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ABSTRACT

We study numerical methods for solving the nonlinear porous medium and Navier-Lame

problems. When coupled together, these equations model the flow of exhaust through a

porous medium, soil, and the effects that the pressure has on the soil in terms of spatial

displacement. For the porous medium equation we use the Crank-Nicolson time stepping

method with a spectral discretization in space. Since the Navier-Lame equation is a bound-

ary value problem, it is solved using a finite element method where the spatial domain is

represented by a triangulation of discrete points. The two problems are coupled by using

approximations of solutions to the porous medium equation to define the forcing term in

the Navier-Lame equation. The spatial displacement solutions can be used to approximate

the strain and stress imposed on the soil. An analysis of these physical properties shows

whether or not the material ceases to act as an elastic material and instead behaves like a

plastic which will tell us if the soil has failed and a crater has formed. Analytical as well

as experimental tests are used to find a good balance for solving the porous medium and

Navier-Lame equations both accurately and efficiently.
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1 INTRODUCTION

1.1 PROBLEM HISTORY AND MOTIVATION

Previous missions to the moon, specifically the Apollo 12 and Apollo 15 missions, have

demonstrated the potential danger that can arise during landing [14]. Such complications

come about from the pressure forced upon the surface by the rocket’s exhaust. Inspection

of the Surveyor III spacecraft following the Apollo 12 mission showed that while the lunar

module landed approximately 200 meters away, the lander’s exhaust was still powerful enough

to effect the Surveyor III. It was determined that a high-speed sandblast hit the Surveyor III

with particles traveling more than 100 m/s casting permanent shadows onto the materials.

Microscopic dents were also found on the Surveyor III and it was determined that these were

caused by soil particles which were estimated to be traveling between 300 and 2000 m/s [20].

The Apollo 15 landing encountered similar, but more severe problems. It was reported

that the crew began seeing the blowing dust as early as 46 m above the surface and that

by 18 m, the sandblast was strong enough to inhibit all visibility. The module eventually

landed on the edge of a small crater. After a shaky landing, the module eventually found its

balance along the edge of the crater but with one leg suspended in space. Fortunately the

landing was left with enough stability for the crew to successfully and safely complete their

mission.

The Apollo 12 and Apollo 15 landings demonstrated the potential for damage to nearby

hardware as well as the lander itself from the blowing material [13]. The new lunar modules

that are expected to be used in future lunar or Mars landings will likely be larger than

those used in the Apollo missions. Larger modules require more thrust and that means

the potential for complications such as those that occurred in the Apollo missions becomes

greater. The next lunar module is expected to have ten times the thrust of the landers used

in the Apollo missions, which will lead to a higher probability that the new lander will create
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its own crater when it lands.

In 1966 there was a NASA funded test program which studied the cratering process [23].

This study found that the erosion of the soil begins directly under the jet before quickly

spreading. A test showed that for a 600 pound thrust, an initial crater formed of over 40

inches in diameter and 20 inches deep. It was also determined that this initial crater did not

change much with time.

Physical properties of the soil, the thrust of the rocket as well as the atmospheric condi-

tions of the environment in which the rocket is landing can impact the results of the landing.

Our goal is to build a model that will allow us to accurately predict what combinations

of these properties could result in cratering. An accurate model of the pressure due to the

rocket’s exhaust and how it changes with time is the first step. The pressure results can then

be used in a forcing term for a separate model to predict cratering. The Apollo landings

as well as a number of small scale tests can provide us with a few sets of data with known

results to help test our model.

We consider two ways in which the rocket exhaust may cause the lunar soil to crater.

Bearing capacity failure or BCF occurs when the force applied to the surface is too great

and creates a depression in the soil. Diffusion-driven flow or DDF occurs when the rocket

exhaust causes the soil to break up and shear [15].

Creating a diagram such as Figure (1.1) can help us to determine the proper conditions

under whichBCF andDDF will occur. If the boundaries between whereBCF andDDF

occur can be sufficiently determined for particular soil properties, then crater formations can

be predicted for a given rocket thrust. This assumes that we have chosen a location where

the physical properties of the soil are well known.

We are not only interested in the moon. There has also been a lot of research done as far

as studying the atmospheric conditions of Mars and how they effect a possible landing. A

study of potential Mars soil erosion due to an imposed pressure is studied in [12]. The true
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Figure 1.1: An example of the types of results we expect to achieve with the goal of defining
the boundaries separating each crater type.

value in our model is that it can be applied to any environment that has been sufficiently

examined. Assuming we know the physical properties such as density and porosity of a given

surface as well as the thrust of the rocket, then our model can be used.

1.2 THE PROBLEM

The goal is to accurately and efficiently model the application of gas diffusion as a body

force and determine if the soil can support such a force without cratering. The source of the

body force is the pressure imposed on the soil due to the rocket exhaust during landing. This

pressure may result in the displacement on the surrounding soil. With an approximation

of the displacement field in hand, additional analysis can be done to determine if the soil

can withstand the pressure without cratering. If the pressure imposes enough stress of the

soil, then the soil will no longer act like an elastic material. It will instead act as a plastic

material which can break down rather than bend and this is when craters are formed.
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To model the pressure we start with The Porous Medium Equation [9],

∂u

∂t
= ∆um, m > 1 (1.1)

which models gas flow in a porous medium. This is a general, parabolic partial differential

equation. In order to use (1.1) to model the pressure in our system, we must incorporate

some fluid mechanics as in [3]. Specifically, Darcy’s law which states that the rate at which

a fluid flows through a permeable substance per unit area is equal to the permeability times

the pressure per unit length of flow divided by the viscosity of the fluid. When derived from

Darcy’s Law the porous medium equation takes the form,

∂p

∂t
=

k

2ηε
∆p2 (1.2)

where p is the pressure, η is the viscosity of the gas, while k and ε are the permeability and

porosity of the medium, respectively.

Navier’s model for volume displacement is used for modeling the reaction of the soil to

the pressure and is defined by,

µ∇2u+ (µ+ λ)∇(∇ · u) + f = 0, (1.3)

where µ and λ are material constants and u is the displacement vector field. For our

two dimensional problem we let u = (u, v) where u is the x displacement and v is the y

displacement. The function f is the body force of the material and is defined by f = ρg+∇p.

Here we have the constants g and ρ which are the acceleration due to gravity and the

density of the material, respectively. The variable p is the pressure field found by solving the

porous medium equation. Our choice of modeling the solution with a static, two dimensional

equation means that we can only determine if a crater has formed. The width and depth
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of the crater as well as the overall displacement of the soil would require a time dependent

model in three spatial dimension. Our goal is to use the computationally simpler static

problem as a foundation for future work in building a more complete model.

To solve the porous medium equation, we have chosen to use a finite difference method

for time. The idea behind a finite difference scheme is to approximate a continuous function

by solutions at discrete points. If the difference between these points are small enough, then

convergence of the method guarantees that the set of discrete values sufficiently approxi-

mates the exact solution. For the porous medium equation, this idea is used to handle the

differentiation in time. For spatial discretization, we use a spectral spatial domain to ensure

high accuracy and efficiency. This gives us a set of solutions where each is an approximation

of the pressure at a particular instant in time. From these pressure approximations we can

calculate the forces imposed upon the sand and move on to solving Navier’s equation.

For Navier’s equation we have chosen a different approach. Here we are implementing

a finite element method, which is typical for a boundary value problem. Just as the finite

difference method took a continuous function in time and approximated at discrete points,

the finite element method takes a continuous function over the entire spatial domain and

finds approximations on small subsections of the domain. These small subsections are known

as elements, and the approximation on each element is used to build the entire solution. As

the size of the elements decreases, the finite element approximation more closely resembles

a continuous function and thus the accuracy of the approximation increases.

Calculating an approximation to the solution is not enough. We must also verify that

our approximation is sufficiently accurate. It is often the case that the exact solution is not

known. Thus a method for approximating the error must also be implemented. Richard-

son’s error estimate is used for approximating the error in our model of the porous medium

equation. Residual based, a posteriori error estimates can be effective methods for analyzing

the accuracy of a finite element approximation. An analysis of such error estimates for finite
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element methods in the area of elasticity can be found in [5] and [22].

Both the porous medium equation and Navier’s equation have been researched exten-

sively. However it appears that the behavior of Navier’s equation with a forcing term de-

rived from Darcy’s law has never been explored. The purpose of this paper is to develop and

implement an accurate and efficient numerical algorithm for numerical study of the solution

behavior.
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2 THE POROUS MEDIUM EQUATION

2.1 THE CRANK-NICOLSON METHOD

Approximations of solutions to the porous medium equation are found in this thesis through

discrete time stepping and a Spectral approximation of the Laplacian operator. The Crank-

Nicolson method is a second order, implicit method derived from averaging the explicit and

implicit Euler methods. An implicit method finds a solution to the problem by solving an

equation that is dependent on both the current state of the system as well as the later one.

The explicit method is simpler in that the new solution is dependent entirely on the former

state of the system. This means that for explicit methods, an approximation to the solution

at time step tk+1 can be found directly from the approximation at time tk. On the other

hand, an implicit method will lead to a system of solved equations.

An arbitrary partial differential equation can be defined as,

yt(t, x) = f(y,∇y,∆y) = F (y)

where y(t, x) and f(y) are discrete vectors. The Crank-Nicolson method comes from dis-

cretizing y(t, x) in time while taking the average of the right hand side evaluated at both

the current and next time steps. Given that yk(t, x) is an approximation of y(tk, x) for each

time step, the Crank-Nicolson method is defined by,

yk+1 = yk +
h

2
[F (yk) + F (yk+1)] (2.1)

where h is a given time step size such that tk+1 = tk + h. The dependency on the F (yk+1)

term makes (2.1) an implicit method. While implicit methods may take longer and can

be more difficult to implement than an explicit method, the benefits of using an implicit

method can far outweigh those draw backs for certain types of problems. Equation (1.2) is
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known as a stiff equation which is a differential equation for which solutions from explicit

methods become numerically unstable unless the step size is small. We can see the value in

using an implicit method over a less computationally expensive explicit method by finding

approximations to the following partial differential equation,


∂y
∂t

= ∆y

y(0, x) = sin(x)

y(t, x) = 0, x ∈ Γ

(2.2)

using both an explicit and implicit method. The Crank-Nicolson method is used for the

implicit test. The Crank-Nicolson method is of second order which means that the error in

the method is proportional to h2. For the explicit test we would prefer to choose a method

that is of the same order as the Crank-Nicolson method. This allows us to assume that any

difference found in the numerical results of these methods is due entirely to the fact that the

method is implicit or explicit. Heun’s method is a second order explicit method that works

well here. Huen’s method is similar to the Crank-Nicolson method in that it essentially uses

the average of the right hand side evaluated at both the current and next time steps. But in

order to be an explicit method, the right hand side can not depend on yk+1(t, x). Thus the

explicit Euler method is used to approximate yk+1(t, x) in terms of yk(t, x). Huen’s method

is defined as follows,

 ỹk+1 = yk + hF (yk)

yk+1 ≈ yk +
h
2
[F (yk) + F (ỹk+1)]

. (2.3)

In Figure (2.1) we are comparing the error in the Crank-Nicolson method with that

of Heun’s method. Here we apply the Heun’s and Crank-Nicolson methods to the partial

differential equation defined by (2.2). For larger step sizes in time, we clearly see that the

explicit Heun’s method becomes unstable. However the implicit Crank-Nicolson method

8
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Figure 2.1: The error as functions of the time step h for the Crank-Nicolson and Heun’s
approximations to (2.2). Heun’s method clearly becomes unstable for larger step sizes. This
is the key characteristic of a stiff equation which implies that an implicit method is a better
choice for this problem.

remains stable as the step size increases. As we decrease the step size, Heun’s method

becomes stable but the accuracy of the method is still worse than that of the Crank-Nicolson

method for equivalent step sizes. This is important because the method runs over the time

interval, t = 0 up until t = T when T is the total time chosen by the user. The ability

to achieve acceptable accuracy while using a larger step size allows us to span the time

interval in fewer iterations which improves efficiency. Finding a balance between accuracy

and efficiency is crucial in any numerical method.

If we define the discretized pressure by the matrix, pk ∈ R(N+1)×(N+1), then the vector

pk ∈ R(N+1)2 can be used to represent the unknown pressure values in the system of equations.

The column vector pk is constructed by stacking each row of pk on top of each other. The

9



Crank-Nicolson discretization of (1.2) is then defined by,

pk+1 ≈ pk +
hβ

2
(∆sp

2
k +∆sp

2
k+1) (2.4)

where β = k
2ηε

. An implicit method will result in a system of equations that will need to be

solved. But more troublesome than that is the nonlinearity of this particular equation. The

∆sp
2
k+1 term makes it difficult to isolate pk+1 in equation (2.4). So we require another method

for finding solutions. A root finding iteration such as Newton’s method is a good choice for

solving such a problem. However, before we can look into ways of finding solutions to (2.4),

we must define the ∆s matrix used to model the Laplacian operator at discrete points. Along

with defining the ∆s matrix, we look into the placement of these discrete nodes and how

they effect the accuracy of the approximation in the following section.

2.2 SPECTRAL DIFFERENTIATION MATRICES

The spectral method is a global method. This means that the approximation at any point

depends on every discrete point in the domain. This differs from finite difference methods

where approximations are made based only on the local neighboring nodes. A global method

such as this is of higher order and is potentially far more accurate, but there are problems

that can arise with higher order interpolation such as this. Interpolating over equidistant

nodes can lead to inaccurate results, especially in higher order interpolations. An example

of this can be seen in Figure (2.2) which shows multiple interpolants of the function f(x) =

1000 exp− x2

0.05 using equidistant nodes.

The accuracy of the interpolant can be improved by clustering the nodes near the bound-

aries using the Chebyshev nodes. Doing so will distribute the error in the interpolant more

evenly among all nodes rather than just at the end points.

Given a function f(x) defined on [−1, 1] and N nodes, x1, x2, . . . , xN ∈ [−1, 1] then by

10



−1 −0.5 0 0.5 1
0

200

400

600

800

1000
Exact Solution

−1 −0.5 0 0.5 1
−500

0

500

1000
10 Equidistant Nodes

−1 −0.5 0 0.5 1
−500

0

500

1000
15 Equidistant Nodes

−1 −0.5 0 0.5 1
−500

0

500

1000
20 Equidistant Nodes

Figure 2.2: This figure shows a graph of the function, f(x) = 1000 exp− x2

0.05 as well as the
three interpolants of degree 10, 15 and 20. Each interpolant was found using equidistant
nodes.

polynomial interpolation we can approximate f(x) by a unique polynomial, PN(x) of degree

N − 1 which coincides with f(x) at each node. The error in such a polynomial interpolation

is defined by,

f(x)− PN(x) =
f (N+1)(ζ)

(N + 1)!

N∏
i=1

(x− xi), ζ ∈ [−1, 1] (2.5)

Since we have no control over f (N)(ζ), the idea is to minimize max
x∈[−1,1]

∣∣∣∣ N∏
i=1

(x− xi)

∣∣∣∣. This

product is a monic polynomial of degree N , meaning is has a leading coefficient of one. In

this case, the maximum of the term max
x∈[−1,1]

∣∣∣∣ N∏
i=1

(x− xi)

∣∣∣∣ is minimized when monic Chebyshev

polynomials are used [4]. The Chebyshev polynomials are defined by,
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TN(x) = cos(N arccos(x)) (2.6)

with roots defined by,

xi = cos(
2i− 1

2N
π), i = 0, 1, 2, . . . N (2.7)

and these polynomials have the property,

max
x∈[−1,1]

|TN+1(x)| =
1

2N
(2.8)

This means that if we chose an interpolating polynomial PN(x) defined on nodes, xi, at the

roots of TN+1(x), then

max
x∈[−1,1]

|f(x)− PN(x)| ≤
1

2N(N + 1)!
max

x∈[−1,1]
|fN+1(x)| (2.9)

Due to the 1
2N

factor which comes from our choice of the Chebyshev nodes, (2.9) converges

to zero much faster than (2.5) when any other set of nodes is used. This clearly makes the

Chebyshev nodes far more attractive than standard equidistant nodes. The nodes as defined

by (2.7) are spread over the interval [−1, 1]. This can easily be changed to any arbitrary

interval [a, b] by a the linear transformation,

xi =
1

2
(a+ b) +

1

2
cos(

2i− 1

2N
π) (2.10)

in place of (2.7). In this thesis we let a = 0 and b = 1 to define our nodes over xi ∈ [0, 1]. In

Figure (2.3) we are again finding interpolants of the function f(x) = 1000 exp− x2

0.05 but we

are now using the Chebyshev nodes. In this case, the interpolants do converge as the degree

of the polynomials increase. For this reason, we have chosen the Chebyshev nodes to define
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the grid on which we build the differential operators used to model the problem.
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Figure 2.3: This figure shows a graph of the function, f(x) = 1000 exp− x2

0.05 as well as the
three interpolants of degree 10, 20 and 30. Each interpolant was found using the clustered
Chebyshev nodes. We can see that as the degree of the interpolant increases, the interpolant
converges unlike for the equidistant case.

The Laplacian operator is approximated by,

∂2p

∂x2
+

∂2p

∂y2
≈ ∆spk (2.11)

Here the continuous Laplacian of the pressure function is approximated by the spectral

difference operator, ∆s, acting on the discrete pressure vector at the kth time step. For

the two dimensional problem, pk is originally defined as an N × N matrix. The idea is to

have a matrix that can be multiplied by a column vector to approximate the Laplacian of

the corresponding continuous function. When dealing with a problem defined over a single
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spatial dimension, we simply have to build a matrix to approximate the second derivative in

space. For a problem defined over two spatial dimensions we let the rows of the matrix, pk

represent the x dimension and the columns represent the y dimension.

We let D ∈ R(N+1)×(N+1) be the Chebyshev spectral differentiation matrix defined by

[21],



(DN)00 = 2N2+1
6

,

(DN)NN = −2N2+1
6

,

(DN)jj =
−xj

2(1−x2
j )
, j = 1, . . . , N − 1,

(DN)ij = ci
cj

(−1)i+j

xi−xj
, i ̸= j, i, j = 0, . . . , N,

(2.12)

where

ci =

 2, i = 0 N,

1, otherwise.
(2.13)

We now have a differential operator of the first derivative that can be used when pk is a

vector corresponding to a function defined on a single spatial variable. Because D operates

on a column vector we have restructured the pk matrix to be a single column vector of length

(N + 1)2 where each row has been stacked one on top of the other. With this we can build

the ∆s operator for when pk is a two dimensional surface with the aid of Kronecker products.

IfD is a differential matrix for the one dimensional first derivative, then the second partial

derivative across each row can be calculated using a block diagonal matrix. This matrix is

constructed with D2 along the diagonal. This new matrix multiplied by our pressure vector

of stacked rows, results in D2 being multiplied by each row as desired. If we let Ri represent

the transpose of the ith row of pk, then we have
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∂2p

∂x2
≈



D2 0 0 0 . . . 0

0 D2 0 0 . . . 0

0 0 D2 0 . . . 0

...
...

. . .
...

0 0 . . . 0 D2 0

0 0 . . . 0 0 D2





R1

R2

R3

...

...

RN+1


=



D2 ·R1

D2 ·R2

D2 ·R3

...

...

D2 ·RN+1


(2.14)

A set up such as this can be constructed by simply taking the Kronecker product I⊗D2 and

it is then no surprise that the second partial derivative across each column is the Kronecker

product D2⊗ I. This is an (N +1)2× (N +1)2 block structure matrix composed of diagonal

submatrices with the corresponding elements of D2 along each subdiagonal. This separates

the elements of D2 so that they match up with elements of the pk vector which correspond

to those in the same column of the pk matrix.

∂2p

∂y2
≈



d00I d02I d03I . . . d0NI

d20I d22I d23I . . . d2NI

d30I d32I d33I . . . d3NI

...
...

. . .
...

dN0I . . . . . . . . . dNNI





R1

R2

R3

...

RN+1


=



D2 ·R1

D2 ·R2

D2 ·R2

...

D2 ·RN+1


(2.15)

where dij is the (i, j)th element of D2. This gives us,


∂2

∂x2 ≈ I ⊗D2

∂2

∂y2
≈ D2 ⊗ I

∆s = I ⊗D2 +D2 ⊗ I.

(2.16)
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Figure 2.4: The second derivative of sin(x) is approximated using both Chebyshev and
equidistant nodes. The error in each approximation are shown as functions of the number
of nodes.

The value in using the Chebyshev nodes along with a spectral differentiation method can

be seen in Figure (2.4) where we approximate the second derivative of the function sin(x).

Here the second derivative is approximated using a spectral method at the Chebyshev nodes

as well as the second order central difference method at equidistant nodes. We can see that

for the spectral case, the error achieves a minimum value of nearly 10−13 when N is just

over 10. On the other hand, the number of nodes for the equidistant case is taken out to

100 with the error reaching just slightly better than 10−5. Unlike for Chebyshev nodes,

the error appears to always decrease as the number of nodes increases for the equidistant

case. But more nodes means that there are more equations to solve. Figure (2.4) shows us

that choosing Chebyshev nodes allows us to use a relatively small amount of nodes while

still achieving very good accuracy. Due to the second order nature of the central difference
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method, the convergence of the method is proportional to h2. However it can be shown that

the error in the spectral method is proportional to hN [2].

2.3 NEWTON’S METHOD

Now that we have defined the differential operator in the method, we need a way of solving

the nonlinear system of equations defined by (2.4). For all k the current solution, pk is

known while the following solution, pk+1 is unknown. Assuming we have a way of generating

a sufficiently accurate initial guess for each pk+1, Newton’s method can be an efficient option.

Newton’s method solves F (z) = 0 with the following iteration,

zi+1 = zi −
F (zi)

F ′(zi)
. (2.17)

Newton’s method is an iterative scheme that loops until the approximation satisfies,

∥zi+1 − zi∥∞ < ε (2.18)

where ε is some user defined error tolerance. We let the variable z represent pk+1 in the loop

until the relation (2.18) is satisfied. At that point we set pk+1 = z and move on the next

time step. To use Newton’s method, we rearrange (2.4) and define the function F (z) to be,

F (z) = z − [pk +
βh

2
(∆sp

2
k +∆sz

2)] (2.19)

For the initial guess z0, we need an explicit method so that an initial guess of pk+1 can be

found directly and efficiently. Since the Crank-Nicolson method is of second order, we would

like to not only chose an explicit method but one that is also of second order to approximate

z0. Huen’s method can again be used to find such an initial guess. The function, F ′(z) is in

fact the Jacobian matrix of F (z) defined by,
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JF (z) = I −G′(z) (2.20)

where I is the N2 ×N2 identity matrix and G(z) = pk +
βh
2
(∆sp

2
k +∆sz

2).

For each i = 0, 1, 2, . . . N2,

Gi(z) = pk +
βh

2
∆sp

2
k +

βh

2

N2∑
j=1

∆ij
s z

2 (2.21)

Here ∆i,j
s is the (i, j)th element of the ∆s matrix. This leads to the definition,

G′
i(z) ≈

∂Gi(z)

∂z(j)
= βh∆ij

s z(j) (2.22)

where z(j) is the jth element of the N2 dimensional column vector z. The complete matrix

form of G′(z) is defined by,

G′(z) ≈ βh ·



∆0,0
s z(1) ∆0,2

s z(2) . . . . . . ∆0,N2

s z(N2)

∆2,0
s z(1) ∆2,2

s z(2) . . . . . . ∆2,N2

s z(N2)

...
. . .

...

...
. . .

...

∆N2,0
s z(1) ∆N2,2

s z(2) . . . . . . ∆N2,N2

s z(N2)


(2.23)

Using Heun’s method from (2.3) as an initial guess gives us the following iteration for

solving the nonlinear system at each time step,

 z0 = pk +
βh
2
[∆sp

2
k +∆s(pk + βh∆sp

2
k)

2]

zi+1 = zi − J−1
F (zi)F (zi), while(∥zi+1 − zi|∞ > TOL)

(2.24)

When we reach a point where the relation (2.18) is satisfied then we can set pk+1 equal to

zi+1, move on to the next time step and repeat. We have chosen the error tolerance, TOL,
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to be 10−12 in our code.

The following pseudo code demonstrates how the porous medium equation is solved using

Newton’s method in MATLAB.

P0 = exp−(
(xi−0.5)2+(yi−0.5)2

σ2 ); % Define initial pressure by a Gaussian

for k = 1 : h : T do

z0 = Pk−1;

Find z1 from Heun’s method

while Error > TOL do

Solve: J(zi)δi = F (zi)

zi+1 = zi + δ;

Error = |δi|;

end while

Pk+1 = zi+1; % Update Pt with the zi+1 Newton approximation

end for

2.4 ERROR AND CONVERGENCE ANALYSIS

A key step in testing any method is analyzing the error and convergence properties of the

approximation. Despite the fact that we are solving a nonlinear equation, we can study the

convergence properties of the linear case in order to gain a better understanding of how the

Crank-Nicolson method behaves. Doing so can help with determining a step size that will

allow us to find a good balance between the accuracy and efficiency of our method. First,

we remember that the Crank-Nicolson discretization of the linear porous medium equation

is,

pk+1 = pk +
βh

2
(∆spk +∆spk+1)
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and after collecting like terms we get the following relation,

(I − βh

2
∆s)pk+1 = (I +

βh

2
∆s)pk

Isolating the pk+1 term leads to the following sequence,

pk+1 = (I − βh

2
∆s)

−1(I +
βh

2
∆s)pk. (2.25)

By mathematical induction we can see that for (2.25), pk → 0 as k → ∞ if and only if,

∥(I − βh

2
∆s)

−1(I +
βh

2
∆s)∥∞ < 1 (2.26)

Similarly for Heun’s method, (2.3), we have,

pk+1 = pk +
βh

2
∆s[pk + (pk + βh∆spk)]

= [I +
βh

2
∆s +

(βh)2

2
∆2

s]pk

which implies that Heun’s method is stable if,

∥I + β
h

2
∆s +

(βh)2

2
∆2

s∥∞ < 1 (2.27)

From Figure (2.5) we can see that (2.26) is satisfied for any step size h. This is because

the Crank-Nicolson method is unconditionally stable. We also see that as h becomes greater

than approximately 10−4, the explicit Heun’s method no longer satisfies (2.27). This means

that Huen’s method is only conditionally stable.

Techniques such as these are quite accurate for the linear problem. However, we are

looking to solve the nonlinear porous medium equation, and thus we require a more practical
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Figure 2.5: The norms of equations (2.26) and (2.27) as functions of the time step h, with
β = 1.

way of analyzing higher order equations. By Taylor’s theorem we have that,

p = pk(h) + amh
m +O(hm+1) (2.28)

where

p = lim
h→0

pk(h), (2.29)

Here p is the exact solution and pk(h) is the numerical approximation of the solution with a

time step size of h. In order to analyze the error in p, we require a second approximation of

our solution with a different time step.
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p = pk(2h) + 2mamh
m +O(hm+1) (2.30)

Subtracting (2.30) from 2m times (2.28) and neglecting higher order terms gives us,

(2m − 1)p ≈ 2mpk(h)− pk(2h) (2.31)

which leads to Richardson’s error estimate of pk(h) defined by,

p− pk(h) ≈
pk(h)− pk(2h)

2m − 1
. (2.32)

Since our method is known to be of second order, we let m = 2 and now have a method for

approximating the error in our numerical solution using a time step size of h,

p− pk(h) ≈
pk(h)− pk(2h)

3
. (2.33)

Being of second order means that the error is O(h2). A log-log plot of error approxi-

mations of our method for several values of h should be a straight line of slope two. The

average slope between points for the Crank-Nicolson approximation in Figure (2.1) is roughly

2.00012 while the error of the method is tending to 10−8 for the reasonable time step size of

h = 10−4. These facts give us sufficient confidence that the method is being implemented

properly.

2.5 POROUS MEDIUM EQUATION IN MATLAB

We have now covered the finite difference and spectral methods in great detail. However,

understanding a mathematical method or operation and translating it into a programming

language such as MATLAB are two completely separate tasks. Appendix A shows the

MATLAB m-file that approximates the pressure as described here in this chapter. In this
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section however, we will go into detail explaining each step.

The first step is to build the spectral matrix, M, for the first derivative. This is done

using the following algorithm for the first derivative approximation as defined in [21],

x = ((cos(pi*(0:N)/N)’ + ones(N+1,1))/2);

c = [2; ones(N-1,1); 2].*(-1).^(0:N)’;

X = repmat(x(1:N+1,1),1,N+1);

dX = X-X’;

m = (c*(1./c)’)./(dX + (eye(N+1)));

m = m - diag(sum(m’));

M = m;

M(1,:) = 0;

M(N+1,:) = 0;

Our problem uses homogeneous Dirichlet boundary conditions, which are enforced by M(1, :

) = 0 and M(N + 1, :) = 0. These lines simply set the first and last rows of the spectral

matrix to zero which forces the endpoints to be zero in the one dimensional case. Since M is

now an approximation of the first derivative, the second derivative is approximated by M2

or M ∗M in MATLAB. Kronecker products are used to build the two dimensional Laplacian

approximation from M . The matrix D in the our code represents the ∆s operator defined

in this thesis and is built by,

D = kron(I,D) + kron(D,I);

With the spectral matrix D now defined for our problem, we next look to define the

initial pressure by a Gaussian.

u = zeros(N+1,N+1);
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Sig = 0.1;

for i = 2:N

for j = 2:N

u(i,j)= Amp*exp(-(((x(i,1) - 0.5).^2)+(x(j,1) - 0.5).^2)/(Sig^2));

end

end

P(:,1) = Mat2Vec(u);

Here we define an (N + 1) × (N + 1) matrix u of all zeros and then populate the interior

nodes by a Gaussian function. The variable Sig controls the width of the Gaussian curve

and can be adjusted by the user. The width of the curve is important as it mimics the size of

the nozzle for a given rocket. The amplitude of the initial pressure is set using the variable

Amp. This defines the magnitude of the initial thrust from the rocket. Once the initial

pressure is defined over the two dimensional domain by the matrix u, it must be translated

into a vector. Doing so allows us to multiply by the spectral matrix D to approximate the

Laplacian. A short program, Mat2Vec, was written to handle this conversion. Using this

program, the line P(:, 1) = Mat2Vec(u); defines the initial pressure to be the first column of

the matrix P.

Next we implement the Crank Nicolson time stepping method using Newton’s method

at each time step to solve the system of equations that occur as a result of using an implicit

method. Newton’s method takes a dummy variable, z, updates it through a number of

iterations until it approximates the exact solution sufficiently. So before the Crank-Nicolson

loop begins, we define the initial value of the z variable to be the initial pressure, P(:, 1).

The entire Crank-Nicolson loop is then defined in our MATLAB program as follows.

%% Crank Nicolson Method

z = P(:,1);
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k = 2;

for i = h:h:T

w = z;

z = w + (h/2)*beta*D*(w.^2 + (w + h*beta*D*w.^2).^2); % Huen’s guess

e = z - w - (h/2)*beta*D*(w.^2 + z.^2); % Initial error

error = norm(e,inf);

% Newton’s Method

count = 0;

while (error > 1e-12 && count < 50)

for j = 1:size(z,1)

Z(j,:) = z’;

end

J = eye(size(z,1),size(z,1)) - h*beta*D.*Z; % Define Jacobian

z = z - J\(z - w - (h/2)*beta*D*(w.^2 + z.^2)); % Newton iteration

e = z - w - (h/2)*beta*D*(w.^2 + z.^2); % Update Error

error = norm(e,inf);

count = count+1;

end

P(:,k) = z; % Add next pressure approximation

k = k+1;

end

First we should notice that the code loops from time i = h up to T in step sizes of

h. These values are not necessarily integers. The iterator, i, can not be used as the index
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for updating the pressure matrix. The variable k is used instead and is originally set to a

value of two since the first column of P is already used for the initial Gaussian. The Crank-

Nicolson method depends on both the current solution as well as the next. Here the current

solution is known while the next solution is what we hope to approximate. The variable w

is used to hold the value of the current solution. The Newton iteration is then started using

Huen’s method as an initial guess of the next solution based solely on the current solution,

w. The Newton iteration is a conditional while loop which runs as long as the error in our

approximation, z, of the next solution is greater than 10−12. A counter is also placed in

the code to stop the Newton iteration after fifty loops. This helps to avoid encountering an

infinite loop. The key computational task in implementing Newton’s method is building the

Jacobian matrix, J, which is defined by (2.20). This definition is dependent on the matrix

G′(z) defined by (2.23). Reviewing the definition of G′(z) shows us that we simply need to

calculate the element by element multiplication between the ∆s matrix and Z. The matrix

Z is simply a matrix having the approximation vector z for every row. Using the Jacobian,

J, the Newton approximation z is updated according to equation (2.17). From there we

can calculate the error in the new approximation and if need be, continue the loop. Once

the error is small enough and the conditions of the while loop are no longer met, the latest

approximation vector z is stacked onto the pressure matrix as the kth column.

We now have an approximation for the pressure at every time step. However the purpose

of finding the pressure was to use it in the definition of the forcing function for Navier’s

equation which depends on the gradient of the pressure. Thus we need the first partial

derivatives of the pressure in both x and y at every time step. The spectral matrix M is

used for this. Again we use Kronecker products to change this one dimensional derivative

approximation into an approximation of the two dimensional operator.

Px = kron(I,M)*P;
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Py = kron(M,I)*P;

Here Px and Py are matrices where each column represents the partial derivative of the

pressure at a given time step in the x and y directions respectively. These two matrices

are what must be passed on to the finite element method program used to solve Navier’s

equation.
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3 NAVIER’S MODEL

3.1 THE FINITE ELEMENT METHOD

The second equation solved in this thesis is the Navier-Lamé problem defined by (1.3). The

Navier-Lamé equation models the displacement field of an elastic medium. To solve this

problem we are implementing a finite element method. The finite element method is based

on the idea of building a complicated object out of smaller or simpler blocks. In mathematics,

this means breaking a complicated problem into smaller more manageable ones. In our case,

we are splitting the domain of interest into smaller pieces called elements. The problem then

becomes a system of equations built from solutions on each element.

The finite element method differs from the finite difference method used in chapter two

in that we look for a solution to the variational or weak form of the problem rather than

solve the strong form of the problem [11]. The variational problem involves multiplying

by a smooth function and integrating the differential equation over a particular domain of

interest. For the finite element method, the domain is broken up into subdomains or finite

elements. Here we have chosen triangular elements to represent the domain. Triangles offer

a minimal number of nodes required to represent a two dimensional element. This greatly

simplifies calculations throughout the method. The solution on each triangle is approximated

by a simple, linear polynomial. The choice of linear polynomials simplifies the problem by

minimizing the number of nodes required on each element, as well as making the partial

derivatives of each function a constant. The solution to the variational problem is then just

the sum of the approximations on each of these triangles.

The Galerkin method is used, as in [8], to construct the weak form of the problem which

is solved instead of (1.3). The Galerkin method is used on problems which involve solving

for an unknown function. In general, the Galerkin method can be applied to any problem of

the form,
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Lu = f (3.1)

where L is a linear operator, f is a given function, and u is the unknown function. By

selecting a set of linear basis functions φ1, φ2, . . . φNn , where Nn is the number of nodes, we

can approximate the function u by a suitable linear combination,

uh =
Nn∑
j=1

φjdj (3.2)

where dj are the coefficients of the polynomial approximation. Due to the linearity of L, we

then have,

Nn∑
j=1

djLφj = f. (3.3)

Solutions to (3.3) can be found using linear functionals Φ1,Φ2, . . .ΦNn by imposing the

condition,

Φi

( Nn∑
j=1

djLφj − f
)
= 0 1 ≤ i ≤ Nn (3.4)

and again by linearity this becomes,

Nn∑
j=1

Φi(Lφj)dj = Φi(f) 1 ≤ i ≤ Nn. (3.5)

The classical Galerkin method uses the inner product, Φi(v) = (φi, v). Thus (3.5) becomes,

Nn∑
j=1

dj(φi, Lφj) = (φi, f). (3.6)

Equation (3.6) defines the system of equations that are solved in order to approximate
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solutions to (1.3). The system (3.6) can then be written in the form,

Ad = b (3.7)

where A is known as the stiffness matrix, d is the unknown vector and b is called the load

vector. The Galerkin method can be applied to a wide variety of problems however in our

case, the stiffness matrix A is used to approximate a differential operator and b approximates

the forcing term.

For our particular problem, the approximate solution uh is first found on a square grid

broken up into smaller squares of length h. The triangular elements are formed by simply

splitting these smaller squares across their diagonal. Such a grid is the simplest form of the

Dalaunay triangulation [10] as shown in Figure (3.1).
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Figure 3.1: An example of the simple uniform mesh via a Delaunay triangulation.

The Dalaunay triangulation comes from the field of computational geometry. The Dalau-

nay triangulation takes a set of points and connects them in such a way that no point lies

inside the circumcircle of any triangle where the circumcircle is the unique circle which passes
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through all three points of the triangle [17]. An interesting fact about the Dalaunay triangu-

lation is that such an algorithm will construct the edges connecting each node such that the

minimum angle of all triangles is maximized. This allows us to avoid thin triangles, which

is helpful because it will offer a more uniform mesh that will spread the error around rather

than localize it onto particular elements.

Implementation of the finite element method requires three key steps:

• Preprocessing

• FEM Solver

• Postprocessing

Preprocessing involves creating data structures to organize discrete locations of the nodes,

as well as operators to define the equation that is to be solved. The finite element method

solver will assemble global operators based on local operators on individual elements using

the data structures created during preprocessing. Once the global operators are found, the

problem becomes solving a simple linear system of equations. In postprocessing the solution

is sorted, displayed and analyzed.

Preprocessing

• Let V be the space of piecewise polynomial functions and construct a finite-dimensional

subspace Vh ⊂ V as follows:

⋆ Approximate the boundary Γ with a polygonal curve.

⋆ Make a triangulation of the spatial domain Ω by subdividing Ω into a set Th =

{K1, K2, . . . , KNE
} of non-overlapping triangles Ki, such that no corner of any

triangle lies on the edge of another triangle,

Ω = ∪K∈Th
K = K1 ∪K2 · · · ∪KNE

(3.8)
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where NE is the number of elements.

⋆ Introduce the mesh parameter h as follows: h = maxK∈Th
diam(K), where diam(K)

is longest side of K.

⋆ Define Vh ⊂ V to be the set of functions vh such that: Vh = {vh :vh is continuous on

Ω, vh|K is linear for K ∈ Th, vh = 0 on Γ} where v|K denotes the restriction of vh

to triangle K. Here we have assumed homogeneous Dirichlet boundary conditions.

• Construct the following data structures which define the discrete mesh:

⋆ Define the Locations matrix containing the grid coordinates of every node in the

mesh.

⋆ Define the Elements matrix that matches global nodes on the mesh to local nodes

on a given element.

In Figure (3.2) we have a uniform Delaunay triangulation that can help see how the

matrices Locations and Elements are built during preprocessing. The Locations matrix is

the first two be created as it holds the coordinates of each node which are required for

building the Delaunay triangulation. The Locations matrix for Figure (3.2) is shown in (3.9)

where each row contains the x and y coordinate of a single node.
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Figure 3.2: The uniform Delaunay triangulation defined from the nodal coordinates in the
Locations matrix from (3.9).
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Locations =



0 0

0.5 0

1 0

0 0.5

0.5 0.5

1 0.5

0 1

0.5 1

1 1



(3.9)

With the Locations matrix defined, we can construct the Delaunay triangulation. In

MATLAB this is done by the command,

Elements = delaunay(x, y) (3.10)

where x and y are the columns of the Locations matrix. This command results in the matrix

defined by (3.11) where each row contains the three node numbers, as labeled in Figure (3.2),

for a particular triangle.

Elements =



4 2 5

1 2 4

5 2 6

6 2 3

8 4 5

7 4 8

5 6 8

8 6 9



(3.11)
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The node numbers listed in the Elements matrix refer to the node’s corresponding row in

the Locations matrix. Using Locations and Elements together allows us to quickly find the

x and y coordinates for the three local nodes of a given triangle. These data structures

together form the triangulation of our domain.

FEM Solver

• Input all required data: f , nodes, boundary conditions, physical constants.

• Compute the local stiffness matrices AK and local load vectors bK which are defined

on individual triangles rather than the entire domain.

• Assemble the global stiffness matrix A and load vector b. These are built using the

local stiffness matrices and local load vectors. This is the key idea behind the finite

element method. We assemble an approximation of the solution on the entire domain

by solving smaller, and likely easier, problems over a finite number of elements.

• Solve the system of equations Ad = b.

Postprocessing

• Plot the solution.

• Approximate the error in the finite element solution.

• Analyze the error in the solution under different conditions. Some combinations of

physical constants or grid sizes may results in better approximations than others. An

analysis of this can help improve the accuracy and efficiency of the code.
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3.2 THE WEAK FORM

The first step in implementing any finite element method is deriving a variational, or weak

form of the equation. Weak solutions are useful because many differential equations in real

world models do not offer sufficiently smooth solutions. Thus the weak form must be used.

Even when equations do have differentiable solutions, it is often far easier to prove existence

of the weak solution and then show its equivalence to the strong solution.

We start with the strong form of the Navier-Lamé problem,

µ∆u+ (µ+ λ)∇(∇ · u) = f (3.12)

where µ and λ are known as the Lamé parameters. The forcing function f is dependent

of the pressure and is defined by f = ρg + ∇p where ρ is the density of the soil, g is the

acceleration due to gravity and p is the pressure. Both µ and λ are constants which depend

on E, Young’s modulus and v, Poisson’s ratio. Young’s modulus is a measure of the stiffness

of an elastic material while Poisson’s ratio is the ratio of the transverse contraction strain to

the longitudinal extension strain. Young’s modulus and Poisson’s ratio for a given material

are readily available in many standard tables. The constants µ and λ are defined by,

λ = vE
(1+v)(1−2v)

µ = E
2(1+v)

If we take into account that u = (u, v)T and f = (f1, f2)
T , where f1 = ρg + px and

f2 = ρg + py, then (3.12) becomes,

 µ(uxx + uyy) + (µ+ λ)(uxx + vyx)

µ(vxx + vyy) + (µ+ λ)(vyy + uxy)

 = −

 f1

f2


and after a slight rearrangement of terms we have,
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 (λ+ 2µ)uxx + λvyx + µ(uyy + vyx)

(λ+ 2µ)vyy + λuxy + µ(vxx + uxy)

 = −

 f1

f2

 (3.13)

Factoring out the differential operator ( ∂
∂x

∂
∂y
) results in,

(
∂
∂x

∂
∂y

)
·

 (λ+ 2µ)ux + λvy µuy + µvx

µuy + µvx (λ+ 2µ)vy + λux

 (3.14)

If we define the stress tensor σ to be

σ =

 (λ+ 2µ)ux + λvy µuy + µvx

µuy + µvx (λ+ 2µ)vy + λux

 (3.15)

then (3.14) can be expressed as ∇ · σij. From here we can multiply by a test function,

w ∈ V satisfying the given homogeneous Dirichlet boundary conditions and integrate over

the domain, Ω, to get

∫
Ω

wi∇ · σij dx = −
∫
Ω

wifi dx. (3.16)

By the divergence theorem,
∫
Ω
∇·σij dx =

∮
Γ
σij ·n dx. Using this property, while applying

integration by parts [7], results in

∫
Ω

w(i,j)σij dx =

∫
Ω

wifi dx+
2∑

i=1

(∫
Γhi

wihi dΓ
)

(3.17)

where

w(i,j) =

∂wi

∂xj
+

∂wj

∂xi

2
, (3.18)

and hi = σijnj (n is the unit outward normal vector to Γ). We must now introduce the
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Hilbert space L2 with inner product,

(w, u) :=

∫
Ω

wu dx.

L2 is the set of square integrable functions defined as,

L2(Ω) = {v : v is defined on Ω and

∫
Ω

v2dx < ∞}.

Next, we can define the Sobolev space H1(Ω) to be,

H1(Ω) = {v : v and v ′ ∈ L2(Ω)}

But the Sobolev space H1(Ω) is not quite enough. We also require that our test and basis

functions satisfy the boundary conditions. Thus, we define the Sobolev space H1
0 (Ω) to be,

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ΓΩ}

Writing the problem in finite element form results in,

a(w,u) = (w,f) + (w,h) (3.19)

where

a(w,u) =

∫
Ω

w(i,j)σijdx

(w,f) =

∫
Ω

wifidx

(w,h) =
2∑

i=1

(∫
Γhi

wihidΓ
)

Since we have chosen the space Vh ⊂ H1
0 such that u and w are zero on the boundary, the
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third term here is zero. The variational problem now reads,

Find u ∈ Vh such that: a(w,u) = (w,f), ∀w ∈ H1
0 .

We should note the fact that the integration by parts has eliminated all second derivatives.

This means that solutions of (3.17) might have less continuity than those satisfying (3.12)

and this is why it is known as the weak form.

3.3 STIFFNESS MATRIX

This stiffness matrix is a symmetric matrix which is a discretization of the left hand side of

the weak form. The global stiffness matrix is defined as,

Aij =

∫
Ω

w(i,j)σij dx (3.20)

In the FEM we use piecewise-polynomial approximations uh of the exact solution u. The

approximate solution uh is defined by,

uh =
Nn∑
j=1

φj(x, y)dj. (3.21)

The idea is to determine coefficients dj such that uh is an approximation of the exact solution

u. The coefficients dj are the values of the solution at the jth mesh node.

Next we need to define the strain vector, ε, for two spatial dimensions to be,

ε(u) =


ux

vy

uy + vx

 . (3.22)

Using this definition we can redefine the symmetric stress tensor, σ, by ignoring everything
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below the main diagonal and store only the unique terms due to symmetry. This gives the

stress vector σ = C ε(u) or,


σ11

σ22

σ12

 =


λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ




ε1(u)

ε2(u)

ε3(u)

 (3.23)

Here C is a matrix which is dependent entirely on the Lamé parameters and the elements of

the stress tensor represent forces per unit area. We can now replace the integrand in (3.20)

with ε(w) : Cε(u) where A : B =
∑3

j=1 AjBj. Equation (3.20) now becomes,

A =

∫
Ω

ε(w) : Cε(u) dx (3.24)

as defined in [1]. Since w ∈ V and φi form a basis for the subspace Vh ⊂ H1
0 , we can restrict

our attention to Vh by replacing the test function w by φi. Then by substituting (3.21) into

(3.20) we have,

Ai,j =
Nn∑
j=1

(∫
Ω

ε(φi) : Cε(φj)dx
)
dj (3.25)

The basis functions φj are chosen to be the linear hat functions defined by,

φj = aj + bjx+ cjy, j = 1, 2, 3 (3.26)

where the coefficients aj, bj and cj are determined from the requirement,

φj(Ni) =

 1, i = j

0, i ̸= j
(3.27)

The definition of φj in (3.27) will be enforced on each element. This means that for each
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triangle in the mesh, we just have the three local basis functions φ1(x, y), φ2(x, y), and

φ3(x, y). The coefficients, aj, bj, and cj for the three basis functions can be found by solving

the system of equations,


1 x1 y1

1 x2 y2

1 x3 y3




a1 a2 a3

b1 b2 b3

c1 c2 c3

 =


1 0 0

0 1 0

0 0 1

 (3.28)

Figure 3.3: Linear hat function φi(x, y) defined over the four triangular elements surrounding
the node, Ni.

In Figure (3.3) we see an example of our particular choice of basis functions. This

figure shows a plot of a single basis function, φi, over the entire domain. Clearly the only

non-zero values occur over elements for which the node Ni is a corner. This is a direct

result of equation (3.27). This implies that for any function φi, the only elements for which
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corresponding integrals will be non-zero are those for which Ni is a node. So the values of

the stiffness matrix representing node Ni are only dependent on elements for which Ni is a

node, and thus all other elements can be ignored. For this reason we now limit ourselves to

building a local stiffness matrix for a single triangular element, K. Each time a new local

stiffness matrix AK is found the global stiffness matrix A can be updated. After all elements

have been accounted for, the global stiffness matrix will be complete. If we define the global

stiffness matrix to be A(φi, φj), then for any element K the local stiffness matrix will be

AK(φi, φj). If we let Ni, Nj and Nk be the vertices of the triangle K, then an example of a

local stiffness matrix is


AK(φi, φi) AK(φi, φj) AK(φi, φk)

AK(φj, φi) AK(φj, φj) AK(φj, φk)

AK(φk, φi) AK(φk, φj) AK(φk, φk)

 (3.29)

Since AK(φi, φj) = AK(φj, φi), ∀(i, j) ∈ [1, NE], the stiffness matrix is symmetric.

The restriction of uh to a single element K has the form,

 uK
h = φ1(x, y)d1 + φ2(x, y)d3 + φ3(x, y)d5, (x, y) ∈ K

vKh = φ1(x, y)d2 + φ2(x, y)d4 + φ3(x, y)d6, (x, y) ∈ K
(3.30)

Since uK
h = (uh, vh) we can approximate the strain tensor on a single triangle K as,
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ε(uh) = RKu
K
h =


φK1,x 0 φK2,x 0 φK3,x 0

0 φK1,y 0 φK2,y 0 φK3,y

φK1,y φK1,x φK2,y φK2,x φK3,y φK3,x

 · uK
h

=


φK1,xu1 + φK2,xu2 + φK3,xu3

φK1,yv1 + φK2,yv2 + φK3,yv3

φK1,yu1 + φK1,xv1 + φK2,yu2 + φK2,xv2 + φK3,yu3 + φK3,xv3



=


uK,x

vK,y

uK,y + vK,x



which is equivalent to (3.22) on a single triangle K. Here φKi,x and φKi,y are the partial

derivatives of φ at node i of triangle K with respect to x and y respectively. Equation (3.25)

can then be approximated locally for a single element by,

AK =

∫
K

RT
KCRKdx (3.31)

From the definition of φj in equation (3.26), we can see that φkj ,x = bj and φkj ,y = cj. Since

bj and cj are constants, the derivatives in the matrix R will simply be constants as well.

This plus the fact that C is a constant matrix means that RTCR can be factored out of the

integral. Doing so leaves us with,

AK = RT
KCRK

∫
K

dx (3.32)

where
∫
K
dx is simply the area of element K.
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AK = RT
KCRK · ( Area of Triangle K ) (3.33)

There are multiple ways of calculating the area of the triangle. Since we have used a

coarse mesh composed of identical right triangles, this task is trivial. But this is not always

the case so other options may become useful. Simply entering the coordinates of each node

into the MATLAB function polyarea is one option. Taking advantage of the matrices that we

have already used in previous calculations of the stiffness matrix operators, another option

is

Area of Triangle K =
1

2

∣∣∣∣∣∣∣∣∣∣
1 1 1

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣∣
=

1

2
|T | (3.34)

where (xi, yi), i = 1, 2, 3 are the coordinates of the nodes for triangle K and T is the matrix

defined in the equation. This gives us the equation that is actually implemented during the

FEM Solver process of the code for each element in the mesh.

AK =
1

2
|T |RT

kCRk (3.35)

The resulting AK is a 6 × 6 matrix where each element contributes to a different element

of the global stiffness matrix A. The stiffness matrix setup ends with updating the global

matrix with the proper elements from AK for every K.
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The following pseudo code demonstrates how the stiffness matrix is created in MAT-

LAB.

for k = 1 to NE do

Global = 2*Nodes([1,1,2,2,3,3]) - [1,0,1,0,1,0];

Nodes = Elements(k,:);

x = Locations(Nodes,1);

y = Locations(Nodes,2);

Construct R from x and y

Construct T from x and y

Ak = 1
2
det(T ) ·RTCR; % build local stiffness matrix

A(Global,Global) = A(Global,Global) + Ak; % Update global stiffness matrix

end for

3.4 LOAD VECTOR

The right hand side of equation (3.17) handles the forcing function as well as the boundary

conditions. For the sake of simplicity of implementation, we have chosen homogeneous

Dirichlet boundary conditions. Since the solution u is a displacement field, this choice in

boundary conditions means that there is no displacement for particles on the boundary of

our domain of interest. This is a reasonable assumption for a sufficiently large domain with

a body force that is localized in the center of the domain. This implies that,

2∑
i=1

(∫
Γhi

wihi dΓ
)
= 0 (3.36)

and that only the first term on the right hand side of equation (3.17) needs to be calculated.

Just as we did for calculating the stiffness matrix, we are replacing the test function w

with the linear hat functions φ, to get
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∫
Ω

wifi dx =

∫
Ω

φifi dx, (3.37)

where f = ρg +∇p. Here p is the pressure approximated in chapter 2, ρ is the density of

the soil, and g is the acceleration due to gravity. The gradient of the pressure, ∇p, as in,

∇p =

 ∂p
∂x

∂p
∂y

 (3.38)

is what ultimately defines the strength of the forcing term. It is logical to expect that

for larger initial pressures due to rocket exhaust, we will see larger displacement fields. The

vector ∇p is composed of the first derivative of the pressure in the x direction as well as the y

direction. These partial derivatives can be found using the Chebyshev spectral differentiation

matrix D used in section 2.2 while again making use of the Kronecker product.

∂p

∂x
≈ (D ⊗ I) · pk = Px

∂p

∂y
≈ (I ⊗D) · pk = Py

It should be noted that these partial derivatives are defined on the Chebyshev nodes used

in Chapter 2 and not on those used here for our finite element mesh. The interp2 function

in MATLAB performs the two dimensional interpolation necessary to efficiently define these

values on the appropriate grid. The interp2 function offers the choice of nearest, linear,

spline, or cubic interpolation. Since the Crank-Nicolson method is of second order, we should

use an interpolation option of order at least two. This leaves us with the spline or cubic

options. Since we are not using a uniformly spaced grid, the spline option is chosen in our

code.
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Just as we did for calculating the stiffness matrix, the load vector calculation involves

updating the global vector with the contributions from each individual element. The integral

∫
K

φifi dx (3.39)

over a particular element K can be approximated using the three dimensional trapezoidal

rule,

∫
K

φ(x, y) · f(x, y)dx ≈ (Area of K)

3

3∑
i=1

φi(xi, yi) · f(xi, yi) (3.40)

which is simply the average of the function evaluated at each node times the area of the

base. By definition φi(xi, yi) = 1 for all i. Thus (3.40) simplifies to,

∫
K

φ(x, y) · f(x, y)dx ≈ (Area of K)

3

3∑
i=1

f(xi, yi) (3.41)

Since f(x, y) = ρg + ∇P , the quadrature defined by (3.41) is calculated for both f1 =

ρg+Px as well as f2 = ρg+Py. These approximations represent the integrals over an entire

element. These integrals are approximated over an entire element but what we care about is

the contribution of these integrals to the three nodes of the triangle. If we assume an even

distribution, we can simply divide these integrals by three and assign that value to each of

the corresponding nodes.

We must remember that each node has an x and y displacement value and thus each

node takes up two spots in our solution vector. So for a single element we have three nodes

and thus a vector of length six,

uK
h = (u1, v1, u2, v2, u3, v3)

T (3.42)

For example, the first node will be represented by the first and second elements of our
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solution vector, the second node takes the third and fourth, the third takes the fifth and six

and so on. So we require a way of translating the node numbers into their corresponding

solution vector locations. We can see from this pattern that the nth node is represented by

the 2n − 1 and 2n locations of the solution vector. This means that the values for the x

displacement take the odd locations and the y displacement goes in the even locations. If

Nodes is a vector containing the assigned node numbers, the command

Global = 2 ∗Nodes([1, 1, 2, 2, 3, 3])− [1, 0, 1, 0, 1, 0]; (3.43)

in MATLAB will give us the six locations in our solution vector for the three nodes of a

particular triangle.

The following pseudocode demonstrates how the stiffness matrix is created in MATLAB.

for k = 1 to NE do

Nodes = Elements(k,:);

Global = 2*Nodes([1,1,2,2,3,3]) - [1,0,1,0,1,0];

x = Locations(Nodes,1);

y = Locations(Nodes,2);

area = polyarea(x,y);

bKx = 1
3

∑3
i=1 Px(Nodes) + ρg;

b(Global([1,3,5])) = b(Global([1,3,5])) + bKx · area/3;

bKy = 1
3

∑3
i=1 Py(Nodes) + ρg;

b(Global([2,4,6])) = b(Global([2,4,6])) + bKy · area/3;

end for
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3.5 ERROR ANALYSIS

The Richardson extrapolation technique used in section 2.4 to analyze and approximate the

error in the finite difference method can also be applied to the finite element method so long

as we limit ourselves to a uniform mesh.

The a priori interpolation error estimate is again of the form,

u− um
h = Cm+1h

m+1 +O(hm+2) (3.44)

This applies to a polynomial approximation of degree m with a mesh spacing h. Just as

before we require two approximations for our estimate, one for grid spacing h and a second

for a grid spacing of 2h. So along with (3.44), we need

u− um
2h = Cm+1(2h)

m+1 +O(hm+2) (3.45)

where m = 1 due to our choice of linear basis functions. Setting m equal to one and

subtracting (3.45) from (3.44) leads to,

u2h − uh = −3C2h
2 (3.46)

or

C2h
2 =

uh − u2h

3
(3.47)

after neglecting higher order terms. From (3.44) we have that C2h
2 is an approximation of

u− uh. Thus, we have an estimate of the discretization error of the uniform mesh solution

as
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u− uh =
uh − u2h

3
(3.48)

Figure 3.4: A log-log plot of the error as a function of the grid size h for the finite element
method. The slope of the line is 1.951. As the grid size h decreases, this value appears to
converge to exactly 2.

The equation u− uh = C2h
2 also tells us something about the behavior of the error. If we

create a log-log plot of the error approximation for multiple mesh sizes, we would expect to

again see a line of slope 2.

Unfortunately equation (3.48) is not very practical for approximating the error in a finite

element approximation, because uniform meshes such as the one shown in (3.1) are very rarely

used. When some nodes no longer lie on a uniform mesh, a new method for approximating

the error is required. Rather than approximating the error through a comparison of solution

approximations from different grid sizes, we can calculate the residual of our approximation.

The residual is the difference between the right and left sides of the strong equation when

our approximate solution is used. If we let A(uh) = b be our finite element equation as
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before, then Â(u) = b̂ represents the strong equation defined by (3.12) where

 Â = µ∇2 + (µ+ λ)∇∇T

b̂ = −f
. (3.49)

The residual is then defined to be,

R(uh) = |Â(uh)− b̂| (3.50)

and the new error estimate will be dependent on this residual as well as the size of the grid

spacing, h, which is again the largest diameter among all elements in the mesh. The new

error estimate is defined by [6],

∥e∥ ≤ ScCi∥h2R(uh)∥∞ (3.51)

where Sc is the stability factor and Ci is an interpolation constant. The stability constant

Sc is problem dependent while the interpolation constant Ci does not rely on the particular

problem. Ci depends entirely on properties such as the shape of the elements, the order of

the basis functions, the norms used in approximating the error and so on. Since Sc and Ci

are constants, we can say that the error is proportional to h2R(uh). This means that

∥e∥ ∝ ∥h2R(uh)∥∞ (3.52)

and thus, h2R(uh) can be used to estimate the error. The result of this equation is a column

vector that contains the error approximation on each node in the mesh. A measure of the

error on a particular element can be found by summing the errors on the three nodes that

make up that triangle.
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3.6 ADAPTIVE REFINEMENT

Now that we have a way of measuring the error in an approximation found on a non-uniform

grid, we can use more complicated meshes. Or rather, we can adjust the mesh in an attempt

to minimize the error in the approximation. We begin by finding a solution on the uniform

mesh and approximating the error on each element using (3.52). The error on each element

is then compared to a given error tolerance, Tol, chosen by the user. Any element K that

does not meet the requirement,

ERRORK ≤ Tol (3.53)

requires refinement. Here ERRORK is the error on element K defined by summing the

error of the three nodes on triangle K. As stated before, smaller elements will more closely

resemble a continuous function and thus will decrease the error. However, a refinement of

each and every element is inefficient. Thus the idea is to only refine particular elements. So

by refinement, we mean that new nodes will be added to the mesh such that all elements

that do not satisfy (3.53) are split into multiple smaller triangles. Here we have chosen to

add a single node to the element. This node will be located at the centroid of the triangle.

If (x1, y1), (x2, y2) and (x3, y3) are the corners of a given triangle, then the centroid where

the refinement node is placed is defined by,

Centroid =
(x1 + x2 + x3

3
,
y1 + y2 + y3

3

)
The centroid is added to the mesh through the Locations matrix. Thus any element can be

refined by adding a new row to Locations which contains the x and y coordinates of that

particular element’s centroid. This can be repeated as many times as needed. For every

element that does not satisfy (3.53), a new node is added to the mesh which will split the
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element into smaller ones. This is done in the code by adding a new row containing the x

and y coordinates of the centroid to the Locations matrix. Once Locations has been updated

with a new node for all elements not satisfying (3.53), the Delaunay triangulation can be

rebuilt with the new set of nodes. A simple example of this is shown in Figure (3.5).
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Figure 3.5: On the left is a uniform Delaunay triangulation for a 3× 3 mesh. When a new
node is been placed at the centroid of the 4 corner elements the Delaunay triangulation is
then applied to this new list of nodes to generate the figure on the right.

Unfortunately there is no guarantee that all elements of the mesh will satisfy (3.53) once

this refinement is made. A single refinement can only do so much in terms of decreasing

the error on any given element. But we are not limited to just a single refinement. We may

use a conditional While loop to continue refining the mesh until each and every element

does satisfy (3.53). Figure (3.6) demonstrates the progression of this process from a uniform

initial mesh through three refinements.
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Figure 3.6: The initial uniform mesh along with the first three refinements with the error
norm of the approximation found on each mesh as defined by (3.52). This approximation
was calculated with µ, λ and ρ all set to 1, β = 0.01 and g = 9.81. The magnitude of the
initial pressure is set to 1.

As we continue refining the mesh, the effect it has on the error decreases, making the error

more difficult to improve. The dependency on the grid spacing h in equation (3.52) partially

explains this. As the elements get smaller and smaller, the potential for decreasing h becomes

less. However with each refinement, the size of the data structures Elements and Locations as

well as the stiffness matrix and load vector grow greatly. This means that the computational

cost of refinement can be great. This should be kept in mind when defining the tolerance.

In Table (1) we can find some valuable information on how to optimize the results of the
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Table 1: On the left is a table of errors on uniform meshes of N2 nodes for N = 10 to 30.
On the right is a table for the error in the first four refinements of the same initial N = 10
uniform mesh.

N Nodes Error

10 100 2.4058
15 225 0.5946
20 400 0.3572
25 625 0.1370
30 900 0.1124

Refinement Nodes Error

Initial Mesh 100 2.4058
1 255 0.2747
2 643 0.1981
3 1708 0.1639
4 4802 0.1370

adaptive refinement method proposed in this thesis. In both tables we start with finding

the error on a uniform mesh of N = 10, or 100 nodes. From there we use two methods for

improving the accuracy of the finite element approximation. First, we simply increase the

value of N which in turn decreases the uniform grid spacing h which in turn increases the

number of nodes. Such a method is called h-refinement and is simply a refinement of each

and every element in the mesh by adding more nodes and decreasing the uniform grid spacing

h. This is the simplest form of mesh refinement. The second option is to use the adaptive

refinement algorithm suggested in this section which will only refine elements of insufficient

accuracy. At first it would seem from Table (1) that the refinement algorithm is an efficient

option. After four refinements we have a mesh of 4, 802 nodes with an error of 0.1370. This

error is nearly identical to that of the first method when N = 25 and only 625 nodes are

used. But a closer look shows that during the first refinement we have achieved a massive

improvement in the error. The error after a single adaptive refinement drops to 0.2747

while using only 255 nodes. A side test was ran on a uniform mesh using the h-refinement

method and we did not achieve a similar error of 0.2670 until we let N = 22 giving us 484

nodes. Fewer nodes means we have fewer equations to solve and thus our program can run

more efficiently while achieving similar accuracy. Only after this first refinement does the

algorithm become more effective than simply increasing the value of N . This can be seen

more clearly in Figure (3.7) where the errors from both tables are plotted with respect to
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the number of nodes of the mesh they were found on.
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Figure 3.7: Errors from a coarse mesh of N2 nodes for N = 10 to 45 compared to the error
from the same initial 100 node coarse mesh along with that of the first 4 refinement meshes.
For each of these tests we set µ, λ, and ρ equal to one, β = 0.00001 and let the refinement
tolerance be 0.02

An analysis of Figures (3.6) and (3.7) shows us that the error estimate defined by equation

(3.52) is not sufficient. The current error estimate uses a global value for the grid spacing

h which is a constant defined as the single largest edge of any element on the entire mesh.

There will likely be some elements of a mesh that do not require nearly as many refinements

as others. This leads to the problem we see here where the longest edge in the mesh differs

greatly from the average edge length. In Figure (3.6) the longest edge in the three refinements

shown is found in the lower left corner. We can see that this length is fairly accurate for

the first refinement but becomes exceedingly worse for refinements two and three. To solve

this problem we turn our attention from the error on each node toward the error on each

element. Doing so allows us to find the longest edge on any given elements and use that as
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the value of h for the local error estimate. Doing so leads to the error estimate for a single

element K,

∥eK∥ ≤ ∥h2
KR(uK

h )∥∞ (3.54)

where hK is now the longest edge on element K rather than a global constant and R(uK
h ) is

the sum of the residual on the three nodes of element K.

Table 2: Error results in the FEM using the local error estimate.
Refinement Number of Elements Average Local Error

Initial Mesh 578 0.139931
1 1682 0.056900
2 4566 0.021569
3 10616 0.009638

We can see from Table (2) that by using the local error estimate defined by equation

(3.54) we achieve a more steady decline in the error than that found in Table (1). Despite

the fact this new method of approximating the error on each element will potentially decrease

the number of refinements needed on some elements, Table (2) shows that the number of

elements still grows at an alarming rate. So we are still limited to the number of refinements

or our choice in the error tolerance. However, we can now see that results of sufficient

accuracy can be efficiently reached in a reasonable number of refinements.

In Figure (3.8) we have applied the estimate defined by equation (3.54) using local grid

spacing values hK which lead to better approximations of the error for each refinement than

those shown in Figure (3.6). The error on the initial mesh was improved greatly by using a

smaller value for β which improves the accuracy of the pressure approximation.
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Figure 3.8: The initial uniform mesh along with the first three refinements with the error
norm of the approximation found on each mesh as defined by (3.52). This approximation
was calculated with µ, λ and ρ all set to 1, β = 0.00001 and g = 9.81. The magnitude of
the initial pressure is set to 1.

3.7 FINITE ELEMENT METHOD IN MATLAB

Just as we did for the porous medium equation, we now go into detail explaining how the

finite element method is implemented in MATLAB for Navier’s equation. The FEM function

should require the user input values for µ, λ, ρ, N , β, and the error tolerance for the adaptive

refinement method.

The first step is to define our mesh and create the data structures, Locations and Ele-
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ments. Since our initial uniform mesh is just a triangulation of (N − 1)2 squares cut along

the diagonal as in Figure (3.1), the number of elements in the initial mesh is defined by

E = 2*(N-1)^2;

Next we define the nodes on the mesh and build a grid with the commands,

H = 1/(N-1);

X = 0:H:1;

Y = X;

[x0,y0] = meshgrid(X,Y);

Here we use the value H to be the uniform grid spacing defined by the number of nodes.

Using this we can define the uniform grid using MATLAB’s meshgrid command. This

function takes two vectors and returns two matrices that will allow all combinations of x

and y to be considered. For example, if we let both x and y be the vectors [0, 1, 2, 3, 4, 5],

then [x0, y0] = meshgrid(x, y) produces:

x0 =

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

y0 =
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0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

The matrices x0 and y0 can now be used to plot a three dimensional function at all combi-

nations of (x, y) ∈ 0, 1, 2, 3, 4, 5. With the coordinates of each node now well defined by the

vectors X and Y, we can build the Locations matrix. While X and Y are vectors, Locations

holds the values of nodes on a two dimensional grid. A double FOR loop can be used here

to account for all combinations of x and y.

Locations = zeros(n^2,2);

k = 1;

for i = 1:N

for j = 1:N

Locations(k,1) = X(1,j);

Locations(k,2) = Y(1,i);

k = k+1;

end

end

The Locations matrix is similar to the meshgrid command in that they both represent a

grid of all combinations of x and y. However meshgrid returns two square matrices while

Locations stores the x and y values in the first and second column respectively. This makes

it easier to keep track of which node we are using. For example, in Locations the kth node

60



is simply stored in the kth row. Next, we can use the Locations matrix to build Elements

using the delaunay command in MATLAB.

Elements = delaunay(Locations(:,1),Locations(:,2));

This results in the Delaunay triangulation which defines the elements in our mesh. The final

step before we can begin the finite element algorithm is defining which rows in the Locations

matrix represent boundary nodes since these must be handled separately.

numBC = 4*N-4;

DirBC = zeros(1,2*numBC);

k = 1;

for i = 1:N^2

if Locations(i,1)*Locations(i,2)==0||Locations(i,1)==1||Locations(i,2)==1

DirBC(1,k) = 2*i-1;

DirBC(1,k+1) = 2*i;

k = k+2;

end

end

The number of boundary nodes, numBC, on a square grid is defined by numBC = 4N − 4.

Here we subtract by four in order to avoid counting the corners twice. The vector DirBC

is of length 2 ∗ numBC since each node has an x and y component. If either component of

the kth row in Locations is zero or one, then the kth row represents a boundary node. But

again since each node has two components, we add two elements to the DirBC vector each

time a boundary node is found. The DirBC vector will be used later to remove these values

from the global stiffness matrix and load vector as they are not needed for approximating

the solution on the interior nodes.
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Next we can build the stiffness matrix which starts off as simply a matrix of all zeros

using the command,

A = zeros(2*N^2,2*N^2);

From here we loop over every element and find the local stiffness matrix for each of them.

The global stiffness matrix, A, is then updated at locations corresponding to the u and

v solutions of the nodes on that element. As mentioned before, these are found with the

commands

Global = 2*N(k,[1,1,2,2,3,3]) - [1,0,1,0,1,0];

Nodes = Elements(k,1:3);

x = Locations(Nodes,1);

y = Locations(Nodes,2);

Since we have chosen our basis functions to be φ(x, y) = ax + by + c, the gradient of φ is

defined by ∇φ = (a, b)T . For each element there we have φ1, φ2, and φ3. to account for

each of the three nodes. The gradient of each of the three basis functions can be found

simultaneously as follows,


∇φ1

∇φ2

∇φ3

 =


1 1 1

x1 x2 x3

y1 y2 y3


−1

·


0 0

1 0

0 1

 (3.55)

In MATLAB this is handled with the command,

PhiGrad = [1,1,1;x(1),x(2),x(3);y(1),y(2),y(3)]\[zeros(1,2);eye(2)];

But we must also make sure that the basis functions satisfy the homogeneous Dirichlet

boundary conditions. So we then set PhiGrad equal to zero for any node where the x or y

coordinate is zero or one. This is done by,
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for i = 1:3

if (x(i)*y(i) == 0 || x(i) == 1 || y(i) == 1)

PhiGrad(i,:) = 0;

end

end

Equation (3.35) which defines the local stiffness matrix is built around the following two

matrices

RK =


φK1,x 0 φK2,x 0 φK3,x 0

0 φK1,y 0 φK2,y 0 φK3,y

φK1,y φK1,x φK2,y φK2,x φK3,y φK3,x



C =


λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ


The matrix C is built entirely of the input values µ and λ as follows,

C = mu*[2,0,0;0,2,0;0,0,1] + lambda*[1,1,0;1,1,0;0,0,0];

The matrix RK , on the other hand, is a bit more difficult. We can notice that the odd

elements of rows one and three are composed of the partial derivatives of φi with respect

to x and y respectively. The even elements of rows two and three are composed of the

partial derivatives of φi with respect to y and x respectively. All other elements are zero. In

MATLAB the R matrix is built as follows,

R = zeros(3,6);

R([1,3],[1,3,5]) = PhiGrad’;
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R([3,2],[2,4,6]) = PhiGrad’;

With R and C now defined, we can find the local stiffness matrix as defined by equation

(3.35).

Ak = det([1,1,1;x(1),x(2),x(3);y(1),y(2),y(3)])/2*R’*C*R;

and the global stiffness matrix A is then updated using the Ak and Global matrices

A(Global,Global) = A(Global,Global) + Ak;

This process is repeated for every single element in the mesh. When all elements have

been accounted for, we can use the DirBC matrix to remove all boundary nodes from the

global stiffness matrix. In MATLAB an element of a matrix can be deleted by simply setting

it equal to [ ]. The command

A(DirBC,:) = [];

A(:,DirBC) = [];

removes all rows and columns of A which represent a boundary node. The global stiffness

matrix A is now complete.

Next we need to build the load vector b, which is again done by finding the local load

vector on each triangle. Since the load vector is dependent on the pressure, we must call the

program defined in Chapter 2.

[XX,P,px,py] = Pressure(9,h,T,beta);

[xI,yI] = meshgrid(XX,XX);

Here XX is a vector containing the Chebyshev nodes, P is the pressure approximation, px

is the partial derivative of P with respect to x, and py is the partial derivative of P with

respect to y. On the second line we use XX to define the grid on which the pressure is
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defined. This grid is used to interpolate the partial derivatives of P from the Chebyshev

nodes onto the FEM nodes.

Px = interp2(xI,yI,px,x0,y0,’spline’);

Py = interp2(xI,yI,py,x0,y0,’spline’);

The interp2 function interpolates the px and py matrices from the [xI, yI] Chebyshev grid

onto the [x0, y0] FEM grid using a cubic spline option.

Equation (3.41) with f(x, y) = ρg+∇p, shows us that other than the partial derivatives

of the pressure just found, we only need the area of the triangle to find the load vector.

Again we loop over every element and construct Global, Nodes, x and y by

Global = 2*N(k,[1,1,2,2,3,3]) - [1,0,1,0,1,0];

Nodes = Elements(k,1:3);

x = Locations(nodes,1);

y = Locations(nodes,2);

area = polyarea{x,y};

MATLAB has a built in function, polyarea, that can be used to calculate the area of any

closed polygon if given the coordinates of each node. Using this function we define the area

of triangle K.

The local load vector is of length six, where the odd elements represent the x displacement

and the event elements represent the y displacement on each of the three nodes.

DPx = (Px(Elements(k,1),1)+Px(Elements(k,2),1)+Px(Elements(k,3),1))/3+rho*g;

b(Global([1,3,5]),1) = b(Global([1,3,5]),1) + DPx*area/3;

DPy = (Py(Elements(k,1),1)+Py(Elements(k,2),1)+Py(Elements(k,3),1))/3+rho*g;

b(Global([2,4,6]),1) = b(Global([2,4,6]),1) + DPy*area/3;
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The values DPx and DPy take the average of Px and Py respectively, and add them to ρg

in order to approximate f(x, y) on the element. The global load vector b is then updated by

multiplying DPx and DPy by the area as in equation (3.41) and splitting that value into

third to distribute it evenly over each node.

The last step in building the load vector, as it was for the stiffness matrix, is to remove

all boundary nodes. This is done with the command

b(DirBC) = [];

With the stiffness matrix and load vector now defined, we have a system of the form

AU = b (3.56)

where U = (u,v). MATLAB has a number of methods for solving such systems. We can use

the fact that stiffness matrix is symmetric and positive definite to optimize this process by

setting the following conditions

opts.SYM = true;

opts.POSDEF = true;

and then using the linsolve function to get

U = linsolve(A,b,opts);

The solution vector U contains both u(x, y) and v(x, y). The odd elements of U make up

u and the even elements of U make up v. These can be separated by the commands

u = U(1:2:size(U,1)-1,1);

v = U(2:2:size(U,1),1);
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This entire process must be repeated for every time step. Nothing changes in the im-

plementation other than that the pressure derivatives are now matrices with each column

representing a separate time step. We then loop through every column of the pressure

derivative and perform this entire calculation with each of those defining a new load vector.
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4 EXPERIMENTAL RESULTS

4.1 PRESSURE RESULTS

The first goal for our results from experimenting with the pressure is to determine an optimal

number of nodes, N, to define the discrete spatial domain. This value determines the number

of nodes in both the x and y directions upon which the spectral difference operators are

defined.
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Figure 4.1: Plots of the initial pressure as well as the pressure at time steps t = 6000, 12000,
and 20000. For this test we let N = 8,h = 0.001, T = 20, and β = 0.000001.

Figure (4.1) shows a key problem with our approximation. We can see that as time goes

on, the pressure becomes negative toward the center of all four sides of the square grid. This

is not physically accurate in that the pressure should always be positive. Small cases of

negative values could be ignored since the interpolating polynomial could be above or below

the exact solution between nodes and this could be a cause for negative values. But we are

getting results that are far less than zero. In Figure (4.1) the values reach nearly negative

one hundred after 20, 000 time steps and continues to get worse with every time step.

68



The cause of this is our choice in a square grid which do not allow for boundary conditions

that uniformly comply with the diffusion of the initial pressure. The nodes in the center of

each of the four sides of the boundary are closer to the source than those near the corners

of the boundary. However we are enforcing the same value onto each of these nodes. In

Figure (4.2) we see that using N = 9 gives us an initial pressure that while still defined by

a Gaussian, more closely resembles a 3D rectangular structure and thus matches our square

grid more closely. This helps to minimize the issue with negative pressure values.
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Figure 4.2: Plots of the initial pressure as well as the pressure at time steps t = 6000, 12000,
and 20000. For this test we let N = 9,h = 0.001, T = 20, and β = 0.000001.

In Table (3) we continue to set β = 0.000001, T = 20, and use the value N = 9 in an

effort to find a good time step size. A comparison between the error and the runtime allows

us to select a value of h that gives a good balance between accuracy and efficiency.

We can see from Table (3) that while decreasing the step size h does lower the error, it

also has a big impact of the runtime. The step sizes are being cut in half for each of these

tests yet the increase in runtime does not follow a similar linear progression. The run time

appears to be growing exponentially as the step size decreases. When we let h = 0.0016, the
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Table 3: Error and runtime results for the pressure approximation with N = 9, β = 0.000001
and a total time of T = 20 seconds. The slope of the log-log error plot is 2.000004.

Time Step Error Runtime (seconds)

h = 0.05 0.5543·10−6 0.488338
h = 0.025 0.1386·10−6 1.071605
h = 0.0125 0.0346·10−6 2.373442
h = 0.0063 0.0087·10−6 5.760332
h = 0.0031 0.0022·10−6 16.616368
h = 0.0016 0.0005·10−6 54.148479
h = 0.0008 0.0001·10−6 183.297758

error is approximately 5 · 10−10 with a run time of under one minute. While the accuracy

of the approximation continues to improve, the run time jumps to over three minutes for

h = 0.0008. It would seem from Table (3) that a step size of about h = 0.002 gives us the

best balance of accuracy and efficiency.
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Figure 4.3: Plots of the error at different time steps for four different values of N. We have
let β = 0.000001 and used an initial amplitude of 1000 for all four plots. We can see that
using N = 9 gives the best results.

Now that we have settled on a good time step size, our next goal is to find a value of N

that gives us the best results. Figure (4.3) plots the error as a function of the time step with
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four different values of N . In all cases we see that the plots have a slope of approximately two

as expected. We have used β = 0.000001 and an amplitude of 1000 for the initial pressure

on each of these four plots. It is no surprise that the best result is N = 9, an odd number.

Since the Chebyshev nodes are defined on xi for i ∈ [0, N ], N = 9 actually gives us ten

nodes. Meaning we will have Gaussian which resembles that shown in Figure (4.2) which

provided better results than the odd values from Figure (4.1).
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Figure 4.4: Plots of the error at different time steps for five different initial amplitudes of
the pressure Gaussian. We have let β = 0.000001 and used N = 9 for all five plots. We can
see that as the amplitude increases, the error gets worse.

Unlike the step size or the number of nodes, the amplitude of the initial pressure is

something that will likely change for each test. The amplitude represents the magnitude of

the initial pressure imposed by the rocket. Tests should be run for many different values

of the amplitude. Figure (4.4) again shows that we have a slope of two when the error is

plotted as a function of the time step. We also notice that as the amplitude increases the

method become less accurate. But even for an amplitude of 3000 N/m2 we have an error of

no worse that approximately 10−10.
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4.2 DISPLACEMENT RESULTS

If we remember that the solutions of the finite element method represent the displacement

of the soil due to the applied pressure, we can expect a couple of key things. First, we would

expect that by applying greater pressure to the system we are in fact increasing the forcing

term in Navier’s equation and thus the displacement should be greater. A more powerful

rocket should have a greater effect in terms of the displacement of the soil. Next, we should

expect that soil particles on opposite sides of the pressure source would be displaced in equal

but opposite directions.
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Figure 4.5: The four plots shown here are the initial pressure, the error in the FEM approx-
imation on each element, and the mesh plots of u(x,y) and v(x,y) which represent the x and
y displacement. For this test we let N = 50, µ = 1, λ = 1, ρ = 1, and β = 0.000001.

In Figure (4.5) we see an initial pressure of at most 100 Newtons, as well as the u(x, y)

and v(x, y) solutions after a single time step of 0.001 seconds. Here the local error plotted on
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the z axis is the error on a given element. This is found by summing the three values in the

vector h2 ·R(uh) which correspond to the nodes of the given triangle. Such a pressure results

in a maximum displacement in the x direction of approximately ±2 meters. The maximum

displacement in either direction is near the center of the grid and the displacement decreases

as we look to particles farther and farther away from the central pressure source. The

y displacement is nearly identical to the x displacement due to the initial pressure being

defined by a uniform Gaussian. The only difference between the x and y displacement is

that the plot is rotated by 90 degrees, as expected.

0 0.5 1
00.51

0

100

200

300

x

Initial Pressure

y

P
re

ss
ur

e

0 2000 4000 6000
0

0.5

1

1.5

Element

Lo
ca

l E
rr

or

 

 

0 0.5 1
0

0.5
1

−10

−5

0

5

10

xy

u(
x,

y)

0 0.5 1
0

0.5
1

−10

−5

0

5

10

xy

v(
x,

y)

Avg Error = 0.1233

Figure 4.6: The four plots shown here are the initial pressure, the error in the FEM approx-
imation on each element, and the mesh plots of u(x,y) and v(x,y) which represent the x and
y displacement. For this test we let N = 50, µ = 1, λ = 1, ρ = 1, and β = 0.000001.

In Figure (4.6) we again see a plot of the initial pressure and the x displacement caused

by this applied pressure after 0.001 seconds. However here we have set the initial pressure
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such that it reaches a maximum of 200 Newtons, ten times that used in Figure (4.5). As one

would expect, the increase in pressure has resulted in an increase in displacement. The soil

particles have now been displaced by over ±5 meters.

The value of the Lamé constants µ and λ, the number of nodes, N , as well as the density

of the soil, ρ, play a large role in our problem. This is true for not only the physical properties

of the results but also the accuracy and stability of the finite element approximation. Figure

(4.7) can be used as a basis for comparison of different combinations of values for these

constants. Here we used a relatively simple case where µ = 1, λ = 1, ρ = 1, and β = 0.0001.

For this combination of parameter values, N = 18 is the largest value where three refinements

are possible. This is due to the fact that we are using the student version of MATLAB which

greatly limits the maximum dimensions of matrices. While there are spikes in the error at a

number of elements in the mesh, the general trend of the refinement process is a sufficiently

steady decline in the average error across the entire mesh. After just three refinements, the

approximation is estimated to be less than one percent off from the exact solution.

In Figure (4.8) we have decreased the value of N to be 12 and left all other values

exactly the same as those used to create Figure (4.7). As is the case with most numerical

methods, a decrease in the number of nodes on the mesh has decreased the accuracy of the

approximation. However we still see a steady decline in the error after each refinement.

Changing the number of nodes in the initial mesh seems to have little effect on the stability

of the approximation, but clearly it has a large impact on the accuracy.

In Figure (4.9) we have gone back to using N = 18 but have switched the value of µ to

100. We can see that the average error over the initial mesh as well as all three refinements

shown is remarkably similar to those found for µ = 1 in Figure (4.7). The spikes in error

occur on different elements, but the overall error is none the less unchanged. Changes to the

value of µ seem to have little to no effect on the accuracy or stability of the approximation.

In Figure (4.10) we run a similar test where we switch the value of µ back to one while
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Figure 4.7: Local error on each element for an initial mesh with N = 18, µ = 1, λ = 1,
ρ = 1, and β = 0.0001 as well as the first three refinement of this mesh.

setting λ equal to 100. However unlike for the previous test, we see that there is in fact a

very noticeable change in the average error when compared to that shown in Figure (4.7).

The differences in the effects on the error from changing µ versus changing λ can be seen

more clearly in Table (4). It can be helpful to remember that our problem is defined in

equation (3.12) to be,

µ∆u+ (µ+ λ)∇(∇ · u) = f (4.1)

The constant µ appears in the coefficient of both terms while λ only appears in the term

containing the gradient of the divergence of the displacement solution. The λ constant occurs
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Figure 4.8: Local error on each element for an initial mesh with N = 12, µ = 1, λ = 1,
ρ = 1, and β = 0.0001 as well as the first three refinement of this mesh.

together with µ where the summation of the two make up the coefficient of the second term

of the equation. We tested the two cases, (µ, λ) = (100,1) and (µ, λ) = (1,100) where the

coefficient (µ+ λ) is the same for each. This means that the value of the coefficient (µ+ λ),

and thus the value of λ, alone can not be the reason for this difference. Rather, it must be

the ratio of the two coefficients µ and (µ+ λ) that results in this difference in accuracy.

The conclusion from the previous tests that the ratio of the two coefficients in equation

(3.12) rather than the values of the constants µ and λ themselves is what results in changes

in accuracy is reinforced in Figure (4.11). Here we have changed both µ and λ to equal 100

rather than just one. The ratio of the two coefficients in equation (3.12) is again close to

that used to generate Figure (4.7) and as expected, the average error over each refinement
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Figure 4.9: Local error on each element for an initial mesh with N = 18, µ = 100, λ = 1,
ρ = 1, and β = 0.0001 as well as the first three refinement of this mesh. Notice that the
change in µ has had little effect on the error when compared to Figure (4.7).

mesh is nearly identical to those found in Figure (4.7).

So far we have seen how changes in the constants µ and λ effect accuracy, but the

stability of the approximation was never an issue. Changes to the value of ρ however can

cause problems with the convergence and efficiency of the approximation which greatly effects

the stability of the method. In Figure (4.12) we see that with µ and λ again set being set to

one but letting ρ equal 10, we have a major loss in accuracy over each mesh. A consequence

of this inflation in error is that more elements will require refinement in each refinement

iteration. This leads to more nodes being added to the mesh and hence more equations

needing to be solved. The runtime of the program increases greatly and the MATLAB
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Table 4: Error results in the finite element approximation for (µ, λ) = (100,1) and (µ, λ) =
(1,100).

Refinement (µ, λ) = (100,1) (µ, λ) = (1,100)

Initial Mesh 0.1289 0.3186
1 0.0546 0.1404
2 0.0200 0.0241
3 0.0093 0.0150
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Figure 4.10: Local error on each element for an initial mesh with N = 18, µ = 1, λ = 100,
ρ = 1, and β = 0.0001 as well as the first three refinement of this mesh. Notice that the
change in the value of λ has had significant effects on the error when compared to Figure
(4.7).

limitation on matrix dimensions is reached much earlier, hence only two refinements were

possible for this test.

Table (5) shows results for multiple combinations of (µ, λ), all of which confirm the
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Figure 4.11: Local error on each element for an initial mesh with N = 18, µ = 100, λ = 100,
ρ = 1, and β = 0.0001 as well as the first three refinement of this mesh. Notice that with a
balance between µ and λ, we achieve an error identical to that in Figure (4.7).

previous suggestions that the ratio of the two coefficients µ and (µ + λ) rather than the

individual values of µ and λ themselves are what effect the accuracy of the method. We can

see that in any case where µ = λ, the error at any particular refinement is identical to any

other pair for which µ = λ. When µ is much larger than λ we see that there are changes

in the error, but they are minimal. Only in the case where λ is much greater than µ do we

encounter large increases in the error. This is the case where the (µ + λ) coefficient is in

turn much larger than µ.

Based on our understanding of the properties of the lunar soil near the actual lunar

landing, these constants were estimated to be (µ, λ) = (21.3, 49.6). This is the case where
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Figure 4.12: Local error on each element for an initial mesh with N = 18, µ = 1, λ = 1,
ρ = 10, and β = 0.0001. The error in the initial mesh as well as those in the first two
refinements are far worse that those in Figure (4.7). Due to the matrix size limitations of
MATLAB, only two refinements were possible under these conditions.

λ > µ, which is not ideal. But as we can see from Table (5), λ is not so much greater than µ

that we find unacceptable results. In just three refinements we still achieve an average error of

nearly 0.01 which was the desired tolerance for the test. Another example is from laboratory

tests at Kennedy Space Center where lunar soil with the properties (µ, λ) = (5.32, 12.4) was

used in a small scale demonstration. While the values here are different from those in the

lunar landing, the ratio of (µ + λ) to µ is nearly the same as the first case. Thus the error

results are identical out to four decimal places.

We should remember that every error estimate shown in this section has been found using
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Table 5: Average error over all elements in the finite element approximation for various
combinations of (µ, λ) with an initial, uniform mesh defined by N = 18 and the values
β = 0.000001 and h = 0.002.
Refinement (25,1) (1,25) (25,25) (50,1) (1,50) (50,50) (21.3,49.6) (5.32,12.4)

Initial Mesh 0.1289 0.2802 0.1399 0.1289 0.3026 0.1399 0.1620 0.1620
1 0.0545 0.0976 0.0569 0.0545 0.1183 0.0569 0.0583 0.0583
2 0.0199 0.0256 0.02156 0.0199 0.0254 0.0215 0.0215 0.0215
3 0.0091 0.0127 0.0096 0.0092 0.0141 0.0096 0.0103 0.0103

(3.52) which is an upper bound on the error, but not the least upper bound. In all cases we

can say that the error is no worse than the values shown.
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5 CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

The purpose of this thesis is to propose and analyze numerical methods for solving the

porous medium and Navier equations in an attempt to accurately and efficiently model the

cratering effect due to the flow of rocket exhaust through a porous medium. Well known

methods were used to approximate solutions of both equations. The Crank-Nicolson method,

Newton’s method, spectral differentiation and even the finite element method are all trusted

methods which have been studied in great detail. The idea then becomes how to implement

these methods in such a way that we accurately model our particular problem.

A number of key conclusions were made to support our choice and implementation of the

Crank-Nicolson method for approximating solutions of the porous medium equation,

• Simplicity : The Crank-Nicolson method is simple to implement.

• Accuracy : Table (3) as well as Figures (4.3) and (4.4) show that the method can

achieve results with very good accuracy. Results with error as low as 10−13 were found

in Figure (4.3).

• Efficiency : Table (3) shows that even for a step size as small as 0.0008 seconds,

we can run up to a total time of T = 20 (≈ 25, 000 iterations) in just a few minutes.

• Stability : After countless tests with a variety of different input values, convergence

of the method has not appeared to be an issue.

Similar conclusions were made to support our implementation of the finite element

method for approximating solutions of Navier’s equation,

• Simplicity : Making use of the adaptive refinement method allows us to begin with

82



a uniform mesh which is the easiest to set up. The refinement process creates the new

meshes automatically and improves the approximation for us.

• Accuracy : After three refinements, we found that our approximations were typically

around one percent off from the actual solution. If the full version of MATLAB had

been used, we surely would have been able to make at least one more refinement and

improve on this already acceptable approximation.

However, as is with any numerical approximations, there were some complications with

the method. For the porous medium equation we have chosen to use the Chebyshev nodes

over a square grid to define our domain. The initial pressure solution is chosen to be defined

as a Gaussian which leads to the problem we encountered previously involving negative values

around the boundary. The Gaussian function in two dimensions produces a uniform curve

which somewhat resembles a cone. This does not fit well with our choice of a square grid

in that the boundary nodes are not of equal distance from the pressure source. The corner

nodes are farther away than the rest. Polar coordinates would be an option for avoiding this

problem.

Another issue with the method used for the porous medium equation is that we plan to

use these solutions as forcing terms for the finite element approximation of Navier’s equation

which is defined on a completely different grid. Interpolating back and forth between these

grids may introduce more error into the approximation than is necessary. Using the finite

element method to approximate solutions to the porous medium equation could be another

option which would avoid both issues mentioned here.
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Contributions to the F ield

• Writing code to implement the Crank-Nicolson time stepping method with spectral

differentiation in space to approximate solutions of the porous medium equation as

well as a second program which implements the finite element method to approximate

solutions to Navier’s equation. These programs are a vital building block for any future

work done to explore the formation of cratering as studied in this thesis.

• The coupling of Darcy’s law with Navier’s equation has, to the best of our knowledge,

never been studied before. Darcy’s law is used frequently for modeling the flow of a

gas or fluid through a porous medium and Navier’s equation is used regularly in the

field of elasticity. But our work is the first to use solutions of Darcy’s equation in the

forcing term for Navier’s equation to predict cratering.

5.2 FUTURE WORK

The program built during this project was written in MATLAB and all tests were run using

the student version. This lead to the key complication of the finite element method which

was keeping the size of the stiffness matrix within MATLAB’s matrix dimension limitations.

Running the code in the full version of MATLAB to get more than just three refinements

would yield better results than we have been able to achieve so far. Another option would

be to rewrite this program in a high performance language such as C++ or FORTRAN.

This would allow us to run in parallel and improve efficiency. However these languages do

not offer MATLAB’s massive library of mathematical operations that greatly simplify the

process.

For the porous medium equation it has become clear that a change to polar coordinates

should fix the issue with the boundary nodes not being uniformly distributed about the

central pressure source.
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There are also improvements to be made in the algorithm itself. For one, we can improve

the accuracy and efficiency of our approximation by using higher order test functions in the

finite element method. Our current method uses the centroid of the element for no reason

other than it minimizes the number of nodes added for any single element refinement. A

more rigorous study on how the location of refinement nodes effects the error would be

useful. We can see in Figure (3.5) that by refining one element you in fact also make a

slight refinement to all neighboring elements. So the current process of refining each and

every element without taking this into account is not ideal. But it is incredibly inefficient to

approximate the error after every single refinement. Some work should be done to balance

this out in an attempt to build a smarter algorithm.

The focus of this particular thesis has been building accurate mathematical models for

the flow of rocket exhaust through a porous medium. With that completed, we hope to

turn our attention to investigating the effects of the exhaust on different qualities of soil.

The primary goal is to determine what conditions will cause the soil to fail due to a given

pressure load. Assuming we have already found the displacement solution u = (u, v)T with

specific Lamé constants µ and λ then we can build the strain tensor,

E =
1

2
(∇u+∇uT ) (5.1)

and the stress field,

T = λ(traceE)I + 2µE (5.2)

where traceE is the trace of the strain tensor E, and I is the identity matrix. Now that the

stress field T is defined, we can determine if the soil is capable of supporting the pressure

load without failing or cratering. The limit for which the soil can support a given load is

determined by,
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τ

σ
< tanφ (5.3)

where φ is the internal friction coefficient of the soil, σ is any on-diagonal element of T , and

τ is any off-diagonal element of T in the same row as σ. If (5.3) is violated for any (σ, τ)

pair then the soil fails and a crater will form.

Finding what combinations of ρ, µ and λ cause approximations from the finite element

method to violate (5.3) is the primary goal for future work on this project. The atmospheric

conditions which define the gravitational constant g as well as the magnitude of the rocket

exhaust will also play a large part in determining such results.
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