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ABSTRACT 

Density Functional Theory (DFT) method is applied to study the crystal structure of 

transition metal and lanthanide oxides, as well as molecular magnetic complexes. DFT is a 

widely popular computational approach because it recasts a many-body problem of interacting 

electrons into an equivalent problem of non-interacting electrons, greatly reducing computational 

cost. We show that for certain structural properties like phase stability, lattice parameter and 

oxygen migration energetics pure DFT can give good agreement with experiments. But moving 

to more sensitive properties like spin state energetic certain modifications of standard DFT are 

needed. 

First we investigated mixed ionic-electronic conducting perovskite type oxides with a 

general formula ABO3 (where A =Ba, Sr, Ca and B = Co, Fe, Mn). These oxides often have high 

mobility of the oxygen vacancies and exhibit strong ionic conductivity. They are key materials 

that find use in several energy related applications, including solid oxide fuel cell (SOFC), 

sensors, oxygen separation membranes, and catalysts. Different cations and oxygen vacancies 

ordering are examined using plane wave pseudopotential density functional theory. We find that 

cations are completely disordered, whereas oxygen vacancies exhibit a strong trend for 

aggregation in L-shaped trimer and square tetramer structure. On the basis of our results, we 

suggest a new explanation for BSCF phase stability. Instead of linear vacancy ordering, which 

must take place before the phase transition into brownmillerite structure, the oxygen vacancies in 

BSCF prefer to form the finite clusters and preserve the disordered cubic structure. This 

structural feature could be found only in the first-principles simulations and cannot be explained 

by the effect of the ionic radii alone. In order to understand vacancy clustering and phase 
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stability in oxygen-deficient barium strontium cobalt iron oxide (BSCF), we predict stability and 

activation energies for oxygen vacancy migration.  Using symmetry constrained search and 

Nudged Elastic Band method, we characterize the transition states for an oxygen anion moving 

into a nearby oxygen vacancy site that is surrounded by different cations and find the activation 

energies to vary in the range 30-50 kJ/mol in good agreement with experimental data.  

Next we study spin alignments of single molecule magnets (SMM). SMMs are a class of 

polynuclear transition metal complexes, which characterized by a large spin ground state and 

considerable negative anisotropy. These properties lead to a barrier for the reversal of 

magnetization. For these reasons SMM are expected to be promising materials for molecular 

spintronics and quantum computing applications. To design SMM for quantum computation, we 

need to accurately predict their magnetic properties. The most important property is, Heisenberg 

exchange coupling constant (J). This constant appears in model Heisenberg Hamiltonian that can 

be written in general form as  

 

here Jij represents the coupling between the two magnetic centers i and j with the spin states Si 

and Sj. The positive J values indicate the ferromagnetic ground state and the negative ones 

indicate the antiferromagnetic ground state. We found pure DFT is not accurate enough to 

predict J values. We employ density functionals with a Hubbard U term that helps to counteract 

the unphysical delocalization of electrons due to errors in pure exchange-correlation functionals. 

Unlike most previous DFT+U studies, we calibrate U parameters for both metal and ligand 

atoms using five binuclear manganese complexes as the benchmarks. We note delocalization of 

the spin density onto acetate ligands due to π-back bonding, inverting spin-polarization of the 

Jiij S.S.JH ∑−=
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acetate oxygen atoms relative to that predicted from superexchange mechanism. This inversion 

may affect performance of the models assuming strict localization of the spins on magnetic 

centers for the complexes with bridging acetate ligands. Next, we apply DFT+U methodology 

for Mn12(mda) and Mn12(ada) complexes to calculate all six nearest neighbor Jij value. Our result 

shows both qualitative and quantitative agreement with experiments unlike other DFT studies. 

Using the optimized geometry of the ground spin state instead of less accurate experimental 

geometry was found to be crucial for this good agreement. The protocol tested in this study can 

be applied for the rational design of single-molecule magnets for molecular spintronics and 

quantum computing applications.  

 Finally we apply hybrid DFT methodology to calculate geometrical parameters for 

cerium oxides. We review the experimental and computational studies on the cerium oxide 

nanoparticles, as well as stoichiometric phases of bulk ceria. Electroneutral and nonpolar 

pentalayers are identified as building blocks of type A sesqioxide structure. The idealized 

structure of the nanoparticles is described as dioxide covered by a single pentalayer of 

sesquioxide, which explains the exceptional stability of subsurface vacancies in nanoceria. The 

density functional theory (DFT) predictions of the lattice parameters and bulk moduli for the 

Ce(IV) and Ce(III) oxides at the hybrid DFT level are also presented. The calculated values for 

both compounds agree with experiment and allow to predict changes in the lattice parameter with 

decreasing size of the nanoparticles. The results validate hybrid DFT as a promising method for 

future study the structure of oxygen vacancies and catalytic properties of ceria nanoparticles. 
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CHAPTER 1 INTRODUCTION 
 

 Investigations of electronic structures of different functional materials using quantum 

mechanical simulation become an almost obligatory tool in present day science. This 

understanding is a key feature behind the tailoring new materials for specific applications like 

spins based electronics, energy applications, drug design, catalysis are to name few. In addition 

to physical and life science contributions in this field its worthwhile to mention present 

advancement of computer hardware and softwares also a reason to the tremendous growth in this 

field. To deal with a larger molecular system one needs to make a compromise between the 

computational cost and the accuracy of results. In that purpose Density functional theory (DFT) 

has now become the preferred method for electronic structure theory, its cost scales favorably 

with system size than does the cost of other expensive quantum mechanical method based on 

 wave function theory. In addition to reasonable computational cost it can yet competes well in 

terms of accuracy. Figure 1-1, shows a graph according to web of science is presenting the 

number of paper published by using DFT calculations in last four decades. In 1970-1980 the 

number was 53, increased by thousand times. This tremendous growth in terms of publication is 

a proof of popularity of this method in scientific community.  

 A breakthrough in these computational efforts was realized in 1964 when Walter Kohn 

and coworkers developed the density functional theory (DFT), a theory based on electron 

density, which is a function of only three spatial coordinates.1,2 The Kohn–Sham equations of 

DFT cast the intractable complexity of the electron–electron interactions into an effective single-

particle potential determined by the exchange-correlation functional. This functional (i.e., a 
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function whose argument is another function) describes the complex kinetic and energetic 

interactions of an electron with other electrons. In 1992 John Pople, of Northwestern University 

in Evanston, IL, added DFT--including the latest functional to his widely-used chemistry 

computer program GAUSSIAN. Kohn and Pople received the Nobel Prize in chemistry for their 

contributions to computational chemistry in 1998. 

 
Figure1-1: Number of published DFT papers in different decades (Source 

http://apps.isiknowledge.com)  

 In this introduction now we are giving a brief tour of evaluation of DFT protocol. The 

oldest approximation to a density functional is the Dirac–Slater approximation depends only on 

spin densities 3,4 or local spin density approximation (LSDA). It can be derived from the exact 

exchange energy of a uniform electron gas (UEG). Modern forms of the LDA are based on the 

total energy of the homogeneous electron gas derived from quantum Monte Carlo calculations. 

The generalized gradient approximation (GGA) introduces a dependence of exchange energy on 

the local gradient of the electron density.  Meta-GGA functionals use the kinetic energy density 
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(or the Laplacian of the electron density) as an additional variable.5 Hyper-GGA uses Kohn–

Sham one electron wavefunctions (instead of the many-body wavefunctions) to evaluate the 

Hartree–Fock exchange formula; this is commonly called “exact” exchange. Hybrid functional 6,7 

mix exact (i.e.,  Hartree–Fock) and DFT exchange. We have listed the following functional types 

and functionals: 

 
  

Figure 1-2: Different density functionals 

 Another approach to reducing these inaccuracies is DFT + U approximation,8-10 which 

becomes LSDA + U or GGA + U, depending on the type of density functional employed. The+ 

U modifications amend self-interaction by using system-dependent parameters (for solids, the 

parameters should probably also depend on pressure or molar volume and on phase, and for 

molecules on geometry). The +U modification takes one out of the realm of DFT and into a less 

rigorous model Hamiltonian approach, but it is instructive in the way it corrects DFT. The 

method is approximate and not uniquely defined11 and is employed in a variety of nonequivalent 

ways by different researchers, but the various versions attempt to enforce the same physical 
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corrections by adding a Hubbard-like12 term to the DFT energy. A key issue in essentially all 

implementations is the inclusion of the Hubbard-like term only in a basis of localized d electrons 

(or f electrons). The Hubbard-like term adds a penalty for non-idempotent density matrices in 

this subspace and therefore it favors filling d orbitals that are localized on one particular atom 13 

(a ‘‘correlation’’ effect), which sometimes also favors high-spin states on each atom and 

therefore less covalent, bonding in molecules or antiferromagnetic coupling in solids. The +U 

correction would be expected to be smaller for a GGA than for LSDA, and smaller yet or not 

needed for a well balanced hybrid functional; for accurate results, the +U correction should 

depend on the structure.14 In some cases, for example solid MnO,15-17 FeO,15,16,18 and Co,15,16,18 

the +U approach and the inclusion of partial Hartree–Fock exchange lead to similar results, 

which are much better than GGA, and one anticipates that the methods would be even more 

similar if the Hubbard like term were included for the entire electronic space rather than just the 

metal d space.17 

 In broad aspect materials can be divided into two basic classes a) Carbon based materials 

or organic materials and b) inorganic materials. Inorganic materials can have metal or not. For 

metal based systems we mostly see open shell d and f based compounds. This open shell nature 

in d shell is capable of multiple valence states (e.g. Mn can have +2, +3, and +4). For f based 

systems though it is not very common still we can see Ce (+3 and +4) states. This multiple 

valence property of d and f metal leads to different applications including insulators, 

semiconductors, conductors, or superconductors, and they may have interesting magnetic, 

ferroelectric, antiferroelectric, and piezoelectric properties. These important  modern 

technological applications lead  scientific community to investigate in deep of these materials.19 
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Figure 1-3: Electronic configuration of first row transition metal compounds 

 We listed in Figure 1-3 here first row transition metals showing general tendency of 

having dn configuration (n=1-10). We normally exclude Zn because Zn+2 has closed 3d shell.  

The Mn, Fe, Ni are highlighted because, we used this three transition metal based complexes and 

solids for our study. It is obvious that with increasing number of electrons computational costs 

also increases by significant amount. To reduce this cost most of the time the only valence 

electrons in the elements are treated explicitly. The rest of the core electron is replaced by a 

potential called effective core potential or pseudopotential. In next part we are elaborating four 

different key applications (Figure 1-4) which are studied in details in later parts of this thesis.   

 Magnetism and Magnetic Materials: The amplification in the recording density of hard 

disk drives by a magnitude of eight orders during the past 50 years (see the May 2006 issue of 

MRS Bulletin on “Materials for Magnetic Data Storage”) has been obtained by slimming down 
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the bits size in the magnetic storage layer. Recently, based on DFT calculations, tetragonal iron 

cobalt alloys were proposed as promising materials with the desired high uniaxial magnetic 

anisotropy and high saturation magnetization.20 Molecular magnets (a special class of 

organometallics) are also suggested a special class of compound having potential application to 

be a part for quantum computer. To design a tailored molecular magnet needs prior knowledge of 

its magnetic properties. DFT calculation is enormously using to investigate magnetic properties 

in these materials. 

 Oxides and Minerals: Applications of DFT have predicted such fundamental properties 

as the properties of iron and (Mg,Fe)SiO3 under the extreme pressures and temperatures of the 

Earth’s interior. The metal oxides shows its wide range of application starting form catalysis, 

electrolyte, cathode, anode, semiconductor, superconductor to name a few. The application of 

DFT in transition-metal oxides is a difficult task, as the spurious self-interaction error in DFT 

overly delocalizes electrons, leading to excess metallic behavior and the wiping out of mixed-

valence states in doped oxides, affecting local spin magnetism, conductivity, and even phase 

stability.  

 Semiconductors and Nanotechnology: All the device industry now days are based on 

semiconductor. The key property in these materials is the energy gap between valence and 

conduction bands. To design new materials one needs to suggest an appropriate band gap. This is  

one of the most important challenges for DFT community. Pure DFT is well known for not to 

calculate band gap due to self-interaction error. This error leads to artificial stabilization of 

delocalized states. The effect is the most evident in systems with an odd number of electrons. 

Hybrid DFT and DFT+U extensively used to calculate band gap. 
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 Biomaterials: DFT calculations play an increasingly important role for understanding 

complex processes in biological materials. The charge transfer inside the complexes, solvation 

kinetics, protein folding, binding site are couple of examples. The excited state dynamics of this 

complexes (especially complexes taking part in photosystem) are one of the key interest in solar 

system researchers. 

 
Figure 1-4: Applications of d and f based materials 

With modern computational hardware and software, nowadays we can perform DFT calculation 

for large systems, in using QBOX software Gygi F, Galli G 21 performed a calculation for 1000 

molybdenum atoms. The other large scale calculation landmarks are also shown in the Figure 1-

5. 

http://apps.isiknowledge.com.ezproxy.lib.ucf.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=2BO188mbdGfl5hNEhKO&name=Gygi%20F&ut=000231503600043&pos=2�
http://apps.isiknowledge.com.ezproxy.lib.ucf.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=2BO188mbdGfl5hNEhKO&name=Galli%20G&ut=000231503600043&pos=3�
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Figure 1-5: Landmark for computational DFT  

 Moving from system of interest and large scale computation benchmarking study now we 

can discuss the how DFT can be use for successful material design, the steps are as follows 

(1) Formulating an experimental problem to a computable model.  

(2) Calculations of the required electronic as well as physicochemical properties, 

(3) Validation of the simulation results by confrontation with laboratory experiments. 

(4) After validation of a certain protocol use it to predict properties of new materials. 

 DFT calculation is popular because of available codes for materials scientific community. 

Some codes are accessible thorough general public licenses, others are for paid users. The codes 

have diverse range of basis sets, potentials, exchange-correlation functionals, as well as different 

algorithms for solving the Schrödinger equation. A summary of existing DFT codes is given in 

Figure 1-6 obtained from an editorial article by Hafner, Ceder and Wolverton. 22 In VASP and 

ABINIT all-electron PAW method is implemented. VASP aand CPMD both have exact 

exchange and hybrid functionals. To use use pseudopotential based codes one needs to be careful 
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about choosing well validated pseudopotentials . In some codes we can see external library of  

pseudopotentials developed by the code developer. All-electron codes use either local or 

augmented plane-wave basis sets. DFT, exact exchange, and hybrid calculations all together is 

implemented in both Gaussian 03 and CRYSTAL codes. FPLO  is useful especially for second 

row and third row transition metals along with lanthanides because it solves Dirac equation. 

DMol3 is a numerical basis set based code, this code can be employed either in an all-electron 

mode or through semilocal pseudopotentials. For full-potential LAPW methods one can use 

WIEN2K, FLAIR, and QMD-FLAPW( all of them are all electron codes). For benchmarking 

pseudopotential codes we can use all electron codes. Unit cells with a few hundred atoms with 

pseudopotential and PAW codes, are not even that difficult due to highly parallel implementation 

of codes. 
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Figure 1-6: Available DFT based codes22 

 In this work we used two DFT based codes ESPRESSO and Gaussian. Since we 

investigate the materials having strongly correlated electrons we used two different self 

interaction correction scheme a) Hybrid DFT and ii) DFT+U.  The thesis is organized in the 

following way.  In the first chapter we described the motivation behind our work. Explaining 

crystal field theory of transition metals in octahedral field, which is essential to illustrate 

electronic structure of transition metal oxides as well as molecular magnetic complexes. Later 

sections of this chapter are detailing the applications of the systems we investigated. In chapter 2 
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we described the DFT formalism and then the modification we used over DFT. Chapter 3 is the 

prediction of electronic structures and activation energy of oxygen migration of mixed transition 

metal oxides. Next chapter is showing the prediction of spin state orientation of molecular 

magnetic complexes. For this sensitive property pure DFT was not sufficient, we used certain 

modifications over pure DFT by adding onsite coulomb repulsion on both metals and ligand in 

the molecules. We validate our protocol by using a benchmark set for five bimetallic complexes 

and applied it on two molecular magnetic complexes. The correct qualitative and quantitative 

prediction shows our theoretical protocol can be use to suggest a rational design of molecular 

magnetic complexes. The final chapter is about prediction of lattice parameter of cerium (III and 

IV) oxides by considering explicit f electron on the metals. In this chapter first we described 

previous theoretical approaches applied to study these oxides and why the lattice parameter 

validation is challenging. In the next section in that chapter we wrote the detail methodology of 

our calculation. The key part of this calculation is generation of initial guess. Our result shows 

good agreement with experimental findings. 

1.1 Transition metals and Crystal field splitting in octahedral field 

 

Figure 1-7: Crystal field splitting of five degenerate d orbitals in tetrahedral and octahedral 
field 
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First principle study of the transition metals are challenging because of the presence of open 

shell d electrons. To investigate electronic structure of metals having open shell d electrons one 

needs to analyze it using crystal field theory. The five d orbitals in an isolated, gaseous metal ion 

are degenerate. If a spherically symmetric field of negative charges is placed around the metal, 

the orbitals will remain degenerate, but all of them will be raised in energy as a result of the 

repulsion between the negative electrons in the orbitals. If the field results from the influence of 

real ligands (either anions or the negative ends of dipolar ligands such as NH3 or H2O), the 

symmetry of the field will be less than spherical one. As a result the degeneracy of the d orbitals 

will be removed.   

Since we mostly studied complexes having octahedral or near octahedral coordinations, we 

are discussing the crystal field splitting of a metal ion in only octahedral field. From Figure 1-7 

we can see the orbitals along the axis (i.e. dx
2

-y
2 and dz

2) will be more strongly repelled than the 

orbitals with lobes directed between the the axes (the dxy , dzx, and dyz ).  

In octahedral crystal field Co4+ can have three possible spin states, t2g
5eg

0 (s = 1/2), t2g
4eg

1 (s 

= 3/2), and t2g
3eg

2 (s = 5/2) with one, three and five unpaired electrons, respectively. Fe4+ can 

have two possible spin states in the octahedral splitting with two and four unpaired electrons. 

These states have configurations as t2g
4eg

0 (s = 1) and t2g
3eg

1 (s = 2). We can refer these states as 

low spin (LS) with one unpaired electron, intermediate spin (IS) with three unpaired electrons, 

and high spin (HS) states with five unpaired electrons for Co4+, and as LS and HS states for Fe4+ 

cation according to their multiplicity. This is an example that same numbers of d electrons in a 

metal ion can shows different possible spins states. To predict the electronic structure of 
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molecules and crystals having “d” and “f” metals we need to investigate correct crystal field 

configurations. In section 3-4 we discussed more details about it. 

1.2 Computational studies on oxygen migration of perovskites 

To suggest better cathode material in solid oxide fuel cell, one needs to estimate the ease of 

oxygen diffusion. To calculate this property we need to predict the activation energy of oxygen 

migration in atomic environment. Computational studies of ionic transport were reviewed by 

Islam.23 He emphasized the importance of three factors: dopant/defect association, ion migration 

mechanism, and surface structures. Several theoretical studies have focused on vacancy 

mobilities.24-26 Based on their Monte Carlo (MC) simulations, Meyer et al. 25 concluded that the 

mobility of vacancies is reduced in the neighborhood of dopant ions. This is in agreement with 

other experimental results and with molecular dynamics (MD) simulations by Shimojo and 

Okazaki. 24 More detailed investigation requires evaluation of the activation energies of the 

elementary steps for vacancy diffusion and the atomic mechanism for each elementary step. 

Eichler 27 studied diffusion barriers for oxygen ions at several locations in a supercell of 

tetragonal yttrium-stabilized zirconia with a distorted fluorite structure. The energy for oxygen 

diffusion was assumed to be the difference between the highest and lowest energies along a 

linear path connecting occupation sites. Recent research by Ramanarayanan et al. 26 suggested 

that such an approach can serve as an approximation only because the path is assumed to be 

linear instead of being optimized. The mechanism of oxygen ion migration in perovskite oxides 

was studied with atomistic simulations by several authors. 28,29  They reported that ion migration 

involves a curved pathway. Indeed, a recent neutron scattering study of pure and doped LaGaO3 

30 provides evidence in favor of this prediction. Several ab initio studies of oxygen vacancy 
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diffusion in perovskites appeared in the literature only recently. Karki et al. 31 studied the 

orthorimbic perovskites and post-perovskite phases of MgSiO3. In order to calculate the 

migration enthalpy, they have chosen the saddle point at which a migrating ion is placed exactly 

halfway between the initial and destination sites from where the ions are removed to create 

vacancy sites. A more advanced approach was taken by Ammann et al. 32 for the same system. 

They searched for the minimum energy position of the ion constrained to the saddle plane. While 

this search resulted in fairly complex Si migration pathway, the midway position was found to be 

close to the true saddle-point in case of oxygen migration. Both straight line and curved 

pathways for oxygen diffusion in LaAlO3 perovskite were investigated by Hernandez et al. 33 

using the climbing image nudged elastic band approach. They found straight line to be less 

favorable than the curved pathway showed in Figure 1-9. 

 

Figure 1-8 http://science.nasa.gov/headlines/y2003/18mar_fuelcell.htm Anode - Ceria/Nickel 
cermet , Electrolyte - Gadolinia doped Ceria (CGO), Cathode - LSCF (a four component 

oxide based on La, Sr, Co, and Fe oxides) 

http://science.nasa.gov/headlines/y2003/18mar_fuelcell.htm�
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Figure 1-9 Oxygen migration pathway in cubic perovskite 

1.3 Molecular magnet and antiferromagnetic wheel and application in spintronics  

  In chapter 4 we moved from crystal to molecule. This chapter is focused on the spin state 

alignment energetic of single molecule magnets (SMM). SMMs attracted interest physicists and 

chemists since their initial discovery in 1993.34,35 Typical SMMs belong to the class of 

polynuclear transition metal complexes. They are characterized by a large spin ground state and 

considerable negative anisotropy leading to a barrier for the reversal of magnetization. SMMs are 

also characterized by slow magnetization relaxation and can be magnetized below their blocking 

temperature.34,35 For these reasons, SMMs hold a great promise as potential elements of 

molecular spintronics and quantum computers.36-38  Spintronics is a rapidly developing area of 

nanotechnology, where device operation requires active manipulation of the spin degrees of 

freedom (in addition to the electric charge, used in traditional semiconductor electronics 

devices). Use of molecular elements in spintronics can take advantage of the chemical, structural 

and electronic versatility provided by the molecular structures. In molecular systems electron 

spins can be preserved for longer time periods and distances than in conventional inorganic 
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materials. The low density, flexibility, transparency, processability and novel added 

functionalities (magnetic switching at the molecular level, emission of light, etc.) can also be 

advantageous for the design of spintronic devices. 

Single molecules, similar to the ones considered in this study have the size c.a. 20Å and can 

be used as the smallest “bits” for magnetic storage and processing of information.39 Presently 

accessible magnetic domains have 20 nm in size, and their further miniaturization is complicated 

by approaching the superparamagnetic limit.40 However, this limit does not apply to magnetic 

molecules, because the magnetic order is determined by the electronic structure of a molecule 

and not by a certain critical size. In order to become practical, the intramolecular magnetic 

interaction have to be strong enough to prevent decoupling of the spins within the molecule by 

thermal fluctuations, so that the single molecule effectively behaves as an atom with a large spin 

S.39 Moreover, a high magnetic anisotropy is required to prevent spontaneous reorientation of the 

magnetization of the molecular unit, i.e. to increase its blocking temperature.39 The interaction 

between molecular magnetic properties and charge transport is another important issue to be 

considered. The combination of different properties to accomplish desirable functionality makes 

the rational design of the molecular magnets with optimized properties increasingly important for 

the spintronic applications. 

The idea of using SMMs to implement the idea of quantum computer was proposed by 

Leuenberger and Loss.37 Instead of the classical bits, which can take only one value (1 or 0), 

quantum computers operate with quantum bits (qubits, prepared in quantum superposition state 

of 1 and 0) and carry out multiple operations at the same time. The electron spin is a natural 

candidate for a qubit, as its interaction with environment is weaker than for the charge state. The 
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spin can be controlled by electron spin resonance impulse in order to write, transform, and read 

out the information on a quantum state of the multilevel system.  

Long decoherence time is critically important for the successful realization of the quantum 

computer.37,41,42,43,44 A specific type of molecular magnets, called antiferromagnetic molecular 

wheels attracted especial attention for this reason.45,46,47,48 Unlike other types of molecular 

magnets, magnetic wheel has only one single loop of the fused transition metals polyhedra. 

Mn12 based wheel was first reported by Rumberger et al.49 The smallest molecule of this type is 

the recently reported tetranuclear manganese complex,  [Mn4(anca)4(Htea)2(dbm)2] · 2.5Et2O, 

reported by Beedle et al.50 The larger wheels include the [Mn24] wheel,51 the [Mn22] wheels,52 

and the [Mn84] wheel.53 The largest reported spin ground state for a wheel-shaped SMM is S=14 

for the [Mn16O2(OCH3)12(tmp)8(CH3COO)10] · 3Et2O wheel reported by Manoli et al. in 2007.54  

 

Figure 1-10 Magnetic wheel complex [Mn12(O2CMe)14(mda)8]: pink balls denote Mn(III), 
and green ones denote Mn(II). 
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1.4 Cerium oxides and its property 

Surface structure of metal oxides holds the key to understanding their catalytic properties. 55 

The surface oxygen vacancies are suspected to participate in various chemical reactions 

catalyzed by metal oxides. Vacancies are also bind adsorbents more strongly than normal oxide 

sites and assist in their dissociation. 56 Oxygen vacancies are also involved in photo catalysis on 

oxides, and their changed nature may control band bending thus electron-hole pair separation.  

Since the most of ceria properties are determined by its surface, films and nanoparticles 

(NP) make the most efficient use of this material. Resulting surface structure depends both on 

nanoparticle size, and on fabrication method. Films can be produced by several growth 

technique, electron beam evaporation (EBE) 57-59 pulsed laser deposition 60-62, metaloorganic 

chemical vapor deposition 63, ion beam assisted deposition (IBAD) 64, reactive magnetic 

sputtering.65 Ceria thin films are used to fabricate anode material for intermediate temperature 

solid oxide fuel cell (IT-SOFC). Replacement of yttrium-stabilized zirconia with doped ceria as 

anode material in IT-SOFC allows to the lower the operating temperature 5000C. 66 Thin film of 

CeO2 exhibits a high refractive index, and high dielectric constant, so it is a very promising 

material to use for optoelectrical, microelectronic, electro-optical devices.57 The doped ceria 

films are transparent for the wave lengths of or above 500nm and show no optical loss around 

6000C. Ceria thin films made by pulse laser ablation and having thickness about 1000 Å are used 

in optoelectronic devices. 

Ceria NPs (nanoceria) had been extensively studied since early 1970s, but for inadequate 

characterization facility those cannot be properly characterized, in recent years with the 

development of experimental techniques as well as the help of theoretical studies this area is 
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much widely explored. In a review article it is told that from June 1993 to end of 1998, there was 

560 papers had been published.67 Basically in theoretical field from mid 1990 simulated 

annealing and interionic potentials are used to investigate the structure and reductability of 

intermediate valance ceria nanoparticle.68 The most applications of nanocrystalline ceria are 

based on its oxygen storage capacity and electronic properties. Although CeO2 has a wide band 

gap of 6 eV 69 and acts as an insulator, in the higher temperature region (3000C-4000C) and in 

reduced oxidation state it demonstrates an enhancement of the electric conductivity, 60 which is a 

disadvantage for some applications.  Adachi in his review referred that composite contained nano 

particle 4.1nm having band gap 3.42 eV and with 5.37nm nanoparticle it is 3.37eV. 70  

Like bulk ceria nano cerium dioxide also exhibit  phase transition from fluorite phase to 

orthorhombic phase , the lattice papmeter of the orthorhombic phase is a=5.641 b=6.647 c=3.481 

, but the difference is nano cerium dioxide shows bulk modulus 328 ±12 GPa 71 in contrast with 

bulk cerium dioxide 230 GPa. The phase transition pressure ( 22.3 GPa) is also very low 

compared with bulk one (31 GPa),72  this observation is quite anomolas  with other nano oxide  

and sulfides , the author suggested that larger volume collapse and exsistance of unstable high 

pressure phase  is responsible for  the decrese of transition pressure of  nano cerium dioxide 

compared with bulk. 71 

 Nanoceria used in design a three way catalyst for automobile exhaust,73 since ceria 

catalytically oxidizes hydrocarbons to water, carbon monoxide to dioxide and nitrogen oxides to 

nitrogen. Ceria NPs are also used for promotion of water gas shift, steam reforming reaction, and 

carbon monoxide removal,73 The oxygen vacancies play an important role for the catalytic 
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activity of ceria. Zirconia doped ceria (CeO2/ZrO2 solid solution) can operate at lower 

temperature around 6000C than pure ceria catalyst. 74 

I )  There are different  methods  of preparing cerium oxide nanaoparticle 

a) In colloidal medium cerium (III) forms crystalline oxydicarbonate  solid particle, this  oxydi 

carbonates were readily converted to the corresponding oxides of ellipsoidal shape by calcination 

at 6000C , while the other rare earth elements yields sols of amorphous spherical particle. 75 

b) Fine particle by gas condensation -, in this method cerium oxide form by using inert gas 

condensation of a metallic cerium precursor, followed by oxidation using a magnetic 

sputtering.76 

c)Fine particle by solgel method  - In this method submicron size of cerium dioxide nano 

particles are prepared,  the sol is made by using cerium nitrate, and the precipitation of cerium 

(+3)  hydroxide uses basic medium.77 

d) Combustion method it is based on the solid state combustion process based on the principle of 

explosive decomposition of nitrate urea mixture in a low temperature s in a low temperature such 

as 5000C, using this method cerium oxide particle size obtained is 1 μm.78 

There are some other methods such as aging cerium(III) nitrate solution with hexamethyl 

tetraamine . Oxidation from +3 to +4 state occurs in precipitate and then the wet precipitate is 

crystallizes to dioxide. 79 

There is another method which used  calcination , For this synthesis,in cerium chloride  

CeCl3 , 7H2O  solution is used, ammonia was added dropwise and that changes the pH  of the 

solution  from 2.5 to a final value 11.4.  This addition causes the precipitation of yellow 



21 
 

gelateneous Ce(OH)3, after filter and wash the mixture  with water and acetone, then the 

resultant mixture is calcinated.  

 Depending on size of ceria nanoparticle different models are used to describe the particle 

size and lattice parameter relationship, Baranchikov et al. 80 showed that a value changes from 

5.47 Ǻ to 5.41 Ǻ (the latter value corresponds to bulk CeO2-x) within the particle size range of 

2.2–34 nm. They synthesized by the following methods. Solutions of Ce(NO3)3,6H2O, CeCl3, 

7H2O, Ce(SO4)2,4H2O and (NH4)2Ce(NO3)6 (0.02, 0.08, 0.3, 0.8 mol L-1) in water/isopropanol 

mixtures (1 : 1 to 1 : 19, v/v) were rapidly added under vigorous stirring to aqueous ammonia (3 

mol L-1). Noticeable deviation of unit cell parameter value from that one for the bulk state can be 

observed for particles less than 5 nm. Particle size is the only decisive factor determining ceria 

unit cell parameter. 

Data obtained can be adequately fitted using power-law relation:  

1.2D025.05409.0aa −×=−=Δ                                           (1-1) 

In another model proposed by Wu et. al. 74 the  lattice parameter can be illustrated as a function 

of particle diameter for CeO2-x particles which are assumed to consist of a layer of CeO1.5 on a 

core of CeO2. The lattice parameters for fluorite structure CeO2 and average fluorite structure 

CeO1.5 were taken to be 0.541 and 0.561 nm, respectively. The lattice parameter for CeO1.5 was 

approximated to be one half of that of the C-type sesquioxide Ce2O3 proposed by Tsunekawa et 

al.81 Results were published by Wu et. al 74  relatively close to the data reported by Tsunekawa et 

al.81 On the other hand, the increases in the lattice parameters with decreasing particle size for 

those reported by Zhang et al. 82 were significantly smaller than and that of Tsunekawa et al.81 

This implies that the surfaces of their particles were barely reduced to CeO1.5 and the small 
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increase in their lattice parameters with decreasing particle size could be due primarily to 

vacancies in bulk of the particles according to Raman spectra. 

 According to Baranchikov et. al 80 they estimated size of ceria nanoparticles which 

corresponds to complete transition of cerium atoms into +3 oxidation state. Within the 

framework of Tsunekawa et al.’s 81 model, this critical size appeared to be approximately 1.1 

nm. In turn, according to model proposed by Wu et al.74 reduction of Ce(IV) with the decrease of 

particle size results in formation of Ce2O3 with fluorite structure having disordered oxygen 

vacancy sublattice. Unit cell parameter of fluorite Ce2O3 was estimated to be 5.56Ǻ.74 Critical 

particle size of ceria calculated using this model and relation appeared to be approximately 1.2 

nm. It should be noted that thus estimated critical size values are nearly equal to double unit cell 

parameter of cerium dioxide. In other words complete reduction of Ce(IV) takes place when all 

CeO2-x unit cells are on the surface of a particle. 

Different synthetic methods have significant impact in ceria nanoparticle size  and the 

corresponding lattice parameter.  

    The cerium dioxide nanoparticle obtained from microemulsion method. 83  This micro 

emulsion system consist of surfactant sodium bis (2 –ethyl hexyl) sulphosuccinate (AOT), 

toluene, and water.  Cerium dioxide  deposited in non agglomerated  form in organic medium 

and in  agglomerated form  in aquous phase , this nanoparticle size and lattice parameter  shows 

the following relation, 84  

Δa=0..031D-0.4763                                                                                                  (1-2) 

 Here the Δa is (a-a0) where “a” is lattice parameter of nano particle and the a0 is lattice 

parameter of bulk cerium dioxide i.e 5.411Å, D is particle size. 
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 Another work  had shown  that particle synthesized by sol-gel  method and  

hydrothermal process obtained a different relation 85 

Δa=0..0324D-1.04                                                                                               (1-3) 

Wu and co worker used Vapor phase condensation  for the synthesis and they showed the 

following relation 74 

Δa=0..0600D-1.05                                                                                                    (1-4) 

             The crystal structure is studied by HRTEM. HRTEM  method is useful for atomic level 

imaging, HREM is required to determine the purity of the crystal combination  with real –time 

video recording and image processing tool for crystal defect study, so for cerium oxide, it is 

extremely important  to investigate the defeclts inside the crystal.70 Despite having an ordered 

crystalline structure,84 nanoceria was shown to be extremely sensitive to perturbation in pH, 

ionic strength, and concentrations, 84 which can dramatically modify thermodynamic stability of 

ceria NPs. Destabilization may occur from a high surface to volume ratio for the NP and from 

the strong reactivity of the surface chemical sites to the physicochemical changes. X-ray 

diffraction found the lattice parameter to increase by 0.45% as the particle size decreased to 6 

nm.84 This lattice expansion was attributed to the increasing concentration of oxygen vacancy 

defects with decreasing particle size and increasing surface to volume ratio.  

In order to understand the catalytic activity of nanoceria, experimental investigation 

must be complemented with the first principles calculations of electronic structure. In this series 

of papers we intend to conduct such an investigation. Atomistic structure of ceria surfaces, 

including oxygen defects is critically important first step the set goal. In this first paper of the 

series we intend to establish an accurate yet computationally inexpensive level of theory, suitable 
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to describe ceria, and its mixed-valence nature. Our short-tem goal is to find optimal lattice 

parameters and bulk moduli for the ideal bulk crystal structure in CeO2 and Ce2O3, then use them 

to find dependence of lattice parameter for the partially reduced phases CeO2-x on the 

composition x and compare it with the experiment. In Section 5.2 we establish structural 

relations between ceria oxides, in Section 5.3 we review the first principles studies of ceria 

published to date, Section 5.4 describes the details of our approach. We present the results of our 

calculations and build an ideal model of nanoceria in Section 5.5. Major results are summarized 

in the 5.6. 
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CHAPTER 2 THEORY 
 

2.1 Density Functional formalism and Exchange Correlation Functional 

Density Functional Theory (DFT) is one of the most widely used quantum chemical method 

for electronic structure calculations in solid-state physics. It is a well known approach to study 

ground state properties of many-body systems such as atoms, molecules, crystals and surfaces. 

Its applicability extends to the fields like biology and mineralogy. It is a versatile methodology to 

calculate energetics of complex systems due to the generality and flexibility of implemented 

fundamental concepts. DFT’s framework is primarily build on Hohenberg-Kohn theorem1 and 

Kohn-Sham equations.2,86  Although DFT is a first principle approach to solve Schrödinger wave 

equation. To describe DFT approach in general, we start with Born-Oppenheimer approximation 

where atomic nuclei are treated classically as fixed and the electrons are moving in their electric 

potential ν. Thus a many electron Schrödinger equation can be written as: 
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Where Ĥ is the Hamiltonian, Û is the electron-electron interaction energy, N is the number of 

electrons, T̂  is the kinetic energy, V̂ is the potential energy from the nucleian field, E is the total 

energy and Ψ represents the wave function of the system. 

Density Functional Theory is mapping many body problem with Û onto a single body 

problem without Û, where key variable remaining is the particle density n(r). According to 

Hohnberg-Kohn (HK) theorem, electronic density n(r) determines all ground state properties of 

multi-electron system, where energy of the ground state is a functional of electronic density. The 
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HK equation describing ground state properties of many electron systems in terms of electron 

density is:  

∫ +=++= − ][)()(][][][)]([ nFdrrvrnnVnVnTrnE HKexteeext                            (2-2) 

where Hohnberg-Kohn functional FHK[n] = ][][ nVnT ee−+ . Although HK approach is in principle 

exact, the form of ][nFHK  is unknown. The approximate form of kinetic energy functioinal T[n] 

is usually given by Kohn-Sham (KS) equations. KS equations mapped the real system into an 

auxiliary non-interacting reference system with the same density, where each electron moves in 

an effective 1-particle potential due to surrounding electrons. Kohn and Sham introduced the 

way to solve Schrödinger wave equation by giving relation between particle density and 

corresponding potential to finally calculate the kinetic energy of non-interacting N particle 

system. The Kohn-Sham equation: 

iiieff rV φεφ =⎥⎦
⎤

⎢⎣
⎡ +∇− )(

2
1 2

                                              (2-3) 

where iφ  are KS orbitals, is the system of N effective one-particle equations, making up the total 

density ∑=
i

i rrn 2)()( φ .  

There are several approximations for exchange-correlation functionals87 in equation (2-2). In 

this form, Density functional theory (DFT)2,86 has become a method of choice for the calculation 

of numerous properties of molecules and solids. Unlike modern semiempirical methods such as 

MSINDO88 and DFTB,89 it does not require tedious empirical parameter fitting to produce 

acceptable results. Unlike WFT methods,90 DFT accounts for electron-correlation not through 

increasing complexity of the wavefunction, but via approximate exchange-correlation functional. 
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The need to improve exchange–correlation functionals arises from known deficiencies of DFT 

describing so called strongly correlated systems where vacant and occupied electronic levels are 

approaching degeneracy (this effect is also known as static or non-dynamic electron correlation). 

This situation is observed in d and f electron systems or when chemical bonds are being 

stretched. Despite these limitations different exchange-correlation functionals are widely used 

for modeling of various systems. Early exchange–correlation functionals were dependent only on 

electron spin density (Local Spin Density Approximation, LSDA). Next generation of exchange–

correlation functionals also included energy dependence on the gradient of the density 

(Generalized Gradient Approximation, GGA). Among the later developments are kinetic energy 

density dependent functionals which are also known as meta-GGA, including TPSS and 

BB95.91,92 GGA and meta-GGA functionals are called semilocal functionals to distinguish them 

from LDA on one hand, and non-local functionals including orbital dependence on the other 

hand. One of the meta-GGA functional we used in our study, TPSS93 was designed to correct the 

too-large atomization energies and increase the too-small jellium surface energies obtained with 

LSD (Jellium is the term for model system of interacting electrons and a uniform background of 

positive charge). It had been shown to accurately predict bond energies and bond lengths in 

molecules, hydrogen-bonded complexes, and ionic solids.94 Performance of TPSS approaches 

that of the hybrid PBE0 functional with a practical advantage of not including Hartree-Fock 

exchange.93 
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2.2 Density Functional Theory + Hubbard U approach 

The description and understanding of electronic properties of strongly correlated materials is 

a very important and long standing problem for ab initio calculations. Pure LDA and GGA is not 

always accurate enough for calculating sensitive property like spin state energetic and band gap 

of d and f  metals. Anisimov and co-workers 8,9,95 correct the standard functional adding an onsite 

Hubbard-like interaction to treat metal oxides. The method represents one of the simplest orbital 

dependent functionals in which a generalized Hubbard model is used to enforce localization of 

the electrons. Number of the first-principle approaches to estimate the U parameter had been 

proposed.96,97 However, in many cases quantitatively better results can be obtained with the value 

of U determined empirically as a fitting parameter to experimental results98,99,100. Anisimov 

described Hubbard-like interaction EHub.  

    
[ ] [ ] { }[ ] { }[ ]σσ l

DC
l
mHubLDAULDA nEnErnErnE −+=+ )()(

                               (2-4) 

Where n(r) is the electron density and σl
mn are the atomic orbital occupations for the atom I 

experiencing the Hubbard term. The last term in the above equation is then subtracted in order to 

avoid double counting of the interactions contained both in EHub and, in some average way, in 

ELDA.  In this term the total, spin projected, occupation of the localized manifold is used 

σσ l

mm
l nn ∑= . In
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2.3 Hybrid Density functional Theory 

All LSDA, GGA and meta-GGA are known to underestimate band gaps in solids. On the 

other hand, Hartree Fock (HF) method yields an overestimated band gap. The electron 

correlation in DFT is introduced in terms of exchange-correlation functional XCE , replacing exact 

exchange HFXE  in HF theory without increase in computational expense. Some empirical 

parameter fitting is typically involved in the design of the exchange-correlation functional in this 

formalism; it is largely system-independent. Although exact exchange is non-local and orbital-

dependent, in DFT the functional XCE  is expressed in terms of the total electron density and its 

gradients (respectively local and semi-local approximation). Unlike exact exchange, XCE  

includes repulsion of electron from its own density and does not vanish for one-electron systems. 

This property is known as self-interaction error, and it has both negative and positive effects. As 

negative result, in DFT bonds are too weak, while electrons are over-delocalized and do not 

interact with Coulomb asymptotic r/1~  at large separations. On a positive side, self interaction 

is mimicking non-local part of electron correlation and should be retained to some degree. 

Practically useful step in balancing self-interaction error was made by Becke,101 who suggested 

to include a fraction of HF exchange energy in XCE  functional: 

                                                    CDFXHFXXC EEaaEE +−+= )1(                                        (2-5) 

where a=0.2 is an empirical parameter, DFXE  and CE  are exchange and correlation functionals 

including local and semi-local terms. The original (B3LYP)101 as well as more recent hybrid 

functionals often achieve chemical accuracy in properties predictions.102,103,104 We used BMK 
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(Boese-Martin for kinetics) a hybrid meta-GGA functional with 42% of HF exchange, and 

PBE1PBE functional with 25% exchange functional for calculation of cerium oxides. 
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CHAPTER 3 TRANSITION METAL OXIDES 
 

3.1 Solid Oxide Fuel Cell and Properties of Cathode material 

Recent worldwide interest in cleaner energy technology has refocused attention to the solid 

oxide fuel cells (SOFC) as a potential source of efficient, environmentally friendly, and fuel 

versatile electric power. Because of high operating temperatures, the SOFCs offer several 

potential advantages over proton exchange membranes fuel cells including low internal 

resistance, high tolerance to catalyst poisons, production of high-quality waste heat for 

reformation of hydrocarbon fuels, as well as the possibility of oxidation of hydrocarbon fuels 

directly. SOFC’s efficiency ranges from 50 to 65% and they can be used as environmentally 

acceptable source of electric energy.105,106 

Continuous effort in the design of SOFC multicell stacks and systems requires deeper 

understanding of the structure/property-performance relationships. Numerous attempts had been 

made to explore new electrode materials and microstructures, and establish how and why 

electrode performance changes with time, temperature, thermal cycling, operating conditions, 

impurities, and other factors.105,106 Despite the advances in electrochemical measurement and 

modeling, understanding of SOFC cathode oxygen reduction and transport mechanisms remains 

largely circumstantial today. The elucidation of the cathode mechanisms often relies on having 

limited understanding for an observed phenomenon (e.g. chemical capacitance as evidence for 

bulk transport) rather than direct independent measurements.106 Therefore, direct experimental 

observations (such as spectroscopic evidence of oxidation/reduction of the electrode material) 

are critically important to achieve further progress in SOFC design. Experimental 
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characterization techniques may not, however, always be available to determine certain 

properties and atomistic structure of the materials. In those cases, the computational investigation 

of the representative supercells from the first principles can greatly assist in completing the 

picture and achieve deeper understanding of the relevant processes. Such combined experimental 

and theoretical investigation has an added value and contributes to the design of more efficient 

and cost-effective devices. 

The SOFC is built using porous solid ceramic cathode, anode, and dense electrolyte. The 

cathode is required to be stable in an oxidizing atmosphere, be electronically conductive, and 

maintain a porous structure at high operating temperatures. It is also beneficial for the cathode 

material to exhibit oxygen ion conductivity. To be a good oxygen ion conductor, a ceramic 

cathode should satisfy two fundamental requirements: (i) it has to contain a significant amount of 

vacancies in the oxygen sublattice, and (ii) the energy barriers for site to site oxygen migration 

need to be fairly small (3). Mixed ionic-electronic conducting transition metal perovskite type 

oxides are considered materials of choice for SOFC cathodes because of their porosity and good 

electrical conductivity. 

3.2 Mixed Perovskite and BSCF as cathode material 

Mixed oxides with the general formula ABO3 crystallize in perovskite structure, where A 

cations are either lanthanides or alkaline earth metals, and B cations are transition metals such as 

Mn, Fe, or Co. These perovskites often have large mobility of the oxygen vacancies, exhibit 

strong ionic conductivity, and are often used as cathode materials in SOFC. 105 The first studies 

of the mixed perovskite compounds were focused on lanthanum strontium cobaltite (LSC) with 

the formula La1−xSrxCoO3−δ.107 The high oxygen permeation flux in LSC was attributed to the 
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high concentration of vacancy in the anion sublattice due to the substitution of La3+ by Sr2+ at the 

A-site of the perovskite.108 Unfortunately, at oxygen partial pressures <10 kPa and temperatures 

below 790 °C, LSC is unstable and phase transition to vacancy-ordered brownmillerite structure 

takes place. Burggraaf et al. examined oxygen permeability of perovskite-type oxides 

SrCo0.8B0.2O3−δ (B = Cr, Fe, Co, and Cu) and La0.6Sr0.4CoO3−δ.109 They found a 5 orders of 

magnitude increase in oxygen permeability (up to 0.3−3 × 10−7 mol cm−2s−1) at the onset of the 

transition from a low-temperature vacancy-ordered state to defective perovskite for all 

compounds except SrCo0.8Fe0.2O3−δ. In the latter case, only a slight anomaly was found for the 

oxygen permeability. The comparatively high oxygen flux through SrCo0.8Fe0.2O3−δ observed at 

intermediate temperatures was interpreted in terms of a two-phase mixture of a vacancy-ordered 

state and disordered perovskite, whereas above 790 °C, the sample is single-phase of defective 

perovskite structure .109 Kharton et al. measured oxygen permeation fluxes in SrCo0.8M0.2O3 (M 

= Cr, Mn, Ni, Cu, Ti) materials using the electrochemical method.110,111 The highest permeation 

flux was found for the strontium cobaltite-ferrite (SCF) perovskite with composition of 

SrCo0.8Fe0.2O3. The substitution of Sr2+ ions in SCF by ions with higher charge such as La3+ 

usually increases phase stability, whereas the oxygen permeability is simultaneously 

decreasing.112,113 Recently, a new solution to this permeability decrease was suggested. It 

consists of partial substitution of Sr2+ with Ba2+ in SCF. The resulting material, called 

barium−strontium cobaltite−ferrate (BSCF) has improved phase stability, whereas the oxygen 

permeation flux remains unchanged. Initially, BSCF was developed as a high-temperature 

oxygen permeation membrane material.108,114 Recently Shao et al. proposed BSCF as an 

intermediate temperature cathode material.115 The reason of phase stability of BSCF is suggested 
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by McIntosh et al. 116 According to their explanation, the Ba2+ ion is too large to sustain the 

transition-metal brownmillerite structure. 

The size and charge of the B-site cations are found to be even more important parameters for 

the conductivity in perovskites. The B−O octahedra constitute the framework of the perovskite 

structure, and the oxide anion interacts with the B cation by a much stronger partially covalent 

bond, unlike the purely ionc bond to the large A cation. Lybye 67 compared four perovskites, 

La0.9Sr0.1B0.9Mg0.1O2.9 (B = Al3+, Ga3+, Sc3+, or In3+) where only the B ion is changed, and found 

the maximum ionic conductivity for B = Ga3+. This trend which could not be rationalized using 

the lattice free volume and the critical ionic radius point (proposed by Sammells et al.117) or by 

Goldschmidt factor points. Mogensen 118 rationalized the observed trend using the concept of the 

lattice stresses: a stress-free lattice will give the maximum oxide ion conductivity. The 

importance of the nature of the B-site ion is further evidenced by the results published on the rare 

earth gallates. Ishihara et al.119reported that substituting half of the Mg2+ in 

La0.8Sr0.2Ga0.8Mg0.2O2.8 with Co or Ni ions improves the oxide ionic conductivity significantly. 

Another reason for improving ionic conductivity by different B-site cations is the change in 

concentration of the oxygen defects, tuned by substituting B-site cations with more or less 

reducible ones, or by substituting A-site cations with cations of a different charge.120 In this 

paper, we report results of X-ray diffraction analysis, transmission electron microscopy, micro-

Raman spectroscopy study, and density functional theory (DFT) calculations of structural and 

electronic properties of BSCF, including the spin states of B cations. Special attention is paid to 

the oxygen vacancies and cation ordering to clarify the stability of this material. Theoretical 

results are compared with experimental data. 
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3.3 Computational Details 

Our calculations are based on Density Functional Theory (DFT) with the Perdew-Burke-

Ernzerhof (PBE) exchange-correlation functional, Vanderbilt ultrasoft pseudopotentials 121 and 

the plane wave basis set implemented in the Quantum-ESPRESSO program package.122 The 

Brillouin-zone integrations are performed using Monkhorst-Pack grids with a 2×2×2 mesh for 

supercell calculations. Spin polarized DFT with Marzari-Vanderbilt smearing 123 is used 

throughout. Geometry optimizations used the Broyden-Fletcher-Goldfarb-Shanno algorithm. The 

wave function and electron density representation are limited by kinetic energies of 40 and 360 

Rydberg respectively. We treated the Ba(5s,5p,6s), Sr(4s,4p,5s), Co(4s,3d), Fe(3d,4s) and 

O(2s,2p) electrons as valence states, while the remaining electrons were represented by 

pseudopotentials. These pseudopotentials were validated by computing the equilibrium lattice 

parameters (a) and bulk moduli (B) and comparing their values with the experimental ones (see 

Reasults and Discussion section). For Co4+ we found an intermediate spin state to be the most 

stable among three possible spin states: low spin (LS), intermediate spin (IS), and high spin (HS) 

states (spin of S=1/2, S=3/2, and S=5/2 respectively) .124 For Fe4+ cations HS is the more stable 

of LS and HS states (S=1 and S=2).124  

For the mixed perovskite material Ba0.5Sr0.5Fe0.2Co0.8O3 we used a 2×2×2 supercell, 

containing 4 Ba atoms, 4 Sr atoms, 2 Fe atoms and 6 Co atoms, along with 24 oxygen atoms 

(Figure 3-6). This amounts to a Ba0.5Sr0.5Fe0.25Co0.75O3 formula unit, which is fairly close to the 

experimentally observed stoichiometry. Figure 3-2 shows the ion numbering scheme used in the 

following discussion. 
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Activation energies for oxygen migration were obtained starting from different ion 

distributions in the supercell. For each ion distribution we performed three structural relaxation 

calculations: two for the stable supercell with one vacancy before and after migration, and one 

transition state with an oxygen ion in the middle of the XYX plane with OYZ angle of 450. In the 

transition states found, the oxygen ion was located away from the straight line connecting the 

oxygen positions before and after the migration. That means the migration pathway is curved 

shows in Figure 1-3, in agreement with previously published results obtained using the empirical 

force fields.28,29 While geometry relaxation of the symmetric transition barriers can be 

accomplished be simply constraining the angle at 45o, the asymmetric transition barrier search 

requires use of special algorithms. The Nudged Elastic Band (NEB) 125 method is one of them. It 

enables one to find the optimal transition state and minimal energy reaction pathway when both 

the initial and final states are known. Seven replicas are chosen including the initial and final 

ones to construct the elastic band in this method. Here we used NEB method 125 with 7 images. 

This type of calculations increased CPU time by the factor of 20 compared to the regular 

relaxation, but allows one to obtain complete trajectory of the oxygen migration.  

For all investigated stable ionic configurations Boltzmann factors were calculated to 

estimate the probability to observe this local structure at a sample preparation temperature of 

11500C. Boltzmann factors correspond to the probability for each local structure occurring in the 

sample, assuming it was cooled down fast after the preparation. Annealing at lower temperatures 

is expected to increase the frequency for the more stable configurations and decrease the 

frequency for the less stable ones, whereas the relative energy order of the configurations will 
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remain the same. In order to identify the spin state of each cation in the supercell containing 

different types of ions, we used Löwdin population analysis of the spin density. 

3.4 Electronic structure of BSCF 

In octahedral crystal field Co4+ can have three possible spin states, t2g
5eg

0 (S = 1/2), t2g
4eg

1 

(S= 3/2), and t2g
3eg

2 (S= 5/2) with one, three and five unpaired electrons, respectively. Fe4+ can 

have two possible spin states in the octahedral splitting with two and four unpaired electrons. 

These states have configurations as t2g
4eg

0 (S = 1) and t2g
3eg

1 (S = 2). We denote these states as 

low spin (LS) with one unpaired electron, intermediate spin (IS) with three unpaired electrons, 

and high spin (HS) states with five unpaired electrons for Co4+, and as LS and HS states for Fe4+ 

cation according to their multiplicity. The spin-state configurations of Co4+ and Fe4+ in 

octahedral crystal field are schematically shown in Figure 3-1. 

The accuracy of used pseudopotentials was validated by computing the equilibrium lattice 

parameter (a) for pure perovskites SrCoO3, SrFeO3, BaTiO3, and SrTiO3. For last two 

perovskites bulk moduli (B) were also calculated and compared with experimental values in 

Table 3-1. The bulk moduli were obtained by fitting the energy-volume curves using the 

Birch−Murnaghan equation of states.126 All calculations for the pure perovskites were performed 

using a unit cell containing a single formula unit. For modeling the mixed perovskite 

Ba0.5Sr0.5Fe0.2Co0.8O3, we used a 2 × 2 × 2 supercell. One supercell has 4 Ba atoms, 4 Sr atoms, 2 

Fe atoms, and 6 Co atoms, which results in a Ba0.5Sr0.5Fe0.25Co0.75O3 formula unit, fairly close to 

the experimentally observed stoichiometry. For all investigated configurations, we calculated the 

Boltzmann factors at the temperature of sample preparation (1150 °C). These factors correspond 

to the frequency for each local structure occurring in the sample, assuming it was cooled down 

http://pubs.acs.org/doi/full/10.1021/am900182p?prevSearch=%255Bauthor%253A%2Bshruba%255D&searchHistoryKey=#fig1�
http://pubs.acs.org/doi/full/10.1021/am900182p?prevSearch=%255Bauthor%253A%2Bshruba%255D&searchHistoryKey=#tbl1�


38 
 

fast after the preparation. Annealing at lower temperatures is expected to increase the frequency 

for the more stable configurations and decrease the frequency for the less stable ones, whereas 

the relative order will remain the same. 

The single phase BSCF perovskite was refined in cubic Pm3m space group symmetry with a 

lattice constant a = 4.00013(8) Å. No secondary phases have been detected. The morphology and 

particle size of the BSCF are presented in Figure 3-5. As one can see, the powder particles have 

an irregular shape with a particle size of d50 = 0.35 μm. The chemical analysis using energy-

dispersive spectrometer has shown the presence of Ba, Sr, Co, and Fe as well as oxygen atoms in 

the appropriate stoichiometry. Our observations are in agreement with the literature data. In a 

recent study on BSCF, the cubic phase was found to reversibly transform to a hexagonal 

polymorph upon long-term annealing at 900 °C. 127 The phase stability of the cubic BSCF at 

higher temperature is confirmed by Yang et al.128 According to their study, at 1000 °C, most of 

the compositions maintain the cubic phase. 

In the ideal cubic perovskite structure, all lattice sites have inversion symmetry. 

Therefore, first-order Raman scattering is forbidden and no Raman active band is expected to be 

found in cubic BSCF perovskite.129 However, the broad band is detected at 675 cm−1, as is 

shown in Figure 3-4 This broad peak consists of the two overlapping bands which parameters, 

such as peak positions and intensities could be detected using the full width at half-maximum 

(FWHM) approach. The appearance of these vibration bands, forbidden in cubic structure, could 

be explained by the Jahn−Teller distortion in BSCF perovskite at room temperature. We 

associate this dynamic, local site distortion around the Co4+ cation with its intermediate spin state 

t2g
5eg

1. The presence of a single electron on the degenerate energy level results in distortion of 

http://pubs.acs.org/doi/full/10.1021/am900182p?prevSearch=%255Bauthor%253A%2Bshruba%255D&searchHistoryKey=#fig2�
http://pubs.acs.org/doi/full/10.1021/am900182p?prevSearch=%255Bauthor%253A%2Bshruba%255D&searchHistoryKey=#fig3�
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the octahedral coordination of this cation by the first-order Jahn−Teller mechanism. The rising 

temperature will result in dynamic disorder, and average out the Jahn−Teller distortion. Thus, the 

intensities of the bands are expected to decrease, and the peaks become indistinguishable from 

the background. Therefore, the experimentally observed decrease in the intensities of two broad 

peaks at 600 °C reflects the transition to a dynamically less distorted local structure of BSCF. 

In the case of the ordering of two different B-site cations in cubic perovskites a face-

centered cubic superstructure with Fm3m symmetry is created (called elpasolite-type structure). 

This leads to several normal modes active in Raman spectra. Their wavenumbers were shown to 

change with temperature, whereas their intensities do not depend on the temperature 

significantly. 130 Unlike the B-cation ordering, the Jahn−Teller distortion results in a strong 

temperature dependence of the Raman intensities, which was reported, for instance, in our 

previous study of LaCoO3,131 as well as other studies of this perovskite.132 

The comparisons of calculated and experimental values of lattice parameters and bulk 

modulus of pure perovskites are presented in Table 3-1. In agreement with experimental 

data,133our calculations result in IS state of the cobalt ion for the ground state of SrCoO3. For this 

compound, our calculations also demonstrate a close agreement with the experimental value of 

the lattice parameter 134 (the deviation is +0.2% for LS state, and −0.6% for IS state, whereas the 

deviation is as large as 3.3% for HS state). The IS state of Co3+ was experimentally observed 

with photoemission spectra 135 and the ferromagnetic resonance measurements.136 The 

experimental value for magnetic moment of strontium cobaltite SrCoO3 is 2.1 μB. This value of 

magnetic moment is bracketed by idealized magnetic moments of HS and LS states.137 Our 

http://pubs.acs.org/doi/full/10.1021/am900182p?prevSearch=%255Bauthor%253A%2Bshruba%255D&searchHistoryKey=#tbl1�
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calculations give the total energies for LS and HS states to be 7.46 and 22.48 kcal/mol above the 

IS state. 

In the case of SrFeO3 compound, we found the HS state to be more stable by 9.60 

kcal/mol compared to LS state, which is also consistent with experiment. 135 The calculated 

lattice parameter for both LS and HS states deviates from the experimental value 138 by −0.2 and 

−1.3%, respectively. From the Table 3-1, we can conclude that the ground electronic spin state of 

Co3+ in SrCoO3 is IS, whereas Fe in SrFeO3 has HS ground state. 

For the model BSCF supercell, we performed optimization of the lattice parameter 

corresponding to the ambient zero pressure. Experiments show, 108 that the oxygen sublattice of 

BSCF in nonstoichiometric and molar fraction of the oxygen vacancies is δ = 0.38 at 1150 °C. 

To address this fact, we studied the relative stability of the oxygen deficient supercells with 

respect to various vacancy positions. Structures with up to 4 oxygen vacancies per supercell were 

considered. They correspond to the formula Ba0.5Sr0.5Co0.8Fe0.2O3−δ with δ = 0.125, 0.25, 0.375, 

and 0.5. The calculated lattice parameter was found to be within 0.3% from the experimental 

lattice parameter of BSCF for all concentrations of vacancies. This result is in agreement with 

the neutron diffraction study performed by McIntosh et.al .120 

To determine the spin state of the supercell, two spin states for Fe (s = 1 and s = 2) were 

combined with three spin states for Co4+ (s = 1/2, s = 3/2, and s = 5/2). According to 

experimental data, the SrFe1−xCoxO3 compound is antiferromagnetic for x < 0.10−0.15 and 

becomes ferromagnetic for x ≥ 0.2. 139 The ferromagnetic state of SrFeO3 was also found to be 

the most stable at LSDA+U level of theory.140 On the basis of these data, we considered Fe and 

Co cations in BSCF supercell to be ferromagnetically coupled. 

http://pubs.acs.org/doi/full/10.1021/am900182p?prevSearch=%255Bauthor%253A%2Bshruba%255D&searchHistoryKey=#tbl1�
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The spin state of the transition metal ions in BSFC was examined by Löwdin population 

analysis. The results of this analysis for SrCoO3 and SrFeO3 perovskite structures at different 

spin states reveal ferromagnetic coupling between transition metal cations. Herein we tested all 

the examined structures by Löwdin population analysis in order verify the spin states of 

individual cations and their ferromagnetic ordering in structures under investigation. 

To determine the most stable spin state of the stoichiometric BSCF, we combined one of the 

two possible spin states for Fe4+ cation with one of the three spin states for Co4+. Our calculated 

results are presented in Table 3-2 and demonstrate that the ground state of the BSCF supercell 

without defects is formed by IS state of Co4+ and HS state of Fe4+. This is the most stable state 

with Boltzmann factor of 98%. For this ground state, the structural relaxation of the supercell 

converges to the structure with tetragonal distortion around the Co4+ cation, shown in Figure 3-3. 

This result is in agreement with the experimentally observed Jahn−Teller lattice distortion of 

BCSF, discussed above. Because both elongation and contraction of Co−O interionic distances 

are observed in simultaneous fashion, overall symmetry of the structure remains cubic as shown 

in Figure 3-3. This theoretical conclusion is reinforced by experimental Raman spectroscopy 

data shown in Figure 3-4, where the decrease of the intesity of a broad peak 675 cm−1 occurs at 

elevated temperatures and complete disappearance of the peak is expected as temperature rises 

further. The existence of IS state of Co3+ ion is also observed experimentally in different 

lanthanum-based cobaltites. 71,131,140 

http://pubs.acs.org/doi/full/10.1021/am900182p?prevSearch=%255Bauthor%253A%2Bshruba%255D&searchHistoryKey=#tbl2�
http://pubs.acs.org/doi/full/10.1021/am900182p?prevSearch=%255Bauthor%253A%2Bshruba%255D&searchHistoryKey=#fig4�
http://pubs.acs.org/doi/full/10.1021/am900182p?prevSearch=%255Bauthor%253A%2Bshruba%255D&searchHistoryKey=#fig4�
http://pubs.acs.org/doi/full/10.1021/am900182p?prevSearch=%255Bauthor%253A%2Bshruba%255D&searchHistoryKey=#fig3�
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Table 3-1: Lattice parameters a (Ǻ) and bulk moduli B (GPa) calculated for some pure and mixed 
perovskites. Two different spin states of Co+4, and oxygen vacancy in BSCF are also reported. 
BSCF calculations are preformed for 2x2x2 supercell, then devided by 2. The experimental unit cell 
parameters and bulk moduli are shown for comparison. 

 

Compound 

Co 

Multiplicity

a, Ǻ 

calc 

a, Ǻ 

exp 

B, GPa 

calc 

B, GPa

Exp 

SrCoO3 4 3.825 3.835d   

6 3.857    

SrFeO3 - 3.889 3.835c   

BaTiO3 - 3.989 4.000e 148.34 135a 

SrTiO3 - 3.930 3.899f 181.57 179b 

Ba0.5Sr0.5Fe0.25Co0.75O3 4 3.900    

Ba0.5Sr0.5Fe0.25Co0.75O3-δ (δ =0.125) 4 3.905    

Ba0.5Sr0.5Fe0.25Co0.75O3 6 3.968    
    a) Ref. 134; b) Ref. 141 ,c) Ref. 142, d) Ref. 137, e) Ref. 143,f) Ref. 144 
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Table 3-2: Spin densities on transition metal cations, set up as initial guess and obtained 
with Lowdin population analysis at SCF convergence for BSCF 2x2x2 supercell, their 
relative energies and Boltzmann factors.  

                                                                                          

 

 

 

 

 

 

 

 

 

 

  

Unit cell 

Multiplicity 

SCF solution  

spin-polarization 

  ΔE 

kJ/mol 

Boltzmann 

factor (%) 

Fe Co 

23 2.79 1.69 40.4 2 

27 2.80 1.98 0.0 98 

35 3.33 2.55 147.5 0 

39 3.55 2.79 424.4 0 
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Figure 3-1: Different possible spin states of Fe+4 and Co+4 in octahedral crystal field. 
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Figure 3-2: ABO3 perovskite supercell used for calculation. Here A is barium or strontium 
(marked by indexes 9-16), B is iron or cobalt (marked by indexs 1-8), and the rest are 

oxygen atoms (marked by indexes 17-40). 
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Figure 3-3: Jahn-Teller distortion of the coordination octahedron around the Co4+ cation is the 
consequence of the intermediate spin state in the BSCF supercell. Calculated equilibrium 

distances between Co4+ and nearest oxygen ions are shown. 
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Figure 3-4: Raman spectra of BSCF indicates intensity decrease and broadening of 675 cm−1 
peak with elevated temperature 

 

 

Figure 3-5: TEM micrograph showing a particle size and morphology of BSCF perovskite 
powder 
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3.5 Oxygen vacancy and cubic phase stability of BSCF 

The model supercell without vacancies can have nine symmetrically inequivalent 

arrangements of Fe4+ and Co4+ cations at the B positions as well as Ba+2 and Sr+2 cations in A 

positions. The relative stability for all these structures are listed in Table 3-3, where the relative 

positions of cations are labeled according to Figure 3-4. From the Boltzmann factor in the last 

column in Table 3-3 one can clearly see that there is no preferred cation arrangement. Thus, we 

conclude that the transition metal cations fill their positions almost randomly.  

The second step was repeated for configurations with two and more oxygen vacancies. 

We observe that in the most stable configuration two vacancies are located in cis-position to the 

same B cation, while the third vacancy is preferentially located in cis-position to the second one 

at the other B cation at an angle to the first vacancy (L-shape vacancy ordering). Similarly, four 

vacancies prefer to form a square (with Boltzman factor of 47%), rather than the linear 

arrangement (with Boltzman factor of 9%). We reported more details on the vacancy ordering in 

our previous paper. 124 These results are in agreement with the experimental fact that the BSCF 

structure remains cubic in the observed oxygen deficiency range. A similar compound, SCF, 

which contains Sr instead of Ba ions, demonstrates a linear vacancy ordering and undergoes a 

phase transition into a brownmillerite structure at lower temperatures .116 In the supercell with 2, 

3, and 4 oxygen vacancies, the transition metal cations adjacent to the vacancy change their 

coordination from the ideal octahedron with two missing vertices into the distorted tetrahedron 

after the geometry is relaxed, as illustrated on Figure 3-7. 

All three different oxygen vacancy concentrations mentioned above were examined. On 

the first step of the simulation we varied different ionic positions in the defect free supercell. On 
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the second step we randomly removed one oxygen atom from the most stable stoichiometric 

configuration and calculated relative energy of oxygen vacant supercells. The results are 

collected in the Table 3-4. As one can see, the first vacancy prefers to stay between Fe and Co 

(or two Co ions), while the second vacancy favors the coordination octahedron of the Co atom 

neighboring the first vacancy. The third vacancy favors the other coordination octahedron, 

involved in the first vacancy. There it has two preferred positions: in cis-position to the second 

vacancy (L-shaped vacancy trimer), or in trans-position to it (linear vacancy trimer). The 

vacancy ordering into the linear chains is observed during phase transition from disordered cubic 

perovskites to the Brownmillerite phases of ABO2.5 stoichiometry. In our calculations, the L 

shaped vacancy trimer was found to be more stable then the linear vacancy with significantly 

higher Boltzmann factor, shown in the last column of Table 3-4. The four vacancy positions 

obtained after removing the fourth oxygen atoms are shown in Figure 3-5. The most stable 

vacancy tetramer configuration is a square. Thus, our calculations found the linear vacancy 

ordering to be unfavorable compared to the tetrameric islands of vacancies. This is in agreement 

with the experimental fact that the BSCF structure remains cubic in the observed oxygen 

deficiency range whereas the similar Ba-free compound  forms brownmillerite structure with 

linear vacancy ordering.116 The formation 2, 3, and 4 oxygen vacancies in BSCF supercell 

changes the coordination of two, three, or four transition metal cations, adjacent to the vacancy. 

Formation of square vacancy tetramer changes the ideal octahedron coordination of four 

transition metal ions into the distorted tetrahedron. Its relaxed geometry is shown in Figure 3-7. 

 



50 
 

 

Figure 3-6: ABO3 perovskite supercell used for calculation. Sites B (Iron or Cobalt cations) 
represented using indexes 1-8, sites A (Barium or Strontium cations) represented using 

indexes 9-16, while indexes 17-40 represent Oxygen ions. 
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Figure 3-7: Ba0.5Sr0.5Co0.8Fe0.2O2.5 supercell ground state structure. Four oxygen vacancies are 
denoted as Vo. The positions of oxygen atoms in the initial vacancy free lattice are labeled as 
Ox

 to demonstrate oxygen atoms displacement accompanying the oxygen vacancies 
formation 
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Table 3-3: Relative ground state energies of BSCF supercell with respect to different cation 
positions. The index for cations indicates the positions according to Figure 3-6, and spin states are 
s=2 (Fe), s=3/2 (Co). ΔE is the relative ground state energy measured in kcal/mol, C indicates the 
Boltzmann factors at 1150C. 

Fe1 Fe2 Co1 Co2 Co3 Co4 Co5 Co6 Ba1 Ba2 Ba3 Ba4 Sr1Sr2 Sr3Sr4 ΔE C 

1 5 2 3 4 6 7 8 10 11 13 16 9 12 14 15 2.03 8 

1 6 2 3 4 5 7 8 10 11 13 16 9 12 14 15 2.01 8 

1 8 2 3 4 5 6 7 10 11 13 16 9 12 14 15 2.54 6 

1 5 2 3 4 6 7 8 10 12 14 16 9 11 13 15 0.00 18 

1 6 2 3 4 5 7 8 10 12 14 16 9 11 13 15 0.10 18 

1 8 2 3 4 5 6 7 10 12 14 16 9 11 13 15 0.76 13 

1 5 2 3 4 6 7 8 11 12 13 14 9 10 15 16 1.42 10 

1 6 2 3 4 5 7 8 11 12 13 14 9 10 15 16 1.41 10 

1 8 2 3 4 5 6 7 11 12 13 14 9 10 15 16 1.95 8 
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Table 3-4. Relative ground state energies ΔE (kcal/mol) of 1, 2, 3, and 4-oxygen deficient 
Ba0.5Sr0.5Co0.8Fe0.2O3-δ supercells with respect to different vacancy positions (denoted according to 
Figure 3-6). The positions of cations are: Fe=1,5; Co=2,3,4,6,7,8; Ba=10,12,14,16; Sr=9,11,13,15 (see 
Figure 3-6).  

V1 V2 V3 V4 ΔE (kcal/mol) C (%) at 11500C 

29 6.24 7

24 0 67

35 3.13 21

22 11.06 1

27 7.92 4

24 18 19.47 0

24 22 7.72 3

24 28 4.88 9

24 29 3.15 17

24 32 6.08 6

24 34 11.30 1

24 35 0.00 54

24 36 9.81 2

24 38 6.49 5

24 39 10.39 1

24 40 10.47 1

24 35 17 10.07 2

24 35 23 5.02 11

24 35 33 11.16 1

23 24 29 3.88 17

23 24 36 0.00 69

23 24 29 30 4.59 9

23 24 35 26 10.87 1

24 29 35 36 0.00 47

24 29 18 17 0.23 43
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3.6 Transition State and activation energy search for oxygen vacancy migration in BSCF 

Since BSCF perovskite remains cubic throughout the fuel cell operation temperature range, 

we considered only cubic structures. According to Kilner ,145 the oxygen vacancy moves along 

the curved pathway illustrated in Figure. 3-8. As shown in this figure, the transition state (TS) is 

characterized by different symmetry compared to the initial and final configurations. The TS has 

a diagonal plane the other structures do not, while the initial and final structures have horizontal 

and vertical reflection planes not found in TS.  

 

 

 

Figure 3-8: Elementary step of oxygen vacancy diffusion in a cubic perovskites 
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Figure 3-9: Oxygen migration energetics for (a) symmetric ionic arrangements (corresponds to 
line 8 in Table 3-5), and (b) non-symmetric environment (line 9 in Table 3-5), (c) special 
case of tetra-vacancy square formation (line 13 in Table 3-5); the MMO angle in marked 
next to each image point. 
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Figure 3-10: The NEB images along the oxygen vacancy migration pathway in square tetra-
vacancy case.  

Both straight line and curved pathways for oxygen diffusion in LaAlO3 perovskite were 

investigated by Hernandez et. al 33 using the climbing image nudged elastic band approach. They 

found straight line to be unfavorable to the curved pathway. The transition state for the curved 

Initial Position 
Image II Transition State 

Image IV  

Image V Image VI 
Final Position 
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pathway was also obtained in their study from DFT molecular dynamics simulations. the 

pathway described in Figure 3-8.  

In the Section 3.3 of this paper we concluded that cation positions in BSCF are 

essentially random. Thus, we considered various cation distributions in the supercell to calculate 

the activation energy (also known as the barriers to oxygen hopping, and defined as the 

difference between the initial state and the transition state energies). They are expected to be 

dependent on the specific distribution of cations. For comparison, we use the same protocol for 

two undoped cubic perovskites: SrFeO3-δ and SrCoO3-δ. The calculated activation energies for 

SrFeO3-δ, and SrCoO3-δ were 85.6 kJ/mol and 80.1 kJ/mol respectively. In both cases the ground 

spin state was considered: multiplicity 5 for iron, and multiplicity 4 for cobalt, according to our 

calculations. 124 For SrCoO3-δ in less stable high spin state the activation energy was predicted to 

be 156.1 kJ/mol, nearly twice that for the intermediate spin state. This sharp increase is not due 

to the increased lattice parameter predicted for high-spin SrCoO3-δ. The activation energy 

predicted for high-spin state at the intermediate spin state lattice parameter was found to be 

somewhat higher. This indicates that it is the presence of Co4+ in the intermediate spin state that 

lowers the activation energy in BSCF considerably. 

The calculated activation energies for symmetric ion distributions in BSCF are presented in 

Table 3-5, lines 1-7. These values may be compared with the experimental vacancy diffusion 

activation energy of 46±2 kJ/mol reported by Shao et al., 108 based on the oxygen permeation 

measurements conducted for the oxygen partial pressures of 0.025 and 0.21 atm on the opposite 

sides of the membrane. On average, our results are somewhat lower than this value. The 

calculated values, however, are more than twice smaller than the activation energies we 
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calculated for SrFeO3-δ, and SrCoO3-δ. This confirms that mobility of oxygen vacancies is 

significantly higher for BSCF compared to SCF (purely Sr based) perovskite. This reduction in 

activation energy is the result of the lattice parameter expansion upon increase in the 

concentration of the large Ba2+ ions, weakens cobalt-oxygen interactions in the ground state. The 

lowest activation energy was found for hopping between two sites located far away from the Fe4+ 

cations. Based on this finding, we suggest that an increased concentration of Co and Ba in BSCF 

will improve the vacancy mobility in this material. A more accurate atomistic description of the 

vacancy diffusion in BSCF would require to account for uneven (clustered) vacancy distributions 

and its effect on the activation barriers of diffusion. The research along these lines is ongoing.  

The activation energies for asymmetric ion distributions in BSCF were calculated with NEB 

method and presented in Table 3-5, lines 8-13. From the comparison of the lines 7 and 8 in this 

table one can see that symmetry constrained search (line 7) agrees with the results of NEB 

method (line 8) to within 1.6 kJ/mol. Next two lines (9 and 10) illustrate that for two randomly 

picked asymmetric cases the predicted activation energy for oxygen migration falls in the same 

range as the symmetric barriers. Due to computational expense of NEB calculations we did not 

investigate all the possibilities. The NEB energy profiles for the reaction pathways reported in 

lines 9 and 10, are presented in Figure. 3-8. The last three lines in the Table 3-5 report the 

activation energies in the presence of two and three additional vacancies. In lines 11 and 12 we 

described the most stable cation arrangement (with Boltzmann factors of 9% and 47%) as found 

in our calculations, 124 while the edge jump is considered in the last line 13. The activation 

energies reported in lines 11 and 12 fall within the range of symmetric cases reported in Table 3-
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5, the edge jump reported in line 13 is showing lower actvation barrier 18.4 kJ/mol. This lower 

barrier also shows the ease of square vacancy formation. 

Table 3-5: Transition states and activation energies of the oxygen vacancy hopping between 
crystallographic sites, calculated for different local cation arrangements in the BSCF 
supercell.  

Line  
Number 

closest cations Ba 
 

 
Fe 

Migrating
Vacancy

Permanent  
Vacancy 

ΔH Ea 
initial final initial Final kJ/mol 

1 2Ba+2Sr 2Ba+2Sr Fe-O-Co Fe-O-Co 10 11 13 16 1 8 22 24 0.0 37.9
2 2Ba+2Sr 2Ba+2Sr Co-O-Co Co-O-Co 10 11 13 16 1 8 35 36 0.0 32.8
3 2Ba+2Sr 2Ba+2Sr Fe-O-Co Fe-O-Co 10 12 14 16 3 5 35 36 0.0 45.2
4 2Ba+2Sr 2Ba+2Sr Fe-O-Co Fe-O-Co 10 12 14 16 1 8 35 36 0.0 52.3
5 2Ba+2Sr 2Ba+2Sr Co-O-Co Co-O-Co 11 12 13 14 3 5 29 24 0.0 34.6
6 4Ba+0Sr 4Ba+0Sr Co-O-Co Co-O-Co 11 12 13 14 3 5 38 39 0.0 20.2
7 4Ba+0Sr 4Ba+0Sr Fe-O-Co Fe-O-Co 10 12 14 16 3 5 38 39 0.0 41.2
8 4Ba+0Sr 4Ba+0Sr Fe-O-Co Fe-O-Co 10 12 14 16 3 5 38 39 0.0 42.6
9 4Ba+0Sr 4Ba+0Sr Co-O-Co Co-O-Co 10 12 14 16 1 5 38 39 0.0 38.8

10 4Ba+0Sr 2Ba+2Sr Co-O-Co Co-O-Co 10 12 14 16 1 5 38 40 21.9 46.3
11 2Ba+2Sr 2Ba+2Sr Co-O-Co Fe-O-Co 10 12 14 16 1 5 36 35 23 24 20.2 49.2
12 2Ba+2Sr 0Ba+4Sr Fe-O-Co Fe-O-Co 10 12 14 16 1 5 30 31 23 24 2924.1 29.8
13 2Ba+2Sr 2Ba+2Sr Co-O-Co Co-O-Co 10 12 14 16 1 5 35 40 24 29 3636.6 18.3
 

The first column represents case reference number, the next 4 columns list the number and type 

of the nearest number of the nearest neighbors for the oxygen anion before and after diffusion 

jump; the following 6 columns contain specific locations of Fe and Ba cations labeled according 

to the Figure 3-4 (the remaining sights are occupied by Co and Sr). Next 6 columns list the 

specific locations of the vacancies; the following column reports the migration enthalpy, and the 

final column reports the calculated activation energy. The activation energies reported in lines 1-

7 were obtained via symmetry constrained search, the ones reported in lines 8-13 were obtained 

with NEB method. Lines 1-10 represent cases with one vacancy in the supercell, line 11 

represents the most stable arrangements of three vacancies, and lines 12-13 represent two most 

stable arrangements for 4 vacancies (linear and square tetramers).  
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3.7 Conclusions 

We applied plane wave DFT calculation to describe the atomic and electronic structure and 

oxygen transport properties of mixed perovskite BSCF. Our calculations predict an intermediate 

spin state and a Jahn–Teller distorted coordination for cobalt ions; both are in agreement with 

experiment. We also show that the cations are completely disordered, while oxygen vacancies 

exhibit a strong trend to form cluster arrangements. We demonstrated that the most preferable 

position for oxygen vacancy in the structure with δ=0.125 is between Fe and Co cations. The 

second vacancy occurs at the most energetically favorable position next to a Co cation which 

already has a vacancy in its coordination sphere. The preferential vacancy arrangements are 

predicted to be L-shaped for three, and square for four vacancies. This is in contrast with linear 

vacancy arrangement and phase transition to brownmillerite type of structure for similar material 

containing no Ba ions. We predicted the activation energies for oxygenmigration using two 

different methods: symmetry constrained search and Nudged Elastic Band (NEB) method. We 

also performed similar calculations for supercell, containing more than one vacancy. Lower 

activation barrier of square cluster of vacancies also suggest that squares of the vacancies form 

fast. The site-specific activation energies for oxygen migration for all other configurations found 

to be close to the experimental value. Our calculations found that Co and Ba cations decrease the 

activation energies for the oxygen vacancy migration. Therefore, we suggest increasing the 

concentration of these cations in order to improve the ionic conductivity of the cathode materials. 

It is expected that this will allow a reduction in the operating temperature for Solid Oxide Fuel 

Cells. 
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CHAPTER 4 PREDICTION OF HEISENBERG EXCHANGE CONSTANTS 
IN ORGANOMETALLIC COMPLEXES 

 

Molecular nanomagnets have been proposed as a good candidate for qubits for quantum 

computation.37 The flexibility in their synthesis represents a distinct advantage over other spin 

systems, enabling the systematic production of samples with desirable properties. The synthesis 

and study of magnetic properties of large polynuclear transition metal clusters is a field to which 

many research groups have devoted considerable effort during the past years. Some of those 

polynuclear complexes show a slow relaxation of the magnetization that could eventually lead to 

applications for information storage at the molecular level.146 Electron spin in the solid state 

systems are currently considered as one of the promising candidate for storing and processing of 

quantum information processing. In this perspective both ferro and antiferromagnetic magnets 

catched interest for spintronic applications in quantum computer. 

4.1 Magnetic Hamiltonian and Heisenberg exchange constant 

Heisenberg exchange constant J. This constant appears in Heisenberg Hamiltonian that   can be 

written in general form as  

                        Jiij S.S.JH ∑−=                                                                   (4-1) 

here Jij represents the coupling constant between the two magnetic centers i and j with spin states 

Si and Sj. The positive J values indicate the ferromagnetic ground state and the negative ones 

indicate the antiferromagnetic ground state. For the system of two equivalent magnetic centers, 

the J value can be calculated from the first principles using total energies of the high spin state 

(where Si=Sj) and the low spin state (where Si=-Sj). 
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4.2 Theoretical approaches to calculate Heiseberg exchange constants 

4.2.1 Different hybrid DFT approaches 

The most common theoretical method for prediction of J is Broken Symmetry Density 

Functional Theory (BS-DFT). In this method the energy correction is made to account for the 

fact that the low spin state is described by the open shell single Slater determinant, which is not 

an eigenfunction of the spin operator (spin symmetry is “broken”). The first analytical form for 

the energy correction was proposed by Noodleman:147,148,149,150,151  

2
maxS

EE
J HSLS

ij
−

=
                                                         

 (4-2) 

here ELS and EHS are the computed energies of the low and high spin states, and Smax=|Si|+|Sj|. 

This correction scheme is applicable for weakly bonded molecular fragments with small overlap 

between the magnetic orbitals.147,152, 153 An alternative correction scheme has been used by Ruiz 

and co-workers.154 In this scheme, J value is computed as  

)1( maxmax +
−

=
SS

EE
J HSLS

ij

                                                                    
(4-3) 

This scheme assumes strong bonding between molecular fragments with localized spins, and 

may be more appropriate for binuclear complexes than (4-2). The third way to compute J is 

independent of the bonding situation in the molecule. It had been proposed by Nishino et al.155 

LSHS

HSLS
ij SS

EE
J

22 −

−
=                                                                 (4-4) 

here <S2>HS and <S2>BS are the total spin angular momentum expectation values for high and 

low spin states. This correction scheme approximately accounts for the overlap between 
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magnetic orbitals. Less approximate schemes may also take into account differences in the 

overlap between different magnetic orbitals of the same system.156,157 Since pure DFT usually 

overestimates J values, BS-DFT is making use of the hybrid exchange-correlation functionals, 

where fraction of the orbital-dependent Hartee-Fock exchange is replacing local and semi-local 

exchange. Unfortunately, BS-DFT was not sufficiently accurate in predictions of J for binuclear 

complexes with acetate bridges,151,158 presumably due to strong delocalization of the spin density 

form the metal centers to the ligands. 

4.2.2 DFT+U methodology 

The attractive alternative for BS-DFT method is DFT+U, introduced by Anisimov et al.9 and 

simplified by Cococcioni et al.159 In this work we adopt the empirical approach and show that 

both metal centers and ligand atoms need to be assigned a specific U values in order to 

accurately describe the properties of molecular magnets. 

Considering importance of superexchange interactions, Cao et. al.160 performed DFT+U 

calculations for Ni(hmp)(MeOH)Cl4 complex, where they both metal and ligand oxygen atoms 

were assigned their U parameters. Because of the strong correlation effects in this system, the 

pure DFT approach artificially results in the hybridization of orbitals, leading to AFM coupling. 

The inclusion of a Hubbard-U term for both the Ni 3d and O 2p electrons greatly enhances the 

localization, and is essential in order to obtain the correct ferromagnetic ground state and 

positive value for the exchange-coupling constant. The rationale for using the parameter U for 

both the p and d orbital is the following. Coulomb interactions between oxygen 2p electrons are 

comparable to those between d electrons,161,162 and should hence be taken into consideration. 

However, since oxygen usually bares a fully occupied p-shell, this correlation effect contributes 
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equally to the low- and high-spin states. Therefore, DFT+Ud already yield a satisfactory 

description of the ground state. However, when 2p-electrons of the ligand are involved in π-

conjugated system, DFT+Up+d has to be used for both the 3d and oxygen 2p electrons in order to 

obtain the correct ground state for the molecule. 

4.3 Computational Details 

All the reported calculations were done using the Quantum-ESPRESSO-4.0.1 package,122 

using PBE exchange-correlation functional, Vanderbilt ultrasoft pseudopotentials121 and a plane-

wave basis set. We employ the same protocol used in our previous studies.124 Namely, the energy 

cutoffs for the wave functions and charge densities were set at 25 and 250 Ry to ensure total 

energy convergence,  spin polarized approach, the Marzari-Vanderbilt123 cold smearing 

(smearing factor 0.0008), and local Thomas-Fermi mixing mode to improve SCF convergence. 

To better describe the magnetic states for manganese, both valence and semicore shells 

(3s3p3d4s) were treated explicitly, while rest of the electrons was replaced by Vanderbilt 

Ultrasoft pseudopotential. For homovalent antiferromagnetic state we used equal and opposite 

“starting magnetization” on manganese to ensure correct antiferromagnetic state. For 

heterovalent compound we used different “starting magnetization” on manganese atoms with 

opposite signs. All molecular structures were optimized in their most stable (low spin, except for 

complex III) state starting from atomic coordinates, taken from X-Ray diffraction data with 

geometrically added hydrogen atoms. The optimization was found to be critically important for 

the accuracy of the final results, presumably due to inaccuracies introduced in some of X-Ray 

structures by partial disorder. 
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In application of DFT+U method, we followed the protocol described by Cao et. al.160 We 

used simplified rotational-invariant formulation, which was originally developed by 

Liechtenstein et al.10 as basis set independent generalization of DFT+U. The values of the U 

parameter for both the metal atom and the ligand atoms (O and N) were empirically adjusted to 

fit the experimental spin splitting energies for the benchmark set of five small binuclear 

manganese complexes with various oxidation states (+2, +3 and +4), as described in Section 4.4. 

4.4 Prediction of Heisenberg exchange constants using DFT+U for binuclear manganese 

complexes 

In order to calibrate DFT+U approach and validate it for predictions of the coupling constant 

values, we selected five binuclear manganese complexes presented in Figure 4-1. The manganese 

complexes of this type have been extensively studied. They have rich redox chemistry and play a 

functional role in a variety of biologically important metalloproteins.163 In particular, oxo-

manganese clusters are either known or have been implicated in the catalytic function of 

manganese catalase,163,164 manganese ribonucleotide reductase,165-167 and the oxygen-evolving 

complex of photosystem II.168,169,170  

For this work the we select a representative set of  five different classes, based on the 

oxidation number and type of bridging groups:  (I) Mn(IV) di-μ-oxo; (II) Mn(IV) di-μ-oxo-μ-

carboxylato; (III) Mn(III) μ-oxo-di-μ-carboxylato, and (IV) Mn(II) tri-μ-carboxylato, (V) 

Mn(III)Mn(IV) μ-oxo-di-μ-carboxylato bridged systems. Our molecule of interest 

[Mn6IIIMn6II(O2CMe)14(mda)8] (mda=N-methyl diethanolamine) is a mixed valence Mn 

complex, containing both acetate and oxo bridges. We choose our benchmark molecules so that 

they have the similar structural features withThe complexes III and IV were selected for this 
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study to represent oxidation states, Mn (III) and Mn(II) bridged by two and three acetate ligands, 

respectively, and complex V represents the mixed valence Mn(III)-Mn(IV) complex, with the 

structure similar to the Mn(III)-Mn(III) complex. 

The exchange coupling in most of these complexes were previously studied with BS-DFT, 

combined with spin contamination correction schemes (Eq. 2-4).171,151 While BS-DFT gives 

reasonable agreement with experiment for the complex I, its prediction was 63% in error for 

complex II. Similar failures of hybrid DFT were reported for other molecules with acetate 

bridge,151,158 and were traced to the delocalization of magnetic orbitals from the manganese 

centers to the ligand atoms151  for complex III the BS-DFT not only fails to predict the 

quantitative value of exchange constant but also predicts the incorrect ground state. BS-DFT  

calculation158 for complex V produced overestimated J values.   

The Table 4-1 reports the J values for the benchmark complexes, obtained in this work, and 

compares them to the experimental J values. Predictions obtained in BS-DFT formalism using 

B3LYP exchange-correlation functional and spin-contamination correction scheme (Eq. 4-2) are 

also shown for comparison. Out of these five complexes the complex IV including Mn(II) 

magnetic center demonstrates the weakest magnetic coupling J, similar to that in the Mn12 

wheel.171 The second weakest coupling is found in complex III with Mn(III) center; this complex 

has ferromagnetic ground state. The complex (V) is included to validate the method for Mn(III)-

Mn(IV) center mixed-valence compound. 

  



67 
 

Table 4-1: Heisenberg exchange constant J for the binuclear complexes, calculated using DFT+U on 
Mn and ligands (U(Mn)=2.1 eV, U(O)=1.0 eV, U(N)=0.2 eV), DFT+U on Mn only, and pure DFT, 
compared to BS-DFT predictions and to the experimental data.  

  

Chemical formula 

 

J (cm-1) 

Plane Wave calculations  

BS-DFT 

Experiment

DFT+U
metal+ligand 

DFT+U\

metal only 

DFT 

 

I [Mn2 (IV)(μO)2 (phen)4]4+ -143.6 -166.6 -383.3 -131.9b -147.0a 

II [Mn2(IV)(μO)2((ac))(Me4dtne)]3+ -71.9 -87.4 -255.9 -37.5b -100.0c 

III [Mn2(III) (μO)(ac)2(tacn)2]2+ 5.6 -3.64 -96.3 -40.0e 10.0d 

IV [Mn2(II) (ac)3(bpea)2]+ -7.7 -18.8 -13.8 - -1.3f 

V [Mn(III)Mn(IV)(μO)2(ac)(tacn)2]2+ -234.0 -247.6 -479.3 -405.e -220.g 
 

a Ref.172; b Ref.151; c Ref.173; d Ref174.; e Ref.158; f Ref.175; gRef.176  

Our calculated data are in agreement with the experimental values to within 15%, for both 

molecules with and without acetate Bridge, compare to 65% deviation produced by broken 

symmetry DFT. As one can see from this table, pure DFT dramatically overestimates the 

antiferromagnetic interactions for all the complexes, including the complex III which is known to 

be ferromagnetic. DFT+Ud has good agreements with experimental results for all the complexes 

except the Complex III. DFT+Up+d  improves the agreement with experiment for the complex IV, 

and is the only method to reproduce the ferromagnetic ground state in complex III.  
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Table 4-2: Dependence of Heisenberg Exchange Constant (J) on atomic Hubbard U parameters for 
complex II. 

 

 

 

 

 

 

 

 Next, we analyzed the sensitivity of the magnetic coupling to the variations of the 

Hubbard U parameter, and reported the results for the complex II in Table 4-2. As one can see, J 

value is the most sensitive to the choice of U on Mn atom, with larger values drastically 

stabilizing HS state. Increase of the Hubbard parameter on the ligands (both μ-oxo and  μ-

carboxylato) also helps to stabilize ferromagnetic state, to a smaller degree. This is in agreement 

with Table 4-1 where ferromagnetic state is stabilized in the order pure DFT< DFT+Ud < 

DFT+Up+d. 

 Finally, we analyzed the electronic structure of the converged HS and LS states. The 

atomic spin densities obtained with Löwdin population analysis are presented in Figure 4-1. As 

one can see from these values, the oxide dianions (Oµ), and aliphatic N atoms that serve as pure 

σ-donors, have spin polarization opposite to that of the nearest Mn ion, in agreement with 

superexchange mechanism we described earlier. The aromatic N atoms have nearly zero spin-

U (ev) 

J cm-1 Mn O N 

1 1 0.2 -147.77

2.1 1 0.2 -71.92 

3 1 0.2 -13.84 

4 1 0.2 48.76 

6 1 0.2 169.84 

2.1 3 0.2 -55.27 

2.1 5 0.2 -50.80 

2.1 1 2.0 -62.03 
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polarization. On the other hand, the O atoms of the acetate cations have the same spin 

polarization as the nearest Mn cations. This observation contradicts simple superexchange 

picture and can be explained with dative (also known as π-back bonding) mechanism.177 The 

acetate has vacant π-orbital extended over 3 atoms, and can serve as π-acceptor for the d-

electrons of the Mn cation. As a result, Anderson’s superexchange mechanism, developed for σ-

bonding metal-ligand interactions, no longer holds. This π-delocalization may be the reason why 

BS-DFT approach yields large numerical errors for the complexes containing acetate. The 

DFT+U scheme, however, does not relay on this assumption and handles these acetate-

containing complexes equally well.  
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Atom LS HS 

Complex I 

Mn1 3.00 3.14 

Mn2 -3.00 3.14 

Oµ1 -0.00 -0.05

Oµ2 -0.00 -0.05

N1 -0.06 -0.05

N2 -0.05 -0.06

N3 -0.05 -0.06

N4 -0.06 -0.04

N1’ 0.06 -0.05

N2’ 0.05 -0.06

N3’ 0.05 -0.06

N4’ 0.06 -0.04

 

Atom LS HS 

 

Complex II 

Mn1 3.00 3.08 

Mn2 -3.00 3.08 

Oµ1 0.00 -0.03 

Oµ2 0.00 -0.03 

Oac1 -0.05 0.08 

Oac2 0.05 0.08 

N1 -0.07 -0.05 

N2 -0.07 -0.05 

N3 -0.07 -0.07 

N′1 0.07 -0.05 

N′2 0.07 -0.05 

N′3 0.07 -0.07 
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Atom LS HS 

 
Complex III 

Mn1 3.74 3.86 

Mn2 -3.94 3.97 

Oµ 0.00 -0.02 

Oac1 0.02 0.02 

Oac2 -0.03 0.03 

Oac3 0.00 0.01 

Oac4 0.00 0.01 

N1 -0.01 0.00 

N2 -0.05  -0.03 

N3 0.00 0.00 

N1’ 0.04 -0.02 

N2’ 0.03 -0.03 

N3’ 0.01 -0.01 
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Atom LS HS 

 
Complex IV 

Mn1 4.70 4.70 

Mn2 -4.70 4.70 

Oac1 0.02 0.01 

Oac2 -0.02 0.01 

Oac3 0.02 0.01 

Oac4 -0.02 0.01 

Oac5 0.02 0.01 

Oac6 -0.02 0.01 

N1=N1’ 0.00 0.00 

N2=N2’ 0.00 0.00 

N3=N3’ 0.00 0.00 
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Figure 4-1 Molecular structures of the binuclear complexes of the benchmark set and Löwdin 
spin densities in their low-spin (LS) and high-spin (HS) states. 

  

Atom LS HS 

 
Complex V 

Mn1 3.76 3.78 

Mn2 -2.81 3.08 

Oμ1 -0.10 0.05 

Oμ2 -0.11 0.05 

Oac1 0.02 0.02 

Oac2 0.06 0.05 

N1 -0.03 0.05 

N2 0.03 -0.03 

N3 0.03 -0.04 

N1’ 0.06 -0.06 

N2’ 0.03 -0.03 

N3’ 0.04 -0.03 
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4.5 Antiferromagnetic wheel and Heisenberg exchange constant 

Predictions of magnetic properties of molecular systems present a long standing problem, as 

they require a balanced description of static and dynamic electron correlation. Density Functional 

Theory (DFT) approaches is the only ab initio method capable to describe large molecules, such 

as Mn12Ac, Fe8, and V15 classical molecular magnets 178-184.  Two variations of DFT are 

commonly used for prediction of J values. One is broken symmetry DFT proposed by 

Noodleman 147,149,150,185,186 and Yamaguchi .187-193 The other versions of BSDFT formalism are 

proposed by Ruiz 154 and Nishino.155 Less approximate schemes may also take into account 

differences in the overlap between different magnetic orbitals of the same systems.156,157 BSDFT 

is known to have its limitations in at least three different cases i) acetate bridged manganese 

complexes.151  ii) mix valence 158 and iii) ferromagnetic coupling 158. The alternative variation of 

DFT is known as DFT+U approach (U stands for onsite coulomb repulsion).  It was used for J 

value calculations are applied on molecular magnets 194-197 and organometallics. 198-202 The 

general approach in DFT+U is to add Hubbard U on d orbitals in metal atoms, but Cao et al.203 

showed adding Hubard U not only on metal but also on ligand atoms p orbital is needed to 

predict correct ferromagnetic order. We are referring this methodology as DFT+Up+d. 

In our previous paper we successfully applied DFT+Up+d approach for different valence 

Mn (+2, +3, +4, including mix valence) complexes having various ligands. 204 We applied 

DFT+Up+d approach using same U values to predict   antiferromagnetic exchange Mn1-Mn6΄ 

center in Mn12(mdea) wheel in the same paper. 204  In this paper we applied similar approach to 

predict six Heisenberg exchange constants in two different Mn12 wheels. The general chemical 

formula for the wheels is [Mn12Rdea8(CH3COO)14].n(CH3CN), in which the Rdea2− are dianions 
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of N-R diethanolamine, with R = a(allyl) and m(methyl). Both the wheels reported to have S=7 

spin ground state 205,206 and weak antiferromagnetic coupling between two identical halves 

having six manganese atoms.  

Predictions of magnetic properties of molecular systems present a long standing problem, as 

they require a balanced description of static and dynamic electron correlation. Density Functional 

Theory (DFT) approach is the only ab initio method capable to describe large molecules, such as 

Mn12Ac, Fe8, and V15 classical molecular magnets 178-184.  Two variations of DFT are commonly 

used for prediction of J values. One is broken symmetry DFT proposed by Noodleman 

147,149,150,185,186 and Yamaguchi. 187-193 The other versions of BSDFT formalism are proposed by 

Ruiz 154 and Nishino.155 Less approximate schemes may also take into account differences in the 

overlap between different magnetic orbitals of the same systems.156,157 BSDFT is known to have 

its limitations in at least three different cases i) acetate bridged manganese complexes,151  ii) mix 

valence 158 and iii) ferromagnetic coupling, 158 The alternative variation of DFT is known as 

DFT+U approach (U stands for onsite coulomb repulsion).  It was used for J value calculations 

are applied on molecular magnets 194-197 and organometallics. 198-202 The general approach in 

DFT+U is to add Hubbard U on d orbitals in metal atoms, but Cao et al.203 showed adding 

Hubard U not only on metal but also on ligand atoms p orbital is needed to predict correct 

ferromagnetic order. We are referring this methodology as DFT+Up+d. 

In our previous paper we successfully applied DFT+Up+d approach for different valence 

Mn (+2, +3, +4, including mix valence) complexes having various ligands.204 We applied 

DFT+Up+d approach using same U values to predict   antiferromagnetic exchange Mn1-Mn6΄ 

center in Mn12(mdea) wheel in the same paper. 204  In this paper we applied similar approach to 
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predict six Heisenberg exchange constants in two different Mn12 wheels. The general chemical 

formula for the wheels is [Mn12Rdea8(CH3COO)14].n(CH3CN), in which the Rdea2− are dianions 

of N-R diethanolamine, with R = a(allyl) and m(methyl). Both the wheels reported to have S=7 

spin ground state 205,206 and weak antiferromagnetic coupling between two identical halves 

having six manganese atoms.  

4.6 All inner Heisenberg exchange constants for Mn12 based magnetic wheels 

 In application of DFT+U method, we followed the protocol used in our previous work. 

204 We employed simplified rotationally-invariant DFT+U formulation, implemented by 

Cococcioni in Quantum-ESPRESSO-4.0.1 package 159. The values of the U parameter for both 

the metal atom and the ligand atoms (O and N) were empirically adjusted to the optimum values 

2.10 eV for Mn, 1.00 eV for O and 0.20 eV for N that fit the experimental spin splitting energies 

for the benchmark set of five small dinuclear manganese complexes in variety of oxidation states 

(+2, +3 and +4). 204 

 Both the molecules Mn12(Rdea) include alternating Mn+2 and Mn+3 ions arranged in a 

single stranded wheel (Figure 4-2), symmetrical under inversion. The ion Mn+3 has d4 high spin 

electron configuration and Jahn-Teller distorted octahedral coordination. The Mn+2 ions are 

found in two different coordination environments: one octahedral, and another one is pentagonal 

bipyramidal. Experiments performed for both the wheels yields S=7 spin ground state 205,206 

which is consistent with the atomic spin alignments presented in Figure 4-2. To date there are no 

quantitative measurements of the exchange coupling parameters reported for these molecules.  

The qualitative predictions suggest the weakest magnetic coupling should be present between 

Mn(1)-Mn(6΄) 205,206.  
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 Next, we constructed six hypothetical low-spin states, by partitioning the wheel into two 

equal sets of 6 atoms each and inverting the spins for one of these sets. Assuming the second- 

neighbor magnetic interactions to be negligible, the energy for each low spin state (S=0)nm allows 

to calculate the magnetic coupling parameters as 

      
mn

SnmS
nm SS

EE
J

××

−
= ==

2
70 )()(                                                 (4-5) 

E(S=0)nm is energy of (S=0)nm  alignments shown in column 3 of scheme 1, E(S=7) is energy of the 

spin configuration shown in third column of scheme 4-1. E(S=7)  is the energy of experimental 

spin ground state of the wheel. Sn=
2
5 and Sm=2 (n= 2, 4, 6 and m=1, 3, 5 according to the 

Scheme 4-1). Since molecules are symmetric Jnm=Jmn.  

 From Figure 4-2 one can see that out of six magnetic interactions present in the wheel, 

two are ferromagnetic and four are antiferromagnetic. The antiferromagnetic interactions are 

confirmed to be between Mn(1)-Mn(2), Mn(2)-Mn(3), Mn(3)-Mn(4), and Mn(5)-Mn(6) 

ferromagnetic interactions are between Mn(3)-Mn(4) and Mn(4)-Mn(5). In Scheme 4-1 we 

summarize our calculation procedure. Our method is different from the one used by Cano et al. 

207 In their work 207 the energies for 32 different high, low and intermediate total spin states were 

calculated and quantum Monte Carlo to solve the large system of equations and find J values for 

both first and second-neighbor interactions. The later ones were found to be rather small, 

confirming our assumption. 

 Several DFT studies predicting J values for Mn12(Mdea) wheel 205,207 had been published. 

We summarized the previous and current DFT results in Table 4-3. The first BSDFT calculations 

on Mn12 wheel was performed by Foguet-Albiol 205 et al. (presented in sixth column of Table 4-
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3). In order to reduce the computational expense, the wheel was fragmented into several tri- and 

bi-nuclear clusters. This study predicted Mn(1)-Mn(6’) centers to couple ferromagnetically, 

resulting in S=0 ground state, in disagreement with experiment 205. Cano et  al. 207 calculated the 

Heisenberg exchange parameters for the whole magnetic wheel using variety of spin states and 

fitting the J values using their Monte Carlo technique. Their results for the pure and hybrid DFT 

functionals are compared in Columns 4 and 5 of the Table 4-3. The weakest magnetic interaction 

Mn(1)-Mn(6’) corresponds to the ferromagnetic (incorrect) spin coupling when pure functional 

PBE is used, and antiferromagnetic one when hybrid functional B3LYP is used. However, the 

hybrid functional predicts all the J values to be roughly the same order of magnitude. This 

contradicts the conclusion of much stronger coupling between the remaining magnetic centers, 

based on experimental observations. 205  

 Our own results with pure PBE (column 7) reproduce the previously published 207 

coupling parameters rather well despite the difference in and the formalism used for J extraction 

and the basis (plane waves vs. Gaussian). The geometry optimization changes the coupling of the 

Mn(1)-Mn(6’) centers from incorrect ferromagnetic to correct antiferromagnetic. Its absolute 

value, however, appears to be close to four other magnetic interactions in the ring. From 

comparison of the columns 2 and 3 one can see that optimizing the molecular structure changes 

the interatomic distances by c.a. 0.01 Ǻ. However, because of this small change the Mn(1)-

Mn(6’) coupling becomes antiferromagnetic, in agreement with experiment. One can 

hypothesize that inaccuracies in experimental atomic coordinates are due to static disorder 

brought about by the partial escape of the solvent molecules from the lattice. The use of Hubbard 

parameter U (column 9) reduces antiferromagnetic coupling Mn(1)-Mn(6’) by an order of 
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magnitude, and increases the ferromagnetic couplings Mn(3)-Mn(4) and Mn(4)-Mn(5) five to ten 

times, thus improving the agreement with experiment. Indeed, the magnetic study on a similar 

wheel by Ramsey et al. 206 suggested it is a dimer of two strongly coupled six-atom sets, 

connected with a very weak antiferromagnetic interaction 206. Ramsey et al. also inferred that the 

weakest coupling is observed between Mn(1)-Mn(6΄) centers. 

 Next we applied a similar computational protocol (optimization, followed by DFT+U) to 

another Mn12(Adea) wheel. 208 This wheel is reported to have the same ground spin state (S=7) 

as Mn12(Mdea) wheel 206 and similar spin alignment. The calculated exchange parameters are 

reported in the last column Table 4-3. Our calculation predicts the weakest J is an order of 

magnitude smaller than the next weak coupling between Mn(1)-Mn(2) for Mn12(Adea) (Figure 4-

3).  

 Another noticeable feature in J couplings reported in Table 4-3 is the relatively high 

magnitude of ferromagnetic coupling between Mn(3)-Mn(4) and Mn(4)-Mn(5) centers, which 

was not predicted by other DFT studies 205,207. The recent inelastic neutron scattering 

measurements 209 also point toward significantly higher magnitude of ferromagnetic coupling in 

Mn(3)-Mn(4)-Mn(5) fragment of Mn12(Mdea). According to Meier and Loss 210 a strongly 

coupled multicenter fragment can be described as a single large spin center. Considering that 

model, both the wheels especially Mn12(Adea) fits in the model for perfect antiferromagnetic 

wheel alternating spin up and spin down magnetic moments (Figure 4-3).  

 In order to investigate the details of electronic structure and estimate the ability of these 

molecules to act as spin-walves in molecular spintronics context, one may consider the Löwdin 

population analysis, shown on Table 4-4, and projected density of states (PDOS) for different 
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atoms high spin ground states (S=7) in both wheels, presented in Figure 4-4 and Figure 4-5 for 

Mdea and Adea wheels respectively. The results of Löwdin population analysis confirm spin 

polarization for different manganese atoms (spin up for octahedral Mn+3, spin down for 

octahedral Mn+2 and pbp Mn+3). From spin polarization of ligand atoms (N, µ-O, and acetate O) 

one may conclude that the nitrogen atoms connected with bipiramidal and octahedral coordinated 

Mn have different spin densities. The acetate oxygen and oxo bridged oxygen (µ-O) responsible 

for superexchange have similar spin polarization values, but PDOS diagram reveals the 

differences in their electronic structure. 

 Figure 4-4 shows the PDOS for Mn12(Mdea) and Figure 4-5 is for Mn12(Adea) wheels. 

The first row in Figure 4-4 represented the total PDOS for the molecule. From the PDOS data 

one can see that for both N atoms contribute to HOMO, along with Mn3+ (Mn(3)), while acetate 

O and Mn+2 are contributing in LUMO. The Mn+3(d4) Jahn-Teller distortion as a result shows a 

split eg levels, where as the octahedral d5 spin down shows degenerate eg levels. In case of Adea 

wheel oxygen atom involved in superexchange is taking part as an acceptor, while in Mdea there 

is no such phenomemon. Another difference is evident from PDOS diagram in Mdea the Mn(3) 

(Figure 4-6) is involeved in HOMO where in Adea wheel the HOMO level is nearly degenerate 

between Mn(3) and Mn(1). The spin densities in Table 4-4 shows nitrogen involved in 

octahedral coordination is acting as σ donor.  

  From Figure 4-4 and Figure 4-5, we can see the Mn+3 has smaller highest occupied 

molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap than Mn+2 

(both octahedral and pentagonal bipyramidal co-ordination). If we compare DOS of Mn(1) and 

Mn(3), in Figure 4-6 both the cases Mn(3) shows little more HOMO-LUMO energy gap than 
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Mn(1). According to Hoffmann and Hay 211 the antiferromagnetic coupling is more distinct when 

the HOMO-LUMO energy difference is higher. Based on this we can say the presence of Mn1 

reduces the antiferromagnetic coupling. Similar observation can be made from Figure 4-6 for 

Mn+2 octahedral and Mn+2 pbp, the pbp manganese showed more HOMO-LUMO energy gap 

than octahedral bivalent manganese. This electronic structure analysis can justify why the 

Mn(3)-Mn(4)-Mn(5) shows stronger magnetic coupling than other Mn-Mn couplings. Though 

these energy differences are very small but we need to consider the exchange parameters in this 

wheel is c.a. 1 cm-1. 

 To conclude, we calculated all nearest-neighbor Heisenberg exchange parameters for 

Mn12(Mdea) and Mn12(Adea) using DFT+Up+d. Our calculations successfully reproduce the S=7 

ground spin states. The expected weakest coupling parameter between Mn(1)-Mn(6΄) is 

confirmed for both magnetic wheels. The stronger ferromagnetic coupling between the Mn(3)-

Mn(4) and Mn(4)-Mn(5) pairs is also predicted, in agreement with recent Inelastic Neutron 

Scattering observations. 209 The Löwdin population and PDOS analysis helps to rationalize the 

stronger ferromagnetic coupling in Mn(3)-Mn(4)-Mn(5) zone by quantitative comparison 

between HOMO-LUMO energy gap in different magnetic centers. 
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Table 4-3 Calculated Heisenberg Exchange constants of Mn12(Mdea) using DFT+U and previous 
first principle calculations. The first column is labeled according to Figure 4-2. Second and third 
columns are showing the Mn-Mn bond distance from X-ray data and optimized structure 
respectively. Fourth and fifth column is showing the DFT result reported by Cano et al.207 The sixth 
column is the BSDFT value obtained by fragmenting Mn12(mdea) wheel205. The seventh and eighth 
columns are J values calculated by DFT+Up+d  for X ray and optimized geometry. The last column is 
representing the Heisenberg Exchange constants for Mn12(Adea) 

 Bond  
Length (Å) 

J(cm-1) 
Mn12(Mdea) Mn12(Adea)

X-ray Opt PBE 
207 

B3LYP
207 

B3LYP 205

(Fragment)
DFT 

(X-ray) 
DFT 
(Opt) 

DFT+U 
(Opt) 

DFT+U 
(Opt) 

J16 3.46 3.44 +1.2 -3.5 +0.04 +4.6 -7.4 -0.8 -2.4 
J12 3.21 3.21 -6.0 -5.6 -2.8 -20.8 -8.6 -3.7 -23.9 
J23 3.15 3.18 -14.9 -2.5 -9.2 -26.8 -31.3 -23.5 -31.0 
J34 3.17 3.17 +10.9 +6.3 +7.0 50.5 8.1 44.0 57.6 
J45 3.18 3.15 +9.2 +5.4 +8.0 56.9 5.3 54.1 45.9 
J56 3.20 3.21 -5.4 -5.9 -5.0 -13.6 -5.4 -14.2 -35.5 
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Figure 4-2:  Schematic diagram of magnetic coupling in Mn12 wheels, number in italics (1-6 
and 1΄-6΄) and other numbers are for individual spin. Mn+3(S=2) green and Mn+2(S=5/2) 

orange-yellow 

 

Figure 4-3: Schematic for antiferromagnetic Mn12 wheels 
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Table 4-4: Löwdin Population analysis for Mn12(Mdea) and Mn12(Adea) 

 Mdea Adea  

 

Mn(1),Mn(3),Mn(5) 3.89 3.92 

Mn(2), Mn(6) -4.75 -4.76 

Mn(4) 4.77 4.77 

NOh 0.06 0.05 

NPBP 0.02 0.02 

OAc 0.02 0.02 

μ-O 0.02 0.02 
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Figure 4-4: Density of states plotted for Mn12(Mdea) in S=7 ground state. Positive values 
present spin up, and negative values present spin down densities. 
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Figure 4-5: Density of states plotted for Mn12(Adea) in S=7 ground state. 
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Figure 4-6: PDOS diagram for d orbitals localized Mn(1) and Mn(3) for Mn12 wheels, the 
upper row is showing PDOS result for Mn12(Mdea) and down row showing Mn12(Adea) 

wheel results 
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Figure 4-7: PDOS diagram for d orbitals localized on Mn(2,6) and Mn(4) for Mn12 wheels, the up 
row is showing PDOS result for Mn12(Mdea) and down row is showing Mn12(Adea) wheel 

results. 
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Scheme 4-1 Computational calculation scheme for six Heisenberg exchange constants in Mn12 
based wheels. (S=0)nm is referring the spin alignment used for calculating corresponding 
Jnm.  The symbol 1, 3, 5 and (1�, 3�, 5�) are Mn+3 and 2, 4, 6 and (2�, 4�, 6�) are 
presenting Mn+2 having four and five unpaired electrons respectively. Here i is presenting 
spin up and i is showing spin down orientation (i=1-6 and 1�-6�). 

 (S=0)nm Ground Spin state (S=7) 

(S=0)16 

 

(S=0)12 

(S=0)23 

(S=0)34 

(S=0)45 

(S=0)56 

4.7  Density Functional Theory study of Mn9 based single molecule magnet 

 Next we calculated Heisenberg exchange constant for a new mixed-valent Mn9 single-

molecule magnet. The fused triangle in this molecule induce a ligand engineered spin frustration.                 

The compound [MnIII8MnIIO3(OMe) (O2CCMe3)7(edte)(edteH)2(N3)2] (Figure 4-4) uses a 

potentially hexadentated edteH4 ligand,The reaction of edteH4 with Mn(O2CCMe3)2 in presence 

of NEt3 and NaN3 afforded this new Mn9 compound with an unprecedented structural core 
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Where [edteH4=(HOCH2CH2)2NCH2CH2N(CH2CH2OH)2=N,N,N',N'-tetrakis-(2-hydroxyethyl) 

ethylenediamine]. It can be considered as a series of triangular units connected back to back to 

create such a molecular ladder.  

 

 
Figure 4-8:  [MnIII

8MnIIO3(OMe) (O2CCMe3)7(edte)(edteH)2(N3)2] 

4.7.1 Determination of Ground Spin state of Mn9 

 The first step aim of DFT calculation was to predict correct ground spin arrangement in the 

molecule. From Inelastic Neutron Scattering (INS) data we can see the ground spin state has a 

multiplicity of 22. This value suggests that any two Mn+3 in this molecule are spin down and 

other seven are spin up. Starting from FM optimized geometry we found energy for 29 

hypothetical spin states listed in Table 4-4 (atoms are labled according to According to Figure 4-

8). Since for Mn+3-Mn+3 and Mn+2-Mn+3 centers have relatively low magnetic exchange 

constants, we should expect small energy gaps between these hypothetical spin states. From the 

Table 4-5 one can see that the state with the lowest energy corresponds to the minority spin 

localized on Mn1 and Mn9 atoms, with total multiplicity consistent with the INS observation.     
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4.7.2 Heisenberg exchange constant in Mn9 system. 

The Heisenberg Hamiltonian written assuming neglect of the second and higher neighbor 

magnetic interactions: 

7823564567345735682489127913

64463223544543345335422421123113

SSJSSJSSJSSJSSJSSJSSJ

SSJSSJSSJSSJSSJSSJSSJSSJH

−−−−−−−

−−−−−−−−=
∧

  (4-6) 

Since the molecule is composed of two symmetry equivalent fragments, Mn1, Mn2, Mn3, Mn4 

are equivalent to Mn9, Mn8, Mn7, and Mn6 respectively. This indicates the presence of eight 

inequivalent exchange interactions. The J values (apart from J46) were calculated as direct energy 

differences between the spin states shown in columns 2 and 3 in Scheme 2: 

                                                       
ji

SCSC
ij SS

EE
J 21

−
=                                                            

(4-7) 

here ESC1
is the energy of (S)ij  state from column 2, and ESC 2

from column 3. For example to 

calculate exchange constant between Mn1-Mn3 we take the energy difference between two 

hypothetical states, in one we have Mn1, Mn3 spin down, and in another Mn1 and Mn7 are spin 

down. To predict J46 we take the energy difference between two hypothetical spin states in one 

Mn2 and Mn4 are spin down, and in the other all Mn atoms are spin up. The energy difference 

is: 

4623453412 881088 JJJJJE −−−−−=Δ     (4-8) 

This equation was solved for J46 using J values obtained previously. 

When only the first neighbor magnetic interactions are considered, Mn9 topology consists 

of fused Mn3 triangles, known to be susceptible to spin frustration, caused by competing 

exchange pathways. The ground spin state in Table 4-5 is characterized by the presence of two 
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AF couplings between Mn1/Mn3 and Mn1/Mn2, while the rest are FM. The calculated J12 

(Mn1/Mn2) interactions in Table 4-6 are negative (AF) with spin couplings of c.a. -16.87 cm-1, as 

expected for antiparallel alignments). The rest of the couplings (ranging from 1.14 cm-1 to 27.32 

cm-1) are FM.  

Coupling for two multielectron spin centers was expressed by Clark and Davidson as:212  

[ ])1()1()1(
2
1

+−+−+= jjiiTTij SSSSSSJ      (4-9) 

where Si and Sj coupled together to give a total spin ST (ST =Si+Sj). One can compare  J predicted 

by Eq.4-9 for two adjacent spins. For a Mn+2/Mn+3, and Mn+3/Mn+3
 pairs aligned parallel, the 

spin couplings from Eq 4-9 are 5 and 4., respectively. The calculated J13 Mn1/Mn3 interactions 

in Table 4-6 are positive (ferromagnetic) with spin couplings of 7.48 cm-1. However, the J13 

(Mn1/Mn3) interactions of the Mn1Mn3, pair in Table 4-6 are ferromagnetic, and yet their J are 

very negative (-3.84 cm-1). This means that these ferromagnetic interactions are completely 

frustrated, and the spins are aligned antiparallel. Here we can see the azide ligand induced spin 

frustration present in Mn1, Mn2, Mn3 containing triangle, showed in Figure 4-9.  
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Scheme 2: Computational calculation scheme for seven Heisenberg exchange constants in Mn9 
complex. The symbol 1, 2, 3, 4, 6,7,8,9 are Mn+3 and 5 is presenting Mn+2 having four and 
five unpaired electrons respectively. Here i is presenting spin up and i is showing spin down 
orientation. 

 Spin configuration 1(SC1) Spin configuration 2 (SC2) ji

SCSC
ij SS

EE
J 21

−
=

(cm-1) 

J13 7.48 

J12 -16.87 

J24 

 

1.14 

J35 

 

25.07 

J34 7.92 

J45 

 

3.15 

J23 

 

4.02 
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Table 4-5: Energy differences between different spin orientations in Mn9, first nine columns are 
presenting the spin of Mn atoms in different spin orientations labeled according to Figure 4-
9, 10th column is multiplicity; the 11th column is energy difference in kcal/mol, from stable 
most spin state. The HS is designated where we have maximum possible multiplicity and all 
orientations are ferromagnetic, the multiplicity 28,22,20,12 are designated as IS, LS is 
describing the multiplicity 6, and suffix(s) are  indicating the index of Mn according to 
Figure 4-9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 M ΔE 
IS19  -2   2   2   2  2.5  2  2  2 -2 22 0.000 
IS29  2   -2   2   2  2.5  2  2  2 -2 22 0.069 
IS18  -2   2   2   2  2.5  2  2  -2 2  22 0.139 
HS  2   2   2   2  2.5  2  2  2 2  38 0.188 
IS28  2   -2   2   2  2.5  2  2  -2 2  22 0.215 
LS2468  2   -2   2   -2  2.5  -2  2  -2 2  6 0.696 
IS46  2   2   2   -2  2.5  -2  2  2 2  22 0.891 
IS12  -2  - 2   2   2  2.5  2  2  2 2  22 0.912 
IS13  -2   2   -2  2  2.5  2  2  2 2  22 1.128 
IS23  2   -2   -2  2  2.5  2  2  2 2  22 1.373 
LS1289  -2   -2   2   2  2.5  2  2  -2 -2 6 1.428 
IS39  2   2   -2  2  2.5  2  2  2 -2 22 1.448 
IS17  -2   2   2   2  2.5  2  -2  2 2  22 1.471 
IS24  2   -2   2   -2  2.5  2  2  2 2  22 1.544 
IS16  -2   2   2   2  2.5  -2  2  2 2  22 1.552 
LS2346  2   -2   -2  -2  2.5  -2  2  2 2  6 1.554  
IS27  2   -2   2   2  2.5  2  -2  2 2  22 1.557 
IS26  2   -2   2   2  2.5  -2  2  2 2  22 1.596 
IS25  2   -2   2   2  -2.5  2  2  -2 2  20 1.720 
IS15  -2   2   2   2  -2.5  2  2  2 -2 20 1.762 
IS5  2   2   2   2  -2.5  2  2  2 2  28 1.885 
IS35  2   2   -2  2  -2.5  2  2  2 2  20 1.941 
IS357  2   2   -2  2  -2.5  2  -2  2 2  12 1.983 
IS456  2   2   2   -2  -2.5  -2  2  2 2  12 2.020 
IS459  2   2   2   -2  -2.5  2  2  2 -2 12 2.578 
IS34  2   2   -2  -2  2.5  2  2  2 2  22 2.658 
IS156  -2   2   2   2  -2.5  -2  2  2 2  12 2.987 
IS37  2   2   -2  2  2.5  2  -2  2 2  22 3.019 
IS36  2   2   -2  2  2.5  -2  2  2 2  22 3.020 



95 
 

Table 4-6: Heisenberg exchange constant for two adjacent metal centers, first column is the 
Heisenberg exchange constant labeled according to Figure 4-9, next column is distance 
between Mni and Mnj, the third one is Heisenberg exchange constant, and fourth and fifth 
column is calculated and ideal spin coupling according to eq (4-7) 

Mni-Mnj
Å 

J 
cm-1 calcji SS

idealji SS

J13  3.35 7.48 -3.84 -4 

J12  2.95 -16.87 -3.82 -4 

J24 3.43 1.14 3.84 4 

J35 3.33 25.07 4.70 5 

J34 3.21 7.92 3.82 4 

J45 3.38 3.15 3.84 5 

J23 3.46 4.02 3.84 4 

J46 2.86 27.32 3.82 4 
  

Figure 4-9: Schematic diagram of magnetic coupling in Mn9 in ground state, the green ball is 
Mn+3 and pink is for Mn+2.  Atom 4, 5, 6 is forming an isosceles triangle.  
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CHAPTER 5 HYBRID DENSITY FUNCTIONAL THEORY STUDIES OF 
STRUCTURE AND PROPERTIES OF CERIA NANOPARTICLES.I. 

LATTICE PARAMETERS AND BULK MODULI 
 

5.1 Cerium oxides and its property 

Unique chemical and electronic properties of the mixed cerium oxide, generally known as 

ceria, make it an important material for number of applications.  Ceria is used as a catalyst for 

various chemical processes, including production and purification of hydrogen, 213 and carbon 

monoxide removal from the automobile exhaust.214 Mobility of oxygen vacancies and 

consequently high ionic conductivity makes ceria a promising electrolyte for solid oxide fuel 

cells.215 Electronic structure of ceria leads to its use as UV absorber in cosmetic industry and 

manufacturing of glass windows. 81 It is also used in light harvesting devices and optical 

displays. 81 In most of the process the oxygen vacancies play essential role. 

Bulk cerium oxide has at least two stable stoichiometries, the dioxide (CeO2) and 

dicerium trioxide which is commonly referred as sesquioxide (Ce2O3). At ambient conditions 

dioxide forms CaF2 (fluorite) type structure in face centered cubic space group Fm-3m with the 

lattice parameter of 5.411Å. 216 In that structure cerium ions occupy the vertices and faces of 

cubic unit cell. Each Ce(IV) is coordinated with eight oxygen ions arranged in a perfect cube, 

while each oxygen ion is surrounded by four cerium ions in tetrahedral arrangement. This 

structure is often described as cubic closed packing (ccp) of Cerium ions with oxygen ions 

occupying all tetrahedral holes. At the elevated pressure (31 GPa and room temperature) cerium 

dioxide undergoes phase transition from fluorite to α-PbCl2 structure type with orthorhombic 

space group Pnam .72 Another structural type (δ-Ni2Si) had also been suggested. Both α-PbCl2 
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and δ-Ni2Si types have similar positions of Ce ions and only differ in the position of oxygen 

ions. Neither Raman spectroscopy, nor X-ray diffraction are sensitive enough to the  the position 

of of light oxygen ions in the presence heavy ones, so the direct evidence is missing. However, 

based on axial ratios, high pressure polymorph of cerium dioxide was found more unlikely to 

belong to α-PbCl2 structural type. 217 In α-PbCl2 type structure seven anions at roughly the same 

separation and two at a slightly larger separation from the cation, which is denoted as [7+2] 

coordination. There are two anion coordinations, one of which is four coordinate and the other is 

five coordinate. 217 

At 3000C cerium dioxide is stable in bulk at partial oxygen pressure down to 10-40 atm. 

Cerium sesquioxide Ce2O3 had been reported to form at same temperature and in between 10-98 

atm to 10-40 atm. 70 Similar to other trivalent lanthanide oxides, Ce(III) oxide was found to have 

two different crystal structures: one is A type with nearly hexagonal close packing to Ce ions 

(hcp), and the other is C type with body centered cubic (bcc) packing of Ce ions. Barnighausen 

and Schiller reported 218 structure determination for A type cerium sesquioxide from single-

crystal X-ray diffraction study. Amber colored well-shaped plate-like crystals were obtained by 

heating a mixture of LiCeO2, CeO2, and anhydrous LiCl in a closed steel crucible temperatures 

between 700-8000C for several weeks. It has P-32/m1 space group with the lattice parameters 

a=3.891Å and c=6.059Å. 218 In the type A structure every metal ion is coordinated with seven 

oxygen ions; four oxygen ions are closer than other three. The former are five-coordinated and 

the latter are four-coordinated.  

  C type Ce2O3 structure is formed at room temperature in a few hours on the surfaces of 

the Ce metal left in the air. 219 The C type has space group Ia3 with the lattice parameter of 11.16 
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Å. Its unit cell contains 32 metal ions and 48 oxygen ions. The existence of type C cerium 

sesquioxide in bulk is controversial. However, X-ray diffraction study of nanopowder with 

particles below certain size indicates C type structure. An X-ray photo-electron spectroscopic 

study reports the lattice parameter of nanoscale sesqioxide to be 5.61 Å, just half of C type unit 

cell 81. From this evidence one may conclude that type C cerium sesquioxide may only exist in 

the nanoparticle form. It is recognized that from A type sesquioxide to dioxide conversion is so 

exothermic spontaneous ignition was often observed, CeO2 hardly dissolved in acids and alkali 

but reacts with water. 220 

Ceria NPs (nanoceria) had been extensively studied since early 1970s, but for inadequate 

characterization facility those cannot be properly characterized, in recent years with the 

development of experimental techniques as well as the help of theoretical studies this area is 

much widly explored. In a review article it is told that from June 1993 to end of 1998, there was 

560 paper had been published.67 Basically in theoretical field from mid 1990 simulated annealing 

and interionic potentials are used to investigate the structure and reductability of intermediate 

valance ceria nanoparticle.68 The most applications of nanocrystalline ceria are based on its 

oxygen storage capacity and electronic properties. Although CeO2 has a wide band gap of 6 eV 69 

and acts as an insulator, in the higher temperature region (3000C-4000C) and in reduced 

oxidation state it demonstrates an enhancement of the electric conductivity,60which is a 

disadvantage for some applications.  Adachi in his review referred that composite contained  

nano particle 4.1nm having band gap 3.42 eV and with 5.37nm nanoparticle it is 3.37eV.70  

Like bulk ceria nano cerium dioxide also exhibit  phase transition from fluorite phase to 

orthorhombic phase , the lattice papmeter of the orthorhombic phase is a=5.641Å, b=6.647Å, 
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c=3.481Å , but the difference is nano cerium dioxide shows bulk modulus 328 ±12 GPa 71 in 

contrast with bulk cerium dioxide 230 GPa. The phase transition pressure ( 22.3 GPa) is also 

very low compared with bulk one (31 GPa), 72  this observation is quite anomolas  with other 

nano oxide  and sulfides , the author suggested that larger volume collapse and exsistance of 

unstable high pressure phase  is responsible for  the decrese of transition pressure of  nano 

cerium dioxide compared with bulk. 71  

Nanoceria used in design a three way catalyst for automobile exhaust, 73 since ceria 

catalytically oxidizes hydrocarbons to water, carbon monoxide to dioxide and nitrogen oxides to 

nitrogen. Ceria NPs are also used for water gas shift, steam reforming reaction, and carbon 

monoxide removal. 73 The oxygen vacancies play an important role for the catalytic activity of 

ceria. Zirconia doped ceria (CeO2/ZrO2 solid solution) can operate at relatively lower 

temperature around 6000C than pure ceria catalyst. 74 

5.2 Structural relations between cerium oxides.  

To illustrate the relationship between fluorite and other structural types of ceria it is 

advantageous to consider it in hexagonal aspect. 221 One can start with hexagonal close-packed 

layers of Cerium ions, then sandwich them between two hexagonal layers of O ions (one on each 

side) in ABC motiff. In this construct (called thereafter "sandwich trilayer") Ce ions have 

octahedral coordination, compressed along 3-fold symmetry axis in the real structure (Figure 5-

2). Three dimensional fluorite structure is then formed by stacking of these sandwich trilayers 

(Figure 5-3). If only Ce layers are considered, they form ABC packing (the cubic structure). If 

both Ce and O layers are considered, the stacking can be described as CABABCBCA (Ce layers 

are marked in bold). Upon this stacking distorted octahedral coordination of each Ce ion is 
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extended with two O ions from neighboring sandwich layers (one on each side) so that ideal cube 

is formed. Besides geometric, this description of cerium dioxide structure has a physical 

meaning. Stoichiometric (111) surface, formed by intact sandwich trilayer, is found to be 

thermodynamically the most stable one. 219 It represents the major fraction of the active surface 

in catalytic nanocrystallites.74 Zero charge and dipole moment of sandwich trilayer may be an 

important factor, contributing to the stability of (111) surface. 

The relation between the cubic and the orthorhombic phases of dioxide can be 

described as combination of shift and distortion of the sandwich trilayers. First, trilayers slide 

from CABABCBCA to ABCABCABC motif, so that the first coordination sphere of Ce looses 

one oxygen ion from each of two adjustent trilayers. Instead, the remaining coordination sphere 

of distorted octahedron is extended with six oxygen ions (three from each trilayer), at larger 

distances (secondary coordination sphere). Second, the Ce ions of the trilayer shift up and down 

in alternant pattern in order to include three of these new oxigen ions into the first coordination 

sphere, and oxygen layers are distorted to accommodate this shift. 

Sesqioxide type A structure can be related to fluorite structure by removal of oxygen 

ions and shift. First, every other sandwich trilayer looses complete oxygen layer, and the 

structure is transformed from CABABCBCA to CABABCvCA, then layers of Ce shift from bcc 

to hcp, so that intact and defective trilayers merge into ABCAB sandwich pentalayer. Close 

packing of these pentalayers forms type A structure, and its most stable (001) surface. Just like 

trilayers of fluorite structure, five layers are electroneutral and nonpolar. These properties may 

contribute to the thermodynamic stability of (001) type A surface. Sandwich pentalayer can also 

be considered as a model for subsurface oxygen vacancy defects in dioxide surfaces.  
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Sesquioxide type C structure can also be described using sandwich trilayer model. If we 

take out one third oxygen from body diagonal of ccp structure of dioxide we can get a bcc 

sesquioxide, starting from ccp hexagonal sandwich structure if one of the 8th oxygen from up 

layer of oxygen and one from down layer is removed the type C sesquioxide  can be brought 

about. In structural transition from fluorite type dioxide to hexagonal the oxygen substructure of 

fluorite framework preserve intact but the metal ions are moved into interstitial position such that 

slabs of dioxide two ion layers are preserved but shear occurs at this regular intervals, the seven 

coordinate A type formed. For the C type sesquioxide if the one fourth of oxygen have removed 

from dioxide along the nonintersecting strings in the four <111> directions such that every ions 

are six coordinate. 216  The structural conversion from face center cubic (tetravalent cerium body 

center cubic (trivalent cerium) does not require crystal structure change, basically by removal of 

1/4th oxygen along body diagonal converted fcc structure to bcc one. 216 

When two solid phases coexist, lattice mismatch is an important parameter to consider. 

In order to find the lattice mismatch, we need to find a similar description for both dioxide and 

sesquioxide. The cerium dioxide lattice parameter in hexagonal aspect (i.e. translation vector of 

the sandwich bilayer) is 3.826Å to be compared with 3.891Å lattice parameter of the sesquioxide 

(1.7% expansion). The double lattice parameter along the hexagonal axis for cerium dioxide is 

6.248Å to be compared with triple lattice parameter for sesquioxide equal to 6.059Å (3.0% 

contraction upon removal of one out of four oxygen atoms). Thus, the volume of the hexagonal 

unit cell is increased by 0.3%, which corresponds to 0.017% of lattice parameter increase. 

Therefore, random formation of oxygen vacancies is insufficient to explain the observed 0.6% 

increase of the lattice parameter in small ceria nanoparticles. 
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   Sesquioxide type C structure can also be described using sandwich trilayer model 

instead of completely removal one of  four hexagonal closed packed oxygen layer as it happens 

in typeA one out of four oxygen removed from each closed pack layer they are forming 

vacancies are aggregated  in tetramers, comparing with  vacancies described in 56 we observed a 

different vacancy structure in the surface of bulk c type sesquioxide, In our model we observed 

four vacancies on the  one surface, cluster together (Figure 5-6) where as the vacancies described 

by Esch and co worker 56(Figure 5-7) said vacancies formed in trimer and dimer cluster, and the 

dimer vacancy generates by the combination of surface and subsurface vacancies the trimer uses 

one more sub surface layer in addition to two layer used in dimer vacancy. 56 If we take out one 

third oxygen from body diagonal of ccp structure of dioxide we can get a bcc sesquioxide, 

starting from ccp hexagonal sandwich structure if one of the 8th oxygen from up layer of oxygen 

and one from down layer is removed the type C sesquioxide  can be brought about. In structural 

transition from fluorite type dioxide to hexagonal the oxygen substructure of fluorite framework 

preserve intact but the metal ions are moved into interstitial position such that slabs of dioxide 

two ion layers are preserved but shear occurs at this regular intervals, the seven coordinate A 

type formed. For the C type sesquioxide if the one fourth of oxygen have removed from dioxide 

along the nonintersecting strings in the four <111> directions such that every ions are six 

coordinate. 216 

5.3 First Principles studies of Ceria published to date 

Theoretical description of ceria presents a challenge because of 4f-electron in Ce(+3) ion. 

Two different approaches have been developed in order to treat the ground state electronic 

structure. In the first cerium is seen as tetravalent with an unoccupied 4f band and a completely 
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filled O 2p-band. 69 The second model considers the ground state of ceria to be a mixture of two 

Ce configurations, 4f0 and 4f1 with a filled oxygen 2p valence band in the latter. 222 In this model 

cerium is no longer tetravalent.  

      First principle studies on cerium oxide(s) can be categorize in three broad sections, first one 

is bulk crystalline cerium oxides, second one is nanocrytalline ceria cluster, and ceria surface. 

For later two section mainly used plane wave DFT because of computational expense,    where 

effects of strong electronic correlation of Ce 4f states are taken into account through the use of an 

effective on-site Coulomb repulsive interaction within DFT+U approach. Vacancy formation 

study on in nanocrystalline CeO2-x in comparison with corresponding results for bulk and (111) 

CeO2 surface has been reported by Inebaev et al,223-225 Loschen and coworkers 226-228 and 

others.229-231 Oxygen transport and oxygen-vacancy formation energy in ceria were explained on 

the basis of first-principles quantum mechanical simulations performed by Skorodumova et al.232 

First-principle 233 molecular orbital calculation using discrete-variational (DV)-X alpha method 

on a model of CeO2([CeO8](12-)), and compare them with experimental data on X-ray 

absorption-near-edge structure. The adsorption properties Shapovalov et al. showed 234 DFT 

calculations to examine CO oxidation by CeO2(111) surface doped with Au and compare the 

activity of the doped oxide with that of the pure oxide surface. Song YQ et al. 235 electronic 

structure and magnetic properties of Co-doped CeO2 on Si(111) are theoretically investigated by 

first principles calculations based on the DFT + U methods,  Pd on CeO2 (111) reported by 

Zhan-Sheng et al. 236 Au on the (110) surfaces of CeO2 and Zr-doped CeO2 published by Wei 

and co workers 237 using (DFT+ U). There are other DFT study of absorption on ceria surface 

were also reported. 238-246  

http://apps.isiknowledge.com.ezproxy.lib.ucf.edu/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=1BP3BfBg4849PI233IO&name=Song%20YQ&ut=000263889900030&pos=1�
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     A number of studies of ceria have been concerned with elucidating the role of Ce 4f-electrons. 

In early SCF band calculations of bulk ceria Koelling et al. 247 concluded that some covalent 

bonding is present, so that ceria is not completely ionic. Fujimori also concluded that the partial 

occupancy of the Ce 4f-states is present 222, corresponding to the second model above. However, 

Wuilloud et al. 69 and Watchter et al. 248  have concluded that the cerium 4f states in CeO2 are 

fully unoccupied and localized, corresponding to the first model above. 

In the study of the electronic property of the bulk ceria, with Hartree-Fock theory, Hill 

and Catlow (who used the minimal basis set for cerium and oxygen) 249 and Gennard et al. 250 

(who used more extended basis set) have neglected completely the Ce 4f basis functions, under 

the assumption that doing so does not affect the bulk properties of ceria, since the Ce 4f orbitals 

are assumed to be unoccupied. These studies found that the bulk properties of ceria can be well 

described even without the 4f electrons, indicating the validity of the first model. Recent density 

functional theory calculations of bulk CeO2 and Ce2O3 were presented by Skrodumova et al., 251 

in the full potential linear muffin tin orbital (FP-LMTO) method. The best agreement with 

experiment for CeO2 was obtained by treating the cerium 4f-functions as a part of the valence 

region. However, in studying fully reduced ceria, Ce2O3, the same authors found that in order for 

the Cerium 4f electrons to be correctly localized, they had to be treated in the core states. 

Treating the 4f electrons as valence electrons, resulted in an incorrect partially filled f -band at 

the Fermi level. Choosing the f electrons to be core or valence depending on the problem at hand 

is clearly not a satisfactory way of understanding the electronic structure of ceria. Watson et al. 

252 studied the surfaces using the DFT+U methodology to describe the failing of DFT for (100) 

plane and demonstrate the presence of unoccupied cerium 4f states above the Fermi level 56. Esch 
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and coworker showed that the vacancies on CeO2 (111) are immobile at room temperature, but 

linear clusters of these vacancies form at higher temperature. 56 They also show that one 

subsurface oxygen vacancy is required to nucleate each vacancy cluster 56 have studied the 

surface energies and the structures of the (111), (110) and (100) surfaces using DFT.  

Hay et al.253 criticized LDA and GGA density functional theory methods for having a 

tendency to overdelocalize electrons and incorrectly predicting metallic properties for many 

semiconducting metal oxides and found that meta-GGA methods suffer the same drawback. 

They also criticized Core-4f and DFT+U approaches for artificially constraining 4f-electrons to 

be localized. Instead, Hay et al. applied a new HSE functional, combining GGA-type Perdew-

Burke-Eisenhoff (PBE) functional for the regions far from the nuclei, and hybrid PBE1PBE 

functional, including fraction of Hartree-Fock exchange close to the nuclei. As a result, an 

accurate description of both Ce(+4) and Ce(+3) oxides had been achieved. Here we build upon 

their success and show how the numerical accuracy can be increased, while improving the 

computational efficiency. 

5.4 Computational Details 

We aim at accurate description of the catalytic processes on the nanoceria surface. 

Therefore, for this study we selected BMK (Boese-Martin for Kinetics), a hybrid exchange-

correlation functional, designed 254 to describe kinetics of the chemical reactions (more 

specifically, transition states energies) without compromising the energies of equilibrium 

structures. We also use standard PBE1PBE exchange-correlation functional for comparison 

purposes. This hybrid functional uses Perdew–Burke–Ernezerhof (PBE) correlation, while 25% 
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of exchange energy is replaced by Hartree-Fock exchange. 255 Spin-polarized (unrestricted) DFT 

calculations were used throughout. 

DFT calculations were performed with the periodic boundary condition (PBC) of Kudin 

and Scuseria 256 implemented in the Gaussian 03 program. 257 For exchange evaluation, 27 cells 

(3×3×3 supercell) were used, which was found sufficient to describe the 5f actinide oxides 

(uranium dioxide and plutonium di- and sesquioxide).258,259 Ce ion has been described with 

medium-size relativistic effective core potential and Gaussian 03257  basis set 260-262 where 12 

electrons occupying 5s, 5p, 5d, 6s, and 4f orbitals are treated explicitly and  46 of the electrons 

are treated as core. 260 The diffused primitive functions (with exponents less than 0.2) were 

removed  from each s, p, and d basis functions) from the original basis set. For oxygen Pople’s 6-

31G basis was used and all the electrons were described explicitly.  

Unit cell for Ce2O3 was doubled to contain two cerium ions in order to describe 

antiferromagnetic coupling between f-electrons localized on different Ce ions. The spin-parallel 

(ferromagnetically coupled) state of Ce2O3 was found to be less stable by Hay et al. 253 The 

lattice parameter ratio a/c was fixed at the experimental value. Unit cell for CeO2 was also 

doubled in order to use the same cutoffs. Lattice energy was obtained in a series of single-point 

calculations and the optimum values of the lattice parameter a0 (related to unit cell volume V0), 

bulk modulus B0 and bulk module pressure derivative B0
 were obtained by least-square fit of the ׳

energies to Birch-Murnaghan equation 263,264 in its integrated form. 265 

A special care had to be taken to generate the initial guess. While the default guess obtained 

by diagonalization of Harris functional was sufficient for CeO2 with no f-electrons, for Ce2O3 it 

leads to SCF convergence problems due to near degeneracy of seven f-states. Instead of method 
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used by Hay et al. 253 (patching density matrix of intial guess with density matrices of oriented 

isolated ions), we prepared the initial guess using ionic cluster. The cluster was built from the 

content of the unit cell with oxygen ions moved away by translations to eliminate covalent 

bonding. Two Ce ions were placed in a crystal field (surrounded by negative point charges 

simulating seven oxygen ions of the first coordination sphere). The initial solution was prepared 

using Stable=Opt to destroy spin symmetry. The resulting Kohn-Sham orbitals were examined 

using graphical package Molden,266 and were found to contain two sets of f-AOs (one occupied  

and six unoccupied): alpha set was localized on one Ce ion, and beta set on the other one. Next, 

six other solutions were prepared by replacing the occupied f-AO with unoccupied ones using 

Guess=Alter and the resulting Fock matrices were used to generate the initial guess for 3D-

periodical system in experimental geometry. The guess which resulted in lowest total energy was 

used for all other geometries.  

5.5 Results and Discussions 

 The lattice parameters and bulk moduli for CeO2 are reported in Table 5-1 and for Ce2O3 

in Table 5-2. The results of published theoretical and experimental studies are also shown for 

comparison. For di- and sesquioxide structures our BMK results overestimate the lattice 

parameter by 0.9% and 0.3% (compare to 0.05% and 2.2% by HSE), a more systematic deviation 

which allows us to compare the lattice parameter trend upon subsurface vacancies formation. 

Bulk moldulus for CeO2 is in a good agreement with higher of the four experimental values 

reported. 

The calculated bandgap 6.30eV for CeO2 with BMK functional and 4.43eV with 

PBE1PBE functional  5.5 eV, 65 The calculated lattice parameter for CeO2 in hexagonal aspect 
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(3.789Ǻ) characterizes sandwich trilayer and can be directly compared to Ce2O3 lattice 

parameter a (3.880Ǻ), characterizing sandwich pentalayer. If we assume that (111) surface of 

CeO2 nanocrystals is covered with single Ce2O3 pentalayer (100% occurrence of subsurface 

vacancy), the lattice mismatch and variable bulk to surface ratio will be the only reason for 

changes in lattice parameter for the nanoceria. For the cubic nanoparticle of size d we can 

estimate the total number of Ce ions as 4*d3/(5.41)3, i.e. 5456 for 6 nm NP. Taking the surface of 

pentalayer to be equal to sesquioxide lattice parameter c we find number of bulk Ce atoms to be 

4*(d-6.05)3/(5.41)3, i.e. 2776. Thus, for nanoparticle of 6 nm in size, surface to volume ratio is 

about 50%. Assuming Raoul’s law for CeO2/Ce2O3 solution (or, alternatively, the additivity of 

the surface and bulk lattice energies), we can use the integrated Birch-Murnaghan equation to 

find the compromise lattice parameter which minimizes the total energy of the nanocrystal 

(including both surface and bulk), and convert it into the cubic aspect. The resulting value of 

3.812Ǻ represents 0.6% expansion of the lattice parameter in 6nm nanoparticles of ceria, 

compared to the bulk lattice parameter. This value is in reasonable agreement with experimental 

0.45% expansion and confirms the assumptions made in its derivation. 
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Table 5-1: Lattice parameter and bulk modulus of CeO2 using different methods 

Method a (Å) Bulk modulus 

B0 (GPa)  

Reference  

Hartree Fock 5.385 357 Hilla 

LSDA 5.37 193.4 Jiangb

LSDA (Val 4f) 5.39 214.7 Skorodumovac 

GGA (Val 4f) 5.48 187.7 Skorodumovac 

PW91 5.45 193.5 Yangd 

LSDA 5.360 104.3 Hayi 

LSDA (Core 4f)  5.56 144.9 Skorodumovac 

GGA (Core 4f) 5.69 128.9 Skorodumovac 

PBE 5.468 171.1 Hayi 

TPSS 5.449 183.0 Hayi 

HSE 5.408 206.1 Hayi 

Experiment 5.411216 204 267 

236 268 

Gerward,eGerwardf 

Duclos,gNakajimah 

PBE1PBE 5.375 239 Present work 

BMK 5.359 230 Present work 

          
aReference  249 
bReference  269 
cReference 251 
dReference 270 
eReference  268 
fReference 271 
gReference 267 
hReference  72 
iReference  253 
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Table 5-2:  Lattice parameter and bulk modulus of Ce2O3 obtained with different methods. Val and 
Core indicate 4f-electron treated explicitly or with the Effective Core Potential respectively.  
Antiferromagnetic (AF) ,Ferromagnetic (FM) 

Method a (Å) c (Å) B (GPa) Reference 

LSDA (Core 4f) 3.888  165.8 Skrodumovaa 

LSDA (Core 4f) 3.871  124 Mikamib 

LSDA (Val 4f)  3.720  208.6 Skrodumovaa 

LSDA (Val 4f) AF 3.761 5.864  Hayc 

LSDA (Val 4f) FM 3.776 5.859  Hayc 

LSDA+U (Val 4f) 3.84  150.9 Fabrisd 

PW91 (Core 4f) 3.967  145.3 Skrodumovaa 

PW91 (Val 4f) 3.805  131.8 Skrodumovaa 

PBE (Val 4f)AF 3.878 6.094  Hayc 

PBE (Val 4f) FM 3.877 5.978  Hayc 

GGA+U (Val 4f) 3.94  131.3 Fabrisd 

TPSS (Val 4f) AF 3.878 6.007  Hayc 

TPSS (Val 4f) FM 3.879 6.007  Hayc 

HSE 3.864   Hayc 

Experiment 3.891 6.059  Barnighousene 

PBE1PBE 3.845  199.65 This work 

BMK 3.880  200.0 This work 
aReference    251 
bReference  272 
cReference  253 
dReference   56 
eReference  218 
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Figure 5-1: a) crystal structure of CeO2 fluorite-type cubic structure; b) crystal structure of 
hexagonal Ce2O3 (A type). Ce and O atoms are shown here in black and grey circles 

respectively 245. 

 

 

Figure 5-2: Side view of MX2 sandwich bilayer 
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Figure 5-3:  Schematic representation of a) Fluorite type CeO2 ; b)  C type body centered cubic; 
(c) A type hexagonal sesqioxide. Here solid dots represent metal ions and circles are oxygen 

ions 216. 

 

Figure 5-4: Formation of CaF2-type structure as ABC stacking of MX2 sandwich bilayers. 
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Figure 5-5: Formation of PbCl2 type structure as stacking and distortion of MX2 sandwich 
bilayers. 
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Figure 5-6: Layer structure for Type A 

 

Figure 5-7: Surface oxygen vacancy by Esch et. al56 
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5.6 Conclusions 

We report the results of geometry optimization for bulk ceria CeO2 and Ce2O3 at the hybrid 

DFT levels (BMK and PBE1PBE) with medium-size effective core potential and Gaussian basis 

set. The calculated values of lattice parameters and bulk moduli for both compounds are in 

excellent agreement with experiment. The results validate hybrid DFT as a promising method for 

future study the structure of oxygen vacancies and catalytic properties of ceria nanoparticles. The 

dependence of lattice parameter on the concentration of oxygen vacancies for ideal CeO2/Ce2O3 

solutions is predicted. Electro neutral and nonpolar pentalayers are identified as building blocks 

of type A sesqioxide structure, which explains the exceptional stability of subsurface vacancies 

in nanoceria. 
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