learning the high-level behavior of navigating a maze by

examining the lower-level actions of moving up, down, left and right.

6.4.2 Scenario #1 Results

Three subjects were used for Scenario #1. Within the Scenario, each subject

executed an action in 1000 different maze/goal position combinations, generating

1000 training patterns. Those patterns were used to train and evaluate the neural

network. For the first set of tests, 90 separate runs are executed. A run consists

of the following steps:

1. Randomize the order of the 1000 training patterns

2. Choose 900 patterns at random to train the neural network, use the final

100 patterns for testing

3. Choose values for ρ̄a and ρ̄atest

4. Train the neural network using the 900 chosen training patterns

5. Test the neural network using the remaining 100 points

6. Record the number of correct predictions made by the neural network out

of the 100 testing patterns. This percentage is considered the predictive

accuracy of the network for that run.

The purpose of a run is to calculate a predictive accuracy for FAM given for

a specific pattern presentation and vigilance parameter ρ̄a.

169

6.4.2.1 Selecting Values for ρ̄a and ρ̄atest

Several runs were executed in order to observe the behavior of the network against

the baseline vigilance parameter ρ̄a. To do this, ten of the 90 runs were executed

with ρ̄a set at 0.1, ten at 0.2, and so on up to the final ten runs with ρ̄a at

0.9. Within each set of five runs for each ρ̄a value, five were run where ρ̄a was

re-initialized to 0 prior to testing. This reinitialization of ρ̄a for testing forces the

neural network to make a prediction no matter the input pattern. As discussed

earlier, ρ̄a determines how close patterns must match with a particular cluster to

become a member. Because of this, if a pattern from the validation set matches

a particular cluster but does not satisfy this vigilance parameter, the neural

network will not return a prediction. The distribution of runs are illustrated in

table 6.2.

6.4.2.2 Predictive Accuracies of FAM for Scenario #1

The predictive accuracy achieved by these runs for each test subject were then av-

eraged across each run-type (ρ̄a and ρ̄atest pairing). These averages are tabulated

below as Table 6.3. The tabulated results for each individual run are provided

in the appendix. Here, predictive accuracy results are listed as a number correct

out of the 100 testing patterns used. In Table 6.4, the predictive accuracy of

Fuzzy ARTMAP across all 90 runs are averaged for each subject.

170

Table 6.2: Distribution of 100 Testing Runs for each Subject, Scenario #1

ρ̄a ρ̄a(test) numRuns numTrainingPoints numTestingPoints

0.1 0.1 5 900 100

0.1 0 5 900 100

0.2 0.2 5 900 100

0.2 0 5 900 100

0.3 0.3 5 900 100

0.3 0 5 900 100

0.4 0.4 5 900 100

0.4 0 5 900 100

0.5 0.5 5 900 100

0.5 0 5 900 100

0.6 0.6 5 900 100

0.6 0 5 900 100

0.7 0.7 5 900 100

0.7 0 5 900 100

0.8 0.8 5 900 100

0.8 0 5 900 100

0.9 0.9 5 900 100

0.9 0 5 900 100

171

Table 6.3: Results for Scenario #1: Average Number Correct of 100 Testing

Patterns

ρ̄a ρ̄a(test) Subject 1 Subject 2 Subject 3

0.1 0 93.2 84.2 77.4

0.1 0.1 95.2 81.6 75.8

0.2 0 96.6 85.8 78.4

0.2 0.2 93.8 83.2 79

0.3 0 93.6 86.2 77.8

0.3 0.3 95.6 81.8 75.8

0.4 0 94.4 82.8 78.6

0.4 0.4 94.8 83.8 78.4

0.5 0 94.2 86.2 76.4

0.5 0.5 93.2 84.4 78.4

0.6 0 95.8 84 77.2

0.6 0.6 94.4 86.4 76.4

0.7 0 95.8 87.2 78.6

0.7 0.7 92.4 86.8 79.8

0.8 0 94.8 90 82.4

0.8 0.8 92.2 86.8 81.2

0.9 0 94.8 88.2 80.4

0.9 0.9 92 85.8 81.8

172

Table 6.4: Summarized Results for Scenario #1: Average Number Correct out

of 100 Testing Patterns over 90 Total Runs

Number of Runs Mean (µ) Standard Deviation (σ)

Subject 1 100 94.2 2.33

Subject 2 100 85.3 4.02

Subject 3 100 78.5 4.87

6.4.2.3 Obtaining the Best-Case Predictive Accuracy of FAM for Sce-

nario #1

For each subject, the ρ̄a and ρ̄atest values that yielded the best average result

over their 5-run trials were used for a second set of 1000 runs. These values are

highlighted in table 6.3

Across each of these 1000 runs, ρ̄a and ρ̄atest were fixed. Runs for this set

proceeded in the following sequence (repeated from description above):

1. Randomize the order of the 1000 training points (note: these are the same

training points used in the previous section’s tests)

2. Choose 900 points at random to train the neural network, use the final 100

points as testing patterns

3. Train the neural network using the 900 chosen training points

4. Test the neural network using the remaining 100 points

5. Record the number of correct predictions made by the neural network out

of 100 testing patterns

173

Table 6.6 displays the results of the 1000-run sets for each subject, including

the sample mean predictive accuracy µ̄ and associated standard deviation σ̄. A

2-tailed t-test was used on each set of data to validate that the computed sample

mean µ̄ for each subject approaches the actual mean µ. Using an α value of 0.01,

the test computed a 99% confidence interval for the actual mean.

Table 6.5: Summarized Results for Scenario #1: 1000 Runs for each subject,

Using ρ̄a and ρ̄atest Values that Yielded Best Accuracy (see Table 6.3)

Number of Runs ρ̄a ρ̄atest µ̄ σ̄ 99%CI p-value

Subject 1 1000 0.6 0 94.7 2.38 (94.5524,94.9416) 1.00

Subject 2 1000 0.8 0 87.3 3.27 (87.055,87.589) 1.00

Subject 3 1000 0.8 0 80.6 3.76 (80.336,80.950) 1.00

Figures 6.3, 6.4 and 6.5 illustrate the distribution of predictive accuracies

reached across each subject’s 1000-run set. In Figure 6.3, for instance, the bar

graph shows a frequency of about 75 for the predictive accuracy 0.92 (92 correct

out of 100 total). This means that the neural network correctly predicted 92 of

100 testing patterns in 75 of the 100 runs executed.

174

Figure 6.3: Scenario 1 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 1

The only parameter that differed across these runs was the order and set of

pattern presentations during testing and training, and this order was based on a

random variable. Because of this, the Central Limit Theorem [sta90] implies that

these results for both the frequency of correct predictions generated will follow a

normal distribution centered about the sample mean. The mound-shaped pattern

of each set of data support this implication.

175

Figure 6.4: Scenario 1 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 2

Figure 6.5: Scenario 1 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 3

176

6.4.3 Analysis of Scenario #1 Results

As expected, Fuzzy ARTMAP is able to successfully learn the movement patterns

for each of the three subjects. Success, here, is defined as better than random.

A random guess at the subject’s action, for Vignette A would yield on average a

25% predictive accuracy (because there are four possible actions). As a qualitative

comparison, consider the accuracies achieved by each subject. For subject #1,

the network was able to predict, on average, almost 95 of the 100 testing patterns.

Even for the worst-cased subject (#3), Fuzzy ARTMAP was able to predict nearly

81% of the testing patterns.

In order to show that Fuzzy ARTMAP achieves statistically different predic-

tion accuracies for each of the subjects, a set of 2-sampled t-test is performed for

each combination of subject-pairs. The results are tabulated below.

Table 6.6: Statistical Comparison of Predictive Accuracies for Scenario #1;

H0 → µi − µj = 0, H1 → µi − µj 6= 0

Sample Means 99%CI Test Statistic p-value

Subject 1 vs. Subject 2 94.7,87.3 (7.095, 7.755) 57.99 0

Subject 1 vs. Subject 3 94.7,80.6 (13.741, 14.467) 100.14 0

Subject 2 vs. Subject 3 87.3,80.6 (6.272, 7.086) 42.36 0

Here, the 2-tailed t test confirms that the predictive accuracy of Fuzzy ARTMAP

is statistically different across each subject. Qualitatively, this indicates that the

neural network is learning a different set of rules for choosing a direction from

each subject, and is not just learning a simple heuristic for how to navigate a

maze. Even the simple tactical task of navigating a maze, in fact is dependent on

the subject and his distinct decision-making processes. Based on the results of

177

the testing, it is clear that Fuzzy ARTMAP learns a different set of rules based

on the subject observed, and is able to achieve high predictive accuracies for each.

By creating such a simple Vignette such as this one, the intent is to create

an environment where the actions of the subject are closely tied to the primary

goals of the behavior. In this Vignette, the subject makes only a single move in

response to being told where and how far away the goal position is. Each low-level

move, therefore, is made in direct accordance with the objective of reaching the

goal. In the next few Vignettes, the behavior required will become increasingly

complex, and the relationship between the low-level action required by the subject

will become less dependent on the overall objective and more dependent on the

context in which the subject is operating.

The intent is for these results to serve as one baseline for evaluating the

performance of FAMTILE. With this baseline, we can in turn evaluate FAM

(and ultimately FAMTILE) and examine how this notion of context affects their

predictive accuracy.

178

6.5 Testing Scenario #2

This section defines the purpose, motivation and results for the second of four

testing Scenarios used to evaluate the FAMTILE system.

In this Scenario, the subject is shown a 5x5 subsection of the same 10x10 maze

used for Scenario #1, along with a vector indicating his distance and direction

towards the goal (see Figure 5.4). In this Scenario, however, the subject is able

to make a sequence of moves to advance towards the goal position. When the

subject makes a move, his position within the maze and goal direction vector is

updated to reflect that move, and his viewable 5x5 area of the maze is updated.

Since the character’s icon remains at the center of this area, each move gives the

subject new viewable sections of the maze. This Scenario also displays spaces in

the maze that have already been visited by the subject during the current run.

The subject will move in a sequence of directions that navigate it towards the

goal, with one input/output observation being collected for each move. When

the subject reaches the goal, his position and the goal’s position are reset, and

the subject again navigates the maze. This cycle continues until the simulation

collects the requisite number of observations.

6.5.1 Scenario #2 Motivation

Like Vignette B, Vignette A is set in a maze environment where the only four

actions can be made - move up, move down, move left, or move right. However,

there are differences in this Vignette that make it significantly more complex

than the first. The most important difference is that the subject is not re-placed

179

at a random position on the maze after every action. Instead, he/she makes a

sequence of moves towards the goal while the simulation records and displays the

positions the subject has already visited while on that path. In addition, the

viewable area of the maze is increased by nearly 200% (from 9 squares to 25).

The intent of these changes is to obscure the relationship between the action

of the subject and the objective of reaching the goal. While the objective has

not changed, the reasons behind making one move over another can now include

more intermediate information. For instance, a player could be making a move

based on the wall states further away from him, or because he wants to avoid

revisiting a space that he has already been to. In this case, there are motivations

beneath the objective of reaching the goal - motivations that could possibly be

considered to be contexts.

Nevertheless, the potential for context inference within Vignette B is inten-

tionally omitted for this test Scenario. Instead, the testing is conducted just as

it was for Scenario #1. The objective, then, is to observe how this increased

complexity affects the predictive accuracy of FAM.

6.5.2 Scenario #2 Results

As discussed above, the tests for Scenario #2 were executed in the same manner

as Scenario #1, and the same three subjects were used. Within the Scenario,

each subject makes consecutive moves within a 10x10 maze, with the board and

goal positions resetting each time the subject reaches the goal. The Scenario

ends when the subject has generated 1000 training points - each training point

represents a specific maze state and the action the subject makes in response to

180

that state. Those points were used to train and evaluate the neural network. For

the first set of tests, 90 separate runs are executed. As in Scenario #1, a run

consists of the following steps:

1. Randomize the order of the 1000 training points

2. Choose 900 points at random to train the neural network, use the final 100

points as testing patterns

3. Choose values for ρ̄a and ρ̄atest

4. Train the neural network using the 900 chosen training points

5. Test the neural network using the remaining 100 points

6. Record the number of correct predictions made by the neural network out of

100 testing patterns. This percentage is considered the predictive accuracy

of the network for the run.

181

6.5.2.1 Predictive Accuracies of FAM for Scenario #2

The runs were again partitioned to observe the behavior of the network against

the baseline vigilance parameter ρ̄a. To do this, ten of the 90 runs were executed

with ρ̄a set at 0.1, ten at 0.2, and so on up to the final ten runs with ρ̄a at 0.9.

Within each set of 10 runs for each ρ̄a value, 5 were run where ρ̄a was re-initialized

to 0 prior to testing.

The predictive accuracy reached by these runs for each subject were then av-

eraged across each run-type (ρ̄a and ρ̄atest pairing). These averages are tabulated

below as Table 6.7. The tabulated results for each individual run are provided in

the appendix. Once again, the predictive accuracy results are listed as a number

correct out of the 100 testing patterns used.

182

Table 6.7: Results for Scenario #2: Average Number Correct of 90 testing pat-

terns

ρ̄a ρ̄a(test) Subject 1 Subject 2 Subject 3

0.1 0 90.8 85.2 82.2

0.1 0.1 85.6 84.4 82.2

0.2 0 91.0 81.6 81.0

0.2 0.2 88.0 81.8 84.6

0.3 0 89.2 82.0 82.0

0.3 0.3 90.8 82.0 82.0

0.4 0 90.6 80.4 84.8

0.4 0.4 91.2 82.4 86.4

0.5 0 93.6 84.8 83.4

0.5 0.5 89.2 84.6 86.6

0.6 0 91.0 85.2 84.4

0.6 0.6 91.4 79.4 84.6

0.7 0 93.2 82.4 86.6

0.7 0.7 91.6 81.8 88.4

0.8 0 93.6 85.8 85.6

0.8 0.8 91.0 84.6 85.2

0.9 0 93.4 82.2 87.8

0.9 0.9 91.4 81.8 80.2

183

Table 6.8: Summarized Results for Scenario #2: Average Number Correct out

of 100 testing patterns, over 100 Total Runs

Number of Runs Mean (µ) Standard Deviation (σ)

Subject 1 100 90.9 3.59

Subject 2 100 82.9 3.84

Subject 3 100 84.3 4.42

In Table 6.8, the predictive accuracy of Fuzzy ARTMAP across all 100 runs

are averaged for each subject.

6.5.2.2 Obtaining the Best-Case Predictive Accuracy of FAM for Sce-

nario #2

For each subject, the ρ̄a and ρ̄atest values that yielded the best average result

over their 5-run trials were used for a second set of 1000 runs, as in Scenario #1.

Across each of these 1000 runs, ρ̄a and ρ̄atest were fixed.

1. Randomize the order of the 1000 training points

2. Choose 900 points at random to train the neural network, use the final 100

points as testing patterns

3. Train the neural network using the 900 chosen training points

4. Test the neural network using the remaining 100 points

5. Record the number of correct predictions made by the neural network out

of 100 testing patterns

184

Table 6.9: Summarized Results for Scenario #2: 1000 Runs for each subject,

Using ρ̄a Values that Yielded Best Accuracy (see Table 6.7)

Number of Runs ρ̄a ρ̄atest µ̄ σ̄ 99%CI p-value

Subject 1 1000 0.8 0 92.5 2.63 (92.3074,92.7366) 1.00

Subject 2 1000 0.8 0 84.5 3.42 (84.181,84.739) 1.00

Subject 3 1000 0.7 0 85.6 3.31 (85.308,85.848) 1.00

Table 6.10 displays the results of the 1000-run sets for each subject, including

the sample mean predictive accuracy µ̄ and associated standard deviation σ̄. A

2-tailed t-test was used on each set of data to validate that the computed sample

mean µ̄ for each subject approaches the actual mean µ. Using an α value of 0.01,

the test computed a 99% confidence interval for the actual mean.

The following Figures 6.6, 6.7 and 6.8 illustrate the distribution of predictive

accuracies reached across each 1000-run set.

185

Figure 6.6: Scenario 2 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 1

Figure 6.7: Scenario 2 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 2

186

Figure 6.8: Scenario 2 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 3

187

6.5.3 Analysis of Scenario #2 Results

In this Scenario, Fuzzy ARTMAP is able to adequately learn the movement

patterns for each of the three subjects. Furthermore, the predictive accuracy

varied significantly across subjects, just as it had in Scenario #1. FAM achieved

a predictive accuracy of nearly 93 of 100 for subject #1 versus 84.5 and 85.6 for

the other two. We again show that these sample accuracy means are statistically

significant using 2-sampled t-tests. The results of these tests are are tabulated

below. The 2-tailed t test again confirms that the predictive accuracy of Fuzzy

ARTMAP is statistically different across each subject, just as in Scenario #1.

This means that the network is again learning different rules for navigating the

maze from subject to subject, and is not just learning generic rules.

Table 6.10: Statistical Comparison of Predictive Accuracies for Scenario #2;

H0 → µi − µj = 0, H1 → µi − µj 6= 0

Sample Means 99%CI Test Statistic p-value

Subject 1 vs. Subject 2 92.5,84.5 (7.710, 8.414) 59.05 0.00

Subject 1 vs. Subject 3 92.5,85.6 (6.599, 7.289) 51.96 0.00

Subject 3 vs. Subject 2 85.6,84.5 (0.730, 1.516) 7.43 0.00

Because the three subjects for Vignettes A and B were the same, a similar

analysis was performed on the best-case predictive accuracies achieved for both

test Scenarios. In these computations, a 2-sampled t-test was performed the best-

case predictive accuracy values for each subject, as computed in sections 6.4.2.3

and 6.9.2.2. The results of these tests are summarized in Table 6.11.

Results of this comparison were mixed. For subjects #1 and #2, FAM was

more accurate in predicting their actions within Vignette A (94.7 to 92.5 for sub-

188

Table 6.11: Statistical Comparison of Predictive Accuracies for Scenario #1 ver-

sus Scenario #2; H0 → µi − µj = 0, H1 → µi − µj 6= 0

Sample Means 99%CI Test Statistic p-value

Subject 1 94.75,92.52 (2.005, 2.445) 19.82 0.00

Subject 2 87.32,84.46 (2.568, 3.156) 19.11 0.00

Subject 3 80.64,85.58 (−5.197,−4.670) -36.75 0.00

ject #1, 87.3 to 85.6 for subject #2). For subject #3, however, the performance

of FAM actually improved by nearly 4 percentage points (80.6 to 84.5). This is

in spite of the fact that input patterns for Vignette B were over three times the

size of those used for Vignette A - primarily due to the increased viewable area.

For Scenario #1, 27 bits are required to represent each input pattern. This is

compared to 96 bits required to represent an input pattern for Scenario #2.

From these results, there are several possible conclusions that can be drawn

from the similarity in predictive accuracy of FAM in Scenarios #1 and #2. Per-

haps the subjects decisions were not significantly affected by the increase in Sce-

nario complexity or the extra information might have made the subject’s decision

more clear than when he/she was able to see only one square in each direction. It

is also possible that the subjects’ decision making for Vignette B was somehow

affected after first executing Vignette A. This is quite likely, as each of the three

subjects were used for both Vignettes A and B.

Regardless of which item was the primary cause of these curious results, the

logical next step was to evaluate the system in an environment involving signif-

icantly more complex decisions, as in Vignettes C and D. Again returning to

the main goals of the research, the goal is to analyze and learn subject behav-

iors as a sequence of lower-level behaviors, not necessarily lower-level actions. If

189

a Vignette is put into play that significantly affects the predictive accuracy of

FAM, that in turn provides a good backdrop for the introduction of a system

that instead learns context transitions rather than just action sequences. We can

then use the high predictive accuracies generated by FAM in Scenarios #1 and

#2 to provide a ceiling of performance for both systems in learning behavior in

the more complex Vignettes.

As described exhaustively in the previous Chapter and in Appendix C, the

game of Poker involves decision-making at several different levels, and the choice

of action is heavily dependent on the style and skill of the player. Because of

this, it is hypothesized that FAM will perform significantly worse in predicting

actions in these Vignettes than it did for this Scenario.

6.6 Testing Scenario #3

This section defines the purpose, motivation and results for the third of four

testing Scenarios.

In Vignette C, each test subject is placed at a simulated Texas Hold’em

game with seven computer-generated opponents. Each of these opponents were

encoded with a basic knowledge of how to play the game. The details of how these

opponents were modeled is provided in section 5.2.2.3. For each observation, a

player is placed at a random position at the table and dealt his two hole cards. In

turn, each opponent who acts before the player makes an action. Each observation

recorded by the simulation records the player’s hole cards along with his position

at the table and the actions of the computer-generated opponents who act before

him. The subject is asked to look at his hole cards, examine the actions of the

190

players before him, and either raise, call, or fold. This decision is recorded as the

subject’s action for that decision point.

In this section we evaluate the ability of FAM to predict subject’s action

decisions within Vignette C.

6.6.1 Scenario #3 Motivation

The strategies and tactics in a Poker game are far more complex than the maze

navigation used for Vignettes A and B. Whereas the goal when traversing a

maze is simply ’to reach the goal’, the goal in a Poker game is far less concrete;

as players are not trying to win every hand but rather to accumulate chips over

a period of time. To do this effectively, the appropriate strategy is to make the

right moves at the right time. Many times, the correct play in Texas Hold’em

is simply to fold your cards and commit no chips to the pot. While this action

will never wins chips for the player, it is still correct within the context of the

overall goal - it keeps the player from losing chips for reasons he/she could have

avoided.

The same is true in the opposite case. Consider a situation where the player

is in the big blind with 9♥, 10♥ and five players (including the small blind) call

the blinds. The flop now comes 7♥, 8♥, 9♥, and the player now has a straight

flush that is guaranteed to be the best hand (known as the stone cold nuts). The

small blind, however, immediately bets at this hand. The first reaction of the

player may be to raise - after all, he does have the best hand - however this action

would not play to the overall goal of winning chips. By making a raise, the three

players yet to act will now have to call two bets to stay in the pot. However,

191

if the player simply calls, the bet will only be one to call. By making the bet

more enticing to call, the player keeps more people in the hand - and the more

people who are in the hand, the more chips will be put into the pot. Since the

player’s hand cannot be beat, there is no utility in raising when it will likely drive

opponents out.

The actions made during a poker game involve thousands of situations such

as these where decisions are made based on concepts such as these and others

discussed in Appendix C. Furthermore, these decisions are heavily influenced

by the style and personality of the subject making the decisions, making this a

far more conceptually complex behavior than that of a maze. There is no one

specific manual that outlines how to play subject poker as there are military field

manuals that describe how to engage in an assault, fly a fixed-wing aircraft [JK99]

or negotiate a turn during a road march [Hen01] [Ger01]. Because of this, it is

possible to observe several subject poker players playing and get several different

notions of the tactics used to win. From the perspective of a learning system,

then, it is possible to construct a set of Poker models that differ greatly in their

knowledge because of the differing styles of the subjects used to generate the

knowledge.

The purpose of this testing Scenario is to observe how well FAM performs

when learning behavior in this more complex Vignette. As reported in the pre-

vious two Scenarios, the neural network was able to achieve predictive accuracy

ranges from 80 to 95% for Vignettes A and B depending on the test subject.

Vignette B was an attempt to create a slightly more complicated learning task

for FAM, however the results did not seem to be affected.

Vignette C, however, represents a far more significant increase in complexity

affecting the mapping between situation and action. Because of this, we ex-

192

pect that this would result in a significant performance degradation in predictive

accuracy versus those of the first two Scenarios.

6.6.2 Scenario #3 Results

As in all of the test Scenarios, the learning system is tested with the data from

three separate subjects. FAM learns a training set for each subject and then

uses the trained network to correctly predict each subject action recorded in a

separate validation set.

6.6.2.1 Predictive Accuracies of FAM Across Values of ρ̄a

A series of runs were executed to determine the value for ρ̄a where FAM achieves

the best predictive accuracy for each subject, as done in Scenarios #1 and #2.

These runs are performed for each each subject, in turn, using 300, 600, and 900

training patterns. This is done to gain perspective as to how the performance of

improves with more training patterns.

For each run, 100 patterns were used for testing. The results in tables 6.12

represents averages over 100 runs for both algorithms and for each particular

subject, number of training points and ρ̄a value. Among these averages, the

ρ̄a value that results in the best predictive accuracies was used for the direct

comparison texts between FAMTILE and FAM. Unlike Scenarios #1 and #2,

ρ̄atest was set to 0 for each of the runs reported below. We observed in the first

two Scenarios that setting the value for ρ̄atest for a testing run did not result in any

positive influence on FAM’s predictive accuracy. Because of this, it was deemed

193

unnecessary to keep ρ̄atest as an independent variable for this or any subsequent

tests.

Table 6.12: Average Predictive Accuracies of Subject Actions for 100-run sets of

FAM, 300 Training Points

ρ̄a Subject 1 Subject 2 Subject 3

0.05 66.98 59.91 66.67

0.10 66.08 60.68 65.78

0.15 66.62 60.64 67.39

0.20 66.16 60.06 66.74

0.25 65.97 60.25 66.47

0.30 66.48 60.90 66.25

0.35 67.22 60.64 66.25

0.40 67.97 59.40 65.69

0.45 66.89 60.48 66.16

0.50 66.58 60.76 66.74

0.55 65.95 59.47 66.22

0.60 67.50 60.14 65.86

0.65 67.22 60.20 66.91

0.70 67.67 60.25 68.24

0.75 68.58 61.38 69.12

0.80 70.78 61.77 69.75

0.85 71.46 64.13 71.36

0.90 74.00 66.28 72.40

0.95 73.47 66.64 72.11

194

Table 6.13: Average Predictive Accuracies of Subject Actions for 100-run sets of

FAM, 600 Training Points

ρ̄a Subject 1 Subject 2 Subject 3

0.05 67.93 61.34 67.51

0.10 69.03 61.08 67.65

0.15 67.79 60.03 67.47

0.20 67.80 61.90 67.95

0.25 68.16 62.06 66.92

0.30 67.69 61.37 67.69

0.35 68.38 61.30 66.40

0.40 68.38 61.89 66.87

0.45 67.92 61.96 68.07

0.50 68.21 60.78 67.20

0.55 69.11 61.92 67.04

0.60 68.39 60.71 67.81

0.65 68.39 62.36 67.28

0.70 69.10 61.10 68.28

0.75 70.63 61.57 69.53

0.80 70.69 62.88 70.35

0.85 72.05 64.80 72.58

0.90 74.94 66.29 74.24

0.95 75.62 67.18 74.30

195

Table 6.14: Average Predictive Accuracies of Subject Actions for 100-run sets of

FAM, 900 Training Points

ρ̄a Subject 1 Subject 2 Subject 3

0.05 69.59 61.65 67.52

0.10 69.67 63.12 68.68

0.15 68.79 62.51 68.01

0.20 70.35 62.06 67.71

0.25 69.12 62.69 68.19

0.30 69.32 63.09 69.45

0.35 69.99 62.47 68.01

0.40 69.54 62.45 68.69

0.45 69.26 62.49 68.00

0.50 70.45 61.80 68.22

0.55 69.30 62.68 68.57

0.60 69.02 61.87 67.71

0.65 69.58 62.26 67.71

0.70 70.37 62.72 68.96

0.75 71.20 62.37 69.99

0.80 72.10 63.72 72.07

0.85 72.56 65.44 72.51

0.90 74.53 67.52 74.79

0.95 75.23 68.74 74.95

196

6.6.2.2 Obtaining the Best-Case Predictive Accuracy of FAM for Sce-

nario #3

The results are first tabulated across the baseline vigilance parameter, ρ̄a, in order

to ascertain an acceptable value for the comparison test. For each subject, a value

for ρ̄a is chosen that maximizes the average predictive accuracy of FAM over a set

of random validation sets. That value is then set as a constant parameter, and the

system is then re-tested in three batches of 1000-run tests: one using 300 training

points, one using 600, and the last using 900 of the 1000 points generated. The

best values for ρ̄a are extracted from the above tables and summarized in table

6.15.

Table 6.15: ρ̄a Values Yielding Best Average Predictive Accuracies for Scenario

#3

Subject 300 600 900

1 0.9 0.95 0.95

2 0.95 0.95 0.95

3 0.9 0.95 0.95

The purpose of these batches of runs is to obtain best-case predictive accu-

racies of FAM. The results are tabulated in full in Appendix F, while the mean

values of each 1000-run test are tabulated in Tables 6.37 - 6.39.

197

Table 6.16: Average Predictive Accuracy for 1000-run Sets for Scenario #3 Using

Optimal Values for ρ̄a

Subject 300 600 900

1 72.99 74.94 75.04

2 66.01 67.55 68.54

3 71.94 73.95 75.56

6.6.3 Analysis of Scenario #3 Results

As expected, the predictive accuracy of FAM degraded significantly when tested

using Vignette C. By the numbers, the network achieved best case predictive

accuracies of 75.0, 68.5, and 75.6 for each player respectively, versus 92.5, 84.5

and 85.6 for Scenario #2.

Subject #1 from Scenario #2 did not participate as an subject for Vignette

C. Subjects #2 and #3 did, however, and are also represented as subject #2

and #3 for this testing Scenario. Comparing the predictive accuracies of FAM

on these two subjects for Scenarios #2 and #3, there is an 18.9% decrease for

subject #2 and an 11.7% decrease for subject #3. This is a sharp contrast to the

statistically insignificant performance difference between Scenarios #2 and #1,

where the network’s predictive accuracy changed 1.95% and 4.84% for subjects

#2 and #3.

These results confirm that the poker environment of Vignette C is much

harder for FAM to learn human tactical behavior versus the simpler Vignettes

in a maze. What this means in terms of the network itself is that FAM had

a more difficult time effectively creating clusters with similar data points that

mapped to the output patterns representing correct predictions of the subject’s

198

action. In Scenario #5, Vignette C is re-used and FAMTILE attempts to learn

subject actions just as FAM attempted in Scenario #3. It is hypothesized that the

reintroduction of the subjects’ actions as inferred contexts will help the network

more effectively make finer clusters representing more closely related patterns,

thereby increasing the predictive accuracy of the system.

An interesting result of this test was the sharp contrast in the predictive

accuracy of FAM for subject #2 versus the other two subjects. As reported

above, FAM was only able to predict 68.54% of subject #2’s actions versus 75.04

and 75.56% for the other two subjects. Since the results on subject #2 were not

this deviant in the other two Scenarios, it seems as though the problem is related

to the subject’s behavior within this particular Vignette C.

To gain more perspective on this issue, a questionnaire was sent out to several

amateur poker players including each of the three who participated as subjects

for Scenario #3. This questionnaire is duplicated below.

1. How long have you been playing Poker?

2. How long have you been playing Poker seriously/professionally?

3. How often do you play poker?

4. Do you consider yourself to be a tight or loose player? Explain.

5. Do you consider yourself to be a passive or aggressive player?

Explain.

6. Do you read literature on the game of Poker? If so, how does it

affect the strategies you employ during a game?

199

7. List all conditions where you would consider a check to be a legitimate

action. Give card-by-card examples for each.

8. List all conditions where you would consider a bet to be a legitimate

action. Give card-by-card examples for each.

9. List all conditions where you would consider a call to be a legitimate

action. Give card-by-card examples for each.

10. List all conditions where you would consider a raise to be a legitimate

action. Give card-by-card examples for each.

11. List all conditions where you would consider a fold to be a legitimate

action. Give card-by-card examples for each.

12. In the cases where multiple actions are appropriate, what other

factors do you consider?

The purpose of this questionnaire was to identify the skill level of each subject

tested. As it turns out, the questionnaire found that subject #2 had significantly

less experience playing Limit Hold’em than subjects #1 and #3, and also had

not read any literature on theory or strategy in the game. This lack of experience

likely affected the continuity and predictability of her play, whereas the other two

subjects tended to play a consistent style based on clear-cut observations such as

hand-strength, position, etc.

In Texas Hold’em, proper play before the flop is both the easiest piece of

strategy to learn and the most crucial ([SM03]). Strategy after this round be-

comes much more complex because of the explosion of information present with

community cards on the board. Because of this, Limit Hold’em play before the

200

flop round of betting tends to be somewhat mechanical among experienced play-

ers. This is supported by the data on subjects #1 and #3, who shared similar

experiences and have read much of the same literature. Subject #2, on the other

hand, has much less experience, and therefore her play is likely to be more erratic

and therefore less predictable.

This finding is somewhat of a confirmation of a conclusion drawn from Sce-

narios #1 and #2, that FAM is not merely predicting basic rules for behavior.

Instead, the neural network learns specific tendencies of the player, and its per-

formance in doing so is affected by how consistently he/she plays.

Another interesting piece of information gathered from Scenario #3 was the

relative invariability in predictive accuracy given increased numbers of training

data. This trait was present in each of the three subjects, where FAM averaged

only a 2.64% increase in predictive accuracy using 900 patterns for training versus

300 patterns. This modest increase is an indication that each subject provided

a sufficient amount of training data to train FAM. It is also possible, though

unlikely, that the system could benefit from increased numbers of training points

for this Vignette, and that this invariability between 300 and 900 training points

represents a temporary plateau in the learning capacity of FAM. Investigating

this possibility is left for future research.

In the following test Scenario, a Vignette D is examined. This Vignette repre-

sents the most complex behavior with which our learning systems are evaluated.

It is therefore expected to produce another significant decrease in predictive ac-

curacy for FAM similar to the one produced by the jump from Vignette C to

Vignette D.

201

6.7 Testing Scenario #4

In Scenario #4, predictive accuracies for FAM are collected an analyzed for the

last and most complex Vignette, Vignette D. Just as Vignette C, this Vignette

is set at the poker table with 7 computer-generated agents playing against the

subject in games of Texas Hold’em. Here, however, the subject’s decision points

are not limited to the first round of action. Instead, a series of entire hands are

carried out to their completion - if an subject folds, a new hand is dealt; if an

subject raises, the opponents react to that raise accordingly; a flop, turn, and

river are dealt and betting rounds follow just as in an actual hand. The subject

is also given a stack of 100 ’chips’ that is maintained throughout the Vignette.

6.7.1 Scenario #4 Motivation

Just as Vignette C represented a significant jump in complexity from the two

maze Scenarios, the complexity in subject behavior throughout an entire hand

of poker is significantly more complex than that observed in the initial betting

round.

While Scenario #3 showed a decrease in FAM performance, the system still

performed relatively well considering the added complexity of the behavior. For

the best values of ρ̄a, FAM was able to predict over 75% of the actions of the

two experienced subjects and close to 70% of the actions of the less experienced

subject #2.

While Vignette C does represent a complex behavior, the number of situations

that can exist for a player to reason about in the first round of betting is far fewer

202

than those that are possible after community cards are dealt. There are less than

200 combinations of two ranked cards, and the only other significant variables

are the player’s position and the initial actions of the 7 (or fewer) players acting

before him. Throughout a round of poker, as previously discussed, there are

several other variables - including betting history in previous rounds, making

actions to set up future actions, not to mention to fact that there are 3-5 more

cards visible for the player to consider. Because of this explosion of possible

tactics, literature about Hold’em strategy in post-flop action is far less robust

and specific.

It is this Vignette that best represents the concept of high-level tactical be-

havior discussed in Chapters 1 and 3. Repeated from that discussion, a tactical

behavior was defined as:

• A well-defined goal or mission

• Are characterized by planning and/or maneuvering

• Are not well-defined as to their execution sequence, and thus their charac-

teristics may vary greatly across individuals

Poker behavior meets each of these requirements, albeit in a turn-based game.

The goal of poker is to accumulate chips over a long sequence, however the

execution path for achieving that goal is dependent on a large number of variables,

the most of which being the style and skill of the subject playing. While it is a

game of individual actions, planning and maneuvering are essential, specifically

during individual rounds. Actions are made in anticipation of future actions and

betting rounds, for example, and decisions are heavily influenced by the style and

skill of one’s opponents.

203

6.7.2 Scenario #4 Results

In this fourth and final evaluation of FAM, we continue to examine its ability to

learn subject actions as a function of his cards, his position at the table, and the

betting action at the table. In Scenario #7, we will perform a similar evaluation

of FAMTILE. However, FAMTILE will instead learn the inferred context of the

subject during training, and then translate predicted contexts to actions during

validation. The results of this Scenario will lead us into an analysis of the utility

of using FAMTILE versus FAM for learning tactical behaviors similar to Vignette

D.

6.7.2.1 Predictive Accuracies of FAM Across Values of ρ̄a

A series of runs were executed to determine the value for ρ̄a where FAM achieves

the best predictive accuracy for each subject, as done in the previous three Sce-

narios. These runs are performed for each subject using all but 100 of the total

number of patterns generated for training. The remaining 100 patterns are used

for the validation set, from which a predictive accuracy can be generated.

For this Vignette, subjects were asked to play a fixed number of hands, and

therefore the number of actual patterns generated by the subject depended on

the actions they made during those hands. For instance, a single hand could

generate only one training pattern if the subject immediately folds, or several

if he/she stays in the hand for future rounds of betting. Subject #1 generated

2009 patterns, while subjects #2 and #3 generated 1731 and 1735 patterns,

respectively.

204

Table 6.17: Average Predictive Accuracies of Subject Actions for FAM

ρ̄a Subject 1 Subject 2 Subject 3

0.05 55.7 59.3 52.7

0.1 56.4 56.7 54.9

0.15 55.8 57.5 53.2

0.2 53.4 57.3 50.7

0.25 56.3 60.9 53.8

0.3 57.6 58.6 50.9

0.35 54.6 56.8 53.1

0.4 56.2 57.6 52.3

0.45 52.1 57.6 49.8

0.5 54.3 57.9 51

0.55 55.9 59.6 51.8

0.6 55.5 58.1 52.6

0.65 56.9 58.7 53.8

0.7 54 57.1 51.8

0.75 55.3 55.6 51.2

0.8 54.8 58.6 53.3

0.85 57.7 57.1 53.8

0.9 57.4 56.6 52

0.95 58.3 57.7 51.2

205

6.7.2.2 Obtaining the Best-Case Predictive Accuracy of FAM for Sce-

nario #4

For each subject, the ρ̄a the trials summarized in Table 6.17 were used for a

second set of 1000 runs. Across each of these 1000 runs, ρ̄a was fixed at the

value that previously produced the greatest average predictive accuracy for that

subject.

Table 6.18: Average Predictive Accuracy for 1000-run Sets

Subject ρ̄a Predictive Accuracy

1 0.95 58.22

2 0.25 60.18

3 0.10 55.32

6.7.3 Analysis of Scenario #4 Results

Once again, the increase in complexity of Vignette D compared to Vignette C

resulted in further erosion in FAM’s predictive accuracy. Best-case accuracies of

55.32, 58.95 and 58.12 are an average of over 20% worse than those of Scenario

#3 - which is nearly twice the decrease observed between Vignette C and the

maze Scenarios.

Subjects #1 and #2 were the same two people for Vignettes C and D. Keep

in mind that in Scenario #3, the network performed significantly worse on subject

#2 than on the other two subjects. Furthermore, it was noted that subject #2

206

had several years less experience than the other two, which likely affected the

predictability and consistency of her actions.

The complexity of this Scenario, however, seems to have neutralized this effect.

In fact, according to the summarized results from Table 6.18, FAM was slightly

more effective in the best-case at predicting her actions than for the other two

subjects. As it turns out, subject #3 (who did not participate in Vignette C or

the maze Vignettes) had comparable experience to subject #1. His responses to

the poker questionnaire are also included in the appendix.

6.8 Testing Scenario #5

The objective for testing Scenario #5 is to evaluate FAMTILE’s ability to predict

both the subject’s inferred active context and his resultant action. Vignette C

is used for this testing Scenario, the same one used to evaluate FAM in testing

Scenario #3. Because of this, the results of Scenario #3 will serve as a base-

line performance metric for the results achieved here. Unlike FAM, however,

FAMTILE instead attempts to predict the subject’s inferred active context. In

order to make a comparison between Fuzzy ARTMAP and FAMTILE, therefore,

the predicted contexts of FAMTILE must then be converted to a predicted ac-

tion for the subject. For example, if FAMTILE chooses the callToTrap context

for some decision point, it can be determined that the predicted action is a call.

Since FAM does not make context predictions, this determination is necessary to

compare the predictive accuracies of the two learning systems.

207

6.8.1 Context Templates Used For Vignette C

Based on the reviewed literature and personal experience, 12 contexts were gen-

erated for Vignette C that will be used by FAMTILE. These contexts are a

potential justification for each possible action.

As discussed in Chapter 5, there are many motivations and situations where

one particular action may be desirable. A raise, for instance, does not always

imply that the player believes he has the best hand. It could also be because the

player wishes to make a bluff or semi-bluff. This is also the case with a fold or

a call - a player may fold an otherwise playable hand because of a raise by an

opponent or because the player is in ’weak’ position. Likewise, a player can call

a mediocre or weak hand because he is on the small blind and must only call 1/2

a bet to stay in the hand, or for several other reasons.

The context templates developed for Vignette C serve to partition these rea-

sons for each of the three possible actions (raise, call, fold). Four templates are

defined for each action, and contain a subset of the following attributes:

1. playerAction (what the player did - fold, call, or raise)

2. holeCardRanking (the rank of the player’s hole cards as provided in section

5.2.2.2)

3. distanceToDealerButton (number of seats the player is away from the dealer

button, going counter-clockwise)

4. numBetsToCall (the amount it would take to call the current bet. Prior to

the flop, this amount will be 1 unless there has been a raise.

5. numPlayersInPot (the number of players who have yet to fold their hand

and are still eligible to win the pot)

208

Listed below are the 12 templates used in Vignette C.

foldWithWeakHandContext Player folds because his hole cards are not strong

(e.g. 6♠, J♠)

Attribute type weight

playerAction = fold boolean 6

holeCardRanking = 9 how close to 4

Table 6.19: Context Template for foldWithWeakHandContext

foldToStrongBettingContext Player folds an otherwise playable hand (e.g.

6♥, 6♠) because one or more of his opponents have raised

Attribute type weight

playerAction = fold boolean 6

distanceFromDealerButton = 3 how close to 0.5

holeCardRanking = 5 how close to 0.5

numBetsToCall > 0 amount greater than 3

Table 6.20: Context Template for foldToStrongBettingContext

209

foldInWeakPositionContext Player folds an otherwise playable hand (e.g.

K♥, Q♦) because he is in weak position in relation to the dealer

Attribute type weight

playerAction = fold boolean 6

distanceFromDealerButton = 3 how close to 2

holeCardRanking = 3 how close to 2

Table 6.21: Context Template for foldToInWeakPositionContext

foldWithStrongHandContext Player folds a strong hand (e.g. J♣, J♦)for

no discernable reason

Attribute type weight

playerAction = fold boolean 6

holeCardRanking = 1 how close to 4

Table 6.22: Context Template for foldWithStrongHandContext

210

callWithDrawingHandContext Player calls a good multiway hand in order

to see a flop. Good multiway hole cards include combinations such as small

pairs (e.g. 4♣, 4♥), suited connectors (e.g. 8♠, 9♠) and suited aces (e.g.

A♥, 8♥)

Attribute type weight

playerAction = call boolean 6

numPlayersInPot = 7 how close to 3

holeCardRanking = 5 how close to 1

Table 6.23: Context Template for callWithDrawingHandContext

callToTrapContext Player calls with a strong hand (e.g. A♥, A♠) either in or

out of position attempting to induce action in later rounds

Attribute type weight

playerAction = call boolean 6

numBetsToCall = 1 how close to 1

holeCardRanking = 1 how close to 3

Table 6.24: Context Template for callToTrapContext

211

callWithMarginalHandContext Player makes a loose call with a hand that

tighter players would likely fold. A loose call indicates a call when the

player holds a relatively mediocre or poor hand (e.g. K♥, 7♦). A tight

player typically only plays with very strong hands and draws.

Attribute type weight

playerAction = call boolean 6

holeCardRanking = 9 how close to 4

Table 6.25: Context Template for callWithMarginalHandContext

callWithWeakHandContext Player makes an extremely loose call with a very

weak hand (e.g. 2♣, 7♠)

Attribute type weight

playerAction = call boolean 6

holeCardRanking = 9 how close to 4

Table 6.26: Context Template for callWithWeakHandContext

212

raiseWithDrawingHandContext Player makes a raise with a strong drawing

hand, in an attempt to induce either folds or free cards in later rounds. A

free card is when a player on the come acts strong and in a later round

induces other players to ’check’ around to him on the next round, allowing

him to see a card (and possibly catch his draw) without betting or calling.

Attribute type weight

playerAction = raise boolean 6

numPlayersInPot = 2 how close to 3

numBetsToCall = 1 how close to 1

Table 6.27: Context Template for raiseWithDrawingHandContext

raiseInPositionContext Player makes a raise based mainly on his position at

the table

Attribute type weight

playerAction = raise boolean 6

distanceFromDealerButton = 0 how close to 3

numPlayersInPot = 2 how close to 0.5

numBetsToCall = 1 how close to 1

Table 6.28: Context Template for raiseInPositionContext

213

raiseWithStrongHandContext - Player makes a raise with a strong opening

hand (e.g. A♣, K♣)

Attribute type weight

playerAction = raise boolean 6

holeCardRanking = 1 how close to 4

Table 6.29: Context Template for raiseWithStrongHandContext

raiseToBluffContext - Player makes a raise with a weak hand in order to

induce the table to fold out

Attribute type weight

playerAction = raise boolean 6

holeCardRanking = 9 how close to 2

numPlayersInPot = 2 how close to 1

Table 6.30: Context Template for raiseWithStrongHandContext

214

6.8.2 Scenario #5 Results

Scenario #5 proceeded in the same manner as the previous four scenarios. The

results are tabulated below.

6.8.2.1 Predictive Accuracies of FAMTILE Across Values of ρ̄a

For each run, 100 patterns were used as testing patterns. The results in Tables

6.31 through 6.36 represent averages for 100 runs of each particular subject,

number of training patterns and ρ̄a value.

For this test, FAMTILE’s predictive accuracy for both the inferred active

context of the subject and the resultant action of the subject are tabulated.

215

Table 6.31: Average Predictive Accuracies of Subject Contexts for 100-run sets

of FAMTILE, 300 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 61.27 52.85 61.48

0.10 62.15 52.62 60.76

0.15 63.63 53.47 59.76

0.20 61.26 53.32 61.01

0.25 62.58 54.01 59.26

0.30 61.79 52.96 60.16

0.35 61.65 53.09 59.52

0.40 61.35 53.41 60.44

0.45 61.94 53.35 59.76

0.50 61.35 52.95 59.41

0.55 62.20 54.14 60.37

0.60 62.45 52.37 59.90

0.65 63.42 53.31 60.91

0.70 63.30 53.72 60.77

0.75 63.17 55.17 61.78

0.80 65.00 55.28 62.90

0.85 64.87 55.96 63.43

0.90 65.33 55.85 62.56

0.95 64.82 55.97 62.19

216

Table 6.32: Average Predictive Accuracies of Subject Contexts for 100-run sets

of FAMTILE, 600 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 64.10 56.31 61.49

0.10 62.67 55.45 61.91

0.15 63.63 54.62 61.71

0.20 63.02 54.56 61.92

0.25 62.71 55.75 62.82

0.30 63.35 55.52 61.95

0.35 63.63 55.57 61.75

0.40 62.97 54.86 62.68

0.45 63.16 55.06 61.50

0.50 63.61 55.43 62.33

0.55 63.77 55.32 62.24

0.60 63.98 55.81 61.40

0.65 63.72 54.90 62.84

0.70 64.52 56.57 62.79

0.75 65.06 56.33 64.19

0.80 65.06 57.53 64.66

0.85 66.07 58.80 64.86

0.90 67.75 57.99 64.98

0.95 67.24 58.66 64.30

217

Table 6.33: Average Predictive Accuracies of Subject Contexts for 100-run sets

of FAMTILE, 900 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 64.91 56.87 63.48

0.10 64.34 57.60 63.60

0.15 64.53 57.26 62.45

0.20 64.29 56.36 63.84

0.25 65.07 57.12 63.06

0.30 65.12 57.73 62.78

0.35 64.87 57.58 62.76

0.40 64.61 56.96 63.40

0.45 64.74 57.54 63.22

0.50 64.16 57.64 62.98

0.55 64.52 57.30 62.70

0.60 65.23 57.51 63.37

0.65 65.12 56.93 63.73

0.70 65.86 57.97 63.23

0.75 66.91 57.32 63.79

0.80 66.02 58.44 64.82

0.85 67.30 59.03 66.09

0.90 67.64 59.85 66.81

0.95 67.29 59.61 65.62

218

Table 6.34: Average Predictive Accuracies of Subject Actions for 100-run sets of

FAMTILE, 300 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 70.62 62.48 69.86

0.10 70.06 64.05 70.23

0.15 70.77 63.75 69.34

0.20 70.52 63.48 69.51

0.25 70.30 63.55 70.55

0.30 71.21 63.48 69.89

0.35 70.10 63.93 69.47

0.40 70.40 63.45 70.58

0.45 71.38 63.81 68.86

0.50 70.40 63.25 70.43

0.55 70.81 62.99 70.40

0.60 71.34 63.22 69.43

0.65 70.98 64.36 69.72

0.70 71.49 64.96 70.78

0.75 71.46 63.67 70.88

0.80 71.91 65.05 71.16

0.85 72.98 66.59 71.24

0.90 73.36 65.88 72.04

0.95 73.58 66.85 71.44

219

Table 6.35: Average Predictive Accuracies of Subject Actions for 100-run sets of

FAMTILE, 600 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 71.63 65.86 70.70

0.10 72.02 64.83 71.88

0.15 71.78 64.89 71.48

0.20 71.82 66.75 70.93

0.25 72.24 64.52 71.05

0.30 72.02 65.59 71.24

0.35 71.79 65.75 71.45

0.40 72.07 65.48 71.26

0.45 71.74 65.38 71.17

0.50 72.16 65.94 70.55

0.55 72.06 65.45 71.20

0.60 72.02 65.17 71.13

0.65 72.23 65.05 70.84

0.70 72.58 65.71 71.64

0.75 73.79 66.21 72.79

0.80 73.14 66.20 72.93

0.85 74.49 66.92 74.40

0.90 74.71 67.48 73.61

0.95 75.24 68.55 74.11

220

Table 6.36: Average Predictive Accuracies of Subject Actions for 100-run sets of

FAMTILE, 900 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 72.74 66.91 72.01

0.10 74.23 66.85 73.06

0.15 72.62 66.52 72.34

0.20 72.71 65.50 72.56

0.25 73.50 66.31 72.56

0.30 72.93 66.44 71.40

0.35 72.12 66.55 72.11

0.40 73.24 66.46 72.34

0.45 73.01 66.37 71.89

0.50 73.04 67.36 72.43

0.55 72.90 66.93 71.42

0.60 71.84 66.05 72.12

0.65 73.49 66.57 72.33

0.70 73.03 67.06 73.19

0.75 74.17 66.67 73.35

0.80 74.54 66.88 73.88

0.85 74.52 68.31 74.58

0.90 75.25 69.02 75.68

0.95 75.57 69.12 74.93

221

6.8.2.2 Obtaining a Best-Case Predictive Accuracy for FAMTILE in

Scenario #5

The results are first tabulated across the baseline vigilance parameter, ρ̄a, in

order to ascertain an acceptable value for the comparison test. For each subject,

learning mechanism, and training pattern total, a value for ρ̄a is chosen that

maximizes the cumulative predictive accuracy FAMTILE on the validation set

for each subject. That value is then set as a constant parameter. The systems

are each re-tested (one for each expert) in three batches of 1000-run tests: one

using 300 training patterns, one using 600, and the last using 900 of the 1000

patterns generated.

The purpose of these batches of runs is to compare the best-case predictive

accuracies of FAM and FAMTILE using a value of ρ̄a that produced the best

results for each in the previous tests. The results of these runs are tabulated in

full in Appendix F, and the mean values of each 1000-run test are tabulated in

6.37 - 6.39. The results of these tests of FAM are reproduced, for convenience,

from testing Scenario #3.

It is noted that the predictive accuracy of FAMTILE did not improve dras-

tically using increased numbers of training patterns. This was also the case in

Scenario #3, and is observed for both the predictive accuracy of FAMTILE for

both inferred contexts and actions.

222

Table 6.37: Average Predictive Accuracy for 1000-run Sets with 300 training

patterns

Subject FAM FAMTILE (Actions) FAMTILE (Contexts)

1 72.99 73.58 65.61

2 66.01 66.15 55.64

3 71.94 72.12 63.05

Table 6.38: Average Predictive Accuracy for 1000-run Sets with 600 training

patterns

Subject Fuzzy ARTMAP FAMTILE (Actions) FAMTILE (Contexts)

1 74.94 75.02 66.64

2 67.55 67.82 58.10

3 73.95 73.88 64.86

Table 6.39: Average Predictive Accuracy for 1000-run Sets with 900 training

patterns

Subject Fuzzy ARTMAP FAMTILE (Actions) FAMTILE (Contexts)

1 75.04 75.63 67.71

2 68.54 68.92 59.98

3 75.56 75.37 66.26

6.8.3 Analysis of Scenario #5 Results

There are several interesting things to note from these tables. In terms of the

primary objectives of this research, the numbers in the third column are the most

important - how well does FAMTILE predict the inferred context of the subject?

223

FAM is the baseline for these tests. Using a set of input patterns in the form

described in Chapter 5, the neural network creates a set of clusters that maps

similar patterns to one of three subject actions - call, raise, or fold. The numbers

in the first column from Scenario #3 indicate how well FAM was able, on average,

to predict the subject’s action among the testing data given. No context inference

is performed. The second column represents the ability of FAMTILE to make

the same prediction. Rather than mapping input patterns to outputs, however,

FAMTILE instead creates a mapping between the input pattern and the inferred

active context for that pattern. For instance, consider the situation where the

subject holds 5♠, 6♠ in the big blind. Four opponents call the blind, and the

subject chooses to raise with his good multiway hand. Analyzing the attributes

of the system, TBI infers that the subject is currently in RaiseWithDrawingHand.

If this pattern was used to train FAMTILE, the network would choose the cluster

most similar to the pattern that mapped to the RaiseWithDrawingHand context.

During testing, if FAMTILE encounters a situation similar to this, it will choose

the RaiseWithDrawingHandContext, and thus predict that the player will raise

in that situation. Column 2 tabulates the predictive accuracy of the consequent

action that follows from the predicted context.

A statistical analysis of the 1000-run batches for each subject was run to

compare the best-case mean predictive accuracies of FAM, FAMTILE for actions,

and FAMTILE for inferred contexts. These accuracies were tabulated in tables

6.37 - 6.39. For this analysis, a 2-tailed t-test was performed to compare these

predictive accuracies. The results of this analysis is summarized in Table 6.40.

As the table above illustrates, these predictive accuracies of the subject’s

action for FAM and FAMTILE are nearly identical for each batch of runs and each

subject. In the best case, for subject #1 with 900 training patterns, FAMTILE

224

Table 6.40: Tabulated 2-tailed t-tests on Best-Case Action Predictive Accuracies

for Scenarios #3 and #5

Subject # training patterns µ1 µ2 µ1 − µ2 99%CI(α = 0.01) p-value

1 300 73.58 72.99 0.587 (0.071,1.103) 0.003

1 600 75.02 74.94 0.080 (-0.410,0.570) 0.674

1 900 75.63 75.40 0.224 (-0.228,0.676) 0.201

2 300 66.15 66.01 0.143 (-0.409,0.695) 0.143

2 600 67.82 67.55 0.267 (-0.255,0.789) 0.187

2 900 68.92 68.55 0.372 (-0.135,0.879) 0.059

3 300 72.12 71.94 0.176 (-0.334,0.686) 0.374

3 600 73.89 73.95 -0.062 (-0.556,0,432) 0.746

3 900 75.37 75.56 -0.187 (-0.666,0.292) 0.315

outperformed FAM with an average of 75.63 correct predictions versus 75.04 for

FAM. In the worst case, for subject #3 also with 900 training patterns, FAM

narrowly outperformed FAMTILE with an average of 75.56 correct predictions

versus 75.37 for FAMTILE. Neither of these margins are statistically significant.

In addition, FAMTILE is able to accurately predict the subject’s active con-

text an average of 67.71, 59.98, and 66.26 times for each of the three subjects

observed, respectively, at optimum values for ρ̄a. Comparing these accuracies

with those of FAM for predicting subject actions, we note that FAMTILE is

an average of only 11.52% less effective at predicting contexts than FAM is at

predicting actions.

The fact that FAMTILE is able to generate a competitive degree of context-

predicting accuracy without disrupting the ability of FAM is a significant finding.

In effect, therefore, we have created a system that adds the ability to predict

225

context transitions to a neural network without affecting its ability to predict

simple actions. The utility of such a system will be discussed in more detail in

Chapter 7.

6.9 Testing Scenario #6

In Scenario #6, predictive accuracies for FAMTILE are collected and analyzed

for Vignette D as they were for FAM in Scenario #4. Concluding this section

will be a comparative analysis of the accuracies of the two systems, analogous to

the analysis generated for the results of FAM and FAMTILE on Vignette C.

6.9.1 Template Descriptions for Vignette D

Below is the list of context templates used by FAMTILE for Vignette D. Each

template description defines the situations under which the template is described

along with each attribute and weight assigned to it.

There are 24 contexts used for Vignette D. The main reason for this increase

versus Vignette C is that there are two additional actions available to the player

(bet and raise).

The context templates developed for Vignette D, like in Vignette C, serve to

partition the situations for which each of five possible actions (raise, call, fold,

check, bet). Each template contains attributes from the following set:

1. playerAction (what the player did - fold, call, or raise)

226

2. handStrength (the strength of the player’s hand as computed within Loki

[BS98])

3. pPot (an index representing the player’s potential to draw to a winning

hand, as computed within Loki [BS98])

4. nPot (an index representing the opponent’s potential to draw to a winning

hand against the player, as computed within Loki [BS98]

Notice that the number of attributes used to infer context in Vignette D are

fewer than the number used in the previous Scenario. The biggest motivation

for this change was the results obtained in Scenario #5 for the test subject

#2, discussed in the previous section. In those Scenarios, it was found that

FAMTILE was less successful in predicting that subject’s context or action than

it was for the other two subjects. For Vignette D, therefore, the contexts created

for Vignette were designed to be more basic. Concepts such as position and

opponent aggression are removed from these templates, and the only attributes

considered are the player’s action, the strength of his hand, the strength of his

draw, and the potential strength of his opponents’ draws. By doing this, we

remove the situations where TBI infers a context that the player is ’raising in

position’ in spite of the player’s ignorance of that factor. All that is assumed in

these template definitions is a basic concept hand strength during the game, i.e.

• strength of the player’s hole cards

• strength of the player’s hand based on the community cards

• likelihood the player can draw to a winning hand, based on the community

cards

227

• likelihood the player has a winning hand but can be drawn out on by an

opponent, based on the community cards

We consider the items above to be concepts known by all players of the game,

not just the more experienced ones. By limiting the template attributes to these,

therefore, each of the contexts become applicable. By contrast, contexts with

template attributes that are not understood by novice players are inapplicable.

For instance, it would not make sense to infer the a RaiseInPosition context

(used in Vignette C) for a novice player who does not know what position means

or what it implies.

By setting up the context templates so that they refer to the most basic

of game principles, we force the system to learn the more advanced knowledge

involved in selecting a specific context when several are possible. For example,

consider the contexts RaiseWithDrawingHand, CallWithDrawingHand and

FoldWithDrawingHand. Both refer to situations where the player is holding

a drawing hand (e.g. if a player is holding 5♠, 6♣ and the board is showing

4♥, 7♣, Q♦ - the player can draw an 8 or a 3 to make a straight), but the actions

taken are different. There are several possible reasons to choose to raise versus a

call, many of which involve advanced concepts not easily identified by more novice

players. In fact, the identification and response to these situations is part of what

separates an expert player from a novice player, and exactly the kind of knowledge

we are interested in learning. For intelligence in a poker environment, this type

of decision is what we consider to be a high-level decision: What conditions call

for the RaiseWithDrawingHand context versus the CallWithDrawingHand

context for a certain player?

228

foldWithWeakHandContext Player folds a weak hand relative to the board

Table 6.41: Context Template for foldWithWeakHandContext

Attribute type weight

playerAction = fold boolean 50

handStrength < 0.4 boolean 40

pPot = 0 boolean 10

foldWithDrawingHandContext Player folds a hand that could draw to a

winning hand

Table 6.42: Context Template for foldWithDrawingHandContext

Attribute type weight

playerAction = fold boolean 50

handStrength > 0.1 boolean 10

pPot > 0.2 boolean 40

foldWithMediocreHandContext Player folds an average hand

Table 6.43: Context Template for foldWithMediocreHandContext

Attribute type weight

playerAction = fold boolean 70

handStrength < 0.6 boolean 20

pPot > 0.1 boolean 10

229

foldWithStrongHand Player folds a strong hand

Table 6.44: Context Template for foldWithStrongHand

Attribute type weight

playerAction = fold boolean 70

handStrength > 0.7 boolean 30

checkWithWeakHandContext Player checks a weak hand

Table 6.45: Context Template for checkWithWeakHandContext

Attribute type weight

playerAction = check boolean 70

handStrength < 0.4 boolean 20

pPot < 0.1 boolean 10

checkWithMediocreHandContext Player checks a mediocre hand

Table 6.46: Context Template for checkWithMediocreHandContext

Attribute type weight

playerAction = check boolean 70

handStrength < 0.6 boolean 20

pPot < 0.15 boolean 10

230

checkWithDrawingHandContext Player checks a drawing hand

Table 6.47: Context Template for checkWithDrawingHandContext

Attribute type weight

playerAction = check boolean 70

handStrength < 0.8 boolean 5

pPot > 0.2 boolean 25

checkWithMonsterHandContext Player checks a very strong hand

Table 6.48: Context Template for checkWithMonsterHandContext

Attribute type weight

playerAction = check boolean 70

handStrength > 0.95 boolean 20

nPot < 0.05 boolean 10

checkWithStrongButVulnerableHandContext Player checks a strong hand

that could get drawn out on

Table 6.49: Context Template for checkWithStrongButVulnerableHandContext

Attribute type weight

playerAction = check boolean 70

handStrength > 0.7 boolean 20

nPot > 0.15 boolean 10

231

betWithWeakHandContext Player bets a weak hand

Table 6.50: Context Template for betWithWeakHandContext

Attribute type weight

playerAction = bet boolean 70

handStrength < 0.4 boolean 20

pPot < 0.1 boolean 10

betWithDrawingHandContext Player bets a drawing hand

Table 6.51: Context Template for betWithWeakHandContext

Attribute type weight

playerAction = bet boolean 70

handStrength < 0.8 boolean 5

pPot > 0.2 boolean 25

betWithMediocreHandContext Player bets a mediocre hand

Table 6.52: Context Template for betWithMediocreHandContext

Attribute type weight

playerAction = bet boolean 70

handStrength < 0.6 boolean 20

pPot < 0.15 boolean 10

232

betWithMonsterHandContext Player bets a very strong hand

Table 6.53: Context Template for betWithMonsterHandContext

Attribute type weight

playerAction = bet boolean 70

handStrength > 0.95 boolean 20

nPot < 0.05 boolean 10

betWithStrongButVulnerableHandContext Player bets a strong hand that

could get drawn out on

Table 6.54: Context Template for betWithStrongButVulnerableHandContext

Attribute type weight

playerAction = bet boolean 70

handStrength > 0.7 boolean 20

nPot > 0.15 boolean 10

callWithWeakHandContext Player calls a weak hand

Table 6.55: Context Template for callWithWeakHandContext

Attribute type weight

playerAction = call boolean 70

handStrength < 0.4 boolean 20

pPot < 0.1 boolean 10

233

callWithDrawingHandContext Player calls a drawing hand

Table 6.56: Context Template for callWithWeakHandContext

Attribute type weight

playerAction = call boolean 70

handStrength < 0.8 boolean 5

pPot > 0.2 boolean 25

callWithMediocreHandContext Player calls a mediocre hand

Table 6.57: Context Template for callWithMediocreHandContext

Attribute type weight

playerAction = call boolean 70

handStrength < 0.6 boolean 20

pPot < 0.15 boolean 10

callWithMonsterHandContext Player calls a very strong hand

Table 6.58: Context Template for callWithMonsterHandContext

Attribute type weight

playerAction = call boolean 70

handStrength > 0.95 boolean 20

nPot < 0.05 boolean 10

234

callWithStrongButVulnerableHandContext Player calls a strong hand that

could get drawn out on

Table 6.59: Context Template for callWithStrongButVulnerableHandContext

Attribute type weight

playerAction = call boolean 70

handStrength > 0.7 boolean 20

nPot > 0.15 boolean 10

raiseWithWeakHandContext Player raises a weak hand

Table 6.60: Context Template for raiseWithWeakHandContext

Attribute type weight

playerAction = raise boolean 70

handStrength < 0.4 boolean 20

pPot < 0.1 boolean 10

raiseWithDrawingHandContext Player raises a drawing hand

Table 6.61: Context Template for raiseWithWeakHandContext

Attribute type weight

playerAction = raise boolean 70

handStrength < 0.8 boolean 5

pPot > 0.2 boolean 25

235

raiseWithMediocreHandContext Player raises a mediocre hand

Table 6.62: Context Template for raiseWithMediocreHandContext

Attribute type weight

playerAction = raise boolean 70

handStrength < 0.6 boolean 20

pPot < 0.15 boolean 10

raiseWithMonsterHandContext Player raises a very strong hand

Table 6.63: Context Template for raiseWithMonsterHandContext

Attribute type weight

playerAction = raise boolean 70

handStrength > 0.95 boolean 20

nPot < 0.05 boolean 10

raiseWithStrongButVulnerableHandContext Player raises a strong hand

that could get drawn out on

Table 6.64: Context Template for raiseWithStrongButVulnerableHandContext

Attribute type weight

playerAction = raise boolean 70

handStrength > 0.7 boolean 20

nPot > 0.15 boolean 10

236

6.9.2 Scenario #6 Results

Scenario #6 proceeded in the same manner as the previous five Scenarios. The

results are tabulated below. 900 patterns were used to train FAMTILE in each

test. It was found in Scenarios #3 and #5 that the number of training points

did not significantly affect the predictive accuracy beyond 300 training points,

though the systems performed better with the maximum amount of 900 points

for testing. Therefore, the training point number was not varied in this testing

Scenario.

6.9.2.1 Predictive Accuracies of FAMTILE Across Values of ρ̄a

A series of runs were executed to determine the value for ρ̄a where FAMTILE

achieves the best predictive accuracy for each subject. These runs are performed

for each each subject using all but 100 of the total number of patterns generated

for training. The remaining 100 patterns are used for the validation set, from

which a predictive accuracy can be generated.

Both the training and validation sets used by FAMTILE in this testing Sce-

nario were generated from the same subject patterns used by FAM for Scenario

#4.

237

Table 6.65: Average Predictive Accuracies of Subject Contexts for FAMTILE

ρ̄a Subject 1 Subject 2 Subject 3

0.05 40.2 41.0 34.2

0.1 40.5 40.0 34.8

0.15 40.9 40.1 37.2

0.2 42.6 43.2 39.2

0.25 41.6 40.0 38.0

0.3 38.7 41.7 36.3

0.35 42.9 41 35.0

0.4 39.1 40.5 36.6

0.45 40.7 40.3 36.9

0.5 39.2 37.2 35.8

0.55 39.1 40.0 37.8

0.6 41.3 40.3 36.4

0.65 39.3 39.8 37.2

0.7 38.1 39.0 37.3

0.75 39.6 41.5 38.5

0.8 37.9 38.0 36.6

0.85 40.1 39.0 37.8

0.9 40.6 42.5 37.0

0.95 40.8 40.9 37.1

238

Table 6.66: Average Predictive Accuracies of Subject Actions for FAMTILE

ρ̄a Subject 1 Subject 2 Subject 3

0.05 54.5 59.2 50.8

0.1 53.8 59.4 52.0

0.15 55.5 58.3 53.4

0.2 54.4 56.8 50.2

0.25 53.9 57.7 50.1

0.3 55.5 58.9 49.7

0.35 54.0 57.7 50.5

0.4 55.6 59.8 51.4

0.45 53.6 57.9 49.7

0.5 55.1 56.5 51.1

0.55 53.3 59.2 51.0

0.6 54.9 57.3 49.3

0.65 53.0 58.1 50.2

0.7 55.6 58.8 49.2

0.75 56.0 59.0 49.9

0.8 56.2 60.7 50.3

0.85 55.3 55.4 51.0

0.9 55.9 57.1 49.3

0.95 60.7 57.9 49.9

239

6.9.2.2 Obtaining the Best-Case Predictive Accuracy of FAMTILE

for Scenario #6

For each subject, the ρ̄a the trials summarized in Tables 6.65 and 6.66 were used

for a second set of 1000 runs. Across each of these 1000 runs, ρ̄a was fixed at the

value that produced the greatest average predictive accuracy of inferred contexts

and actions for that subject.

Table 6.67: Average Predictive Accuracy of FAMTILE for Inferred Contexts and

Actions over 1000-run Sets

Subject ρ̄a Context Predictive Accuracy ρ̄a Action Predictive Accuracy

1 0.35 43.22 0.95 60.25

2 0.20 47.79 0.8 60.14

3 0.20 39.99 0.15 54.07

6.9.3 Analysis of Scenario #6 Results

Just as in Scenario #5, FAMTILE achieved best-case predictive accuracies for

each subject which were on par with those recorded by FAM during its evaluation.

Here, the average best-case predictive accuracies reached (for subject actions)

were 60.25, 60.14 and 54.07, respectively. These values are compared to values

of 58.22, 60.18, and 55.32 achieved by FAM in Scenario #4.

Table 6.68 summarizes the results of a 2-tailed t-test on the best-case predic-

tive accuracy means achieved in Scenarios #4 and #6 for each subject.

240

Table 6.68: Tabulated 2-tailed t-tests on Best-Case Action Predictive Accuracies

for Scenarios #4 and #6

Subject µ6 µ4 µ6 − µ4 99%CI(α = 0.01) p-value

1 60.25 58.22 2.30 (1.253,3.347) 0.778

2 60.14 60.18 -0.04 (-0.460,0.380) 0.006

3 54.07 55.32 -1.25 (-2.38,-0.120) 0.572

The predictive accuracy of FAMTILE for predicting subject’s inferred context

also dropped considerably from the values achieved in Scenario #5. Whereas

FAMTILE predicted contexts at rates of 67.71, 59.98 and 66.26 for Vignette C,

those accuracies dropped by an average of over 28% across the two subjects who

then also participated in Vignette D. One significant reason for this was the the

increase in number of contexts. This number doubled from 12 to 24 contexts

for Vignette D because two new actions needed to be accounted for (bet, check)

along with representation of contexts potentially present after the pre-flop round

of betting. Note that with 24 contexts, a random guess of the inferred active

context could be expected to be correct slightly more than 4% of the time, which

is ten times less than the accuracy achieved by FAMTILE.

Furthermore, Vignette D requires the player to reason about entirely new and

more complex situations than faced in Vignette C. In addition to his/her hole

cards, the player must also consider not only the community cards, but also the

action of previous betting rounds and the possible responses of each opponent in

response to a particular action.

241

6.10 Test Scenario #7

This section defines the purpose, motivation and results for the final testing

Scenario used to evaluate both FAM and FAMTILE.

For this Scenario, the data collected from Vignette D is used. In this Vignette,

the subject is placed at a random position at a poker table, and is asked asked

to make decisions throughout entire hands and accumulate chips throughout the

Scenario. As each hand is dealt, and each opponent makes an action on their

cards until it is the subject’s turn to act. When the subject acts, the betting

round continues as well as the hand, and proceeds just as a standard round of

Limit Hold’em. After each round, the dealer button rotates one chair to the left

and a new hand is dealt. A chip-count is stored for the subject, which will reflect

the amount of money won/lost during the sequence of hands played.

6.10.1 Scenario #7 Motivation

The final evaluation places both FAM and FAMTILE in the position of the very

subject it observed. Both systems then perform the task of playing Limit Hold’em

against a set of seven computer-generated opponents.

In doing this, the two systems must do the following at each decision point:

1. Observe the situation at the table

2. Transform situation into an input pattern

3. Choose an action/context based on the output of FAM/FAMTILE

4. Execute the action

242

In the general case, a CxBR model (whose individual contexts are written

by a knowledge engineer externally to the learning process) controls an agent

executing the desired behavior. The intelligence acquired by the two learning

systems, therefore, drives the selection of actions made during the hand.

To perform this evaluation, FAMTILE observes an subject playing 1000 hands

of Limit Hold’em. After this observation period, the transition logic learned by

FAMTILE is used to determine actions during the Scenario. The model then

itself plays 1000 hands, and the number of chips for both the subject during

observation and the model after hand played are compared.

6.10.2 Scenario #7 Results

The purpose of Scenario #7 for testing the learning systems is to evaluate its

ability to play Texas Hold’em and accumulate chips at a similar rate as the

subject they observed. In the case of FAMTILE, this involves the following

actions:

1. Observe an subject play 1000 hands of Limit Hold’em

2. Generate training patterns from each decision point the subject faced during

observation

3. Use patterns to train Fuzzy ARTMAP, create a mapping between subject

stimuli and output context

4. System executes the Vignette and uses learned knowledge to generate ac-

tions in response to the game

243

Consider the situation where FAMTILE is playing the role of the subject,

and is involved in a hand in late position with the 10♣, J♣ and the flop comes

7♣, 8♦, 9♦. It has two opponents still in the hand, both acting first. The first

opponent checks, and the second calls.

FAMTILE would first convert this observation into an input pattern for FAM.

After being presented this pattern, FAM would return an output pattern that

represents one specific context, e.g. CallWithMonsterHandContext. FAMTILE

then executes the appropriate action as implied by the context - in this case a

call.

The opponents would then react to that action. The first opponent can either

call the bet (since he first checked), fold, or make a raise. The second opponent

will only act again during this betting round if the first opponent makes a raise.

Depending on those actions, a new situation will arise for FAMTILE. If the first

player calls or folds, 4th street (the turn) will be dealt and a new round of betting

will commence. Otherwise FAMTILE may have to call another raise to remain

in the hand.

6.10.2.1 Chip Count Comparisons of Subject, FAM and FAMTILE

To achieve these comparisons, both FAM and FAMTILE must first be trained

with subject data from Vignette D. Based on the results from Scenarios #5

and #6, each system was provided a value for ρ̄a where it achieved its best case

predictive accuracy. Each system was then repeatedly trained until it achieved

the maximum score reached during their previous evaluations. As soon as it

achieves the maximum accuracy on the testing set, the system is inserted into

244

the simulation. 1000 hands are then simulated with each system FAMTILE acting

in place of the subject. A running tally of remaining chips is kept.

To analyze the results of these tests, the 1000-hand sequence for both the

subject used for training, FAM and FAMTILE was first broken down into a

series of ten 100-hand sequences. From these ten sets, the best and worst-case

results were truncated from the set. This was done to dampen the effect of luck

that, while innate to poker, tends to even out over the long run.

For example, suppose FAM achieves the following chip gains and losses over

ten 100-round sequences: -25, +50, +125, -5, -7, +12, -85, +80, -60, -18. Trunca-

tion would remove the sequence where the system won 125 and also the sequence

where it lost 85 chips.

To generate the graphs in figures 6.9 - 6.11, the remaining 100-round sequences

were averaged to generate a mean stack size across each round. These figures show

the results of this average for both systems as well as the subject observed. Each

graph represents the average chip count at each point in the 100-hand sequence.

245

Figure 6.9: Chip Count Comparison of Subject #1 versus FAM and FAMTILE

Figure 6.10: Chip Count Comparison of Subject #2 versus FAM and FAMTILE

246

Figure 6.11: Chip Count Comparison of Subject #3 versus FAM and FAMTILE

6.10.2.2 Analysis of Scenario #7 Results

As expected based on the results of Scenarios #5 and #6, neither FAM nor

FAMTILE was able to achieve a comparable increase in chip stack as the subjects

they observed.

By only being able to predict around 60% of the subject’s actions, both FAM

and FAMTILE lack a great deal of the intelligence required to extrapolate deci-

sions that do not closely match those learned during training. This problem is

most visible in the decisions made after the pre-flop round of betting, where nei-

ther FAM or FAMTILE was able to choose correct contexts in post-flop betting

rounds.

The main reason for this lack of ’post-flop intelligence’ is the fact that the

vast majority of training patterns were of pre-flop decisions. The subject was

247

asked to play 1000 hands - in most of those hands, the subject did what basic

Hold’em strategy would tell him/her to do - fold. Only in a small subset of those

1000 hands was the subject in the round for subsequent betting rounds so that

training patterns could be generated with subject decisions from them.

To correctly train both networks so that they can attempt to fully model

subject behavior in this Vignette, the poker simulation would need to be adjusted

to set-up more (and varied) situations for post-flop decisions by the subject,

instead of allowing the cards to be dealt realistically. This step is left for future

research.

6.11 Summary and Conclusion of FAMTILE Evaluation

Throughout each of the seven testing Scenarios, the objective was to evaluate

both FAM and FAMTILE using a sequence of Vignettes with varying degrees of

complexity.

For the two simpler Vignettes (A and B), the basic FAM neural network was

evaluated as to how well it could predict human actions in this setting. These

evaluations were performed as testing Scenarios #1 and #2. FAM was able to

achieve good predictive accuracies for each subject in both Vignettes, achieving

over 95% accuracy in the best case.

With Vignette C, an attempt was made to create a significantly more complex

tactical behavior that was also more dependent on the skill level and style of the

subjects observed. Here, subjects were placed at a virtual Texas Hold’em table

and asked to make a series of individual decisions (either to raise, call, or fold)

based solely on his/her hole cards, his position at the table, and the actions of his

248

opponents. Results from testing FAM in this environment were recorded as part

of Scenario #3, and verified the increased complexity present in Vignette C. The

network experienced over an 11% decrease in performance versus its recorded

predictive accuracies from Scenarios #1 and #2. Nevertheless, FAM was able to

achieve an average of over 70% predictive accuracy for each of the three players,

and it is hypothesized that this accuracy could possibly be increased by slightly

modifying the observations taken for the subjects during training. This suggestion

is explored in more detail in section 7.5.

In Scenario #5, FAMTILE is asked to repeat the task performed by FAM

in Scenario #3. Instead of learning subject actions, however, FAMTILE learns

by converting each action to an inferred active context using a TBI engine and

a listing of templates (provided in section 6.8.1, just as described in Chapters 4

and 5. Because there is a many-to-one mapping between context and action for

Vignette C, the predicted context of FAMTILE can then easily be converted to

represent the predicted action of the subject.

The results of Scenario #5 quantify the effectiveness of using FAMTILE to

learn subject behaviors for turn-based tactical behaviors such as the game mod-

eled by Vignette C. According to the tabulated results, FAMTILE is only 10%

less effective at predicting the inferred context of the subject than FAM was in

Scenario #3 at predicting the subject’s resultant action. Furthermore, FAMTILE

is able to then reproduce FAM’s predictive accuracy by performing a simple con-

version of those predicted contexts.

249

CHAPTER 7

SUMMARY, CONCLUSIONS AND FUTURE

WORK

This chapter includes a summary of the work accomplished in this research, a list

of the conclusions made from testing the system, and a discussions of possible

directions that this research can be carried in the future.

7.1 Summary

The purpose of this research was the design of an algorithm capable of learn-

ing high-level, tactical behavior from the observations of an expert. In order

to clarify the scope of ’high-level behavior’, the modeling paradigm known as

Context-Based Reasoning is introduced. In CxBR models, all knowledge is rep-

resented and activated within the abstraction of a context. A context is a set

of environmental and physical conditions that may suggest a specific behavior

or action [SG04]. Using the terms defined in this paradigm, high-level behavior

is equivalent to the entire behavior to be represented by a CxBR model. CxBR

contexts represent the lower-level ’sub-behaviors’ that the expert executes while

demonstrating a high-level behavior.

250

If it is assumed that these sub-behaviors are known and can be modeled by

a knowledge engineer (KE) a priori, the task of the learning algorithm becomes

that of identifying and learning the cues that result in an expert changing his

low-level context. In terms of a CxBR model, this task is equivalent to learning

the context-transition logic that determines the sequence of contexts executed by

the model during the behavior.

The algorithm proposed to address this task is known as FAMTILE - Fuzzy

ARTMAP Template-Based Interpretation Learning Engine. The FAMTILE en-

gine includes two main components - a Fuzzy ARTMAP neural network and a

Template-Based Interpretation engine. Developed = by Carpenter et al [CR92],

Fuzzy ARTMAP is a type of neural network that learns by creating pattern

clusters that group similar input and output patterns and creating a mapping

between them. For FAMTILE, the input and output patterns will represent - re-

spectively - the observation seen by the expert and the output context identified

as his response to that cue.

Template-Based Interpretation is a technique developed by Drewes and Gon-

zalez [GG00]. TBI allows for context templates to be created that describe condi-

tions and expert behavior conducive to his existence within that context. Using

this technique, the low-level contexts active at each point during the expert’s

high-level behavior are inferred for each observation. Prior to observation-time,

a KA develops templates for each low-level context possible for some high-level

behavior. To do this, the defined context templates for each are referenced and

marked when a certain attribute expected for that context is observed. When

each attribute for each template has been reviewed, the context corresponding to

the template with the highest ’score’ observed is considered to be the most likely

candidate for the expert’s intent.

251

Using TBI, FAMTILE constructs a set of input/output patterns for presenta-

tion to Fuzzy ARTMAP. Each input pattern represents the expert’s observation

for a specific decision point, while each output pattern represents the inferred

output context for that point. During training, the FAM within FAMTILE

creates clusters matching similar input patterns that map to the same output

context. These clusters can be converted into context transition rules using the

rule-extraction technique introduced in [CT95].

Four training vignettes were constructed to generate training data for the

learning systems. The first two (A and B involve a maze vignette, where experts

are asked to navigate towards a goal position, given a small viewable window

of his surroundings along with a distance vector in the direction of the goal.

The purpose of these two vignettes was to confirm the ability of FAM to learn

different expert’s actions given a simple tactical scenario. As these vignettes were

less complex than those posed in vignettes C and D, they also served to provide a

ceiling for the kind of predictive accuracy that could be expected from FAMTILE

in the best case.

The second pair of vignettes involved the game of Limit Texas Hold’em Poker.

Here, a human expert is asked to reason about his/her own cards, position at the

table, and the actions of other players. In response to these stimuli, the expert

is asked to make an appropriate action - either to check, bet, call, raise, or fold -

just as he would during a regular game of Limit Hold’em.

Seven testing scenarios were used to evaluate the performance of both FAM

and FAMTILE in predicting expert decisions for each of the four vignettes.

252

7.2 Conclusions

Based on the results tabulated in chapter 6, it is concluded that FAMTILE is an

adequate technique for learning high-level behaviors and, offers several promising

characteristics that can be exploited in future research. Because it is able to

learn low-level expert contexts without adversely affecting the clustering ability

of Fuzzy ARTMAP, we feel that the FAMTILE system provides a significant tool

for learning in systems where it is desirable to gain perspective of why the expert

is doing what he is doing.

The results of the two maze scenarios provide a good indication as to Fuzzy

ARTMAP’s ability to predict expert responses to an observation. In scenario #1,

the network is able to predict the expert’s movement for an average of 86% on the

validation set, achieving nearly a 95% average for one of the three experts. This

scenario included input training patterns with 27 fields and 4 possible output

patterns. The second maze scenario expanded the expert’s viewing range, more

than tripling the number of input-pattern fields to 88 (92 if the expert’s previous

action was recorded and considered). Nevertheless, Fuzzy ARTMAP is able to

predict 85% of the validation set for the three experts, increasing to nearly 87%

when the expert’s previous action is considered.

While these are impressive numbers for predicting three different expert’s ac-

tions, they only speak to the successes of Fuzzy ARTMAP and not to FAMTILE.

These scenarios were executed and reported, for the most part, to justify the use

of Fuzzy ARTMAP for doing the low-level learning task. Had these evaluations

been a failure a different learning system would have been selected, one that

performed better at predicting actions within these training scenarios.

253

Another reason for the documentation of the two maze vignettes was to gen-

erate a contrast with the more difficult task of predicting expert behavior in a

poker environment. As shown by the results for scenario #3, Fuzzy ARTMAP

has a much more difficult time predicting actions in this settings. With only

12 input pattern fields and 3 possible output patterns (compared with 88 and 4

for scenario #2), FAM is only able to achieve just over 73% prediction accuracy

across all three experts, reaching a maximum of 75% for the 3rd expert.

This variability in difficulty amongst the maze and poker vignettes seemed

to create a good set of conditions for evaluating both FAM and FAMTILE. The

first expert-prediction task was found to be relatively easy, and it reflects some

variability amongst each of the three experts observed. The second two scenar-

ios introduce a Poker scenario. These vignettes introduce a learning challenge

that, while containing a comparable number of input-pattern fields and output

possibilities, proved to be a more difficult task for both systems.

As described in chapters 4 and 5, FAMTILE requires the use of a completely

separate TBI module that encodes a priori knowledge about the scenario within

its context templates - while Fuzzy ARTMAP itself requires no such input - and

fails to produce a worthwhile increase in predictive performance. A separate

set of tests were run to evaluate FAMTILE’s ability to correctly predict the

inferred expert context for each decision point. While these tests resulted in

lower predictive accuracies - certainly expected because the neural network must

choose between 12 possible output patterns instead of only 3 when predicting

actions - the results were promising. Using 900 training patterns, FAMTILE is

able to correctly predict an average of 64.77 contexts out of a possible 100 across

the three experts. As reported in chapter 6, FAMTILE’s predictive accuracy for

contexts is only around 11% worse than its accuracy for actions. This accuracy is

254

achieved, furthermore, without affecting the accuracy of the network in predicting

the expert’s overall action.

Because of its ability to in-obtrusively predict contexts, we feel that the

FAMTILE system is useful for learning tasks, specifically ones that:

• the behavior satisfies the characteristics of high-level tactical behavior, as

defined in chapter 1

• the user is interested in creating models of the expert’s behavior and is

more interested in his resultant intentions and motivations than the actions

observed at the lowest-level

• behaviors where the expert’s ultimate action is more closely tied to his

low-level behavior than to the raw observation presented at each decision

point

The final testing scenario allowed both systems to replace the expert within

the simulation and attempt to model his actions throughout a sequence of 1000

Texas Hold’em rounds. During each round, the chip-count of the expert was

recorded and compared against the expert’s chip-count at the round during the

observation phase. While the first series of tests evaluated FAMTILE’s ability

to predict the expert’s intent, this second phase of tests provided insight as to

whether the knowledge acquired by the system during observation was enough

to allow it to adequately execute a series of Hold’em rounds.

The results of this phase of tests were inconclusive, primarily due to the nature

of the test. Since the game of Poker involves swings of good cards and bad cards,

it was difficult to gain any perspective on the comparative abilities of FAMTILE

and the expert it attempted to model using this chip-count comparison. The same

255

can be said of any Poker player, for that matter. Even the top-tier professional

players, for instance, have sessions where they lose money.

It was also noticed that players started catching on to the betting patterns

and styles of the computer-generated opponents during the vignette. Each test

subject remarked that he/she was able to identify patterns where it was known

how the opponent would react. This tended to affect the action of the subject.

Instead of making a play based on the parameters of the game, the player would

instead make a move compatible with how he/she expected the opponent to react.

Because of this, it is likely that the learning system could achieve better results

using training patterns gathered from play against human opponents.

7.2.1 Lessons Learned

The most important lesson learned from this research is that learning and repli-

cating human behavior is a difficult task to do well, specifically when constrained

by architectures that do not represent the unknown mechanics of actual human

decision-making. For instance, the central assumption made for this research was

that high-level behavior can be represented by a sequence of lower-level behaviors

that can be modeled by CxBR contexts. However, the trick then becomes defin-

ing and partitioning each context of a behavior in such a manner that they are

truly atomic and identifiable independent of the specific expert being observed.

For example, consider the RaiseWithStrongButVulnerableHand context used

in vignette D. This context was modeled to represent cases where the expert

believes he has the best hand at the moment but also that his opponents can

easily draw cards to beat him.

256

This context raises an interesting question - what if the expert doesn’t recog-

nize this? Obviously, then, the templates must be defined such that this context

does not get inferred. But what if there are no contexts that accurately represent

the low-level motivation and behavior of the expert?

High-level behaviors whose specifics are heavily dependent on human prefer-

ence and expertise are equally difficult to represent. While a significant amount

of a priori knowledge was encoded into the context templates used for Scenarios

#3 and #4, that knowledge certainly does not represent the full range of moti-

vations and contexts that constitute the entire task of playing Hold’em Poker.

This is because these contexts are so dependent on the tendencies of the expert.

However, that is not to say that these assumptions serve only to doom the

chances of success for the algorithm. On the contrary, these assumptions provide

a means for motivating the directions that HBR research can progress. If we

choose to learn a task where the modeling architecture, expert dependencies, and

context topologies are all known, it is likely that the task modeled is too simple

and not worth modeling. Texas Hold’em Poker, on the other hand, is an extremely

complex game; and the number of techniques, strategies, and styles documented

and used by advanced players suggest that the game is as much of an art as it

is a science. As a supplemental testing procedure for FAMTILE, therefore, a

separate vignette could be developed that has the following characteristics:

• Easily defined and identifiable contexts

• More direct correlation between expert skill and success within the scenario

• Individual performance parameters that can be compared between the FAMTILE

algorithm and the expert modeled

257

With this vignette, we can attempt to eliminate the cases where expert in-

tention is unclear. It is hypothesized that such a scenario would increase the

predictive capacity of FAM within the FAMTILE architecture.

7.3 FAMTILE and Explainable AI

As reported earlier in this chapter, a significant result of this research was that

FAMTILE was able to learn expert contexts to some extent without affecting the

predictive accuracy of FAM to predict the expert’s actions in that scenario. We

feel that these results are most applicable in the arena of Explainable AI, which

involves the concept intelligent agents not only performing but also explaining

their actions in real-time during the execution of a behavior.

FAMTILE is applicable in this space because it provides the ability to learn

the intelligence for an agent that is aware of its current contextual state. In

practice, the agent can be used to execute that learned knowledge while explaining

its context sequence (and motivations for selecting each particular context) to a

third party in real-time.

For instance, consider the situation where FAMTILE is tasked to learn the

behavior of a world-champion poker player. That knowledge is then used to gen-

erate a CxBR model that imitates the behavior of that player. Within simulation,

the CxBR model could then be used as a teaching (or pedagogical) agent to aid

novice players and to help them better understand the game. The player could

’sit beside’ the agent and view his cards, while the agent detailed the current con-

text he was in. The agent could also provide with a description of that context,

258

and detail the conditions that triggered the selection of the current context it is

in.

By contrast, the agent could be used to identify and correct differences in the

play of a novice versus that of an expert. By training one FAMTILE system by

observing a novice while training a second system using an expert, the systems

could then be compared offline (and without the experts) to compare situations

where the systems differ in their context selection. Those differences can then

be used by the novice to identify the type of situations where he/she needs to

improve his game.

7.4 Complexity and Scalability Analysis

To obtain a measure of the complexity of FAMTILE, we consider the complexities

of both the TBI and FAM components that make up its primary functionality,

along with the procedure required to convert an observation into patterns for

both. Regarding TBI, Drewes [?] notes that, with N is the number of context

templates and an average number of A attributes, the number of comparisons

needed to infer a context for a single training pattern would be on the order

of N ∗ A, or O{N*A}. Assuming a finite number of attributes per template,

therefore, this complexity reduces to O{N}.

For Fuzzy ARTMAP, multiple phases of the network must be considered.

First, consider the complexity required to train the network with a single pattern.

This complexity will be based on the number of bottom-up computations required

for a single training pattern, which depends on (a) the number of fields present

within the pattern and (b) the number of Computing the bottom-up weights

259

[GC01] to a single cluster within FAM in the input pattern implies a complexity

of O{Np}, where Np refers to the number of fields in the input training pattern.

Each cluster, therefore, will map to a certain output pattern templates in ARTB,

and there is a many-to-one mapping between the number of clusters and the

number of output pattern templates. In FAMTILE, each output pattern template

corresponds to a unique context, and so we can refer to this number as Nc, the

number of contexts present within the scenario used for training. The number

of bottom-up weight comparisons, therefore, will be (Nc + 1) ∗ L, where L is the

average number of clusters that each map to a particular context (Nc + 1 is used

to account for computing the bottom-up inputs to the uncommitted node). The

complexity of FAM in training mode, therefore, is O{Np ∗ ((Nc + 1) ∗L)}, which

reduces to O{N2}. A similar calculation can be performed for FAM in testing

mode.

The conversion of an observation into pattern usable by both TBI and FAMTILE

are both linear operations performed on each field within the operation. The com-

plexity of these conversions, therefore, reduces to O{N} + O{N} → 2O{N} →
O{N}

For each observation pattern, one conversion must be performed along with

one context inference and one Fuzzy ARTMAP training operation. The com-

plexity of the FAMTILE algorithm, therefore, reduces to the complexity of the

highest-ordered operation (FAM). In other words, O{N} + O{N2} + O{N} →
O{N2}.

This level of complexity, however, assumes scalable values for both the number

of contexts required and the number of fields required to represent each observa-

tion. If either of these are held constant, this complexity then reduces to a more

desirable O{N}.

260

7.5 Proposed Topics for Future Research

In this section, a list of future research topics is presented that would provide

more perspective on the assumptions made for the construction, validation, and

evaluation of FAMTILE.

• Introduction of the time variable into the observation sequence and context-

transition identification process. In each training scenario for this research,

all decision cues were turn-based, providing a clear identification of what

observation induced what context-transition.

• Incorporation of the work by Gerber ([Ger01]) to create more robust context

templates for use by FAMTILE

• Application of FAMTILE as a training tool

• Development of a new testing scenario where low-level behaviors are more

easily defined and identified

• New training sessions of vignette D where the simulation intentionally

places experts in situations to make more decisions after the flop. This

could involve the development of a new vignette similar to C, where behav-

ior is based on individual decision points. However, those decision points

could be translated to points in a variety of situations occurring after the

pre-flop round of betting.

• Incorporation of scenarios without forced transitions. For the poker scenar-

ios used for context identification, transitions from one context to another

were implied by the decision cues. Scenarios can certainly exist where low-

level contexts ’remain active’ at each decision point. The FAMTILE system

should be expanded to represent logic for no context change.

261

• Expert familiarity with the context structure played a significant role in

determining the predictive accuracy of FAMTILE. A modification of the

procedure used in this algorithm could be performed where the context

template definitions emerged from some sort of knowledge acquisition ses-

sion with the expert. A comparison could then be done that evaluates

FAMTILE with the more ’informed’ templates versus the system using

pre-defined templates developed independent of the expert.

• Additional training scenarios can be developed for FAMTILE where the

defined contexts are centered more around the atomic action of the expert

and not as much of the situation that surrounds it. This situation may

allow for less of a reliability of the context templates to how closely they

represent the expert’s reasoning

• Fuzzy ARTMAP research can be done to explore ways to modify the algo-

rithm to better suit the objectives of FAMTILE. This may include empha-

sis on pattern fields observed to have more important roles on determining

context

• Use of the FAMTILE algorithm to learn high-level behavior in scenarios

involving more complex low-level behavior. Here, extracted rules from the

system can be used within a Norlander CxBR model architecture [Nor99]

and evaluated in that mode

• The implementation of the full Loki model as computer-generated forces

for the poker simulation

• The addition of psychological observations and player tendencies as obser-

vations within vignettes C and D

262

APPENDIX A

GLOSSARY OF TERMS

263

a priori Beforehand; prior to

Action In Poker, an action is a move made by a player - either a check, a bet,

a raise, a call, or a fold.

Agent Any program or system that operates within a real or simulated environ-

ment

Agent Interface In CxBR, the module that connects the logic of the model

with the methods of the agent to execute actions within some environment

Autonomous Agent Any program or system operating autonomously within

a real or simulated environment

Big Blind A forced bet made by the player sitting two seats left of the dealer.

Bluff When a player represents a good hand by betting and raising when, in

fact, he has a weak or mediocre hand

Board The name for the community cards that have been dealt on in a game of

Texas Hold’em

Bot A computer-generated player/opponent

c-schema A frame-like abstraction that contains several pieces that define the

parameters for entering the context behavioral knowledge to employ when

a certain context is active

Call An action in poker where the amount of a given bet is matched by another

player when it is his turn

Check Equivalent to a bet of 0 chips

Chip-count In poker, the amount of chips held by a player

264

Cluster In a Fuzzy ARTMAP neural network, a cluster is formed within both

the ARTa and ARTb modules grouping similar input and output patterns

with identical mappings

Clustering Ratio The average number of patterns included in an ART cluster

during training

Community Cards In Poker, cards dealt face-up that are common to the hands

of each player

Connectionist Learning A learning method that uses classified historical ex-

amples to establish the values of weights in an artificial neural network

Context A set of environmental and physical conditions that may suggest a

specific behavior or action

Context-Based Reasoning A behavior modeling paradigm motivated by the

idea that experts use only a fraction of their knowledge, at any given time,

based on the context of his current situation

Context Moderator An abstract operator that has the ability to either affect

decision-making after an active context has been selected (a functional mod-

erator) or to affect the context-transition logic itself (a context-transition

moderator)

Context Topology The term for the set of contexts, along with the set of pos-

sible transitions, that exists for a certain CxBR mission

Context-Transition Logic Any logic that defines parameters for switching the

active context

265

Dealer Button In poker, the dealer button (or button) is a small white disc

that rotates around the table and identifies the position of the dealer, who

acts last in all rounds of Texas Hold’em

Drawn out on In poker, a winning hand is drawn out on if a card comes that

makes an opponent’s hand superior

Default Context In CxBR, the context that the agent will operate in (or active

context at the beginning of the scenario

Elaboration Rule In Soar, rules that update the Soar agent’s situational aware-

ness by editing working memory with new information

Explanation-Based Learning A learning method where input/output exem-

plars are provided along with a sort of explanation that can be used to

better learn the mapping

Flop In Texas Hold’em, the first three community cards dealt face-up at the

same time after the first betting round

Flush Draw When a player holds four cards of one suit, meaning that one more

card of that suit would make a flush

Fold When a player decides not to match the bet amount, forfeiting his hand

for the round

Forced Bet Also called a blind, a forced bet is a bet made by the two players

to the left of the dealer that ensure that there is money in the pot

Fuzzy Bit For Fuzzy ARTMAP, a value between 0 and 1.

266

Granularity The level of strictness applied by a Fuzzy ARTMAP cluster for

accepting new training patterns. Highly strict FAM clusters are said to be

of fine granularity, loosely strict clusters have a coarse granularity

High-Level Behavior For this research, a behavior that involves executing a

sequence of identifiable, lower-level behaviors or actions

Hold’em See Texas Hold’em

Hole Cards In Texas Hold’em, the two cards dealt face-down to each player at

the table

Inductive Learning A learning method that uses classified historical examples

to develop an induction tree from which rules can be derived

Inside Straight Draw In Poker, when a player holds four cards to a straight

but only one rank will make him a straight (i.e. 6-7-8-10)

Learning by Instruction A learning technique where the knowledge is pro-

vided directly from an expert

Learning from Observation The use of data acquired, through the act of ob-

servation, to assert knowledge from which an expert’s behavior can be in-

timated

Limit Texas Hold’em A type of Texas Hold’em where all bet sizes and incre-

ments are fixed

Loose Call A call made by a player who holds a mediocre or poor hand and

draw.

267

Low-Level Behavior For this research, a behavior that is identifiable and used

in conjunction with other low-level behaviors to constitute a learnable high-

level behavior

Mission In CxBR, the mission consists of a goal, a context topology, and a set of

constraints. Missions are assigned to CxBR models prior to execution-time

Model a construct that defines the behavior of a some autonomous agent exe-

cuting some behavior

Multiway Hand A hand that, if made, will likely make a winning hand regard-

less of the number of players in the hand.

Neighbor Merging In a HMM, states that are connected by a transition and

share a common label are merged into one state with a self-transition loop

On a Draw When a player holds four cards to a good hand with more cards to

come

On the Come See On a Draw

Outside Straight Draw When a player holds four consecutive cards such that

cards of two ranks will make a straight (i.e. 4-5-6-7, a 3 or an 8 will make

the player a straight)

Operator Structures within Soar models that are responsible for allowing the

agent to react and make actions either directly or indirectly in response to

his environment

Operator Application Rule In a Soar model, a rule that executes the func-

tionality of a selected operator

268

Operator Proposal Rule A Soar rule that allows the agent to select from (or

set preference values to) a list of possible operators

Pot Represents all the chips bet during a particular hand that are awarded to

the winners of that hand

Predictive accuracy For Fuzzy ARTMAP, the number of correct predictions

made out of the total number of predictions

Proceduralized Context From Brézillon [BS97], a part of context knowledge

that is invoked, structured and situated according to a certain scenario-

specific focus

Q-Learning A reinforcement learning method intended for domains that can be

modeled using a Markov model

Raise In Poker, a raise is when a player increases the amount of the current bet

River In Texas Hold’em, the river is the 5th and

Reading In Poker, when a player can assess the strength of an opponent’s hand

by observing and identifying patterns in their betting, their mannerisms,

or personality while at the table

Rounds In Poker, betting is done by players in rounds, usually after a card or

set of cards are dealt. In a round of betting, each player makes an action

- either a check, a bet, a fold, a raise, or a call. A round ends when every

player has either folded or called the final bet or raise made final community

card dealt

Semi-Bluff A semi-bluff is a type of bluff where the player has a weak hand but

is on the come to a stronger hand

269

Sentinel Rule In CxBR models, a rule that defines the conditions for a certain

context transition

Showdown In poker, when all players show their hand, with the player with the

best hand winning the pot

Slowplay In Poker, when a player feigns weakness in the opening rounds of

betting with a superior hand, in an attempt to trap their opponents in

later rounds

Small Blind In Poker, a forced bet made by the player immediately to the left

of the dealer button

Soar A Rule-based cognitive architecture for developing intelligent models and

systems

Stone Cold nuts In poker, a hand that cannot be beaten no matter what cards

are drawn by your opponent

Sub-Context Context-like structures that encompass a small functional section

of a context not directly critical to the mission objectives

Substate In Soar, substates decompose the action/behavior space into goal-

defined structures from which the agent can execute more specific operators

relevant to that goal

Suit In Poker, each card in the deack is assigned one of four suits - hearts, spades,

diamonds, and clubs

Supervised Learning a technique by which the learning system is controlled,

in terms of what it learns, by an outside party or system

270

Template A list of attributes, each of varying relevance, that denote traits of a

certain context for a Template-Based Interpretation engine evaluated by a

TBI engine to determine

Texas Hold’em A variety of 5-card Poker. In Texas Hold’em, players use two

hole cards along with 5 community cards to make their best hand

Transition In CxBR, a transition is a switch from one active context to another

Turn In Texas Hold’em, the fourth community card

Unsupervised Learning A form of learning where the system must decipher

its own input-output mapping, which is not presented to it by a third party

during learning

V-Merging In a HMM, V-Merging merges states that share a transition either

to or from the same state, and also share the same label

271

APPENDIX B

GLOSSARY OF ACRONYMS

272

ACT-R Adaptive Control of Thought - Rational

ADF Automatically Defined Function

AI Artificial Intelligence

ART Adaptive Resonance Theory

CGO Computer-Generated Object

CHMM Coupled Hidden Markov Model

CI Confidence Interval

CMB Context Mediated Behavior

CVQ Continuous Valued Q-learning

CxBR Context-Based Reasoning

EBL Explanation-based Learning

FAM Fuzzy ARTMAP

FAMTILE Fuzzy ARTMAP / Template-Based Interpretation Learning Engine

GA Genetic Algorithm

GP Genetic Programming

HMM Hidden Markov Model

ILP Inductive Logic Programming

KA Knowledge Acquisition

KE Knowledge Engineer

273

LFO Learning from Observation

MDP Markov Decision Process

MDM Markov Dynamic Model

MEBN Multi-Entity Bayesian Network

MODSAF Modular Semi-Automated Forces

NN Neural Networks

POMDP Partially Observable Markov Decision Process

RPDM Recognition-Primed Decision Making

SME Subject-Matter Expert

TBI Template-Based Interpretation

WMD Weapons of Mass Destruction

WSE Weighted Sum of Entropies

274

APPENDIX C

POKER AND TEXAS HOLD’EM

275

Poker is a class of card-games where players use the rank and suit of their

cards, and attempt to make the strongest hand. Poker cards hold ranks that

determine their value. The Ace holds the highest rank, followed by the King, the

Queen, the Jack, and then ranks 10 down to 2. Each card in the 52-card deck

also holds one of 4 suits - clubs, diamonds, hearts, or spades.

In a poker game, players are dealt cards and attempt to make a hand that

is stronger than that of each of the other players. Poker hands are named, and

ranked based on the following criteria. Each hand is listed below in descending

order of strength.

Royal Flush: A Royal Flush is the 10, Jack, Queen, King, and Ace where each

card is of the same suit. If no wild-card exists in the game, which is the

case in Texas Hold’em, a Royal Flush is the best possible hand.

Figure C.1: A Royal Flush

Straight Flush: A Straight Flush is cards of consecutive rank where each card

is of the same suit. The highest card present in the hand distinguishes the

relative strength of the straight flush - i.e. a straight flush to the 9 outranks

one that runs to the 6.

276

Figure C.2: A Straight Flush

Four of a Kind: Four of a Kind is a hand where four cards have the same rank.

As with the other hands, the rank of these four cards determine the relative

strength.

Figure C.3: Four of a Kind

Full House: A Full House, or ’Full Boat’ consists of five cards where three cards

are of one rank and two cards are of a second rank. The highest rank of

the ’three-of-a-kind’ determines the relative strength of the Full House. For

example, a King-King-King-Seven-Seven outranks a Jack-Jack-Jack-Seven-

Seven.

277

Figure C.4: A Full House

Flush: A Flush consists of any five cards of the same suit. The highest card in

this hand determines the relative strength of the flush against an opposing

flush.

Figure C.5: A Flush

Straight: A Straight consists of five cards with consecutive rank. The highest-

ranking card determines the relative strength of the straight.

Figure C.6: A Straight

278

Three of a Kind: Three of a Kind, or ’Trips’, is any five-card hand where three

cards out of the hand are of the same rank. The relative strength of such

a hand is determined by the rank of the trips.

Figure C.7: Three of a Kind

Two Pair: Two Pair is a five-card hand with two distinct ’pairs’, or two cards

of the same rank. The hand with the highest pair determines the relative

strength of the two pair. This hand is also referred to as ’X’s up’ where X

is the rank of the highest pair in the hand.

Figure C.8: Two Pair

279

Pair: A Pair is a five-card hand with two cards of the same rank.

Figure C.9: A Pair

High Card: High Card is defined by the highest-ranking card in the two-card

hand. This is also referred to as ’X-High’, where X is the highest-ranking

card.

Figure C.10: High Card - Ace High

280

The feature that makes Poker such a popular game is the concept of betting.

Depending on the game, each hand of Poker consists of rounds of betting. In a

betting round, players can make a bet by placing a certain amount of chips into

a pot. All the other players must either match this bet (referred to as calling)

or must fold their hand. In addition, players have the option to raise the bet,

forcing all other players to increase the size of their call to stay in the hand. At

the end of the hand, all players who have not folded must show their hand to the

table. The player with the best hand is declared the winner and takes all of the

chips in the pot for that hand.

C.1 Texas Hold’em Poker

Texas Hold’em is a variation of 5-card poker that has become enormously popular

over the past few years. Often referred to as ’The Cadillac of Poker’, this Poker

variation is a very easy game to learn. However, as with most well-designed

games - it is nearly an impossible game to master. The main event at the ’World

Series of Poker’, in fact, features a variation of Texas Hold’em.

To begin a Texas Hold’em hand, players are first dealt two cards face down,

and a round of betting ensues. These cards are dealt in a clockwise direction

starting to the left of the player holding the dealer button or button - a chip that

rotates clockwise around the table after each hand. The player immediately to

the left of the dealer posts an automatic or forced bet known as the small blind.

The player to the left of the small-blind bet posts another forced bet known

as the big blind, whose value is twice that of the small blind. Players then act

clockwise around the table (starting with the player to the left of the big blind),

281

and have the option to either call the big-blind bet, make a raise, or fold their

hand. In Limit Hold’em, which is the variation of Texas Hold’em used for these

poker training scenarios, all bets and raises must be of a fixed amount. When

the action (player’s turn to act on their hand) comes back around, the player on

the small-blind is only required to post half the amount of the big blind to call

(unless the pot has been raised), and has the option to raise. The player on the

big-blind does not have to post any amount in order to call (again assuming no

raise) and also has the option to raise.

After this round of betting, three community cards are dealt face up in the

center of the board. These cards are referred to as community cards because

each player uses the 5-card combination of the community cards and his two

down-cards that make his best possible hand. A round of betting follows the

presentation of these three cards, known as the flop, and the action begins with

the first player to the left of the dealer button who did not fold in the previous

betting round. The dealer button is a white disc that rotates clockwise around

the table after each hand, indicating the order in which the players must act.

When this betting round finishes, a fourth card (the turn card) is placed on the

board and a third round of betting then takes place. In this round of betting, the

amount of the fixed-bet amount is doubled (now equal to twice the amount of the

big blind). All bets and raises are now equal to this amount for the remainder

of the hand. Finally a fifth card (the river card) is presented to the group of

community cards. After a round of betting, all players who have not folded

proceed to show their two down-cards, indicating their best possible hand. This

is called the showdown. The player who can make the best possible hand with

his two down-cards is declared the winner and takes the pot (all the chips bet by

the players during the betting rounds).

282

APPENDIX D

POKER EXPERT QUESTIONNAIRE AND

RESPONSES

283

1. How long have you been playing Poker?

2. How long have you been playing Poker seriously/professionally?

3. How often do you play poker?

4. Do you consider yourself to be a tight or loose player? Explain.

5. Do you consider yourself to be a passive or aggressive player? Explain.

6. Do you read literature on the game of Poker? If so, how does it affect the

strategies you employ during a game?

Please answer the following questions as they pertain to Limit Texas Hold’em

against an intermediate-skilled opponents:

1. List all conditions where you would consider a check to be a legitimate

action. Give card-by-card examples for each.

2. List all conditions where you would consider a bet to be a legitimate action.

Give card-by-card examples for each.

3. List all conditions where you would consider a call to be a legitimate action.

Give card-by-card examples for each.

4. List all conditions where you would consider a raise to be a legitimate

action. Give card-by-card examples for each.

5. List all conditions where you would consider a fold to be a legitimate action.

Give card-by-card examples for each.

6. In the cases where multiple actions are appropriate, what other factors do

you consider?

284

D.1 Questionnaire Response #1

1. 3 years

2. 0 years

3. weekly (sometimes)

4. varies

5. aggressive

6. Yes. It affects them greatly

7. (none)

8. (none)

9. (none)

10. (none)

11. (none)

12. I don’t have a set of tactics that I apply to every given situation. I play

the people in the hand at that time. There are certainly some heuristics to

follow, based on good game mechanics.

285

D.2 Questionnaire Response #2

note: this player was Expert #2 in Scenarios #3, #4, #5, #6 and #7

1. 9 months

2. N/A

3. 1/week

4. tight

5. passive

6. no

7. when I am first to act with an okay hand

8. when my cards are good, or when slowplaying a great to unbeatable hand

9. when I think I have a hand that could beat the other players

10. AA, when I am first to act with a good to unbeatable hand or last to act

with weak players

11. 72, when I don’t think I could win

12. number of people playing, who’s playing (aggressive versus passive players),

money in pot, money in my hand

286

D.3 Questionnaire Response #3

note: this player was Expert #3 in Scenarios #5, #6 and #7

1. 4 years

2. 2 years

3. bi-weekly

4. tight player, don’t tend to stay in on bad hands, don’t play on-tilt, etc.

5. aggressive, in that strong hands are raised aggressively

6. yes (Sklansky), but that predominantly shaped my game early on. Now

past readings primarily help me recognize and classify the way other people

play

7. check with the plan to check-raise [strong hands]; with a weak hand that I

would fold but when checked to me.

8. on just about any hand worth staying in on; very frequently in late positions.

9. semi-bluff scenario, drawing hands, occasional deceptive play for table im-

age

10. strong hands; medium and strong hands in late positions if in late position

and called to me.

11. on all weak hands, except occasionally; when I deem that I’ve been beaten

by somebody else, based on their betting actions; when raised to me by an

infrequent bluffer when I have a medium hand, or I have a hand not likely

to be the strongest

287

12. nature of the table–loose vs tight; skill of the players (e.g., will they call no

matter what I do? Are they skilled enough to interpret my own action as

intended and to take the appropriate action?) Do I have a drawing hand?

[Is what I’m drawing to the same as what everyone else who stayed in might

be drawing to?] Would it be beneficial to advertise a bit, perhaps staying

in on a hand, or showing that I bluff when the end cost would be minimal?

288

D.4 Questionnaire Response #4

1. In general for fun since I was 7 or 8 years old, but more this past year for

money.

2. Maybe the last few months I have played for money.

3. A few times a week

4. Both Depending on how much money I have compared to other players at

the table.

5. Again depends on how I am doing compared to others at the table.

6. No, I learn sometimes from word of mouth, or watching different strategies

on TV.

7. If you have put in for the big blind and everyone else has just called, then

obviously I would check. If you have nothing going head to head another

opponent hoping you have high card. If you do not have a strong hand and

everyone else has checked.

8. Any time you feel you have the strongest hand. If everyone else has checked

and you are the last one with action. If you are given a strong pocket hand,

or if you hit the hand anytime for example a flush, straight or full house.

9. If you know you have the best hand and you are suckering the other person

to keep betting. Or if you think the other player may be bluffing.

10. Any time you know you have the best hand. Pre flop if you are given a

good pocket. Big card turned over if you want to try and bluff to show that

you might have a good hand. For example hitting a flush, or straight.

289

11. To high of a bet by another player. Have nothing on the flop. Too many

people are already in the hand with playable cards.

12. (none)

290

D.5 Questionnaire Response #5

1. 18 months

2. never

3. live 1.2 days a week, online 4 days a week

4. (tight or loose) heavly depends on the game and situation, players etc..

5. aggressive - same as above

6. yes - ?

7. trap - after flop, very strong hand, draw - my hand needs help and I can

get it for free blinds - 7/2 in the BB

8. bluff - when the flop comes and I see weakness, good hand - at any point

see what I’m up against - at any point

9. same as number 1

10. bluff - at any time, nuts - at any time when I think I’m winning, find out

information when I’m setting up a table image - advertising

11. when I feel I have the worst hand and low pot odds

12. Stack size, position, opponents, table image

291

D.6 Questionnaire Response #6

note: this player was Expert #1 in Scenarios #3, #4, #5, #6 and #7

1. I have been playing for four years.

2. I have been playing seriously for two years.

3. I play poker four to six times a week.

4. (tight or loose) Succinctly, I am a very tight tournament player but in a

ring game I will adjust my tightness to counter that of my opponents. The

general image I project is that of a player that loosens up as a session

progresses, but in reality I utilize the mood of the table to my advantage.

5. I am a passive player with less than the best hand but aggressive with the

best or second best depending on the number and ability of my opponents.

6. I have read many of the David Sklansky books on Hold’em, and tourna-

ment play. Upon review of the books, I find myself helped against skilled

opponents, but hurt against weaker opponents due my lack of adaptation

to their bad play. Experience and further reading should eliminate this

weakness.

7. A check is a legitimate action when:

a. You are unsure about the strength of your hand and sure your opponent

will call your bet (instead of folding)... An example of this is having A8o

with a flop of A23. If there were no preflop raises, you could face a straight

or someone with A9-AQ may have seen it fit to merely call preflop.

292

b. You are fairly certain someone acting after you will bet. (Waiting for in-

formation about other hands).. Given a small pocket pair in first position,

it is advisable to check in order to see how many others enter the pot and

thus determine the appropriate action.

c. Your hand is so strong that giving opponents free cards is unlikely to

hurt you, but betting will drive others out the pot...

Given a wired pair of aces and a flop of AT2(o), the set of aces should check

in the early seats in order to let other players enter the pot. It is almost

certain that the other ace and several other hands will call other bets, but

if you started the betting preflop, a betting the flop from early position

is almost certain to drive other players out of the hand and consequently

lower the profit to be made. If the turn happens to complete a straight for

someone holding KQ, QJ, QT, or other cards, a decision can be made to

lay the hand down or continue since your outs to a full house have increased.

d. You have top pair with a weak kicker and want to see how other people

react to the flop... If a player has A2(o) and flops a pair of aces, there is

little incentive to bet in any seat but the blinds due to the fact that anyone

that paired their ace can only tie with the player with A2 in order for that

player to have a chance at winning. If the second player is not tied with

the first, they are winning and thus, in any situation where a player has

weak kicker, and the player is in early position, a check must be made in

order to gauge their opponents.

293

8. Flop: If a player is in one of the early positions and there have been no

bets, it may be correct to bet in order to knock out those who missed the

flop entirely. An example of this would be if the first player to act is holding

JdJs with a flop of 2s7c9d. If in late position and there have been no bets,

a player may bet to see if there were any players slowplaying their hands.

Turn: A bet on the turn is appropriate from any position if the player has

been slowplaying a strong hand, needs more leverage to knock out players

with weak hands that didn’t improve or to put in a semi bluff bet. An

example of the first situation is having AA preflop when the flop is A29(o).

At that point, the player with AA has the best hand possible and should

check. Once the turn presents itself, a player in early position with a set of

aces should check, but a bet is also legitimate. In late position they should

bet their hand if it has been checked to them.

9. In any situation where a player has a draw to a greater hand and has the

pot odds to call, the call should be made. For example, if a player has

A9(d) and the flop is AsT94d, the player in early position should call all

bets in order to encourage others to enter the hand with weaker draws. If

the same number of people are in the pot on the turn, unless the board is

paired, a call is warranted. On the river, if not improved and the board is

not paired, the player should call if they believe there will only be one bet

to call.

10. A raise is used to knock out players or to build a pot. The closer you

are to the early positions, the more effective a raise can be at eliminating

opponents. In later positions, a raise forces other players that have already

called to put more money in the pot, thus giving players in earlier positions

294

the incentive to call. Traditionally, if a player has a low pocket pair (22-

JJ) they should raise in early position to reduce the competition. Players

in middle position should raise preflop with high pocket pairs (AA-QQ),

AK(s)-AJ(s), KQ(s)-KJ(s) and in loose games, AK-AT in order to eliminate

the later players. On the flop, if a player in early position has the highest

set possible or a draw to the best straight possible or the best flush possible,

the player should raise. If the player in late position with similar draws, a

raise can be done to slow down betting on later streets.

11. A fold is legitimate from any position when a player has little or no chance

to win. For example, a player with a hand 9s9d should fold if the flop is

Ac2cKc because a flush, two overpairs and two straight draws are present.

Even if the player gets a nine on the turn, the player is still hoping for

another nine or for the board to pair. Unless the player gets another nine,

the paired board gives the person with a set of kings or aces and thus a

better full houses than that of the player with a set of nines. In general,

if a player is drawing to a hand that is second or third best, the player

must, at the very least, consider folding. Examples of this are drawing to a

flush with a paired board or drawing to the smaller end of a straight when

larger straights are possible and probable. An example of this is a player

with 9T with a flop of JQA. A king will give the player a straight to the

king, but any player with a ten will have the best straight possible. If the

straight is made and the player is raised after betting their straight, a fold

is acceptable.

12. In cases where multiple factors are appropriate, first the player must recall

the categories or groups of hands another player would play in their respec-

tive positions. Once determined, the player must calculate how strong their

295

current hand or draw is in opposition to the various hands hypothesized. If

the current hand or draw is layed proper odds by the pot and the number of

possible winning hands of the opposition is less than the number of losing

hands, the player must continue to play. In short, pot size, hand history,

pattern of betting (table position with respect to hands and frequency of

bets with types of hands), table position (the player) and overall mood of

the other players must be considered in order to be successful.

296

APPENDIX E

TESTING DATA

297

E.1 Scenario #1 Results

298

Table E.1: Results for Scenario #1: Average Number Correct of 100 Testing

Patterns

ρ̄a ρ̄a(test) Subject 1 Subject 2 Subject 3

0.1 0 93.2 84.2 77.4

0.1 0.1 95.2 81.6 75.8

0.2 0 96.6 85.8 78.4

0.2 0.2 93.8 83.2 79

0.3 0 93.6 86.2 77.8

0.3 0.3 95.6 81.8 75.8

0.4 0 94.4 82.8 78.6

0.4 0.4 94.8 83.8 78.4

0.5 0 94.2 86.2 76.4

0.5 0.5 93.2 84.4 78.4

0.6 0 95.8 84 77.2

0.6 0.6 94.4 86.4 76.4

0.7 0 95.8 87.2 78.6

0.7 0.7 92.4 86.8 79.8

0.8 0 94.8 90 82.4

0.8 0.8 92.2 86.8 81.2

0.9 0 94.8 88.2 80.4

0.9 0.9 92 85.8 81.8

299

Table E.2: Summarized Results for Scenario #1: 1000 Runs for each subject,

Using ρ̄a and ρ̄atest Values that Yielded Best Accuracy (see Table 6.3)

Number of Runs ρ̄a ρ̄atest µ̄ σ̄ 99%CI p-value

Subject 1 1000 0.6 0 94.7 2.38 (94.5524,94.9416) 1.00

Subject 2 1000 0.8 0 87.3 3.27 (87.055,87.589) 1.00

Subject 3 1000 0.8 0 80.6 3.76 (80.336,80.950) 1.00

Figure E.1: Scenario 1 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 1

300

Figure E.2: Scenario 1 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 2

Figure E.3: Scenario 1 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 3

301

E.2 Scenario #2 Results

302

Table E.3: Results for Scenario #2: Average Number Correct of 90 testing pat-

terns

ρ̄a ρ̄a(test) Subject 1 Subject 2 Subject 3

0.1 0 90.8 85.2 82.2

0.1 0.1 85.6 84.4 82.2

0.2 0 91.0 81.6 81.0

0.2 0.2 88.0 81.8 84.6

0.3 0 89.2 82.0 82.0

0.3 0.3 90.8 82.0 82.0

0.4 0 90.6 80.4 84.8

0.4 0.4 91.2 82.4 86.4

0.5 0 93.6 84.8 83.4

0.5 0.5 89.2 84.6 86.6

0.6 0 91.0 85.2 84.4

0.6 0.6 91.4 79.4 84.6

0.7 0 93.2 82.4 86.6

0.7 0.7 91.6 81.8 88.4

0.8 0 93.6 85.8 85.6

0.8 0.8 91.0 84.6 85.2

0.9 0 93.4 82.2 87.8

0.9 0.9 91.4 81.8 80.2

303

Table E.4: Summarized Results for Scenario #2: 1000 Runs for each subject,

Using ρ̄a Values that Yielded Best Accuracy (see Table 6.7)

Number of Runs ρ̄a ρ̄atest µ̄ σ̄ 99%CI p-value

Subject 1 1000 0.8 0 92.5 2.63 (92.3074,92.7366) 1.00

Subject 2 1000 0.8 0 84.5 3.42 (84.181,84.739) 1.00

Subject 3 1000 0.7 0 85.6 3.31 (85.308,85.848) 1.00

Figure E.4: Scenario 2 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 1

304

Figure E.5: Scenario 2 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 2

Figure E.6: Scenario 2 Results: Frequency of Correct Predictions over 1000 Runs

for Subject 3

305

E.3 Scenario #3 Results

306

Table E.5: Scenario #3: Average Predictive Accuracies of Subject Actions for

100-run sets of FAM, 300 Training Points

ρ̄a Subject 1 Subject 2 Subject 3

0.05 66.98 59.91 66.67

0.10 66.08 60.68 65.78

0.15 66.62 60.64 67.39

0.20 66.16 60.06 66.74

0.25 65.97 60.25 66.47

0.30 66.48 60.90 66.25

0.35 67.22 60.64 66.25

0.40 67.97 59.40 65.69

0.45 66.89 60.48 66.16

0.50 66.58 60.76 66.74

0.55 65.95 59.47 66.22

0.60 67.50 60.14 65.86

0.65 67.22 60.20 66.91

0.70 67.67 60.25 68.24

0.75 68.58 61.38 69.12

0.80 70.78 61.77 69.75

0.85 71.46 64.13 71.36

0.90 74.00 66.28 72.40

0.95 73.47 66.64 72.11

307

Table E.6: Scenario #3: Average Predictive Accuracies of Subject Actions for

100-run sets of FAM, 600 Training Points

ρ̄a Subject 1 Subject 2 Subject 3

0.05 67.93 61.34 67.51

0.10 69.03 61.08 67.65

0.15 67.79 60.03 67.47

0.20 67.80 61.90 67.95

0.25 68.16 62.06 66.92

0.30 67.69 61.37 67.69

0.35 68.38 61.30 66.40

0.40 68.38 61.89 66.87

0.45 67.92 61.96 68.07

0.50 68.21 60.78 67.20

0.55 69.11 61.92 67.04

0.60 68.39 60.71 67.81

0.65 68.39 62.36 67.28

0.70 69.10 61.10 68.28

0.75 70.63 61.57 69.53

0.80 70.69 62.88 70.35

0.85 72.05 64.80 72.58

0.90 74.94 66.29 74.24

0.95 75.62 67.18 74.30

308

Table E.7: Scenario #3: Average Predictive Accuracies of Subject Actions for

100-run sets of FAM, 900 Training Points

ρ̄a Subject 1 Subject 2 Subject 3

0.05 69.59 61.65 67.52

0.10 69.67 63.12 68.68

0.15 68.79 62.51 68.01

0.20 70.35 62.06 67.71

0.25 69.12 62.69 68.19

0.30 69.32 63.09 69.45

0.35 69.99 62.47 68.01

0.40 69.54 62.45 68.69

0.45 69.26 62.49 68.00

0.50 70.45 61.80 68.22

0.55 69.30 62.68 68.57

0.60 69.02 61.87 67.71

0.65 69.58 62.26 67.71

0.70 70.37 62.72 68.96

0.75 71.20 62.37 69.99

0.80 72.10 63.72 72.07

0.85 72.56 65.44 72.51

0.90 74.53 67.52 74.79

0.95 75.23 68.74 74.95

309

Table E.8: Scenario #3: Average Predictive Accuracy for 1000-run Sets for Sce-

nario #3 Using Optimal Values for ρ̄a

Subject 300 600 900

1 72.99 74.94 75.04

2 66.01 67.55 68.54

3 71.94 73.95 75.56

310

E.4 Scenario #4 Results

311

Table E.9: Scenario #4: Average Predictive Accuracies of Subject Actions for

FAM

ρ̄a Subject 1 Subject 2 Subject 3

0.05 55.7 59.3 52.7

0.1 56.4 56.7 54.9

0.15 55.8 57.5 53.2

0.2 53.4 57.3 50.7

0.25 56.3 60.9 53.8

0.3 57.6 58.6 50.9

0.35 54.6 56.8 53.1

0.4 56.2 57.6 52.3

0.45 52.1 57.6 49.8

0.5 54.3 57.9 51

0.55 55.9 59.6 51.8

0.6 55.5 58.1 52.6

0.65 56.9 58.7 53.8

0.7 54 57.1 51.8

0.75 55.3 55.6 51.2

0.8 54.8 58.6 53.3

0.85 57.7 57.1 53.8

0.9 57.4 56.6 52

0.95 58.3 57.7 51.2

312

Table E.10: Scenario #4: Average Predictive Accuracy for 1000-run Sets

Subject ρ̄a Predictive Accuracy

1 0.95 58.22

2 0.25 60.18

3 0.10 55.32

313

E.5 Scenario #5 Results

314

Table E.11: Scenario #5: Average Predictive Accuracies of Subject Contexts for

100-run sets of FAMTILE, 300 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 61.27 52.85 61.48

0.10 62.15 52.62 60.76

0.15 63.63 53.47 59.76

0.20 61.26 53.32 61.01

0.25 62.58 54.01 59.26

0.30 61.79 52.96 60.16

0.35 61.65 53.09 59.52

0.40 61.35 53.41 60.44

0.45 61.94 53.35 59.76

0.50 61.35 52.95 59.41

0.55 62.20 54.14 60.37

0.60 62.45 52.37 59.90

0.65 63.42 53.31 60.91

0.70 63.30 53.72 60.77

0.75 63.17 55.17 61.78

0.80 65.00 55.28 62.90

0.85 64.87 55.96 63.43

0.90 65.33 55.85 62.56

0.95 64.82 55.97 62.19

315

Table E.12: Scenario #5: Average Predictive Accuracies of Subject Contexts for

100-run sets of FAMTILE, 600 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 64.10 56.31 61.49

0.10 62.67 55.45 61.91

0.15 63.63 54.62 61.71

0.20 63.02 54.56 61.92

0.25 62.71 55.75 62.82

0.30 63.35 55.52 61.95

0.35 63.63 55.57 61.75

0.40 62.97 54.86 62.68

0.45 63.16 55.06 61.50

0.50 63.61 55.43 62.33

0.55 63.77 55.32 62.24

0.60 63.98 55.81 61.40

0.65 63.72 54.90 62.84

0.70 64.52 56.57 62.79

0.75 65.06 56.33 64.19

0.80 65.06 57.53 64.66

0.85 66.07 58.80 64.86

0.90 67.75 57.99 64.98

0.95 67.24 58.66 64.30

316

Table E.13: Scenario #5: Average Predictive Accuracies of Subject Contexts for

100-run sets of FAMTILE, 900 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 64.91 56.87 63.48

0.10 64.34 57.60 63.60

0.15 64.53 57.26 62.45

0.20 64.29 56.36 63.84

0.25 65.07 57.12 63.06

0.30 65.12 57.73 62.78

0.35 64.87 57.58 62.76

0.40 64.61 56.96 63.40

0.45 64.74 57.54 63.22

0.50 64.16 57.64 62.98

0.55 64.52 57.30 62.70

0.60 65.23 57.51 63.37

0.65 65.12 56.93 63.73

0.70 65.86 57.97 63.23

0.75 66.91 57.32 63.79

0.80 66.02 58.44 64.82

0.85 67.30 59.03 66.09

0.90 67.64 59.85 66.81

0.95 67.29 59.61 65.62

317

Table E.14: Scenario #5: Average Predictive Accuracies of Subject Actions for

100-run sets of FAMTILE, 300 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 70.62 62.48 69.86

0.10 70.06 64.05 70.23

0.15 70.77 63.75 69.34

0.20 70.52 63.48 69.51

0.25 70.30 63.55 70.55

0.30 71.21 63.48 69.89

0.35 70.10 63.93 69.47

0.40 70.40 63.45 70.58

0.45 71.38 63.81 68.86

0.50 70.40 63.25 70.43

0.55 70.81 62.99 70.40

0.60 71.34 63.22 69.43

0.65 70.98 64.36 69.72

0.70 71.49 64.96 70.78

0.75 71.46 63.67 70.88

0.80 71.91 65.05 71.16

0.85 72.98 66.59 71.24

0.90 73.36 65.88 72.04

0.95 73.58 66.85 71.44

318

Table E.15: Scenario #5: Average Predictive Accuracies of Subject Actions for

100-run sets of FAMTILE, 600 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 71.63 65.86 70.70

0.10 72.02 64.83 71.88

0.15 71.78 64.89 71.48

0.20 71.82 66.75 70.93

0.25 72.24 64.52 71.05

0.30 72.02 65.59 71.24

0.35 71.79 65.75 71.45

0.40 72.07 65.48 71.26

0.45 71.74 65.38 71.17

0.50 72.16 65.94 70.55

0.55 72.06 65.45 71.20

0.60 72.02 65.17 71.13

0.65 72.23 65.05 70.84

0.70 72.58 65.71 71.64

0.75 73.79 66.21 72.79

0.80 73.14 66.20 72.93

0.85 74.49 66.92 74.40

0.90 74.71 67.48 73.61

0.95 75.24 68.55 74.11

319

Table E.16: Average Predictive Accuracies of Subject Actions for 100-run sets of

FAMTILE, 900 training patterns

ρ̄a Subject 1 Subject 2 Subject 3

0.05 72.74 66.91 72.01

0.10 74.23 66.85 73.06

0.15 72.62 66.52 72.34

0.20 72.71 65.50 72.56

0.25 73.50 66.31 72.56

0.30 72.93 66.44 71.40

0.35 72.12 66.55 72.11

0.40 73.24 66.46 72.34

0.45 73.01 66.37 71.89

0.50 73.04 67.36 72.43

0.55 72.90 66.93 71.42

0.60 71.84 66.05 72.12

0.65 73.49 66.57 72.33

0.70 73.03 67.06 73.19

0.75 74.17 66.67 73.35

0.80 74.54 66.88 73.88

0.85 74.52 68.31 74.58

0.90 75.25 69.02 75.68

0.95 75.57 69.12 74.93

320

Table E.17: Average Predictive Accuracy for 1000-run Sets with 300 training

patterns

Subject FAM FAMTILE (Actions) FAMTILE (Contexts)

1 72.99 73.58 65.61

2 66.01 66.15 55.64

3 71.94 72.12 63.05

Table E.18: Average Predictive Accuracy for 1000-run Sets with 600 training

patterns

Subject Fuzzy ARTMAP FAMTILE (Actions) FAMTILE (Contexts)

1 74.94 75.02 66.64

2 67.55 67.82 58.10

3 73.95 73.88 64.86

Table E.19: Average Predictive Accuracy for 1000-run Sets with 900 training

patterns

Subject Fuzzy ARTMAP FAMTILE (Actions) FAMTILE (Contexts)

1 75.04 75.63 67.71

2 68.54 68.92 59.98

3 75.56 75.37 66.26

321

E.6 Scenario #6 Results

322

Table E.20: Scenario #6: Average Predictive Accuracies of Subject Contexts for

FAMTILE

ρ̄a Subject 1 Subject 2 Subject 3

0.05 40.2 41.0 34.2

0.1 40.5 40.0 34.8

0.15 40.9 40.1 37.2

0.2 42.6 43.2 39.2

0.25 41.6 40.0 38.0

0.3 38.7 41.7 36.3

0.35 42.9 41 35.0

0.4 39.1 40.5 36.6

0.45 40.7 40.3 36.9

0.5 39.2 37.2 35.8

0.55 39.1 40.0 37.8

0.6 41.3 40.3 36.4

0.65 39.3 39.8 37.2

0.7 38.1 39.0 37.3

0.75 39.6 41.5 38.5

0.8 37.9 38.0 36.6

0.85 40.1 39.0 37.8

0.9 40.6 42.5 37.0

0.95 40.8 40.9 37.1

323

Table E.21: Scenario #6: Average Predictive Accuracies of Subject Actions for

FAMTILE

ρ̄a Subject 1 Subject 2 Subject 3

0.05 54.5 59.2 50.8

0.1 53.8 59.4 52.0

0.15 55.5 58.3 53.4

0.2 54.4 56.8 50.2

0.25 53.9 57.7 50.1

0.3 55.5 58.9 49.7

0.35 54.0 57.7 50.5

0.4 55.6 59.8 51.4

0.45 53.6 57.9 49.7

0.5 55.1 56.5 51.1

0.55 53.3 59.2 51.0

0.6 54.9 57.3 49.3

0.65 53.0 58.1 50.2

0.7 55.6 58.8 49.2

0.75 56.0 59.0 49.9

0.8 56.2 60.7 50.3

0.85 55.3 55.4 51.0

0.9 55.9 57.1 49.3

0.95 60.7 57.9 49.9

324

Table E.22: Scenario #6: Average Predictive Accuracy of FAMTILE for Inferred

Contexts and Actions over 1000-run Sets

Subject ρ̄a Context Predictive Accuracy ρ̄a Action Predictive Accuracy

1 0.35 43.22 0.95 60.25

2 0.20 47.79 0.8 60.14

3 0.20 39.99 0.15 54.07

325

E.7 Scenario #7 Results

Figure E.7: Chip Count Comparison of Subject #1 versus FAM and FAMTILE

Figure E.8: Chip Count Comparison of Subject #2 versus FAM and FAMTILE

326

Figure E.9: Chip Count Comparison of Subject #3 versus FAM and FAMTILE

327

List of References

[And96] J.R. Anderson. “ACT: A Simple Theory of Complex Cognition.” Amer-
ican Psychologist, 51(4):355–365, April 1996.

[Bru79] D. Brunson. Doyle Brunsonś Super System. Cardoza Publishers, 3
edition, 1979.

[BS97] Gentile C. Saker I. Brézillon, P. and M. Secron. “SART: A system
for supporting operators with contextural knowledge.” In Proceedings
of the International and Interdisciplinary Conference on Modeling and
using Context (CONTEXT-97), 1997.

[BS98] Papp D. Schaeffer J. Billings, D. and D. Szafron. “Poker as a Testbed
for AI Research.” In Proceedings of AI ’98, The Twelfth Canadian
Conference on Artificial Intelligence, 1998.

[CK02] Crandall B.W. Calderwood, R. and G.A. Klein. “Expert and Novice
Fireground Command Decisions.” Technical report, Klein Associates,
Inc., 2002.

[CR92] Grossberg S. Markuzon N. Reynolds J.H. Caarpenter, G.A. and D.B.
Rosen. “Fuzzy ARTMAP: A Neural Network Architecture for Incremen-
tal Supervised Learning of Analog Multidimensional Maps.” In IEEE
Transactions on Neural Networks, volume 3, September 1992.

[CT95] G.A. Carpenter and A.H. Tan. “Rule Extraction: From neural archi-
tecture to symbolic representation.” Connection Science, 7:3–27, 1995.

[FG01] H.K. Fernlund and A.J. Gonzalez. “An approach towards building hu-
man behavior models automatically by observation.” 2001.

[GA96] A.J. Gonzalez and R.H. Ahlers. “Context-Based Representation of In-
telligent Behavior in Simulated Opponents.” In Computer Generated
Forces and Behavior Representation Conference, 1996.

[GC01] M. Georgiopoulos and C. Christodoulou. Applications of Neural Net-
works in Electromagnetics. Artech House Publishers, 2001.

328

[Ger01] W.J. Gerber. Real-Time Synchronization of Behavioral Models with
Human Performance in a Simulation. PhD thesis, University of Central
Florida, Orlando, FL, 2001.

[GG00] Drewes P.J. Gonzalez, A.J. and W.J. Gerber. “Interpreting Trainee In-
tent in Real Time in a Simulation-based Training System.” In Transac-
tions of the Society for Computer Simulation International, volume 17,
pp. 135–147, September 2000.

[gH01] S.M gustafson and W.H. Hsu. “Layered Learning in Genetic Program-
ming for a Cooperative Robot Soccer Problem.” Technical report,
ASAP Group, School of Computer Science and Information Technol-
ogy, University of Nottingham, Nottingham, UK, 2001.

[Hen01] A. Henninger. Neural Network Based Movement Models to Improve the
Predictive Utility of Entity state synchronization methods for Distributed
Simulations. PhD thesis, University of Central Florida, Orlando, FL,
May 2001.

[HM97] Sikka P. Hovland, G.E. and B.J. McCarragher. “Skill Acquisition from
Human Demonstration Using a Hidden Markov Model.” In Proceedings
of the IEEE International Conference on Robotics and Automation, vol-
ume 3, pp. 2706–2711, 1997.

[JD02] McGinnis M. Mollaghasemi M. Johnson, M.J. and T. Damarly.
“Methodology for Human Decision Making Using Fuzzy ARTMAP Neu-
ral Networks.” In Proceedings of the International Joint Conference on
Neural Networks, 2002.

[JK99] Laird J.E. Nielsen P.E. Coulter K.J. Kenny P.G. Jones, R.M. and
F. Koss. “Automated Intelligent Pilots for Combat Flight Simulation.”
AI Magazine, 20(1):27–41, 1999.

[JL96] R. Jones and J. Laird. “Constraints on the Design of a High-Level
Model of Cognition.” Technical report, University of Michigan, Ann
Arbor, MI, 1996.

[Kha98] R. Khardon. “Learning to Take Actions.” Technical report, Department
of Computer Science, University of Edinburgh, June 1998.

[KK95] Oztemel E. Uludag M. Kocabas, S. and N. Koc. “Automated Agents
that Learn and Explain their own Actions: A Progress Report.” In
Proceedings of the fifth Conference on computer generated Forces and
Behavior Representation, Orlando, FL, 1995.

329

[KL04] T. Konik and J. Laird. “Learning goal Hierarchies from Structured Ob-
servations and Expert Annotations.” In 14th International Conference
on Inductive Logic Programming, 2004.

[LL99] M. van Lent and J.E. Laird. “Learning Hierarchical Performance
Knowledge by Observation.” In International Conference on Machine
Learning, 1999.

[LL01] M. van Lent and J.E. Laird. “Learning Procedural Knowledge by Ob-
servation.” In First International conference on Knowledge Capture (K-
CAP 2001), pp. 179–186, Victoria, British Columbia, Canada, October
2001.

[LP01] G. Laurent and E. Piat. “Parallel Q-Learning for a Block-Pushing Prob-
lem.” In IEEE International Conference on Intelligent Robots and Sys-
tems, Maui, HI, October-November 2001.

[LR87] Newell A. Laird, J. and P. Rosenbloom. “Soar: An Architecture for
General Intelligence.” Artificial Intelligence, 33:1–64, 1987.

[LR95] Laird J. Lehman, J.F. and P. Rosenbloom. “A Gentle Introduction to
Soar, an Architecture for Human Cognition.” Technical report, Univer-
sity of Michigan, Ann Arbor, MI, 1995.

[LW04] Alghamdi G. Laskey, K. and X. Wang. “Detecting threatening Behavior
Using Bayesian Networks.” In Proceedings of the Behavior Representa-
tion in Modeling and Simulatoin Conference, May 2004.

[MM86] Carbonell J.G. Michalski, R.S. and T.M. Mitchell. Machine Learning:
An Artificial Intelligence Approach, volume II. Morgan Kaufmann Pub-
lishers, Los Altos, CA, 1986.

[Mug95] S. Muggleton. “Inverse Entailment and Prolog.” New Generation Com-
puting 13, pp. 245–286, 1995.

[Nor99] L. Norlander. “A Framework for Efficient Implementation of Context-
Based Reasoning in Intelligent Simulation.”. Master’s thesis, University
of Central Florida, Orlando, FL, 1999.

[OP00] N. Oliver and A.P. Pentland. “Graphical Models for Driver Behavior
Recognition in a SmartCar.” In Proceedings of the IEEE Intelligent
Vehicles symposium 2000 (IV2000), pp. 7–12, 2000.

330

[PK03] Liao L. Fox D. Patterson, D.J. and H. Kautz. “Inferring High-Level Be-
havior from Low-Level Sensors.” Technical report, University of Wash-
ington, Seattle, WA, 2003.

[PL99] A. Pemtland and A. Liu. “Modeling and Prediction of Human Behav-
ior.” In Neural Computation, pp. 11, 229–242, 1999.

[PT02] J. Pineau and S. Thrun. “High-level robot behavior control using
POMDPs.” Technical report, Carnegie Mellon University, Pittsburgh,
PA, 2002.

[Rab89] L.R. Rabiner. “A Tutorial on Hidden Markov Models and Selected
Applications in speech recognition.” In Proceedings of the IEEE, vol-
ume 77, pp. 257–286, 1989.

[SG00] T.A. Sidani and A.J. Gonzalez. “A Framework for Learning Implicit
Expert Knowledge through Observation.” In TRANSACTIONS of the
Society for Computer Simulation International, volume 17, pp. 54–72,
April 2000.

[SG04] B.S. Stensrud and A.J. Gonzalez. “Context-Based Reasoning: A Re-
vised Specification.” In Proceedings of the Florida Artificial Intelligence
Research Society (FLAIRS) Conference, Miami Beach, FL, May 2004.

[SH01] T. Stanard and R. Hutton. “A Computational Model of Driver Decision
Making at an Intersection Controlled by a Traffic Light.” Technical
report, Micro analysis and Design, Boulder, CO, 2001.

[Skl89] D. Sklansky. The Theory of Poker. Two Plus Two Publications, 3
edition, December 1989.

[SM03] D. Sklansky and M. Malmuth. Hold’em Poker for Advanced Players.
Creel Printing Company, 21st century edition, September 2003.

[SR99] McCallum A. Seymore, K. and R. Rosenfeld. “Learning Hidden Markov
Model Structure for Information Extraction.” In AAAI ’99 Workshop
on Machine learning for Information Extraction, July 1999.

[sta90] Elementary Statistics in a World of Applications. Harper Collins Pub-
lishers, 3 edition, 1990.

[TA00] Nakemura T. Imai M. Ogasawara T. Takeda, M. and M. Asada. “En-
hanced Continuous Valued Q-learning for Real Autonomous Robots.”
In Proceedings of International Conference of the Society for Adaptive
Behavior, pp. 195–202, 2000.

331

[TG04] Stensrud B.S. Trinh, V.C. and A.J. Gonzalez. “Implementation and
Analysis of a Context-Based Reasoning Model on a Physical Platform.”
In Proceedings of the Swedish-American Workshop in Modeling and Sim-
ulation, 2004.

[TK74] A. Tversky and D. Kahnerman. “Judgments Under Uncertainty:
Heuristics and Biases.” Science, 185:1124–1131, 1974.

[Tur98] R.M. Turner. “Context-Mediated Behavior for Intelligent Agents.” In
International Journal of Human-Computer Studies: Special Issue on
Using Context in Applications, volume 48, pp. 307–330, March 1998.

[WJ02] Laird J.E. Nuxoll A. Wray, R.E. and R.M. Jones. “Intelligent Oppo-
nents for Virtual Reality Training.” In Inter-service/Industry Training,
Simulation, and Education conference (I/ITSEC), Orlando, FL, Decem-
ber 2002.

[WM] W. Warwick and S. McIlwaine. “Developing Computational Models
of Recognition-Primed Decisions: Progress and Lessons Learned.” In
Computer Generated Forces and Behavior Representation Conference.

[WP99] Ganapathiraju A. Wu, Y. and J. Picone. “Baum-Welch re-estimation of
Hidden Markov Model.” Technical report, Mississippi State University,
Starkville, MS, June 1999.

[YN00] Hori K. Yairi, T. and S. Nakasuka. “Autonomous Reconstruction of
State Space for Learning of Robot Behavior.” In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 891–896, 2000.

[ZM00] M.X. Zhou and S. Ma. “Toward Applying Machine Learning to Design
Rule Acquisition for Automated Graphics Generation.” 2000.

332

	Famtile: An Algorithm For Learning High-level Tactical Behavior From Observation
	STARS Citation

	Abstract
	Acknowledgements
	Table of Contents
	CHAPTER 1 - INTRODUCTION
	1.1 - Learning from Observation
	1.2 - Context-Based Reasoning
	1.3 - Summary and Discussion of Introduction Topics

	CHAPTER 2 - LITERATURE REVIEW
	2.1 - Related Cognitive Architectures and Behavior Modeling Techniques
	2.2 - Approaches to Learning from Observation Using Neural Networks
	2.3 - Other Approaches for Learning from Observation

	CHAPTER 3 - PROBLEM DEFINITION
	3.1 - Research Challenges
	3.2 - Problem Statement
	3.3 - Overview of Approach
	3.4 - Contributions of this Research

	CHAPTER 4 - METHODOLOGY
	4.1 - Template-Based Interpretation
	4.2 - Fuzzy ARTMAP
	4.3 - FAMTILE: Fuzzy ARTMAP / Template-Based Interpretation Learning Engine
	4.4 - Summary of FAMTILE Algorithm Sequence

	CHAPTER 5 - A PROTOTYPE IMPLEMENTATION OF FAMTILE
	5.1 - Simulation Environment for FAMTILE Training and Testing
	5.2 - Four Training Vignettes for FAMTILE
	5.3 - A Prototype Implementation of FAMTILE

	CHAPTER 6 - EVALUATION OF FAMTILE PROTOTYPE
	6.1 - Overview of Testing Scenarios
	6.2 - Evaluation Procedures for FAM and FAMTILE
	6.3 - Learning Parameters for FAM
	6.4 - Testing Scenario #1
	6.5 - Testing Scenario #2
	6.6 - Testing Scenario #3
	6.7 - Testing Scenario #4
	6.8 - Testing Scenario #5
	6.9 - Testing Scenario #6
	6.10 - Testing Scenario #7

	CHAPTER 7 - SUMMARY, CONCLUSIONS AND FUTURE WORK
	7.1 - Summary
	7.2 - Conclusions
	7.3 - FAMTILE and Explainable AI
	7.4 - Complexity and Scalability Analysis
	7.5 - Proposed Topics for Future Research

	APPENDIX A - GLOSSARY OF TERMS
	APPENDIX B - GLOSSARY OF ACRONYMS
	APPENDIX C - POKER AND TEXAS HOLD'EM
	C.1 - Texas Hold'em Poker

	APPENDIX D - POKER EXPERT QUESTIONNAIRE AND RESPONSES
	D.1 - Questionnaire Response #1
	D.2 - Questionnaire Response #2
	D.3 - Questionnaire Response #3
	D.4 - Questionnaire Response #4
	D.5 - Questionnaire Response #5
	D.6 - Questionnaire Response #6

	APPENDIX E - TESTING DATA
	E.1 - Scenario #1 Results
	E.2 - Scenario #2 Results
	E.3 - Scenario #3 Results
	E.4 - Scenario #4 Results
	E.5 - Scenario #5 Results
	E.6 - Scenario #6 Results
	E.7 - Scenario #7 Results

	LIST OF REFERENCES

